Loading...
1/*
2 * User-space Probes (UProbes) for x86
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright (C) IBM Corporation, 2008-2011
19 * Authors:
20 * Srikar Dronamraju
21 * Jim Keniston
22 */
23#include <linux/kernel.h>
24#include <linux/sched.h>
25#include <linux/ptrace.h>
26#include <linux/uprobes.h>
27#include <linux/uaccess.h>
28
29#include <linux/kdebug.h>
30#include <asm/processor.h>
31#include <asm/insn.h>
32
33/* Post-execution fixups. */
34
35/* No fixup needed */
36#define UPROBE_FIX_NONE 0x0
37
38/* Adjust IP back to vicinity of actual insn */
39#define UPROBE_FIX_IP 0x1
40
41/* Adjust the return address of a call insn */
42#define UPROBE_FIX_CALL 0x2
43
44#define UPROBE_FIX_RIP_AX 0x8000
45#define UPROBE_FIX_RIP_CX 0x4000
46
47#define UPROBE_TRAP_NR UINT_MAX
48
49/* Adaptations for mhiramat x86 decoder v14. */
50#define OPCODE1(insn) ((insn)->opcode.bytes[0])
51#define OPCODE2(insn) ((insn)->opcode.bytes[1])
52#define OPCODE3(insn) ((insn)->opcode.bytes[2])
53#define MODRM_REG(insn) X86_MODRM_REG(insn->modrm.value)
54
55#define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
56 (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \
57 (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \
58 (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \
59 (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \
60 << (row % 32))
61
62/*
63 * Good-instruction tables for 32-bit apps. This is non-const and volatile
64 * to keep gcc from statically optimizing it out, as variable_test_bit makes
65 * some versions of gcc to think only *(unsigned long*) is used.
66 */
67static volatile u32 good_insns_32[256 / 32] = {
68 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
69 /* ---------------------------------------------- */
70 W(0x00, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) | /* 00 */
71 W(0x10, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) , /* 10 */
72 W(0x20, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1) | /* 20 */
73 W(0x30, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1) , /* 30 */
74 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
75 W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
76 W(0x60, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */
77 W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */
78 W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
79 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
80 W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */
81 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
82 W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */
83 W(0xd0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
84 W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* e0 */
85 W(0xf0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1) /* f0 */
86 /* ---------------------------------------------- */
87 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
88};
89
90/* Using this for both 64-bit and 32-bit apps */
91static volatile u32 good_2byte_insns[256 / 32] = {
92 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
93 /* ---------------------------------------------- */
94 W(0x00, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1) | /* 00 */
95 W(0x10, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1) , /* 10 */
96 W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* 20 */
97 W(0x30, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */
98 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
99 W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
100 W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 60 */
101 W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */
102 W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
103 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
104 W(0xa0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1) | /* a0 */
105 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
106 W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
107 W(0xd0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
108 W(0xe0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* e0 */
109 W(0xf0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0) /* f0 */
110 /* ---------------------------------------------- */
111 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
112};
113
114#ifdef CONFIG_X86_64
115/* Good-instruction tables for 64-bit apps */
116static volatile u32 good_insns_64[256 / 32] = {
117 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
118 /* ---------------------------------------------- */
119 W(0x00, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) | /* 00 */
120 W(0x10, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) , /* 10 */
121 W(0x20, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) | /* 20 */
122 W(0x30, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) , /* 30 */
123 W(0x40, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 40 */
124 W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
125 W(0x60, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */
126 W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */
127 W(0x80, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
128 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
129 W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */
130 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
131 W(0xc0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */
132 W(0xd0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
133 W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* e0 */
134 W(0xf0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1) /* f0 */
135 /* ---------------------------------------------- */
136 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
137};
138#endif
139#undef W
140
141/*
142 * opcodes we'll probably never support:
143 *
144 * 6c-6d, e4-e5, ec-ed - in
145 * 6e-6f, e6-e7, ee-ef - out
146 * cc, cd - int3, int
147 * cf - iret
148 * d6 - illegal instruction
149 * f1 - int1/icebp
150 * f4 - hlt
151 * fa, fb - cli, sti
152 * 0f - lar, lsl, syscall, clts, sysret, sysenter, sysexit, invd, wbinvd, ud2
153 *
154 * invalid opcodes in 64-bit mode:
155 *
156 * 06, 0e, 16, 1e, 27, 2f, 37, 3f, 60-62, 82, c4-c5, d4-d5
157 * 63 - we support this opcode in x86_64 but not in i386.
158 *
159 * opcodes we may need to refine support for:
160 *
161 * 0f - 2-byte instructions: For many of these instructions, the validity
162 * depends on the prefix and/or the reg field. On such instructions, we
163 * just consider the opcode combination valid if it corresponds to any
164 * valid instruction.
165 *
166 * 8f - Group 1 - only reg = 0 is OK
167 * c6-c7 - Group 11 - only reg = 0 is OK
168 * d9-df - fpu insns with some illegal encodings
169 * f2, f3 - repnz, repz prefixes. These are also the first byte for
170 * certain floating-point instructions, such as addsd.
171 *
172 * fe - Group 4 - only reg = 0 or 1 is OK
173 * ff - Group 5 - only reg = 0-6 is OK
174 *
175 * others -- Do we need to support these?
176 *
177 * 0f - (floating-point?) prefetch instructions
178 * 07, 17, 1f - pop es, pop ss, pop ds
179 * 26, 2e, 36, 3e - es:, cs:, ss:, ds: segment prefixes --
180 * but 64 and 65 (fs: and gs:) seem to be used, so we support them
181 * 67 - addr16 prefix
182 * ce - into
183 * f0 - lock prefix
184 */
185
186/*
187 * TODO:
188 * - Where necessary, examine the modrm byte and allow only valid instructions
189 * in the different Groups and fpu instructions.
190 */
191
192static bool is_prefix_bad(struct insn *insn)
193{
194 int i;
195
196 for (i = 0; i < insn->prefixes.nbytes; i++) {
197 switch (insn->prefixes.bytes[i]) {
198 case 0x26: /* INAT_PFX_ES */
199 case 0x2E: /* INAT_PFX_CS */
200 case 0x36: /* INAT_PFX_DS */
201 case 0x3E: /* INAT_PFX_SS */
202 case 0xF0: /* INAT_PFX_LOCK */
203 return true;
204 }
205 }
206 return false;
207}
208
209static int validate_insn_32bits(struct arch_uprobe *auprobe, struct insn *insn)
210{
211 insn_init(insn, auprobe->insn, false);
212
213 /* Skip good instruction prefixes; reject "bad" ones. */
214 insn_get_opcode(insn);
215 if (is_prefix_bad(insn))
216 return -ENOTSUPP;
217
218 if (test_bit(OPCODE1(insn), (unsigned long *)good_insns_32))
219 return 0;
220
221 if (insn->opcode.nbytes == 2) {
222 if (test_bit(OPCODE2(insn), (unsigned long *)good_2byte_insns))
223 return 0;
224 }
225
226 return -ENOTSUPP;
227}
228
229/*
230 * Figure out which fixups arch_uprobe_post_xol() will need to perform, and
231 * annotate arch_uprobe->fixups accordingly. To start with,
232 * arch_uprobe->fixups is either zero or it reflects rip-related fixups.
233 */
234static void prepare_fixups(struct arch_uprobe *auprobe, struct insn *insn)
235{
236 bool fix_ip = true, fix_call = false; /* defaults */
237 int reg;
238
239 insn_get_opcode(insn); /* should be a nop */
240
241 switch (OPCODE1(insn)) {
242 case 0xc3: /* ret/lret */
243 case 0xcb:
244 case 0xc2:
245 case 0xca:
246 /* ip is correct */
247 fix_ip = false;
248 break;
249 case 0xe8: /* call relative - Fix return addr */
250 fix_call = true;
251 break;
252 case 0x9a: /* call absolute - Fix return addr, not ip */
253 fix_call = true;
254 fix_ip = false;
255 break;
256 case 0xff:
257 insn_get_modrm(insn);
258 reg = MODRM_REG(insn);
259 if (reg == 2 || reg == 3) {
260 /* call or lcall, indirect */
261 /* Fix return addr; ip is correct. */
262 fix_call = true;
263 fix_ip = false;
264 } else if (reg == 4 || reg == 5) {
265 /* jmp or ljmp, indirect */
266 /* ip is correct. */
267 fix_ip = false;
268 }
269 break;
270 case 0xea: /* jmp absolute -- ip is correct */
271 fix_ip = false;
272 break;
273 default:
274 break;
275 }
276 if (fix_ip)
277 auprobe->fixups |= UPROBE_FIX_IP;
278 if (fix_call)
279 auprobe->fixups |= UPROBE_FIX_CALL;
280}
281
282#ifdef CONFIG_X86_64
283/*
284 * If arch_uprobe->insn doesn't use rip-relative addressing, return
285 * immediately. Otherwise, rewrite the instruction so that it accesses
286 * its memory operand indirectly through a scratch register. Set
287 * arch_uprobe->fixups and arch_uprobe->rip_rela_target_address
288 * accordingly. (The contents of the scratch register will be saved
289 * before we single-step the modified instruction, and restored
290 * afterward.)
291 *
292 * We do this because a rip-relative instruction can access only a
293 * relatively small area (+/- 2 GB from the instruction), and the XOL
294 * area typically lies beyond that area. At least for instructions
295 * that store to memory, we can't execute the original instruction
296 * and "fix things up" later, because the misdirected store could be
297 * disastrous.
298 *
299 * Some useful facts about rip-relative instructions:
300 *
301 * - There's always a modrm byte.
302 * - There's never a SIB byte.
303 * - The displacement is always 4 bytes.
304 */
305static void
306handle_riprel_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, struct insn *insn)
307{
308 u8 *cursor;
309 u8 reg;
310
311 if (mm->context.ia32_compat)
312 return;
313
314 auprobe->rip_rela_target_address = 0x0;
315 if (!insn_rip_relative(insn))
316 return;
317
318 /*
319 * insn_rip_relative() would have decoded rex_prefix, modrm.
320 * Clear REX.b bit (extension of MODRM.rm field):
321 * we want to encode rax/rcx, not r8/r9.
322 */
323 if (insn->rex_prefix.nbytes) {
324 cursor = auprobe->insn + insn_offset_rex_prefix(insn);
325 *cursor &= 0xfe; /* Clearing REX.B bit */
326 }
327
328 /*
329 * Point cursor at the modrm byte. The next 4 bytes are the
330 * displacement. Beyond the displacement, for some instructions,
331 * is the immediate operand.
332 */
333 cursor = auprobe->insn + insn_offset_modrm(insn);
334 insn_get_length(insn);
335
336 /*
337 * Convert from rip-relative addressing to indirect addressing
338 * via a scratch register. Change the r/m field from 0x5 (%rip)
339 * to 0x0 (%rax) or 0x1 (%rcx), and squeeze out the offset field.
340 */
341 reg = MODRM_REG(insn);
342 if (reg == 0) {
343 /*
344 * The register operand (if any) is either the A register
345 * (%rax, %eax, etc.) or (if the 0x4 bit is set in the
346 * REX prefix) %r8. In any case, we know the C register
347 * is NOT the register operand, so we use %rcx (register
348 * #1) for the scratch register.
349 */
350 auprobe->fixups = UPROBE_FIX_RIP_CX;
351 /* Change modrm from 00 000 101 to 00 000 001. */
352 *cursor = 0x1;
353 } else {
354 /* Use %rax (register #0) for the scratch register. */
355 auprobe->fixups = UPROBE_FIX_RIP_AX;
356 /* Change modrm from 00 xxx 101 to 00 xxx 000 */
357 *cursor = (reg << 3);
358 }
359
360 /* Target address = address of next instruction + (signed) offset */
361 auprobe->rip_rela_target_address = (long)insn->length + insn->displacement.value;
362
363 /* Displacement field is gone; slide immediate field (if any) over. */
364 if (insn->immediate.nbytes) {
365 cursor++;
366 memmove(cursor, cursor + insn->displacement.nbytes, insn->immediate.nbytes);
367 }
368 return;
369}
370
371static int validate_insn_64bits(struct arch_uprobe *auprobe, struct insn *insn)
372{
373 insn_init(insn, auprobe->insn, true);
374
375 /* Skip good instruction prefixes; reject "bad" ones. */
376 insn_get_opcode(insn);
377 if (is_prefix_bad(insn))
378 return -ENOTSUPP;
379
380 if (test_bit(OPCODE1(insn), (unsigned long *)good_insns_64))
381 return 0;
382
383 if (insn->opcode.nbytes == 2) {
384 if (test_bit(OPCODE2(insn), (unsigned long *)good_2byte_insns))
385 return 0;
386 }
387 return -ENOTSUPP;
388}
389
390static int validate_insn_bits(struct arch_uprobe *auprobe, struct mm_struct *mm, struct insn *insn)
391{
392 if (mm->context.ia32_compat)
393 return validate_insn_32bits(auprobe, insn);
394 return validate_insn_64bits(auprobe, insn);
395}
396#else /* 32-bit: */
397static void handle_riprel_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, struct insn *insn)
398{
399 /* No RIP-relative addressing on 32-bit */
400}
401
402static int validate_insn_bits(struct arch_uprobe *auprobe, struct mm_struct *mm, struct insn *insn)
403{
404 return validate_insn_32bits(auprobe, insn);
405}
406#endif /* CONFIG_X86_64 */
407
408/**
409 * arch_uprobe_analyze_insn - instruction analysis including validity and fixups.
410 * @mm: the probed address space.
411 * @arch_uprobe: the probepoint information.
412 * Return 0 on success or a -ve number on error.
413 */
414int arch_uprobe_analyze_insn(struct arch_uprobe *auprobe, struct mm_struct *mm)
415{
416 int ret;
417 struct insn insn;
418
419 auprobe->fixups = 0;
420 ret = validate_insn_bits(auprobe, mm, &insn);
421 if (ret != 0)
422 return ret;
423
424 handle_riprel_insn(auprobe, mm, &insn);
425 prepare_fixups(auprobe, &insn);
426
427 return 0;
428}
429
430#ifdef CONFIG_X86_64
431/*
432 * If we're emulating a rip-relative instruction, save the contents
433 * of the scratch register and store the target address in that register.
434 */
435static void
436pre_xol_rip_insn(struct arch_uprobe *auprobe, struct pt_regs *regs,
437 struct arch_uprobe_task *autask)
438{
439 if (auprobe->fixups & UPROBE_FIX_RIP_AX) {
440 autask->saved_scratch_register = regs->ax;
441 regs->ax = current->utask->vaddr;
442 regs->ax += auprobe->rip_rela_target_address;
443 } else if (auprobe->fixups & UPROBE_FIX_RIP_CX) {
444 autask->saved_scratch_register = regs->cx;
445 regs->cx = current->utask->vaddr;
446 regs->cx += auprobe->rip_rela_target_address;
447 }
448}
449#else
450static void
451pre_xol_rip_insn(struct arch_uprobe *auprobe, struct pt_regs *regs,
452 struct arch_uprobe_task *autask)
453{
454 /* No RIP-relative addressing on 32-bit */
455}
456#endif
457
458/*
459 * arch_uprobe_pre_xol - prepare to execute out of line.
460 * @auprobe: the probepoint information.
461 * @regs: reflects the saved user state of current task.
462 */
463int arch_uprobe_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
464{
465 struct arch_uprobe_task *autask;
466
467 autask = ¤t->utask->autask;
468 autask->saved_trap_nr = current->thread.trap_nr;
469 current->thread.trap_nr = UPROBE_TRAP_NR;
470 regs->ip = current->utask->xol_vaddr;
471 pre_xol_rip_insn(auprobe, regs, autask);
472
473 return 0;
474}
475
476/*
477 * This function is called by arch_uprobe_post_xol() to adjust the return
478 * address pushed by a call instruction executed out of line.
479 */
480static int adjust_ret_addr(unsigned long sp, long correction)
481{
482 int rasize, ncopied;
483 long ra = 0;
484
485 if (is_ia32_task())
486 rasize = 4;
487 else
488 rasize = 8;
489
490 ncopied = copy_from_user(&ra, (void __user *)sp, rasize);
491 if (unlikely(ncopied))
492 return -EFAULT;
493
494 ra += correction;
495 ncopied = copy_to_user((void __user *)sp, &ra, rasize);
496 if (unlikely(ncopied))
497 return -EFAULT;
498
499 return 0;
500}
501
502#ifdef CONFIG_X86_64
503static bool is_riprel_insn(struct arch_uprobe *auprobe)
504{
505 return ((auprobe->fixups & (UPROBE_FIX_RIP_AX | UPROBE_FIX_RIP_CX)) != 0);
506}
507
508static void
509handle_riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs, long *correction)
510{
511 if (is_riprel_insn(auprobe)) {
512 struct arch_uprobe_task *autask;
513
514 autask = ¤t->utask->autask;
515 if (auprobe->fixups & UPROBE_FIX_RIP_AX)
516 regs->ax = autask->saved_scratch_register;
517 else
518 regs->cx = autask->saved_scratch_register;
519
520 /*
521 * The original instruction includes a displacement, and so
522 * is 4 bytes longer than what we've just single-stepped.
523 * Fall through to handle stuff like "jmpq *...(%rip)" and
524 * "callq *...(%rip)".
525 */
526 if (correction)
527 *correction += 4;
528 }
529}
530#else
531static void
532handle_riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs, long *correction)
533{
534 /* No RIP-relative addressing on 32-bit */
535}
536#endif
537
538/*
539 * If xol insn itself traps and generates a signal(Say,
540 * SIGILL/SIGSEGV/etc), then detect the case where a singlestepped
541 * instruction jumps back to its own address. It is assumed that anything
542 * like do_page_fault/do_trap/etc sets thread.trap_nr != -1.
543 *
544 * arch_uprobe_pre_xol/arch_uprobe_post_xol save/restore thread.trap_nr,
545 * arch_uprobe_xol_was_trapped() simply checks that ->trap_nr is not equal to
546 * UPROBE_TRAP_NR == -1 set by arch_uprobe_pre_xol().
547 */
548bool arch_uprobe_xol_was_trapped(struct task_struct *t)
549{
550 if (t->thread.trap_nr != UPROBE_TRAP_NR)
551 return true;
552
553 return false;
554}
555
556/*
557 * Called after single-stepping. To avoid the SMP problems that can
558 * occur when we temporarily put back the original opcode to
559 * single-step, we single-stepped a copy of the instruction.
560 *
561 * This function prepares to resume execution after the single-step.
562 * We have to fix things up as follows:
563 *
564 * Typically, the new ip is relative to the copied instruction. We need
565 * to make it relative to the original instruction (FIX_IP). Exceptions
566 * are return instructions and absolute or indirect jump or call instructions.
567 *
568 * If the single-stepped instruction was a call, the return address that
569 * is atop the stack is the address following the copied instruction. We
570 * need to make it the address following the original instruction (FIX_CALL).
571 *
572 * If the original instruction was a rip-relative instruction such as
573 * "movl %edx,0xnnnn(%rip)", we have instead executed an equivalent
574 * instruction using a scratch register -- e.g., "movl %edx,(%rax)".
575 * We need to restore the contents of the scratch register and adjust
576 * the ip, keeping in mind that the instruction we executed is 4 bytes
577 * shorter than the original instruction (since we squeezed out the offset
578 * field). (FIX_RIP_AX or FIX_RIP_CX)
579 */
580int arch_uprobe_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
581{
582 struct uprobe_task *utask;
583 long correction;
584 int result = 0;
585
586 WARN_ON_ONCE(current->thread.trap_nr != UPROBE_TRAP_NR);
587
588 utask = current->utask;
589 current->thread.trap_nr = utask->autask.saved_trap_nr;
590 correction = (long)(utask->vaddr - utask->xol_vaddr);
591 handle_riprel_post_xol(auprobe, regs, &correction);
592 if (auprobe->fixups & UPROBE_FIX_IP)
593 regs->ip += correction;
594
595 if (auprobe->fixups & UPROBE_FIX_CALL)
596 result = adjust_ret_addr(regs->sp, correction);
597
598 return result;
599}
600
601/* callback routine for handling exceptions. */
602int arch_uprobe_exception_notify(struct notifier_block *self, unsigned long val, void *data)
603{
604 struct die_args *args = data;
605 struct pt_regs *regs = args->regs;
606 int ret = NOTIFY_DONE;
607
608 /* We are only interested in userspace traps */
609 if (regs && !user_mode_vm(regs))
610 return NOTIFY_DONE;
611
612 switch (val) {
613 case DIE_INT3:
614 if (uprobe_pre_sstep_notifier(regs))
615 ret = NOTIFY_STOP;
616
617 break;
618
619 case DIE_DEBUG:
620 if (uprobe_post_sstep_notifier(regs))
621 ret = NOTIFY_STOP;
622
623 default:
624 break;
625 }
626
627 return ret;
628}
629
630/*
631 * This function gets called when XOL instruction either gets trapped or
632 * the thread has a fatal signal, so reset the instruction pointer to its
633 * probed address.
634 */
635void arch_uprobe_abort_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
636{
637 struct uprobe_task *utask = current->utask;
638
639 current->thread.trap_nr = utask->autask.saved_trap_nr;
640 handle_riprel_post_xol(auprobe, regs, NULL);
641 instruction_pointer_set(regs, utask->vaddr);
642}
643
644/*
645 * Skip these instructions as per the currently known x86 ISA.
646 * 0x66* { 0x90 | 0x0f 0x1f | 0x0f 0x19 | 0x87 0xc0 }
647 */
648bool arch_uprobe_skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs)
649{
650 int i;
651
652 for (i = 0; i < MAX_UINSN_BYTES; i++) {
653 if ((auprobe->insn[i] == 0x66))
654 continue;
655
656 if (auprobe->insn[i] == 0x90)
657 return true;
658
659 if (i == (MAX_UINSN_BYTES - 1))
660 break;
661
662 if ((auprobe->insn[i] == 0x0f) && (auprobe->insn[i+1] == 0x1f))
663 return true;
664
665 if ((auprobe->insn[i] == 0x0f) && (auprobe->insn[i+1] == 0x19))
666 return true;
667
668 if ((auprobe->insn[i] == 0x87) && (auprobe->insn[i+1] == 0xc0))
669 return true;
670
671 break;
672 }
673 return false;
674}
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * User-space Probes (UProbes) for x86
4 *
5 * Copyright (C) IBM Corporation, 2008-2011
6 * Authors:
7 * Srikar Dronamraju
8 * Jim Keniston
9 */
10#include <linux/kernel.h>
11#include <linux/sched.h>
12#include <linux/ptrace.h>
13#include <linux/uprobes.h>
14#include <linux/uaccess.h>
15
16#include <linux/kdebug.h>
17#include <asm/processor.h>
18#include <asm/insn.h>
19#include <asm/mmu_context.h>
20
21/* Post-execution fixups. */
22
23/* Adjust IP back to vicinity of actual insn */
24#define UPROBE_FIX_IP 0x01
25
26/* Adjust the return address of a call insn */
27#define UPROBE_FIX_CALL 0x02
28
29/* Instruction will modify TF, don't change it */
30#define UPROBE_FIX_SETF 0x04
31
32#define UPROBE_FIX_RIP_SI 0x08
33#define UPROBE_FIX_RIP_DI 0x10
34#define UPROBE_FIX_RIP_BX 0x20
35#define UPROBE_FIX_RIP_MASK \
36 (UPROBE_FIX_RIP_SI | UPROBE_FIX_RIP_DI | UPROBE_FIX_RIP_BX)
37
38#define UPROBE_TRAP_NR UINT_MAX
39
40/* Adaptations for mhiramat x86 decoder v14. */
41#define OPCODE1(insn) ((insn)->opcode.bytes[0])
42#define OPCODE2(insn) ((insn)->opcode.bytes[1])
43#define OPCODE3(insn) ((insn)->opcode.bytes[2])
44#define MODRM_REG(insn) X86_MODRM_REG((insn)->modrm.value)
45
46#define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
47 (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \
48 (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \
49 (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \
50 (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \
51 << (row % 32))
52
53/*
54 * Good-instruction tables for 32-bit apps. This is non-const and volatile
55 * to keep gcc from statically optimizing it out, as variable_test_bit makes
56 * some versions of gcc to think only *(unsigned long*) is used.
57 *
58 * Opcodes we'll probably never support:
59 * 6c-6f - ins,outs. SEGVs if used in userspace
60 * e4-e7 - in,out imm. SEGVs if used in userspace
61 * ec-ef - in,out acc. SEGVs if used in userspace
62 * cc - int3. SIGTRAP if used in userspace
63 * ce - into. Not used in userspace - no kernel support to make it useful. SEGVs
64 * (why we support bound (62) then? it's similar, and similarly unused...)
65 * f1 - int1. SIGTRAP if used in userspace
66 * f4 - hlt. SEGVs if used in userspace
67 * fa - cli. SEGVs if used in userspace
68 * fb - sti. SEGVs if used in userspace
69 *
70 * Opcodes which need some work to be supported:
71 * 07,17,1f - pop es/ss/ds
72 * Normally not used in userspace, but would execute if used.
73 * Can cause GP or stack exception if tries to load wrong segment descriptor.
74 * We hesitate to run them under single step since kernel's handling
75 * of userspace single-stepping (TF flag) is fragile.
76 * We can easily refuse to support push es/cs/ss/ds (06/0e/16/1e)
77 * on the same grounds that they are never used.
78 * cd - int N.
79 * Used by userspace for "int 80" syscall entry. (Other "int N"
80 * cause GP -> SEGV since their IDT gates don't allow calls from CPL 3).
81 * Not supported since kernel's handling of userspace single-stepping
82 * (TF flag) is fragile.
83 * cf - iret. Normally not used in userspace. Doesn't SEGV unless arguments are bad
84 */
85#if defined(CONFIG_X86_32) || defined(CONFIG_IA32_EMULATION)
86static volatile u32 good_insns_32[256 / 32] = {
87 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
88 /* ---------------------------------------------- */
89 W(0x00, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* 00 */
90 W(0x10, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) , /* 10 */
91 W(0x20, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 20 */
92 W(0x30, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 30 */
93 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
94 W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
95 W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */
96 W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */
97 W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
98 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
99 W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */
100 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
101 W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */
102 W(0xd0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
103 W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* e0 */
104 W(0xf0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1) /* f0 */
105 /* ---------------------------------------------- */
106 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
107};
108#else
109#define good_insns_32 NULL
110#endif
111
112/* Good-instruction tables for 64-bit apps.
113 *
114 * Genuinely invalid opcodes:
115 * 06,07 - formerly push/pop es
116 * 0e - formerly push cs
117 * 16,17 - formerly push/pop ss
118 * 1e,1f - formerly push/pop ds
119 * 27,2f,37,3f - formerly daa/das/aaa/aas
120 * 60,61 - formerly pusha/popa
121 * 62 - formerly bound. EVEX prefix for AVX512 (not yet supported)
122 * 82 - formerly redundant encoding of Group1
123 * 9a - formerly call seg:ofs
124 * ce - formerly into
125 * d4,d5 - formerly aam/aad
126 * d6 - formerly undocumented salc
127 * ea - formerly jmp seg:ofs
128 *
129 * Opcodes we'll probably never support:
130 * 6c-6f - ins,outs. SEGVs if used in userspace
131 * e4-e7 - in,out imm. SEGVs if used in userspace
132 * ec-ef - in,out acc. SEGVs if used in userspace
133 * cc - int3. SIGTRAP if used in userspace
134 * f1 - int1. SIGTRAP if used in userspace
135 * f4 - hlt. SEGVs if used in userspace
136 * fa - cli. SEGVs if used in userspace
137 * fb - sti. SEGVs if used in userspace
138 *
139 * Opcodes which need some work to be supported:
140 * cd - int N.
141 * Used by userspace for "int 80" syscall entry. (Other "int N"
142 * cause GP -> SEGV since their IDT gates don't allow calls from CPL 3).
143 * Not supported since kernel's handling of userspace single-stepping
144 * (TF flag) is fragile.
145 * cf - iret. Normally not used in userspace. Doesn't SEGV unless arguments are bad
146 */
147#if defined(CONFIG_X86_64)
148static volatile u32 good_insns_64[256 / 32] = {
149 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
150 /* ---------------------------------------------- */
151 W(0x00, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1) | /* 00 */
152 W(0x10, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) , /* 10 */
153 W(0x20, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) | /* 20 */
154 W(0x30, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) , /* 30 */
155 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
156 W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
157 W(0x60, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */
158 W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */
159 W(0x80, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
160 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1) , /* 90 */
161 W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */
162 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
163 W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */
164 W(0xd0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
165 W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0) | /* e0 */
166 W(0xf0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1) /* f0 */
167 /* ---------------------------------------------- */
168 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
169};
170#else
171#define good_insns_64 NULL
172#endif
173
174/* Using this for both 64-bit and 32-bit apps.
175 * Opcodes we don't support:
176 * 0f 00 - SLDT/STR/LLDT/LTR/VERR/VERW/-/- group. System insns
177 * 0f 01 - SGDT/SIDT/LGDT/LIDT/SMSW/-/LMSW/INVLPG group.
178 * Also encodes tons of other system insns if mod=11.
179 * Some are in fact non-system: xend, xtest, rdtscp, maybe more
180 * 0f 05 - syscall
181 * 0f 06 - clts (CPL0 insn)
182 * 0f 07 - sysret
183 * 0f 08 - invd (CPL0 insn)
184 * 0f 09 - wbinvd (CPL0 insn)
185 * 0f 0b - ud2
186 * 0f 30 - wrmsr (CPL0 insn) (then why rdmsr is allowed, it's also CPL0 insn?)
187 * 0f 34 - sysenter
188 * 0f 35 - sysexit
189 * 0f 37 - getsec
190 * 0f 78 - vmread (Intel VMX. CPL0 insn)
191 * 0f 79 - vmwrite (Intel VMX. CPL0 insn)
192 * Note: with prefixes, these two opcodes are
193 * extrq/insertq/AVX512 convert vector ops.
194 * 0f ae - group15: [f]xsave,[f]xrstor,[v]{ld,st}mxcsr,clflush[opt],
195 * {rd,wr}{fs,gs}base,{s,l,m}fence.
196 * Why? They are all user-executable.
197 */
198static volatile u32 good_2byte_insns[256 / 32] = {
199 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
200 /* ---------------------------------------------- */
201 W(0x00, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1) | /* 00 */
202 W(0x10, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 10 */
203 W(0x20, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 20 */
204 W(0x30, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1) , /* 30 */
205 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
206 W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
207 W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 60 */
208 W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1) , /* 70 */
209 W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
210 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
211 W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1) | /* a0 */
212 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
213 W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
214 W(0xd0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
215 W(0xe0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* e0 */
216 W(0xf0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /* f0 */
217 /* ---------------------------------------------- */
218 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
219};
220#undef W
221
222/*
223 * opcodes we may need to refine support for:
224 *
225 * 0f - 2-byte instructions: For many of these instructions, the validity
226 * depends on the prefix and/or the reg field. On such instructions, we
227 * just consider the opcode combination valid if it corresponds to any
228 * valid instruction.
229 *
230 * 8f - Group 1 - only reg = 0 is OK
231 * c6-c7 - Group 11 - only reg = 0 is OK
232 * d9-df - fpu insns with some illegal encodings
233 * f2, f3 - repnz, repz prefixes. These are also the first byte for
234 * certain floating-point instructions, such as addsd.
235 *
236 * fe - Group 4 - only reg = 0 or 1 is OK
237 * ff - Group 5 - only reg = 0-6 is OK
238 *
239 * others -- Do we need to support these?
240 *
241 * 0f - (floating-point?) prefetch instructions
242 * 07, 17, 1f - pop es, pop ss, pop ds
243 * 26, 2e, 36, 3e - es:, cs:, ss:, ds: segment prefixes --
244 * but 64 and 65 (fs: and gs:) seem to be used, so we support them
245 * 67 - addr16 prefix
246 * ce - into
247 * f0 - lock prefix
248 */
249
250/*
251 * TODO:
252 * - Where necessary, examine the modrm byte and allow only valid instructions
253 * in the different Groups and fpu instructions.
254 */
255
256static bool is_prefix_bad(struct insn *insn)
257{
258 insn_byte_t p;
259 int i;
260
261 for_each_insn_prefix(insn, i, p) {
262 insn_attr_t attr;
263
264 attr = inat_get_opcode_attribute(p);
265 switch (attr) {
266 case INAT_MAKE_PREFIX(INAT_PFX_ES):
267 case INAT_MAKE_PREFIX(INAT_PFX_CS):
268 case INAT_MAKE_PREFIX(INAT_PFX_DS):
269 case INAT_MAKE_PREFIX(INAT_PFX_SS):
270 case INAT_MAKE_PREFIX(INAT_PFX_LOCK):
271 return true;
272 }
273 }
274 return false;
275}
276
277static int uprobe_init_insn(struct arch_uprobe *auprobe, struct insn *insn, bool x86_64)
278{
279 enum insn_mode m = x86_64 ? INSN_MODE_64 : INSN_MODE_32;
280 u32 volatile *good_insns;
281 int ret;
282
283 ret = insn_decode(insn, auprobe->insn, sizeof(auprobe->insn), m);
284 if (ret < 0)
285 return -ENOEXEC;
286
287 if (is_prefix_bad(insn))
288 return -ENOTSUPP;
289
290 /* We should not singlestep on the exception masking instructions */
291 if (insn_masking_exception(insn))
292 return -ENOTSUPP;
293
294 if (x86_64)
295 good_insns = good_insns_64;
296 else
297 good_insns = good_insns_32;
298
299 if (test_bit(OPCODE1(insn), (unsigned long *)good_insns))
300 return 0;
301
302 if (insn->opcode.nbytes == 2) {
303 if (test_bit(OPCODE2(insn), (unsigned long *)good_2byte_insns))
304 return 0;
305 }
306
307 return -ENOTSUPP;
308}
309
310#ifdef CONFIG_X86_64
311/*
312 * If arch_uprobe->insn doesn't use rip-relative addressing, return
313 * immediately. Otherwise, rewrite the instruction so that it accesses
314 * its memory operand indirectly through a scratch register. Set
315 * defparam->fixups accordingly. (The contents of the scratch register
316 * will be saved before we single-step the modified instruction,
317 * and restored afterward).
318 *
319 * We do this because a rip-relative instruction can access only a
320 * relatively small area (+/- 2 GB from the instruction), and the XOL
321 * area typically lies beyond that area. At least for instructions
322 * that store to memory, we can't execute the original instruction
323 * and "fix things up" later, because the misdirected store could be
324 * disastrous.
325 *
326 * Some useful facts about rip-relative instructions:
327 *
328 * - There's always a modrm byte with bit layout "00 reg 101".
329 * - There's never a SIB byte.
330 * - The displacement is always 4 bytes.
331 * - REX.B=1 bit in REX prefix, which normally extends r/m field,
332 * has no effect on rip-relative mode. It doesn't make modrm byte
333 * with r/m=101 refer to register 1101 = R13.
334 */
335static void riprel_analyze(struct arch_uprobe *auprobe, struct insn *insn)
336{
337 u8 *cursor;
338 u8 reg;
339 u8 reg2;
340
341 if (!insn_rip_relative(insn))
342 return;
343
344 /*
345 * insn_rip_relative() would have decoded rex_prefix, vex_prefix, modrm.
346 * Clear REX.b bit (extension of MODRM.rm field):
347 * we want to encode low numbered reg, not r8+.
348 */
349 if (insn->rex_prefix.nbytes) {
350 cursor = auprobe->insn + insn_offset_rex_prefix(insn);
351 /* REX byte has 0100wrxb layout, clearing REX.b bit */
352 *cursor &= 0xfe;
353 }
354 /*
355 * Similar treatment for VEX3/EVEX prefix.
356 * TODO: add XOP treatment when insn decoder supports them
357 */
358 if (insn->vex_prefix.nbytes >= 3) {
359 /*
360 * vex2: c5 rvvvvLpp (has no b bit)
361 * vex3/xop: c4/8f rxbmmmmm wvvvvLpp
362 * evex: 62 rxbR00mm wvvvv1pp zllBVaaa
363 * Setting VEX3.b (setting because it has inverted meaning).
364 * Setting EVEX.x since (in non-SIB encoding) EVEX.x
365 * is the 4th bit of MODRM.rm, and needs the same treatment.
366 * For VEX3-encoded insns, VEX3.x value has no effect in
367 * non-SIB encoding, the change is superfluous but harmless.
368 */
369 cursor = auprobe->insn + insn_offset_vex_prefix(insn) + 1;
370 *cursor |= 0x60;
371 }
372
373 /*
374 * Convert from rip-relative addressing to register-relative addressing
375 * via a scratch register.
376 *
377 * This is tricky since there are insns with modrm byte
378 * which also use registers not encoded in modrm byte:
379 * [i]div/[i]mul: implicitly use dx:ax
380 * shift ops: implicitly use cx
381 * cmpxchg: implicitly uses ax
382 * cmpxchg8/16b: implicitly uses dx:ax and bx:cx
383 * Encoding: 0f c7/1 modrm
384 * The code below thinks that reg=1 (cx), chooses si as scratch.
385 * mulx: implicitly uses dx: mulx r/m,r1,r2 does r1:r2 = dx * r/m.
386 * First appeared in Haswell (BMI2 insn). It is vex-encoded.
387 * Example where none of bx,cx,dx can be used as scratch reg:
388 * c4 e2 63 f6 0d disp32 mulx disp32(%rip),%ebx,%ecx
389 * [v]pcmpistri: implicitly uses cx, xmm0
390 * [v]pcmpistrm: implicitly uses xmm0
391 * [v]pcmpestri: implicitly uses ax, dx, cx, xmm0
392 * [v]pcmpestrm: implicitly uses ax, dx, xmm0
393 * Evil SSE4.2 string comparison ops from hell.
394 * maskmovq/[v]maskmovdqu: implicitly uses (ds:rdi) as destination.
395 * Encoding: 0f f7 modrm, 66 0f f7 modrm, vex-encoded: c5 f9 f7 modrm.
396 * Store op1, byte-masked by op2 msb's in each byte, to (ds:rdi).
397 * AMD says it has no 3-operand form (vex.vvvv must be 1111)
398 * and that it can have only register operands, not mem
399 * (its modrm byte must have mode=11).
400 * If these restrictions will ever be lifted,
401 * we'll need code to prevent selection of di as scratch reg!
402 *
403 * Summary: I don't know any insns with modrm byte which
404 * use SI register implicitly. DI register is used only
405 * by one insn (maskmovq) and BX register is used
406 * only by one too (cmpxchg8b).
407 * BP is stack-segment based (may be a problem?).
408 * AX, DX, CX are off-limits (many implicit users).
409 * SP is unusable (it's stack pointer - think about "pop mem";
410 * also, rsp+disp32 needs sib encoding -> insn length change).
411 */
412
413 reg = MODRM_REG(insn); /* Fetch modrm.reg */
414 reg2 = 0xff; /* Fetch vex.vvvv */
415 if (insn->vex_prefix.nbytes)
416 reg2 = insn->vex_prefix.bytes[2];
417 /*
418 * TODO: add XOP vvvv reading.
419 *
420 * vex.vvvv field is in bits 6-3, bits are inverted.
421 * But in 32-bit mode, high-order bit may be ignored.
422 * Therefore, let's consider only 3 low-order bits.
423 */
424 reg2 = ((reg2 >> 3) & 0x7) ^ 0x7;
425 /*
426 * Register numbering is ax,cx,dx,bx, sp,bp,si,di, r8..r15.
427 *
428 * Choose scratch reg. Order is important: must not select bx
429 * if we can use si (cmpxchg8b case!)
430 */
431 if (reg != 6 && reg2 != 6) {
432 reg2 = 6;
433 auprobe->defparam.fixups |= UPROBE_FIX_RIP_SI;
434 } else if (reg != 7 && reg2 != 7) {
435 reg2 = 7;
436 auprobe->defparam.fixups |= UPROBE_FIX_RIP_DI;
437 /* TODO (paranoia): force maskmovq to not use di */
438 } else {
439 reg2 = 3;
440 auprobe->defparam.fixups |= UPROBE_FIX_RIP_BX;
441 }
442 /*
443 * Point cursor at the modrm byte. The next 4 bytes are the
444 * displacement. Beyond the displacement, for some instructions,
445 * is the immediate operand.
446 */
447 cursor = auprobe->insn + insn_offset_modrm(insn);
448 /*
449 * Change modrm from "00 reg 101" to "10 reg reg2". Example:
450 * 89 05 disp32 mov %eax,disp32(%rip) becomes
451 * 89 86 disp32 mov %eax,disp32(%rsi)
452 */
453 *cursor = 0x80 | (reg << 3) | reg2;
454}
455
456static inline unsigned long *
457scratch_reg(struct arch_uprobe *auprobe, struct pt_regs *regs)
458{
459 if (auprobe->defparam.fixups & UPROBE_FIX_RIP_SI)
460 return ®s->si;
461 if (auprobe->defparam.fixups & UPROBE_FIX_RIP_DI)
462 return ®s->di;
463 return ®s->bx;
464}
465
466/*
467 * If we're emulating a rip-relative instruction, save the contents
468 * of the scratch register and store the target address in that register.
469 */
470static void riprel_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
471{
472 if (auprobe->defparam.fixups & UPROBE_FIX_RIP_MASK) {
473 struct uprobe_task *utask = current->utask;
474 unsigned long *sr = scratch_reg(auprobe, regs);
475
476 utask->autask.saved_scratch_register = *sr;
477 *sr = utask->vaddr + auprobe->defparam.ilen;
478 }
479}
480
481static void riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
482{
483 if (auprobe->defparam.fixups & UPROBE_FIX_RIP_MASK) {
484 struct uprobe_task *utask = current->utask;
485 unsigned long *sr = scratch_reg(auprobe, regs);
486
487 *sr = utask->autask.saved_scratch_register;
488 }
489}
490#else /* 32-bit: */
491/*
492 * No RIP-relative addressing on 32-bit
493 */
494static void riprel_analyze(struct arch_uprobe *auprobe, struct insn *insn)
495{
496}
497static void riprel_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
498{
499}
500static void riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
501{
502}
503#endif /* CONFIG_X86_64 */
504
505struct uprobe_xol_ops {
506 bool (*emulate)(struct arch_uprobe *, struct pt_regs *);
507 int (*pre_xol)(struct arch_uprobe *, struct pt_regs *);
508 int (*post_xol)(struct arch_uprobe *, struct pt_regs *);
509 void (*abort)(struct arch_uprobe *, struct pt_regs *);
510};
511
512static inline int sizeof_long(struct pt_regs *regs)
513{
514 /*
515 * Check registers for mode as in_xxx_syscall() does not apply here.
516 */
517 return user_64bit_mode(regs) ? 8 : 4;
518}
519
520static int default_pre_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
521{
522 riprel_pre_xol(auprobe, regs);
523 return 0;
524}
525
526static int emulate_push_stack(struct pt_regs *regs, unsigned long val)
527{
528 unsigned long new_sp = regs->sp - sizeof_long(regs);
529
530 if (copy_to_user((void __user *)new_sp, &val, sizeof_long(regs)))
531 return -EFAULT;
532
533 regs->sp = new_sp;
534 return 0;
535}
536
537/*
538 * We have to fix things up as follows:
539 *
540 * Typically, the new ip is relative to the copied instruction. We need
541 * to make it relative to the original instruction (FIX_IP). Exceptions
542 * are return instructions and absolute or indirect jump or call instructions.
543 *
544 * If the single-stepped instruction was a call, the return address that
545 * is atop the stack is the address following the copied instruction. We
546 * need to make it the address following the original instruction (FIX_CALL).
547 *
548 * If the original instruction was a rip-relative instruction such as
549 * "movl %edx,0xnnnn(%rip)", we have instead executed an equivalent
550 * instruction using a scratch register -- e.g., "movl %edx,0xnnnn(%rsi)".
551 * We need to restore the contents of the scratch register
552 * (FIX_RIP_reg).
553 */
554static int default_post_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
555{
556 struct uprobe_task *utask = current->utask;
557
558 riprel_post_xol(auprobe, regs);
559 if (auprobe->defparam.fixups & UPROBE_FIX_IP) {
560 long correction = utask->vaddr - utask->xol_vaddr;
561 regs->ip += correction;
562 } else if (auprobe->defparam.fixups & UPROBE_FIX_CALL) {
563 regs->sp += sizeof_long(regs); /* Pop incorrect return address */
564 if (emulate_push_stack(regs, utask->vaddr + auprobe->defparam.ilen))
565 return -ERESTART;
566 }
567 /* popf; tell the caller to not touch TF */
568 if (auprobe->defparam.fixups & UPROBE_FIX_SETF)
569 utask->autask.saved_tf = true;
570
571 return 0;
572}
573
574static void default_abort_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
575{
576 riprel_post_xol(auprobe, regs);
577}
578
579static const struct uprobe_xol_ops default_xol_ops = {
580 .pre_xol = default_pre_xol_op,
581 .post_xol = default_post_xol_op,
582 .abort = default_abort_op,
583};
584
585static bool branch_is_call(struct arch_uprobe *auprobe)
586{
587 return auprobe->branch.opc1 == 0xe8;
588}
589
590#define CASE_COND \
591 COND(70, 71, XF(OF)) \
592 COND(72, 73, XF(CF)) \
593 COND(74, 75, XF(ZF)) \
594 COND(78, 79, XF(SF)) \
595 COND(7a, 7b, XF(PF)) \
596 COND(76, 77, XF(CF) || XF(ZF)) \
597 COND(7c, 7d, XF(SF) != XF(OF)) \
598 COND(7e, 7f, XF(ZF) || XF(SF) != XF(OF))
599
600#define COND(op_y, op_n, expr) \
601 case 0x ## op_y: DO((expr) != 0) \
602 case 0x ## op_n: DO((expr) == 0)
603
604#define XF(xf) (!!(flags & X86_EFLAGS_ ## xf))
605
606static bool is_cond_jmp_opcode(u8 opcode)
607{
608 switch (opcode) {
609 #define DO(expr) \
610 return true;
611 CASE_COND
612 #undef DO
613
614 default:
615 return false;
616 }
617}
618
619static bool check_jmp_cond(struct arch_uprobe *auprobe, struct pt_regs *regs)
620{
621 unsigned long flags = regs->flags;
622
623 switch (auprobe->branch.opc1) {
624 #define DO(expr) \
625 return expr;
626 CASE_COND
627 #undef DO
628
629 default: /* not a conditional jmp */
630 return true;
631 }
632}
633
634#undef XF
635#undef COND
636#undef CASE_COND
637
638static bool branch_emulate_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
639{
640 unsigned long new_ip = regs->ip += auprobe->branch.ilen;
641 unsigned long offs = (long)auprobe->branch.offs;
642
643 if (branch_is_call(auprobe)) {
644 /*
645 * If it fails we execute this (mangled, see the comment in
646 * branch_clear_offset) insn out-of-line. In the likely case
647 * this should trigger the trap, and the probed application
648 * should die or restart the same insn after it handles the
649 * signal, arch_uprobe_post_xol() won't be even called.
650 *
651 * But there is corner case, see the comment in ->post_xol().
652 */
653 if (emulate_push_stack(regs, new_ip))
654 return false;
655 } else if (!check_jmp_cond(auprobe, regs)) {
656 offs = 0;
657 }
658
659 regs->ip = new_ip + offs;
660 return true;
661}
662
663static bool push_emulate_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
664{
665 unsigned long *src_ptr = (void *)regs + auprobe->push.reg_offset;
666
667 if (emulate_push_stack(regs, *src_ptr))
668 return false;
669 regs->ip += auprobe->push.ilen;
670 return true;
671}
672
673static int branch_post_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
674{
675 BUG_ON(!branch_is_call(auprobe));
676 /*
677 * We can only get here if branch_emulate_op() failed to push the ret
678 * address _and_ another thread expanded our stack before the (mangled)
679 * "call" insn was executed out-of-line. Just restore ->sp and restart.
680 * We could also restore ->ip and try to call branch_emulate_op() again.
681 */
682 regs->sp += sizeof_long(regs);
683 return -ERESTART;
684}
685
686static void branch_clear_offset(struct arch_uprobe *auprobe, struct insn *insn)
687{
688 /*
689 * Turn this insn into "call 1f; 1:", this is what we will execute
690 * out-of-line if ->emulate() fails. We only need this to generate
691 * a trap, so that the probed task receives the correct signal with
692 * the properly filled siginfo.
693 *
694 * But see the comment in ->post_xol(), in the unlikely case it can
695 * succeed. So we need to ensure that the new ->ip can not fall into
696 * the non-canonical area and trigger #GP.
697 *
698 * We could turn it into (say) "pushf", but then we would need to
699 * divorce ->insn[] and ->ixol[]. We need to preserve the 1st byte
700 * of ->insn[] for set_orig_insn().
701 */
702 memset(auprobe->insn + insn_offset_immediate(insn),
703 0, insn->immediate.nbytes);
704}
705
706static const struct uprobe_xol_ops branch_xol_ops = {
707 .emulate = branch_emulate_op,
708 .post_xol = branch_post_xol_op,
709};
710
711static const struct uprobe_xol_ops push_xol_ops = {
712 .emulate = push_emulate_op,
713};
714
715/* Returns -ENOSYS if branch_xol_ops doesn't handle this insn */
716static int branch_setup_xol_ops(struct arch_uprobe *auprobe, struct insn *insn)
717{
718 u8 opc1 = OPCODE1(insn);
719 insn_byte_t p;
720 int i;
721
722 switch (opc1) {
723 case 0xeb: /* jmp 8 */
724 case 0xe9: /* jmp 32 */
725 case 0x90: /* prefix* + nop; same as jmp with .offs = 0 */
726 break;
727
728 case 0xe8: /* call relative */
729 branch_clear_offset(auprobe, insn);
730 break;
731
732 case 0x0f:
733 if (insn->opcode.nbytes != 2)
734 return -ENOSYS;
735 /*
736 * If it is a "near" conditional jmp, OPCODE2() - 0x10 matches
737 * OPCODE1() of the "short" jmp which checks the same condition.
738 */
739 opc1 = OPCODE2(insn) - 0x10;
740 fallthrough;
741 default:
742 if (!is_cond_jmp_opcode(opc1))
743 return -ENOSYS;
744 }
745
746 /*
747 * 16-bit overrides such as CALLW (66 e8 nn nn) are not supported.
748 * Intel and AMD behavior differ in 64-bit mode: Intel ignores 66 prefix.
749 * No one uses these insns, reject any branch insns with such prefix.
750 */
751 for_each_insn_prefix(insn, i, p) {
752 if (p == 0x66)
753 return -ENOTSUPP;
754 }
755
756 auprobe->branch.opc1 = opc1;
757 auprobe->branch.ilen = insn->length;
758 auprobe->branch.offs = insn->immediate.value;
759
760 auprobe->ops = &branch_xol_ops;
761 return 0;
762}
763
764/* Returns -ENOSYS if push_xol_ops doesn't handle this insn */
765static int push_setup_xol_ops(struct arch_uprobe *auprobe, struct insn *insn)
766{
767 u8 opc1 = OPCODE1(insn), reg_offset = 0;
768
769 if (opc1 < 0x50 || opc1 > 0x57)
770 return -ENOSYS;
771
772 if (insn->length > 2)
773 return -ENOSYS;
774 if (insn->length == 2) {
775 /* only support rex_prefix 0x41 (x64 only) */
776#ifdef CONFIG_X86_64
777 if (insn->rex_prefix.nbytes != 1 ||
778 insn->rex_prefix.bytes[0] != 0x41)
779 return -ENOSYS;
780
781 switch (opc1) {
782 case 0x50:
783 reg_offset = offsetof(struct pt_regs, r8);
784 break;
785 case 0x51:
786 reg_offset = offsetof(struct pt_regs, r9);
787 break;
788 case 0x52:
789 reg_offset = offsetof(struct pt_regs, r10);
790 break;
791 case 0x53:
792 reg_offset = offsetof(struct pt_regs, r11);
793 break;
794 case 0x54:
795 reg_offset = offsetof(struct pt_regs, r12);
796 break;
797 case 0x55:
798 reg_offset = offsetof(struct pt_regs, r13);
799 break;
800 case 0x56:
801 reg_offset = offsetof(struct pt_regs, r14);
802 break;
803 case 0x57:
804 reg_offset = offsetof(struct pt_regs, r15);
805 break;
806 }
807#else
808 return -ENOSYS;
809#endif
810 } else {
811 switch (opc1) {
812 case 0x50:
813 reg_offset = offsetof(struct pt_regs, ax);
814 break;
815 case 0x51:
816 reg_offset = offsetof(struct pt_regs, cx);
817 break;
818 case 0x52:
819 reg_offset = offsetof(struct pt_regs, dx);
820 break;
821 case 0x53:
822 reg_offset = offsetof(struct pt_regs, bx);
823 break;
824 case 0x54:
825 reg_offset = offsetof(struct pt_regs, sp);
826 break;
827 case 0x55:
828 reg_offset = offsetof(struct pt_regs, bp);
829 break;
830 case 0x56:
831 reg_offset = offsetof(struct pt_regs, si);
832 break;
833 case 0x57:
834 reg_offset = offsetof(struct pt_regs, di);
835 break;
836 }
837 }
838
839 auprobe->push.reg_offset = reg_offset;
840 auprobe->push.ilen = insn->length;
841 auprobe->ops = &push_xol_ops;
842 return 0;
843}
844
845/**
846 * arch_uprobe_analyze_insn - instruction analysis including validity and fixups.
847 * @auprobe: the probepoint information.
848 * @mm: the probed address space.
849 * @addr: virtual address at which to install the probepoint
850 * Return 0 on success or a -ve number on error.
851 */
852int arch_uprobe_analyze_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long addr)
853{
854 struct insn insn;
855 u8 fix_ip_or_call = UPROBE_FIX_IP;
856 int ret;
857
858 ret = uprobe_init_insn(auprobe, &insn, is_64bit_mm(mm));
859 if (ret)
860 return ret;
861
862 ret = branch_setup_xol_ops(auprobe, &insn);
863 if (ret != -ENOSYS)
864 return ret;
865
866 ret = push_setup_xol_ops(auprobe, &insn);
867 if (ret != -ENOSYS)
868 return ret;
869
870 /*
871 * Figure out which fixups default_post_xol_op() will need to perform,
872 * and annotate defparam->fixups accordingly.
873 */
874 switch (OPCODE1(&insn)) {
875 case 0x9d: /* popf */
876 auprobe->defparam.fixups |= UPROBE_FIX_SETF;
877 break;
878 case 0xc3: /* ret or lret -- ip is correct */
879 case 0xcb:
880 case 0xc2:
881 case 0xca:
882 case 0xea: /* jmp absolute -- ip is correct */
883 fix_ip_or_call = 0;
884 break;
885 case 0x9a: /* call absolute - Fix return addr, not ip */
886 fix_ip_or_call = UPROBE_FIX_CALL;
887 break;
888 case 0xff:
889 switch (MODRM_REG(&insn)) {
890 case 2: case 3: /* call or lcall, indirect */
891 fix_ip_or_call = UPROBE_FIX_CALL;
892 break;
893 case 4: case 5: /* jmp or ljmp, indirect */
894 fix_ip_or_call = 0;
895 break;
896 }
897 fallthrough;
898 default:
899 riprel_analyze(auprobe, &insn);
900 }
901
902 auprobe->defparam.ilen = insn.length;
903 auprobe->defparam.fixups |= fix_ip_or_call;
904
905 auprobe->ops = &default_xol_ops;
906 return 0;
907}
908
909/*
910 * arch_uprobe_pre_xol - prepare to execute out of line.
911 * @auprobe: the probepoint information.
912 * @regs: reflects the saved user state of current task.
913 */
914int arch_uprobe_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
915{
916 struct uprobe_task *utask = current->utask;
917
918 if (auprobe->ops->pre_xol) {
919 int err = auprobe->ops->pre_xol(auprobe, regs);
920 if (err)
921 return err;
922 }
923
924 regs->ip = utask->xol_vaddr;
925 utask->autask.saved_trap_nr = current->thread.trap_nr;
926 current->thread.trap_nr = UPROBE_TRAP_NR;
927
928 utask->autask.saved_tf = !!(regs->flags & X86_EFLAGS_TF);
929 regs->flags |= X86_EFLAGS_TF;
930 if (test_tsk_thread_flag(current, TIF_BLOCKSTEP))
931 set_task_blockstep(current, false);
932
933 return 0;
934}
935
936/*
937 * If xol insn itself traps and generates a signal(Say,
938 * SIGILL/SIGSEGV/etc), then detect the case where a singlestepped
939 * instruction jumps back to its own address. It is assumed that anything
940 * like do_page_fault/do_trap/etc sets thread.trap_nr != -1.
941 *
942 * arch_uprobe_pre_xol/arch_uprobe_post_xol save/restore thread.trap_nr,
943 * arch_uprobe_xol_was_trapped() simply checks that ->trap_nr is not equal to
944 * UPROBE_TRAP_NR == -1 set by arch_uprobe_pre_xol().
945 */
946bool arch_uprobe_xol_was_trapped(struct task_struct *t)
947{
948 if (t->thread.trap_nr != UPROBE_TRAP_NR)
949 return true;
950
951 return false;
952}
953
954/*
955 * Called after single-stepping. To avoid the SMP problems that can
956 * occur when we temporarily put back the original opcode to
957 * single-step, we single-stepped a copy of the instruction.
958 *
959 * This function prepares to resume execution after the single-step.
960 */
961int arch_uprobe_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
962{
963 struct uprobe_task *utask = current->utask;
964 bool send_sigtrap = utask->autask.saved_tf;
965 int err = 0;
966
967 WARN_ON_ONCE(current->thread.trap_nr != UPROBE_TRAP_NR);
968 current->thread.trap_nr = utask->autask.saved_trap_nr;
969
970 if (auprobe->ops->post_xol) {
971 err = auprobe->ops->post_xol(auprobe, regs);
972 if (err) {
973 /*
974 * Restore ->ip for restart or post mortem analysis.
975 * ->post_xol() must not return -ERESTART unless this
976 * is really possible.
977 */
978 regs->ip = utask->vaddr;
979 if (err == -ERESTART)
980 err = 0;
981 send_sigtrap = false;
982 }
983 }
984 /*
985 * arch_uprobe_pre_xol() doesn't save the state of TIF_BLOCKSTEP
986 * so we can get an extra SIGTRAP if we do not clear TF. We need
987 * to examine the opcode to make it right.
988 */
989 if (send_sigtrap)
990 send_sig(SIGTRAP, current, 0);
991
992 if (!utask->autask.saved_tf)
993 regs->flags &= ~X86_EFLAGS_TF;
994
995 return err;
996}
997
998/* callback routine for handling exceptions. */
999int arch_uprobe_exception_notify(struct notifier_block *self, unsigned long val, void *data)
1000{
1001 struct die_args *args = data;
1002 struct pt_regs *regs = args->regs;
1003 int ret = NOTIFY_DONE;
1004
1005 /* We are only interested in userspace traps */
1006 if (regs && !user_mode(regs))
1007 return NOTIFY_DONE;
1008
1009 switch (val) {
1010 case DIE_INT3:
1011 if (uprobe_pre_sstep_notifier(regs))
1012 ret = NOTIFY_STOP;
1013
1014 break;
1015
1016 case DIE_DEBUG:
1017 if (uprobe_post_sstep_notifier(regs))
1018 ret = NOTIFY_STOP;
1019
1020 break;
1021
1022 default:
1023 break;
1024 }
1025
1026 return ret;
1027}
1028
1029/*
1030 * This function gets called when XOL instruction either gets trapped or
1031 * the thread has a fatal signal. Reset the instruction pointer to its
1032 * probed address for the potential restart or for post mortem analysis.
1033 */
1034void arch_uprobe_abort_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
1035{
1036 struct uprobe_task *utask = current->utask;
1037
1038 if (auprobe->ops->abort)
1039 auprobe->ops->abort(auprobe, regs);
1040
1041 current->thread.trap_nr = utask->autask.saved_trap_nr;
1042 regs->ip = utask->vaddr;
1043 /* clear TF if it was set by us in arch_uprobe_pre_xol() */
1044 if (!utask->autask.saved_tf)
1045 regs->flags &= ~X86_EFLAGS_TF;
1046}
1047
1048static bool __skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs)
1049{
1050 if (auprobe->ops->emulate)
1051 return auprobe->ops->emulate(auprobe, regs);
1052 return false;
1053}
1054
1055bool arch_uprobe_skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs)
1056{
1057 bool ret = __skip_sstep(auprobe, regs);
1058 if (ret && (regs->flags & X86_EFLAGS_TF))
1059 send_sig(SIGTRAP, current, 0);
1060 return ret;
1061}
1062
1063unsigned long
1064arch_uretprobe_hijack_return_addr(unsigned long trampoline_vaddr, struct pt_regs *regs)
1065{
1066 int rasize = sizeof_long(regs), nleft;
1067 unsigned long orig_ret_vaddr = 0; /* clear high bits for 32-bit apps */
1068
1069 if (copy_from_user(&orig_ret_vaddr, (void __user *)regs->sp, rasize))
1070 return -1;
1071
1072 /* check whether address has been already hijacked */
1073 if (orig_ret_vaddr == trampoline_vaddr)
1074 return orig_ret_vaddr;
1075
1076 nleft = copy_to_user((void __user *)regs->sp, &trampoline_vaddr, rasize);
1077 if (likely(!nleft))
1078 return orig_ret_vaddr;
1079
1080 if (nleft != rasize) {
1081 pr_err("return address clobbered: pid=%d, %%sp=%#lx, %%ip=%#lx\n",
1082 current->pid, regs->sp, regs->ip);
1083
1084 force_sig(SIGSEGV);
1085 }
1086
1087 return -1;
1088}
1089
1090bool arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx,
1091 struct pt_regs *regs)
1092{
1093 if (ctx == RP_CHECK_CALL) /* sp was just decremented by "call" insn */
1094 return regs->sp < ret->stack;
1095 else
1096 return regs->sp <= ret->stack;
1097}