Loading...
1/*
2 * NSA Security-Enhanced Linux (SELinux) security module
3 *
4 * This file contains the SELinux hook function implementations.
5 *
6 * Authors: Stephen Smalley, <sds@epoch.ncsc.mil>
7 * Chris Vance, <cvance@nai.com>
8 * Wayne Salamon, <wsalamon@nai.com>
9 * James Morris <jmorris@redhat.com>
10 *
11 * Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12 * Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
13 * Eric Paris <eparis@redhat.com>
14 * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
15 * <dgoeddel@trustedcs.com>
16 * Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
17 * Paul Moore <paul@paul-moore.com>
18 * Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
19 * Yuichi Nakamura <ynakam@hitachisoft.jp>
20 *
21 * This program is free software; you can redistribute it and/or modify
22 * it under the terms of the GNU General Public License version 2,
23 * as published by the Free Software Foundation.
24 */
25
26#include <linux/init.h>
27#include <linux/kd.h>
28#include <linux/kernel.h>
29#include <linux/tracehook.h>
30#include <linux/errno.h>
31#include <linux/sched.h>
32#include <linux/security.h>
33#include <linux/xattr.h>
34#include <linux/capability.h>
35#include <linux/unistd.h>
36#include <linux/mm.h>
37#include <linux/mman.h>
38#include <linux/slab.h>
39#include <linux/pagemap.h>
40#include <linux/proc_fs.h>
41#include <linux/swap.h>
42#include <linux/spinlock.h>
43#include <linux/syscalls.h>
44#include <linux/dcache.h>
45#include <linux/file.h>
46#include <linux/fdtable.h>
47#include <linux/namei.h>
48#include <linux/mount.h>
49#include <linux/netfilter_ipv4.h>
50#include <linux/netfilter_ipv6.h>
51#include <linux/tty.h>
52#include <net/icmp.h>
53#include <net/ip.h> /* for local_port_range[] */
54#include <net/tcp.h> /* struct or_callable used in sock_rcv_skb */
55#include <net/net_namespace.h>
56#include <net/netlabel.h>
57#include <linux/uaccess.h>
58#include <asm/ioctls.h>
59#include <linux/atomic.h>
60#include <linux/bitops.h>
61#include <linux/interrupt.h>
62#include <linux/netdevice.h> /* for network interface checks */
63#include <linux/netlink.h>
64#include <linux/tcp.h>
65#include <linux/udp.h>
66#include <linux/dccp.h>
67#include <linux/quota.h>
68#include <linux/un.h> /* for Unix socket types */
69#include <net/af_unix.h> /* for Unix socket types */
70#include <linux/parser.h>
71#include <linux/nfs_mount.h>
72#include <net/ipv6.h>
73#include <linux/hugetlb.h>
74#include <linux/personality.h>
75#include <linux/audit.h>
76#include <linux/string.h>
77#include <linux/selinux.h>
78#include <linux/mutex.h>
79#include <linux/posix-timers.h>
80#include <linux/syslog.h>
81#include <linux/user_namespace.h>
82#include <linux/export.h>
83#include <linux/msg.h>
84#include <linux/shm.h>
85
86#include "avc.h"
87#include "objsec.h"
88#include "netif.h"
89#include "netnode.h"
90#include "netport.h"
91#include "xfrm.h"
92#include "netlabel.h"
93#include "audit.h"
94#include "avc_ss.h"
95
96#define NUM_SEL_MNT_OPTS 5
97
98extern struct security_operations *security_ops;
99
100/* SECMARK reference count */
101static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
102
103#ifdef CONFIG_SECURITY_SELINUX_DEVELOP
104int selinux_enforcing;
105
106static int __init enforcing_setup(char *str)
107{
108 unsigned long enforcing;
109 if (!strict_strtoul(str, 0, &enforcing))
110 selinux_enforcing = enforcing ? 1 : 0;
111 return 1;
112}
113__setup("enforcing=", enforcing_setup);
114#endif
115
116#ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
117int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
118
119static int __init selinux_enabled_setup(char *str)
120{
121 unsigned long enabled;
122 if (!strict_strtoul(str, 0, &enabled))
123 selinux_enabled = enabled ? 1 : 0;
124 return 1;
125}
126__setup("selinux=", selinux_enabled_setup);
127#else
128int selinux_enabled = 1;
129#endif
130
131static struct kmem_cache *sel_inode_cache;
132
133/**
134 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
135 *
136 * Description:
137 * This function checks the SECMARK reference counter to see if any SECMARK
138 * targets are currently configured, if the reference counter is greater than
139 * zero SECMARK is considered to be enabled. Returns true (1) if SECMARK is
140 * enabled, false (0) if SECMARK is disabled.
141 *
142 */
143static int selinux_secmark_enabled(void)
144{
145 return (atomic_read(&selinux_secmark_refcount) > 0);
146}
147
148/*
149 * initialise the security for the init task
150 */
151static void cred_init_security(void)
152{
153 struct cred *cred = (struct cred *) current->real_cred;
154 struct task_security_struct *tsec;
155
156 tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
157 if (!tsec)
158 panic("SELinux: Failed to initialize initial task.\n");
159
160 tsec->osid = tsec->sid = SECINITSID_KERNEL;
161 cred->security = tsec;
162}
163
164/*
165 * get the security ID of a set of credentials
166 */
167static inline u32 cred_sid(const struct cred *cred)
168{
169 const struct task_security_struct *tsec;
170
171 tsec = cred->security;
172 return tsec->sid;
173}
174
175/*
176 * get the objective security ID of a task
177 */
178static inline u32 task_sid(const struct task_struct *task)
179{
180 u32 sid;
181
182 rcu_read_lock();
183 sid = cred_sid(__task_cred(task));
184 rcu_read_unlock();
185 return sid;
186}
187
188/*
189 * get the subjective security ID of the current task
190 */
191static inline u32 current_sid(void)
192{
193 const struct task_security_struct *tsec = current_security();
194
195 return tsec->sid;
196}
197
198/* Allocate and free functions for each kind of security blob. */
199
200static int inode_alloc_security(struct inode *inode)
201{
202 struct inode_security_struct *isec;
203 u32 sid = current_sid();
204
205 isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
206 if (!isec)
207 return -ENOMEM;
208
209 mutex_init(&isec->lock);
210 INIT_LIST_HEAD(&isec->list);
211 isec->inode = inode;
212 isec->sid = SECINITSID_UNLABELED;
213 isec->sclass = SECCLASS_FILE;
214 isec->task_sid = sid;
215 inode->i_security = isec;
216
217 return 0;
218}
219
220static void inode_free_security(struct inode *inode)
221{
222 struct inode_security_struct *isec = inode->i_security;
223 struct superblock_security_struct *sbsec = inode->i_sb->s_security;
224
225 spin_lock(&sbsec->isec_lock);
226 if (!list_empty(&isec->list))
227 list_del_init(&isec->list);
228 spin_unlock(&sbsec->isec_lock);
229
230 inode->i_security = NULL;
231 kmem_cache_free(sel_inode_cache, isec);
232}
233
234static int file_alloc_security(struct file *file)
235{
236 struct file_security_struct *fsec;
237 u32 sid = current_sid();
238
239 fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL);
240 if (!fsec)
241 return -ENOMEM;
242
243 fsec->sid = sid;
244 fsec->fown_sid = sid;
245 file->f_security = fsec;
246
247 return 0;
248}
249
250static void file_free_security(struct file *file)
251{
252 struct file_security_struct *fsec = file->f_security;
253 file->f_security = NULL;
254 kfree(fsec);
255}
256
257static int superblock_alloc_security(struct super_block *sb)
258{
259 struct superblock_security_struct *sbsec;
260
261 sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
262 if (!sbsec)
263 return -ENOMEM;
264
265 mutex_init(&sbsec->lock);
266 INIT_LIST_HEAD(&sbsec->isec_head);
267 spin_lock_init(&sbsec->isec_lock);
268 sbsec->sb = sb;
269 sbsec->sid = SECINITSID_UNLABELED;
270 sbsec->def_sid = SECINITSID_FILE;
271 sbsec->mntpoint_sid = SECINITSID_UNLABELED;
272 sb->s_security = sbsec;
273
274 return 0;
275}
276
277static void superblock_free_security(struct super_block *sb)
278{
279 struct superblock_security_struct *sbsec = sb->s_security;
280 sb->s_security = NULL;
281 kfree(sbsec);
282}
283
284/* The file system's label must be initialized prior to use. */
285
286static const char *labeling_behaviors[6] = {
287 "uses xattr",
288 "uses transition SIDs",
289 "uses task SIDs",
290 "uses genfs_contexts",
291 "not configured for labeling",
292 "uses mountpoint labeling",
293};
294
295static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
296
297static inline int inode_doinit(struct inode *inode)
298{
299 return inode_doinit_with_dentry(inode, NULL);
300}
301
302enum {
303 Opt_error = -1,
304 Opt_context = 1,
305 Opt_fscontext = 2,
306 Opt_defcontext = 3,
307 Opt_rootcontext = 4,
308 Opt_labelsupport = 5,
309};
310
311static const match_table_t tokens = {
312 {Opt_context, CONTEXT_STR "%s"},
313 {Opt_fscontext, FSCONTEXT_STR "%s"},
314 {Opt_defcontext, DEFCONTEXT_STR "%s"},
315 {Opt_rootcontext, ROOTCONTEXT_STR "%s"},
316 {Opt_labelsupport, LABELSUPP_STR},
317 {Opt_error, NULL},
318};
319
320#define SEL_MOUNT_FAIL_MSG "SELinux: duplicate or incompatible mount options\n"
321
322static int may_context_mount_sb_relabel(u32 sid,
323 struct superblock_security_struct *sbsec,
324 const struct cred *cred)
325{
326 const struct task_security_struct *tsec = cred->security;
327 int rc;
328
329 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
330 FILESYSTEM__RELABELFROM, NULL);
331 if (rc)
332 return rc;
333
334 rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
335 FILESYSTEM__RELABELTO, NULL);
336 return rc;
337}
338
339static int may_context_mount_inode_relabel(u32 sid,
340 struct superblock_security_struct *sbsec,
341 const struct cred *cred)
342{
343 const struct task_security_struct *tsec = cred->security;
344 int rc;
345 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
346 FILESYSTEM__RELABELFROM, NULL);
347 if (rc)
348 return rc;
349
350 rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
351 FILESYSTEM__ASSOCIATE, NULL);
352 return rc;
353}
354
355static int sb_finish_set_opts(struct super_block *sb)
356{
357 struct superblock_security_struct *sbsec = sb->s_security;
358 struct dentry *root = sb->s_root;
359 struct inode *root_inode = root->d_inode;
360 int rc = 0;
361
362 if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
363 /* Make sure that the xattr handler exists and that no
364 error other than -ENODATA is returned by getxattr on
365 the root directory. -ENODATA is ok, as this may be
366 the first boot of the SELinux kernel before we have
367 assigned xattr values to the filesystem. */
368 if (!root_inode->i_op->getxattr) {
369 printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
370 "xattr support\n", sb->s_id, sb->s_type->name);
371 rc = -EOPNOTSUPP;
372 goto out;
373 }
374 rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
375 if (rc < 0 && rc != -ENODATA) {
376 if (rc == -EOPNOTSUPP)
377 printk(KERN_WARNING "SELinux: (dev %s, type "
378 "%s) has no security xattr handler\n",
379 sb->s_id, sb->s_type->name);
380 else
381 printk(KERN_WARNING "SELinux: (dev %s, type "
382 "%s) getxattr errno %d\n", sb->s_id,
383 sb->s_type->name, -rc);
384 goto out;
385 }
386 }
387
388 sbsec->flags |= (SE_SBINITIALIZED | SE_SBLABELSUPP);
389
390 if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
391 printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n",
392 sb->s_id, sb->s_type->name);
393 else
394 printk(KERN_DEBUG "SELinux: initialized (dev %s, type %s), %s\n",
395 sb->s_id, sb->s_type->name,
396 labeling_behaviors[sbsec->behavior-1]);
397
398 if (sbsec->behavior == SECURITY_FS_USE_GENFS ||
399 sbsec->behavior == SECURITY_FS_USE_MNTPOINT ||
400 sbsec->behavior == SECURITY_FS_USE_NONE ||
401 sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
402 sbsec->flags &= ~SE_SBLABELSUPP;
403
404 /* Special handling for sysfs. Is genfs but also has setxattr handler*/
405 if (strncmp(sb->s_type->name, "sysfs", sizeof("sysfs")) == 0)
406 sbsec->flags |= SE_SBLABELSUPP;
407
408 /* Initialize the root inode. */
409 rc = inode_doinit_with_dentry(root_inode, root);
410
411 /* Initialize any other inodes associated with the superblock, e.g.
412 inodes created prior to initial policy load or inodes created
413 during get_sb by a pseudo filesystem that directly
414 populates itself. */
415 spin_lock(&sbsec->isec_lock);
416next_inode:
417 if (!list_empty(&sbsec->isec_head)) {
418 struct inode_security_struct *isec =
419 list_entry(sbsec->isec_head.next,
420 struct inode_security_struct, list);
421 struct inode *inode = isec->inode;
422 spin_unlock(&sbsec->isec_lock);
423 inode = igrab(inode);
424 if (inode) {
425 if (!IS_PRIVATE(inode))
426 inode_doinit(inode);
427 iput(inode);
428 }
429 spin_lock(&sbsec->isec_lock);
430 list_del_init(&isec->list);
431 goto next_inode;
432 }
433 spin_unlock(&sbsec->isec_lock);
434out:
435 return rc;
436}
437
438/*
439 * This function should allow an FS to ask what it's mount security
440 * options were so it can use those later for submounts, displaying
441 * mount options, or whatever.
442 */
443static int selinux_get_mnt_opts(const struct super_block *sb,
444 struct security_mnt_opts *opts)
445{
446 int rc = 0, i;
447 struct superblock_security_struct *sbsec = sb->s_security;
448 char *context = NULL;
449 u32 len;
450 char tmp;
451
452 security_init_mnt_opts(opts);
453
454 if (!(sbsec->flags & SE_SBINITIALIZED))
455 return -EINVAL;
456
457 if (!ss_initialized)
458 return -EINVAL;
459
460 tmp = sbsec->flags & SE_MNTMASK;
461 /* count the number of mount options for this sb */
462 for (i = 0; i < 8; i++) {
463 if (tmp & 0x01)
464 opts->num_mnt_opts++;
465 tmp >>= 1;
466 }
467 /* Check if the Label support flag is set */
468 if (sbsec->flags & SE_SBLABELSUPP)
469 opts->num_mnt_opts++;
470
471 opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
472 if (!opts->mnt_opts) {
473 rc = -ENOMEM;
474 goto out_free;
475 }
476
477 opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
478 if (!opts->mnt_opts_flags) {
479 rc = -ENOMEM;
480 goto out_free;
481 }
482
483 i = 0;
484 if (sbsec->flags & FSCONTEXT_MNT) {
485 rc = security_sid_to_context(sbsec->sid, &context, &len);
486 if (rc)
487 goto out_free;
488 opts->mnt_opts[i] = context;
489 opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
490 }
491 if (sbsec->flags & CONTEXT_MNT) {
492 rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len);
493 if (rc)
494 goto out_free;
495 opts->mnt_opts[i] = context;
496 opts->mnt_opts_flags[i++] = CONTEXT_MNT;
497 }
498 if (sbsec->flags & DEFCONTEXT_MNT) {
499 rc = security_sid_to_context(sbsec->def_sid, &context, &len);
500 if (rc)
501 goto out_free;
502 opts->mnt_opts[i] = context;
503 opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
504 }
505 if (sbsec->flags & ROOTCONTEXT_MNT) {
506 struct inode *root = sbsec->sb->s_root->d_inode;
507 struct inode_security_struct *isec = root->i_security;
508
509 rc = security_sid_to_context(isec->sid, &context, &len);
510 if (rc)
511 goto out_free;
512 opts->mnt_opts[i] = context;
513 opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
514 }
515 if (sbsec->flags & SE_SBLABELSUPP) {
516 opts->mnt_opts[i] = NULL;
517 opts->mnt_opts_flags[i++] = SE_SBLABELSUPP;
518 }
519
520 BUG_ON(i != opts->num_mnt_opts);
521
522 return 0;
523
524out_free:
525 security_free_mnt_opts(opts);
526 return rc;
527}
528
529static int bad_option(struct superblock_security_struct *sbsec, char flag,
530 u32 old_sid, u32 new_sid)
531{
532 char mnt_flags = sbsec->flags & SE_MNTMASK;
533
534 /* check if the old mount command had the same options */
535 if (sbsec->flags & SE_SBINITIALIZED)
536 if (!(sbsec->flags & flag) ||
537 (old_sid != new_sid))
538 return 1;
539
540 /* check if we were passed the same options twice,
541 * aka someone passed context=a,context=b
542 */
543 if (!(sbsec->flags & SE_SBINITIALIZED))
544 if (mnt_flags & flag)
545 return 1;
546 return 0;
547}
548
549/*
550 * Allow filesystems with binary mount data to explicitly set mount point
551 * labeling information.
552 */
553static int selinux_set_mnt_opts(struct super_block *sb,
554 struct security_mnt_opts *opts)
555{
556 const struct cred *cred = current_cred();
557 int rc = 0, i;
558 struct superblock_security_struct *sbsec = sb->s_security;
559 const char *name = sb->s_type->name;
560 struct inode *inode = sbsec->sb->s_root->d_inode;
561 struct inode_security_struct *root_isec = inode->i_security;
562 u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
563 u32 defcontext_sid = 0;
564 char **mount_options = opts->mnt_opts;
565 int *flags = opts->mnt_opts_flags;
566 int num_opts = opts->num_mnt_opts;
567
568 mutex_lock(&sbsec->lock);
569
570 if (!ss_initialized) {
571 if (!num_opts) {
572 /* Defer initialization until selinux_complete_init,
573 after the initial policy is loaded and the security
574 server is ready to handle calls. */
575 goto out;
576 }
577 rc = -EINVAL;
578 printk(KERN_WARNING "SELinux: Unable to set superblock options "
579 "before the security server is initialized\n");
580 goto out;
581 }
582
583 /*
584 * Binary mount data FS will come through this function twice. Once
585 * from an explicit call and once from the generic calls from the vfs.
586 * Since the generic VFS calls will not contain any security mount data
587 * we need to skip the double mount verification.
588 *
589 * This does open a hole in which we will not notice if the first
590 * mount using this sb set explict options and a second mount using
591 * this sb does not set any security options. (The first options
592 * will be used for both mounts)
593 */
594 if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
595 && (num_opts == 0))
596 goto out;
597
598 /*
599 * parse the mount options, check if they are valid sids.
600 * also check if someone is trying to mount the same sb more
601 * than once with different security options.
602 */
603 for (i = 0; i < num_opts; i++) {
604 u32 sid;
605
606 if (flags[i] == SE_SBLABELSUPP)
607 continue;
608 rc = security_context_to_sid(mount_options[i],
609 strlen(mount_options[i]), &sid);
610 if (rc) {
611 printk(KERN_WARNING "SELinux: security_context_to_sid"
612 "(%s) failed for (dev %s, type %s) errno=%d\n",
613 mount_options[i], sb->s_id, name, rc);
614 goto out;
615 }
616 switch (flags[i]) {
617 case FSCONTEXT_MNT:
618 fscontext_sid = sid;
619
620 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
621 fscontext_sid))
622 goto out_double_mount;
623
624 sbsec->flags |= FSCONTEXT_MNT;
625 break;
626 case CONTEXT_MNT:
627 context_sid = sid;
628
629 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
630 context_sid))
631 goto out_double_mount;
632
633 sbsec->flags |= CONTEXT_MNT;
634 break;
635 case ROOTCONTEXT_MNT:
636 rootcontext_sid = sid;
637
638 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
639 rootcontext_sid))
640 goto out_double_mount;
641
642 sbsec->flags |= ROOTCONTEXT_MNT;
643
644 break;
645 case DEFCONTEXT_MNT:
646 defcontext_sid = sid;
647
648 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
649 defcontext_sid))
650 goto out_double_mount;
651
652 sbsec->flags |= DEFCONTEXT_MNT;
653
654 break;
655 default:
656 rc = -EINVAL;
657 goto out;
658 }
659 }
660
661 if (sbsec->flags & SE_SBINITIALIZED) {
662 /* previously mounted with options, but not on this attempt? */
663 if ((sbsec->flags & SE_MNTMASK) && !num_opts)
664 goto out_double_mount;
665 rc = 0;
666 goto out;
667 }
668
669 if (strcmp(sb->s_type->name, "proc") == 0)
670 sbsec->flags |= SE_SBPROC;
671
672 /* Determine the labeling behavior to use for this filesystem type. */
673 rc = security_fs_use((sbsec->flags & SE_SBPROC) ? "proc" : sb->s_type->name, &sbsec->behavior, &sbsec->sid);
674 if (rc) {
675 printk(KERN_WARNING "%s: security_fs_use(%s) returned %d\n",
676 __func__, sb->s_type->name, rc);
677 goto out;
678 }
679
680 /* sets the context of the superblock for the fs being mounted. */
681 if (fscontext_sid) {
682 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
683 if (rc)
684 goto out;
685
686 sbsec->sid = fscontext_sid;
687 }
688
689 /*
690 * Switch to using mount point labeling behavior.
691 * sets the label used on all file below the mountpoint, and will set
692 * the superblock context if not already set.
693 */
694 if (context_sid) {
695 if (!fscontext_sid) {
696 rc = may_context_mount_sb_relabel(context_sid, sbsec,
697 cred);
698 if (rc)
699 goto out;
700 sbsec->sid = context_sid;
701 } else {
702 rc = may_context_mount_inode_relabel(context_sid, sbsec,
703 cred);
704 if (rc)
705 goto out;
706 }
707 if (!rootcontext_sid)
708 rootcontext_sid = context_sid;
709
710 sbsec->mntpoint_sid = context_sid;
711 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
712 }
713
714 if (rootcontext_sid) {
715 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
716 cred);
717 if (rc)
718 goto out;
719
720 root_isec->sid = rootcontext_sid;
721 root_isec->initialized = 1;
722 }
723
724 if (defcontext_sid) {
725 if (sbsec->behavior != SECURITY_FS_USE_XATTR) {
726 rc = -EINVAL;
727 printk(KERN_WARNING "SELinux: defcontext option is "
728 "invalid for this filesystem type\n");
729 goto out;
730 }
731
732 if (defcontext_sid != sbsec->def_sid) {
733 rc = may_context_mount_inode_relabel(defcontext_sid,
734 sbsec, cred);
735 if (rc)
736 goto out;
737 }
738
739 sbsec->def_sid = defcontext_sid;
740 }
741
742 rc = sb_finish_set_opts(sb);
743out:
744 mutex_unlock(&sbsec->lock);
745 return rc;
746out_double_mount:
747 rc = -EINVAL;
748 printk(KERN_WARNING "SELinux: mount invalid. Same superblock, different "
749 "security settings for (dev %s, type %s)\n", sb->s_id, name);
750 goto out;
751}
752
753static void selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
754 struct super_block *newsb)
755{
756 const struct superblock_security_struct *oldsbsec = oldsb->s_security;
757 struct superblock_security_struct *newsbsec = newsb->s_security;
758
759 int set_fscontext = (oldsbsec->flags & FSCONTEXT_MNT);
760 int set_context = (oldsbsec->flags & CONTEXT_MNT);
761 int set_rootcontext = (oldsbsec->flags & ROOTCONTEXT_MNT);
762
763 /*
764 * if the parent was able to be mounted it clearly had no special lsm
765 * mount options. thus we can safely deal with this superblock later
766 */
767 if (!ss_initialized)
768 return;
769
770 /* how can we clone if the old one wasn't set up?? */
771 BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
772
773 /* if fs is reusing a sb, just let its options stand... */
774 if (newsbsec->flags & SE_SBINITIALIZED)
775 return;
776
777 mutex_lock(&newsbsec->lock);
778
779 newsbsec->flags = oldsbsec->flags;
780
781 newsbsec->sid = oldsbsec->sid;
782 newsbsec->def_sid = oldsbsec->def_sid;
783 newsbsec->behavior = oldsbsec->behavior;
784
785 if (set_context) {
786 u32 sid = oldsbsec->mntpoint_sid;
787
788 if (!set_fscontext)
789 newsbsec->sid = sid;
790 if (!set_rootcontext) {
791 struct inode *newinode = newsb->s_root->d_inode;
792 struct inode_security_struct *newisec = newinode->i_security;
793 newisec->sid = sid;
794 }
795 newsbsec->mntpoint_sid = sid;
796 }
797 if (set_rootcontext) {
798 const struct inode *oldinode = oldsb->s_root->d_inode;
799 const struct inode_security_struct *oldisec = oldinode->i_security;
800 struct inode *newinode = newsb->s_root->d_inode;
801 struct inode_security_struct *newisec = newinode->i_security;
802
803 newisec->sid = oldisec->sid;
804 }
805
806 sb_finish_set_opts(newsb);
807 mutex_unlock(&newsbsec->lock);
808}
809
810static int selinux_parse_opts_str(char *options,
811 struct security_mnt_opts *opts)
812{
813 char *p;
814 char *context = NULL, *defcontext = NULL;
815 char *fscontext = NULL, *rootcontext = NULL;
816 int rc, num_mnt_opts = 0;
817
818 opts->num_mnt_opts = 0;
819
820 /* Standard string-based options. */
821 while ((p = strsep(&options, "|")) != NULL) {
822 int token;
823 substring_t args[MAX_OPT_ARGS];
824
825 if (!*p)
826 continue;
827
828 token = match_token(p, tokens, args);
829
830 switch (token) {
831 case Opt_context:
832 if (context || defcontext) {
833 rc = -EINVAL;
834 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
835 goto out_err;
836 }
837 context = match_strdup(&args[0]);
838 if (!context) {
839 rc = -ENOMEM;
840 goto out_err;
841 }
842 break;
843
844 case Opt_fscontext:
845 if (fscontext) {
846 rc = -EINVAL;
847 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
848 goto out_err;
849 }
850 fscontext = match_strdup(&args[0]);
851 if (!fscontext) {
852 rc = -ENOMEM;
853 goto out_err;
854 }
855 break;
856
857 case Opt_rootcontext:
858 if (rootcontext) {
859 rc = -EINVAL;
860 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
861 goto out_err;
862 }
863 rootcontext = match_strdup(&args[0]);
864 if (!rootcontext) {
865 rc = -ENOMEM;
866 goto out_err;
867 }
868 break;
869
870 case Opt_defcontext:
871 if (context || defcontext) {
872 rc = -EINVAL;
873 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
874 goto out_err;
875 }
876 defcontext = match_strdup(&args[0]);
877 if (!defcontext) {
878 rc = -ENOMEM;
879 goto out_err;
880 }
881 break;
882 case Opt_labelsupport:
883 break;
884 default:
885 rc = -EINVAL;
886 printk(KERN_WARNING "SELinux: unknown mount option\n");
887 goto out_err;
888
889 }
890 }
891
892 rc = -ENOMEM;
893 opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC);
894 if (!opts->mnt_opts)
895 goto out_err;
896
897 opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC);
898 if (!opts->mnt_opts_flags) {
899 kfree(opts->mnt_opts);
900 goto out_err;
901 }
902
903 if (fscontext) {
904 opts->mnt_opts[num_mnt_opts] = fscontext;
905 opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
906 }
907 if (context) {
908 opts->mnt_opts[num_mnt_opts] = context;
909 opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
910 }
911 if (rootcontext) {
912 opts->mnt_opts[num_mnt_opts] = rootcontext;
913 opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
914 }
915 if (defcontext) {
916 opts->mnt_opts[num_mnt_opts] = defcontext;
917 opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
918 }
919
920 opts->num_mnt_opts = num_mnt_opts;
921 return 0;
922
923out_err:
924 kfree(context);
925 kfree(defcontext);
926 kfree(fscontext);
927 kfree(rootcontext);
928 return rc;
929}
930/*
931 * string mount options parsing and call set the sbsec
932 */
933static int superblock_doinit(struct super_block *sb, void *data)
934{
935 int rc = 0;
936 char *options = data;
937 struct security_mnt_opts opts;
938
939 security_init_mnt_opts(&opts);
940
941 if (!data)
942 goto out;
943
944 BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
945
946 rc = selinux_parse_opts_str(options, &opts);
947 if (rc)
948 goto out_err;
949
950out:
951 rc = selinux_set_mnt_opts(sb, &opts);
952
953out_err:
954 security_free_mnt_opts(&opts);
955 return rc;
956}
957
958static void selinux_write_opts(struct seq_file *m,
959 struct security_mnt_opts *opts)
960{
961 int i;
962 char *prefix;
963
964 for (i = 0; i < opts->num_mnt_opts; i++) {
965 char *has_comma;
966
967 if (opts->mnt_opts[i])
968 has_comma = strchr(opts->mnt_opts[i], ',');
969 else
970 has_comma = NULL;
971
972 switch (opts->mnt_opts_flags[i]) {
973 case CONTEXT_MNT:
974 prefix = CONTEXT_STR;
975 break;
976 case FSCONTEXT_MNT:
977 prefix = FSCONTEXT_STR;
978 break;
979 case ROOTCONTEXT_MNT:
980 prefix = ROOTCONTEXT_STR;
981 break;
982 case DEFCONTEXT_MNT:
983 prefix = DEFCONTEXT_STR;
984 break;
985 case SE_SBLABELSUPP:
986 seq_putc(m, ',');
987 seq_puts(m, LABELSUPP_STR);
988 continue;
989 default:
990 BUG();
991 return;
992 };
993 /* we need a comma before each option */
994 seq_putc(m, ',');
995 seq_puts(m, prefix);
996 if (has_comma)
997 seq_putc(m, '\"');
998 seq_puts(m, opts->mnt_opts[i]);
999 if (has_comma)
1000 seq_putc(m, '\"');
1001 }
1002}
1003
1004static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1005{
1006 struct security_mnt_opts opts;
1007 int rc;
1008
1009 rc = selinux_get_mnt_opts(sb, &opts);
1010 if (rc) {
1011 /* before policy load we may get EINVAL, don't show anything */
1012 if (rc == -EINVAL)
1013 rc = 0;
1014 return rc;
1015 }
1016
1017 selinux_write_opts(m, &opts);
1018
1019 security_free_mnt_opts(&opts);
1020
1021 return rc;
1022}
1023
1024static inline u16 inode_mode_to_security_class(umode_t mode)
1025{
1026 switch (mode & S_IFMT) {
1027 case S_IFSOCK:
1028 return SECCLASS_SOCK_FILE;
1029 case S_IFLNK:
1030 return SECCLASS_LNK_FILE;
1031 case S_IFREG:
1032 return SECCLASS_FILE;
1033 case S_IFBLK:
1034 return SECCLASS_BLK_FILE;
1035 case S_IFDIR:
1036 return SECCLASS_DIR;
1037 case S_IFCHR:
1038 return SECCLASS_CHR_FILE;
1039 case S_IFIFO:
1040 return SECCLASS_FIFO_FILE;
1041
1042 }
1043
1044 return SECCLASS_FILE;
1045}
1046
1047static inline int default_protocol_stream(int protocol)
1048{
1049 return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1050}
1051
1052static inline int default_protocol_dgram(int protocol)
1053{
1054 return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1055}
1056
1057static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1058{
1059 switch (family) {
1060 case PF_UNIX:
1061 switch (type) {
1062 case SOCK_STREAM:
1063 case SOCK_SEQPACKET:
1064 return SECCLASS_UNIX_STREAM_SOCKET;
1065 case SOCK_DGRAM:
1066 return SECCLASS_UNIX_DGRAM_SOCKET;
1067 }
1068 break;
1069 case PF_INET:
1070 case PF_INET6:
1071 switch (type) {
1072 case SOCK_STREAM:
1073 if (default_protocol_stream(protocol))
1074 return SECCLASS_TCP_SOCKET;
1075 else
1076 return SECCLASS_RAWIP_SOCKET;
1077 case SOCK_DGRAM:
1078 if (default_protocol_dgram(protocol))
1079 return SECCLASS_UDP_SOCKET;
1080 else
1081 return SECCLASS_RAWIP_SOCKET;
1082 case SOCK_DCCP:
1083 return SECCLASS_DCCP_SOCKET;
1084 default:
1085 return SECCLASS_RAWIP_SOCKET;
1086 }
1087 break;
1088 case PF_NETLINK:
1089 switch (protocol) {
1090 case NETLINK_ROUTE:
1091 return SECCLASS_NETLINK_ROUTE_SOCKET;
1092 case NETLINK_FIREWALL:
1093 return SECCLASS_NETLINK_FIREWALL_SOCKET;
1094 case NETLINK_SOCK_DIAG:
1095 return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1096 case NETLINK_NFLOG:
1097 return SECCLASS_NETLINK_NFLOG_SOCKET;
1098 case NETLINK_XFRM:
1099 return SECCLASS_NETLINK_XFRM_SOCKET;
1100 case NETLINK_SELINUX:
1101 return SECCLASS_NETLINK_SELINUX_SOCKET;
1102 case NETLINK_AUDIT:
1103 return SECCLASS_NETLINK_AUDIT_SOCKET;
1104 case NETLINK_IP6_FW:
1105 return SECCLASS_NETLINK_IP6FW_SOCKET;
1106 case NETLINK_DNRTMSG:
1107 return SECCLASS_NETLINK_DNRT_SOCKET;
1108 case NETLINK_KOBJECT_UEVENT:
1109 return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1110 default:
1111 return SECCLASS_NETLINK_SOCKET;
1112 }
1113 case PF_PACKET:
1114 return SECCLASS_PACKET_SOCKET;
1115 case PF_KEY:
1116 return SECCLASS_KEY_SOCKET;
1117 case PF_APPLETALK:
1118 return SECCLASS_APPLETALK_SOCKET;
1119 }
1120
1121 return SECCLASS_SOCKET;
1122}
1123
1124#ifdef CONFIG_PROC_FS
1125static int selinux_proc_get_sid(struct dentry *dentry,
1126 u16 tclass,
1127 u32 *sid)
1128{
1129 int rc;
1130 char *buffer, *path;
1131
1132 buffer = (char *)__get_free_page(GFP_KERNEL);
1133 if (!buffer)
1134 return -ENOMEM;
1135
1136 path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1137 if (IS_ERR(path))
1138 rc = PTR_ERR(path);
1139 else {
1140 /* each process gets a /proc/PID/ entry. Strip off the
1141 * PID part to get a valid selinux labeling.
1142 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1143 while (path[1] >= '0' && path[1] <= '9') {
1144 path[1] = '/';
1145 path++;
1146 }
1147 rc = security_genfs_sid("proc", path, tclass, sid);
1148 }
1149 free_page((unsigned long)buffer);
1150 return rc;
1151}
1152#else
1153static int selinux_proc_get_sid(struct dentry *dentry,
1154 u16 tclass,
1155 u32 *sid)
1156{
1157 return -EINVAL;
1158}
1159#endif
1160
1161/* The inode's security attributes must be initialized before first use. */
1162static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1163{
1164 struct superblock_security_struct *sbsec = NULL;
1165 struct inode_security_struct *isec = inode->i_security;
1166 u32 sid;
1167 struct dentry *dentry;
1168#define INITCONTEXTLEN 255
1169 char *context = NULL;
1170 unsigned len = 0;
1171 int rc = 0;
1172
1173 if (isec->initialized)
1174 goto out;
1175
1176 mutex_lock(&isec->lock);
1177 if (isec->initialized)
1178 goto out_unlock;
1179
1180 sbsec = inode->i_sb->s_security;
1181 if (!(sbsec->flags & SE_SBINITIALIZED)) {
1182 /* Defer initialization until selinux_complete_init,
1183 after the initial policy is loaded and the security
1184 server is ready to handle calls. */
1185 spin_lock(&sbsec->isec_lock);
1186 if (list_empty(&isec->list))
1187 list_add(&isec->list, &sbsec->isec_head);
1188 spin_unlock(&sbsec->isec_lock);
1189 goto out_unlock;
1190 }
1191
1192 switch (sbsec->behavior) {
1193 case SECURITY_FS_USE_XATTR:
1194 if (!inode->i_op->getxattr) {
1195 isec->sid = sbsec->def_sid;
1196 break;
1197 }
1198
1199 /* Need a dentry, since the xattr API requires one.
1200 Life would be simpler if we could just pass the inode. */
1201 if (opt_dentry) {
1202 /* Called from d_instantiate or d_splice_alias. */
1203 dentry = dget(opt_dentry);
1204 } else {
1205 /* Called from selinux_complete_init, try to find a dentry. */
1206 dentry = d_find_alias(inode);
1207 }
1208 if (!dentry) {
1209 /*
1210 * this is can be hit on boot when a file is accessed
1211 * before the policy is loaded. When we load policy we
1212 * may find inodes that have no dentry on the
1213 * sbsec->isec_head list. No reason to complain as these
1214 * will get fixed up the next time we go through
1215 * inode_doinit with a dentry, before these inodes could
1216 * be used again by userspace.
1217 */
1218 goto out_unlock;
1219 }
1220
1221 len = INITCONTEXTLEN;
1222 context = kmalloc(len+1, GFP_NOFS);
1223 if (!context) {
1224 rc = -ENOMEM;
1225 dput(dentry);
1226 goto out_unlock;
1227 }
1228 context[len] = '\0';
1229 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1230 context, len);
1231 if (rc == -ERANGE) {
1232 kfree(context);
1233
1234 /* Need a larger buffer. Query for the right size. */
1235 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1236 NULL, 0);
1237 if (rc < 0) {
1238 dput(dentry);
1239 goto out_unlock;
1240 }
1241 len = rc;
1242 context = kmalloc(len+1, GFP_NOFS);
1243 if (!context) {
1244 rc = -ENOMEM;
1245 dput(dentry);
1246 goto out_unlock;
1247 }
1248 context[len] = '\0';
1249 rc = inode->i_op->getxattr(dentry,
1250 XATTR_NAME_SELINUX,
1251 context, len);
1252 }
1253 dput(dentry);
1254 if (rc < 0) {
1255 if (rc != -ENODATA) {
1256 printk(KERN_WARNING "SELinux: %s: getxattr returned "
1257 "%d for dev=%s ino=%ld\n", __func__,
1258 -rc, inode->i_sb->s_id, inode->i_ino);
1259 kfree(context);
1260 goto out_unlock;
1261 }
1262 /* Map ENODATA to the default file SID */
1263 sid = sbsec->def_sid;
1264 rc = 0;
1265 } else {
1266 rc = security_context_to_sid_default(context, rc, &sid,
1267 sbsec->def_sid,
1268 GFP_NOFS);
1269 if (rc) {
1270 char *dev = inode->i_sb->s_id;
1271 unsigned long ino = inode->i_ino;
1272
1273 if (rc == -EINVAL) {
1274 if (printk_ratelimit())
1275 printk(KERN_NOTICE "SELinux: inode=%lu on dev=%s was found to have an invalid "
1276 "context=%s. This indicates you may need to relabel the inode or the "
1277 "filesystem in question.\n", ino, dev, context);
1278 } else {
1279 printk(KERN_WARNING "SELinux: %s: context_to_sid(%s) "
1280 "returned %d for dev=%s ino=%ld\n",
1281 __func__, context, -rc, dev, ino);
1282 }
1283 kfree(context);
1284 /* Leave with the unlabeled SID */
1285 rc = 0;
1286 break;
1287 }
1288 }
1289 kfree(context);
1290 isec->sid = sid;
1291 break;
1292 case SECURITY_FS_USE_TASK:
1293 isec->sid = isec->task_sid;
1294 break;
1295 case SECURITY_FS_USE_TRANS:
1296 /* Default to the fs SID. */
1297 isec->sid = sbsec->sid;
1298
1299 /* Try to obtain a transition SID. */
1300 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1301 rc = security_transition_sid(isec->task_sid, sbsec->sid,
1302 isec->sclass, NULL, &sid);
1303 if (rc)
1304 goto out_unlock;
1305 isec->sid = sid;
1306 break;
1307 case SECURITY_FS_USE_MNTPOINT:
1308 isec->sid = sbsec->mntpoint_sid;
1309 break;
1310 default:
1311 /* Default to the fs superblock SID. */
1312 isec->sid = sbsec->sid;
1313
1314 if ((sbsec->flags & SE_SBPROC) && !S_ISLNK(inode->i_mode)) {
1315 if (opt_dentry) {
1316 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1317 rc = selinux_proc_get_sid(opt_dentry,
1318 isec->sclass,
1319 &sid);
1320 if (rc)
1321 goto out_unlock;
1322 isec->sid = sid;
1323 }
1324 }
1325 break;
1326 }
1327
1328 isec->initialized = 1;
1329
1330out_unlock:
1331 mutex_unlock(&isec->lock);
1332out:
1333 if (isec->sclass == SECCLASS_FILE)
1334 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1335 return rc;
1336}
1337
1338/* Convert a Linux signal to an access vector. */
1339static inline u32 signal_to_av(int sig)
1340{
1341 u32 perm = 0;
1342
1343 switch (sig) {
1344 case SIGCHLD:
1345 /* Commonly granted from child to parent. */
1346 perm = PROCESS__SIGCHLD;
1347 break;
1348 case SIGKILL:
1349 /* Cannot be caught or ignored */
1350 perm = PROCESS__SIGKILL;
1351 break;
1352 case SIGSTOP:
1353 /* Cannot be caught or ignored */
1354 perm = PROCESS__SIGSTOP;
1355 break;
1356 default:
1357 /* All other signals. */
1358 perm = PROCESS__SIGNAL;
1359 break;
1360 }
1361
1362 return perm;
1363}
1364
1365/*
1366 * Check permission between a pair of credentials
1367 * fork check, ptrace check, etc.
1368 */
1369static int cred_has_perm(const struct cred *actor,
1370 const struct cred *target,
1371 u32 perms)
1372{
1373 u32 asid = cred_sid(actor), tsid = cred_sid(target);
1374
1375 return avc_has_perm(asid, tsid, SECCLASS_PROCESS, perms, NULL);
1376}
1377
1378/*
1379 * Check permission between a pair of tasks, e.g. signal checks,
1380 * fork check, ptrace check, etc.
1381 * tsk1 is the actor and tsk2 is the target
1382 * - this uses the default subjective creds of tsk1
1383 */
1384static int task_has_perm(const struct task_struct *tsk1,
1385 const struct task_struct *tsk2,
1386 u32 perms)
1387{
1388 const struct task_security_struct *__tsec1, *__tsec2;
1389 u32 sid1, sid2;
1390
1391 rcu_read_lock();
1392 __tsec1 = __task_cred(tsk1)->security; sid1 = __tsec1->sid;
1393 __tsec2 = __task_cred(tsk2)->security; sid2 = __tsec2->sid;
1394 rcu_read_unlock();
1395 return avc_has_perm(sid1, sid2, SECCLASS_PROCESS, perms, NULL);
1396}
1397
1398/*
1399 * Check permission between current and another task, e.g. signal checks,
1400 * fork check, ptrace check, etc.
1401 * current is the actor and tsk2 is the target
1402 * - this uses current's subjective creds
1403 */
1404static int current_has_perm(const struct task_struct *tsk,
1405 u32 perms)
1406{
1407 u32 sid, tsid;
1408
1409 sid = current_sid();
1410 tsid = task_sid(tsk);
1411 return avc_has_perm(sid, tsid, SECCLASS_PROCESS, perms, NULL);
1412}
1413
1414#if CAP_LAST_CAP > 63
1415#error Fix SELinux to handle capabilities > 63.
1416#endif
1417
1418/* Check whether a task is allowed to use a capability. */
1419static int cred_has_capability(const struct cred *cred,
1420 int cap, int audit)
1421{
1422 struct common_audit_data ad;
1423 struct av_decision avd;
1424 u16 sclass;
1425 u32 sid = cred_sid(cred);
1426 u32 av = CAP_TO_MASK(cap);
1427 int rc;
1428
1429 ad.type = LSM_AUDIT_DATA_CAP;
1430 ad.u.cap = cap;
1431
1432 switch (CAP_TO_INDEX(cap)) {
1433 case 0:
1434 sclass = SECCLASS_CAPABILITY;
1435 break;
1436 case 1:
1437 sclass = SECCLASS_CAPABILITY2;
1438 break;
1439 default:
1440 printk(KERN_ERR
1441 "SELinux: out of range capability %d\n", cap);
1442 BUG();
1443 return -EINVAL;
1444 }
1445
1446 rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd);
1447 if (audit == SECURITY_CAP_AUDIT) {
1448 int rc2 = avc_audit(sid, sid, sclass, av, &avd, rc, &ad, 0);
1449 if (rc2)
1450 return rc2;
1451 }
1452 return rc;
1453}
1454
1455/* Check whether a task is allowed to use a system operation. */
1456static int task_has_system(struct task_struct *tsk,
1457 u32 perms)
1458{
1459 u32 sid = task_sid(tsk);
1460
1461 return avc_has_perm(sid, SECINITSID_KERNEL,
1462 SECCLASS_SYSTEM, perms, NULL);
1463}
1464
1465/* Check whether a task has a particular permission to an inode.
1466 The 'adp' parameter is optional and allows other audit
1467 data to be passed (e.g. the dentry). */
1468static int inode_has_perm(const struct cred *cred,
1469 struct inode *inode,
1470 u32 perms,
1471 struct common_audit_data *adp,
1472 unsigned flags)
1473{
1474 struct inode_security_struct *isec;
1475 u32 sid;
1476
1477 validate_creds(cred);
1478
1479 if (unlikely(IS_PRIVATE(inode)))
1480 return 0;
1481
1482 sid = cred_sid(cred);
1483 isec = inode->i_security;
1484
1485 return avc_has_perm_flags(sid, isec->sid, isec->sclass, perms, adp, flags);
1486}
1487
1488/* Same as inode_has_perm, but pass explicit audit data containing
1489 the dentry to help the auditing code to more easily generate the
1490 pathname if needed. */
1491static inline int dentry_has_perm(const struct cred *cred,
1492 struct dentry *dentry,
1493 u32 av)
1494{
1495 struct inode *inode = dentry->d_inode;
1496 struct common_audit_data ad;
1497
1498 ad.type = LSM_AUDIT_DATA_DENTRY;
1499 ad.u.dentry = dentry;
1500 return inode_has_perm(cred, inode, av, &ad, 0);
1501}
1502
1503/* Same as inode_has_perm, but pass explicit audit data containing
1504 the path to help the auditing code to more easily generate the
1505 pathname if needed. */
1506static inline int path_has_perm(const struct cred *cred,
1507 struct path *path,
1508 u32 av)
1509{
1510 struct inode *inode = path->dentry->d_inode;
1511 struct common_audit_data ad;
1512
1513 ad.type = LSM_AUDIT_DATA_PATH;
1514 ad.u.path = *path;
1515 return inode_has_perm(cred, inode, av, &ad, 0);
1516}
1517
1518/* Check whether a task can use an open file descriptor to
1519 access an inode in a given way. Check access to the
1520 descriptor itself, and then use dentry_has_perm to
1521 check a particular permission to the file.
1522 Access to the descriptor is implicitly granted if it
1523 has the same SID as the process. If av is zero, then
1524 access to the file is not checked, e.g. for cases
1525 where only the descriptor is affected like seek. */
1526static int file_has_perm(const struct cred *cred,
1527 struct file *file,
1528 u32 av)
1529{
1530 struct file_security_struct *fsec = file->f_security;
1531 struct inode *inode = file->f_path.dentry->d_inode;
1532 struct common_audit_data ad;
1533 u32 sid = cred_sid(cred);
1534 int rc;
1535
1536 ad.type = LSM_AUDIT_DATA_PATH;
1537 ad.u.path = file->f_path;
1538
1539 if (sid != fsec->sid) {
1540 rc = avc_has_perm(sid, fsec->sid,
1541 SECCLASS_FD,
1542 FD__USE,
1543 &ad);
1544 if (rc)
1545 goto out;
1546 }
1547
1548 /* av is zero if only checking access to the descriptor. */
1549 rc = 0;
1550 if (av)
1551 rc = inode_has_perm(cred, inode, av, &ad, 0);
1552
1553out:
1554 return rc;
1555}
1556
1557/* Check whether a task can create a file. */
1558static int may_create(struct inode *dir,
1559 struct dentry *dentry,
1560 u16 tclass)
1561{
1562 const struct task_security_struct *tsec = current_security();
1563 struct inode_security_struct *dsec;
1564 struct superblock_security_struct *sbsec;
1565 u32 sid, newsid;
1566 struct common_audit_data ad;
1567 int rc;
1568
1569 dsec = dir->i_security;
1570 sbsec = dir->i_sb->s_security;
1571
1572 sid = tsec->sid;
1573 newsid = tsec->create_sid;
1574
1575 ad.type = LSM_AUDIT_DATA_DENTRY;
1576 ad.u.dentry = dentry;
1577
1578 rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR,
1579 DIR__ADD_NAME | DIR__SEARCH,
1580 &ad);
1581 if (rc)
1582 return rc;
1583
1584 if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) {
1585 rc = security_transition_sid(sid, dsec->sid, tclass,
1586 &dentry->d_name, &newsid);
1587 if (rc)
1588 return rc;
1589 }
1590
1591 rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad);
1592 if (rc)
1593 return rc;
1594
1595 return avc_has_perm(newsid, sbsec->sid,
1596 SECCLASS_FILESYSTEM,
1597 FILESYSTEM__ASSOCIATE, &ad);
1598}
1599
1600/* Check whether a task can create a key. */
1601static int may_create_key(u32 ksid,
1602 struct task_struct *ctx)
1603{
1604 u32 sid = task_sid(ctx);
1605
1606 return avc_has_perm(sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1607}
1608
1609#define MAY_LINK 0
1610#define MAY_UNLINK 1
1611#define MAY_RMDIR 2
1612
1613/* Check whether a task can link, unlink, or rmdir a file/directory. */
1614static int may_link(struct inode *dir,
1615 struct dentry *dentry,
1616 int kind)
1617
1618{
1619 struct inode_security_struct *dsec, *isec;
1620 struct common_audit_data ad;
1621 u32 sid = current_sid();
1622 u32 av;
1623 int rc;
1624
1625 dsec = dir->i_security;
1626 isec = dentry->d_inode->i_security;
1627
1628 ad.type = LSM_AUDIT_DATA_DENTRY;
1629 ad.u.dentry = dentry;
1630
1631 av = DIR__SEARCH;
1632 av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1633 rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad);
1634 if (rc)
1635 return rc;
1636
1637 switch (kind) {
1638 case MAY_LINK:
1639 av = FILE__LINK;
1640 break;
1641 case MAY_UNLINK:
1642 av = FILE__UNLINK;
1643 break;
1644 case MAY_RMDIR:
1645 av = DIR__RMDIR;
1646 break;
1647 default:
1648 printk(KERN_WARNING "SELinux: %s: unrecognized kind %d\n",
1649 __func__, kind);
1650 return 0;
1651 }
1652
1653 rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad);
1654 return rc;
1655}
1656
1657static inline int may_rename(struct inode *old_dir,
1658 struct dentry *old_dentry,
1659 struct inode *new_dir,
1660 struct dentry *new_dentry)
1661{
1662 struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1663 struct common_audit_data ad;
1664 u32 sid = current_sid();
1665 u32 av;
1666 int old_is_dir, new_is_dir;
1667 int rc;
1668
1669 old_dsec = old_dir->i_security;
1670 old_isec = old_dentry->d_inode->i_security;
1671 old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
1672 new_dsec = new_dir->i_security;
1673
1674 ad.type = LSM_AUDIT_DATA_DENTRY;
1675
1676 ad.u.dentry = old_dentry;
1677 rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR,
1678 DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1679 if (rc)
1680 return rc;
1681 rc = avc_has_perm(sid, old_isec->sid,
1682 old_isec->sclass, FILE__RENAME, &ad);
1683 if (rc)
1684 return rc;
1685 if (old_is_dir && new_dir != old_dir) {
1686 rc = avc_has_perm(sid, old_isec->sid,
1687 old_isec->sclass, DIR__REPARENT, &ad);
1688 if (rc)
1689 return rc;
1690 }
1691
1692 ad.u.dentry = new_dentry;
1693 av = DIR__ADD_NAME | DIR__SEARCH;
1694 if (new_dentry->d_inode)
1695 av |= DIR__REMOVE_NAME;
1696 rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1697 if (rc)
1698 return rc;
1699 if (new_dentry->d_inode) {
1700 new_isec = new_dentry->d_inode->i_security;
1701 new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
1702 rc = avc_has_perm(sid, new_isec->sid,
1703 new_isec->sclass,
1704 (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1705 if (rc)
1706 return rc;
1707 }
1708
1709 return 0;
1710}
1711
1712/* Check whether a task can perform a filesystem operation. */
1713static int superblock_has_perm(const struct cred *cred,
1714 struct super_block *sb,
1715 u32 perms,
1716 struct common_audit_data *ad)
1717{
1718 struct superblock_security_struct *sbsec;
1719 u32 sid = cred_sid(cred);
1720
1721 sbsec = sb->s_security;
1722 return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1723}
1724
1725/* Convert a Linux mode and permission mask to an access vector. */
1726static inline u32 file_mask_to_av(int mode, int mask)
1727{
1728 u32 av = 0;
1729
1730 if (!S_ISDIR(mode)) {
1731 if (mask & MAY_EXEC)
1732 av |= FILE__EXECUTE;
1733 if (mask & MAY_READ)
1734 av |= FILE__READ;
1735
1736 if (mask & MAY_APPEND)
1737 av |= FILE__APPEND;
1738 else if (mask & MAY_WRITE)
1739 av |= FILE__WRITE;
1740
1741 } else {
1742 if (mask & MAY_EXEC)
1743 av |= DIR__SEARCH;
1744 if (mask & MAY_WRITE)
1745 av |= DIR__WRITE;
1746 if (mask & MAY_READ)
1747 av |= DIR__READ;
1748 }
1749
1750 return av;
1751}
1752
1753/* Convert a Linux file to an access vector. */
1754static inline u32 file_to_av(struct file *file)
1755{
1756 u32 av = 0;
1757
1758 if (file->f_mode & FMODE_READ)
1759 av |= FILE__READ;
1760 if (file->f_mode & FMODE_WRITE) {
1761 if (file->f_flags & O_APPEND)
1762 av |= FILE__APPEND;
1763 else
1764 av |= FILE__WRITE;
1765 }
1766 if (!av) {
1767 /*
1768 * Special file opened with flags 3 for ioctl-only use.
1769 */
1770 av = FILE__IOCTL;
1771 }
1772
1773 return av;
1774}
1775
1776/*
1777 * Convert a file to an access vector and include the correct open
1778 * open permission.
1779 */
1780static inline u32 open_file_to_av(struct file *file)
1781{
1782 u32 av = file_to_av(file);
1783
1784 if (selinux_policycap_openperm)
1785 av |= FILE__OPEN;
1786
1787 return av;
1788}
1789
1790/* Hook functions begin here. */
1791
1792static int selinux_ptrace_access_check(struct task_struct *child,
1793 unsigned int mode)
1794{
1795 int rc;
1796
1797 rc = cap_ptrace_access_check(child, mode);
1798 if (rc)
1799 return rc;
1800
1801 if (mode & PTRACE_MODE_READ) {
1802 u32 sid = current_sid();
1803 u32 csid = task_sid(child);
1804 return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ, NULL);
1805 }
1806
1807 return current_has_perm(child, PROCESS__PTRACE);
1808}
1809
1810static int selinux_ptrace_traceme(struct task_struct *parent)
1811{
1812 int rc;
1813
1814 rc = cap_ptrace_traceme(parent);
1815 if (rc)
1816 return rc;
1817
1818 return task_has_perm(parent, current, PROCESS__PTRACE);
1819}
1820
1821static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
1822 kernel_cap_t *inheritable, kernel_cap_t *permitted)
1823{
1824 int error;
1825
1826 error = current_has_perm(target, PROCESS__GETCAP);
1827 if (error)
1828 return error;
1829
1830 return cap_capget(target, effective, inheritable, permitted);
1831}
1832
1833static int selinux_capset(struct cred *new, const struct cred *old,
1834 const kernel_cap_t *effective,
1835 const kernel_cap_t *inheritable,
1836 const kernel_cap_t *permitted)
1837{
1838 int error;
1839
1840 error = cap_capset(new, old,
1841 effective, inheritable, permitted);
1842 if (error)
1843 return error;
1844
1845 return cred_has_perm(old, new, PROCESS__SETCAP);
1846}
1847
1848/*
1849 * (This comment used to live with the selinux_task_setuid hook,
1850 * which was removed).
1851 *
1852 * Since setuid only affects the current process, and since the SELinux
1853 * controls are not based on the Linux identity attributes, SELinux does not
1854 * need to control this operation. However, SELinux does control the use of
1855 * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
1856 */
1857
1858static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
1859 int cap, int audit)
1860{
1861 int rc;
1862
1863 rc = cap_capable(cred, ns, cap, audit);
1864 if (rc)
1865 return rc;
1866
1867 return cred_has_capability(cred, cap, audit);
1868}
1869
1870static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
1871{
1872 const struct cred *cred = current_cred();
1873 int rc = 0;
1874
1875 if (!sb)
1876 return 0;
1877
1878 switch (cmds) {
1879 case Q_SYNC:
1880 case Q_QUOTAON:
1881 case Q_QUOTAOFF:
1882 case Q_SETINFO:
1883 case Q_SETQUOTA:
1884 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
1885 break;
1886 case Q_GETFMT:
1887 case Q_GETINFO:
1888 case Q_GETQUOTA:
1889 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
1890 break;
1891 default:
1892 rc = 0; /* let the kernel handle invalid cmds */
1893 break;
1894 }
1895 return rc;
1896}
1897
1898static int selinux_quota_on(struct dentry *dentry)
1899{
1900 const struct cred *cred = current_cred();
1901
1902 return dentry_has_perm(cred, dentry, FILE__QUOTAON);
1903}
1904
1905static int selinux_syslog(int type)
1906{
1907 int rc;
1908
1909 switch (type) {
1910 case SYSLOG_ACTION_READ_ALL: /* Read last kernel messages */
1911 case SYSLOG_ACTION_SIZE_BUFFER: /* Return size of the log buffer */
1912 rc = task_has_system(current, SYSTEM__SYSLOG_READ);
1913 break;
1914 case SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging to console */
1915 case SYSLOG_ACTION_CONSOLE_ON: /* Enable logging to console */
1916 /* Set level of messages printed to console */
1917 case SYSLOG_ACTION_CONSOLE_LEVEL:
1918 rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
1919 break;
1920 case SYSLOG_ACTION_CLOSE: /* Close log */
1921 case SYSLOG_ACTION_OPEN: /* Open log */
1922 case SYSLOG_ACTION_READ: /* Read from log */
1923 case SYSLOG_ACTION_READ_CLEAR: /* Read/clear last kernel messages */
1924 case SYSLOG_ACTION_CLEAR: /* Clear ring buffer */
1925 default:
1926 rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
1927 break;
1928 }
1929 return rc;
1930}
1931
1932/*
1933 * Check that a process has enough memory to allocate a new virtual
1934 * mapping. 0 means there is enough memory for the allocation to
1935 * succeed and -ENOMEM implies there is not.
1936 *
1937 * Do not audit the selinux permission check, as this is applied to all
1938 * processes that allocate mappings.
1939 */
1940static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
1941{
1942 int rc, cap_sys_admin = 0;
1943
1944 rc = selinux_capable(current_cred(), &init_user_ns, CAP_SYS_ADMIN,
1945 SECURITY_CAP_NOAUDIT);
1946 if (rc == 0)
1947 cap_sys_admin = 1;
1948
1949 return __vm_enough_memory(mm, pages, cap_sys_admin);
1950}
1951
1952/* binprm security operations */
1953
1954static int selinux_bprm_set_creds(struct linux_binprm *bprm)
1955{
1956 const struct task_security_struct *old_tsec;
1957 struct task_security_struct *new_tsec;
1958 struct inode_security_struct *isec;
1959 struct common_audit_data ad;
1960 struct inode *inode = bprm->file->f_path.dentry->d_inode;
1961 int rc;
1962
1963 rc = cap_bprm_set_creds(bprm);
1964 if (rc)
1965 return rc;
1966
1967 /* SELinux context only depends on initial program or script and not
1968 * the script interpreter */
1969 if (bprm->cred_prepared)
1970 return 0;
1971
1972 old_tsec = current_security();
1973 new_tsec = bprm->cred->security;
1974 isec = inode->i_security;
1975
1976 /* Default to the current task SID. */
1977 new_tsec->sid = old_tsec->sid;
1978 new_tsec->osid = old_tsec->sid;
1979
1980 /* Reset fs, key, and sock SIDs on execve. */
1981 new_tsec->create_sid = 0;
1982 new_tsec->keycreate_sid = 0;
1983 new_tsec->sockcreate_sid = 0;
1984
1985 if (old_tsec->exec_sid) {
1986 new_tsec->sid = old_tsec->exec_sid;
1987 /* Reset exec SID on execve. */
1988 new_tsec->exec_sid = 0;
1989
1990 /*
1991 * Minimize confusion: if no_new_privs and a transition is
1992 * explicitly requested, then fail the exec.
1993 */
1994 if (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS)
1995 return -EPERM;
1996 } else {
1997 /* Check for a default transition on this program. */
1998 rc = security_transition_sid(old_tsec->sid, isec->sid,
1999 SECCLASS_PROCESS, NULL,
2000 &new_tsec->sid);
2001 if (rc)
2002 return rc;
2003 }
2004
2005 ad.type = LSM_AUDIT_DATA_PATH;
2006 ad.u.path = bprm->file->f_path;
2007
2008 if ((bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID) ||
2009 (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS))
2010 new_tsec->sid = old_tsec->sid;
2011
2012 if (new_tsec->sid == old_tsec->sid) {
2013 rc = avc_has_perm(old_tsec->sid, isec->sid,
2014 SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2015 if (rc)
2016 return rc;
2017 } else {
2018 /* Check permissions for the transition. */
2019 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2020 SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2021 if (rc)
2022 return rc;
2023
2024 rc = avc_has_perm(new_tsec->sid, isec->sid,
2025 SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2026 if (rc)
2027 return rc;
2028
2029 /* Check for shared state */
2030 if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2031 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2032 SECCLASS_PROCESS, PROCESS__SHARE,
2033 NULL);
2034 if (rc)
2035 return -EPERM;
2036 }
2037
2038 /* Make sure that anyone attempting to ptrace over a task that
2039 * changes its SID has the appropriate permit */
2040 if (bprm->unsafe &
2041 (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
2042 struct task_struct *tracer;
2043 struct task_security_struct *sec;
2044 u32 ptsid = 0;
2045
2046 rcu_read_lock();
2047 tracer = ptrace_parent(current);
2048 if (likely(tracer != NULL)) {
2049 sec = __task_cred(tracer)->security;
2050 ptsid = sec->sid;
2051 }
2052 rcu_read_unlock();
2053
2054 if (ptsid != 0) {
2055 rc = avc_has_perm(ptsid, new_tsec->sid,
2056 SECCLASS_PROCESS,
2057 PROCESS__PTRACE, NULL);
2058 if (rc)
2059 return -EPERM;
2060 }
2061 }
2062
2063 /* Clear any possibly unsafe personality bits on exec: */
2064 bprm->per_clear |= PER_CLEAR_ON_SETID;
2065 }
2066
2067 return 0;
2068}
2069
2070static int selinux_bprm_secureexec(struct linux_binprm *bprm)
2071{
2072 const struct task_security_struct *tsec = current_security();
2073 u32 sid, osid;
2074 int atsecure = 0;
2075
2076 sid = tsec->sid;
2077 osid = tsec->osid;
2078
2079 if (osid != sid) {
2080 /* Enable secure mode for SIDs transitions unless
2081 the noatsecure permission is granted between
2082 the two SIDs, i.e. ahp returns 0. */
2083 atsecure = avc_has_perm(osid, sid,
2084 SECCLASS_PROCESS,
2085 PROCESS__NOATSECURE, NULL);
2086 }
2087
2088 return (atsecure || cap_bprm_secureexec(bprm));
2089}
2090
2091/* Derived from fs/exec.c:flush_old_files. */
2092static inline void flush_unauthorized_files(const struct cred *cred,
2093 struct files_struct *files)
2094{
2095 struct file *file, *devnull = NULL;
2096 struct tty_struct *tty;
2097 struct fdtable *fdt;
2098 long j = -1;
2099 int drop_tty = 0;
2100
2101 tty = get_current_tty();
2102 if (tty) {
2103 spin_lock(&tty_files_lock);
2104 if (!list_empty(&tty->tty_files)) {
2105 struct tty_file_private *file_priv;
2106
2107 /* Revalidate access to controlling tty.
2108 Use path_has_perm on the tty path directly rather
2109 than using file_has_perm, as this particular open
2110 file may belong to another process and we are only
2111 interested in the inode-based check here. */
2112 file_priv = list_first_entry(&tty->tty_files,
2113 struct tty_file_private, list);
2114 file = file_priv->file;
2115 if (path_has_perm(cred, &file->f_path, FILE__READ | FILE__WRITE))
2116 drop_tty = 1;
2117 }
2118 spin_unlock(&tty_files_lock);
2119 tty_kref_put(tty);
2120 }
2121 /* Reset controlling tty. */
2122 if (drop_tty)
2123 no_tty();
2124
2125 /* Revalidate access to inherited open files. */
2126 spin_lock(&files->file_lock);
2127 for (;;) {
2128 unsigned long set, i;
2129 int fd;
2130
2131 j++;
2132 i = j * BITS_PER_LONG;
2133 fdt = files_fdtable(files);
2134 if (i >= fdt->max_fds)
2135 break;
2136 set = fdt->open_fds[j];
2137 if (!set)
2138 continue;
2139 spin_unlock(&files->file_lock);
2140 for ( ; set ; i++, set >>= 1) {
2141 if (set & 1) {
2142 file = fget(i);
2143 if (!file)
2144 continue;
2145 if (file_has_perm(cred,
2146 file,
2147 file_to_av(file))) {
2148 sys_close(i);
2149 fd = get_unused_fd();
2150 if (fd != i) {
2151 if (fd >= 0)
2152 put_unused_fd(fd);
2153 fput(file);
2154 continue;
2155 }
2156 if (devnull) {
2157 get_file(devnull);
2158 } else {
2159 devnull = dentry_open(
2160 dget(selinux_null),
2161 mntget(selinuxfs_mount),
2162 O_RDWR, cred);
2163 if (IS_ERR(devnull)) {
2164 devnull = NULL;
2165 put_unused_fd(fd);
2166 fput(file);
2167 continue;
2168 }
2169 }
2170 fd_install(fd, devnull);
2171 }
2172 fput(file);
2173 }
2174 }
2175 spin_lock(&files->file_lock);
2176
2177 }
2178 spin_unlock(&files->file_lock);
2179}
2180
2181/*
2182 * Prepare a process for imminent new credential changes due to exec
2183 */
2184static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2185{
2186 struct task_security_struct *new_tsec;
2187 struct rlimit *rlim, *initrlim;
2188 int rc, i;
2189
2190 new_tsec = bprm->cred->security;
2191 if (new_tsec->sid == new_tsec->osid)
2192 return;
2193
2194 /* Close files for which the new task SID is not authorized. */
2195 flush_unauthorized_files(bprm->cred, current->files);
2196
2197 /* Always clear parent death signal on SID transitions. */
2198 current->pdeath_signal = 0;
2199
2200 /* Check whether the new SID can inherit resource limits from the old
2201 * SID. If not, reset all soft limits to the lower of the current
2202 * task's hard limit and the init task's soft limit.
2203 *
2204 * Note that the setting of hard limits (even to lower them) can be
2205 * controlled by the setrlimit check. The inclusion of the init task's
2206 * soft limit into the computation is to avoid resetting soft limits
2207 * higher than the default soft limit for cases where the default is
2208 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2209 */
2210 rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2211 PROCESS__RLIMITINH, NULL);
2212 if (rc) {
2213 /* protect against do_prlimit() */
2214 task_lock(current);
2215 for (i = 0; i < RLIM_NLIMITS; i++) {
2216 rlim = current->signal->rlim + i;
2217 initrlim = init_task.signal->rlim + i;
2218 rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2219 }
2220 task_unlock(current);
2221 update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2222 }
2223}
2224
2225/*
2226 * Clean up the process immediately after the installation of new credentials
2227 * due to exec
2228 */
2229static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2230{
2231 const struct task_security_struct *tsec = current_security();
2232 struct itimerval itimer;
2233 u32 osid, sid;
2234 int rc, i;
2235
2236 osid = tsec->osid;
2237 sid = tsec->sid;
2238
2239 if (sid == osid)
2240 return;
2241
2242 /* Check whether the new SID can inherit signal state from the old SID.
2243 * If not, clear itimers to avoid subsequent signal generation and
2244 * flush and unblock signals.
2245 *
2246 * This must occur _after_ the task SID has been updated so that any
2247 * kill done after the flush will be checked against the new SID.
2248 */
2249 rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2250 if (rc) {
2251 memset(&itimer, 0, sizeof itimer);
2252 for (i = 0; i < 3; i++)
2253 do_setitimer(i, &itimer, NULL);
2254 spin_lock_irq(¤t->sighand->siglock);
2255 if (!(current->signal->flags & SIGNAL_GROUP_EXIT)) {
2256 __flush_signals(current);
2257 flush_signal_handlers(current, 1);
2258 sigemptyset(¤t->blocked);
2259 }
2260 spin_unlock_irq(¤t->sighand->siglock);
2261 }
2262
2263 /* Wake up the parent if it is waiting so that it can recheck
2264 * wait permission to the new task SID. */
2265 read_lock(&tasklist_lock);
2266 __wake_up_parent(current, current->real_parent);
2267 read_unlock(&tasklist_lock);
2268}
2269
2270/* superblock security operations */
2271
2272static int selinux_sb_alloc_security(struct super_block *sb)
2273{
2274 return superblock_alloc_security(sb);
2275}
2276
2277static void selinux_sb_free_security(struct super_block *sb)
2278{
2279 superblock_free_security(sb);
2280}
2281
2282static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2283{
2284 if (plen > olen)
2285 return 0;
2286
2287 return !memcmp(prefix, option, plen);
2288}
2289
2290static inline int selinux_option(char *option, int len)
2291{
2292 return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2293 match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2294 match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2295 match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) ||
2296 match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len));
2297}
2298
2299static inline void take_option(char **to, char *from, int *first, int len)
2300{
2301 if (!*first) {
2302 **to = ',';
2303 *to += 1;
2304 } else
2305 *first = 0;
2306 memcpy(*to, from, len);
2307 *to += len;
2308}
2309
2310static inline void take_selinux_option(char **to, char *from, int *first,
2311 int len)
2312{
2313 int current_size = 0;
2314
2315 if (!*first) {
2316 **to = '|';
2317 *to += 1;
2318 } else
2319 *first = 0;
2320
2321 while (current_size < len) {
2322 if (*from != '"') {
2323 **to = *from;
2324 *to += 1;
2325 }
2326 from += 1;
2327 current_size += 1;
2328 }
2329}
2330
2331static int selinux_sb_copy_data(char *orig, char *copy)
2332{
2333 int fnosec, fsec, rc = 0;
2334 char *in_save, *in_curr, *in_end;
2335 char *sec_curr, *nosec_save, *nosec;
2336 int open_quote = 0;
2337
2338 in_curr = orig;
2339 sec_curr = copy;
2340
2341 nosec = (char *)get_zeroed_page(GFP_KERNEL);
2342 if (!nosec) {
2343 rc = -ENOMEM;
2344 goto out;
2345 }
2346
2347 nosec_save = nosec;
2348 fnosec = fsec = 1;
2349 in_save = in_end = orig;
2350
2351 do {
2352 if (*in_end == '"')
2353 open_quote = !open_quote;
2354 if ((*in_end == ',' && open_quote == 0) ||
2355 *in_end == '\0') {
2356 int len = in_end - in_curr;
2357
2358 if (selinux_option(in_curr, len))
2359 take_selinux_option(&sec_curr, in_curr, &fsec, len);
2360 else
2361 take_option(&nosec, in_curr, &fnosec, len);
2362
2363 in_curr = in_end + 1;
2364 }
2365 } while (*in_end++);
2366
2367 strcpy(in_save, nosec_save);
2368 free_page((unsigned long)nosec_save);
2369out:
2370 return rc;
2371}
2372
2373static int selinux_sb_remount(struct super_block *sb, void *data)
2374{
2375 int rc, i, *flags;
2376 struct security_mnt_opts opts;
2377 char *secdata, **mount_options;
2378 struct superblock_security_struct *sbsec = sb->s_security;
2379
2380 if (!(sbsec->flags & SE_SBINITIALIZED))
2381 return 0;
2382
2383 if (!data)
2384 return 0;
2385
2386 if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
2387 return 0;
2388
2389 security_init_mnt_opts(&opts);
2390 secdata = alloc_secdata();
2391 if (!secdata)
2392 return -ENOMEM;
2393 rc = selinux_sb_copy_data(data, secdata);
2394 if (rc)
2395 goto out_free_secdata;
2396
2397 rc = selinux_parse_opts_str(secdata, &opts);
2398 if (rc)
2399 goto out_free_secdata;
2400
2401 mount_options = opts.mnt_opts;
2402 flags = opts.mnt_opts_flags;
2403
2404 for (i = 0; i < opts.num_mnt_opts; i++) {
2405 u32 sid;
2406 size_t len;
2407
2408 if (flags[i] == SE_SBLABELSUPP)
2409 continue;
2410 len = strlen(mount_options[i]);
2411 rc = security_context_to_sid(mount_options[i], len, &sid);
2412 if (rc) {
2413 printk(KERN_WARNING "SELinux: security_context_to_sid"
2414 "(%s) failed for (dev %s, type %s) errno=%d\n",
2415 mount_options[i], sb->s_id, sb->s_type->name, rc);
2416 goto out_free_opts;
2417 }
2418 rc = -EINVAL;
2419 switch (flags[i]) {
2420 case FSCONTEXT_MNT:
2421 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid))
2422 goto out_bad_option;
2423 break;
2424 case CONTEXT_MNT:
2425 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid))
2426 goto out_bad_option;
2427 break;
2428 case ROOTCONTEXT_MNT: {
2429 struct inode_security_struct *root_isec;
2430 root_isec = sb->s_root->d_inode->i_security;
2431
2432 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid))
2433 goto out_bad_option;
2434 break;
2435 }
2436 case DEFCONTEXT_MNT:
2437 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid))
2438 goto out_bad_option;
2439 break;
2440 default:
2441 goto out_free_opts;
2442 }
2443 }
2444
2445 rc = 0;
2446out_free_opts:
2447 security_free_mnt_opts(&opts);
2448out_free_secdata:
2449 free_secdata(secdata);
2450 return rc;
2451out_bad_option:
2452 printk(KERN_WARNING "SELinux: unable to change security options "
2453 "during remount (dev %s, type=%s)\n", sb->s_id,
2454 sb->s_type->name);
2455 goto out_free_opts;
2456}
2457
2458static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data)
2459{
2460 const struct cred *cred = current_cred();
2461 struct common_audit_data ad;
2462 int rc;
2463
2464 rc = superblock_doinit(sb, data);
2465 if (rc)
2466 return rc;
2467
2468 /* Allow all mounts performed by the kernel */
2469 if (flags & MS_KERNMOUNT)
2470 return 0;
2471
2472 ad.type = LSM_AUDIT_DATA_DENTRY;
2473 ad.u.dentry = sb->s_root;
2474 return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2475}
2476
2477static int selinux_sb_statfs(struct dentry *dentry)
2478{
2479 const struct cred *cred = current_cred();
2480 struct common_audit_data ad;
2481
2482 ad.type = LSM_AUDIT_DATA_DENTRY;
2483 ad.u.dentry = dentry->d_sb->s_root;
2484 return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2485}
2486
2487static int selinux_mount(char *dev_name,
2488 struct path *path,
2489 char *type,
2490 unsigned long flags,
2491 void *data)
2492{
2493 const struct cred *cred = current_cred();
2494
2495 if (flags & MS_REMOUNT)
2496 return superblock_has_perm(cred, path->dentry->d_sb,
2497 FILESYSTEM__REMOUNT, NULL);
2498 else
2499 return path_has_perm(cred, path, FILE__MOUNTON);
2500}
2501
2502static int selinux_umount(struct vfsmount *mnt, int flags)
2503{
2504 const struct cred *cred = current_cred();
2505
2506 return superblock_has_perm(cred, mnt->mnt_sb,
2507 FILESYSTEM__UNMOUNT, NULL);
2508}
2509
2510/* inode security operations */
2511
2512static int selinux_inode_alloc_security(struct inode *inode)
2513{
2514 return inode_alloc_security(inode);
2515}
2516
2517static void selinux_inode_free_security(struct inode *inode)
2518{
2519 inode_free_security(inode);
2520}
2521
2522static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2523 const struct qstr *qstr, char **name,
2524 void **value, size_t *len)
2525{
2526 const struct task_security_struct *tsec = current_security();
2527 struct inode_security_struct *dsec;
2528 struct superblock_security_struct *sbsec;
2529 u32 sid, newsid, clen;
2530 int rc;
2531 char *namep = NULL, *context;
2532
2533 dsec = dir->i_security;
2534 sbsec = dir->i_sb->s_security;
2535
2536 sid = tsec->sid;
2537 newsid = tsec->create_sid;
2538
2539 if ((sbsec->flags & SE_SBINITIALIZED) &&
2540 (sbsec->behavior == SECURITY_FS_USE_MNTPOINT))
2541 newsid = sbsec->mntpoint_sid;
2542 else if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) {
2543 rc = security_transition_sid(sid, dsec->sid,
2544 inode_mode_to_security_class(inode->i_mode),
2545 qstr, &newsid);
2546 if (rc) {
2547 printk(KERN_WARNING "%s: "
2548 "security_transition_sid failed, rc=%d (dev=%s "
2549 "ino=%ld)\n",
2550 __func__,
2551 -rc, inode->i_sb->s_id, inode->i_ino);
2552 return rc;
2553 }
2554 }
2555
2556 /* Possibly defer initialization to selinux_complete_init. */
2557 if (sbsec->flags & SE_SBINITIALIZED) {
2558 struct inode_security_struct *isec = inode->i_security;
2559 isec->sclass = inode_mode_to_security_class(inode->i_mode);
2560 isec->sid = newsid;
2561 isec->initialized = 1;
2562 }
2563
2564 if (!ss_initialized || !(sbsec->flags & SE_SBLABELSUPP))
2565 return -EOPNOTSUPP;
2566
2567 if (name) {
2568 namep = kstrdup(XATTR_SELINUX_SUFFIX, GFP_NOFS);
2569 if (!namep)
2570 return -ENOMEM;
2571 *name = namep;
2572 }
2573
2574 if (value && len) {
2575 rc = security_sid_to_context_force(newsid, &context, &clen);
2576 if (rc) {
2577 kfree(namep);
2578 return rc;
2579 }
2580 *value = context;
2581 *len = clen;
2582 }
2583
2584 return 0;
2585}
2586
2587static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
2588{
2589 return may_create(dir, dentry, SECCLASS_FILE);
2590}
2591
2592static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2593{
2594 return may_link(dir, old_dentry, MAY_LINK);
2595}
2596
2597static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2598{
2599 return may_link(dir, dentry, MAY_UNLINK);
2600}
2601
2602static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2603{
2604 return may_create(dir, dentry, SECCLASS_LNK_FILE);
2605}
2606
2607static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
2608{
2609 return may_create(dir, dentry, SECCLASS_DIR);
2610}
2611
2612static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2613{
2614 return may_link(dir, dentry, MAY_RMDIR);
2615}
2616
2617static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2618{
2619 return may_create(dir, dentry, inode_mode_to_security_class(mode));
2620}
2621
2622static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2623 struct inode *new_inode, struct dentry *new_dentry)
2624{
2625 return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2626}
2627
2628static int selinux_inode_readlink(struct dentry *dentry)
2629{
2630 const struct cred *cred = current_cred();
2631
2632 return dentry_has_perm(cred, dentry, FILE__READ);
2633}
2634
2635static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata)
2636{
2637 const struct cred *cred = current_cred();
2638
2639 return dentry_has_perm(cred, dentry, FILE__READ);
2640}
2641
2642static noinline int audit_inode_permission(struct inode *inode,
2643 u32 perms, u32 audited, u32 denied,
2644 unsigned flags)
2645{
2646 struct common_audit_data ad;
2647 struct inode_security_struct *isec = inode->i_security;
2648 int rc;
2649
2650 ad.type = LSM_AUDIT_DATA_INODE;
2651 ad.u.inode = inode;
2652
2653 rc = slow_avc_audit(current_sid(), isec->sid, isec->sclass, perms,
2654 audited, denied, &ad, flags);
2655 if (rc)
2656 return rc;
2657 return 0;
2658}
2659
2660static int selinux_inode_permission(struct inode *inode, int mask)
2661{
2662 const struct cred *cred = current_cred();
2663 u32 perms;
2664 bool from_access;
2665 unsigned flags = mask & MAY_NOT_BLOCK;
2666 struct inode_security_struct *isec;
2667 u32 sid;
2668 struct av_decision avd;
2669 int rc, rc2;
2670 u32 audited, denied;
2671
2672 from_access = mask & MAY_ACCESS;
2673 mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
2674
2675 /* No permission to check. Existence test. */
2676 if (!mask)
2677 return 0;
2678
2679 validate_creds(cred);
2680
2681 if (unlikely(IS_PRIVATE(inode)))
2682 return 0;
2683
2684 perms = file_mask_to_av(inode->i_mode, mask);
2685
2686 sid = cred_sid(cred);
2687 isec = inode->i_security;
2688
2689 rc = avc_has_perm_noaudit(sid, isec->sid, isec->sclass, perms, 0, &avd);
2690 audited = avc_audit_required(perms, &avd, rc,
2691 from_access ? FILE__AUDIT_ACCESS : 0,
2692 &denied);
2693 if (likely(!audited))
2694 return rc;
2695
2696 rc2 = audit_inode_permission(inode, perms, audited, denied, flags);
2697 if (rc2)
2698 return rc2;
2699 return rc;
2700}
2701
2702static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2703{
2704 const struct cred *cred = current_cred();
2705 unsigned int ia_valid = iattr->ia_valid;
2706 __u32 av = FILE__WRITE;
2707
2708 /* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
2709 if (ia_valid & ATTR_FORCE) {
2710 ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
2711 ATTR_FORCE);
2712 if (!ia_valid)
2713 return 0;
2714 }
2715
2716 if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2717 ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
2718 return dentry_has_perm(cred, dentry, FILE__SETATTR);
2719
2720 if (selinux_policycap_openperm && (ia_valid & ATTR_SIZE))
2721 av |= FILE__OPEN;
2722
2723 return dentry_has_perm(cred, dentry, av);
2724}
2725
2726static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
2727{
2728 const struct cred *cred = current_cred();
2729 struct path path;
2730
2731 path.dentry = dentry;
2732 path.mnt = mnt;
2733
2734 return path_has_perm(cred, &path, FILE__GETATTR);
2735}
2736
2737static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name)
2738{
2739 const struct cred *cred = current_cred();
2740
2741 if (!strncmp(name, XATTR_SECURITY_PREFIX,
2742 sizeof XATTR_SECURITY_PREFIX - 1)) {
2743 if (!strcmp(name, XATTR_NAME_CAPS)) {
2744 if (!capable(CAP_SETFCAP))
2745 return -EPERM;
2746 } else if (!capable(CAP_SYS_ADMIN)) {
2747 /* A different attribute in the security namespace.
2748 Restrict to administrator. */
2749 return -EPERM;
2750 }
2751 }
2752
2753 /* Not an attribute we recognize, so just check the
2754 ordinary setattr permission. */
2755 return dentry_has_perm(cred, dentry, FILE__SETATTR);
2756}
2757
2758static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
2759 const void *value, size_t size, int flags)
2760{
2761 struct inode *inode = dentry->d_inode;
2762 struct inode_security_struct *isec = inode->i_security;
2763 struct superblock_security_struct *sbsec;
2764 struct common_audit_data ad;
2765 u32 newsid, sid = current_sid();
2766 int rc = 0;
2767
2768 if (strcmp(name, XATTR_NAME_SELINUX))
2769 return selinux_inode_setotherxattr(dentry, name);
2770
2771 sbsec = inode->i_sb->s_security;
2772 if (!(sbsec->flags & SE_SBLABELSUPP))
2773 return -EOPNOTSUPP;
2774
2775 if (!inode_owner_or_capable(inode))
2776 return -EPERM;
2777
2778 ad.type = LSM_AUDIT_DATA_DENTRY;
2779 ad.u.dentry = dentry;
2780
2781 rc = avc_has_perm(sid, isec->sid, isec->sclass,
2782 FILE__RELABELFROM, &ad);
2783 if (rc)
2784 return rc;
2785
2786 rc = security_context_to_sid(value, size, &newsid);
2787 if (rc == -EINVAL) {
2788 if (!capable(CAP_MAC_ADMIN)) {
2789 struct audit_buffer *ab;
2790 size_t audit_size;
2791 const char *str;
2792
2793 /* We strip a nul only if it is at the end, otherwise the
2794 * context contains a nul and we should audit that */
2795 if (value) {
2796 str = value;
2797 if (str[size - 1] == '\0')
2798 audit_size = size - 1;
2799 else
2800 audit_size = size;
2801 } else {
2802 str = "";
2803 audit_size = 0;
2804 }
2805 ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
2806 audit_log_format(ab, "op=setxattr invalid_context=");
2807 audit_log_n_untrustedstring(ab, value, audit_size);
2808 audit_log_end(ab);
2809
2810 return rc;
2811 }
2812 rc = security_context_to_sid_force(value, size, &newsid);
2813 }
2814 if (rc)
2815 return rc;
2816
2817 rc = avc_has_perm(sid, newsid, isec->sclass,
2818 FILE__RELABELTO, &ad);
2819 if (rc)
2820 return rc;
2821
2822 rc = security_validate_transition(isec->sid, newsid, sid,
2823 isec->sclass);
2824 if (rc)
2825 return rc;
2826
2827 return avc_has_perm(newsid,
2828 sbsec->sid,
2829 SECCLASS_FILESYSTEM,
2830 FILESYSTEM__ASSOCIATE,
2831 &ad);
2832}
2833
2834static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
2835 const void *value, size_t size,
2836 int flags)
2837{
2838 struct inode *inode = dentry->d_inode;
2839 struct inode_security_struct *isec = inode->i_security;
2840 u32 newsid;
2841 int rc;
2842
2843 if (strcmp(name, XATTR_NAME_SELINUX)) {
2844 /* Not an attribute we recognize, so nothing to do. */
2845 return;
2846 }
2847
2848 rc = security_context_to_sid_force(value, size, &newsid);
2849 if (rc) {
2850 printk(KERN_ERR "SELinux: unable to map context to SID"
2851 "for (%s, %lu), rc=%d\n",
2852 inode->i_sb->s_id, inode->i_ino, -rc);
2853 return;
2854 }
2855
2856 isec->sid = newsid;
2857 return;
2858}
2859
2860static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
2861{
2862 const struct cred *cred = current_cred();
2863
2864 return dentry_has_perm(cred, dentry, FILE__GETATTR);
2865}
2866
2867static int selinux_inode_listxattr(struct dentry *dentry)
2868{
2869 const struct cred *cred = current_cred();
2870
2871 return dentry_has_perm(cred, dentry, FILE__GETATTR);
2872}
2873
2874static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
2875{
2876 if (strcmp(name, XATTR_NAME_SELINUX))
2877 return selinux_inode_setotherxattr(dentry, name);
2878
2879 /* No one is allowed to remove a SELinux security label.
2880 You can change the label, but all data must be labeled. */
2881 return -EACCES;
2882}
2883
2884/*
2885 * Copy the inode security context value to the user.
2886 *
2887 * Permission check is handled by selinux_inode_getxattr hook.
2888 */
2889static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
2890{
2891 u32 size;
2892 int error;
2893 char *context = NULL;
2894 struct inode_security_struct *isec = inode->i_security;
2895
2896 if (strcmp(name, XATTR_SELINUX_SUFFIX))
2897 return -EOPNOTSUPP;
2898
2899 /*
2900 * If the caller has CAP_MAC_ADMIN, then get the raw context
2901 * value even if it is not defined by current policy; otherwise,
2902 * use the in-core value under current policy.
2903 * Use the non-auditing forms of the permission checks since
2904 * getxattr may be called by unprivileged processes commonly
2905 * and lack of permission just means that we fall back to the
2906 * in-core context value, not a denial.
2907 */
2908 error = selinux_capable(current_cred(), &init_user_ns, CAP_MAC_ADMIN,
2909 SECURITY_CAP_NOAUDIT);
2910 if (!error)
2911 error = security_sid_to_context_force(isec->sid, &context,
2912 &size);
2913 else
2914 error = security_sid_to_context(isec->sid, &context, &size);
2915 if (error)
2916 return error;
2917 error = size;
2918 if (alloc) {
2919 *buffer = context;
2920 goto out_nofree;
2921 }
2922 kfree(context);
2923out_nofree:
2924 return error;
2925}
2926
2927static int selinux_inode_setsecurity(struct inode *inode, const char *name,
2928 const void *value, size_t size, int flags)
2929{
2930 struct inode_security_struct *isec = inode->i_security;
2931 u32 newsid;
2932 int rc;
2933
2934 if (strcmp(name, XATTR_SELINUX_SUFFIX))
2935 return -EOPNOTSUPP;
2936
2937 if (!value || !size)
2938 return -EACCES;
2939
2940 rc = security_context_to_sid((void *)value, size, &newsid);
2941 if (rc)
2942 return rc;
2943
2944 isec->sid = newsid;
2945 isec->initialized = 1;
2946 return 0;
2947}
2948
2949static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
2950{
2951 const int len = sizeof(XATTR_NAME_SELINUX);
2952 if (buffer && len <= buffer_size)
2953 memcpy(buffer, XATTR_NAME_SELINUX, len);
2954 return len;
2955}
2956
2957static void selinux_inode_getsecid(const struct inode *inode, u32 *secid)
2958{
2959 struct inode_security_struct *isec = inode->i_security;
2960 *secid = isec->sid;
2961}
2962
2963/* file security operations */
2964
2965static int selinux_revalidate_file_permission(struct file *file, int mask)
2966{
2967 const struct cred *cred = current_cred();
2968 struct inode *inode = file->f_path.dentry->d_inode;
2969
2970 /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
2971 if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
2972 mask |= MAY_APPEND;
2973
2974 return file_has_perm(cred, file,
2975 file_mask_to_av(inode->i_mode, mask));
2976}
2977
2978static int selinux_file_permission(struct file *file, int mask)
2979{
2980 struct inode *inode = file->f_path.dentry->d_inode;
2981 struct file_security_struct *fsec = file->f_security;
2982 struct inode_security_struct *isec = inode->i_security;
2983 u32 sid = current_sid();
2984
2985 if (!mask)
2986 /* No permission to check. Existence test. */
2987 return 0;
2988
2989 if (sid == fsec->sid && fsec->isid == isec->sid &&
2990 fsec->pseqno == avc_policy_seqno())
2991 /* No change since file_open check. */
2992 return 0;
2993
2994 return selinux_revalidate_file_permission(file, mask);
2995}
2996
2997static int selinux_file_alloc_security(struct file *file)
2998{
2999 return file_alloc_security(file);
3000}
3001
3002static void selinux_file_free_security(struct file *file)
3003{
3004 file_free_security(file);
3005}
3006
3007static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3008 unsigned long arg)
3009{
3010 const struct cred *cred = current_cred();
3011 int error = 0;
3012
3013 switch (cmd) {
3014 case FIONREAD:
3015 /* fall through */
3016 case FIBMAP:
3017 /* fall through */
3018 case FIGETBSZ:
3019 /* fall through */
3020 case FS_IOC_GETFLAGS:
3021 /* fall through */
3022 case FS_IOC_GETVERSION:
3023 error = file_has_perm(cred, file, FILE__GETATTR);
3024 break;
3025
3026 case FS_IOC_SETFLAGS:
3027 /* fall through */
3028 case FS_IOC_SETVERSION:
3029 error = file_has_perm(cred, file, FILE__SETATTR);
3030 break;
3031
3032 /* sys_ioctl() checks */
3033 case FIONBIO:
3034 /* fall through */
3035 case FIOASYNC:
3036 error = file_has_perm(cred, file, 0);
3037 break;
3038
3039 case KDSKBENT:
3040 case KDSKBSENT:
3041 error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3042 SECURITY_CAP_AUDIT);
3043 break;
3044
3045 /* default case assumes that the command will go
3046 * to the file's ioctl() function.
3047 */
3048 default:
3049 error = file_has_perm(cred, file, FILE__IOCTL);
3050 }
3051 return error;
3052}
3053
3054static int default_noexec;
3055
3056static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3057{
3058 const struct cred *cred = current_cred();
3059 int rc = 0;
3060
3061 if (default_noexec &&
3062 (prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) {
3063 /*
3064 * We are making executable an anonymous mapping or a
3065 * private file mapping that will also be writable.
3066 * This has an additional check.
3067 */
3068 rc = cred_has_perm(cred, cred, PROCESS__EXECMEM);
3069 if (rc)
3070 goto error;
3071 }
3072
3073 if (file) {
3074 /* read access is always possible with a mapping */
3075 u32 av = FILE__READ;
3076
3077 /* write access only matters if the mapping is shared */
3078 if (shared && (prot & PROT_WRITE))
3079 av |= FILE__WRITE;
3080
3081 if (prot & PROT_EXEC)
3082 av |= FILE__EXECUTE;
3083
3084 return file_has_perm(cred, file, av);
3085 }
3086
3087error:
3088 return rc;
3089}
3090
3091static int selinux_mmap_addr(unsigned long addr)
3092{
3093 int rc = 0;
3094 u32 sid = current_sid();
3095
3096 /*
3097 * notice that we are intentionally putting the SELinux check before
3098 * the secondary cap_file_mmap check. This is such a likely attempt
3099 * at bad behaviour/exploit that we always want to get the AVC, even
3100 * if DAC would have also denied the operation.
3101 */
3102 if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3103 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
3104 MEMPROTECT__MMAP_ZERO, NULL);
3105 if (rc)
3106 return rc;
3107 }
3108
3109 /* do DAC check on address space usage */
3110 return cap_mmap_addr(addr);
3111}
3112
3113static int selinux_mmap_file(struct file *file, unsigned long reqprot,
3114 unsigned long prot, unsigned long flags)
3115{
3116 if (selinux_checkreqprot)
3117 prot = reqprot;
3118
3119 return file_map_prot_check(file, prot,
3120 (flags & MAP_TYPE) == MAP_SHARED);
3121}
3122
3123static int selinux_file_mprotect(struct vm_area_struct *vma,
3124 unsigned long reqprot,
3125 unsigned long prot)
3126{
3127 const struct cred *cred = current_cred();
3128
3129 if (selinux_checkreqprot)
3130 prot = reqprot;
3131
3132 if (default_noexec &&
3133 (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3134 int rc = 0;
3135 if (vma->vm_start >= vma->vm_mm->start_brk &&
3136 vma->vm_end <= vma->vm_mm->brk) {
3137 rc = cred_has_perm(cred, cred, PROCESS__EXECHEAP);
3138 } else if (!vma->vm_file &&
3139 vma->vm_start <= vma->vm_mm->start_stack &&
3140 vma->vm_end >= vma->vm_mm->start_stack) {
3141 rc = current_has_perm(current, PROCESS__EXECSTACK);
3142 } else if (vma->vm_file && vma->anon_vma) {
3143 /*
3144 * We are making executable a file mapping that has
3145 * had some COW done. Since pages might have been
3146 * written, check ability to execute the possibly
3147 * modified content. This typically should only
3148 * occur for text relocations.
3149 */
3150 rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3151 }
3152 if (rc)
3153 return rc;
3154 }
3155
3156 return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3157}
3158
3159static int selinux_file_lock(struct file *file, unsigned int cmd)
3160{
3161 const struct cred *cred = current_cred();
3162
3163 return file_has_perm(cred, file, FILE__LOCK);
3164}
3165
3166static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3167 unsigned long arg)
3168{
3169 const struct cred *cred = current_cred();
3170 int err = 0;
3171
3172 switch (cmd) {
3173 case F_SETFL:
3174 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3175 err = -EINVAL;
3176 break;
3177 }
3178
3179 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3180 err = file_has_perm(cred, file, FILE__WRITE);
3181 break;
3182 }
3183 /* fall through */
3184 case F_SETOWN:
3185 case F_SETSIG:
3186 case F_GETFL:
3187 case F_GETOWN:
3188 case F_GETSIG:
3189 /* Just check FD__USE permission */
3190 err = file_has_perm(cred, file, 0);
3191 break;
3192 case F_GETLK:
3193 case F_SETLK:
3194 case F_SETLKW:
3195#if BITS_PER_LONG == 32
3196 case F_GETLK64:
3197 case F_SETLK64:
3198 case F_SETLKW64:
3199#endif
3200 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3201 err = -EINVAL;
3202 break;
3203 }
3204 err = file_has_perm(cred, file, FILE__LOCK);
3205 break;
3206 }
3207
3208 return err;
3209}
3210
3211static int selinux_file_set_fowner(struct file *file)
3212{
3213 struct file_security_struct *fsec;
3214
3215 fsec = file->f_security;
3216 fsec->fown_sid = current_sid();
3217
3218 return 0;
3219}
3220
3221static int selinux_file_send_sigiotask(struct task_struct *tsk,
3222 struct fown_struct *fown, int signum)
3223{
3224 struct file *file;
3225 u32 sid = task_sid(tsk);
3226 u32 perm;
3227 struct file_security_struct *fsec;
3228
3229 /* struct fown_struct is never outside the context of a struct file */
3230 file = container_of(fown, struct file, f_owner);
3231
3232 fsec = file->f_security;
3233
3234 if (!signum)
3235 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3236 else
3237 perm = signal_to_av(signum);
3238
3239 return avc_has_perm(fsec->fown_sid, sid,
3240 SECCLASS_PROCESS, perm, NULL);
3241}
3242
3243static int selinux_file_receive(struct file *file)
3244{
3245 const struct cred *cred = current_cred();
3246
3247 return file_has_perm(cred, file, file_to_av(file));
3248}
3249
3250static int selinux_file_open(struct file *file, const struct cred *cred)
3251{
3252 struct file_security_struct *fsec;
3253 struct inode_security_struct *isec;
3254
3255 fsec = file->f_security;
3256 isec = file->f_path.dentry->d_inode->i_security;
3257 /*
3258 * Save inode label and policy sequence number
3259 * at open-time so that selinux_file_permission
3260 * can determine whether revalidation is necessary.
3261 * Task label is already saved in the file security
3262 * struct as its SID.
3263 */
3264 fsec->isid = isec->sid;
3265 fsec->pseqno = avc_policy_seqno();
3266 /*
3267 * Since the inode label or policy seqno may have changed
3268 * between the selinux_inode_permission check and the saving
3269 * of state above, recheck that access is still permitted.
3270 * Otherwise, access might never be revalidated against the
3271 * new inode label or new policy.
3272 * This check is not redundant - do not remove.
3273 */
3274 return path_has_perm(cred, &file->f_path, open_file_to_av(file));
3275}
3276
3277/* task security operations */
3278
3279static int selinux_task_create(unsigned long clone_flags)
3280{
3281 return current_has_perm(current, PROCESS__FORK);
3282}
3283
3284/*
3285 * allocate the SELinux part of blank credentials
3286 */
3287static int selinux_cred_alloc_blank(struct cred *cred, gfp_t gfp)
3288{
3289 struct task_security_struct *tsec;
3290
3291 tsec = kzalloc(sizeof(struct task_security_struct), gfp);
3292 if (!tsec)
3293 return -ENOMEM;
3294
3295 cred->security = tsec;
3296 return 0;
3297}
3298
3299/*
3300 * detach and free the LSM part of a set of credentials
3301 */
3302static void selinux_cred_free(struct cred *cred)
3303{
3304 struct task_security_struct *tsec = cred->security;
3305
3306 /*
3307 * cred->security == NULL if security_cred_alloc_blank() or
3308 * security_prepare_creds() returned an error.
3309 */
3310 BUG_ON(cred->security && (unsigned long) cred->security < PAGE_SIZE);
3311 cred->security = (void *) 0x7UL;
3312 kfree(tsec);
3313}
3314
3315/*
3316 * prepare a new set of credentials for modification
3317 */
3318static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3319 gfp_t gfp)
3320{
3321 const struct task_security_struct *old_tsec;
3322 struct task_security_struct *tsec;
3323
3324 old_tsec = old->security;
3325
3326 tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp);
3327 if (!tsec)
3328 return -ENOMEM;
3329
3330 new->security = tsec;
3331 return 0;
3332}
3333
3334/*
3335 * transfer the SELinux data to a blank set of creds
3336 */
3337static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3338{
3339 const struct task_security_struct *old_tsec = old->security;
3340 struct task_security_struct *tsec = new->security;
3341
3342 *tsec = *old_tsec;
3343}
3344
3345/*
3346 * set the security data for a kernel service
3347 * - all the creation contexts are set to unlabelled
3348 */
3349static int selinux_kernel_act_as(struct cred *new, u32 secid)
3350{
3351 struct task_security_struct *tsec = new->security;
3352 u32 sid = current_sid();
3353 int ret;
3354
3355 ret = avc_has_perm(sid, secid,
3356 SECCLASS_KERNEL_SERVICE,
3357 KERNEL_SERVICE__USE_AS_OVERRIDE,
3358 NULL);
3359 if (ret == 0) {
3360 tsec->sid = secid;
3361 tsec->create_sid = 0;
3362 tsec->keycreate_sid = 0;
3363 tsec->sockcreate_sid = 0;
3364 }
3365 return ret;
3366}
3367
3368/*
3369 * set the file creation context in a security record to the same as the
3370 * objective context of the specified inode
3371 */
3372static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3373{
3374 struct inode_security_struct *isec = inode->i_security;
3375 struct task_security_struct *tsec = new->security;
3376 u32 sid = current_sid();
3377 int ret;
3378
3379 ret = avc_has_perm(sid, isec->sid,
3380 SECCLASS_KERNEL_SERVICE,
3381 KERNEL_SERVICE__CREATE_FILES_AS,
3382 NULL);
3383
3384 if (ret == 0)
3385 tsec->create_sid = isec->sid;
3386 return ret;
3387}
3388
3389static int selinux_kernel_module_request(char *kmod_name)
3390{
3391 u32 sid;
3392 struct common_audit_data ad;
3393
3394 sid = task_sid(current);
3395
3396 ad.type = LSM_AUDIT_DATA_KMOD;
3397 ad.u.kmod_name = kmod_name;
3398
3399 return avc_has_perm(sid, SECINITSID_KERNEL, SECCLASS_SYSTEM,
3400 SYSTEM__MODULE_REQUEST, &ad);
3401}
3402
3403static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
3404{
3405 return current_has_perm(p, PROCESS__SETPGID);
3406}
3407
3408static int selinux_task_getpgid(struct task_struct *p)
3409{
3410 return current_has_perm(p, PROCESS__GETPGID);
3411}
3412
3413static int selinux_task_getsid(struct task_struct *p)
3414{
3415 return current_has_perm(p, PROCESS__GETSESSION);
3416}
3417
3418static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
3419{
3420 *secid = task_sid(p);
3421}
3422
3423static int selinux_task_setnice(struct task_struct *p, int nice)
3424{
3425 int rc;
3426
3427 rc = cap_task_setnice(p, nice);
3428 if (rc)
3429 return rc;
3430
3431 return current_has_perm(p, PROCESS__SETSCHED);
3432}
3433
3434static int selinux_task_setioprio(struct task_struct *p, int ioprio)
3435{
3436 int rc;
3437
3438 rc = cap_task_setioprio(p, ioprio);
3439 if (rc)
3440 return rc;
3441
3442 return current_has_perm(p, PROCESS__SETSCHED);
3443}
3444
3445static int selinux_task_getioprio(struct task_struct *p)
3446{
3447 return current_has_perm(p, PROCESS__GETSCHED);
3448}
3449
3450static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
3451 struct rlimit *new_rlim)
3452{
3453 struct rlimit *old_rlim = p->signal->rlim + resource;
3454
3455 /* Control the ability to change the hard limit (whether
3456 lowering or raising it), so that the hard limit can
3457 later be used as a safe reset point for the soft limit
3458 upon context transitions. See selinux_bprm_committing_creds. */
3459 if (old_rlim->rlim_max != new_rlim->rlim_max)
3460 return current_has_perm(p, PROCESS__SETRLIMIT);
3461
3462 return 0;
3463}
3464
3465static int selinux_task_setscheduler(struct task_struct *p)
3466{
3467 int rc;
3468
3469 rc = cap_task_setscheduler(p);
3470 if (rc)
3471 return rc;
3472
3473 return current_has_perm(p, PROCESS__SETSCHED);
3474}
3475
3476static int selinux_task_getscheduler(struct task_struct *p)
3477{
3478 return current_has_perm(p, PROCESS__GETSCHED);
3479}
3480
3481static int selinux_task_movememory(struct task_struct *p)
3482{
3483 return current_has_perm(p, PROCESS__SETSCHED);
3484}
3485
3486static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
3487 int sig, u32 secid)
3488{
3489 u32 perm;
3490 int rc;
3491
3492 if (!sig)
3493 perm = PROCESS__SIGNULL; /* null signal; existence test */
3494 else
3495 perm = signal_to_av(sig);
3496 if (secid)
3497 rc = avc_has_perm(secid, task_sid(p),
3498 SECCLASS_PROCESS, perm, NULL);
3499 else
3500 rc = current_has_perm(p, perm);
3501 return rc;
3502}
3503
3504static int selinux_task_wait(struct task_struct *p)
3505{
3506 return task_has_perm(p, current, PROCESS__SIGCHLD);
3507}
3508
3509static void selinux_task_to_inode(struct task_struct *p,
3510 struct inode *inode)
3511{
3512 struct inode_security_struct *isec = inode->i_security;
3513 u32 sid = task_sid(p);
3514
3515 isec->sid = sid;
3516 isec->initialized = 1;
3517}
3518
3519/* Returns error only if unable to parse addresses */
3520static int selinux_parse_skb_ipv4(struct sk_buff *skb,
3521 struct common_audit_data *ad, u8 *proto)
3522{
3523 int offset, ihlen, ret = -EINVAL;
3524 struct iphdr _iph, *ih;
3525
3526 offset = skb_network_offset(skb);
3527 ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
3528 if (ih == NULL)
3529 goto out;
3530
3531 ihlen = ih->ihl * 4;
3532 if (ihlen < sizeof(_iph))
3533 goto out;
3534
3535 ad->u.net->v4info.saddr = ih->saddr;
3536 ad->u.net->v4info.daddr = ih->daddr;
3537 ret = 0;
3538
3539 if (proto)
3540 *proto = ih->protocol;
3541
3542 switch (ih->protocol) {
3543 case IPPROTO_TCP: {
3544 struct tcphdr _tcph, *th;
3545
3546 if (ntohs(ih->frag_off) & IP_OFFSET)
3547 break;
3548
3549 offset += ihlen;
3550 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3551 if (th == NULL)
3552 break;
3553
3554 ad->u.net->sport = th->source;
3555 ad->u.net->dport = th->dest;
3556 break;
3557 }
3558
3559 case IPPROTO_UDP: {
3560 struct udphdr _udph, *uh;
3561
3562 if (ntohs(ih->frag_off) & IP_OFFSET)
3563 break;
3564
3565 offset += ihlen;
3566 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3567 if (uh == NULL)
3568 break;
3569
3570 ad->u.net->sport = uh->source;
3571 ad->u.net->dport = uh->dest;
3572 break;
3573 }
3574
3575 case IPPROTO_DCCP: {
3576 struct dccp_hdr _dccph, *dh;
3577
3578 if (ntohs(ih->frag_off) & IP_OFFSET)
3579 break;
3580
3581 offset += ihlen;
3582 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3583 if (dh == NULL)
3584 break;
3585
3586 ad->u.net->sport = dh->dccph_sport;
3587 ad->u.net->dport = dh->dccph_dport;
3588 break;
3589 }
3590
3591 default:
3592 break;
3593 }
3594out:
3595 return ret;
3596}
3597
3598#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3599
3600/* Returns error only if unable to parse addresses */
3601static int selinux_parse_skb_ipv6(struct sk_buff *skb,
3602 struct common_audit_data *ad, u8 *proto)
3603{
3604 u8 nexthdr;
3605 int ret = -EINVAL, offset;
3606 struct ipv6hdr _ipv6h, *ip6;
3607 __be16 frag_off;
3608
3609 offset = skb_network_offset(skb);
3610 ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
3611 if (ip6 == NULL)
3612 goto out;
3613
3614 ad->u.net->v6info.saddr = ip6->saddr;
3615 ad->u.net->v6info.daddr = ip6->daddr;
3616 ret = 0;
3617
3618 nexthdr = ip6->nexthdr;
3619 offset += sizeof(_ipv6h);
3620 offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
3621 if (offset < 0)
3622 goto out;
3623
3624 if (proto)
3625 *proto = nexthdr;
3626
3627 switch (nexthdr) {
3628 case IPPROTO_TCP: {
3629 struct tcphdr _tcph, *th;
3630
3631 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3632 if (th == NULL)
3633 break;
3634
3635 ad->u.net->sport = th->source;
3636 ad->u.net->dport = th->dest;
3637 break;
3638 }
3639
3640 case IPPROTO_UDP: {
3641 struct udphdr _udph, *uh;
3642
3643 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3644 if (uh == NULL)
3645 break;
3646
3647 ad->u.net->sport = uh->source;
3648 ad->u.net->dport = uh->dest;
3649 break;
3650 }
3651
3652 case IPPROTO_DCCP: {
3653 struct dccp_hdr _dccph, *dh;
3654
3655 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3656 if (dh == NULL)
3657 break;
3658
3659 ad->u.net->sport = dh->dccph_sport;
3660 ad->u.net->dport = dh->dccph_dport;
3661 break;
3662 }
3663
3664 /* includes fragments */
3665 default:
3666 break;
3667 }
3668out:
3669 return ret;
3670}
3671
3672#endif /* IPV6 */
3673
3674static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
3675 char **_addrp, int src, u8 *proto)
3676{
3677 char *addrp;
3678 int ret;
3679
3680 switch (ad->u.net->family) {
3681 case PF_INET:
3682 ret = selinux_parse_skb_ipv4(skb, ad, proto);
3683 if (ret)
3684 goto parse_error;
3685 addrp = (char *)(src ? &ad->u.net->v4info.saddr :
3686 &ad->u.net->v4info.daddr);
3687 goto okay;
3688
3689#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3690 case PF_INET6:
3691 ret = selinux_parse_skb_ipv6(skb, ad, proto);
3692 if (ret)
3693 goto parse_error;
3694 addrp = (char *)(src ? &ad->u.net->v6info.saddr :
3695 &ad->u.net->v6info.daddr);
3696 goto okay;
3697#endif /* IPV6 */
3698 default:
3699 addrp = NULL;
3700 goto okay;
3701 }
3702
3703parse_error:
3704 printk(KERN_WARNING
3705 "SELinux: failure in selinux_parse_skb(),"
3706 " unable to parse packet\n");
3707 return ret;
3708
3709okay:
3710 if (_addrp)
3711 *_addrp = addrp;
3712 return 0;
3713}
3714
3715/**
3716 * selinux_skb_peerlbl_sid - Determine the peer label of a packet
3717 * @skb: the packet
3718 * @family: protocol family
3719 * @sid: the packet's peer label SID
3720 *
3721 * Description:
3722 * Check the various different forms of network peer labeling and determine
3723 * the peer label/SID for the packet; most of the magic actually occurs in
3724 * the security server function security_net_peersid_cmp(). The function
3725 * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
3726 * or -EACCES if @sid is invalid due to inconsistencies with the different
3727 * peer labels.
3728 *
3729 */
3730static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
3731{
3732 int err;
3733 u32 xfrm_sid;
3734 u32 nlbl_sid;
3735 u32 nlbl_type;
3736
3737 selinux_skb_xfrm_sid(skb, &xfrm_sid);
3738 selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
3739
3740 err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid);
3741 if (unlikely(err)) {
3742 printk(KERN_WARNING
3743 "SELinux: failure in selinux_skb_peerlbl_sid(),"
3744 " unable to determine packet's peer label\n");
3745 return -EACCES;
3746 }
3747
3748 return 0;
3749}
3750
3751/* socket security operations */
3752
3753static int socket_sockcreate_sid(const struct task_security_struct *tsec,
3754 u16 secclass, u32 *socksid)
3755{
3756 if (tsec->sockcreate_sid > SECSID_NULL) {
3757 *socksid = tsec->sockcreate_sid;
3758 return 0;
3759 }
3760
3761 return security_transition_sid(tsec->sid, tsec->sid, secclass, NULL,
3762 socksid);
3763}
3764
3765static int sock_has_perm(struct task_struct *task, struct sock *sk, u32 perms)
3766{
3767 struct sk_security_struct *sksec = sk->sk_security;
3768 struct common_audit_data ad;
3769 struct lsm_network_audit net = {0,};
3770 u32 tsid = task_sid(task);
3771
3772 if (sksec->sid == SECINITSID_KERNEL)
3773 return 0;
3774
3775 ad.type = LSM_AUDIT_DATA_NET;
3776 ad.u.net = &net;
3777 ad.u.net->sk = sk;
3778
3779 return avc_has_perm(tsid, sksec->sid, sksec->sclass, perms, &ad);
3780}
3781
3782static int selinux_socket_create(int family, int type,
3783 int protocol, int kern)
3784{
3785 const struct task_security_struct *tsec = current_security();
3786 u32 newsid;
3787 u16 secclass;
3788 int rc;
3789
3790 if (kern)
3791 return 0;
3792
3793 secclass = socket_type_to_security_class(family, type, protocol);
3794 rc = socket_sockcreate_sid(tsec, secclass, &newsid);
3795 if (rc)
3796 return rc;
3797
3798 return avc_has_perm(tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
3799}
3800
3801static int selinux_socket_post_create(struct socket *sock, int family,
3802 int type, int protocol, int kern)
3803{
3804 const struct task_security_struct *tsec = current_security();
3805 struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
3806 struct sk_security_struct *sksec;
3807 int err = 0;
3808
3809 isec->sclass = socket_type_to_security_class(family, type, protocol);
3810
3811 if (kern)
3812 isec->sid = SECINITSID_KERNEL;
3813 else {
3814 err = socket_sockcreate_sid(tsec, isec->sclass, &(isec->sid));
3815 if (err)
3816 return err;
3817 }
3818
3819 isec->initialized = 1;
3820
3821 if (sock->sk) {
3822 sksec = sock->sk->sk_security;
3823 sksec->sid = isec->sid;
3824 sksec->sclass = isec->sclass;
3825 err = selinux_netlbl_socket_post_create(sock->sk, family);
3826 }
3827
3828 return err;
3829}
3830
3831/* Range of port numbers used to automatically bind.
3832 Need to determine whether we should perform a name_bind
3833 permission check between the socket and the port number. */
3834
3835static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
3836{
3837 struct sock *sk = sock->sk;
3838 u16 family;
3839 int err;
3840
3841 err = sock_has_perm(current, sk, SOCKET__BIND);
3842 if (err)
3843 goto out;
3844
3845 /*
3846 * If PF_INET or PF_INET6, check name_bind permission for the port.
3847 * Multiple address binding for SCTP is not supported yet: we just
3848 * check the first address now.
3849 */
3850 family = sk->sk_family;
3851 if (family == PF_INET || family == PF_INET6) {
3852 char *addrp;
3853 struct sk_security_struct *sksec = sk->sk_security;
3854 struct common_audit_data ad;
3855 struct lsm_network_audit net = {0,};
3856 struct sockaddr_in *addr4 = NULL;
3857 struct sockaddr_in6 *addr6 = NULL;
3858 unsigned short snum;
3859 u32 sid, node_perm;
3860
3861 if (family == PF_INET) {
3862 addr4 = (struct sockaddr_in *)address;
3863 snum = ntohs(addr4->sin_port);
3864 addrp = (char *)&addr4->sin_addr.s_addr;
3865 } else {
3866 addr6 = (struct sockaddr_in6 *)address;
3867 snum = ntohs(addr6->sin6_port);
3868 addrp = (char *)&addr6->sin6_addr.s6_addr;
3869 }
3870
3871 if (snum) {
3872 int low, high;
3873
3874 inet_get_local_port_range(&low, &high);
3875
3876 if (snum < max(PROT_SOCK, low) || snum > high) {
3877 err = sel_netport_sid(sk->sk_protocol,
3878 snum, &sid);
3879 if (err)
3880 goto out;
3881 ad.type = LSM_AUDIT_DATA_NET;
3882 ad.u.net = &net;
3883 ad.u.net->sport = htons(snum);
3884 ad.u.net->family = family;
3885 err = avc_has_perm(sksec->sid, sid,
3886 sksec->sclass,
3887 SOCKET__NAME_BIND, &ad);
3888 if (err)
3889 goto out;
3890 }
3891 }
3892
3893 switch (sksec->sclass) {
3894 case SECCLASS_TCP_SOCKET:
3895 node_perm = TCP_SOCKET__NODE_BIND;
3896 break;
3897
3898 case SECCLASS_UDP_SOCKET:
3899 node_perm = UDP_SOCKET__NODE_BIND;
3900 break;
3901
3902 case SECCLASS_DCCP_SOCKET:
3903 node_perm = DCCP_SOCKET__NODE_BIND;
3904 break;
3905
3906 default:
3907 node_perm = RAWIP_SOCKET__NODE_BIND;
3908 break;
3909 }
3910
3911 err = sel_netnode_sid(addrp, family, &sid);
3912 if (err)
3913 goto out;
3914
3915 ad.type = LSM_AUDIT_DATA_NET;
3916 ad.u.net = &net;
3917 ad.u.net->sport = htons(snum);
3918 ad.u.net->family = family;
3919
3920 if (family == PF_INET)
3921 ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
3922 else
3923 ad.u.net->v6info.saddr = addr6->sin6_addr;
3924
3925 err = avc_has_perm(sksec->sid, sid,
3926 sksec->sclass, node_perm, &ad);
3927 if (err)
3928 goto out;
3929 }
3930out:
3931 return err;
3932}
3933
3934static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
3935{
3936 struct sock *sk = sock->sk;
3937 struct sk_security_struct *sksec = sk->sk_security;
3938 int err;
3939
3940 err = sock_has_perm(current, sk, SOCKET__CONNECT);
3941 if (err)
3942 return err;
3943
3944 /*
3945 * If a TCP or DCCP socket, check name_connect permission for the port.
3946 */
3947 if (sksec->sclass == SECCLASS_TCP_SOCKET ||
3948 sksec->sclass == SECCLASS_DCCP_SOCKET) {
3949 struct common_audit_data ad;
3950 struct lsm_network_audit net = {0,};
3951 struct sockaddr_in *addr4 = NULL;
3952 struct sockaddr_in6 *addr6 = NULL;
3953 unsigned short snum;
3954 u32 sid, perm;
3955
3956 if (sk->sk_family == PF_INET) {
3957 addr4 = (struct sockaddr_in *)address;
3958 if (addrlen < sizeof(struct sockaddr_in))
3959 return -EINVAL;
3960 snum = ntohs(addr4->sin_port);
3961 } else {
3962 addr6 = (struct sockaddr_in6 *)address;
3963 if (addrlen < SIN6_LEN_RFC2133)
3964 return -EINVAL;
3965 snum = ntohs(addr6->sin6_port);
3966 }
3967
3968 err = sel_netport_sid(sk->sk_protocol, snum, &sid);
3969 if (err)
3970 goto out;
3971
3972 perm = (sksec->sclass == SECCLASS_TCP_SOCKET) ?
3973 TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
3974
3975 ad.type = LSM_AUDIT_DATA_NET;
3976 ad.u.net = &net;
3977 ad.u.net->dport = htons(snum);
3978 ad.u.net->family = sk->sk_family;
3979 err = avc_has_perm(sksec->sid, sid, sksec->sclass, perm, &ad);
3980 if (err)
3981 goto out;
3982 }
3983
3984 err = selinux_netlbl_socket_connect(sk, address);
3985
3986out:
3987 return err;
3988}
3989
3990static int selinux_socket_listen(struct socket *sock, int backlog)
3991{
3992 return sock_has_perm(current, sock->sk, SOCKET__LISTEN);
3993}
3994
3995static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
3996{
3997 int err;
3998 struct inode_security_struct *isec;
3999 struct inode_security_struct *newisec;
4000
4001 err = sock_has_perm(current, sock->sk, SOCKET__ACCEPT);
4002 if (err)
4003 return err;
4004
4005 newisec = SOCK_INODE(newsock)->i_security;
4006
4007 isec = SOCK_INODE(sock)->i_security;
4008 newisec->sclass = isec->sclass;
4009 newisec->sid = isec->sid;
4010 newisec->initialized = 1;
4011
4012 return 0;
4013}
4014
4015static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
4016 int size)
4017{
4018 return sock_has_perm(current, sock->sk, SOCKET__WRITE);
4019}
4020
4021static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4022 int size, int flags)
4023{
4024 return sock_has_perm(current, sock->sk, SOCKET__READ);
4025}
4026
4027static int selinux_socket_getsockname(struct socket *sock)
4028{
4029 return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
4030}
4031
4032static int selinux_socket_getpeername(struct socket *sock)
4033{
4034 return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
4035}
4036
4037static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
4038{
4039 int err;
4040
4041 err = sock_has_perm(current, sock->sk, SOCKET__SETOPT);
4042 if (err)
4043 return err;
4044
4045 return selinux_netlbl_socket_setsockopt(sock, level, optname);
4046}
4047
4048static int selinux_socket_getsockopt(struct socket *sock, int level,
4049 int optname)
4050{
4051 return sock_has_perm(current, sock->sk, SOCKET__GETOPT);
4052}
4053
4054static int selinux_socket_shutdown(struct socket *sock, int how)
4055{
4056 return sock_has_perm(current, sock->sk, SOCKET__SHUTDOWN);
4057}
4058
4059static int selinux_socket_unix_stream_connect(struct sock *sock,
4060 struct sock *other,
4061 struct sock *newsk)
4062{
4063 struct sk_security_struct *sksec_sock = sock->sk_security;
4064 struct sk_security_struct *sksec_other = other->sk_security;
4065 struct sk_security_struct *sksec_new = newsk->sk_security;
4066 struct common_audit_data ad;
4067 struct lsm_network_audit net = {0,};
4068 int err;
4069
4070 ad.type = LSM_AUDIT_DATA_NET;
4071 ad.u.net = &net;
4072 ad.u.net->sk = other;
4073
4074 err = avc_has_perm(sksec_sock->sid, sksec_other->sid,
4075 sksec_other->sclass,
4076 UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4077 if (err)
4078 return err;
4079
4080 /* server child socket */
4081 sksec_new->peer_sid = sksec_sock->sid;
4082 err = security_sid_mls_copy(sksec_other->sid, sksec_sock->sid,
4083 &sksec_new->sid);
4084 if (err)
4085 return err;
4086
4087 /* connecting socket */
4088 sksec_sock->peer_sid = sksec_new->sid;
4089
4090 return 0;
4091}
4092
4093static int selinux_socket_unix_may_send(struct socket *sock,
4094 struct socket *other)
4095{
4096 struct sk_security_struct *ssec = sock->sk->sk_security;
4097 struct sk_security_struct *osec = other->sk->sk_security;
4098 struct common_audit_data ad;
4099 struct lsm_network_audit net = {0,};
4100
4101 ad.type = LSM_AUDIT_DATA_NET;
4102 ad.u.net = &net;
4103 ad.u.net->sk = other->sk;
4104
4105 return avc_has_perm(ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
4106 &ad);
4107}
4108
4109static int selinux_inet_sys_rcv_skb(int ifindex, char *addrp, u16 family,
4110 u32 peer_sid,
4111 struct common_audit_data *ad)
4112{
4113 int err;
4114 u32 if_sid;
4115 u32 node_sid;
4116
4117 err = sel_netif_sid(ifindex, &if_sid);
4118 if (err)
4119 return err;
4120 err = avc_has_perm(peer_sid, if_sid,
4121 SECCLASS_NETIF, NETIF__INGRESS, ad);
4122 if (err)
4123 return err;
4124
4125 err = sel_netnode_sid(addrp, family, &node_sid);
4126 if (err)
4127 return err;
4128 return avc_has_perm(peer_sid, node_sid,
4129 SECCLASS_NODE, NODE__RECVFROM, ad);
4130}
4131
4132static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4133 u16 family)
4134{
4135 int err = 0;
4136 struct sk_security_struct *sksec = sk->sk_security;
4137 u32 sk_sid = sksec->sid;
4138 struct common_audit_data ad;
4139 struct lsm_network_audit net = {0,};
4140 char *addrp;
4141
4142 ad.type = LSM_AUDIT_DATA_NET;
4143 ad.u.net = &net;
4144 ad.u.net->netif = skb->skb_iif;
4145 ad.u.net->family = family;
4146 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4147 if (err)
4148 return err;
4149
4150 if (selinux_secmark_enabled()) {
4151 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4152 PACKET__RECV, &ad);
4153 if (err)
4154 return err;
4155 }
4156
4157 err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4158 if (err)
4159 return err;
4160 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4161
4162 return err;
4163}
4164
4165static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4166{
4167 int err;
4168 struct sk_security_struct *sksec = sk->sk_security;
4169 u16 family = sk->sk_family;
4170 u32 sk_sid = sksec->sid;
4171 struct common_audit_data ad;
4172 struct lsm_network_audit net = {0,};
4173 char *addrp;
4174 u8 secmark_active;
4175 u8 peerlbl_active;
4176
4177 if (family != PF_INET && family != PF_INET6)
4178 return 0;
4179
4180 /* Handle mapped IPv4 packets arriving via IPv6 sockets */
4181 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4182 family = PF_INET;
4183
4184 /* If any sort of compatibility mode is enabled then handoff processing
4185 * to the selinux_sock_rcv_skb_compat() function to deal with the
4186 * special handling. We do this in an attempt to keep this function
4187 * as fast and as clean as possible. */
4188 if (!selinux_policycap_netpeer)
4189 return selinux_sock_rcv_skb_compat(sk, skb, family);
4190
4191 secmark_active = selinux_secmark_enabled();
4192 peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4193 if (!secmark_active && !peerlbl_active)
4194 return 0;
4195
4196 ad.type = LSM_AUDIT_DATA_NET;
4197 ad.u.net = &net;
4198 ad.u.net->netif = skb->skb_iif;
4199 ad.u.net->family = family;
4200 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4201 if (err)
4202 return err;
4203
4204 if (peerlbl_active) {
4205 u32 peer_sid;
4206
4207 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4208 if (err)
4209 return err;
4210 err = selinux_inet_sys_rcv_skb(skb->skb_iif, addrp, family,
4211 peer_sid, &ad);
4212 if (err) {
4213 selinux_netlbl_err(skb, err, 0);
4214 return err;
4215 }
4216 err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
4217 PEER__RECV, &ad);
4218 if (err)
4219 selinux_netlbl_err(skb, err, 0);
4220 }
4221
4222 if (secmark_active) {
4223 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4224 PACKET__RECV, &ad);
4225 if (err)
4226 return err;
4227 }
4228
4229 return err;
4230}
4231
4232static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
4233 int __user *optlen, unsigned len)
4234{
4235 int err = 0;
4236 char *scontext;
4237 u32 scontext_len;
4238 struct sk_security_struct *sksec = sock->sk->sk_security;
4239 u32 peer_sid = SECSID_NULL;
4240
4241 if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
4242 sksec->sclass == SECCLASS_TCP_SOCKET)
4243 peer_sid = sksec->peer_sid;
4244 if (peer_sid == SECSID_NULL)
4245 return -ENOPROTOOPT;
4246
4247 err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
4248 if (err)
4249 return err;
4250
4251 if (scontext_len > len) {
4252 err = -ERANGE;
4253 goto out_len;
4254 }
4255
4256 if (copy_to_user(optval, scontext, scontext_len))
4257 err = -EFAULT;
4258
4259out_len:
4260 if (put_user(scontext_len, optlen))
4261 err = -EFAULT;
4262 kfree(scontext);
4263 return err;
4264}
4265
4266static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
4267{
4268 u32 peer_secid = SECSID_NULL;
4269 u16 family;
4270
4271 if (skb && skb->protocol == htons(ETH_P_IP))
4272 family = PF_INET;
4273 else if (skb && skb->protocol == htons(ETH_P_IPV6))
4274 family = PF_INET6;
4275 else if (sock)
4276 family = sock->sk->sk_family;
4277 else
4278 goto out;
4279
4280 if (sock && family == PF_UNIX)
4281 selinux_inode_getsecid(SOCK_INODE(sock), &peer_secid);
4282 else if (skb)
4283 selinux_skb_peerlbl_sid(skb, family, &peer_secid);
4284
4285out:
4286 *secid = peer_secid;
4287 if (peer_secid == SECSID_NULL)
4288 return -EINVAL;
4289 return 0;
4290}
4291
4292static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
4293{
4294 struct sk_security_struct *sksec;
4295
4296 sksec = kzalloc(sizeof(*sksec), priority);
4297 if (!sksec)
4298 return -ENOMEM;
4299
4300 sksec->peer_sid = SECINITSID_UNLABELED;
4301 sksec->sid = SECINITSID_UNLABELED;
4302 selinux_netlbl_sk_security_reset(sksec);
4303 sk->sk_security = sksec;
4304
4305 return 0;
4306}
4307
4308static void selinux_sk_free_security(struct sock *sk)
4309{
4310 struct sk_security_struct *sksec = sk->sk_security;
4311
4312 sk->sk_security = NULL;
4313 selinux_netlbl_sk_security_free(sksec);
4314 kfree(sksec);
4315}
4316
4317static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
4318{
4319 struct sk_security_struct *sksec = sk->sk_security;
4320 struct sk_security_struct *newsksec = newsk->sk_security;
4321
4322 newsksec->sid = sksec->sid;
4323 newsksec->peer_sid = sksec->peer_sid;
4324 newsksec->sclass = sksec->sclass;
4325
4326 selinux_netlbl_sk_security_reset(newsksec);
4327}
4328
4329static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
4330{
4331 if (!sk)
4332 *secid = SECINITSID_ANY_SOCKET;
4333 else {
4334 struct sk_security_struct *sksec = sk->sk_security;
4335
4336 *secid = sksec->sid;
4337 }
4338}
4339
4340static void selinux_sock_graft(struct sock *sk, struct socket *parent)
4341{
4342 struct inode_security_struct *isec = SOCK_INODE(parent)->i_security;
4343 struct sk_security_struct *sksec = sk->sk_security;
4344
4345 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
4346 sk->sk_family == PF_UNIX)
4347 isec->sid = sksec->sid;
4348 sksec->sclass = isec->sclass;
4349}
4350
4351static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
4352 struct request_sock *req)
4353{
4354 struct sk_security_struct *sksec = sk->sk_security;
4355 int err;
4356 u16 family = sk->sk_family;
4357 u32 newsid;
4358 u32 peersid;
4359
4360 /* handle mapped IPv4 packets arriving via IPv6 sockets */
4361 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4362 family = PF_INET;
4363
4364 err = selinux_skb_peerlbl_sid(skb, family, &peersid);
4365 if (err)
4366 return err;
4367 if (peersid == SECSID_NULL) {
4368 req->secid = sksec->sid;
4369 req->peer_secid = SECSID_NULL;
4370 } else {
4371 err = security_sid_mls_copy(sksec->sid, peersid, &newsid);
4372 if (err)
4373 return err;
4374 req->secid = newsid;
4375 req->peer_secid = peersid;
4376 }
4377
4378 return selinux_netlbl_inet_conn_request(req, family);
4379}
4380
4381static void selinux_inet_csk_clone(struct sock *newsk,
4382 const struct request_sock *req)
4383{
4384 struct sk_security_struct *newsksec = newsk->sk_security;
4385
4386 newsksec->sid = req->secid;
4387 newsksec->peer_sid = req->peer_secid;
4388 /* NOTE: Ideally, we should also get the isec->sid for the
4389 new socket in sync, but we don't have the isec available yet.
4390 So we will wait until sock_graft to do it, by which
4391 time it will have been created and available. */
4392
4393 /* We don't need to take any sort of lock here as we are the only
4394 * thread with access to newsksec */
4395 selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
4396}
4397
4398static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
4399{
4400 u16 family = sk->sk_family;
4401 struct sk_security_struct *sksec = sk->sk_security;
4402
4403 /* handle mapped IPv4 packets arriving via IPv6 sockets */
4404 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4405 family = PF_INET;
4406
4407 selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
4408}
4409
4410static int selinux_secmark_relabel_packet(u32 sid)
4411{
4412 const struct task_security_struct *__tsec;
4413 u32 tsid;
4414
4415 __tsec = current_security();
4416 tsid = __tsec->sid;
4417
4418 return avc_has_perm(tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO, NULL);
4419}
4420
4421static void selinux_secmark_refcount_inc(void)
4422{
4423 atomic_inc(&selinux_secmark_refcount);
4424}
4425
4426static void selinux_secmark_refcount_dec(void)
4427{
4428 atomic_dec(&selinux_secmark_refcount);
4429}
4430
4431static void selinux_req_classify_flow(const struct request_sock *req,
4432 struct flowi *fl)
4433{
4434 fl->flowi_secid = req->secid;
4435}
4436
4437static int selinux_tun_dev_create(void)
4438{
4439 u32 sid = current_sid();
4440
4441 /* we aren't taking into account the "sockcreate" SID since the socket
4442 * that is being created here is not a socket in the traditional sense,
4443 * instead it is a private sock, accessible only to the kernel, and
4444 * representing a wide range of network traffic spanning multiple
4445 * connections unlike traditional sockets - check the TUN driver to
4446 * get a better understanding of why this socket is special */
4447
4448 return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
4449 NULL);
4450}
4451
4452static void selinux_tun_dev_post_create(struct sock *sk)
4453{
4454 struct sk_security_struct *sksec = sk->sk_security;
4455
4456 /* we don't currently perform any NetLabel based labeling here and it
4457 * isn't clear that we would want to do so anyway; while we could apply
4458 * labeling without the support of the TUN user the resulting labeled
4459 * traffic from the other end of the connection would almost certainly
4460 * cause confusion to the TUN user that had no idea network labeling
4461 * protocols were being used */
4462
4463 /* see the comments in selinux_tun_dev_create() about why we don't use
4464 * the sockcreate SID here */
4465
4466 sksec->sid = current_sid();
4467 sksec->sclass = SECCLASS_TUN_SOCKET;
4468}
4469
4470static int selinux_tun_dev_attach(struct sock *sk)
4471{
4472 struct sk_security_struct *sksec = sk->sk_security;
4473 u32 sid = current_sid();
4474 int err;
4475
4476 err = avc_has_perm(sid, sksec->sid, SECCLASS_TUN_SOCKET,
4477 TUN_SOCKET__RELABELFROM, NULL);
4478 if (err)
4479 return err;
4480 err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET,
4481 TUN_SOCKET__RELABELTO, NULL);
4482 if (err)
4483 return err;
4484
4485 sksec->sid = sid;
4486
4487 return 0;
4488}
4489
4490static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
4491{
4492 int err = 0;
4493 u32 perm;
4494 struct nlmsghdr *nlh;
4495 struct sk_security_struct *sksec = sk->sk_security;
4496
4497 if (skb->len < NLMSG_SPACE(0)) {
4498 err = -EINVAL;
4499 goto out;
4500 }
4501 nlh = nlmsg_hdr(skb);
4502
4503 err = selinux_nlmsg_lookup(sksec->sclass, nlh->nlmsg_type, &perm);
4504 if (err) {
4505 if (err == -EINVAL) {
4506 audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR,
4507 "SELinux: unrecognized netlink message"
4508 " type=%hu for sclass=%hu\n",
4509 nlh->nlmsg_type, sksec->sclass);
4510 if (!selinux_enforcing || security_get_allow_unknown())
4511 err = 0;
4512 }
4513
4514 /* Ignore */
4515 if (err == -ENOENT)
4516 err = 0;
4517 goto out;
4518 }
4519
4520 err = sock_has_perm(current, sk, perm);
4521out:
4522 return err;
4523}
4524
4525#ifdef CONFIG_NETFILTER
4526
4527static unsigned int selinux_ip_forward(struct sk_buff *skb, int ifindex,
4528 u16 family)
4529{
4530 int err;
4531 char *addrp;
4532 u32 peer_sid;
4533 struct common_audit_data ad;
4534 struct lsm_network_audit net = {0,};
4535 u8 secmark_active;
4536 u8 netlbl_active;
4537 u8 peerlbl_active;
4538
4539 if (!selinux_policycap_netpeer)
4540 return NF_ACCEPT;
4541
4542 secmark_active = selinux_secmark_enabled();
4543 netlbl_active = netlbl_enabled();
4544 peerlbl_active = netlbl_active || selinux_xfrm_enabled();
4545 if (!secmark_active && !peerlbl_active)
4546 return NF_ACCEPT;
4547
4548 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
4549 return NF_DROP;
4550
4551 ad.type = LSM_AUDIT_DATA_NET;
4552 ad.u.net = &net;
4553 ad.u.net->netif = ifindex;
4554 ad.u.net->family = family;
4555 if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
4556 return NF_DROP;
4557
4558 if (peerlbl_active) {
4559 err = selinux_inet_sys_rcv_skb(ifindex, addrp, family,
4560 peer_sid, &ad);
4561 if (err) {
4562 selinux_netlbl_err(skb, err, 1);
4563 return NF_DROP;
4564 }
4565 }
4566
4567 if (secmark_active)
4568 if (avc_has_perm(peer_sid, skb->secmark,
4569 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
4570 return NF_DROP;
4571
4572 if (netlbl_active)
4573 /* we do this in the FORWARD path and not the POST_ROUTING
4574 * path because we want to make sure we apply the necessary
4575 * labeling before IPsec is applied so we can leverage AH
4576 * protection */
4577 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
4578 return NF_DROP;
4579
4580 return NF_ACCEPT;
4581}
4582
4583static unsigned int selinux_ipv4_forward(unsigned int hooknum,
4584 struct sk_buff *skb,
4585 const struct net_device *in,
4586 const struct net_device *out,
4587 int (*okfn)(struct sk_buff *))
4588{
4589 return selinux_ip_forward(skb, in->ifindex, PF_INET);
4590}
4591
4592#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4593static unsigned int selinux_ipv6_forward(unsigned int hooknum,
4594 struct sk_buff *skb,
4595 const struct net_device *in,
4596 const struct net_device *out,
4597 int (*okfn)(struct sk_buff *))
4598{
4599 return selinux_ip_forward(skb, in->ifindex, PF_INET6);
4600}
4601#endif /* IPV6 */
4602
4603static unsigned int selinux_ip_output(struct sk_buff *skb,
4604 u16 family)
4605{
4606 u32 sid;
4607
4608 if (!netlbl_enabled())
4609 return NF_ACCEPT;
4610
4611 /* we do this in the LOCAL_OUT path and not the POST_ROUTING path
4612 * because we want to make sure we apply the necessary labeling
4613 * before IPsec is applied so we can leverage AH protection */
4614 if (skb->sk) {
4615 struct sk_security_struct *sksec = skb->sk->sk_security;
4616 sid = sksec->sid;
4617 } else
4618 sid = SECINITSID_KERNEL;
4619 if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
4620 return NF_DROP;
4621
4622 return NF_ACCEPT;
4623}
4624
4625static unsigned int selinux_ipv4_output(unsigned int hooknum,
4626 struct sk_buff *skb,
4627 const struct net_device *in,
4628 const struct net_device *out,
4629 int (*okfn)(struct sk_buff *))
4630{
4631 return selinux_ip_output(skb, PF_INET);
4632}
4633
4634static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
4635 int ifindex,
4636 u16 family)
4637{
4638 struct sock *sk = skb->sk;
4639 struct sk_security_struct *sksec;
4640 struct common_audit_data ad;
4641 struct lsm_network_audit net = {0,};
4642 char *addrp;
4643 u8 proto;
4644
4645 if (sk == NULL)
4646 return NF_ACCEPT;
4647 sksec = sk->sk_security;
4648
4649 ad.type = LSM_AUDIT_DATA_NET;
4650 ad.u.net = &net;
4651 ad.u.net->netif = ifindex;
4652 ad.u.net->family = family;
4653 if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
4654 return NF_DROP;
4655
4656 if (selinux_secmark_enabled())
4657 if (avc_has_perm(sksec->sid, skb->secmark,
4658 SECCLASS_PACKET, PACKET__SEND, &ad))
4659 return NF_DROP_ERR(-ECONNREFUSED);
4660
4661 if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
4662 return NF_DROP_ERR(-ECONNREFUSED);
4663
4664 return NF_ACCEPT;
4665}
4666
4667static unsigned int selinux_ip_postroute(struct sk_buff *skb, int ifindex,
4668 u16 family)
4669{
4670 u32 secmark_perm;
4671 u32 peer_sid;
4672 struct sock *sk;
4673 struct common_audit_data ad;
4674 struct lsm_network_audit net = {0,};
4675 char *addrp;
4676 u8 secmark_active;
4677 u8 peerlbl_active;
4678
4679 /* If any sort of compatibility mode is enabled then handoff processing
4680 * to the selinux_ip_postroute_compat() function to deal with the
4681 * special handling. We do this in an attempt to keep this function
4682 * as fast and as clean as possible. */
4683 if (!selinux_policycap_netpeer)
4684 return selinux_ip_postroute_compat(skb, ifindex, family);
4685#ifdef CONFIG_XFRM
4686 /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
4687 * packet transformation so allow the packet to pass without any checks
4688 * since we'll have another chance to perform access control checks
4689 * when the packet is on it's final way out.
4690 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
4691 * is NULL, in this case go ahead and apply access control. */
4692 if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL)
4693 return NF_ACCEPT;
4694#endif
4695 secmark_active = selinux_secmark_enabled();
4696 peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4697 if (!secmark_active && !peerlbl_active)
4698 return NF_ACCEPT;
4699
4700 /* if the packet is being forwarded then get the peer label from the
4701 * packet itself; otherwise check to see if it is from a local
4702 * application or the kernel, if from an application get the peer label
4703 * from the sending socket, otherwise use the kernel's sid */
4704 sk = skb->sk;
4705 if (sk == NULL) {
4706 if (skb->skb_iif) {
4707 secmark_perm = PACKET__FORWARD_OUT;
4708 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
4709 return NF_DROP;
4710 } else {
4711 secmark_perm = PACKET__SEND;
4712 peer_sid = SECINITSID_KERNEL;
4713 }
4714 } else {
4715 struct sk_security_struct *sksec = sk->sk_security;
4716 peer_sid = sksec->sid;
4717 secmark_perm = PACKET__SEND;
4718 }
4719
4720 ad.type = LSM_AUDIT_DATA_NET;
4721 ad.u.net = &net;
4722 ad.u.net->netif = ifindex;
4723 ad.u.net->family = family;
4724 if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
4725 return NF_DROP;
4726
4727 if (secmark_active)
4728 if (avc_has_perm(peer_sid, skb->secmark,
4729 SECCLASS_PACKET, secmark_perm, &ad))
4730 return NF_DROP_ERR(-ECONNREFUSED);
4731
4732 if (peerlbl_active) {
4733 u32 if_sid;
4734 u32 node_sid;
4735
4736 if (sel_netif_sid(ifindex, &if_sid))
4737 return NF_DROP;
4738 if (avc_has_perm(peer_sid, if_sid,
4739 SECCLASS_NETIF, NETIF__EGRESS, &ad))
4740 return NF_DROP_ERR(-ECONNREFUSED);
4741
4742 if (sel_netnode_sid(addrp, family, &node_sid))
4743 return NF_DROP;
4744 if (avc_has_perm(peer_sid, node_sid,
4745 SECCLASS_NODE, NODE__SENDTO, &ad))
4746 return NF_DROP_ERR(-ECONNREFUSED);
4747 }
4748
4749 return NF_ACCEPT;
4750}
4751
4752static unsigned int selinux_ipv4_postroute(unsigned int hooknum,
4753 struct sk_buff *skb,
4754 const struct net_device *in,
4755 const struct net_device *out,
4756 int (*okfn)(struct sk_buff *))
4757{
4758 return selinux_ip_postroute(skb, out->ifindex, PF_INET);
4759}
4760
4761#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4762static unsigned int selinux_ipv6_postroute(unsigned int hooknum,
4763 struct sk_buff *skb,
4764 const struct net_device *in,
4765 const struct net_device *out,
4766 int (*okfn)(struct sk_buff *))
4767{
4768 return selinux_ip_postroute(skb, out->ifindex, PF_INET6);
4769}
4770#endif /* IPV6 */
4771
4772#endif /* CONFIG_NETFILTER */
4773
4774static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
4775{
4776 int err;
4777
4778 err = cap_netlink_send(sk, skb);
4779 if (err)
4780 return err;
4781
4782 return selinux_nlmsg_perm(sk, skb);
4783}
4784
4785static int ipc_alloc_security(struct task_struct *task,
4786 struct kern_ipc_perm *perm,
4787 u16 sclass)
4788{
4789 struct ipc_security_struct *isec;
4790 u32 sid;
4791
4792 isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
4793 if (!isec)
4794 return -ENOMEM;
4795
4796 sid = task_sid(task);
4797 isec->sclass = sclass;
4798 isec->sid = sid;
4799 perm->security = isec;
4800
4801 return 0;
4802}
4803
4804static void ipc_free_security(struct kern_ipc_perm *perm)
4805{
4806 struct ipc_security_struct *isec = perm->security;
4807 perm->security = NULL;
4808 kfree(isec);
4809}
4810
4811static int msg_msg_alloc_security(struct msg_msg *msg)
4812{
4813 struct msg_security_struct *msec;
4814
4815 msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
4816 if (!msec)
4817 return -ENOMEM;
4818
4819 msec->sid = SECINITSID_UNLABELED;
4820 msg->security = msec;
4821
4822 return 0;
4823}
4824
4825static void msg_msg_free_security(struct msg_msg *msg)
4826{
4827 struct msg_security_struct *msec = msg->security;
4828
4829 msg->security = NULL;
4830 kfree(msec);
4831}
4832
4833static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
4834 u32 perms)
4835{
4836 struct ipc_security_struct *isec;
4837 struct common_audit_data ad;
4838 u32 sid = current_sid();
4839
4840 isec = ipc_perms->security;
4841
4842 ad.type = LSM_AUDIT_DATA_IPC;
4843 ad.u.ipc_id = ipc_perms->key;
4844
4845 return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
4846}
4847
4848static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
4849{
4850 return msg_msg_alloc_security(msg);
4851}
4852
4853static void selinux_msg_msg_free_security(struct msg_msg *msg)
4854{
4855 msg_msg_free_security(msg);
4856}
4857
4858/* message queue security operations */
4859static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
4860{
4861 struct ipc_security_struct *isec;
4862 struct common_audit_data ad;
4863 u32 sid = current_sid();
4864 int rc;
4865
4866 rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
4867 if (rc)
4868 return rc;
4869
4870 isec = msq->q_perm.security;
4871
4872 ad.type = LSM_AUDIT_DATA_IPC;
4873 ad.u.ipc_id = msq->q_perm.key;
4874
4875 rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4876 MSGQ__CREATE, &ad);
4877 if (rc) {
4878 ipc_free_security(&msq->q_perm);
4879 return rc;
4880 }
4881 return 0;
4882}
4883
4884static void selinux_msg_queue_free_security(struct msg_queue *msq)
4885{
4886 ipc_free_security(&msq->q_perm);
4887}
4888
4889static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
4890{
4891 struct ipc_security_struct *isec;
4892 struct common_audit_data ad;
4893 u32 sid = current_sid();
4894
4895 isec = msq->q_perm.security;
4896
4897 ad.type = LSM_AUDIT_DATA_IPC;
4898 ad.u.ipc_id = msq->q_perm.key;
4899
4900 return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4901 MSGQ__ASSOCIATE, &ad);
4902}
4903
4904static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
4905{
4906 int err;
4907 int perms;
4908
4909 switch (cmd) {
4910 case IPC_INFO:
4911 case MSG_INFO:
4912 /* No specific object, just general system-wide information. */
4913 return task_has_system(current, SYSTEM__IPC_INFO);
4914 case IPC_STAT:
4915 case MSG_STAT:
4916 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
4917 break;
4918 case IPC_SET:
4919 perms = MSGQ__SETATTR;
4920 break;
4921 case IPC_RMID:
4922 perms = MSGQ__DESTROY;
4923 break;
4924 default:
4925 return 0;
4926 }
4927
4928 err = ipc_has_perm(&msq->q_perm, perms);
4929 return err;
4930}
4931
4932static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
4933{
4934 struct ipc_security_struct *isec;
4935 struct msg_security_struct *msec;
4936 struct common_audit_data ad;
4937 u32 sid = current_sid();
4938 int rc;
4939
4940 isec = msq->q_perm.security;
4941 msec = msg->security;
4942
4943 /*
4944 * First time through, need to assign label to the message
4945 */
4946 if (msec->sid == SECINITSID_UNLABELED) {
4947 /*
4948 * Compute new sid based on current process and
4949 * message queue this message will be stored in
4950 */
4951 rc = security_transition_sid(sid, isec->sid, SECCLASS_MSG,
4952 NULL, &msec->sid);
4953 if (rc)
4954 return rc;
4955 }
4956
4957 ad.type = LSM_AUDIT_DATA_IPC;
4958 ad.u.ipc_id = msq->q_perm.key;
4959
4960 /* Can this process write to the queue? */
4961 rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4962 MSGQ__WRITE, &ad);
4963 if (!rc)
4964 /* Can this process send the message */
4965 rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG,
4966 MSG__SEND, &ad);
4967 if (!rc)
4968 /* Can the message be put in the queue? */
4969 rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ,
4970 MSGQ__ENQUEUE, &ad);
4971
4972 return rc;
4973}
4974
4975static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
4976 struct task_struct *target,
4977 long type, int mode)
4978{
4979 struct ipc_security_struct *isec;
4980 struct msg_security_struct *msec;
4981 struct common_audit_data ad;
4982 u32 sid = task_sid(target);
4983 int rc;
4984
4985 isec = msq->q_perm.security;
4986 msec = msg->security;
4987
4988 ad.type = LSM_AUDIT_DATA_IPC;
4989 ad.u.ipc_id = msq->q_perm.key;
4990
4991 rc = avc_has_perm(sid, isec->sid,
4992 SECCLASS_MSGQ, MSGQ__READ, &ad);
4993 if (!rc)
4994 rc = avc_has_perm(sid, msec->sid,
4995 SECCLASS_MSG, MSG__RECEIVE, &ad);
4996 return rc;
4997}
4998
4999/* Shared Memory security operations */
5000static int selinux_shm_alloc_security(struct shmid_kernel *shp)
5001{
5002 struct ipc_security_struct *isec;
5003 struct common_audit_data ad;
5004 u32 sid = current_sid();
5005 int rc;
5006
5007 rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
5008 if (rc)
5009 return rc;
5010
5011 isec = shp->shm_perm.security;
5012
5013 ad.type = LSM_AUDIT_DATA_IPC;
5014 ad.u.ipc_id = shp->shm_perm.key;
5015
5016 rc = avc_has_perm(sid, isec->sid, SECCLASS_SHM,
5017 SHM__CREATE, &ad);
5018 if (rc) {
5019 ipc_free_security(&shp->shm_perm);
5020 return rc;
5021 }
5022 return 0;
5023}
5024
5025static void selinux_shm_free_security(struct shmid_kernel *shp)
5026{
5027 ipc_free_security(&shp->shm_perm);
5028}
5029
5030static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
5031{
5032 struct ipc_security_struct *isec;
5033 struct common_audit_data ad;
5034 u32 sid = current_sid();
5035
5036 isec = shp->shm_perm.security;
5037
5038 ad.type = LSM_AUDIT_DATA_IPC;
5039 ad.u.ipc_id = shp->shm_perm.key;
5040
5041 return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
5042 SHM__ASSOCIATE, &ad);
5043}
5044
5045/* Note, at this point, shp is locked down */
5046static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
5047{
5048 int perms;
5049 int err;
5050
5051 switch (cmd) {
5052 case IPC_INFO:
5053 case SHM_INFO:
5054 /* No specific object, just general system-wide information. */
5055 return task_has_system(current, SYSTEM__IPC_INFO);
5056 case IPC_STAT:
5057 case SHM_STAT:
5058 perms = SHM__GETATTR | SHM__ASSOCIATE;
5059 break;
5060 case IPC_SET:
5061 perms = SHM__SETATTR;
5062 break;
5063 case SHM_LOCK:
5064 case SHM_UNLOCK:
5065 perms = SHM__LOCK;
5066 break;
5067 case IPC_RMID:
5068 perms = SHM__DESTROY;
5069 break;
5070 default:
5071 return 0;
5072 }
5073
5074 err = ipc_has_perm(&shp->shm_perm, perms);
5075 return err;
5076}
5077
5078static int selinux_shm_shmat(struct shmid_kernel *shp,
5079 char __user *shmaddr, int shmflg)
5080{
5081 u32 perms;
5082
5083 if (shmflg & SHM_RDONLY)
5084 perms = SHM__READ;
5085 else
5086 perms = SHM__READ | SHM__WRITE;
5087
5088 return ipc_has_perm(&shp->shm_perm, perms);
5089}
5090
5091/* Semaphore security operations */
5092static int selinux_sem_alloc_security(struct sem_array *sma)
5093{
5094 struct ipc_security_struct *isec;
5095 struct common_audit_data ad;
5096 u32 sid = current_sid();
5097 int rc;
5098
5099 rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
5100 if (rc)
5101 return rc;
5102
5103 isec = sma->sem_perm.security;
5104
5105 ad.type = LSM_AUDIT_DATA_IPC;
5106 ad.u.ipc_id = sma->sem_perm.key;
5107
5108 rc = avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5109 SEM__CREATE, &ad);
5110 if (rc) {
5111 ipc_free_security(&sma->sem_perm);
5112 return rc;
5113 }
5114 return 0;
5115}
5116
5117static void selinux_sem_free_security(struct sem_array *sma)
5118{
5119 ipc_free_security(&sma->sem_perm);
5120}
5121
5122static int selinux_sem_associate(struct sem_array *sma, int semflg)
5123{
5124 struct ipc_security_struct *isec;
5125 struct common_audit_data ad;
5126 u32 sid = current_sid();
5127
5128 isec = sma->sem_perm.security;
5129
5130 ad.type = LSM_AUDIT_DATA_IPC;
5131 ad.u.ipc_id = sma->sem_perm.key;
5132
5133 return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5134 SEM__ASSOCIATE, &ad);
5135}
5136
5137/* Note, at this point, sma is locked down */
5138static int selinux_sem_semctl(struct sem_array *sma, int cmd)
5139{
5140 int err;
5141 u32 perms;
5142
5143 switch (cmd) {
5144 case IPC_INFO:
5145 case SEM_INFO:
5146 /* No specific object, just general system-wide information. */
5147 return task_has_system(current, SYSTEM__IPC_INFO);
5148 case GETPID:
5149 case GETNCNT:
5150 case GETZCNT:
5151 perms = SEM__GETATTR;
5152 break;
5153 case GETVAL:
5154 case GETALL:
5155 perms = SEM__READ;
5156 break;
5157 case SETVAL:
5158 case SETALL:
5159 perms = SEM__WRITE;
5160 break;
5161 case IPC_RMID:
5162 perms = SEM__DESTROY;
5163 break;
5164 case IPC_SET:
5165 perms = SEM__SETATTR;
5166 break;
5167 case IPC_STAT:
5168 case SEM_STAT:
5169 perms = SEM__GETATTR | SEM__ASSOCIATE;
5170 break;
5171 default:
5172 return 0;
5173 }
5174
5175 err = ipc_has_perm(&sma->sem_perm, perms);
5176 return err;
5177}
5178
5179static int selinux_sem_semop(struct sem_array *sma,
5180 struct sembuf *sops, unsigned nsops, int alter)
5181{
5182 u32 perms;
5183
5184 if (alter)
5185 perms = SEM__READ | SEM__WRITE;
5186 else
5187 perms = SEM__READ;
5188
5189 return ipc_has_perm(&sma->sem_perm, perms);
5190}
5191
5192static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
5193{
5194 u32 av = 0;
5195
5196 av = 0;
5197 if (flag & S_IRUGO)
5198 av |= IPC__UNIX_READ;
5199 if (flag & S_IWUGO)
5200 av |= IPC__UNIX_WRITE;
5201
5202 if (av == 0)
5203 return 0;
5204
5205 return ipc_has_perm(ipcp, av);
5206}
5207
5208static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
5209{
5210 struct ipc_security_struct *isec = ipcp->security;
5211 *secid = isec->sid;
5212}
5213
5214static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
5215{
5216 if (inode)
5217 inode_doinit_with_dentry(inode, dentry);
5218}
5219
5220static int selinux_getprocattr(struct task_struct *p,
5221 char *name, char **value)
5222{
5223 const struct task_security_struct *__tsec;
5224 u32 sid;
5225 int error;
5226 unsigned len;
5227
5228 if (current != p) {
5229 error = current_has_perm(p, PROCESS__GETATTR);
5230 if (error)
5231 return error;
5232 }
5233
5234 rcu_read_lock();
5235 __tsec = __task_cred(p)->security;
5236
5237 if (!strcmp(name, "current"))
5238 sid = __tsec->sid;
5239 else if (!strcmp(name, "prev"))
5240 sid = __tsec->osid;
5241 else if (!strcmp(name, "exec"))
5242 sid = __tsec->exec_sid;
5243 else if (!strcmp(name, "fscreate"))
5244 sid = __tsec->create_sid;
5245 else if (!strcmp(name, "keycreate"))
5246 sid = __tsec->keycreate_sid;
5247 else if (!strcmp(name, "sockcreate"))
5248 sid = __tsec->sockcreate_sid;
5249 else
5250 goto invalid;
5251 rcu_read_unlock();
5252
5253 if (!sid)
5254 return 0;
5255
5256 error = security_sid_to_context(sid, value, &len);
5257 if (error)
5258 return error;
5259 return len;
5260
5261invalid:
5262 rcu_read_unlock();
5263 return -EINVAL;
5264}
5265
5266static int selinux_setprocattr(struct task_struct *p,
5267 char *name, void *value, size_t size)
5268{
5269 struct task_security_struct *tsec;
5270 struct task_struct *tracer;
5271 struct cred *new;
5272 u32 sid = 0, ptsid;
5273 int error;
5274 char *str = value;
5275
5276 if (current != p) {
5277 /* SELinux only allows a process to change its own
5278 security attributes. */
5279 return -EACCES;
5280 }
5281
5282 /*
5283 * Basic control over ability to set these attributes at all.
5284 * current == p, but we'll pass them separately in case the
5285 * above restriction is ever removed.
5286 */
5287 if (!strcmp(name, "exec"))
5288 error = current_has_perm(p, PROCESS__SETEXEC);
5289 else if (!strcmp(name, "fscreate"))
5290 error = current_has_perm(p, PROCESS__SETFSCREATE);
5291 else if (!strcmp(name, "keycreate"))
5292 error = current_has_perm(p, PROCESS__SETKEYCREATE);
5293 else if (!strcmp(name, "sockcreate"))
5294 error = current_has_perm(p, PROCESS__SETSOCKCREATE);
5295 else if (!strcmp(name, "current"))
5296 error = current_has_perm(p, PROCESS__SETCURRENT);
5297 else
5298 error = -EINVAL;
5299 if (error)
5300 return error;
5301
5302 /* Obtain a SID for the context, if one was specified. */
5303 if (size && str[1] && str[1] != '\n') {
5304 if (str[size-1] == '\n') {
5305 str[size-1] = 0;
5306 size--;
5307 }
5308 error = security_context_to_sid(value, size, &sid);
5309 if (error == -EINVAL && !strcmp(name, "fscreate")) {
5310 if (!capable(CAP_MAC_ADMIN)) {
5311 struct audit_buffer *ab;
5312 size_t audit_size;
5313
5314 /* We strip a nul only if it is at the end, otherwise the
5315 * context contains a nul and we should audit that */
5316 if (str[size - 1] == '\0')
5317 audit_size = size - 1;
5318 else
5319 audit_size = size;
5320 ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
5321 audit_log_format(ab, "op=fscreate invalid_context=");
5322 audit_log_n_untrustedstring(ab, value, audit_size);
5323 audit_log_end(ab);
5324
5325 return error;
5326 }
5327 error = security_context_to_sid_force(value, size,
5328 &sid);
5329 }
5330 if (error)
5331 return error;
5332 }
5333
5334 new = prepare_creds();
5335 if (!new)
5336 return -ENOMEM;
5337
5338 /* Permission checking based on the specified context is
5339 performed during the actual operation (execve,
5340 open/mkdir/...), when we know the full context of the
5341 operation. See selinux_bprm_set_creds for the execve
5342 checks and may_create for the file creation checks. The
5343 operation will then fail if the context is not permitted. */
5344 tsec = new->security;
5345 if (!strcmp(name, "exec")) {
5346 tsec->exec_sid = sid;
5347 } else if (!strcmp(name, "fscreate")) {
5348 tsec->create_sid = sid;
5349 } else if (!strcmp(name, "keycreate")) {
5350 error = may_create_key(sid, p);
5351 if (error)
5352 goto abort_change;
5353 tsec->keycreate_sid = sid;
5354 } else if (!strcmp(name, "sockcreate")) {
5355 tsec->sockcreate_sid = sid;
5356 } else if (!strcmp(name, "current")) {
5357 error = -EINVAL;
5358 if (sid == 0)
5359 goto abort_change;
5360
5361 /* Only allow single threaded processes to change context */
5362 error = -EPERM;
5363 if (!current_is_single_threaded()) {
5364 error = security_bounded_transition(tsec->sid, sid);
5365 if (error)
5366 goto abort_change;
5367 }
5368
5369 /* Check permissions for the transition. */
5370 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
5371 PROCESS__DYNTRANSITION, NULL);
5372 if (error)
5373 goto abort_change;
5374
5375 /* Check for ptracing, and update the task SID if ok.
5376 Otherwise, leave SID unchanged and fail. */
5377 ptsid = 0;
5378 task_lock(p);
5379 tracer = ptrace_parent(p);
5380 if (tracer)
5381 ptsid = task_sid(tracer);
5382 task_unlock(p);
5383
5384 if (tracer) {
5385 error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
5386 PROCESS__PTRACE, NULL);
5387 if (error)
5388 goto abort_change;
5389 }
5390
5391 tsec->sid = sid;
5392 } else {
5393 error = -EINVAL;
5394 goto abort_change;
5395 }
5396
5397 commit_creds(new);
5398 return size;
5399
5400abort_change:
5401 abort_creds(new);
5402 return error;
5403}
5404
5405static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
5406{
5407 return security_sid_to_context(secid, secdata, seclen);
5408}
5409
5410static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
5411{
5412 return security_context_to_sid(secdata, seclen, secid);
5413}
5414
5415static void selinux_release_secctx(char *secdata, u32 seclen)
5416{
5417 kfree(secdata);
5418}
5419
5420/*
5421 * called with inode->i_mutex locked
5422 */
5423static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
5424{
5425 return selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, ctx, ctxlen, 0);
5426}
5427
5428/*
5429 * called with inode->i_mutex locked
5430 */
5431static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
5432{
5433 return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0);
5434}
5435
5436static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
5437{
5438 int len = 0;
5439 len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX,
5440 ctx, true);
5441 if (len < 0)
5442 return len;
5443 *ctxlen = len;
5444 return 0;
5445}
5446#ifdef CONFIG_KEYS
5447
5448static int selinux_key_alloc(struct key *k, const struct cred *cred,
5449 unsigned long flags)
5450{
5451 const struct task_security_struct *tsec;
5452 struct key_security_struct *ksec;
5453
5454 ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
5455 if (!ksec)
5456 return -ENOMEM;
5457
5458 tsec = cred->security;
5459 if (tsec->keycreate_sid)
5460 ksec->sid = tsec->keycreate_sid;
5461 else
5462 ksec->sid = tsec->sid;
5463
5464 k->security = ksec;
5465 return 0;
5466}
5467
5468static void selinux_key_free(struct key *k)
5469{
5470 struct key_security_struct *ksec = k->security;
5471
5472 k->security = NULL;
5473 kfree(ksec);
5474}
5475
5476static int selinux_key_permission(key_ref_t key_ref,
5477 const struct cred *cred,
5478 key_perm_t perm)
5479{
5480 struct key *key;
5481 struct key_security_struct *ksec;
5482 u32 sid;
5483
5484 /* if no specific permissions are requested, we skip the
5485 permission check. No serious, additional covert channels
5486 appear to be created. */
5487 if (perm == 0)
5488 return 0;
5489
5490 sid = cred_sid(cred);
5491
5492 key = key_ref_to_ptr(key_ref);
5493 ksec = key->security;
5494
5495 return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL);
5496}
5497
5498static int selinux_key_getsecurity(struct key *key, char **_buffer)
5499{
5500 struct key_security_struct *ksec = key->security;
5501 char *context = NULL;
5502 unsigned len;
5503 int rc;
5504
5505 rc = security_sid_to_context(ksec->sid, &context, &len);
5506 if (!rc)
5507 rc = len;
5508 *_buffer = context;
5509 return rc;
5510}
5511
5512#endif
5513
5514static struct security_operations selinux_ops = {
5515 .name = "selinux",
5516
5517 .ptrace_access_check = selinux_ptrace_access_check,
5518 .ptrace_traceme = selinux_ptrace_traceme,
5519 .capget = selinux_capget,
5520 .capset = selinux_capset,
5521 .capable = selinux_capable,
5522 .quotactl = selinux_quotactl,
5523 .quota_on = selinux_quota_on,
5524 .syslog = selinux_syslog,
5525 .vm_enough_memory = selinux_vm_enough_memory,
5526
5527 .netlink_send = selinux_netlink_send,
5528
5529 .bprm_set_creds = selinux_bprm_set_creds,
5530 .bprm_committing_creds = selinux_bprm_committing_creds,
5531 .bprm_committed_creds = selinux_bprm_committed_creds,
5532 .bprm_secureexec = selinux_bprm_secureexec,
5533
5534 .sb_alloc_security = selinux_sb_alloc_security,
5535 .sb_free_security = selinux_sb_free_security,
5536 .sb_copy_data = selinux_sb_copy_data,
5537 .sb_remount = selinux_sb_remount,
5538 .sb_kern_mount = selinux_sb_kern_mount,
5539 .sb_show_options = selinux_sb_show_options,
5540 .sb_statfs = selinux_sb_statfs,
5541 .sb_mount = selinux_mount,
5542 .sb_umount = selinux_umount,
5543 .sb_set_mnt_opts = selinux_set_mnt_opts,
5544 .sb_clone_mnt_opts = selinux_sb_clone_mnt_opts,
5545 .sb_parse_opts_str = selinux_parse_opts_str,
5546
5547
5548 .inode_alloc_security = selinux_inode_alloc_security,
5549 .inode_free_security = selinux_inode_free_security,
5550 .inode_init_security = selinux_inode_init_security,
5551 .inode_create = selinux_inode_create,
5552 .inode_link = selinux_inode_link,
5553 .inode_unlink = selinux_inode_unlink,
5554 .inode_symlink = selinux_inode_symlink,
5555 .inode_mkdir = selinux_inode_mkdir,
5556 .inode_rmdir = selinux_inode_rmdir,
5557 .inode_mknod = selinux_inode_mknod,
5558 .inode_rename = selinux_inode_rename,
5559 .inode_readlink = selinux_inode_readlink,
5560 .inode_follow_link = selinux_inode_follow_link,
5561 .inode_permission = selinux_inode_permission,
5562 .inode_setattr = selinux_inode_setattr,
5563 .inode_getattr = selinux_inode_getattr,
5564 .inode_setxattr = selinux_inode_setxattr,
5565 .inode_post_setxattr = selinux_inode_post_setxattr,
5566 .inode_getxattr = selinux_inode_getxattr,
5567 .inode_listxattr = selinux_inode_listxattr,
5568 .inode_removexattr = selinux_inode_removexattr,
5569 .inode_getsecurity = selinux_inode_getsecurity,
5570 .inode_setsecurity = selinux_inode_setsecurity,
5571 .inode_listsecurity = selinux_inode_listsecurity,
5572 .inode_getsecid = selinux_inode_getsecid,
5573
5574 .file_permission = selinux_file_permission,
5575 .file_alloc_security = selinux_file_alloc_security,
5576 .file_free_security = selinux_file_free_security,
5577 .file_ioctl = selinux_file_ioctl,
5578 .mmap_file = selinux_mmap_file,
5579 .mmap_addr = selinux_mmap_addr,
5580 .file_mprotect = selinux_file_mprotect,
5581 .file_lock = selinux_file_lock,
5582 .file_fcntl = selinux_file_fcntl,
5583 .file_set_fowner = selinux_file_set_fowner,
5584 .file_send_sigiotask = selinux_file_send_sigiotask,
5585 .file_receive = selinux_file_receive,
5586
5587 .file_open = selinux_file_open,
5588
5589 .task_create = selinux_task_create,
5590 .cred_alloc_blank = selinux_cred_alloc_blank,
5591 .cred_free = selinux_cred_free,
5592 .cred_prepare = selinux_cred_prepare,
5593 .cred_transfer = selinux_cred_transfer,
5594 .kernel_act_as = selinux_kernel_act_as,
5595 .kernel_create_files_as = selinux_kernel_create_files_as,
5596 .kernel_module_request = selinux_kernel_module_request,
5597 .task_setpgid = selinux_task_setpgid,
5598 .task_getpgid = selinux_task_getpgid,
5599 .task_getsid = selinux_task_getsid,
5600 .task_getsecid = selinux_task_getsecid,
5601 .task_setnice = selinux_task_setnice,
5602 .task_setioprio = selinux_task_setioprio,
5603 .task_getioprio = selinux_task_getioprio,
5604 .task_setrlimit = selinux_task_setrlimit,
5605 .task_setscheduler = selinux_task_setscheduler,
5606 .task_getscheduler = selinux_task_getscheduler,
5607 .task_movememory = selinux_task_movememory,
5608 .task_kill = selinux_task_kill,
5609 .task_wait = selinux_task_wait,
5610 .task_to_inode = selinux_task_to_inode,
5611
5612 .ipc_permission = selinux_ipc_permission,
5613 .ipc_getsecid = selinux_ipc_getsecid,
5614
5615 .msg_msg_alloc_security = selinux_msg_msg_alloc_security,
5616 .msg_msg_free_security = selinux_msg_msg_free_security,
5617
5618 .msg_queue_alloc_security = selinux_msg_queue_alloc_security,
5619 .msg_queue_free_security = selinux_msg_queue_free_security,
5620 .msg_queue_associate = selinux_msg_queue_associate,
5621 .msg_queue_msgctl = selinux_msg_queue_msgctl,
5622 .msg_queue_msgsnd = selinux_msg_queue_msgsnd,
5623 .msg_queue_msgrcv = selinux_msg_queue_msgrcv,
5624
5625 .shm_alloc_security = selinux_shm_alloc_security,
5626 .shm_free_security = selinux_shm_free_security,
5627 .shm_associate = selinux_shm_associate,
5628 .shm_shmctl = selinux_shm_shmctl,
5629 .shm_shmat = selinux_shm_shmat,
5630
5631 .sem_alloc_security = selinux_sem_alloc_security,
5632 .sem_free_security = selinux_sem_free_security,
5633 .sem_associate = selinux_sem_associate,
5634 .sem_semctl = selinux_sem_semctl,
5635 .sem_semop = selinux_sem_semop,
5636
5637 .d_instantiate = selinux_d_instantiate,
5638
5639 .getprocattr = selinux_getprocattr,
5640 .setprocattr = selinux_setprocattr,
5641
5642 .secid_to_secctx = selinux_secid_to_secctx,
5643 .secctx_to_secid = selinux_secctx_to_secid,
5644 .release_secctx = selinux_release_secctx,
5645 .inode_notifysecctx = selinux_inode_notifysecctx,
5646 .inode_setsecctx = selinux_inode_setsecctx,
5647 .inode_getsecctx = selinux_inode_getsecctx,
5648
5649 .unix_stream_connect = selinux_socket_unix_stream_connect,
5650 .unix_may_send = selinux_socket_unix_may_send,
5651
5652 .socket_create = selinux_socket_create,
5653 .socket_post_create = selinux_socket_post_create,
5654 .socket_bind = selinux_socket_bind,
5655 .socket_connect = selinux_socket_connect,
5656 .socket_listen = selinux_socket_listen,
5657 .socket_accept = selinux_socket_accept,
5658 .socket_sendmsg = selinux_socket_sendmsg,
5659 .socket_recvmsg = selinux_socket_recvmsg,
5660 .socket_getsockname = selinux_socket_getsockname,
5661 .socket_getpeername = selinux_socket_getpeername,
5662 .socket_getsockopt = selinux_socket_getsockopt,
5663 .socket_setsockopt = selinux_socket_setsockopt,
5664 .socket_shutdown = selinux_socket_shutdown,
5665 .socket_sock_rcv_skb = selinux_socket_sock_rcv_skb,
5666 .socket_getpeersec_stream = selinux_socket_getpeersec_stream,
5667 .socket_getpeersec_dgram = selinux_socket_getpeersec_dgram,
5668 .sk_alloc_security = selinux_sk_alloc_security,
5669 .sk_free_security = selinux_sk_free_security,
5670 .sk_clone_security = selinux_sk_clone_security,
5671 .sk_getsecid = selinux_sk_getsecid,
5672 .sock_graft = selinux_sock_graft,
5673 .inet_conn_request = selinux_inet_conn_request,
5674 .inet_csk_clone = selinux_inet_csk_clone,
5675 .inet_conn_established = selinux_inet_conn_established,
5676 .secmark_relabel_packet = selinux_secmark_relabel_packet,
5677 .secmark_refcount_inc = selinux_secmark_refcount_inc,
5678 .secmark_refcount_dec = selinux_secmark_refcount_dec,
5679 .req_classify_flow = selinux_req_classify_flow,
5680 .tun_dev_create = selinux_tun_dev_create,
5681 .tun_dev_post_create = selinux_tun_dev_post_create,
5682 .tun_dev_attach = selinux_tun_dev_attach,
5683
5684#ifdef CONFIG_SECURITY_NETWORK_XFRM
5685 .xfrm_policy_alloc_security = selinux_xfrm_policy_alloc,
5686 .xfrm_policy_clone_security = selinux_xfrm_policy_clone,
5687 .xfrm_policy_free_security = selinux_xfrm_policy_free,
5688 .xfrm_policy_delete_security = selinux_xfrm_policy_delete,
5689 .xfrm_state_alloc_security = selinux_xfrm_state_alloc,
5690 .xfrm_state_free_security = selinux_xfrm_state_free,
5691 .xfrm_state_delete_security = selinux_xfrm_state_delete,
5692 .xfrm_policy_lookup = selinux_xfrm_policy_lookup,
5693 .xfrm_state_pol_flow_match = selinux_xfrm_state_pol_flow_match,
5694 .xfrm_decode_session = selinux_xfrm_decode_session,
5695#endif
5696
5697#ifdef CONFIG_KEYS
5698 .key_alloc = selinux_key_alloc,
5699 .key_free = selinux_key_free,
5700 .key_permission = selinux_key_permission,
5701 .key_getsecurity = selinux_key_getsecurity,
5702#endif
5703
5704#ifdef CONFIG_AUDIT
5705 .audit_rule_init = selinux_audit_rule_init,
5706 .audit_rule_known = selinux_audit_rule_known,
5707 .audit_rule_match = selinux_audit_rule_match,
5708 .audit_rule_free = selinux_audit_rule_free,
5709#endif
5710};
5711
5712static __init int selinux_init(void)
5713{
5714 if (!security_module_enable(&selinux_ops)) {
5715 selinux_enabled = 0;
5716 return 0;
5717 }
5718
5719 if (!selinux_enabled) {
5720 printk(KERN_INFO "SELinux: Disabled at boot.\n");
5721 return 0;
5722 }
5723
5724 printk(KERN_INFO "SELinux: Initializing.\n");
5725
5726 /* Set the security state for the initial task. */
5727 cred_init_security();
5728
5729 default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
5730
5731 sel_inode_cache = kmem_cache_create("selinux_inode_security",
5732 sizeof(struct inode_security_struct),
5733 0, SLAB_PANIC, NULL);
5734 avc_init();
5735
5736 if (register_security(&selinux_ops))
5737 panic("SELinux: Unable to register with kernel.\n");
5738
5739 if (selinux_enforcing)
5740 printk(KERN_DEBUG "SELinux: Starting in enforcing mode\n");
5741 else
5742 printk(KERN_DEBUG "SELinux: Starting in permissive mode\n");
5743
5744 return 0;
5745}
5746
5747static void delayed_superblock_init(struct super_block *sb, void *unused)
5748{
5749 superblock_doinit(sb, NULL);
5750}
5751
5752void selinux_complete_init(void)
5753{
5754 printk(KERN_DEBUG "SELinux: Completing initialization.\n");
5755
5756 /* Set up any superblocks initialized prior to the policy load. */
5757 printk(KERN_DEBUG "SELinux: Setting up existing superblocks.\n");
5758 iterate_supers(delayed_superblock_init, NULL);
5759}
5760
5761/* SELinux requires early initialization in order to label
5762 all processes and objects when they are created. */
5763security_initcall(selinux_init);
5764
5765#if defined(CONFIG_NETFILTER)
5766
5767static struct nf_hook_ops selinux_ipv4_ops[] = {
5768 {
5769 .hook = selinux_ipv4_postroute,
5770 .owner = THIS_MODULE,
5771 .pf = PF_INET,
5772 .hooknum = NF_INET_POST_ROUTING,
5773 .priority = NF_IP_PRI_SELINUX_LAST,
5774 },
5775 {
5776 .hook = selinux_ipv4_forward,
5777 .owner = THIS_MODULE,
5778 .pf = PF_INET,
5779 .hooknum = NF_INET_FORWARD,
5780 .priority = NF_IP_PRI_SELINUX_FIRST,
5781 },
5782 {
5783 .hook = selinux_ipv4_output,
5784 .owner = THIS_MODULE,
5785 .pf = PF_INET,
5786 .hooknum = NF_INET_LOCAL_OUT,
5787 .priority = NF_IP_PRI_SELINUX_FIRST,
5788 }
5789};
5790
5791#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5792
5793static struct nf_hook_ops selinux_ipv6_ops[] = {
5794 {
5795 .hook = selinux_ipv6_postroute,
5796 .owner = THIS_MODULE,
5797 .pf = PF_INET6,
5798 .hooknum = NF_INET_POST_ROUTING,
5799 .priority = NF_IP6_PRI_SELINUX_LAST,
5800 },
5801 {
5802 .hook = selinux_ipv6_forward,
5803 .owner = THIS_MODULE,
5804 .pf = PF_INET6,
5805 .hooknum = NF_INET_FORWARD,
5806 .priority = NF_IP6_PRI_SELINUX_FIRST,
5807 }
5808};
5809
5810#endif /* IPV6 */
5811
5812static int __init selinux_nf_ip_init(void)
5813{
5814 int err = 0;
5815
5816 if (!selinux_enabled)
5817 goto out;
5818
5819 printk(KERN_DEBUG "SELinux: Registering netfilter hooks\n");
5820
5821 err = nf_register_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5822 if (err)
5823 panic("SELinux: nf_register_hooks for IPv4: error %d\n", err);
5824
5825#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5826 err = nf_register_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5827 if (err)
5828 panic("SELinux: nf_register_hooks for IPv6: error %d\n", err);
5829#endif /* IPV6 */
5830
5831out:
5832 return err;
5833}
5834
5835__initcall(selinux_nf_ip_init);
5836
5837#ifdef CONFIG_SECURITY_SELINUX_DISABLE
5838static void selinux_nf_ip_exit(void)
5839{
5840 printk(KERN_DEBUG "SELinux: Unregistering netfilter hooks\n");
5841
5842 nf_unregister_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5843#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5844 nf_unregister_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5845#endif /* IPV6 */
5846}
5847#endif
5848
5849#else /* CONFIG_NETFILTER */
5850
5851#ifdef CONFIG_SECURITY_SELINUX_DISABLE
5852#define selinux_nf_ip_exit()
5853#endif
5854
5855#endif /* CONFIG_NETFILTER */
5856
5857#ifdef CONFIG_SECURITY_SELINUX_DISABLE
5858static int selinux_disabled;
5859
5860int selinux_disable(void)
5861{
5862 if (ss_initialized) {
5863 /* Not permitted after initial policy load. */
5864 return -EINVAL;
5865 }
5866
5867 if (selinux_disabled) {
5868 /* Only do this once. */
5869 return -EINVAL;
5870 }
5871
5872 printk(KERN_INFO "SELinux: Disabled at runtime.\n");
5873
5874 selinux_disabled = 1;
5875 selinux_enabled = 0;
5876
5877 reset_security_ops();
5878
5879 /* Try to destroy the avc node cache */
5880 avc_disable();
5881
5882 /* Unregister netfilter hooks. */
5883 selinux_nf_ip_exit();
5884
5885 /* Unregister selinuxfs. */
5886 exit_sel_fs();
5887
5888 return 0;
5889}
5890#endif
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * NSA Security-Enhanced Linux (SELinux) security module
4 *
5 * This file contains the SELinux hook function implementations.
6 *
7 * Authors: Stephen Smalley, <sds@tycho.nsa.gov>
8 * Chris Vance, <cvance@nai.com>
9 * Wayne Salamon, <wsalamon@nai.com>
10 * James Morris <jmorris@redhat.com>
11 *
12 * Copyright (C) 2001,2002 Networks Associates Technology, Inc.
13 * Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
14 * Eric Paris <eparis@redhat.com>
15 * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
16 * <dgoeddel@trustedcs.com>
17 * Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
18 * Paul Moore <paul@paul-moore.com>
19 * Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
20 * Yuichi Nakamura <ynakam@hitachisoft.jp>
21 * Copyright (C) 2016 Mellanox Technologies
22 */
23
24#include <linux/init.h>
25#include <linux/kd.h>
26#include <linux/kernel.h>
27#include <linux/kernel_read_file.h>
28#include <linux/errno.h>
29#include <linux/sched/signal.h>
30#include <linux/sched/task.h>
31#include <linux/lsm_hooks.h>
32#include <linux/xattr.h>
33#include <linux/capability.h>
34#include <linux/unistd.h>
35#include <linux/mm.h>
36#include <linux/mman.h>
37#include <linux/slab.h>
38#include <linux/pagemap.h>
39#include <linux/proc_fs.h>
40#include <linux/swap.h>
41#include <linux/spinlock.h>
42#include <linux/syscalls.h>
43#include <linux/dcache.h>
44#include <linux/file.h>
45#include <linux/fdtable.h>
46#include <linux/namei.h>
47#include <linux/mount.h>
48#include <linux/fs_context.h>
49#include <linux/fs_parser.h>
50#include <linux/netfilter_ipv4.h>
51#include <linux/netfilter_ipv6.h>
52#include <linux/tty.h>
53#include <net/icmp.h>
54#include <net/ip.h> /* for local_port_range[] */
55#include <net/tcp.h> /* struct or_callable used in sock_rcv_skb */
56#include <net/inet_connection_sock.h>
57#include <net/net_namespace.h>
58#include <net/netlabel.h>
59#include <linux/uaccess.h>
60#include <asm/ioctls.h>
61#include <linux/atomic.h>
62#include <linux/bitops.h>
63#include <linux/interrupt.h>
64#include <linux/netdevice.h> /* for network interface checks */
65#include <net/netlink.h>
66#include <linux/tcp.h>
67#include <linux/udp.h>
68#include <linux/dccp.h>
69#include <linux/sctp.h>
70#include <net/sctp/structs.h>
71#include <linux/quota.h>
72#include <linux/un.h> /* for Unix socket types */
73#include <net/af_unix.h> /* for Unix socket types */
74#include <linux/parser.h>
75#include <linux/nfs_mount.h>
76#include <net/ipv6.h>
77#include <linux/hugetlb.h>
78#include <linux/personality.h>
79#include <linux/audit.h>
80#include <linux/string.h>
81#include <linux/mutex.h>
82#include <linux/posix-timers.h>
83#include <linux/syslog.h>
84#include <linux/user_namespace.h>
85#include <linux/export.h>
86#include <linux/msg.h>
87#include <linux/shm.h>
88#include <linux/bpf.h>
89#include <linux/kernfs.h>
90#include <linux/stringhash.h> /* for hashlen_string() */
91#include <uapi/linux/mount.h>
92#include <linux/fsnotify.h>
93#include <linux/fanotify.h>
94#include <linux/io_uring.h>
95
96#include "avc.h"
97#include "objsec.h"
98#include "netif.h"
99#include "netnode.h"
100#include "netport.h"
101#include "ibpkey.h"
102#include "xfrm.h"
103#include "netlabel.h"
104#include "audit.h"
105#include "avc_ss.h"
106
107struct selinux_state selinux_state;
108
109/* SECMARK reference count */
110static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
111
112#ifdef CONFIG_SECURITY_SELINUX_DEVELOP
113static int selinux_enforcing_boot __initdata;
114
115static int __init enforcing_setup(char *str)
116{
117 unsigned long enforcing;
118 if (!kstrtoul(str, 0, &enforcing))
119 selinux_enforcing_boot = enforcing ? 1 : 0;
120 return 1;
121}
122__setup("enforcing=", enforcing_setup);
123#else
124#define selinux_enforcing_boot 1
125#endif
126
127int selinux_enabled_boot __initdata = 1;
128#ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
129static int __init selinux_enabled_setup(char *str)
130{
131 unsigned long enabled;
132 if (!kstrtoul(str, 0, &enabled))
133 selinux_enabled_boot = enabled ? 1 : 0;
134 return 1;
135}
136__setup("selinux=", selinux_enabled_setup);
137#endif
138
139static unsigned int selinux_checkreqprot_boot =
140 CONFIG_SECURITY_SELINUX_CHECKREQPROT_VALUE;
141
142static int __init checkreqprot_setup(char *str)
143{
144 unsigned long checkreqprot;
145
146 if (!kstrtoul(str, 0, &checkreqprot)) {
147 selinux_checkreqprot_boot = checkreqprot ? 1 : 0;
148 if (checkreqprot)
149 pr_err("SELinux: checkreqprot set to 1 via kernel parameter. This is deprecated and will be rejected in a future kernel release.\n");
150 }
151 return 1;
152}
153__setup("checkreqprot=", checkreqprot_setup);
154
155/**
156 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
157 *
158 * Description:
159 * This function checks the SECMARK reference counter to see if any SECMARK
160 * targets are currently configured, if the reference counter is greater than
161 * zero SECMARK is considered to be enabled. Returns true (1) if SECMARK is
162 * enabled, false (0) if SECMARK is disabled. If the always_check_network
163 * policy capability is enabled, SECMARK is always considered enabled.
164 *
165 */
166static int selinux_secmark_enabled(void)
167{
168 return (selinux_policycap_alwaysnetwork() ||
169 atomic_read(&selinux_secmark_refcount));
170}
171
172/**
173 * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled
174 *
175 * Description:
176 * This function checks if NetLabel or labeled IPSEC is enabled. Returns true
177 * (1) if any are enabled or false (0) if neither are enabled. If the
178 * always_check_network policy capability is enabled, peer labeling
179 * is always considered enabled.
180 *
181 */
182static int selinux_peerlbl_enabled(void)
183{
184 return (selinux_policycap_alwaysnetwork() ||
185 netlbl_enabled() || selinux_xfrm_enabled());
186}
187
188static int selinux_netcache_avc_callback(u32 event)
189{
190 if (event == AVC_CALLBACK_RESET) {
191 sel_netif_flush();
192 sel_netnode_flush();
193 sel_netport_flush();
194 synchronize_net();
195 }
196 return 0;
197}
198
199static int selinux_lsm_notifier_avc_callback(u32 event)
200{
201 if (event == AVC_CALLBACK_RESET) {
202 sel_ib_pkey_flush();
203 call_blocking_lsm_notifier(LSM_POLICY_CHANGE, NULL);
204 }
205
206 return 0;
207}
208
209/*
210 * initialise the security for the init task
211 */
212static void cred_init_security(void)
213{
214 struct task_security_struct *tsec;
215
216 tsec = selinux_cred(unrcu_pointer(current->real_cred));
217 tsec->osid = tsec->sid = SECINITSID_KERNEL;
218}
219
220/*
221 * get the security ID of a set of credentials
222 */
223static inline u32 cred_sid(const struct cred *cred)
224{
225 const struct task_security_struct *tsec;
226
227 tsec = selinux_cred(cred);
228 return tsec->sid;
229}
230
231/*
232 * get the objective security ID of a task
233 */
234static inline u32 task_sid_obj(const struct task_struct *task)
235{
236 u32 sid;
237
238 rcu_read_lock();
239 sid = cred_sid(__task_cred(task));
240 rcu_read_unlock();
241 return sid;
242}
243
244static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
245
246/*
247 * Try reloading inode security labels that have been marked as invalid. The
248 * @may_sleep parameter indicates when sleeping and thus reloading labels is
249 * allowed; when set to false, returns -ECHILD when the label is
250 * invalid. The @dentry parameter should be set to a dentry of the inode.
251 */
252static int __inode_security_revalidate(struct inode *inode,
253 struct dentry *dentry,
254 bool may_sleep)
255{
256 struct inode_security_struct *isec = selinux_inode(inode);
257
258 might_sleep_if(may_sleep);
259
260 if (selinux_initialized(&selinux_state) &&
261 isec->initialized != LABEL_INITIALIZED) {
262 if (!may_sleep)
263 return -ECHILD;
264
265 /*
266 * Try reloading the inode security label. This will fail if
267 * @opt_dentry is NULL and no dentry for this inode can be
268 * found; in that case, continue using the old label.
269 */
270 inode_doinit_with_dentry(inode, dentry);
271 }
272 return 0;
273}
274
275static struct inode_security_struct *inode_security_novalidate(struct inode *inode)
276{
277 return selinux_inode(inode);
278}
279
280static struct inode_security_struct *inode_security_rcu(struct inode *inode, bool rcu)
281{
282 int error;
283
284 error = __inode_security_revalidate(inode, NULL, !rcu);
285 if (error)
286 return ERR_PTR(error);
287 return selinux_inode(inode);
288}
289
290/*
291 * Get the security label of an inode.
292 */
293static struct inode_security_struct *inode_security(struct inode *inode)
294{
295 __inode_security_revalidate(inode, NULL, true);
296 return selinux_inode(inode);
297}
298
299static struct inode_security_struct *backing_inode_security_novalidate(struct dentry *dentry)
300{
301 struct inode *inode = d_backing_inode(dentry);
302
303 return selinux_inode(inode);
304}
305
306/*
307 * Get the security label of a dentry's backing inode.
308 */
309static struct inode_security_struct *backing_inode_security(struct dentry *dentry)
310{
311 struct inode *inode = d_backing_inode(dentry);
312
313 __inode_security_revalidate(inode, dentry, true);
314 return selinux_inode(inode);
315}
316
317static void inode_free_security(struct inode *inode)
318{
319 struct inode_security_struct *isec = selinux_inode(inode);
320 struct superblock_security_struct *sbsec;
321
322 if (!isec)
323 return;
324 sbsec = selinux_superblock(inode->i_sb);
325 /*
326 * As not all inode security structures are in a list, we check for
327 * empty list outside of the lock to make sure that we won't waste
328 * time taking a lock doing nothing.
329 *
330 * The list_del_init() function can be safely called more than once.
331 * It should not be possible for this function to be called with
332 * concurrent list_add(), but for better safety against future changes
333 * in the code, we use list_empty_careful() here.
334 */
335 if (!list_empty_careful(&isec->list)) {
336 spin_lock(&sbsec->isec_lock);
337 list_del_init(&isec->list);
338 spin_unlock(&sbsec->isec_lock);
339 }
340}
341
342struct selinux_mnt_opts {
343 u32 fscontext_sid;
344 u32 context_sid;
345 u32 rootcontext_sid;
346 u32 defcontext_sid;
347};
348
349static void selinux_free_mnt_opts(void *mnt_opts)
350{
351 kfree(mnt_opts);
352}
353
354enum {
355 Opt_error = -1,
356 Opt_context = 0,
357 Opt_defcontext = 1,
358 Opt_fscontext = 2,
359 Opt_rootcontext = 3,
360 Opt_seclabel = 4,
361};
362
363#define A(s, has_arg) {#s, sizeof(#s) - 1, Opt_##s, has_arg}
364static struct {
365 const char *name;
366 int len;
367 int opt;
368 bool has_arg;
369} tokens[] = {
370 A(context, true),
371 A(fscontext, true),
372 A(defcontext, true),
373 A(rootcontext, true),
374 A(seclabel, false),
375};
376#undef A
377
378static int match_opt_prefix(char *s, int l, char **arg)
379{
380 int i;
381
382 for (i = 0; i < ARRAY_SIZE(tokens); i++) {
383 size_t len = tokens[i].len;
384 if (len > l || memcmp(s, tokens[i].name, len))
385 continue;
386 if (tokens[i].has_arg) {
387 if (len == l || s[len] != '=')
388 continue;
389 *arg = s + len + 1;
390 } else if (len != l)
391 continue;
392 return tokens[i].opt;
393 }
394 return Opt_error;
395}
396
397#define SEL_MOUNT_FAIL_MSG "SELinux: duplicate or incompatible mount options\n"
398
399static int may_context_mount_sb_relabel(u32 sid,
400 struct superblock_security_struct *sbsec,
401 const struct cred *cred)
402{
403 const struct task_security_struct *tsec = selinux_cred(cred);
404 int rc;
405
406 rc = avc_has_perm(&selinux_state,
407 tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
408 FILESYSTEM__RELABELFROM, NULL);
409 if (rc)
410 return rc;
411
412 rc = avc_has_perm(&selinux_state,
413 tsec->sid, sid, SECCLASS_FILESYSTEM,
414 FILESYSTEM__RELABELTO, NULL);
415 return rc;
416}
417
418static int may_context_mount_inode_relabel(u32 sid,
419 struct superblock_security_struct *sbsec,
420 const struct cred *cred)
421{
422 const struct task_security_struct *tsec = selinux_cred(cred);
423 int rc;
424 rc = avc_has_perm(&selinux_state,
425 tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
426 FILESYSTEM__RELABELFROM, NULL);
427 if (rc)
428 return rc;
429
430 rc = avc_has_perm(&selinux_state,
431 sid, sbsec->sid, SECCLASS_FILESYSTEM,
432 FILESYSTEM__ASSOCIATE, NULL);
433 return rc;
434}
435
436static int selinux_is_genfs_special_handling(struct super_block *sb)
437{
438 /* Special handling. Genfs but also in-core setxattr handler */
439 return !strcmp(sb->s_type->name, "sysfs") ||
440 !strcmp(sb->s_type->name, "pstore") ||
441 !strcmp(sb->s_type->name, "debugfs") ||
442 !strcmp(sb->s_type->name, "tracefs") ||
443 !strcmp(sb->s_type->name, "rootfs") ||
444 (selinux_policycap_cgroupseclabel() &&
445 (!strcmp(sb->s_type->name, "cgroup") ||
446 !strcmp(sb->s_type->name, "cgroup2")));
447}
448
449static int selinux_is_sblabel_mnt(struct super_block *sb)
450{
451 struct superblock_security_struct *sbsec = selinux_superblock(sb);
452
453 /*
454 * IMPORTANT: Double-check logic in this function when adding a new
455 * SECURITY_FS_USE_* definition!
456 */
457 BUILD_BUG_ON(SECURITY_FS_USE_MAX != 7);
458
459 switch (sbsec->behavior) {
460 case SECURITY_FS_USE_XATTR:
461 case SECURITY_FS_USE_TRANS:
462 case SECURITY_FS_USE_TASK:
463 case SECURITY_FS_USE_NATIVE:
464 return 1;
465
466 case SECURITY_FS_USE_GENFS:
467 return selinux_is_genfs_special_handling(sb);
468
469 /* Never allow relabeling on context mounts */
470 case SECURITY_FS_USE_MNTPOINT:
471 case SECURITY_FS_USE_NONE:
472 default:
473 return 0;
474 }
475}
476
477static int sb_check_xattr_support(struct super_block *sb)
478{
479 struct superblock_security_struct *sbsec = selinux_superblock(sb);
480 struct dentry *root = sb->s_root;
481 struct inode *root_inode = d_backing_inode(root);
482 u32 sid;
483 int rc;
484
485 /*
486 * Make sure that the xattr handler exists and that no
487 * error other than -ENODATA is returned by getxattr on
488 * the root directory. -ENODATA is ok, as this may be
489 * the first boot of the SELinux kernel before we have
490 * assigned xattr values to the filesystem.
491 */
492 if (!(root_inode->i_opflags & IOP_XATTR)) {
493 pr_warn("SELinux: (dev %s, type %s) has no xattr support\n",
494 sb->s_id, sb->s_type->name);
495 goto fallback;
496 }
497
498 rc = __vfs_getxattr(root, root_inode, XATTR_NAME_SELINUX, NULL, 0);
499 if (rc < 0 && rc != -ENODATA) {
500 if (rc == -EOPNOTSUPP) {
501 pr_warn("SELinux: (dev %s, type %s) has no security xattr handler\n",
502 sb->s_id, sb->s_type->name);
503 goto fallback;
504 } else {
505 pr_warn("SELinux: (dev %s, type %s) getxattr errno %d\n",
506 sb->s_id, sb->s_type->name, -rc);
507 return rc;
508 }
509 }
510 return 0;
511
512fallback:
513 /* No xattr support - try to fallback to genfs if possible. */
514 rc = security_genfs_sid(&selinux_state, sb->s_type->name, "/",
515 SECCLASS_DIR, &sid);
516 if (rc)
517 return -EOPNOTSUPP;
518
519 pr_warn("SELinux: (dev %s, type %s) falling back to genfs\n",
520 sb->s_id, sb->s_type->name);
521 sbsec->behavior = SECURITY_FS_USE_GENFS;
522 sbsec->sid = sid;
523 return 0;
524}
525
526static int sb_finish_set_opts(struct super_block *sb)
527{
528 struct superblock_security_struct *sbsec = selinux_superblock(sb);
529 struct dentry *root = sb->s_root;
530 struct inode *root_inode = d_backing_inode(root);
531 int rc = 0;
532
533 if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
534 rc = sb_check_xattr_support(sb);
535 if (rc)
536 return rc;
537 }
538
539 sbsec->flags |= SE_SBINITIALIZED;
540
541 /*
542 * Explicitly set or clear SBLABEL_MNT. It's not sufficient to simply
543 * leave the flag untouched because sb_clone_mnt_opts might be handing
544 * us a superblock that needs the flag to be cleared.
545 */
546 if (selinux_is_sblabel_mnt(sb))
547 sbsec->flags |= SBLABEL_MNT;
548 else
549 sbsec->flags &= ~SBLABEL_MNT;
550
551 /* Initialize the root inode. */
552 rc = inode_doinit_with_dentry(root_inode, root);
553
554 /* Initialize any other inodes associated with the superblock, e.g.
555 inodes created prior to initial policy load or inodes created
556 during get_sb by a pseudo filesystem that directly
557 populates itself. */
558 spin_lock(&sbsec->isec_lock);
559 while (!list_empty(&sbsec->isec_head)) {
560 struct inode_security_struct *isec =
561 list_first_entry(&sbsec->isec_head,
562 struct inode_security_struct, list);
563 struct inode *inode = isec->inode;
564 list_del_init(&isec->list);
565 spin_unlock(&sbsec->isec_lock);
566 inode = igrab(inode);
567 if (inode) {
568 if (!IS_PRIVATE(inode))
569 inode_doinit_with_dentry(inode, NULL);
570 iput(inode);
571 }
572 spin_lock(&sbsec->isec_lock);
573 }
574 spin_unlock(&sbsec->isec_lock);
575 return rc;
576}
577
578static int bad_option(struct superblock_security_struct *sbsec, char flag,
579 u32 old_sid, u32 new_sid)
580{
581 char mnt_flags = sbsec->flags & SE_MNTMASK;
582
583 /* check if the old mount command had the same options */
584 if (sbsec->flags & SE_SBINITIALIZED)
585 if (!(sbsec->flags & flag) ||
586 (old_sid != new_sid))
587 return 1;
588
589 /* check if we were passed the same options twice,
590 * aka someone passed context=a,context=b
591 */
592 if (!(sbsec->flags & SE_SBINITIALIZED))
593 if (mnt_flags & flag)
594 return 1;
595 return 0;
596}
597
598/*
599 * Allow filesystems with binary mount data to explicitly set mount point
600 * labeling information.
601 */
602static int selinux_set_mnt_opts(struct super_block *sb,
603 void *mnt_opts,
604 unsigned long kern_flags,
605 unsigned long *set_kern_flags)
606{
607 const struct cred *cred = current_cred();
608 struct superblock_security_struct *sbsec = selinux_superblock(sb);
609 struct dentry *root = sb->s_root;
610 struct selinux_mnt_opts *opts = mnt_opts;
611 struct inode_security_struct *root_isec;
612 u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
613 u32 defcontext_sid = 0;
614 int rc = 0;
615
616 mutex_lock(&sbsec->lock);
617
618 if (!selinux_initialized(&selinux_state)) {
619 if (!opts) {
620 /* Defer initialization until selinux_complete_init,
621 after the initial policy is loaded and the security
622 server is ready to handle calls. */
623 goto out;
624 }
625 rc = -EINVAL;
626 pr_warn("SELinux: Unable to set superblock options "
627 "before the security server is initialized\n");
628 goto out;
629 }
630 if (kern_flags && !set_kern_flags) {
631 /* Specifying internal flags without providing a place to
632 * place the results is not allowed */
633 rc = -EINVAL;
634 goto out;
635 }
636
637 /*
638 * Binary mount data FS will come through this function twice. Once
639 * from an explicit call and once from the generic calls from the vfs.
640 * Since the generic VFS calls will not contain any security mount data
641 * we need to skip the double mount verification.
642 *
643 * This does open a hole in which we will not notice if the first
644 * mount using this sb set explicit options and a second mount using
645 * this sb does not set any security options. (The first options
646 * will be used for both mounts)
647 */
648 if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
649 && !opts)
650 goto out;
651
652 root_isec = backing_inode_security_novalidate(root);
653
654 /*
655 * parse the mount options, check if they are valid sids.
656 * also check if someone is trying to mount the same sb more
657 * than once with different security options.
658 */
659 if (opts) {
660 if (opts->fscontext_sid) {
661 fscontext_sid = opts->fscontext_sid;
662 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
663 fscontext_sid))
664 goto out_double_mount;
665 sbsec->flags |= FSCONTEXT_MNT;
666 }
667 if (opts->context_sid) {
668 context_sid = opts->context_sid;
669 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
670 context_sid))
671 goto out_double_mount;
672 sbsec->flags |= CONTEXT_MNT;
673 }
674 if (opts->rootcontext_sid) {
675 rootcontext_sid = opts->rootcontext_sid;
676 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
677 rootcontext_sid))
678 goto out_double_mount;
679 sbsec->flags |= ROOTCONTEXT_MNT;
680 }
681 if (opts->defcontext_sid) {
682 defcontext_sid = opts->defcontext_sid;
683 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
684 defcontext_sid))
685 goto out_double_mount;
686 sbsec->flags |= DEFCONTEXT_MNT;
687 }
688 }
689
690 if (sbsec->flags & SE_SBINITIALIZED) {
691 /* previously mounted with options, but not on this attempt? */
692 if ((sbsec->flags & SE_MNTMASK) && !opts)
693 goto out_double_mount;
694 rc = 0;
695 goto out;
696 }
697
698 if (strcmp(sb->s_type->name, "proc") == 0)
699 sbsec->flags |= SE_SBPROC | SE_SBGENFS;
700
701 if (!strcmp(sb->s_type->name, "debugfs") ||
702 !strcmp(sb->s_type->name, "tracefs") ||
703 !strcmp(sb->s_type->name, "binder") ||
704 !strcmp(sb->s_type->name, "bpf") ||
705 !strcmp(sb->s_type->name, "pstore") ||
706 !strcmp(sb->s_type->name, "securityfs"))
707 sbsec->flags |= SE_SBGENFS;
708
709 if (!strcmp(sb->s_type->name, "sysfs") ||
710 !strcmp(sb->s_type->name, "cgroup") ||
711 !strcmp(sb->s_type->name, "cgroup2"))
712 sbsec->flags |= SE_SBGENFS | SE_SBGENFS_XATTR;
713
714 if (!sbsec->behavior) {
715 /*
716 * Determine the labeling behavior to use for this
717 * filesystem type.
718 */
719 rc = security_fs_use(&selinux_state, sb);
720 if (rc) {
721 pr_warn("%s: security_fs_use(%s) returned %d\n",
722 __func__, sb->s_type->name, rc);
723 goto out;
724 }
725 }
726
727 /*
728 * If this is a user namespace mount and the filesystem type is not
729 * explicitly whitelisted, then no contexts are allowed on the command
730 * line and security labels must be ignored.
731 */
732 if (sb->s_user_ns != &init_user_ns &&
733 strcmp(sb->s_type->name, "tmpfs") &&
734 strcmp(sb->s_type->name, "ramfs") &&
735 strcmp(sb->s_type->name, "devpts") &&
736 strcmp(sb->s_type->name, "overlay")) {
737 if (context_sid || fscontext_sid || rootcontext_sid ||
738 defcontext_sid) {
739 rc = -EACCES;
740 goto out;
741 }
742 if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
743 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
744 rc = security_transition_sid(&selinux_state,
745 current_sid(),
746 current_sid(),
747 SECCLASS_FILE, NULL,
748 &sbsec->mntpoint_sid);
749 if (rc)
750 goto out;
751 }
752 goto out_set_opts;
753 }
754
755 /* sets the context of the superblock for the fs being mounted. */
756 if (fscontext_sid) {
757 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
758 if (rc)
759 goto out;
760
761 sbsec->sid = fscontext_sid;
762 }
763
764 /*
765 * Switch to using mount point labeling behavior.
766 * sets the label used on all file below the mountpoint, and will set
767 * the superblock context if not already set.
768 */
769 if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) {
770 sbsec->behavior = SECURITY_FS_USE_NATIVE;
771 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
772 }
773
774 if (context_sid) {
775 if (!fscontext_sid) {
776 rc = may_context_mount_sb_relabel(context_sid, sbsec,
777 cred);
778 if (rc)
779 goto out;
780 sbsec->sid = context_sid;
781 } else {
782 rc = may_context_mount_inode_relabel(context_sid, sbsec,
783 cred);
784 if (rc)
785 goto out;
786 }
787 if (!rootcontext_sid)
788 rootcontext_sid = context_sid;
789
790 sbsec->mntpoint_sid = context_sid;
791 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
792 }
793
794 if (rootcontext_sid) {
795 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
796 cred);
797 if (rc)
798 goto out;
799
800 root_isec->sid = rootcontext_sid;
801 root_isec->initialized = LABEL_INITIALIZED;
802 }
803
804 if (defcontext_sid) {
805 if (sbsec->behavior != SECURITY_FS_USE_XATTR &&
806 sbsec->behavior != SECURITY_FS_USE_NATIVE) {
807 rc = -EINVAL;
808 pr_warn("SELinux: defcontext option is "
809 "invalid for this filesystem type\n");
810 goto out;
811 }
812
813 if (defcontext_sid != sbsec->def_sid) {
814 rc = may_context_mount_inode_relabel(defcontext_sid,
815 sbsec, cred);
816 if (rc)
817 goto out;
818 }
819
820 sbsec->def_sid = defcontext_sid;
821 }
822
823out_set_opts:
824 rc = sb_finish_set_opts(sb);
825out:
826 mutex_unlock(&sbsec->lock);
827 return rc;
828out_double_mount:
829 rc = -EINVAL;
830 pr_warn("SELinux: mount invalid. Same superblock, different "
831 "security settings for (dev %s, type %s)\n", sb->s_id,
832 sb->s_type->name);
833 goto out;
834}
835
836static int selinux_cmp_sb_context(const struct super_block *oldsb,
837 const struct super_block *newsb)
838{
839 struct superblock_security_struct *old = selinux_superblock(oldsb);
840 struct superblock_security_struct *new = selinux_superblock(newsb);
841 char oldflags = old->flags & SE_MNTMASK;
842 char newflags = new->flags & SE_MNTMASK;
843
844 if (oldflags != newflags)
845 goto mismatch;
846 if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid)
847 goto mismatch;
848 if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid)
849 goto mismatch;
850 if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid)
851 goto mismatch;
852 if (oldflags & ROOTCONTEXT_MNT) {
853 struct inode_security_struct *oldroot = backing_inode_security(oldsb->s_root);
854 struct inode_security_struct *newroot = backing_inode_security(newsb->s_root);
855 if (oldroot->sid != newroot->sid)
856 goto mismatch;
857 }
858 return 0;
859mismatch:
860 pr_warn("SELinux: mount invalid. Same superblock, "
861 "different security settings for (dev %s, "
862 "type %s)\n", newsb->s_id, newsb->s_type->name);
863 return -EBUSY;
864}
865
866static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
867 struct super_block *newsb,
868 unsigned long kern_flags,
869 unsigned long *set_kern_flags)
870{
871 int rc = 0;
872 const struct superblock_security_struct *oldsbsec =
873 selinux_superblock(oldsb);
874 struct superblock_security_struct *newsbsec = selinux_superblock(newsb);
875
876 int set_fscontext = (oldsbsec->flags & FSCONTEXT_MNT);
877 int set_context = (oldsbsec->flags & CONTEXT_MNT);
878 int set_rootcontext = (oldsbsec->flags & ROOTCONTEXT_MNT);
879
880 /*
881 * if the parent was able to be mounted it clearly had no special lsm
882 * mount options. thus we can safely deal with this superblock later
883 */
884 if (!selinux_initialized(&selinux_state))
885 return 0;
886
887 /*
888 * Specifying internal flags without providing a place to
889 * place the results is not allowed.
890 */
891 if (kern_flags && !set_kern_flags)
892 return -EINVAL;
893
894 /* how can we clone if the old one wasn't set up?? */
895 BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
896
897 /* if fs is reusing a sb, make sure that the contexts match */
898 if (newsbsec->flags & SE_SBINITIALIZED) {
899 if ((kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context)
900 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
901 return selinux_cmp_sb_context(oldsb, newsb);
902 }
903
904 mutex_lock(&newsbsec->lock);
905
906 newsbsec->flags = oldsbsec->flags;
907
908 newsbsec->sid = oldsbsec->sid;
909 newsbsec->def_sid = oldsbsec->def_sid;
910 newsbsec->behavior = oldsbsec->behavior;
911
912 if (newsbsec->behavior == SECURITY_FS_USE_NATIVE &&
913 !(kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context) {
914 rc = security_fs_use(&selinux_state, newsb);
915 if (rc)
916 goto out;
917 }
918
919 if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !set_context) {
920 newsbsec->behavior = SECURITY_FS_USE_NATIVE;
921 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
922 }
923
924 if (set_context) {
925 u32 sid = oldsbsec->mntpoint_sid;
926
927 if (!set_fscontext)
928 newsbsec->sid = sid;
929 if (!set_rootcontext) {
930 struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
931 newisec->sid = sid;
932 }
933 newsbsec->mntpoint_sid = sid;
934 }
935 if (set_rootcontext) {
936 const struct inode_security_struct *oldisec = backing_inode_security(oldsb->s_root);
937 struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
938
939 newisec->sid = oldisec->sid;
940 }
941
942 sb_finish_set_opts(newsb);
943out:
944 mutex_unlock(&newsbsec->lock);
945 return rc;
946}
947
948/*
949 * NOTE: the caller is resposible for freeing the memory even if on error.
950 */
951static int selinux_add_opt(int token, const char *s, void **mnt_opts)
952{
953 struct selinux_mnt_opts *opts = *mnt_opts;
954 u32 *dst_sid;
955 int rc;
956
957 if (token == Opt_seclabel)
958 /* eaten and completely ignored */
959 return 0;
960 if (!s)
961 return -EINVAL;
962
963 if (!selinux_initialized(&selinux_state)) {
964 pr_warn("SELinux: Unable to set superblock options before the security server is initialized\n");
965 return -EINVAL;
966 }
967
968 if (!opts) {
969 opts = kzalloc(sizeof(*opts), GFP_KERNEL);
970 if (!opts)
971 return -ENOMEM;
972 *mnt_opts = opts;
973 }
974
975 switch (token) {
976 case Opt_context:
977 if (opts->context_sid || opts->defcontext_sid)
978 goto err;
979 dst_sid = &opts->context_sid;
980 break;
981 case Opt_fscontext:
982 if (opts->fscontext_sid)
983 goto err;
984 dst_sid = &opts->fscontext_sid;
985 break;
986 case Opt_rootcontext:
987 if (opts->rootcontext_sid)
988 goto err;
989 dst_sid = &opts->rootcontext_sid;
990 break;
991 case Opt_defcontext:
992 if (opts->context_sid || opts->defcontext_sid)
993 goto err;
994 dst_sid = &opts->defcontext_sid;
995 break;
996 default:
997 WARN_ON(1);
998 return -EINVAL;
999 }
1000 rc = security_context_str_to_sid(&selinux_state, s, dst_sid, GFP_KERNEL);
1001 if (rc)
1002 pr_warn("SELinux: security_context_str_to_sid (%s) failed with errno=%d\n",
1003 s, rc);
1004 return rc;
1005
1006err:
1007 pr_warn(SEL_MOUNT_FAIL_MSG);
1008 return -EINVAL;
1009}
1010
1011static int show_sid(struct seq_file *m, u32 sid)
1012{
1013 char *context = NULL;
1014 u32 len;
1015 int rc;
1016
1017 rc = security_sid_to_context(&selinux_state, sid,
1018 &context, &len);
1019 if (!rc) {
1020 bool has_comma = strchr(context, ',');
1021
1022 seq_putc(m, '=');
1023 if (has_comma)
1024 seq_putc(m, '\"');
1025 seq_escape(m, context, "\"\n\\");
1026 if (has_comma)
1027 seq_putc(m, '\"');
1028 }
1029 kfree(context);
1030 return rc;
1031}
1032
1033static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1034{
1035 struct superblock_security_struct *sbsec = selinux_superblock(sb);
1036 int rc;
1037
1038 if (!(sbsec->flags & SE_SBINITIALIZED))
1039 return 0;
1040
1041 if (!selinux_initialized(&selinux_state))
1042 return 0;
1043
1044 if (sbsec->flags & FSCONTEXT_MNT) {
1045 seq_putc(m, ',');
1046 seq_puts(m, FSCONTEXT_STR);
1047 rc = show_sid(m, sbsec->sid);
1048 if (rc)
1049 return rc;
1050 }
1051 if (sbsec->flags & CONTEXT_MNT) {
1052 seq_putc(m, ',');
1053 seq_puts(m, CONTEXT_STR);
1054 rc = show_sid(m, sbsec->mntpoint_sid);
1055 if (rc)
1056 return rc;
1057 }
1058 if (sbsec->flags & DEFCONTEXT_MNT) {
1059 seq_putc(m, ',');
1060 seq_puts(m, DEFCONTEXT_STR);
1061 rc = show_sid(m, sbsec->def_sid);
1062 if (rc)
1063 return rc;
1064 }
1065 if (sbsec->flags & ROOTCONTEXT_MNT) {
1066 struct dentry *root = sb->s_root;
1067 struct inode_security_struct *isec = backing_inode_security(root);
1068 seq_putc(m, ',');
1069 seq_puts(m, ROOTCONTEXT_STR);
1070 rc = show_sid(m, isec->sid);
1071 if (rc)
1072 return rc;
1073 }
1074 if (sbsec->flags & SBLABEL_MNT) {
1075 seq_putc(m, ',');
1076 seq_puts(m, SECLABEL_STR);
1077 }
1078 return 0;
1079}
1080
1081static inline u16 inode_mode_to_security_class(umode_t mode)
1082{
1083 switch (mode & S_IFMT) {
1084 case S_IFSOCK:
1085 return SECCLASS_SOCK_FILE;
1086 case S_IFLNK:
1087 return SECCLASS_LNK_FILE;
1088 case S_IFREG:
1089 return SECCLASS_FILE;
1090 case S_IFBLK:
1091 return SECCLASS_BLK_FILE;
1092 case S_IFDIR:
1093 return SECCLASS_DIR;
1094 case S_IFCHR:
1095 return SECCLASS_CHR_FILE;
1096 case S_IFIFO:
1097 return SECCLASS_FIFO_FILE;
1098
1099 }
1100
1101 return SECCLASS_FILE;
1102}
1103
1104static inline int default_protocol_stream(int protocol)
1105{
1106 return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP ||
1107 protocol == IPPROTO_MPTCP);
1108}
1109
1110static inline int default_protocol_dgram(int protocol)
1111{
1112 return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1113}
1114
1115static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1116{
1117 int extsockclass = selinux_policycap_extsockclass();
1118
1119 switch (family) {
1120 case PF_UNIX:
1121 switch (type) {
1122 case SOCK_STREAM:
1123 case SOCK_SEQPACKET:
1124 return SECCLASS_UNIX_STREAM_SOCKET;
1125 case SOCK_DGRAM:
1126 case SOCK_RAW:
1127 return SECCLASS_UNIX_DGRAM_SOCKET;
1128 }
1129 break;
1130 case PF_INET:
1131 case PF_INET6:
1132 switch (type) {
1133 case SOCK_STREAM:
1134 case SOCK_SEQPACKET:
1135 if (default_protocol_stream(protocol))
1136 return SECCLASS_TCP_SOCKET;
1137 else if (extsockclass && protocol == IPPROTO_SCTP)
1138 return SECCLASS_SCTP_SOCKET;
1139 else
1140 return SECCLASS_RAWIP_SOCKET;
1141 case SOCK_DGRAM:
1142 if (default_protocol_dgram(protocol))
1143 return SECCLASS_UDP_SOCKET;
1144 else if (extsockclass && (protocol == IPPROTO_ICMP ||
1145 protocol == IPPROTO_ICMPV6))
1146 return SECCLASS_ICMP_SOCKET;
1147 else
1148 return SECCLASS_RAWIP_SOCKET;
1149 case SOCK_DCCP:
1150 return SECCLASS_DCCP_SOCKET;
1151 default:
1152 return SECCLASS_RAWIP_SOCKET;
1153 }
1154 break;
1155 case PF_NETLINK:
1156 switch (protocol) {
1157 case NETLINK_ROUTE:
1158 return SECCLASS_NETLINK_ROUTE_SOCKET;
1159 case NETLINK_SOCK_DIAG:
1160 return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1161 case NETLINK_NFLOG:
1162 return SECCLASS_NETLINK_NFLOG_SOCKET;
1163 case NETLINK_XFRM:
1164 return SECCLASS_NETLINK_XFRM_SOCKET;
1165 case NETLINK_SELINUX:
1166 return SECCLASS_NETLINK_SELINUX_SOCKET;
1167 case NETLINK_ISCSI:
1168 return SECCLASS_NETLINK_ISCSI_SOCKET;
1169 case NETLINK_AUDIT:
1170 return SECCLASS_NETLINK_AUDIT_SOCKET;
1171 case NETLINK_FIB_LOOKUP:
1172 return SECCLASS_NETLINK_FIB_LOOKUP_SOCKET;
1173 case NETLINK_CONNECTOR:
1174 return SECCLASS_NETLINK_CONNECTOR_SOCKET;
1175 case NETLINK_NETFILTER:
1176 return SECCLASS_NETLINK_NETFILTER_SOCKET;
1177 case NETLINK_DNRTMSG:
1178 return SECCLASS_NETLINK_DNRT_SOCKET;
1179 case NETLINK_KOBJECT_UEVENT:
1180 return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1181 case NETLINK_GENERIC:
1182 return SECCLASS_NETLINK_GENERIC_SOCKET;
1183 case NETLINK_SCSITRANSPORT:
1184 return SECCLASS_NETLINK_SCSITRANSPORT_SOCKET;
1185 case NETLINK_RDMA:
1186 return SECCLASS_NETLINK_RDMA_SOCKET;
1187 case NETLINK_CRYPTO:
1188 return SECCLASS_NETLINK_CRYPTO_SOCKET;
1189 default:
1190 return SECCLASS_NETLINK_SOCKET;
1191 }
1192 case PF_PACKET:
1193 return SECCLASS_PACKET_SOCKET;
1194 case PF_KEY:
1195 return SECCLASS_KEY_SOCKET;
1196 case PF_APPLETALK:
1197 return SECCLASS_APPLETALK_SOCKET;
1198 }
1199
1200 if (extsockclass) {
1201 switch (family) {
1202 case PF_AX25:
1203 return SECCLASS_AX25_SOCKET;
1204 case PF_IPX:
1205 return SECCLASS_IPX_SOCKET;
1206 case PF_NETROM:
1207 return SECCLASS_NETROM_SOCKET;
1208 case PF_ATMPVC:
1209 return SECCLASS_ATMPVC_SOCKET;
1210 case PF_X25:
1211 return SECCLASS_X25_SOCKET;
1212 case PF_ROSE:
1213 return SECCLASS_ROSE_SOCKET;
1214 case PF_DECnet:
1215 return SECCLASS_DECNET_SOCKET;
1216 case PF_ATMSVC:
1217 return SECCLASS_ATMSVC_SOCKET;
1218 case PF_RDS:
1219 return SECCLASS_RDS_SOCKET;
1220 case PF_IRDA:
1221 return SECCLASS_IRDA_SOCKET;
1222 case PF_PPPOX:
1223 return SECCLASS_PPPOX_SOCKET;
1224 case PF_LLC:
1225 return SECCLASS_LLC_SOCKET;
1226 case PF_CAN:
1227 return SECCLASS_CAN_SOCKET;
1228 case PF_TIPC:
1229 return SECCLASS_TIPC_SOCKET;
1230 case PF_BLUETOOTH:
1231 return SECCLASS_BLUETOOTH_SOCKET;
1232 case PF_IUCV:
1233 return SECCLASS_IUCV_SOCKET;
1234 case PF_RXRPC:
1235 return SECCLASS_RXRPC_SOCKET;
1236 case PF_ISDN:
1237 return SECCLASS_ISDN_SOCKET;
1238 case PF_PHONET:
1239 return SECCLASS_PHONET_SOCKET;
1240 case PF_IEEE802154:
1241 return SECCLASS_IEEE802154_SOCKET;
1242 case PF_CAIF:
1243 return SECCLASS_CAIF_SOCKET;
1244 case PF_ALG:
1245 return SECCLASS_ALG_SOCKET;
1246 case PF_NFC:
1247 return SECCLASS_NFC_SOCKET;
1248 case PF_VSOCK:
1249 return SECCLASS_VSOCK_SOCKET;
1250 case PF_KCM:
1251 return SECCLASS_KCM_SOCKET;
1252 case PF_QIPCRTR:
1253 return SECCLASS_QIPCRTR_SOCKET;
1254 case PF_SMC:
1255 return SECCLASS_SMC_SOCKET;
1256 case PF_XDP:
1257 return SECCLASS_XDP_SOCKET;
1258 case PF_MCTP:
1259 return SECCLASS_MCTP_SOCKET;
1260#if PF_MAX > 46
1261#error New address family defined, please update this function.
1262#endif
1263 }
1264 }
1265
1266 return SECCLASS_SOCKET;
1267}
1268
1269static int selinux_genfs_get_sid(struct dentry *dentry,
1270 u16 tclass,
1271 u16 flags,
1272 u32 *sid)
1273{
1274 int rc;
1275 struct super_block *sb = dentry->d_sb;
1276 char *buffer, *path;
1277
1278 buffer = (char *)__get_free_page(GFP_KERNEL);
1279 if (!buffer)
1280 return -ENOMEM;
1281
1282 path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1283 if (IS_ERR(path))
1284 rc = PTR_ERR(path);
1285 else {
1286 if (flags & SE_SBPROC) {
1287 /* each process gets a /proc/PID/ entry. Strip off the
1288 * PID part to get a valid selinux labeling.
1289 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1290 while (path[1] >= '0' && path[1] <= '9') {
1291 path[1] = '/';
1292 path++;
1293 }
1294 }
1295 rc = security_genfs_sid(&selinux_state, sb->s_type->name,
1296 path, tclass, sid);
1297 if (rc == -ENOENT) {
1298 /* No match in policy, mark as unlabeled. */
1299 *sid = SECINITSID_UNLABELED;
1300 rc = 0;
1301 }
1302 }
1303 free_page((unsigned long)buffer);
1304 return rc;
1305}
1306
1307static int inode_doinit_use_xattr(struct inode *inode, struct dentry *dentry,
1308 u32 def_sid, u32 *sid)
1309{
1310#define INITCONTEXTLEN 255
1311 char *context;
1312 unsigned int len;
1313 int rc;
1314
1315 len = INITCONTEXTLEN;
1316 context = kmalloc(len + 1, GFP_NOFS);
1317 if (!context)
1318 return -ENOMEM;
1319
1320 context[len] = '\0';
1321 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len);
1322 if (rc == -ERANGE) {
1323 kfree(context);
1324
1325 /* Need a larger buffer. Query for the right size. */
1326 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, NULL, 0);
1327 if (rc < 0)
1328 return rc;
1329
1330 len = rc;
1331 context = kmalloc(len + 1, GFP_NOFS);
1332 if (!context)
1333 return -ENOMEM;
1334
1335 context[len] = '\0';
1336 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX,
1337 context, len);
1338 }
1339 if (rc < 0) {
1340 kfree(context);
1341 if (rc != -ENODATA) {
1342 pr_warn("SELinux: %s: getxattr returned %d for dev=%s ino=%ld\n",
1343 __func__, -rc, inode->i_sb->s_id, inode->i_ino);
1344 return rc;
1345 }
1346 *sid = def_sid;
1347 return 0;
1348 }
1349
1350 rc = security_context_to_sid_default(&selinux_state, context, rc, sid,
1351 def_sid, GFP_NOFS);
1352 if (rc) {
1353 char *dev = inode->i_sb->s_id;
1354 unsigned long ino = inode->i_ino;
1355
1356 if (rc == -EINVAL) {
1357 pr_notice_ratelimited("SELinux: inode=%lu on dev=%s was found to have an invalid context=%s. This indicates you may need to relabel the inode or the filesystem in question.\n",
1358 ino, dev, context);
1359 } else {
1360 pr_warn("SELinux: %s: context_to_sid(%s) returned %d for dev=%s ino=%ld\n",
1361 __func__, context, -rc, dev, ino);
1362 }
1363 }
1364 kfree(context);
1365 return 0;
1366}
1367
1368/* The inode's security attributes must be initialized before first use. */
1369static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1370{
1371 struct superblock_security_struct *sbsec = NULL;
1372 struct inode_security_struct *isec = selinux_inode(inode);
1373 u32 task_sid, sid = 0;
1374 u16 sclass;
1375 struct dentry *dentry;
1376 int rc = 0;
1377
1378 if (isec->initialized == LABEL_INITIALIZED)
1379 return 0;
1380
1381 spin_lock(&isec->lock);
1382 if (isec->initialized == LABEL_INITIALIZED)
1383 goto out_unlock;
1384
1385 if (isec->sclass == SECCLASS_FILE)
1386 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1387
1388 sbsec = selinux_superblock(inode->i_sb);
1389 if (!(sbsec->flags & SE_SBINITIALIZED)) {
1390 /* Defer initialization until selinux_complete_init,
1391 after the initial policy is loaded and the security
1392 server is ready to handle calls. */
1393 spin_lock(&sbsec->isec_lock);
1394 if (list_empty(&isec->list))
1395 list_add(&isec->list, &sbsec->isec_head);
1396 spin_unlock(&sbsec->isec_lock);
1397 goto out_unlock;
1398 }
1399
1400 sclass = isec->sclass;
1401 task_sid = isec->task_sid;
1402 sid = isec->sid;
1403 isec->initialized = LABEL_PENDING;
1404 spin_unlock(&isec->lock);
1405
1406 switch (sbsec->behavior) {
1407 case SECURITY_FS_USE_NATIVE:
1408 break;
1409 case SECURITY_FS_USE_XATTR:
1410 if (!(inode->i_opflags & IOP_XATTR)) {
1411 sid = sbsec->def_sid;
1412 break;
1413 }
1414 /* Need a dentry, since the xattr API requires one.
1415 Life would be simpler if we could just pass the inode. */
1416 if (opt_dentry) {
1417 /* Called from d_instantiate or d_splice_alias. */
1418 dentry = dget(opt_dentry);
1419 } else {
1420 /*
1421 * Called from selinux_complete_init, try to find a dentry.
1422 * Some filesystems really want a connected one, so try
1423 * that first. We could split SECURITY_FS_USE_XATTR in
1424 * two, depending upon that...
1425 */
1426 dentry = d_find_alias(inode);
1427 if (!dentry)
1428 dentry = d_find_any_alias(inode);
1429 }
1430 if (!dentry) {
1431 /*
1432 * this is can be hit on boot when a file is accessed
1433 * before the policy is loaded. When we load policy we
1434 * may find inodes that have no dentry on the
1435 * sbsec->isec_head list. No reason to complain as these
1436 * will get fixed up the next time we go through
1437 * inode_doinit with a dentry, before these inodes could
1438 * be used again by userspace.
1439 */
1440 goto out_invalid;
1441 }
1442
1443 rc = inode_doinit_use_xattr(inode, dentry, sbsec->def_sid,
1444 &sid);
1445 dput(dentry);
1446 if (rc)
1447 goto out;
1448 break;
1449 case SECURITY_FS_USE_TASK:
1450 sid = task_sid;
1451 break;
1452 case SECURITY_FS_USE_TRANS:
1453 /* Default to the fs SID. */
1454 sid = sbsec->sid;
1455
1456 /* Try to obtain a transition SID. */
1457 rc = security_transition_sid(&selinux_state, task_sid, sid,
1458 sclass, NULL, &sid);
1459 if (rc)
1460 goto out;
1461 break;
1462 case SECURITY_FS_USE_MNTPOINT:
1463 sid = sbsec->mntpoint_sid;
1464 break;
1465 default:
1466 /* Default to the fs superblock SID. */
1467 sid = sbsec->sid;
1468
1469 if ((sbsec->flags & SE_SBGENFS) &&
1470 (!S_ISLNK(inode->i_mode) ||
1471 selinux_policycap_genfs_seclabel_symlinks())) {
1472 /* We must have a dentry to determine the label on
1473 * procfs inodes */
1474 if (opt_dentry) {
1475 /* Called from d_instantiate or
1476 * d_splice_alias. */
1477 dentry = dget(opt_dentry);
1478 } else {
1479 /* Called from selinux_complete_init, try to
1480 * find a dentry. Some filesystems really want
1481 * a connected one, so try that first.
1482 */
1483 dentry = d_find_alias(inode);
1484 if (!dentry)
1485 dentry = d_find_any_alias(inode);
1486 }
1487 /*
1488 * This can be hit on boot when a file is accessed
1489 * before the policy is loaded. When we load policy we
1490 * may find inodes that have no dentry on the
1491 * sbsec->isec_head list. No reason to complain as
1492 * these will get fixed up the next time we go through
1493 * inode_doinit() with a dentry, before these inodes
1494 * could be used again by userspace.
1495 */
1496 if (!dentry)
1497 goto out_invalid;
1498 rc = selinux_genfs_get_sid(dentry, sclass,
1499 sbsec->flags, &sid);
1500 if (rc) {
1501 dput(dentry);
1502 goto out;
1503 }
1504
1505 if ((sbsec->flags & SE_SBGENFS_XATTR) &&
1506 (inode->i_opflags & IOP_XATTR)) {
1507 rc = inode_doinit_use_xattr(inode, dentry,
1508 sid, &sid);
1509 if (rc) {
1510 dput(dentry);
1511 goto out;
1512 }
1513 }
1514 dput(dentry);
1515 }
1516 break;
1517 }
1518
1519out:
1520 spin_lock(&isec->lock);
1521 if (isec->initialized == LABEL_PENDING) {
1522 if (rc) {
1523 isec->initialized = LABEL_INVALID;
1524 goto out_unlock;
1525 }
1526 isec->initialized = LABEL_INITIALIZED;
1527 isec->sid = sid;
1528 }
1529
1530out_unlock:
1531 spin_unlock(&isec->lock);
1532 return rc;
1533
1534out_invalid:
1535 spin_lock(&isec->lock);
1536 if (isec->initialized == LABEL_PENDING) {
1537 isec->initialized = LABEL_INVALID;
1538 isec->sid = sid;
1539 }
1540 spin_unlock(&isec->lock);
1541 return 0;
1542}
1543
1544/* Convert a Linux signal to an access vector. */
1545static inline u32 signal_to_av(int sig)
1546{
1547 u32 perm = 0;
1548
1549 switch (sig) {
1550 case SIGCHLD:
1551 /* Commonly granted from child to parent. */
1552 perm = PROCESS__SIGCHLD;
1553 break;
1554 case SIGKILL:
1555 /* Cannot be caught or ignored */
1556 perm = PROCESS__SIGKILL;
1557 break;
1558 case SIGSTOP:
1559 /* Cannot be caught or ignored */
1560 perm = PROCESS__SIGSTOP;
1561 break;
1562 default:
1563 /* All other signals. */
1564 perm = PROCESS__SIGNAL;
1565 break;
1566 }
1567
1568 return perm;
1569}
1570
1571#if CAP_LAST_CAP > 63
1572#error Fix SELinux to handle capabilities > 63.
1573#endif
1574
1575/* Check whether a task is allowed to use a capability. */
1576static int cred_has_capability(const struct cred *cred,
1577 int cap, unsigned int opts, bool initns)
1578{
1579 struct common_audit_data ad;
1580 struct av_decision avd;
1581 u16 sclass;
1582 u32 sid = cred_sid(cred);
1583 u32 av = CAP_TO_MASK(cap);
1584 int rc;
1585
1586 ad.type = LSM_AUDIT_DATA_CAP;
1587 ad.u.cap = cap;
1588
1589 switch (CAP_TO_INDEX(cap)) {
1590 case 0:
1591 sclass = initns ? SECCLASS_CAPABILITY : SECCLASS_CAP_USERNS;
1592 break;
1593 case 1:
1594 sclass = initns ? SECCLASS_CAPABILITY2 : SECCLASS_CAP2_USERNS;
1595 break;
1596 default:
1597 pr_err("SELinux: out of range capability %d\n", cap);
1598 BUG();
1599 return -EINVAL;
1600 }
1601
1602 rc = avc_has_perm_noaudit(&selinux_state,
1603 sid, sid, sclass, av, 0, &avd);
1604 if (!(opts & CAP_OPT_NOAUDIT)) {
1605 int rc2 = avc_audit(&selinux_state,
1606 sid, sid, sclass, av, &avd, rc, &ad);
1607 if (rc2)
1608 return rc2;
1609 }
1610 return rc;
1611}
1612
1613/* Check whether a task has a particular permission to an inode.
1614 The 'adp' parameter is optional and allows other audit
1615 data to be passed (e.g. the dentry). */
1616static int inode_has_perm(const struct cred *cred,
1617 struct inode *inode,
1618 u32 perms,
1619 struct common_audit_data *adp)
1620{
1621 struct inode_security_struct *isec;
1622 u32 sid;
1623
1624 validate_creds(cred);
1625
1626 if (unlikely(IS_PRIVATE(inode)))
1627 return 0;
1628
1629 sid = cred_sid(cred);
1630 isec = selinux_inode(inode);
1631
1632 return avc_has_perm(&selinux_state,
1633 sid, isec->sid, isec->sclass, perms, adp);
1634}
1635
1636/* Same as inode_has_perm, but pass explicit audit data containing
1637 the dentry to help the auditing code to more easily generate the
1638 pathname if needed. */
1639static inline int dentry_has_perm(const struct cred *cred,
1640 struct dentry *dentry,
1641 u32 av)
1642{
1643 struct inode *inode = d_backing_inode(dentry);
1644 struct common_audit_data ad;
1645
1646 ad.type = LSM_AUDIT_DATA_DENTRY;
1647 ad.u.dentry = dentry;
1648 __inode_security_revalidate(inode, dentry, true);
1649 return inode_has_perm(cred, inode, av, &ad);
1650}
1651
1652/* Same as inode_has_perm, but pass explicit audit data containing
1653 the path to help the auditing code to more easily generate the
1654 pathname if needed. */
1655static inline int path_has_perm(const struct cred *cred,
1656 const struct path *path,
1657 u32 av)
1658{
1659 struct inode *inode = d_backing_inode(path->dentry);
1660 struct common_audit_data ad;
1661
1662 ad.type = LSM_AUDIT_DATA_PATH;
1663 ad.u.path = *path;
1664 __inode_security_revalidate(inode, path->dentry, true);
1665 return inode_has_perm(cred, inode, av, &ad);
1666}
1667
1668/* Same as path_has_perm, but uses the inode from the file struct. */
1669static inline int file_path_has_perm(const struct cred *cred,
1670 struct file *file,
1671 u32 av)
1672{
1673 struct common_audit_data ad;
1674
1675 ad.type = LSM_AUDIT_DATA_FILE;
1676 ad.u.file = file;
1677 return inode_has_perm(cred, file_inode(file), av, &ad);
1678}
1679
1680#ifdef CONFIG_BPF_SYSCALL
1681static int bpf_fd_pass(struct file *file, u32 sid);
1682#endif
1683
1684/* Check whether a task can use an open file descriptor to
1685 access an inode in a given way. Check access to the
1686 descriptor itself, and then use dentry_has_perm to
1687 check a particular permission to the file.
1688 Access to the descriptor is implicitly granted if it
1689 has the same SID as the process. If av is zero, then
1690 access to the file is not checked, e.g. for cases
1691 where only the descriptor is affected like seek. */
1692static int file_has_perm(const struct cred *cred,
1693 struct file *file,
1694 u32 av)
1695{
1696 struct file_security_struct *fsec = selinux_file(file);
1697 struct inode *inode = file_inode(file);
1698 struct common_audit_data ad;
1699 u32 sid = cred_sid(cred);
1700 int rc;
1701
1702 ad.type = LSM_AUDIT_DATA_FILE;
1703 ad.u.file = file;
1704
1705 if (sid != fsec->sid) {
1706 rc = avc_has_perm(&selinux_state,
1707 sid, fsec->sid,
1708 SECCLASS_FD,
1709 FD__USE,
1710 &ad);
1711 if (rc)
1712 goto out;
1713 }
1714
1715#ifdef CONFIG_BPF_SYSCALL
1716 rc = bpf_fd_pass(file, cred_sid(cred));
1717 if (rc)
1718 return rc;
1719#endif
1720
1721 /* av is zero if only checking access to the descriptor. */
1722 rc = 0;
1723 if (av)
1724 rc = inode_has_perm(cred, inode, av, &ad);
1725
1726out:
1727 return rc;
1728}
1729
1730/*
1731 * Determine the label for an inode that might be unioned.
1732 */
1733static int
1734selinux_determine_inode_label(const struct task_security_struct *tsec,
1735 struct inode *dir,
1736 const struct qstr *name, u16 tclass,
1737 u32 *_new_isid)
1738{
1739 const struct superblock_security_struct *sbsec =
1740 selinux_superblock(dir->i_sb);
1741
1742 if ((sbsec->flags & SE_SBINITIALIZED) &&
1743 (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)) {
1744 *_new_isid = sbsec->mntpoint_sid;
1745 } else if ((sbsec->flags & SBLABEL_MNT) &&
1746 tsec->create_sid) {
1747 *_new_isid = tsec->create_sid;
1748 } else {
1749 const struct inode_security_struct *dsec = inode_security(dir);
1750 return security_transition_sid(&selinux_state, tsec->sid,
1751 dsec->sid, tclass,
1752 name, _new_isid);
1753 }
1754
1755 return 0;
1756}
1757
1758/* Check whether a task can create a file. */
1759static int may_create(struct inode *dir,
1760 struct dentry *dentry,
1761 u16 tclass)
1762{
1763 const struct task_security_struct *tsec = selinux_cred(current_cred());
1764 struct inode_security_struct *dsec;
1765 struct superblock_security_struct *sbsec;
1766 u32 sid, newsid;
1767 struct common_audit_data ad;
1768 int rc;
1769
1770 dsec = inode_security(dir);
1771 sbsec = selinux_superblock(dir->i_sb);
1772
1773 sid = tsec->sid;
1774
1775 ad.type = LSM_AUDIT_DATA_DENTRY;
1776 ad.u.dentry = dentry;
1777
1778 rc = avc_has_perm(&selinux_state,
1779 sid, dsec->sid, SECCLASS_DIR,
1780 DIR__ADD_NAME | DIR__SEARCH,
1781 &ad);
1782 if (rc)
1783 return rc;
1784
1785 rc = selinux_determine_inode_label(tsec, dir, &dentry->d_name, tclass,
1786 &newsid);
1787 if (rc)
1788 return rc;
1789
1790 rc = avc_has_perm(&selinux_state,
1791 sid, newsid, tclass, FILE__CREATE, &ad);
1792 if (rc)
1793 return rc;
1794
1795 return avc_has_perm(&selinux_state,
1796 newsid, sbsec->sid,
1797 SECCLASS_FILESYSTEM,
1798 FILESYSTEM__ASSOCIATE, &ad);
1799}
1800
1801#define MAY_LINK 0
1802#define MAY_UNLINK 1
1803#define MAY_RMDIR 2
1804
1805/* Check whether a task can link, unlink, or rmdir a file/directory. */
1806static int may_link(struct inode *dir,
1807 struct dentry *dentry,
1808 int kind)
1809
1810{
1811 struct inode_security_struct *dsec, *isec;
1812 struct common_audit_data ad;
1813 u32 sid = current_sid();
1814 u32 av;
1815 int rc;
1816
1817 dsec = inode_security(dir);
1818 isec = backing_inode_security(dentry);
1819
1820 ad.type = LSM_AUDIT_DATA_DENTRY;
1821 ad.u.dentry = dentry;
1822
1823 av = DIR__SEARCH;
1824 av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1825 rc = avc_has_perm(&selinux_state,
1826 sid, dsec->sid, SECCLASS_DIR, av, &ad);
1827 if (rc)
1828 return rc;
1829
1830 switch (kind) {
1831 case MAY_LINK:
1832 av = FILE__LINK;
1833 break;
1834 case MAY_UNLINK:
1835 av = FILE__UNLINK;
1836 break;
1837 case MAY_RMDIR:
1838 av = DIR__RMDIR;
1839 break;
1840 default:
1841 pr_warn("SELinux: %s: unrecognized kind %d\n",
1842 __func__, kind);
1843 return 0;
1844 }
1845
1846 rc = avc_has_perm(&selinux_state,
1847 sid, isec->sid, isec->sclass, av, &ad);
1848 return rc;
1849}
1850
1851static inline int may_rename(struct inode *old_dir,
1852 struct dentry *old_dentry,
1853 struct inode *new_dir,
1854 struct dentry *new_dentry)
1855{
1856 struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1857 struct common_audit_data ad;
1858 u32 sid = current_sid();
1859 u32 av;
1860 int old_is_dir, new_is_dir;
1861 int rc;
1862
1863 old_dsec = inode_security(old_dir);
1864 old_isec = backing_inode_security(old_dentry);
1865 old_is_dir = d_is_dir(old_dentry);
1866 new_dsec = inode_security(new_dir);
1867
1868 ad.type = LSM_AUDIT_DATA_DENTRY;
1869
1870 ad.u.dentry = old_dentry;
1871 rc = avc_has_perm(&selinux_state,
1872 sid, old_dsec->sid, SECCLASS_DIR,
1873 DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1874 if (rc)
1875 return rc;
1876 rc = avc_has_perm(&selinux_state,
1877 sid, old_isec->sid,
1878 old_isec->sclass, FILE__RENAME, &ad);
1879 if (rc)
1880 return rc;
1881 if (old_is_dir && new_dir != old_dir) {
1882 rc = avc_has_perm(&selinux_state,
1883 sid, old_isec->sid,
1884 old_isec->sclass, DIR__REPARENT, &ad);
1885 if (rc)
1886 return rc;
1887 }
1888
1889 ad.u.dentry = new_dentry;
1890 av = DIR__ADD_NAME | DIR__SEARCH;
1891 if (d_is_positive(new_dentry))
1892 av |= DIR__REMOVE_NAME;
1893 rc = avc_has_perm(&selinux_state,
1894 sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1895 if (rc)
1896 return rc;
1897 if (d_is_positive(new_dentry)) {
1898 new_isec = backing_inode_security(new_dentry);
1899 new_is_dir = d_is_dir(new_dentry);
1900 rc = avc_has_perm(&selinux_state,
1901 sid, new_isec->sid,
1902 new_isec->sclass,
1903 (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1904 if (rc)
1905 return rc;
1906 }
1907
1908 return 0;
1909}
1910
1911/* Check whether a task can perform a filesystem operation. */
1912static int superblock_has_perm(const struct cred *cred,
1913 struct super_block *sb,
1914 u32 perms,
1915 struct common_audit_data *ad)
1916{
1917 struct superblock_security_struct *sbsec;
1918 u32 sid = cred_sid(cred);
1919
1920 sbsec = selinux_superblock(sb);
1921 return avc_has_perm(&selinux_state,
1922 sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1923}
1924
1925/* Convert a Linux mode and permission mask to an access vector. */
1926static inline u32 file_mask_to_av(int mode, int mask)
1927{
1928 u32 av = 0;
1929
1930 if (!S_ISDIR(mode)) {
1931 if (mask & MAY_EXEC)
1932 av |= FILE__EXECUTE;
1933 if (mask & MAY_READ)
1934 av |= FILE__READ;
1935
1936 if (mask & MAY_APPEND)
1937 av |= FILE__APPEND;
1938 else if (mask & MAY_WRITE)
1939 av |= FILE__WRITE;
1940
1941 } else {
1942 if (mask & MAY_EXEC)
1943 av |= DIR__SEARCH;
1944 if (mask & MAY_WRITE)
1945 av |= DIR__WRITE;
1946 if (mask & MAY_READ)
1947 av |= DIR__READ;
1948 }
1949
1950 return av;
1951}
1952
1953/* Convert a Linux file to an access vector. */
1954static inline u32 file_to_av(struct file *file)
1955{
1956 u32 av = 0;
1957
1958 if (file->f_mode & FMODE_READ)
1959 av |= FILE__READ;
1960 if (file->f_mode & FMODE_WRITE) {
1961 if (file->f_flags & O_APPEND)
1962 av |= FILE__APPEND;
1963 else
1964 av |= FILE__WRITE;
1965 }
1966 if (!av) {
1967 /*
1968 * Special file opened with flags 3 for ioctl-only use.
1969 */
1970 av = FILE__IOCTL;
1971 }
1972
1973 return av;
1974}
1975
1976/*
1977 * Convert a file to an access vector and include the correct
1978 * open permission.
1979 */
1980static inline u32 open_file_to_av(struct file *file)
1981{
1982 u32 av = file_to_av(file);
1983 struct inode *inode = file_inode(file);
1984
1985 if (selinux_policycap_openperm() &&
1986 inode->i_sb->s_magic != SOCKFS_MAGIC)
1987 av |= FILE__OPEN;
1988
1989 return av;
1990}
1991
1992/* Hook functions begin here. */
1993
1994static int selinux_binder_set_context_mgr(const struct cred *mgr)
1995{
1996 return avc_has_perm(&selinux_state,
1997 current_sid(), cred_sid(mgr), SECCLASS_BINDER,
1998 BINDER__SET_CONTEXT_MGR, NULL);
1999}
2000
2001static int selinux_binder_transaction(const struct cred *from,
2002 const struct cred *to)
2003{
2004 u32 mysid = current_sid();
2005 u32 fromsid = cred_sid(from);
2006 u32 tosid = cred_sid(to);
2007 int rc;
2008
2009 if (mysid != fromsid) {
2010 rc = avc_has_perm(&selinux_state,
2011 mysid, fromsid, SECCLASS_BINDER,
2012 BINDER__IMPERSONATE, NULL);
2013 if (rc)
2014 return rc;
2015 }
2016
2017 return avc_has_perm(&selinux_state, fromsid, tosid,
2018 SECCLASS_BINDER, BINDER__CALL, NULL);
2019}
2020
2021static int selinux_binder_transfer_binder(const struct cred *from,
2022 const struct cred *to)
2023{
2024 return avc_has_perm(&selinux_state,
2025 cred_sid(from), cred_sid(to),
2026 SECCLASS_BINDER, BINDER__TRANSFER,
2027 NULL);
2028}
2029
2030static int selinux_binder_transfer_file(const struct cred *from,
2031 const struct cred *to,
2032 struct file *file)
2033{
2034 u32 sid = cred_sid(to);
2035 struct file_security_struct *fsec = selinux_file(file);
2036 struct dentry *dentry = file->f_path.dentry;
2037 struct inode_security_struct *isec;
2038 struct common_audit_data ad;
2039 int rc;
2040
2041 ad.type = LSM_AUDIT_DATA_PATH;
2042 ad.u.path = file->f_path;
2043
2044 if (sid != fsec->sid) {
2045 rc = avc_has_perm(&selinux_state,
2046 sid, fsec->sid,
2047 SECCLASS_FD,
2048 FD__USE,
2049 &ad);
2050 if (rc)
2051 return rc;
2052 }
2053
2054#ifdef CONFIG_BPF_SYSCALL
2055 rc = bpf_fd_pass(file, sid);
2056 if (rc)
2057 return rc;
2058#endif
2059
2060 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2061 return 0;
2062
2063 isec = backing_inode_security(dentry);
2064 return avc_has_perm(&selinux_state,
2065 sid, isec->sid, isec->sclass, file_to_av(file),
2066 &ad);
2067}
2068
2069static int selinux_ptrace_access_check(struct task_struct *child,
2070 unsigned int mode)
2071{
2072 u32 sid = current_sid();
2073 u32 csid = task_sid_obj(child);
2074
2075 if (mode & PTRACE_MODE_READ)
2076 return avc_has_perm(&selinux_state,
2077 sid, csid, SECCLASS_FILE, FILE__READ, NULL);
2078
2079 return avc_has_perm(&selinux_state,
2080 sid, csid, SECCLASS_PROCESS, PROCESS__PTRACE, NULL);
2081}
2082
2083static int selinux_ptrace_traceme(struct task_struct *parent)
2084{
2085 return avc_has_perm(&selinux_state,
2086 task_sid_obj(parent), task_sid_obj(current),
2087 SECCLASS_PROCESS, PROCESS__PTRACE, NULL);
2088}
2089
2090static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
2091 kernel_cap_t *inheritable, kernel_cap_t *permitted)
2092{
2093 return avc_has_perm(&selinux_state,
2094 current_sid(), task_sid_obj(target), SECCLASS_PROCESS,
2095 PROCESS__GETCAP, NULL);
2096}
2097
2098static int selinux_capset(struct cred *new, const struct cred *old,
2099 const kernel_cap_t *effective,
2100 const kernel_cap_t *inheritable,
2101 const kernel_cap_t *permitted)
2102{
2103 return avc_has_perm(&selinux_state,
2104 cred_sid(old), cred_sid(new), SECCLASS_PROCESS,
2105 PROCESS__SETCAP, NULL);
2106}
2107
2108/*
2109 * (This comment used to live with the selinux_task_setuid hook,
2110 * which was removed).
2111 *
2112 * Since setuid only affects the current process, and since the SELinux
2113 * controls are not based on the Linux identity attributes, SELinux does not
2114 * need to control this operation. However, SELinux does control the use of
2115 * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
2116 */
2117
2118static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
2119 int cap, unsigned int opts)
2120{
2121 return cred_has_capability(cred, cap, opts, ns == &init_user_ns);
2122}
2123
2124static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
2125{
2126 const struct cred *cred = current_cred();
2127 int rc = 0;
2128
2129 if (!sb)
2130 return 0;
2131
2132 switch (cmds) {
2133 case Q_SYNC:
2134 case Q_QUOTAON:
2135 case Q_QUOTAOFF:
2136 case Q_SETINFO:
2137 case Q_SETQUOTA:
2138 case Q_XQUOTAOFF:
2139 case Q_XQUOTAON:
2140 case Q_XSETQLIM:
2141 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2142 break;
2143 case Q_GETFMT:
2144 case Q_GETINFO:
2145 case Q_GETQUOTA:
2146 case Q_XGETQUOTA:
2147 case Q_XGETQSTAT:
2148 case Q_XGETQSTATV:
2149 case Q_XGETNEXTQUOTA:
2150 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2151 break;
2152 default:
2153 rc = 0; /* let the kernel handle invalid cmds */
2154 break;
2155 }
2156 return rc;
2157}
2158
2159static int selinux_quota_on(struct dentry *dentry)
2160{
2161 const struct cred *cred = current_cred();
2162
2163 return dentry_has_perm(cred, dentry, FILE__QUOTAON);
2164}
2165
2166static int selinux_syslog(int type)
2167{
2168 switch (type) {
2169 case SYSLOG_ACTION_READ_ALL: /* Read last kernel messages */
2170 case SYSLOG_ACTION_SIZE_BUFFER: /* Return size of the log buffer */
2171 return avc_has_perm(&selinux_state,
2172 current_sid(), SECINITSID_KERNEL,
2173 SECCLASS_SYSTEM, SYSTEM__SYSLOG_READ, NULL);
2174 case SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging to console */
2175 case SYSLOG_ACTION_CONSOLE_ON: /* Enable logging to console */
2176 /* Set level of messages printed to console */
2177 case SYSLOG_ACTION_CONSOLE_LEVEL:
2178 return avc_has_perm(&selinux_state,
2179 current_sid(), SECINITSID_KERNEL,
2180 SECCLASS_SYSTEM, SYSTEM__SYSLOG_CONSOLE,
2181 NULL);
2182 }
2183 /* All other syslog types */
2184 return avc_has_perm(&selinux_state,
2185 current_sid(), SECINITSID_KERNEL,
2186 SECCLASS_SYSTEM, SYSTEM__SYSLOG_MOD, NULL);
2187}
2188
2189/*
2190 * Check that a process has enough memory to allocate a new virtual
2191 * mapping. 0 means there is enough memory for the allocation to
2192 * succeed and -ENOMEM implies there is not.
2193 *
2194 * Do not audit the selinux permission check, as this is applied to all
2195 * processes that allocate mappings.
2196 */
2197static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2198{
2199 int rc, cap_sys_admin = 0;
2200
2201 rc = cred_has_capability(current_cred(), CAP_SYS_ADMIN,
2202 CAP_OPT_NOAUDIT, true);
2203 if (rc == 0)
2204 cap_sys_admin = 1;
2205
2206 return cap_sys_admin;
2207}
2208
2209/* binprm security operations */
2210
2211static u32 ptrace_parent_sid(void)
2212{
2213 u32 sid = 0;
2214 struct task_struct *tracer;
2215
2216 rcu_read_lock();
2217 tracer = ptrace_parent(current);
2218 if (tracer)
2219 sid = task_sid_obj(tracer);
2220 rcu_read_unlock();
2221
2222 return sid;
2223}
2224
2225static int check_nnp_nosuid(const struct linux_binprm *bprm,
2226 const struct task_security_struct *old_tsec,
2227 const struct task_security_struct *new_tsec)
2228{
2229 int nnp = (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS);
2230 int nosuid = !mnt_may_suid(bprm->file->f_path.mnt);
2231 int rc;
2232 u32 av;
2233
2234 if (!nnp && !nosuid)
2235 return 0; /* neither NNP nor nosuid */
2236
2237 if (new_tsec->sid == old_tsec->sid)
2238 return 0; /* No change in credentials */
2239
2240 /*
2241 * If the policy enables the nnp_nosuid_transition policy capability,
2242 * then we permit transitions under NNP or nosuid if the
2243 * policy allows the corresponding permission between
2244 * the old and new contexts.
2245 */
2246 if (selinux_policycap_nnp_nosuid_transition()) {
2247 av = 0;
2248 if (nnp)
2249 av |= PROCESS2__NNP_TRANSITION;
2250 if (nosuid)
2251 av |= PROCESS2__NOSUID_TRANSITION;
2252 rc = avc_has_perm(&selinux_state,
2253 old_tsec->sid, new_tsec->sid,
2254 SECCLASS_PROCESS2, av, NULL);
2255 if (!rc)
2256 return 0;
2257 }
2258
2259 /*
2260 * We also permit NNP or nosuid transitions to bounded SIDs,
2261 * i.e. SIDs that are guaranteed to only be allowed a subset
2262 * of the permissions of the current SID.
2263 */
2264 rc = security_bounded_transition(&selinux_state, old_tsec->sid,
2265 new_tsec->sid);
2266 if (!rc)
2267 return 0;
2268
2269 /*
2270 * On failure, preserve the errno values for NNP vs nosuid.
2271 * NNP: Operation not permitted for caller.
2272 * nosuid: Permission denied to file.
2273 */
2274 if (nnp)
2275 return -EPERM;
2276 return -EACCES;
2277}
2278
2279static int selinux_bprm_creds_for_exec(struct linux_binprm *bprm)
2280{
2281 const struct task_security_struct *old_tsec;
2282 struct task_security_struct *new_tsec;
2283 struct inode_security_struct *isec;
2284 struct common_audit_data ad;
2285 struct inode *inode = file_inode(bprm->file);
2286 int rc;
2287
2288 /* SELinux context only depends on initial program or script and not
2289 * the script interpreter */
2290
2291 old_tsec = selinux_cred(current_cred());
2292 new_tsec = selinux_cred(bprm->cred);
2293 isec = inode_security(inode);
2294
2295 /* Default to the current task SID. */
2296 new_tsec->sid = old_tsec->sid;
2297 new_tsec->osid = old_tsec->sid;
2298
2299 /* Reset fs, key, and sock SIDs on execve. */
2300 new_tsec->create_sid = 0;
2301 new_tsec->keycreate_sid = 0;
2302 new_tsec->sockcreate_sid = 0;
2303
2304 if (old_tsec->exec_sid) {
2305 new_tsec->sid = old_tsec->exec_sid;
2306 /* Reset exec SID on execve. */
2307 new_tsec->exec_sid = 0;
2308
2309 /* Fail on NNP or nosuid if not an allowed transition. */
2310 rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2311 if (rc)
2312 return rc;
2313 } else {
2314 /* Check for a default transition on this program. */
2315 rc = security_transition_sid(&selinux_state, old_tsec->sid,
2316 isec->sid, SECCLASS_PROCESS, NULL,
2317 &new_tsec->sid);
2318 if (rc)
2319 return rc;
2320
2321 /*
2322 * Fallback to old SID on NNP or nosuid if not an allowed
2323 * transition.
2324 */
2325 rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2326 if (rc)
2327 new_tsec->sid = old_tsec->sid;
2328 }
2329
2330 ad.type = LSM_AUDIT_DATA_FILE;
2331 ad.u.file = bprm->file;
2332
2333 if (new_tsec->sid == old_tsec->sid) {
2334 rc = avc_has_perm(&selinux_state,
2335 old_tsec->sid, isec->sid,
2336 SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2337 if (rc)
2338 return rc;
2339 } else {
2340 /* Check permissions for the transition. */
2341 rc = avc_has_perm(&selinux_state,
2342 old_tsec->sid, new_tsec->sid,
2343 SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2344 if (rc)
2345 return rc;
2346
2347 rc = avc_has_perm(&selinux_state,
2348 new_tsec->sid, isec->sid,
2349 SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2350 if (rc)
2351 return rc;
2352
2353 /* Check for shared state */
2354 if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2355 rc = avc_has_perm(&selinux_state,
2356 old_tsec->sid, new_tsec->sid,
2357 SECCLASS_PROCESS, PROCESS__SHARE,
2358 NULL);
2359 if (rc)
2360 return -EPERM;
2361 }
2362
2363 /* Make sure that anyone attempting to ptrace over a task that
2364 * changes its SID has the appropriate permit */
2365 if (bprm->unsafe & LSM_UNSAFE_PTRACE) {
2366 u32 ptsid = ptrace_parent_sid();
2367 if (ptsid != 0) {
2368 rc = avc_has_perm(&selinux_state,
2369 ptsid, new_tsec->sid,
2370 SECCLASS_PROCESS,
2371 PROCESS__PTRACE, NULL);
2372 if (rc)
2373 return -EPERM;
2374 }
2375 }
2376
2377 /* Clear any possibly unsafe personality bits on exec: */
2378 bprm->per_clear |= PER_CLEAR_ON_SETID;
2379
2380 /* Enable secure mode for SIDs transitions unless
2381 the noatsecure permission is granted between
2382 the two SIDs, i.e. ahp returns 0. */
2383 rc = avc_has_perm(&selinux_state,
2384 old_tsec->sid, new_tsec->sid,
2385 SECCLASS_PROCESS, PROCESS__NOATSECURE,
2386 NULL);
2387 bprm->secureexec |= !!rc;
2388 }
2389
2390 return 0;
2391}
2392
2393static int match_file(const void *p, struct file *file, unsigned fd)
2394{
2395 return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0;
2396}
2397
2398/* Derived from fs/exec.c:flush_old_files. */
2399static inline void flush_unauthorized_files(const struct cred *cred,
2400 struct files_struct *files)
2401{
2402 struct file *file, *devnull = NULL;
2403 struct tty_struct *tty;
2404 int drop_tty = 0;
2405 unsigned n;
2406
2407 tty = get_current_tty();
2408 if (tty) {
2409 spin_lock(&tty->files_lock);
2410 if (!list_empty(&tty->tty_files)) {
2411 struct tty_file_private *file_priv;
2412
2413 /* Revalidate access to controlling tty.
2414 Use file_path_has_perm on the tty path directly
2415 rather than using file_has_perm, as this particular
2416 open file may belong to another process and we are
2417 only interested in the inode-based check here. */
2418 file_priv = list_first_entry(&tty->tty_files,
2419 struct tty_file_private, list);
2420 file = file_priv->file;
2421 if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE))
2422 drop_tty = 1;
2423 }
2424 spin_unlock(&tty->files_lock);
2425 tty_kref_put(tty);
2426 }
2427 /* Reset controlling tty. */
2428 if (drop_tty)
2429 no_tty();
2430
2431 /* Revalidate access to inherited open files. */
2432 n = iterate_fd(files, 0, match_file, cred);
2433 if (!n) /* none found? */
2434 return;
2435
2436 devnull = dentry_open(&selinux_null, O_RDWR, cred);
2437 if (IS_ERR(devnull))
2438 devnull = NULL;
2439 /* replace all the matching ones with this */
2440 do {
2441 replace_fd(n - 1, devnull, 0);
2442 } while ((n = iterate_fd(files, n, match_file, cred)) != 0);
2443 if (devnull)
2444 fput(devnull);
2445}
2446
2447/*
2448 * Prepare a process for imminent new credential changes due to exec
2449 */
2450static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2451{
2452 struct task_security_struct *new_tsec;
2453 struct rlimit *rlim, *initrlim;
2454 int rc, i;
2455
2456 new_tsec = selinux_cred(bprm->cred);
2457 if (new_tsec->sid == new_tsec->osid)
2458 return;
2459
2460 /* Close files for which the new task SID is not authorized. */
2461 flush_unauthorized_files(bprm->cred, current->files);
2462
2463 /* Always clear parent death signal on SID transitions. */
2464 current->pdeath_signal = 0;
2465
2466 /* Check whether the new SID can inherit resource limits from the old
2467 * SID. If not, reset all soft limits to the lower of the current
2468 * task's hard limit and the init task's soft limit.
2469 *
2470 * Note that the setting of hard limits (even to lower them) can be
2471 * controlled by the setrlimit check. The inclusion of the init task's
2472 * soft limit into the computation is to avoid resetting soft limits
2473 * higher than the default soft limit for cases where the default is
2474 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2475 */
2476 rc = avc_has_perm(&selinux_state,
2477 new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2478 PROCESS__RLIMITINH, NULL);
2479 if (rc) {
2480 /* protect against do_prlimit() */
2481 task_lock(current);
2482 for (i = 0; i < RLIM_NLIMITS; i++) {
2483 rlim = current->signal->rlim + i;
2484 initrlim = init_task.signal->rlim + i;
2485 rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2486 }
2487 task_unlock(current);
2488 if (IS_ENABLED(CONFIG_POSIX_TIMERS))
2489 update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2490 }
2491}
2492
2493/*
2494 * Clean up the process immediately after the installation of new credentials
2495 * due to exec
2496 */
2497static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2498{
2499 const struct task_security_struct *tsec = selinux_cred(current_cred());
2500 u32 osid, sid;
2501 int rc;
2502
2503 osid = tsec->osid;
2504 sid = tsec->sid;
2505
2506 if (sid == osid)
2507 return;
2508
2509 /* Check whether the new SID can inherit signal state from the old SID.
2510 * If not, clear itimers to avoid subsequent signal generation and
2511 * flush and unblock signals.
2512 *
2513 * This must occur _after_ the task SID has been updated so that any
2514 * kill done after the flush will be checked against the new SID.
2515 */
2516 rc = avc_has_perm(&selinux_state,
2517 osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2518 if (rc) {
2519 clear_itimer();
2520
2521 spin_lock_irq(&unrcu_pointer(current->sighand)->siglock);
2522 if (!fatal_signal_pending(current)) {
2523 flush_sigqueue(¤t->pending);
2524 flush_sigqueue(¤t->signal->shared_pending);
2525 flush_signal_handlers(current, 1);
2526 sigemptyset(¤t->blocked);
2527 recalc_sigpending();
2528 }
2529 spin_unlock_irq(&unrcu_pointer(current->sighand)->siglock);
2530 }
2531
2532 /* Wake up the parent if it is waiting so that it can recheck
2533 * wait permission to the new task SID. */
2534 read_lock(&tasklist_lock);
2535 __wake_up_parent(current, unrcu_pointer(current->real_parent));
2536 read_unlock(&tasklist_lock);
2537}
2538
2539/* superblock security operations */
2540
2541static int selinux_sb_alloc_security(struct super_block *sb)
2542{
2543 struct superblock_security_struct *sbsec = selinux_superblock(sb);
2544
2545 mutex_init(&sbsec->lock);
2546 INIT_LIST_HEAD(&sbsec->isec_head);
2547 spin_lock_init(&sbsec->isec_lock);
2548 sbsec->sid = SECINITSID_UNLABELED;
2549 sbsec->def_sid = SECINITSID_FILE;
2550 sbsec->mntpoint_sid = SECINITSID_UNLABELED;
2551
2552 return 0;
2553}
2554
2555static inline int opt_len(const char *s)
2556{
2557 bool open_quote = false;
2558 int len;
2559 char c;
2560
2561 for (len = 0; (c = s[len]) != '\0'; len++) {
2562 if (c == '"')
2563 open_quote = !open_quote;
2564 if (c == ',' && !open_quote)
2565 break;
2566 }
2567 return len;
2568}
2569
2570static int selinux_sb_eat_lsm_opts(char *options, void **mnt_opts)
2571{
2572 char *from = options;
2573 char *to = options;
2574 bool first = true;
2575 int rc;
2576
2577 while (1) {
2578 int len = opt_len(from);
2579 int token;
2580 char *arg = NULL;
2581
2582 token = match_opt_prefix(from, len, &arg);
2583
2584 if (token != Opt_error) {
2585 char *p, *q;
2586
2587 /* strip quotes */
2588 if (arg) {
2589 for (p = q = arg; p < from + len; p++) {
2590 char c = *p;
2591 if (c != '"')
2592 *q++ = c;
2593 }
2594 arg = kmemdup_nul(arg, q - arg, GFP_KERNEL);
2595 if (!arg) {
2596 rc = -ENOMEM;
2597 goto free_opt;
2598 }
2599 }
2600 rc = selinux_add_opt(token, arg, mnt_opts);
2601 kfree(arg);
2602 arg = NULL;
2603 if (unlikely(rc)) {
2604 goto free_opt;
2605 }
2606 } else {
2607 if (!first) { // copy with preceding comma
2608 from--;
2609 len++;
2610 }
2611 if (to != from)
2612 memmove(to, from, len);
2613 to += len;
2614 first = false;
2615 }
2616 if (!from[len])
2617 break;
2618 from += len + 1;
2619 }
2620 *to = '\0';
2621 return 0;
2622
2623free_opt:
2624 if (*mnt_opts) {
2625 selinux_free_mnt_opts(*mnt_opts);
2626 *mnt_opts = NULL;
2627 }
2628 return rc;
2629}
2630
2631static int selinux_sb_mnt_opts_compat(struct super_block *sb, void *mnt_opts)
2632{
2633 struct selinux_mnt_opts *opts = mnt_opts;
2634 struct superblock_security_struct *sbsec = selinux_superblock(sb);
2635
2636 /*
2637 * Superblock not initialized (i.e. no options) - reject if any
2638 * options specified, otherwise accept.
2639 */
2640 if (!(sbsec->flags & SE_SBINITIALIZED))
2641 return opts ? 1 : 0;
2642
2643 /*
2644 * Superblock initialized and no options specified - reject if
2645 * superblock has any options set, otherwise accept.
2646 */
2647 if (!opts)
2648 return (sbsec->flags & SE_MNTMASK) ? 1 : 0;
2649
2650 if (opts->fscontext_sid) {
2651 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
2652 opts->fscontext_sid))
2653 return 1;
2654 }
2655 if (opts->context_sid) {
2656 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
2657 opts->context_sid))
2658 return 1;
2659 }
2660 if (opts->rootcontext_sid) {
2661 struct inode_security_struct *root_isec;
2662
2663 root_isec = backing_inode_security(sb->s_root);
2664 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
2665 opts->rootcontext_sid))
2666 return 1;
2667 }
2668 if (opts->defcontext_sid) {
2669 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
2670 opts->defcontext_sid))
2671 return 1;
2672 }
2673 return 0;
2674}
2675
2676static int selinux_sb_remount(struct super_block *sb, void *mnt_opts)
2677{
2678 struct selinux_mnt_opts *opts = mnt_opts;
2679 struct superblock_security_struct *sbsec = selinux_superblock(sb);
2680
2681 if (!(sbsec->flags & SE_SBINITIALIZED))
2682 return 0;
2683
2684 if (!opts)
2685 return 0;
2686
2687 if (opts->fscontext_sid) {
2688 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
2689 opts->fscontext_sid))
2690 goto out_bad_option;
2691 }
2692 if (opts->context_sid) {
2693 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
2694 opts->context_sid))
2695 goto out_bad_option;
2696 }
2697 if (opts->rootcontext_sid) {
2698 struct inode_security_struct *root_isec;
2699 root_isec = backing_inode_security(sb->s_root);
2700 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
2701 opts->rootcontext_sid))
2702 goto out_bad_option;
2703 }
2704 if (opts->defcontext_sid) {
2705 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
2706 opts->defcontext_sid))
2707 goto out_bad_option;
2708 }
2709 return 0;
2710
2711out_bad_option:
2712 pr_warn("SELinux: unable to change security options "
2713 "during remount (dev %s, type=%s)\n", sb->s_id,
2714 sb->s_type->name);
2715 return -EINVAL;
2716}
2717
2718static int selinux_sb_kern_mount(struct super_block *sb)
2719{
2720 const struct cred *cred = current_cred();
2721 struct common_audit_data ad;
2722
2723 ad.type = LSM_AUDIT_DATA_DENTRY;
2724 ad.u.dentry = sb->s_root;
2725 return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2726}
2727
2728static int selinux_sb_statfs(struct dentry *dentry)
2729{
2730 const struct cred *cred = current_cred();
2731 struct common_audit_data ad;
2732
2733 ad.type = LSM_AUDIT_DATA_DENTRY;
2734 ad.u.dentry = dentry->d_sb->s_root;
2735 return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2736}
2737
2738static int selinux_mount(const char *dev_name,
2739 const struct path *path,
2740 const char *type,
2741 unsigned long flags,
2742 void *data)
2743{
2744 const struct cred *cred = current_cred();
2745
2746 if (flags & MS_REMOUNT)
2747 return superblock_has_perm(cred, path->dentry->d_sb,
2748 FILESYSTEM__REMOUNT, NULL);
2749 else
2750 return path_has_perm(cred, path, FILE__MOUNTON);
2751}
2752
2753static int selinux_move_mount(const struct path *from_path,
2754 const struct path *to_path)
2755{
2756 const struct cred *cred = current_cred();
2757
2758 return path_has_perm(cred, to_path, FILE__MOUNTON);
2759}
2760
2761static int selinux_umount(struct vfsmount *mnt, int flags)
2762{
2763 const struct cred *cred = current_cred();
2764
2765 return superblock_has_perm(cred, mnt->mnt_sb,
2766 FILESYSTEM__UNMOUNT, NULL);
2767}
2768
2769static int selinux_fs_context_dup(struct fs_context *fc,
2770 struct fs_context *src_fc)
2771{
2772 const struct selinux_mnt_opts *src = src_fc->security;
2773
2774 if (!src)
2775 return 0;
2776
2777 fc->security = kmemdup(src, sizeof(*src), GFP_KERNEL);
2778 return fc->security ? 0 : -ENOMEM;
2779}
2780
2781static const struct fs_parameter_spec selinux_fs_parameters[] = {
2782 fsparam_string(CONTEXT_STR, Opt_context),
2783 fsparam_string(DEFCONTEXT_STR, Opt_defcontext),
2784 fsparam_string(FSCONTEXT_STR, Opt_fscontext),
2785 fsparam_string(ROOTCONTEXT_STR, Opt_rootcontext),
2786 fsparam_flag (SECLABEL_STR, Opt_seclabel),
2787 {}
2788};
2789
2790static int selinux_fs_context_parse_param(struct fs_context *fc,
2791 struct fs_parameter *param)
2792{
2793 struct fs_parse_result result;
2794 int opt;
2795
2796 opt = fs_parse(fc, selinux_fs_parameters, param, &result);
2797 if (opt < 0)
2798 return opt;
2799
2800 return selinux_add_opt(opt, param->string, &fc->security);
2801}
2802
2803/* inode security operations */
2804
2805static int selinux_inode_alloc_security(struct inode *inode)
2806{
2807 struct inode_security_struct *isec = selinux_inode(inode);
2808 u32 sid = current_sid();
2809
2810 spin_lock_init(&isec->lock);
2811 INIT_LIST_HEAD(&isec->list);
2812 isec->inode = inode;
2813 isec->sid = SECINITSID_UNLABELED;
2814 isec->sclass = SECCLASS_FILE;
2815 isec->task_sid = sid;
2816 isec->initialized = LABEL_INVALID;
2817
2818 return 0;
2819}
2820
2821static void selinux_inode_free_security(struct inode *inode)
2822{
2823 inode_free_security(inode);
2824}
2825
2826static int selinux_dentry_init_security(struct dentry *dentry, int mode,
2827 const struct qstr *name,
2828 const char **xattr_name, void **ctx,
2829 u32 *ctxlen)
2830{
2831 u32 newsid;
2832 int rc;
2833
2834 rc = selinux_determine_inode_label(selinux_cred(current_cred()),
2835 d_inode(dentry->d_parent), name,
2836 inode_mode_to_security_class(mode),
2837 &newsid);
2838 if (rc)
2839 return rc;
2840
2841 if (xattr_name)
2842 *xattr_name = XATTR_NAME_SELINUX;
2843
2844 return security_sid_to_context(&selinux_state, newsid, (char **)ctx,
2845 ctxlen);
2846}
2847
2848static int selinux_dentry_create_files_as(struct dentry *dentry, int mode,
2849 struct qstr *name,
2850 const struct cred *old,
2851 struct cred *new)
2852{
2853 u32 newsid;
2854 int rc;
2855 struct task_security_struct *tsec;
2856
2857 rc = selinux_determine_inode_label(selinux_cred(old),
2858 d_inode(dentry->d_parent), name,
2859 inode_mode_to_security_class(mode),
2860 &newsid);
2861 if (rc)
2862 return rc;
2863
2864 tsec = selinux_cred(new);
2865 tsec->create_sid = newsid;
2866 return 0;
2867}
2868
2869static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2870 const struct qstr *qstr,
2871 const char **name,
2872 void **value, size_t *len)
2873{
2874 const struct task_security_struct *tsec = selinux_cred(current_cred());
2875 struct superblock_security_struct *sbsec;
2876 u32 newsid, clen;
2877 int rc;
2878 char *context;
2879
2880 sbsec = selinux_superblock(dir->i_sb);
2881
2882 newsid = tsec->create_sid;
2883
2884 rc = selinux_determine_inode_label(tsec, dir, qstr,
2885 inode_mode_to_security_class(inode->i_mode),
2886 &newsid);
2887 if (rc)
2888 return rc;
2889
2890 /* Possibly defer initialization to selinux_complete_init. */
2891 if (sbsec->flags & SE_SBINITIALIZED) {
2892 struct inode_security_struct *isec = selinux_inode(inode);
2893 isec->sclass = inode_mode_to_security_class(inode->i_mode);
2894 isec->sid = newsid;
2895 isec->initialized = LABEL_INITIALIZED;
2896 }
2897
2898 if (!selinux_initialized(&selinux_state) ||
2899 !(sbsec->flags & SBLABEL_MNT))
2900 return -EOPNOTSUPP;
2901
2902 if (name)
2903 *name = XATTR_SELINUX_SUFFIX;
2904
2905 if (value && len) {
2906 rc = security_sid_to_context_force(&selinux_state, newsid,
2907 &context, &clen);
2908 if (rc)
2909 return rc;
2910 *value = context;
2911 *len = clen;
2912 }
2913
2914 return 0;
2915}
2916
2917static int selinux_inode_init_security_anon(struct inode *inode,
2918 const struct qstr *name,
2919 const struct inode *context_inode)
2920{
2921 const struct task_security_struct *tsec = selinux_cred(current_cred());
2922 struct common_audit_data ad;
2923 struct inode_security_struct *isec;
2924 int rc;
2925
2926 if (unlikely(!selinux_initialized(&selinux_state)))
2927 return 0;
2928
2929 isec = selinux_inode(inode);
2930
2931 /*
2932 * We only get here once per ephemeral inode. The inode has
2933 * been initialized via inode_alloc_security but is otherwise
2934 * untouched.
2935 */
2936
2937 if (context_inode) {
2938 struct inode_security_struct *context_isec =
2939 selinux_inode(context_inode);
2940 if (context_isec->initialized != LABEL_INITIALIZED) {
2941 pr_err("SELinux: context_inode is not initialized");
2942 return -EACCES;
2943 }
2944
2945 isec->sclass = context_isec->sclass;
2946 isec->sid = context_isec->sid;
2947 } else {
2948 isec->sclass = SECCLASS_ANON_INODE;
2949 rc = security_transition_sid(
2950 &selinux_state, tsec->sid, tsec->sid,
2951 isec->sclass, name, &isec->sid);
2952 if (rc)
2953 return rc;
2954 }
2955
2956 isec->initialized = LABEL_INITIALIZED;
2957 /*
2958 * Now that we've initialized security, check whether we're
2959 * allowed to actually create this type of anonymous inode.
2960 */
2961
2962 ad.type = LSM_AUDIT_DATA_ANONINODE;
2963 ad.u.anonclass = name ? (const char *)name->name : "?";
2964
2965 return avc_has_perm(&selinux_state,
2966 tsec->sid,
2967 isec->sid,
2968 isec->sclass,
2969 FILE__CREATE,
2970 &ad);
2971}
2972
2973static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
2974{
2975 return may_create(dir, dentry, SECCLASS_FILE);
2976}
2977
2978static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2979{
2980 return may_link(dir, old_dentry, MAY_LINK);
2981}
2982
2983static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2984{
2985 return may_link(dir, dentry, MAY_UNLINK);
2986}
2987
2988static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2989{
2990 return may_create(dir, dentry, SECCLASS_LNK_FILE);
2991}
2992
2993static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
2994{
2995 return may_create(dir, dentry, SECCLASS_DIR);
2996}
2997
2998static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2999{
3000 return may_link(dir, dentry, MAY_RMDIR);
3001}
3002
3003static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3004{
3005 return may_create(dir, dentry, inode_mode_to_security_class(mode));
3006}
3007
3008static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
3009 struct inode *new_inode, struct dentry *new_dentry)
3010{
3011 return may_rename(old_inode, old_dentry, new_inode, new_dentry);
3012}
3013
3014static int selinux_inode_readlink(struct dentry *dentry)
3015{
3016 const struct cred *cred = current_cred();
3017
3018 return dentry_has_perm(cred, dentry, FILE__READ);
3019}
3020
3021static int selinux_inode_follow_link(struct dentry *dentry, struct inode *inode,
3022 bool rcu)
3023{
3024 const struct cred *cred = current_cred();
3025 struct common_audit_data ad;
3026 struct inode_security_struct *isec;
3027 u32 sid;
3028
3029 validate_creds(cred);
3030
3031 ad.type = LSM_AUDIT_DATA_DENTRY;
3032 ad.u.dentry = dentry;
3033 sid = cred_sid(cred);
3034 isec = inode_security_rcu(inode, rcu);
3035 if (IS_ERR(isec))
3036 return PTR_ERR(isec);
3037
3038 return avc_has_perm(&selinux_state,
3039 sid, isec->sid, isec->sclass, FILE__READ, &ad);
3040}
3041
3042static noinline int audit_inode_permission(struct inode *inode,
3043 u32 perms, u32 audited, u32 denied,
3044 int result)
3045{
3046 struct common_audit_data ad;
3047 struct inode_security_struct *isec = selinux_inode(inode);
3048
3049 ad.type = LSM_AUDIT_DATA_INODE;
3050 ad.u.inode = inode;
3051
3052 return slow_avc_audit(&selinux_state,
3053 current_sid(), isec->sid, isec->sclass, perms,
3054 audited, denied, result, &ad);
3055}
3056
3057static int selinux_inode_permission(struct inode *inode, int mask)
3058{
3059 const struct cred *cred = current_cred();
3060 u32 perms;
3061 bool from_access;
3062 bool no_block = mask & MAY_NOT_BLOCK;
3063 struct inode_security_struct *isec;
3064 u32 sid;
3065 struct av_decision avd;
3066 int rc, rc2;
3067 u32 audited, denied;
3068
3069 from_access = mask & MAY_ACCESS;
3070 mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
3071
3072 /* No permission to check. Existence test. */
3073 if (!mask)
3074 return 0;
3075
3076 validate_creds(cred);
3077
3078 if (unlikely(IS_PRIVATE(inode)))
3079 return 0;
3080
3081 perms = file_mask_to_av(inode->i_mode, mask);
3082
3083 sid = cred_sid(cred);
3084 isec = inode_security_rcu(inode, no_block);
3085 if (IS_ERR(isec))
3086 return PTR_ERR(isec);
3087
3088 rc = avc_has_perm_noaudit(&selinux_state,
3089 sid, isec->sid, isec->sclass, perms, 0,
3090 &avd);
3091 audited = avc_audit_required(perms, &avd, rc,
3092 from_access ? FILE__AUDIT_ACCESS : 0,
3093 &denied);
3094 if (likely(!audited))
3095 return rc;
3096
3097 rc2 = audit_inode_permission(inode, perms, audited, denied, rc);
3098 if (rc2)
3099 return rc2;
3100 return rc;
3101}
3102
3103static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
3104{
3105 const struct cred *cred = current_cred();
3106 struct inode *inode = d_backing_inode(dentry);
3107 unsigned int ia_valid = iattr->ia_valid;
3108 __u32 av = FILE__WRITE;
3109
3110 /* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
3111 if (ia_valid & ATTR_FORCE) {
3112 ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
3113 ATTR_FORCE);
3114 if (!ia_valid)
3115 return 0;
3116 }
3117
3118 if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
3119 ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
3120 return dentry_has_perm(cred, dentry, FILE__SETATTR);
3121
3122 if (selinux_policycap_openperm() &&
3123 inode->i_sb->s_magic != SOCKFS_MAGIC &&
3124 (ia_valid & ATTR_SIZE) &&
3125 !(ia_valid & ATTR_FILE))
3126 av |= FILE__OPEN;
3127
3128 return dentry_has_perm(cred, dentry, av);
3129}
3130
3131static int selinux_inode_getattr(const struct path *path)
3132{
3133 return path_has_perm(current_cred(), path, FILE__GETATTR);
3134}
3135
3136static bool has_cap_mac_admin(bool audit)
3137{
3138 const struct cred *cred = current_cred();
3139 unsigned int opts = audit ? CAP_OPT_NONE : CAP_OPT_NOAUDIT;
3140
3141 if (cap_capable(cred, &init_user_ns, CAP_MAC_ADMIN, opts))
3142 return false;
3143 if (cred_has_capability(cred, CAP_MAC_ADMIN, opts, true))
3144 return false;
3145 return true;
3146}
3147
3148static int selinux_inode_setxattr(struct user_namespace *mnt_userns,
3149 struct dentry *dentry, const char *name,
3150 const void *value, size_t size, int flags)
3151{
3152 struct inode *inode = d_backing_inode(dentry);
3153 struct inode_security_struct *isec;
3154 struct superblock_security_struct *sbsec;
3155 struct common_audit_data ad;
3156 u32 newsid, sid = current_sid();
3157 int rc = 0;
3158
3159 if (strcmp(name, XATTR_NAME_SELINUX)) {
3160 rc = cap_inode_setxattr(dentry, name, value, size, flags);
3161 if (rc)
3162 return rc;
3163
3164 /* Not an attribute we recognize, so just check the
3165 ordinary setattr permission. */
3166 return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3167 }
3168
3169 if (!selinux_initialized(&selinux_state))
3170 return (inode_owner_or_capable(mnt_userns, inode) ? 0 : -EPERM);
3171
3172 sbsec = selinux_superblock(inode->i_sb);
3173 if (!(sbsec->flags & SBLABEL_MNT))
3174 return -EOPNOTSUPP;
3175
3176 if (!inode_owner_or_capable(mnt_userns, inode))
3177 return -EPERM;
3178
3179 ad.type = LSM_AUDIT_DATA_DENTRY;
3180 ad.u.dentry = dentry;
3181
3182 isec = backing_inode_security(dentry);
3183 rc = avc_has_perm(&selinux_state,
3184 sid, isec->sid, isec->sclass,
3185 FILE__RELABELFROM, &ad);
3186 if (rc)
3187 return rc;
3188
3189 rc = security_context_to_sid(&selinux_state, value, size, &newsid,
3190 GFP_KERNEL);
3191 if (rc == -EINVAL) {
3192 if (!has_cap_mac_admin(true)) {
3193 struct audit_buffer *ab;
3194 size_t audit_size;
3195
3196 /* We strip a nul only if it is at the end, otherwise the
3197 * context contains a nul and we should audit that */
3198 if (value) {
3199 const char *str = value;
3200
3201 if (str[size - 1] == '\0')
3202 audit_size = size - 1;
3203 else
3204 audit_size = size;
3205 } else {
3206 audit_size = 0;
3207 }
3208 ab = audit_log_start(audit_context(),
3209 GFP_ATOMIC, AUDIT_SELINUX_ERR);
3210 if (!ab)
3211 return rc;
3212 audit_log_format(ab, "op=setxattr invalid_context=");
3213 audit_log_n_untrustedstring(ab, value, audit_size);
3214 audit_log_end(ab);
3215
3216 return rc;
3217 }
3218 rc = security_context_to_sid_force(&selinux_state, value,
3219 size, &newsid);
3220 }
3221 if (rc)
3222 return rc;
3223
3224 rc = avc_has_perm(&selinux_state,
3225 sid, newsid, isec->sclass,
3226 FILE__RELABELTO, &ad);
3227 if (rc)
3228 return rc;
3229
3230 rc = security_validate_transition(&selinux_state, isec->sid, newsid,
3231 sid, isec->sclass);
3232 if (rc)
3233 return rc;
3234
3235 return avc_has_perm(&selinux_state,
3236 newsid,
3237 sbsec->sid,
3238 SECCLASS_FILESYSTEM,
3239 FILESYSTEM__ASSOCIATE,
3240 &ad);
3241}
3242
3243static int selinux_inode_set_acl(struct user_namespace *mnt_userns,
3244 struct dentry *dentry, const char *acl_name,
3245 struct posix_acl *kacl)
3246{
3247 return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3248}
3249
3250static int selinux_inode_get_acl(struct user_namespace *mnt_userns,
3251 struct dentry *dentry, const char *acl_name)
3252{
3253 return dentry_has_perm(current_cred(), dentry, FILE__GETATTR);
3254}
3255
3256static int selinux_inode_remove_acl(struct user_namespace *mnt_userns,
3257 struct dentry *dentry, const char *acl_name)
3258{
3259 return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3260}
3261
3262static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
3263 const void *value, size_t size,
3264 int flags)
3265{
3266 struct inode *inode = d_backing_inode(dentry);
3267 struct inode_security_struct *isec;
3268 u32 newsid;
3269 int rc;
3270
3271 if (strcmp(name, XATTR_NAME_SELINUX)) {
3272 /* Not an attribute we recognize, so nothing to do. */
3273 return;
3274 }
3275
3276 if (!selinux_initialized(&selinux_state)) {
3277 /* If we haven't even been initialized, then we can't validate
3278 * against a policy, so leave the label as invalid. It may
3279 * resolve to a valid label on the next revalidation try if
3280 * we've since initialized.
3281 */
3282 return;
3283 }
3284
3285 rc = security_context_to_sid_force(&selinux_state, value, size,
3286 &newsid);
3287 if (rc) {
3288 pr_err("SELinux: unable to map context to SID"
3289 "for (%s, %lu), rc=%d\n",
3290 inode->i_sb->s_id, inode->i_ino, -rc);
3291 return;
3292 }
3293
3294 isec = backing_inode_security(dentry);
3295 spin_lock(&isec->lock);
3296 isec->sclass = inode_mode_to_security_class(inode->i_mode);
3297 isec->sid = newsid;
3298 isec->initialized = LABEL_INITIALIZED;
3299 spin_unlock(&isec->lock);
3300}
3301
3302static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
3303{
3304 const struct cred *cred = current_cred();
3305
3306 return dentry_has_perm(cred, dentry, FILE__GETATTR);
3307}
3308
3309static int selinux_inode_listxattr(struct dentry *dentry)
3310{
3311 const struct cred *cred = current_cred();
3312
3313 return dentry_has_perm(cred, dentry, FILE__GETATTR);
3314}
3315
3316static int selinux_inode_removexattr(struct user_namespace *mnt_userns,
3317 struct dentry *dentry, const char *name)
3318{
3319 if (strcmp(name, XATTR_NAME_SELINUX)) {
3320 int rc = cap_inode_removexattr(mnt_userns, dentry, name);
3321 if (rc)
3322 return rc;
3323
3324 /* Not an attribute we recognize, so just check the
3325 ordinary setattr permission. */
3326 return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3327 }
3328
3329 if (!selinux_initialized(&selinux_state))
3330 return 0;
3331
3332 /* No one is allowed to remove a SELinux security label.
3333 You can change the label, but all data must be labeled. */
3334 return -EACCES;
3335}
3336
3337static int selinux_path_notify(const struct path *path, u64 mask,
3338 unsigned int obj_type)
3339{
3340 int ret;
3341 u32 perm;
3342
3343 struct common_audit_data ad;
3344
3345 ad.type = LSM_AUDIT_DATA_PATH;
3346 ad.u.path = *path;
3347
3348 /*
3349 * Set permission needed based on the type of mark being set.
3350 * Performs an additional check for sb watches.
3351 */
3352 switch (obj_type) {
3353 case FSNOTIFY_OBJ_TYPE_VFSMOUNT:
3354 perm = FILE__WATCH_MOUNT;
3355 break;
3356 case FSNOTIFY_OBJ_TYPE_SB:
3357 perm = FILE__WATCH_SB;
3358 ret = superblock_has_perm(current_cred(), path->dentry->d_sb,
3359 FILESYSTEM__WATCH, &ad);
3360 if (ret)
3361 return ret;
3362 break;
3363 case FSNOTIFY_OBJ_TYPE_INODE:
3364 perm = FILE__WATCH;
3365 break;
3366 default:
3367 return -EINVAL;
3368 }
3369
3370 /* blocking watches require the file:watch_with_perm permission */
3371 if (mask & (ALL_FSNOTIFY_PERM_EVENTS))
3372 perm |= FILE__WATCH_WITH_PERM;
3373
3374 /* watches on read-like events need the file:watch_reads permission */
3375 if (mask & (FS_ACCESS | FS_ACCESS_PERM | FS_CLOSE_NOWRITE))
3376 perm |= FILE__WATCH_READS;
3377
3378 return path_has_perm(current_cred(), path, perm);
3379}
3380
3381/*
3382 * Copy the inode security context value to the user.
3383 *
3384 * Permission check is handled by selinux_inode_getxattr hook.
3385 */
3386static int selinux_inode_getsecurity(struct user_namespace *mnt_userns,
3387 struct inode *inode, const char *name,
3388 void **buffer, bool alloc)
3389{
3390 u32 size;
3391 int error;
3392 char *context = NULL;
3393 struct inode_security_struct *isec;
3394
3395 /*
3396 * If we're not initialized yet, then we can't validate contexts, so
3397 * just let vfs_getxattr fall back to using the on-disk xattr.
3398 */
3399 if (!selinux_initialized(&selinux_state) ||
3400 strcmp(name, XATTR_SELINUX_SUFFIX))
3401 return -EOPNOTSUPP;
3402
3403 /*
3404 * If the caller has CAP_MAC_ADMIN, then get the raw context
3405 * value even if it is not defined by current policy; otherwise,
3406 * use the in-core value under current policy.
3407 * Use the non-auditing forms of the permission checks since
3408 * getxattr may be called by unprivileged processes commonly
3409 * and lack of permission just means that we fall back to the
3410 * in-core context value, not a denial.
3411 */
3412 isec = inode_security(inode);
3413 if (has_cap_mac_admin(false))
3414 error = security_sid_to_context_force(&selinux_state,
3415 isec->sid, &context,
3416 &size);
3417 else
3418 error = security_sid_to_context(&selinux_state, isec->sid,
3419 &context, &size);
3420 if (error)
3421 return error;
3422 error = size;
3423 if (alloc) {
3424 *buffer = context;
3425 goto out_nofree;
3426 }
3427 kfree(context);
3428out_nofree:
3429 return error;
3430}
3431
3432static int selinux_inode_setsecurity(struct inode *inode, const char *name,
3433 const void *value, size_t size, int flags)
3434{
3435 struct inode_security_struct *isec = inode_security_novalidate(inode);
3436 struct superblock_security_struct *sbsec;
3437 u32 newsid;
3438 int rc;
3439
3440 if (strcmp(name, XATTR_SELINUX_SUFFIX))
3441 return -EOPNOTSUPP;
3442
3443 sbsec = selinux_superblock(inode->i_sb);
3444 if (!(sbsec->flags & SBLABEL_MNT))
3445 return -EOPNOTSUPP;
3446
3447 if (!value || !size)
3448 return -EACCES;
3449
3450 rc = security_context_to_sid(&selinux_state, value, size, &newsid,
3451 GFP_KERNEL);
3452 if (rc)
3453 return rc;
3454
3455 spin_lock(&isec->lock);
3456 isec->sclass = inode_mode_to_security_class(inode->i_mode);
3457 isec->sid = newsid;
3458 isec->initialized = LABEL_INITIALIZED;
3459 spin_unlock(&isec->lock);
3460 return 0;
3461}
3462
3463static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
3464{
3465 const int len = sizeof(XATTR_NAME_SELINUX);
3466
3467 if (!selinux_initialized(&selinux_state))
3468 return 0;
3469
3470 if (buffer && len <= buffer_size)
3471 memcpy(buffer, XATTR_NAME_SELINUX, len);
3472 return len;
3473}
3474
3475static void selinux_inode_getsecid(struct inode *inode, u32 *secid)
3476{
3477 struct inode_security_struct *isec = inode_security_novalidate(inode);
3478 *secid = isec->sid;
3479}
3480
3481static int selinux_inode_copy_up(struct dentry *src, struct cred **new)
3482{
3483 u32 sid;
3484 struct task_security_struct *tsec;
3485 struct cred *new_creds = *new;
3486
3487 if (new_creds == NULL) {
3488 new_creds = prepare_creds();
3489 if (!new_creds)
3490 return -ENOMEM;
3491 }
3492
3493 tsec = selinux_cred(new_creds);
3494 /* Get label from overlay inode and set it in create_sid */
3495 selinux_inode_getsecid(d_inode(src), &sid);
3496 tsec->create_sid = sid;
3497 *new = new_creds;
3498 return 0;
3499}
3500
3501static int selinux_inode_copy_up_xattr(const char *name)
3502{
3503 /* The copy_up hook above sets the initial context on an inode, but we
3504 * don't then want to overwrite it by blindly copying all the lower
3505 * xattrs up. Instead, we have to filter out SELinux-related xattrs.
3506 */
3507 if (strcmp(name, XATTR_NAME_SELINUX) == 0)
3508 return 1; /* Discard */
3509 /*
3510 * Any other attribute apart from SELINUX is not claimed, supported
3511 * by selinux.
3512 */
3513 return -EOPNOTSUPP;
3514}
3515
3516/* kernfs node operations */
3517
3518static int selinux_kernfs_init_security(struct kernfs_node *kn_dir,
3519 struct kernfs_node *kn)
3520{
3521 const struct task_security_struct *tsec = selinux_cred(current_cred());
3522 u32 parent_sid, newsid, clen;
3523 int rc;
3524 char *context;
3525
3526 rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, NULL, 0);
3527 if (rc == -ENODATA)
3528 return 0;
3529 else if (rc < 0)
3530 return rc;
3531
3532 clen = (u32)rc;
3533 context = kmalloc(clen, GFP_KERNEL);
3534 if (!context)
3535 return -ENOMEM;
3536
3537 rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, context, clen);
3538 if (rc < 0) {
3539 kfree(context);
3540 return rc;
3541 }
3542
3543 rc = security_context_to_sid(&selinux_state, context, clen, &parent_sid,
3544 GFP_KERNEL);
3545 kfree(context);
3546 if (rc)
3547 return rc;
3548
3549 if (tsec->create_sid) {
3550 newsid = tsec->create_sid;
3551 } else {
3552 u16 secclass = inode_mode_to_security_class(kn->mode);
3553 struct qstr q;
3554
3555 q.name = kn->name;
3556 q.hash_len = hashlen_string(kn_dir, kn->name);
3557
3558 rc = security_transition_sid(&selinux_state, tsec->sid,
3559 parent_sid, secclass, &q,
3560 &newsid);
3561 if (rc)
3562 return rc;
3563 }
3564
3565 rc = security_sid_to_context_force(&selinux_state, newsid,
3566 &context, &clen);
3567 if (rc)
3568 return rc;
3569
3570 rc = kernfs_xattr_set(kn, XATTR_NAME_SELINUX, context, clen,
3571 XATTR_CREATE);
3572 kfree(context);
3573 return rc;
3574}
3575
3576
3577/* file security operations */
3578
3579static int selinux_revalidate_file_permission(struct file *file, int mask)
3580{
3581 const struct cred *cred = current_cred();
3582 struct inode *inode = file_inode(file);
3583
3584 /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
3585 if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
3586 mask |= MAY_APPEND;
3587
3588 return file_has_perm(cred, file,
3589 file_mask_to_av(inode->i_mode, mask));
3590}
3591
3592static int selinux_file_permission(struct file *file, int mask)
3593{
3594 struct inode *inode = file_inode(file);
3595 struct file_security_struct *fsec = selinux_file(file);
3596 struct inode_security_struct *isec;
3597 u32 sid = current_sid();
3598
3599 if (!mask)
3600 /* No permission to check. Existence test. */
3601 return 0;
3602
3603 isec = inode_security(inode);
3604 if (sid == fsec->sid && fsec->isid == isec->sid &&
3605 fsec->pseqno == avc_policy_seqno(&selinux_state))
3606 /* No change since file_open check. */
3607 return 0;
3608
3609 return selinux_revalidate_file_permission(file, mask);
3610}
3611
3612static int selinux_file_alloc_security(struct file *file)
3613{
3614 struct file_security_struct *fsec = selinux_file(file);
3615 u32 sid = current_sid();
3616
3617 fsec->sid = sid;
3618 fsec->fown_sid = sid;
3619
3620 return 0;
3621}
3622
3623/*
3624 * Check whether a task has the ioctl permission and cmd
3625 * operation to an inode.
3626 */
3627static int ioctl_has_perm(const struct cred *cred, struct file *file,
3628 u32 requested, u16 cmd)
3629{
3630 struct common_audit_data ad;
3631 struct file_security_struct *fsec = selinux_file(file);
3632 struct inode *inode = file_inode(file);
3633 struct inode_security_struct *isec;
3634 struct lsm_ioctlop_audit ioctl;
3635 u32 ssid = cred_sid(cred);
3636 int rc;
3637 u8 driver = cmd >> 8;
3638 u8 xperm = cmd & 0xff;
3639
3640 ad.type = LSM_AUDIT_DATA_IOCTL_OP;
3641 ad.u.op = &ioctl;
3642 ad.u.op->cmd = cmd;
3643 ad.u.op->path = file->f_path;
3644
3645 if (ssid != fsec->sid) {
3646 rc = avc_has_perm(&selinux_state,
3647 ssid, fsec->sid,
3648 SECCLASS_FD,
3649 FD__USE,
3650 &ad);
3651 if (rc)
3652 goto out;
3653 }
3654
3655 if (unlikely(IS_PRIVATE(inode)))
3656 return 0;
3657
3658 isec = inode_security(inode);
3659 rc = avc_has_extended_perms(&selinux_state,
3660 ssid, isec->sid, isec->sclass,
3661 requested, driver, xperm, &ad);
3662out:
3663 return rc;
3664}
3665
3666static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3667 unsigned long arg)
3668{
3669 const struct cred *cred = current_cred();
3670 int error = 0;
3671
3672 switch (cmd) {
3673 case FIONREAD:
3674 case FIBMAP:
3675 case FIGETBSZ:
3676 case FS_IOC_GETFLAGS:
3677 case FS_IOC_GETVERSION:
3678 error = file_has_perm(cred, file, FILE__GETATTR);
3679 break;
3680
3681 case FS_IOC_SETFLAGS:
3682 case FS_IOC_SETVERSION:
3683 error = file_has_perm(cred, file, FILE__SETATTR);
3684 break;
3685
3686 /* sys_ioctl() checks */
3687 case FIONBIO:
3688 case FIOASYNC:
3689 error = file_has_perm(cred, file, 0);
3690 break;
3691
3692 case KDSKBENT:
3693 case KDSKBSENT:
3694 error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3695 CAP_OPT_NONE, true);
3696 break;
3697
3698 case FIOCLEX:
3699 case FIONCLEX:
3700 if (!selinux_policycap_ioctl_skip_cloexec())
3701 error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd);
3702 break;
3703
3704 /* default case assumes that the command will go
3705 * to the file's ioctl() function.
3706 */
3707 default:
3708 error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd);
3709 }
3710 return error;
3711}
3712
3713static int default_noexec __ro_after_init;
3714
3715static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3716{
3717 const struct cred *cred = current_cred();
3718 u32 sid = cred_sid(cred);
3719 int rc = 0;
3720
3721 if (default_noexec &&
3722 (prot & PROT_EXEC) && (!file || IS_PRIVATE(file_inode(file)) ||
3723 (!shared && (prot & PROT_WRITE)))) {
3724 /*
3725 * We are making executable an anonymous mapping or a
3726 * private file mapping that will also be writable.
3727 * This has an additional check.
3728 */
3729 rc = avc_has_perm(&selinux_state,
3730 sid, sid, SECCLASS_PROCESS,
3731 PROCESS__EXECMEM, NULL);
3732 if (rc)
3733 goto error;
3734 }
3735
3736 if (file) {
3737 /* read access is always possible with a mapping */
3738 u32 av = FILE__READ;
3739
3740 /* write access only matters if the mapping is shared */
3741 if (shared && (prot & PROT_WRITE))
3742 av |= FILE__WRITE;
3743
3744 if (prot & PROT_EXEC)
3745 av |= FILE__EXECUTE;
3746
3747 return file_has_perm(cred, file, av);
3748 }
3749
3750error:
3751 return rc;
3752}
3753
3754static int selinux_mmap_addr(unsigned long addr)
3755{
3756 int rc = 0;
3757
3758 if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3759 u32 sid = current_sid();
3760 rc = avc_has_perm(&selinux_state,
3761 sid, sid, SECCLASS_MEMPROTECT,
3762 MEMPROTECT__MMAP_ZERO, NULL);
3763 }
3764
3765 return rc;
3766}
3767
3768static int selinux_mmap_file(struct file *file, unsigned long reqprot,
3769 unsigned long prot, unsigned long flags)
3770{
3771 struct common_audit_data ad;
3772 int rc;
3773
3774 if (file) {
3775 ad.type = LSM_AUDIT_DATA_FILE;
3776 ad.u.file = file;
3777 rc = inode_has_perm(current_cred(), file_inode(file),
3778 FILE__MAP, &ad);
3779 if (rc)
3780 return rc;
3781 }
3782
3783 if (checkreqprot_get(&selinux_state))
3784 prot = reqprot;
3785
3786 return file_map_prot_check(file, prot,
3787 (flags & MAP_TYPE) == MAP_SHARED);
3788}
3789
3790static int selinux_file_mprotect(struct vm_area_struct *vma,
3791 unsigned long reqprot,
3792 unsigned long prot)
3793{
3794 const struct cred *cred = current_cred();
3795 u32 sid = cred_sid(cred);
3796
3797 if (checkreqprot_get(&selinux_state))
3798 prot = reqprot;
3799
3800 if (default_noexec &&
3801 (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3802 int rc = 0;
3803 if (vma->vm_start >= vma->vm_mm->start_brk &&
3804 vma->vm_end <= vma->vm_mm->brk) {
3805 rc = avc_has_perm(&selinux_state,
3806 sid, sid, SECCLASS_PROCESS,
3807 PROCESS__EXECHEAP, NULL);
3808 } else if (!vma->vm_file &&
3809 ((vma->vm_start <= vma->vm_mm->start_stack &&
3810 vma->vm_end >= vma->vm_mm->start_stack) ||
3811 vma_is_stack_for_current(vma))) {
3812 rc = avc_has_perm(&selinux_state,
3813 sid, sid, SECCLASS_PROCESS,
3814 PROCESS__EXECSTACK, NULL);
3815 } else if (vma->vm_file && vma->anon_vma) {
3816 /*
3817 * We are making executable a file mapping that has
3818 * had some COW done. Since pages might have been
3819 * written, check ability to execute the possibly
3820 * modified content. This typically should only
3821 * occur for text relocations.
3822 */
3823 rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3824 }
3825 if (rc)
3826 return rc;
3827 }
3828
3829 return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3830}
3831
3832static int selinux_file_lock(struct file *file, unsigned int cmd)
3833{
3834 const struct cred *cred = current_cred();
3835
3836 return file_has_perm(cred, file, FILE__LOCK);
3837}
3838
3839static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3840 unsigned long arg)
3841{
3842 const struct cred *cred = current_cred();
3843 int err = 0;
3844
3845 switch (cmd) {
3846 case F_SETFL:
3847 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3848 err = file_has_perm(cred, file, FILE__WRITE);
3849 break;
3850 }
3851 fallthrough;
3852 case F_SETOWN:
3853 case F_SETSIG:
3854 case F_GETFL:
3855 case F_GETOWN:
3856 case F_GETSIG:
3857 case F_GETOWNER_UIDS:
3858 /* Just check FD__USE permission */
3859 err = file_has_perm(cred, file, 0);
3860 break;
3861 case F_GETLK:
3862 case F_SETLK:
3863 case F_SETLKW:
3864 case F_OFD_GETLK:
3865 case F_OFD_SETLK:
3866 case F_OFD_SETLKW:
3867#if BITS_PER_LONG == 32
3868 case F_GETLK64:
3869 case F_SETLK64:
3870 case F_SETLKW64:
3871#endif
3872 err = file_has_perm(cred, file, FILE__LOCK);
3873 break;
3874 }
3875
3876 return err;
3877}
3878
3879static void selinux_file_set_fowner(struct file *file)
3880{
3881 struct file_security_struct *fsec;
3882
3883 fsec = selinux_file(file);
3884 fsec->fown_sid = current_sid();
3885}
3886
3887static int selinux_file_send_sigiotask(struct task_struct *tsk,
3888 struct fown_struct *fown, int signum)
3889{
3890 struct file *file;
3891 u32 sid = task_sid_obj(tsk);
3892 u32 perm;
3893 struct file_security_struct *fsec;
3894
3895 /* struct fown_struct is never outside the context of a struct file */
3896 file = container_of(fown, struct file, f_owner);
3897
3898 fsec = selinux_file(file);
3899
3900 if (!signum)
3901 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3902 else
3903 perm = signal_to_av(signum);
3904
3905 return avc_has_perm(&selinux_state,
3906 fsec->fown_sid, sid,
3907 SECCLASS_PROCESS, perm, NULL);
3908}
3909
3910static int selinux_file_receive(struct file *file)
3911{
3912 const struct cred *cred = current_cred();
3913
3914 return file_has_perm(cred, file, file_to_av(file));
3915}
3916
3917static int selinux_file_open(struct file *file)
3918{
3919 struct file_security_struct *fsec;
3920 struct inode_security_struct *isec;
3921
3922 fsec = selinux_file(file);
3923 isec = inode_security(file_inode(file));
3924 /*
3925 * Save inode label and policy sequence number
3926 * at open-time so that selinux_file_permission
3927 * can determine whether revalidation is necessary.
3928 * Task label is already saved in the file security
3929 * struct as its SID.
3930 */
3931 fsec->isid = isec->sid;
3932 fsec->pseqno = avc_policy_seqno(&selinux_state);
3933 /*
3934 * Since the inode label or policy seqno may have changed
3935 * between the selinux_inode_permission check and the saving
3936 * of state above, recheck that access is still permitted.
3937 * Otherwise, access might never be revalidated against the
3938 * new inode label or new policy.
3939 * This check is not redundant - do not remove.
3940 */
3941 return file_path_has_perm(file->f_cred, file, open_file_to_av(file));
3942}
3943
3944/* task security operations */
3945
3946static int selinux_task_alloc(struct task_struct *task,
3947 unsigned long clone_flags)
3948{
3949 u32 sid = current_sid();
3950
3951 return avc_has_perm(&selinux_state,
3952 sid, sid, SECCLASS_PROCESS, PROCESS__FORK, NULL);
3953}
3954
3955/*
3956 * prepare a new set of credentials for modification
3957 */
3958static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3959 gfp_t gfp)
3960{
3961 const struct task_security_struct *old_tsec = selinux_cred(old);
3962 struct task_security_struct *tsec = selinux_cred(new);
3963
3964 *tsec = *old_tsec;
3965 return 0;
3966}
3967
3968/*
3969 * transfer the SELinux data to a blank set of creds
3970 */
3971static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3972{
3973 const struct task_security_struct *old_tsec = selinux_cred(old);
3974 struct task_security_struct *tsec = selinux_cred(new);
3975
3976 *tsec = *old_tsec;
3977}
3978
3979static void selinux_cred_getsecid(const struct cred *c, u32 *secid)
3980{
3981 *secid = cred_sid(c);
3982}
3983
3984/*
3985 * set the security data for a kernel service
3986 * - all the creation contexts are set to unlabelled
3987 */
3988static int selinux_kernel_act_as(struct cred *new, u32 secid)
3989{
3990 struct task_security_struct *tsec = selinux_cred(new);
3991 u32 sid = current_sid();
3992 int ret;
3993
3994 ret = avc_has_perm(&selinux_state,
3995 sid, secid,
3996 SECCLASS_KERNEL_SERVICE,
3997 KERNEL_SERVICE__USE_AS_OVERRIDE,
3998 NULL);
3999 if (ret == 0) {
4000 tsec->sid = secid;
4001 tsec->create_sid = 0;
4002 tsec->keycreate_sid = 0;
4003 tsec->sockcreate_sid = 0;
4004 }
4005 return ret;
4006}
4007
4008/*
4009 * set the file creation context in a security record to the same as the
4010 * objective context of the specified inode
4011 */
4012static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
4013{
4014 struct inode_security_struct *isec = inode_security(inode);
4015 struct task_security_struct *tsec = selinux_cred(new);
4016 u32 sid = current_sid();
4017 int ret;
4018
4019 ret = avc_has_perm(&selinux_state,
4020 sid, isec->sid,
4021 SECCLASS_KERNEL_SERVICE,
4022 KERNEL_SERVICE__CREATE_FILES_AS,
4023 NULL);
4024
4025 if (ret == 0)
4026 tsec->create_sid = isec->sid;
4027 return ret;
4028}
4029
4030static int selinux_kernel_module_request(char *kmod_name)
4031{
4032 struct common_audit_data ad;
4033
4034 ad.type = LSM_AUDIT_DATA_KMOD;
4035 ad.u.kmod_name = kmod_name;
4036
4037 return avc_has_perm(&selinux_state,
4038 current_sid(), SECINITSID_KERNEL, SECCLASS_SYSTEM,
4039 SYSTEM__MODULE_REQUEST, &ad);
4040}
4041
4042static int selinux_kernel_module_from_file(struct file *file)
4043{
4044 struct common_audit_data ad;
4045 struct inode_security_struct *isec;
4046 struct file_security_struct *fsec;
4047 u32 sid = current_sid();
4048 int rc;
4049
4050 /* init_module */
4051 if (file == NULL)
4052 return avc_has_perm(&selinux_state,
4053 sid, sid, SECCLASS_SYSTEM,
4054 SYSTEM__MODULE_LOAD, NULL);
4055
4056 /* finit_module */
4057
4058 ad.type = LSM_AUDIT_DATA_FILE;
4059 ad.u.file = file;
4060
4061 fsec = selinux_file(file);
4062 if (sid != fsec->sid) {
4063 rc = avc_has_perm(&selinux_state,
4064 sid, fsec->sid, SECCLASS_FD, FD__USE, &ad);
4065 if (rc)
4066 return rc;
4067 }
4068
4069 isec = inode_security(file_inode(file));
4070 return avc_has_perm(&selinux_state,
4071 sid, isec->sid, SECCLASS_SYSTEM,
4072 SYSTEM__MODULE_LOAD, &ad);
4073}
4074
4075static int selinux_kernel_read_file(struct file *file,
4076 enum kernel_read_file_id id,
4077 bool contents)
4078{
4079 int rc = 0;
4080
4081 switch (id) {
4082 case READING_MODULE:
4083 rc = selinux_kernel_module_from_file(contents ? file : NULL);
4084 break;
4085 default:
4086 break;
4087 }
4088
4089 return rc;
4090}
4091
4092static int selinux_kernel_load_data(enum kernel_load_data_id id, bool contents)
4093{
4094 int rc = 0;
4095
4096 switch (id) {
4097 case LOADING_MODULE:
4098 rc = selinux_kernel_module_from_file(NULL);
4099 break;
4100 default:
4101 break;
4102 }
4103
4104 return rc;
4105}
4106
4107static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
4108{
4109 return avc_has_perm(&selinux_state,
4110 current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4111 PROCESS__SETPGID, NULL);
4112}
4113
4114static int selinux_task_getpgid(struct task_struct *p)
4115{
4116 return avc_has_perm(&selinux_state,
4117 current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4118 PROCESS__GETPGID, NULL);
4119}
4120
4121static int selinux_task_getsid(struct task_struct *p)
4122{
4123 return avc_has_perm(&selinux_state,
4124 current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4125 PROCESS__GETSESSION, NULL);
4126}
4127
4128static void selinux_current_getsecid_subj(u32 *secid)
4129{
4130 *secid = current_sid();
4131}
4132
4133static void selinux_task_getsecid_obj(struct task_struct *p, u32 *secid)
4134{
4135 *secid = task_sid_obj(p);
4136}
4137
4138static int selinux_task_setnice(struct task_struct *p, int nice)
4139{
4140 return avc_has_perm(&selinux_state,
4141 current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4142 PROCESS__SETSCHED, NULL);
4143}
4144
4145static int selinux_task_setioprio(struct task_struct *p, int ioprio)
4146{
4147 return avc_has_perm(&selinux_state,
4148 current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4149 PROCESS__SETSCHED, NULL);
4150}
4151
4152static int selinux_task_getioprio(struct task_struct *p)
4153{
4154 return avc_has_perm(&selinux_state,
4155 current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4156 PROCESS__GETSCHED, NULL);
4157}
4158
4159static int selinux_task_prlimit(const struct cred *cred, const struct cred *tcred,
4160 unsigned int flags)
4161{
4162 u32 av = 0;
4163
4164 if (!flags)
4165 return 0;
4166 if (flags & LSM_PRLIMIT_WRITE)
4167 av |= PROCESS__SETRLIMIT;
4168 if (flags & LSM_PRLIMIT_READ)
4169 av |= PROCESS__GETRLIMIT;
4170 return avc_has_perm(&selinux_state,
4171 cred_sid(cred), cred_sid(tcred),
4172 SECCLASS_PROCESS, av, NULL);
4173}
4174
4175static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
4176 struct rlimit *new_rlim)
4177{
4178 struct rlimit *old_rlim = p->signal->rlim + resource;
4179
4180 /* Control the ability to change the hard limit (whether
4181 lowering or raising it), so that the hard limit can
4182 later be used as a safe reset point for the soft limit
4183 upon context transitions. See selinux_bprm_committing_creds. */
4184 if (old_rlim->rlim_max != new_rlim->rlim_max)
4185 return avc_has_perm(&selinux_state,
4186 current_sid(), task_sid_obj(p),
4187 SECCLASS_PROCESS, PROCESS__SETRLIMIT, NULL);
4188
4189 return 0;
4190}
4191
4192static int selinux_task_setscheduler(struct task_struct *p)
4193{
4194 return avc_has_perm(&selinux_state,
4195 current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4196 PROCESS__SETSCHED, NULL);
4197}
4198
4199static int selinux_task_getscheduler(struct task_struct *p)
4200{
4201 return avc_has_perm(&selinux_state,
4202 current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4203 PROCESS__GETSCHED, NULL);
4204}
4205
4206static int selinux_task_movememory(struct task_struct *p)
4207{
4208 return avc_has_perm(&selinux_state,
4209 current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4210 PROCESS__SETSCHED, NULL);
4211}
4212
4213static int selinux_task_kill(struct task_struct *p, struct kernel_siginfo *info,
4214 int sig, const struct cred *cred)
4215{
4216 u32 secid;
4217 u32 perm;
4218
4219 if (!sig)
4220 perm = PROCESS__SIGNULL; /* null signal; existence test */
4221 else
4222 perm = signal_to_av(sig);
4223 if (!cred)
4224 secid = current_sid();
4225 else
4226 secid = cred_sid(cred);
4227 return avc_has_perm(&selinux_state,
4228 secid, task_sid_obj(p), SECCLASS_PROCESS, perm, NULL);
4229}
4230
4231static void selinux_task_to_inode(struct task_struct *p,
4232 struct inode *inode)
4233{
4234 struct inode_security_struct *isec = selinux_inode(inode);
4235 u32 sid = task_sid_obj(p);
4236
4237 spin_lock(&isec->lock);
4238 isec->sclass = inode_mode_to_security_class(inode->i_mode);
4239 isec->sid = sid;
4240 isec->initialized = LABEL_INITIALIZED;
4241 spin_unlock(&isec->lock);
4242}
4243
4244static int selinux_userns_create(const struct cred *cred)
4245{
4246 u32 sid = current_sid();
4247
4248 return avc_has_perm(&selinux_state, sid, sid, SECCLASS_USER_NAMESPACE,
4249 USER_NAMESPACE__CREATE, NULL);
4250}
4251
4252/* Returns error only if unable to parse addresses */
4253static int selinux_parse_skb_ipv4(struct sk_buff *skb,
4254 struct common_audit_data *ad, u8 *proto)
4255{
4256 int offset, ihlen, ret = -EINVAL;
4257 struct iphdr _iph, *ih;
4258
4259 offset = skb_network_offset(skb);
4260 ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
4261 if (ih == NULL)
4262 goto out;
4263
4264 ihlen = ih->ihl * 4;
4265 if (ihlen < sizeof(_iph))
4266 goto out;
4267
4268 ad->u.net->v4info.saddr = ih->saddr;
4269 ad->u.net->v4info.daddr = ih->daddr;
4270 ret = 0;
4271
4272 if (proto)
4273 *proto = ih->protocol;
4274
4275 switch (ih->protocol) {
4276 case IPPROTO_TCP: {
4277 struct tcphdr _tcph, *th;
4278
4279 if (ntohs(ih->frag_off) & IP_OFFSET)
4280 break;
4281
4282 offset += ihlen;
4283 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4284 if (th == NULL)
4285 break;
4286
4287 ad->u.net->sport = th->source;
4288 ad->u.net->dport = th->dest;
4289 break;
4290 }
4291
4292 case IPPROTO_UDP: {
4293 struct udphdr _udph, *uh;
4294
4295 if (ntohs(ih->frag_off) & IP_OFFSET)
4296 break;
4297
4298 offset += ihlen;
4299 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4300 if (uh == NULL)
4301 break;
4302
4303 ad->u.net->sport = uh->source;
4304 ad->u.net->dport = uh->dest;
4305 break;
4306 }
4307
4308 case IPPROTO_DCCP: {
4309 struct dccp_hdr _dccph, *dh;
4310
4311 if (ntohs(ih->frag_off) & IP_OFFSET)
4312 break;
4313
4314 offset += ihlen;
4315 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4316 if (dh == NULL)
4317 break;
4318
4319 ad->u.net->sport = dh->dccph_sport;
4320 ad->u.net->dport = dh->dccph_dport;
4321 break;
4322 }
4323
4324#if IS_ENABLED(CONFIG_IP_SCTP)
4325 case IPPROTO_SCTP: {
4326 struct sctphdr _sctph, *sh;
4327
4328 if (ntohs(ih->frag_off) & IP_OFFSET)
4329 break;
4330
4331 offset += ihlen;
4332 sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4333 if (sh == NULL)
4334 break;
4335
4336 ad->u.net->sport = sh->source;
4337 ad->u.net->dport = sh->dest;
4338 break;
4339 }
4340#endif
4341 default:
4342 break;
4343 }
4344out:
4345 return ret;
4346}
4347
4348#if IS_ENABLED(CONFIG_IPV6)
4349
4350/* Returns error only if unable to parse addresses */
4351static int selinux_parse_skb_ipv6(struct sk_buff *skb,
4352 struct common_audit_data *ad, u8 *proto)
4353{
4354 u8 nexthdr;
4355 int ret = -EINVAL, offset;
4356 struct ipv6hdr _ipv6h, *ip6;
4357 __be16 frag_off;
4358
4359 offset = skb_network_offset(skb);
4360 ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
4361 if (ip6 == NULL)
4362 goto out;
4363
4364 ad->u.net->v6info.saddr = ip6->saddr;
4365 ad->u.net->v6info.daddr = ip6->daddr;
4366 ret = 0;
4367
4368 nexthdr = ip6->nexthdr;
4369 offset += sizeof(_ipv6h);
4370 offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
4371 if (offset < 0)
4372 goto out;
4373
4374 if (proto)
4375 *proto = nexthdr;
4376
4377 switch (nexthdr) {
4378 case IPPROTO_TCP: {
4379 struct tcphdr _tcph, *th;
4380
4381 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4382 if (th == NULL)
4383 break;
4384
4385 ad->u.net->sport = th->source;
4386 ad->u.net->dport = th->dest;
4387 break;
4388 }
4389
4390 case IPPROTO_UDP: {
4391 struct udphdr _udph, *uh;
4392
4393 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4394 if (uh == NULL)
4395 break;
4396
4397 ad->u.net->sport = uh->source;
4398 ad->u.net->dport = uh->dest;
4399 break;
4400 }
4401
4402 case IPPROTO_DCCP: {
4403 struct dccp_hdr _dccph, *dh;
4404
4405 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4406 if (dh == NULL)
4407 break;
4408
4409 ad->u.net->sport = dh->dccph_sport;
4410 ad->u.net->dport = dh->dccph_dport;
4411 break;
4412 }
4413
4414#if IS_ENABLED(CONFIG_IP_SCTP)
4415 case IPPROTO_SCTP: {
4416 struct sctphdr _sctph, *sh;
4417
4418 sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4419 if (sh == NULL)
4420 break;
4421
4422 ad->u.net->sport = sh->source;
4423 ad->u.net->dport = sh->dest;
4424 break;
4425 }
4426#endif
4427 /* includes fragments */
4428 default:
4429 break;
4430 }
4431out:
4432 return ret;
4433}
4434
4435#endif /* IPV6 */
4436
4437static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
4438 char **_addrp, int src, u8 *proto)
4439{
4440 char *addrp;
4441 int ret;
4442
4443 switch (ad->u.net->family) {
4444 case PF_INET:
4445 ret = selinux_parse_skb_ipv4(skb, ad, proto);
4446 if (ret)
4447 goto parse_error;
4448 addrp = (char *)(src ? &ad->u.net->v4info.saddr :
4449 &ad->u.net->v4info.daddr);
4450 goto okay;
4451
4452#if IS_ENABLED(CONFIG_IPV6)
4453 case PF_INET6:
4454 ret = selinux_parse_skb_ipv6(skb, ad, proto);
4455 if (ret)
4456 goto parse_error;
4457 addrp = (char *)(src ? &ad->u.net->v6info.saddr :
4458 &ad->u.net->v6info.daddr);
4459 goto okay;
4460#endif /* IPV6 */
4461 default:
4462 addrp = NULL;
4463 goto okay;
4464 }
4465
4466parse_error:
4467 pr_warn(
4468 "SELinux: failure in selinux_parse_skb(),"
4469 " unable to parse packet\n");
4470 return ret;
4471
4472okay:
4473 if (_addrp)
4474 *_addrp = addrp;
4475 return 0;
4476}
4477
4478/**
4479 * selinux_skb_peerlbl_sid - Determine the peer label of a packet
4480 * @skb: the packet
4481 * @family: protocol family
4482 * @sid: the packet's peer label SID
4483 *
4484 * Description:
4485 * Check the various different forms of network peer labeling and determine
4486 * the peer label/SID for the packet; most of the magic actually occurs in
4487 * the security server function security_net_peersid_cmp(). The function
4488 * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
4489 * or -EACCES if @sid is invalid due to inconsistencies with the different
4490 * peer labels.
4491 *
4492 */
4493static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
4494{
4495 int err;
4496 u32 xfrm_sid;
4497 u32 nlbl_sid;
4498 u32 nlbl_type;
4499
4500 err = selinux_xfrm_skb_sid(skb, &xfrm_sid);
4501 if (unlikely(err))
4502 return -EACCES;
4503 err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
4504 if (unlikely(err))
4505 return -EACCES;
4506
4507 err = security_net_peersid_resolve(&selinux_state, nlbl_sid,
4508 nlbl_type, xfrm_sid, sid);
4509 if (unlikely(err)) {
4510 pr_warn(
4511 "SELinux: failure in selinux_skb_peerlbl_sid(),"
4512 " unable to determine packet's peer label\n");
4513 return -EACCES;
4514 }
4515
4516 return 0;
4517}
4518
4519/**
4520 * selinux_conn_sid - Determine the child socket label for a connection
4521 * @sk_sid: the parent socket's SID
4522 * @skb_sid: the packet's SID
4523 * @conn_sid: the resulting connection SID
4524 *
4525 * If @skb_sid is valid then the user:role:type information from @sk_sid is
4526 * combined with the MLS information from @skb_sid in order to create
4527 * @conn_sid. If @skb_sid is not valid then @conn_sid is simply a copy
4528 * of @sk_sid. Returns zero on success, negative values on failure.
4529 *
4530 */
4531static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid)
4532{
4533 int err = 0;
4534
4535 if (skb_sid != SECSID_NULL)
4536 err = security_sid_mls_copy(&selinux_state, sk_sid, skb_sid,
4537 conn_sid);
4538 else
4539 *conn_sid = sk_sid;
4540
4541 return err;
4542}
4543
4544/* socket security operations */
4545
4546static int socket_sockcreate_sid(const struct task_security_struct *tsec,
4547 u16 secclass, u32 *socksid)
4548{
4549 if (tsec->sockcreate_sid > SECSID_NULL) {
4550 *socksid = tsec->sockcreate_sid;
4551 return 0;
4552 }
4553
4554 return security_transition_sid(&selinux_state, tsec->sid, tsec->sid,
4555 secclass, NULL, socksid);
4556}
4557
4558static int sock_has_perm(struct sock *sk, u32 perms)
4559{
4560 struct sk_security_struct *sksec = sk->sk_security;
4561 struct common_audit_data ad;
4562 struct lsm_network_audit net = {0,};
4563
4564 if (sksec->sid == SECINITSID_KERNEL)
4565 return 0;
4566
4567 ad.type = LSM_AUDIT_DATA_NET;
4568 ad.u.net = &net;
4569 ad.u.net->sk = sk;
4570
4571 return avc_has_perm(&selinux_state,
4572 current_sid(), sksec->sid, sksec->sclass, perms,
4573 &ad);
4574}
4575
4576static int selinux_socket_create(int family, int type,
4577 int protocol, int kern)
4578{
4579 const struct task_security_struct *tsec = selinux_cred(current_cred());
4580 u32 newsid;
4581 u16 secclass;
4582 int rc;
4583
4584 if (kern)
4585 return 0;
4586
4587 secclass = socket_type_to_security_class(family, type, protocol);
4588 rc = socket_sockcreate_sid(tsec, secclass, &newsid);
4589 if (rc)
4590 return rc;
4591
4592 return avc_has_perm(&selinux_state,
4593 tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
4594}
4595
4596static int selinux_socket_post_create(struct socket *sock, int family,
4597 int type, int protocol, int kern)
4598{
4599 const struct task_security_struct *tsec = selinux_cred(current_cred());
4600 struct inode_security_struct *isec = inode_security_novalidate(SOCK_INODE(sock));
4601 struct sk_security_struct *sksec;
4602 u16 sclass = socket_type_to_security_class(family, type, protocol);
4603 u32 sid = SECINITSID_KERNEL;
4604 int err = 0;
4605
4606 if (!kern) {
4607 err = socket_sockcreate_sid(tsec, sclass, &sid);
4608 if (err)
4609 return err;
4610 }
4611
4612 isec->sclass = sclass;
4613 isec->sid = sid;
4614 isec->initialized = LABEL_INITIALIZED;
4615
4616 if (sock->sk) {
4617 sksec = sock->sk->sk_security;
4618 sksec->sclass = sclass;
4619 sksec->sid = sid;
4620 /* Allows detection of the first association on this socket */
4621 if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4622 sksec->sctp_assoc_state = SCTP_ASSOC_UNSET;
4623
4624 err = selinux_netlbl_socket_post_create(sock->sk, family);
4625 }
4626
4627 return err;
4628}
4629
4630static int selinux_socket_socketpair(struct socket *socka,
4631 struct socket *sockb)
4632{
4633 struct sk_security_struct *sksec_a = socka->sk->sk_security;
4634 struct sk_security_struct *sksec_b = sockb->sk->sk_security;
4635
4636 sksec_a->peer_sid = sksec_b->sid;
4637 sksec_b->peer_sid = sksec_a->sid;
4638
4639 return 0;
4640}
4641
4642/* Range of port numbers used to automatically bind.
4643 Need to determine whether we should perform a name_bind
4644 permission check between the socket and the port number. */
4645
4646static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
4647{
4648 struct sock *sk = sock->sk;
4649 struct sk_security_struct *sksec = sk->sk_security;
4650 u16 family;
4651 int err;
4652
4653 err = sock_has_perm(sk, SOCKET__BIND);
4654 if (err)
4655 goto out;
4656
4657 /* If PF_INET or PF_INET6, check name_bind permission for the port. */
4658 family = sk->sk_family;
4659 if (family == PF_INET || family == PF_INET6) {
4660 char *addrp;
4661 struct common_audit_data ad;
4662 struct lsm_network_audit net = {0,};
4663 struct sockaddr_in *addr4 = NULL;
4664 struct sockaddr_in6 *addr6 = NULL;
4665 u16 family_sa;
4666 unsigned short snum;
4667 u32 sid, node_perm;
4668
4669 /*
4670 * sctp_bindx(3) calls via selinux_sctp_bind_connect()
4671 * that validates multiple binding addresses. Because of this
4672 * need to check address->sa_family as it is possible to have
4673 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4674 */
4675 if (addrlen < offsetofend(struct sockaddr, sa_family))
4676 return -EINVAL;
4677 family_sa = address->sa_family;
4678 switch (family_sa) {
4679 case AF_UNSPEC:
4680 case AF_INET:
4681 if (addrlen < sizeof(struct sockaddr_in))
4682 return -EINVAL;
4683 addr4 = (struct sockaddr_in *)address;
4684 if (family_sa == AF_UNSPEC) {
4685 /* see __inet_bind(), we only want to allow
4686 * AF_UNSPEC if the address is INADDR_ANY
4687 */
4688 if (addr4->sin_addr.s_addr != htonl(INADDR_ANY))
4689 goto err_af;
4690 family_sa = AF_INET;
4691 }
4692 snum = ntohs(addr4->sin_port);
4693 addrp = (char *)&addr4->sin_addr.s_addr;
4694 break;
4695 case AF_INET6:
4696 if (addrlen < SIN6_LEN_RFC2133)
4697 return -EINVAL;
4698 addr6 = (struct sockaddr_in6 *)address;
4699 snum = ntohs(addr6->sin6_port);
4700 addrp = (char *)&addr6->sin6_addr.s6_addr;
4701 break;
4702 default:
4703 goto err_af;
4704 }
4705
4706 ad.type = LSM_AUDIT_DATA_NET;
4707 ad.u.net = &net;
4708 ad.u.net->sport = htons(snum);
4709 ad.u.net->family = family_sa;
4710
4711 if (snum) {
4712 int low, high;
4713
4714 inet_get_local_port_range(sock_net(sk), &low, &high);
4715
4716 if (inet_port_requires_bind_service(sock_net(sk), snum) ||
4717 snum < low || snum > high) {
4718 err = sel_netport_sid(sk->sk_protocol,
4719 snum, &sid);
4720 if (err)
4721 goto out;
4722 err = avc_has_perm(&selinux_state,
4723 sksec->sid, sid,
4724 sksec->sclass,
4725 SOCKET__NAME_BIND, &ad);
4726 if (err)
4727 goto out;
4728 }
4729 }
4730
4731 switch (sksec->sclass) {
4732 case SECCLASS_TCP_SOCKET:
4733 node_perm = TCP_SOCKET__NODE_BIND;
4734 break;
4735
4736 case SECCLASS_UDP_SOCKET:
4737 node_perm = UDP_SOCKET__NODE_BIND;
4738 break;
4739
4740 case SECCLASS_DCCP_SOCKET:
4741 node_perm = DCCP_SOCKET__NODE_BIND;
4742 break;
4743
4744 case SECCLASS_SCTP_SOCKET:
4745 node_perm = SCTP_SOCKET__NODE_BIND;
4746 break;
4747
4748 default:
4749 node_perm = RAWIP_SOCKET__NODE_BIND;
4750 break;
4751 }
4752
4753 err = sel_netnode_sid(addrp, family_sa, &sid);
4754 if (err)
4755 goto out;
4756
4757 if (family_sa == AF_INET)
4758 ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
4759 else
4760 ad.u.net->v6info.saddr = addr6->sin6_addr;
4761
4762 err = avc_has_perm(&selinux_state,
4763 sksec->sid, sid,
4764 sksec->sclass, node_perm, &ad);
4765 if (err)
4766 goto out;
4767 }
4768out:
4769 return err;
4770err_af:
4771 /* Note that SCTP services expect -EINVAL, others -EAFNOSUPPORT. */
4772 if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4773 return -EINVAL;
4774 return -EAFNOSUPPORT;
4775}
4776
4777/* This supports connect(2) and SCTP connect services such as sctp_connectx(3)
4778 * and sctp_sendmsg(3) as described in Documentation/security/SCTP.rst
4779 */
4780static int selinux_socket_connect_helper(struct socket *sock,
4781 struct sockaddr *address, int addrlen)
4782{
4783 struct sock *sk = sock->sk;
4784 struct sk_security_struct *sksec = sk->sk_security;
4785 int err;
4786
4787 err = sock_has_perm(sk, SOCKET__CONNECT);
4788 if (err)
4789 return err;
4790 if (addrlen < offsetofend(struct sockaddr, sa_family))
4791 return -EINVAL;
4792
4793 /* connect(AF_UNSPEC) has special handling, as it is a documented
4794 * way to disconnect the socket
4795 */
4796 if (address->sa_family == AF_UNSPEC)
4797 return 0;
4798
4799 /*
4800 * If a TCP, DCCP or SCTP socket, check name_connect permission
4801 * for the port.
4802 */
4803 if (sksec->sclass == SECCLASS_TCP_SOCKET ||
4804 sksec->sclass == SECCLASS_DCCP_SOCKET ||
4805 sksec->sclass == SECCLASS_SCTP_SOCKET) {
4806 struct common_audit_data ad;
4807 struct lsm_network_audit net = {0,};
4808 struct sockaddr_in *addr4 = NULL;
4809 struct sockaddr_in6 *addr6 = NULL;
4810 unsigned short snum;
4811 u32 sid, perm;
4812
4813 /* sctp_connectx(3) calls via selinux_sctp_bind_connect()
4814 * that validates multiple connect addresses. Because of this
4815 * need to check address->sa_family as it is possible to have
4816 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4817 */
4818 switch (address->sa_family) {
4819 case AF_INET:
4820 addr4 = (struct sockaddr_in *)address;
4821 if (addrlen < sizeof(struct sockaddr_in))
4822 return -EINVAL;
4823 snum = ntohs(addr4->sin_port);
4824 break;
4825 case AF_INET6:
4826 addr6 = (struct sockaddr_in6 *)address;
4827 if (addrlen < SIN6_LEN_RFC2133)
4828 return -EINVAL;
4829 snum = ntohs(addr6->sin6_port);
4830 break;
4831 default:
4832 /* Note that SCTP services expect -EINVAL, whereas
4833 * others expect -EAFNOSUPPORT.
4834 */
4835 if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4836 return -EINVAL;
4837 else
4838 return -EAFNOSUPPORT;
4839 }
4840
4841 err = sel_netport_sid(sk->sk_protocol, snum, &sid);
4842 if (err)
4843 return err;
4844
4845 switch (sksec->sclass) {
4846 case SECCLASS_TCP_SOCKET:
4847 perm = TCP_SOCKET__NAME_CONNECT;
4848 break;
4849 case SECCLASS_DCCP_SOCKET:
4850 perm = DCCP_SOCKET__NAME_CONNECT;
4851 break;
4852 case SECCLASS_SCTP_SOCKET:
4853 perm = SCTP_SOCKET__NAME_CONNECT;
4854 break;
4855 }
4856
4857 ad.type = LSM_AUDIT_DATA_NET;
4858 ad.u.net = &net;
4859 ad.u.net->dport = htons(snum);
4860 ad.u.net->family = address->sa_family;
4861 err = avc_has_perm(&selinux_state,
4862 sksec->sid, sid, sksec->sclass, perm, &ad);
4863 if (err)
4864 return err;
4865 }
4866
4867 return 0;
4868}
4869
4870/* Supports connect(2), see comments in selinux_socket_connect_helper() */
4871static int selinux_socket_connect(struct socket *sock,
4872 struct sockaddr *address, int addrlen)
4873{
4874 int err;
4875 struct sock *sk = sock->sk;
4876
4877 err = selinux_socket_connect_helper(sock, address, addrlen);
4878 if (err)
4879 return err;
4880
4881 return selinux_netlbl_socket_connect(sk, address);
4882}
4883
4884static int selinux_socket_listen(struct socket *sock, int backlog)
4885{
4886 return sock_has_perm(sock->sk, SOCKET__LISTEN);
4887}
4888
4889static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
4890{
4891 int err;
4892 struct inode_security_struct *isec;
4893 struct inode_security_struct *newisec;
4894 u16 sclass;
4895 u32 sid;
4896
4897 err = sock_has_perm(sock->sk, SOCKET__ACCEPT);
4898 if (err)
4899 return err;
4900
4901 isec = inode_security_novalidate(SOCK_INODE(sock));
4902 spin_lock(&isec->lock);
4903 sclass = isec->sclass;
4904 sid = isec->sid;
4905 spin_unlock(&isec->lock);
4906
4907 newisec = inode_security_novalidate(SOCK_INODE(newsock));
4908 newisec->sclass = sclass;
4909 newisec->sid = sid;
4910 newisec->initialized = LABEL_INITIALIZED;
4911
4912 return 0;
4913}
4914
4915static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
4916 int size)
4917{
4918 return sock_has_perm(sock->sk, SOCKET__WRITE);
4919}
4920
4921static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4922 int size, int flags)
4923{
4924 return sock_has_perm(sock->sk, SOCKET__READ);
4925}
4926
4927static int selinux_socket_getsockname(struct socket *sock)
4928{
4929 return sock_has_perm(sock->sk, SOCKET__GETATTR);
4930}
4931
4932static int selinux_socket_getpeername(struct socket *sock)
4933{
4934 return sock_has_perm(sock->sk, SOCKET__GETATTR);
4935}
4936
4937static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
4938{
4939 int err;
4940
4941 err = sock_has_perm(sock->sk, SOCKET__SETOPT);
4942 if (err)
4943 return err;
4944
4945 return selinux_netlbl_socket_setsockopt(sock, level, optname);
4946}
4947
4948static int selinux_socket_getsockopt(struct socket *sock, int level,
4949 int optname)
4950{
4951 return sock_has_perm(sock->sk, SOCKET__GETOPT);
4952}
4953
4954static int selinux_socket_shutdown(struct socket *sock, int how)
4955{
4956 return sock_has_perm(sock->sk, SOCKET__SHUTDOWN);
4957}
4958
4959static int selinux_socket_unix_stream_connect(struct sock *sock,
4960 struct sock *other,
4961 struct sock *newsk)
4962{
4963 struct sk_security_struct *sksec_sock = sock->sk_security;
4964 struct sk_security_struct *sksec_other = other->sk_security;
4965 struct sk_security_struct *sksec_new = newsk->sk_security;
4966 struct common_audit_data ad;
4967 struct lsm_network_audit net = {0,};
4968 int err;
4969
4970 ad.type = LSM_AUDIT_DATA_NET;
4971 ad.u.net = &net;
4972 ad.u.net->sk = other;
4973
4974 err = avc_has_perm(&selinux_state,
4975 sksec_sock->sid, sksec_other->sid,
4976 sksec_other->sclass,
4977 UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4978 if (err)
4979 return err;
4980
4981 /* server child socket */
4982 sksec_new->peer_sid = sksec_sock->sid;
4983 err = security_sid_mls_copy(&selinux_state, sksec_other->sid,
4984 sksec_sock->sid, &sksec_new->sid);
4985 if (err)
4986 return err;
4987
4988 /* connecting socket */
4989 sksec_sock->peer_sid = sksec_new->sid;
4990
4991 return 0;
4992}
4993
4994static int selinux_socket_unix_may_send(struct socket *sock,
4995 struct socket *other)
4996{
4997 struct sk_security_struct *ssec = sock->sk->sk_security;
4998 struct sk_security_struct *osec = other->sk->sk_security;
4999 struct common_audit_data ad;
5000 struct lsm_network_audit net = {0,};
5001
5002 ad.type = LSM_AUDIT_DATA_NET;
5003 ad.u.net = &net;
5004 ad.u.net->sk = other->sk;
5005
5006 return avc_has_perm(&selinux_state,
5007 ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
5008 &ad);
5009}
5010
5011static int selinux_inet_sys_rcv_skb(struct net *ns, int ifindex,
5012 char *addrp, u16 family, u32 peer_sid,
5013 struct common_audit_data *ad)
5014{
5015 int err;
5016 u32 if_sid;
5017 u32 node_sid;
5018
5019 err = sel_netif_sid(ns, ifindex, &if_sid);
5020 if (err)
5021 return err;
5022 err = avc_has_perm(&selinux_state,
5023 peer_sid, if_sid,
5024 SECCLASS_NETIF, NETIF__INGRESS, ad);
5025 if (err)
5026 return err;
5027
5028 err = sel_netnode_sid(addrp, family, &node_sid);
5029 if (err)
5030 return err;
5031 return avc_has_perm(&selinux_state,
5032 peer_sid, node_sid,
5033 SECCLASS_NODE, NODE__RECVFROM, ad);
5034}
5035
5036static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
5037 u16 family)
5038{
5039 int err = 0;
5040 struct sk_security_struct *sksec = sk->sk_security;
5041 u32 sk_sid = sksec->sid;
5042 struct common_audit_data ad;
5043 struct lsm_network_audit net = {0,};
5044 char *addrp;
5045
5046 ad.type = LSM_AUDIT_DATA_NET;
5047 ad.u.net = &net;
5048 ad.u.net->netif = skb->skb_iif;
5049 ad.u.net->family = family;
5050 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
5051 if (err)
5052 return err;
5053
5054 if (selinux_secmark_enabled()) {
5055 err = avc_has_perm(&selinux_state,
5056 sk_sid, skb->secmark, SECCLASS_PACKET,
5057 PACKET__RECV, &ad);
5058 if (err)
5059 return err;
5060 }
5061
5062 err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
5063 if (err)
5064 return err;
5065 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
5066
5067 return err;
5068}
5069
5070static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
5071{
5072 int err;
5073 struct sk_security_struct *sksec = sk->sk_security;
5074 u16 family = sk->sk_family;
5075 u32 sk_sid = sksec->sid;
5076 struct common_audit_data ad;
5077 struct lsm_network_audit net = {0,};
5078 char *addrp;
5079 u8 secmark_active;
5080 u8 peerlbl_active;
5081
5082 if (family != PF_INET && family != PF_INET6)
5083 return 0;
5084
5085 /* Handle mapped IPv4 packets arriving via IPv6 sockets */
5086 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5087 family = PF_INET;
5088
5089 /* If any sort of compatibility mode is enabled then handoff processing
5090 * to the selinux_sock_rcv_skb_compat() function to deal with the
5091 * special handling. We do this in an attempt to keep this function
5092 * as fast and as clean as possible. */
5093 if (!selinux_policycap_netpeer())
5094 return selinux_sock_rcv_skb_compat(sk, skb, family);
5095
5096 secmark_active = selinux_secmark_enabled();
5097 peerlbl_active = selinux_peerlbl_enabled();
5098 if (!secmark_active && !peerlbl_active)
5099 return 0;
5100
5101 ad.type = LSM_AUDIT_DATA_NET;
5102 ad.u.net = &net;
5103 ad.u.net->netif = skb->skb_iif;
5104 ad.u.net->family = family;
5105 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
5106 if (err)
5107 return err;
5108
5109 if (peerlbl_active) {
5110 u32 peer_sid;
5111
5112 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
5113 if (err)
5114 return err;
5115 err = selinux_inet_sys_rcv_skb(sock_net(sk), skb->skb_iif,
5116 addrp, family, peer_sid, &ad);
5117 if (err) {
5118 selinux_netlbl_err(skb, family, err, 0);
5119 return err;
5120 }
5121 err = avc_has_perm(&selinux_state,
5122 sk_sid, peer_sid, SECCLASS_PEER,
5123 PEER__RECV, &ad);
5124 if (err) {
5125 selinux_netlbl_err(skb, family, err, 0);
5126 return err;
5127 }
5128 }
5129
5130 if (secmark_active) {
5131 err = avc_has_perm(&selinux_state,
5132 sk_sid, skb->secmark, SECCLASS_PACKET,
5133 PACKET__RECV, &ad);
5134 if (err)
5135 return err;
5136 }
5137
5138 return err;
5139}
5140
5141static int selinux_socket_getpeersec_stream(struct socket *sock,
5142 sockptr_t optval, sockptr_t optlen,
5143 unsigned int len)
5144{
5145 int err = 0;
5146 char *scontext = NULL;
5147 u32 scontext_len;
5148 struct sk_security_struct *sksec = sock->sk->sk_security;
5149 u32 peer_sid = SECSID_NULL;
5150
5151 if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
5152 sksec->sclass == SECCLASS_TCP_SOCKET ||
5153 sksec->sclass == SECCLASS_SCTP_SOCKET)
5154 peer_sid = sksec->peer_sid;
5155 if (peer_sid == SECSID_NULL)
5156 return -ENOPROTOOPT;
5157
5158 err = security_sid_to_context(&selinux_state, peer_sid, &scontext,
5159 &scontext_len);
5160 if (err)
5161 return err;
5162 if (scontext_len > len) {
5163 err = -ERANGE;
5164 goto out_len;
5165 }
5166
5167 if (copy_to_sockptr(optval, scontext, scontext_len))
5168 err = -EFAULT;
5169out_len:
5170 if (copy_to_sockptr(optlen, &scontext_len, sizeof(scontext_len)))
5171 err = -EFAULT;
5172 kfree(scontext);
5173 return err;
5174}
5175
5176static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
5177{
5178 u32 peer_secid = SECSID_NULL;
5179 u16 family;
5180 struct inode_security_struct *isec;
5181
5182 if (skb && skb->protocol == htons(ETH_P_IP))
5183 family = PF_INET;
5184 else if (skb && skb->protocol == htons(ETH_P_IPV6))
5185 family = PF_INET6;
5186 else if (sock)
5187 family = sock->sk->sk_family;
5188 else
5189 goto out;
5190
5191 if (sock && family == PF_UNIX) {
5192 isec = inode_security_novalidate(SOCK_INODE(sock));
5193 peer_secid = isec->sid;
5194 } else if (skb)
5195 selinux_skb_peerlbl_sid(skb, family, &peer_secid);
5196
5197out:
5198 *secid = peer_secid;
5199 if (peer_secid == SECSID_NULL)
5200 return -EINVAL;
5201 return 0;
5202}
5203
5204static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
5205{
5206 struct sk_security_struct *sksec;
5207
5208 sksec = kzalloc(sizeof(*sksec), priority);
5209 if (!sksec)
5210 return -ENOMEM;
5211
5212 sksec->peer_sid = SECINITSID_UNLABELED;
5213 sksec->sid = SECINITSID_UNLABELED;
5214 sksec->sclass = SECCLASS_SOCKET;
5215 selinux_netlbl_sk_security_reset(sksec);
5216 sk->sk_security = sksec;
5217
5218 return 0;
5219}
5220
5221static void selinux_sk_free_security(struct sock *sk)
5222{
5223 struct sk_security_struct *sksec = sk->sk_security;
5224
5225 sk->sk_security = NULL;
5226 selinux_netlbl_sk_security_free(sksec);
5227 kfree(sksec);
5228}
5229
5230static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
5231{
5232 struct sk_security_struct *sksec = sk->sk_security;
5233 struct sk_security_struct *newsksec = newsk->sk_security;
5234
5235 newsksec->sid = sksec->sid;
5236 newsksec->peer_sid = sksec->peer_sid;
5237 newsksec->sclass = sksec->sclass;
5238
5239 selinux_netlbl_sk_security_reset(newsksec);
5240}
5241
5242static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
5243{
5244 if (!sk)
5245 *secid = SECINITSID_ANY_SOCKET;
5246 else {
5247 struct sk_security_struct *sksec = sk->sk_security;
5248
5249 *secid = sksec->sid;
5250 }
5251}
5252
5253static void selinux_sock_graft(struct sock *sk, struct socket *parent)
5254{
5255 struct inode_security_struct *isec =
5256 inode_security_novalidate(SOCK_INODE(parent));
5257 struct sk_security_struct *sksec = sk->sk_security;
5258
5259 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
5260 sk->sk_family == PF_UNIX)
5261 isec->sid = sksec->sid;
5262 sksec->sclass = isec->sclass;
5263}
5264
5265/*
5266 * Determines peer_secid for the asoc and updates socket's peer label
5267 * if it's the first association on the socket.
5268 */
5269static int selinux_sctp_process_new_assoc(struct sctp_association *asoc,
5270 struct sk_buff *skb)
5271{
5272 struct sock *sk = asoc->base.sk;
5273 u16 family = sk->sk_family;
5274 struct sk_security_struct *sksec = sk->sk_security;
5275 struct common_audit_data ad;
5276 struct lsm_network_audit net = {0,};
5277 int err;
5278
5279 /* handle mapped IPv4 packets arriving via IPv6 sockets */
5280 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5281 family = PF_INET;
5282
5283 if (selinux_peerlbl_enabled()) {
5284 asoc->peer_secid = SECSID_NULL;
5285
5286 /* This will return peer_sid = SECSID_NULL if there are
5287 * no peer labels, see security_net_peersid_resolve().
5288 */
5289 err = selinux_skb_peerlbl_sid(skb, family, &asoc->peer_secid);
5290 if (err)
5291 return err;
5292
5293 if (asoc->peer_secid == SECSID_NULL)
5294 asoc->peer_secid = SECINITSID_UNLABELED;
5295 } else {
5296 asoc->peer_secid = SECINITSID_UNLABELED;
5297 }
5298
5299 if (sksec->sctp_assoc_state == SCTP_ASSOC_UNSET) {
5300 sksec->sctp_assoc_state = SCTP_ASSOC_SET;
5301
5302 /* Here as first association on socket. As the peer SID
5303 * was allowed by peer recv (and the netif/node checks),
5304 * then it is approved by policy and used as the primary
5305 * peer SID for getpeercon(3).
5306 */
5307 sksec->peer_sid = asoc->peer_secid;
5308 } else if (sksec->peer_sid != asoc->peer_secid) {
5309 /* Other association peer SIDs are checked to enforce
5310 * consistency among the peer SIDs.
5311 */
5312 ad.type = LSM_AUDIT_DATA_NET;
5313 ad.u.net = &net;
5314 ad.u.net->sk = asoc->base.sk;
5315 err = avc_has_perm(&selinux_state,
5316 sksec->peer_sid, asoc->peer_secid,
5317 sksec->sclass, SCTP_SOCKET__ASSOCIATION,
5318 &ad);
5319 if (err)
5320 return err;
5321 }
5322 return 0;
5323}
5324
5325/* Called whenever SCTP receives an INIT or COOKIE ECHO chunk. This
5326 * happens on an incoming connect(2), sctp_connectx(3) or
5327 * sctp_sendmsg(3) (with no association already present).
5328 */
5329static int selinux_sctp_assoc_request(struct sctp_association *asoc,
5330 struct sk_buff *skb)
5331{
5332 struct sk_security_struct *sksec = asoc->base.sk->sk_security;
5333 u32 conn_sid;
5334 int err;
5335
5336 if (!selinux_policycap_extsockclass())
5337 return 0;
5338
5339 err = selinux_sctp_process_new_assoc(asoc, skb);
5340 if (err)
5341 return err;
5342
5343 /* Compute the MLS component for the connection and store
5344 * the information in asoc. This will be used by SCTP TCP type
5345 * sockets and peeled off connections as they cause a new
5346 * socket to be generated. selinux_sctp_sk_clone() will then
5347 * plug this into the new socket.
5348 */
5349 err = selinux_conn_sid(sksec->sid, asoc->peer_secid, &conn_sid);
5350 if (err)
5351 return err;
5352
5353 asoc->secid = conn_sid;
5354
5355 /* Set any NetLabel labels including CIPSO/CALIPSO options. */
5356 return selinux_netlbl_sctp_assoc_request(asoc, skb);
5357}
5358
5359/* Called when SCTP receives a COOKIE ACK chunk as the final
5360 * response to an association request (initited by us).
5361 */
5362static int selinux_sctp_assoc_established(struct sctp_association *asoc,
5363 struct sk_buff *skb)
5364{
5365 struct sk_security_struct *sksec = asoc->base.sk->sk_security;
5366
5367 if (!selinux_policycap_extsockclass())
5368 return 0;
5369
5370 /* Inherit secid from the parent socket - this will be picked up
5371 * by selinux_sctp_sk_clone() if the association gets peeled off
5372 * into a new socket.
5373 */
5374 asoc->secid = sksec->sid;
5375
5376 return selinux_sctp_process_new_assoc(asoc, skb);
5377}
5378
5379/* Check if sctp IPv4/IPv6 addresses are valid for binding or connecting
5380 * based on their @optname.
5381 */
5382static int selinux_sctp_bind_connect(struct sock *sk, int optname,
5383 struct sockaddr *address,
5384 int addrlen)
5385{
5386 int len, err = 0, walk_size = 0;
5387 void *addr_buf;
5388 struct sockaddr *addr;
5389 struct socket *sock;
5390
5391 if (!selinux_policycap_extsockclass())
5392 return 0;
5393
5394 /* Process one or more addresses that may be IPv4 or IPv6 */
5395 sock = sk->sk_socket;
5396 addr_buf = address;
5397
5398 while (walk_size < addrlen) {
5399 if (walk_size + sizeof(sa_family_t) > addrlen)
5400 return -EINVAL;
5401
5402 addr = addr_buf;
5403 switch (addr->sa_family) {
5404 case AF_UNSPEC:
5405 case AF_INET:
5406 len = sizeof(struct sockaddr_in);
5407 break;
5408 case AF_INET6:
5409 len = sizeof(struct sockaddr_in6);
5410 break;
5411 default:
5412 return -EINVAL;
5413 }
5414
5415 if (walk_size + len > addrlen)
5416 return -EINVAL;
5417
5418 err = -EINVAL;
5419 switch (optname) {
5420 /* Bind checks */
5421 case SCTP_PRIMARY_ADDR:
5422 case SCTP_SET_PEER_PRIMARY_ADDR:
5423 case SCTP_SOCKOPT_BINDX_ADD:
5424 err = selinux_socket_bind(sock, addr, len);
5425 break;
5426 /* Connect checks */
5427 case SCTP_SOCKOPT_CONNECTX:
5428 case SCTP_PARAM_SET_PRIMARY:
5429 case SCTP_PARAM_ADD_IP:
5430 case SCTP_SENDMSG_CONNECT:
5431 err = selinux_socket_connect_helper(sock, addr, len);
5432 if (err)
5433 return err;
5434
5435 /* As selinux_sctp_bind_connect() is called by the
5436 * SCTP protocol layer, the socket is already locked,
5437 * therefore selinux_netlbl_socket_connect_locked()
5438 * is called here. The situations handled are:
5439 * sctp_connectx(3), sctp_sendmsg(3), sendmsg(2),
5440 * whenever a new IP address is added or when a new
5441 * primary address is selected.
5442 * Note that an SCTP connect(2) call happens before
5443 * the SCTP protocol layer and is handled via
5444 * selinux_socket_connect().
5445 */
5446 err = selinux_netlbl_socket_connect_locked(sk, addr);
5447 break;
5448 }
5449
5450 if (err)
5451 return err;
5452
5453 addr_buf += len;
5454 walk_size += len;
5455 }
5456
5457 return 0;
5458}
5459
5460/* Called whenever a new socket is created by accept(2) or sctp_peeloff(3). */
5461static void selinux_sctp_sk_clone(struct sctp_association *asoc, struct sock *sk,
5462 struct sock *newsk)
5463{
5464 struct sk_security_struct *sksec = sk->sk_security;
5465 struct sk_security_struct *newsksec = newsk->sk_security;
5466
5467 /* If policy does not support SECCLASS_SCTP_SOCKET then call
5468 * the non-sctp clone version.
5469 */
5470 if (!selinux_policycap_extsockclass())
5471 return selinux_sk_clone_security(sk, newsk);
5472
5473 newsksec->sid = asoc->secid;
5474 newsksec->peer_sid = asoc->peer_secid;
5475 newsksec->sclass = sksec->sclass;
5476 selinux_netlbl_sctp_sk_clone(sk, newsk);
5477}
5478
5479static int selinux_inet_conn_request(const struct sock *sk, struct sk_buff *skb,
5480 struct request_sock *req)
5481{
5482 struct sk_security_struct *sksec = sk->sk_security;
5483 int err;
5484 u16 family = req->rsk_ops->family;
5485 u32 connsid;
5486 u32 peersid;
5487
5488 err = selinux_skb_peerlbl_sid(skb, family, &peersid);
5489 if (err)
5490 return err;
5491 err = selinux_conn_sid(sksec->sid, peersid, &connsid);
5492 if (err)
5493 return err;
5494 req->secid = connsid;
5495 req->peer_secid = peersid;
5496
5497 return selinux_netlbl_inet_conn_request(req, family);
5498}
5499
5500static void selinux_inet_csk_clone(struct sock *newsk,
5501 const struct request_sock *req)
5502{
5503 struct sk_security_struct *newsksec = newsk->sk_security;
5504
5505 newsksec->sid = req->secid;
5506 newsksec->peer_sid = req->peer_secid;
5507 /* NOTE: Ideally, we should also get the isec->sid for the
5508 new socket in sync, but we don't have the isec available yet.
5509 So we will wait until sock_graft to do it, by which
5510 time it will have been created and available. */
5511
5512 /* We don't need to take any sort of lock here as we are the only
5513 * thread with access to newsksec */
5514 selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
5515}
5516
5517static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
5518{
5519 u16 family = sk->sk_family;
5520 struct sk_security_struct *sksec = sk->sk_security;
5521
5522 /* handle mapped IPv4 packets arriving via IPv6 sockets */
5523 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5524 family = PF_INET;
5525
5526 selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
5527}
5528
5529static int selinux_secmark_relabel_packet(u32 sid)
5530{
5531 const struct task_security_struct *__tsec;
5532 u32 tsid;
5533
5534 __tsec = selinux_cred(current_cred());
5535 tsid = __tsec->sid;
5536
5537 return avc_has_perm(&selinux_state,
5538 tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO,
5539 NULL);
5540}
5541
5542static void selinux_secmark_refcount_inc(void)
5543{
5544 atomic_inc(&selinux_secmark_refcount);
5545}
5546
5547static void selinux_secmark_refcount_dec(void)
5548{
5549 atomic_dec(&selinux_secmark_refcount);
5550}
5551
5552static void selinux_req_classify_flow(const struct request_sock *req,
5553 struct flowi_common *flic)
5554{
5555 flic->flowic_secid = req->secid;
5556}
5557
5558static int selinux_tun_dev_alloc_security(void **security)
5559{
5560 struct tun_security_struct *tunsec;
5561
5562 tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL);
5563 if (!tunsec)
5564 return -ENOMEM;
5565 tunsec->sid = current_sid();
5566
5567 *security = tunsec;
5568 return 0;
5569}
5570
5571static void selinux_tun_dev_free_security(void *security)
5572{
5573 kfree(security);
5574}
5575
5576static int selinux_tun_dev_create(void)
5577{
5578 u32 sid = current_sid();
5579
5580 /* we aren't taking into account the "sockcreate" SID since the socket
5581 * that is being created here is not a socket in the traditional sense,
5582 * instead it is a private sock, accessible only to the kernel, and
5583 * representing a wide range of network traffic spanning multiple
5584 * connections unlike traditional sockets - check the TUN driver to
5585 * get a better understanding of why this socket is special */
5586
5587 return avc_has_perm(&selinux_state,
5588 sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
5589 NULL);
5590}
5591
5592static int selinux_tun_dev_attach_queue(void *security)
5593{
5594 struct tun_security_struct *tunsec = security;
5595
5596 return avc_has_perm(&selinux_state,
5597 current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET,
5598 TUN_SOCKET__ATTACH_QUEUE, NULL);
5599}
5600
5601static int selinux_tun_dev_attach(struct sock *sk, void *security)
5602{
5603 struct tun_security_struct *tunsec = security;
5604 struct sk_security_struct *sksec = sk->sk_security;
5605
5606 /* we don't currently perform any NetLabel based labeling here and it
5607 * isn't clear that we would want to do so anyway; while we could apply
5608 * labeling without the support of the TUN user the resulting labeled
5609 * traffic from the other end of the connection would almost certainly
5610 * cause confusion to the TUN user that had no idea network labeling
5611 * protocols were being used */
5612
5613 sksec->sid = tunsec->sid;
5614 sksec->sclass = SECCLASS_TUN_SOCKET;
5615
5616 return 0;
5617}
5618
5619static int selinux_tun_dev_open(void *security)
5620{
5621 struct tun_security_struct *tunsec = security;
5622 u32 sid = current_sid();
5623 int err;
5624
5625 err = avc_has_perm(&selinux_state,
5626 sid, tunsec->sid, SECCLASS_TUN_SOCKET,
5627 TUN_SOCKET__RELABELFROM, NULL);
5628 if (err)
5629 return err;
5630 err = avc_has_perm(&selinux_state,
5631 sid, sid, SECCLASS_TUN_SOCKET,
5632 TUN_SOCKET__RELABELTO, NULL);
5633 if (err)
5634 return err;
5635 tunsec->sid = sid;
5636
5637 return 0;
5638}
5639
5640#ifdef CONFIG_NETFILTER
5641
5642static unsigned int selinux_ip_forward(void *priv, struct sk_buff *skb,
5643 const struct nf_hook_state *state)
5644{
5645 int ifindex;
5646 u16 family;
5647 char *addrp;
5648 u32 peer_sid;
5649 struct common_audit_data ad;
5650 struct lsm_network_audit net = {0,};
5651 int secmark_active, peerlbl_active;
5652
5653 if (!selinux_policycap_netpeer())
5654 return NF_ACCEPT;
5655
5656 secmark_active = selinux_secmark_enabled();
5657 peerlbl_active = selinux_peerlbl_enabled();
5658 if (!secmark_active && !peerlbl_active)
5659 return NF_ACCEPT;
5660
5661 family = state->pf;
5662 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
5663 return NF_DROP;
5664
5665 ifindex = state->in->ifindex;
5666 ad.type = LSM_AUDIT_DATA_NET;
5667 ad.u.net = &net;
5668 ad.u.net->netif = ifindex;
5669 ad.u.net->family = family;
5670 if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
5671 return NF_DROP;
5672
5673 if (peerlbl_active) {
5674 int err;
5675
5676 err = selinux_inet_sys_rcv_skb(state->net, ifindex,
5677 addrp, family, peer_sid, &ad);
5678 if (err) {
5679 selinux_netlbl_err(skb, family, err, 1);
5680 return NF_DROP;
5681 }
5682 }
5683
5684 if (secmark_active)
5685 if (avc_has_perm(&selinux_state,
5686 peer_sid, skb->secmark,
5687 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
5688 return NF_DROP;
5689
5690 if (netlbl_enabled())
5691 /* we do this in the FORWARD path and not the POST_ROUTING
5692 * path because we want to make sure we apply the necessary
5693 * labeling before IPsec is applied so we can leverage AH
5694 * protection */
5695 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
5696 return NF_DROP;
5697
5698 return NF_ACCEPT;
5699}
5700
5701static unsigned int selinux_ip_output(void *priv, struct sk_buff *skb,
5702 const struct nf_hook_state *state)
5703{
5704 struct sock *sk;
5705 u32 sid;
5706
5707 if (!netlbl_enabled())
5708 return NF_ACCEPT;
5709
5710 /* we do this in the LOCAL_OUT path and not the POST_ROUTING path
5711 * because we want to make sure we apply the necessary labeling
5712 * before IPsec is applied so we can leverage AH protection */
5713 sk = skb->sk;
5714 if (sk) {
5715 struct sk_security_struct *sksec;
5716
5717 if (sk_listener(sk))
5718 /* if the socket is the listening state then this
5719 * packet is a SYN-ACK packet which means it needs to
5720 * be labeled based on the connection/request_sock and
5721 * not the parent socket. unfortunately, we can't
5722 * lookup the request_sock yet as it isn't queued on
5723 * the parent socket until after the SYN-ACK is sent.
5724 * the "solution" is to simply pass the packet as-is
5725 * as any IP option based labeling should be copied
5726 * from the initial connection request (in the IP
5727 * layer). it is far from ideal, but until we get a
5728 * security label in the packet itself this is the
5729 * best we can do. */
5730 return NF_ACCEPT;
5731
5732 /* standard practice, label using the parent socket */
5733 sksec = sk->sk_security;
5734 sid = sksec->sid;
5735 } else
5736 sid = SECINITSID_KERNEL;
5737 if (selinux_netlbl_skbuff_setsid(skb, state->pf, sid) != 0)
5738 return NF_DROP;
5739
5740 return NF_ACCEPT;
5741}
5742
5743
5744static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
5745 const struct nf_hook_state *state)
5746{
5747 struct sock *sk;
5748 struct sk_security_struct *sksec;
5749 struct common_audit_data ad;
5750 struct lsm_network_audit net = {0,};
5751 u8 proto = 0;
5752
5753 sk = skb_to_full_sk(skb);
5754 if (sk == NULL)
5755 return NF_ACCEPT;
5756 sksec = sk->sk_security;
5757
5758 ad.type = LSM_AUDIT_DATA_NET;
5759 ad.u.net = &net;
5760 ad.u.net->netif = state->out->ifindex;
5761 ad.u.net->family = state->pf;
5762 if (selinux_parse_skb(skb, &ad, NULL, 0, &proto))
5763 return NF_DROP;
5764
5765 if (selinux_secmark_enabled())
5766 if (avc_has_perm(&selinux_state,
5767 sksec->sid, skb->secmark,
5768 SECCLASS_PACKET, PACKET__SEND, &ad))
5769 return NF_DROP_ERR(-ECONNREFUSED);
5770
5771 if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
5772 return NF_DROP_ERR(-ECONNREFUSED);
5773
5774 return NF_ACCEPT;
5775}
5776
5777static unsigned int selinux_ip_postroute(void *priv,
5778 struct sk_buff *skb,
5779 const struct nf_hook_state *state)
5780{
5781 u16 family;
5782 u32 secmark_perm;
5783 u32 peer_sid;
5784 int ifindex;
5785 struct sock *sk;
5786 struct common_audit_data ad;
5787 struct lsm_network_audit net = {0,};
5788 char *addrp;
5789 int secmark_active, peerlbl_active;
5790
5791 /* If any sort of compatibility mode is enabled then handoff processing
5792 * to the selinux_ip_postroute_compat() function to deal with the
5793 * special handling. We do this in an attempt to keep this function
5794 * as fast and as clean as possible. */
5795 if (!selinux_policycap_netpeer())
5796 return selinux_ip_postroute_compat(skb, state);
5797
5798 secmark_active = selinux_secmark_enabled();
5799 peerlbl_active = selinux_peerlbl_enabled();
5800 if (!secmark_active && !peerlbl_active)
5801 return NF_ACCEPT;
5802
5803 sk = skb_to_full_sk(skb);
5804
5805#ifdef CONFIG_XFRM
5806 /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
5807 * packet transformation so allow the packet to pass without any checks
5808 * since we'll have another chance to perform access control checks
5809 * when the packet is on it's final way out.
5810 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
5811 * is NULL, in this case go ahead and apply access control.
5812 * NOTE: if this is a local socket (skb->sk != NULL) that is in the
5813 * TCP listening state we cannot wait until the XFRM processing
5814 * is done as we will miss out on the SA label if we do;
5815 * unfortunately, this means more work, but it is only once per
5816 * connection. */
5817 if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL &&
5818 !(sk && sk_listener(sk)))
5819 return NF_ACCEPT;
5820#endif
5821
5822 family = state->pf;
5823 if (sk == NULL) {
5824 /* Without an associated socket the packet is either coming
5825 * from the kernel or it is being forwarded; check the packet
5826 * to determine which and if the packet is being forwarded
5827 * query the packet directly to determine the security label. */
5828 if (skb->skb_iif) {
5829 secmark_perm = PACKET__FORWARD_OUT;
5830 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
5831 return NF_DROP;
5832 } else {
5833 secmark_perm = PACKET__SEND;
5834 peer_sid = SECINITSID_KERNEL;
5835 }
5836 } else if (sk_listener(sk)) {
5837 /* Locally generated packet but the associated socket is in the
5838 * listening state which means this is a SYN-ACK packet. In
5839 * this particular case the correct security label is assigned
5840 * to the connection/request_sock but unfortunately we can't
5841 * query the request_sock as it isn't queued on the parent
5842 * socket until after the SYN-ACK packet is sent; the only
5843 * viable choice is to regenerate the label like we do in
5844 * selinux_inet_conn_request(). See also selinux_ip_output()
5845 * for similar problems. */
5846 u32 skb_sid;
5847 struct sk_security_struct *sksec;
5848
5849 sksec = sk->sk_security;
5850 if (selinux_skb_peerlbl_sid(skb, family, &skb_sid))
5851 return NF_DROP;
5852 /* At this point, if the returned skb peerlbl is SECSID_NULL
5853 * and the packet has been through at least one XFRM
5854 * transformation then we must be dealing with the "final"
5855 * form of labeled IPsec packet; since we've already applied
5856 * all of our access controls on this packet we can safely
5857 * pass the packet. */
5858 if (skb_sid == SECSID_NULL) {
5859 switch (family) {
5860 case PF_INET:
5861 if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
5862 return NF_ACCEPT;
5863 break;
5864 case PF_INET6:
5865 if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
5866 return NF_ACCEPT;
5867 break;
5868 default:
5869 return NF_DROP_ERR(-ECONNREFUSED);
5870 }
5871 }
5872 if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid))
5873 return NF_DROP;
5874 secmark_perm = PACKET__SEND;
5875 } else {
5876 /* Locally generated packet, fetch the security label from the
5877 * associated socket. */
5878 struct sk_security_struct *sksec = sk->sk_security;
5879 peer_sid = sksec->sid;
5880 secmark_perm = PACKET__SEND;
5881 }
5882
5883 ifindex = state->out->ifindex;
5884 ad.type = LSM_AUDIT_DATA_NET;
5885 ad.u.net = &net;
5886 ad.u.net->netif = ifindex;
5887 ad.u.net->family = family;
5888 if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
5889 return NF_DROP;
5890
5891 if (secmark_active)
5892 if (avc_has_perm(&selinux_state,
5893 peer_sid, skb->secmark,
5894 SECCLASS_PACKET, secmark_perm, &ad))
5895 return NF_DROP_ERR(-ECONNREFUSED);
5896
5897 if (peerlbl_active) {
5898 u32 if_sid;
5899 u32 node_sid;
5900
5901 if (sel_netif_sid(state->net, ifindex, &if_sid))
5902 return NF_DROP;
5903 if (avc_has_perm(&selinux_state,
5904 peer_sid, if_sid,
5905 SECCLASS_NETIF, NETIF__EGRESS, &ad))
5906 return NF_DROP_ERR(-ECONNREFUSED);
5907
5908 if (sel_netnode_sid(addrp, family, &node_sid))
5909 return NF_DROP;
5910 if (avc_has_perm(&selinux_state,
5911 peer_sid, node_sid,
5912 SECCLASS_NODE, NODE__SENDTO, &ad))
5913 return NF_DROP_ERR(-ECONNREFUSED);
5914 }
5915
5916 return NF_ACCEPT;
5917}
5918#endif /* CONFIG_NETFILTER */
5919
5920static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
5921{
5922 int rc = 0;
5923 unsigned int msg_len;
5924 unsigned int data_len = skb->len;
5925 unsigned char *data = skb->data;
5926 struct nlmsghdr *nlh;
5927 struct sk_security_struct *sksec = sk->sk_security;
5928 u16 sclass = sksec->sclass;
5929 u32 perm;
5930
5931 while (data_len >= nlmsg_total_size(0)) {
5932 nlh = (struct nlmsghdr *)data;
5933
5934 /* NOTE: the nlmsg_len field isn't reliably set by some netlink
5935 * users which means we can't reject skb's with bogus
5936 * length fields; our solution is to follow what
5937 * netlink_rcv_skb() does and simply skip processing at
5938 * messages with length fields that are clearly junk
5939 */
5940 if (nlh->nlmsg_len < NLMSG_HDRLEN || nlh->nlmsg_len > data_len)
5941 return 0;
5942
5943 rc = selinux_nlmsg_lookup(sclass, nlh->nlmsg_type, &perm);
5944 if (rc == 0) {
5945 rc = sock_has_perm(sk, perm);
5946 if (rc)
5947 return rc;
5948 } else if (rc == -EINVAL) {
5949 /* -EINVAL is a missing msg/perm mapping */
5950 pr_warn_ratelimited("SELinux: unrecognized netlink"
5951 " message: protocol=%hu nlmsg_type=%hu sclass=%s"
5952 " pid=%d comm=%s\n",
5953 sk->sk_protocol, nlh->nlmsg_type,
5954 secclass_map[sclass - 1].name,
5955 task_pid_nr(current), current->comm);
5956 if (enforcing_enabled(&selinux_state) &&
5957 !security_get_allow_unknown(&selinux_state))
5958 return rc;
5959 rc = 0;
5960 } else if (rc == -ENOENT) {
5961 /* -ENOENT is a missing socket/class mapping, ignore */
5962 rc = 0;
5963 } else {
5964 return rc;
5965 }
5966
5967 /* move to the next message after applying netlink padding */
5968 msg_len = NLMSG_ALIGN(nlh->nlmsg_len);
5969 if (msg_len >= data_len)
5970 return 0;
5971 data_len -= msg_len;
5972 data += msg_len;
5973 }
5974
5975 return rc;
5976}
5977
5978static void ipc_init_security(struct ipc_security_struct *isec, u16 sclass)
5979{
5980 isec->sclass = sclass;
5981 isec->sid = current_sid();
5982}
5983
5984static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
5985 u32 perms)
5986{
5987 struct ipc_security_struct *isec;
5988 struct common_audit_data ad;
5989 u32 sid = current_sid();
5990
5991 isec = selinux_ipc(ipc_perms);
5992
5993 ad.type = LSM_AUDIT_DATA_IPC;
5994 ad.u.ipc_id = ipc_perms->key;
5995
5996 return avc_has_perm(&selinux_state,
5997 sid, isec->sid, isec->sclass, perms, &ad);
5998}
5999
6000static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
6001{
6002 struct msg_security_struct *msec;
6003
6004 msec = selinux_msg_msg(msg);
6005 msec->sid = SECINITSID_UNLABELED;
6006
6007 return 0;
6008}
6009
6010/* message queue security operations */
6011static int selinux_msg_queue_alloc_security(struct kern_ipc_perm *msq)
6012{
6013 struct ipc_security_struct *isec;
6014 struct common_audit_data ad;
6015 u32 sid = current_sid();
6016
6017 isec = selinux_ipc(msq);
6018 ipc_init_security(isec, SECCLASS_MSGQ);
6019
6020 ad.type = LSM_AUDIT_DATA_IPC;
6021 ad.u.ipc_id = msq->key;
6022
6023 return avc_has_perm(&selinux_state,
6024 sid, isec->sid, SECCLASS_MSGQ,
6025 MSGQ__CREATE, &ad);
6026}
6027
6028static int selinux_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
6029{
6030 struct ipc_security_struct *isec;
6031 struct common_audit_data ad;
6032 u32 sid = current_sid();
6033
6034 isec = selinux_ipc(msq);
6035
6036 ad.type = LSM_AUDIT_DATA_IPC;
6037 ad.u.ipc_id = msq->key;
6038
6039 return avc_has_perm(&selinux_state,
6040 sid, isec->sid, SECCLASS_MSGQ,
6041 MSGQ__ASSOCIATE, &ad);
6042}
6043
6044static int selinux_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
6045{
6046 int err;
6047 int perms;
6048
6049 switch (cmd) {
6050 case IPC_INFO:
6051 case MSG_INFO:
6052 /* No specific object, just general system-wide information. */
6053 return avc_has_perm(&selinux_state,
6054 current_sid(), SECINITSID_KERNEL,
6055 SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6056 case IPC_STAT:
6057 case MSG_STAT:
6058 case MSG_STAT_ANY:
6059 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
6060 break;
6061 case IPC_SET:
6062 perms = MSGQ__SETATTR;
6063 break;
6064 case IPC_RMID:
6065 perms = MSGQ__DESTROY;
6066 break;
6067 default:
6068 return 0;
6069 }
6070
6071 err = ipc_has_perm(msq, perms);
6072 return err;
6073}
6074
6075static int selinux_msg_queue_msgsnd(struct kern_ipc_perm *msq, struct msg_msg *msg, int msqflg)
6076{
6077 struct ipc_security_struct *isec;
6078 struct msg_security_struct *msec;
6079 struct common_audit_data ad;
6080 u32 sid = current_sid();
6081 int rc;
6082
6083 isec = selinux_ipc(msq);
6084 msec = selinux_msg_msg(msg);
6085
6086 /*
6087 * First time through, need to assign label to the message
6088 */
6089 if (msec->sid == SECINITSID_UNLABELED) {
6090 /*
6091 * Compute new sid based on current process and
6092 * message queue this message will be stored in
6093 */
6094 rc = security_transition_sid(&selinux_state, sid, isec->sid,
6095 SECCLASS_MSG, NULL, &msec->sid);
6096 if (rc)
6097 return rc;
6098 }
6099
6100 ad.type = LSM_AUDIT_DATA_IPC;
6101 ad.u.ipc_id = msq->key;
6102
6103 /* Can this process write to the queue? */
6104 rc = avc_has_perm(&selinux_state,
6105 sid, isec->sid, SECCLASS_MSGQ,
6106 MSGQ__WRITE, &ad);
6107 if (!rc)
6108 /* Can this process send the message */
6109 rc = avc_has_perm(&selinux_state,
6110 sid, msec->sid, SECCLASS_MSG,
6111 MSG__SEND, &ad);
6112 if (!rc)
6113 /* Can the message be put in the queue? */
6114 rc = avc_has_perm(&selinux_state,
6115 msec->sid, isec->sid, SECCLASS_MSGQ,
6116 MSGQ__ENQUEUE, &ad);
6117
6118 return rc;
6119}
6120
6121static int selinux_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
6122 struct task_struct *target,
6123 long type, int mode)
6124{
6125 struct ipc_security_struct *isec;
6126 struct msg_security_struct *msec;
6127 struct common_audit_data ad;
6128 u32 sid = task_sid_obj(target);
6129 int rc;
6130
6131 isec = selinux_ipc(msq);
6132 msec = selinux_msg_msg(msg);
6133
6134 ad.type = LSM_AUDIT_DATA_IPC;
6135 ad.u.ipc_id = msq->key;
6136
6137 rc = avc_has_perm(&selinux_state,
6138 sid, isec->sid,
6139 SECCLASS_MSGQ, MSGQ__READ, &ad);
6140 if (!rc)
6141 rc = avc_has_perm(&selinux_state,
6142 sid, msec->sid,
6143 SECCLASS_MSG, MSG__RECEIVE, &ad);
6144 return rc;
6145}
6146
6147/* Shared Memory security operations */
6148static int selinux_shm_alloc_security(struct kern_ipc_perm *shp)
6149{
6150 struct ipc_security_struct *isec;
6151 struct common_audit_data ad;
6152 u32 sid = current_sid();
6153
6154 isec = selinux_ipc(shp);
6155 ipc_init_security(isec, SECCLASS_SHM);
6156
6157 ad.type = LSM_AUDIT_DATA_IPC;
6158 ad.u.ipc_id = shp->key;
6159
6160 return avc_has_perm(&selinux_state,
6161 sid, isec->sid, SECCLASS_SHM,
6162 SHM__CREATE, &ad);
6163}
6164
6165static int selinux_shm_associate(struct kern_ipc_perm *shp, int shmflg)
6166{
6167 struct ipc_security_struct *isec;
6168 struct common_audit_data ad;
6169 u32 sid = current_sid();
6170
6171 isec = selinux_ipc(shp);
6172
6173 ad.type = LSM_AUDIT_DATA_IPC;
6174 ad.u.ipc_id = shp->key;
6175
6176 return avc_has_perm(&selinux_state,
6177 sid, isec->sid, SECCLASS_SHM,
6178 SHM__ASSOCIATE, &ad);
6179}
6180
6181/* Note, at this point, shp is locked down */
6182static int selinux_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
6183{
6184 int perms;
6185 int err;
6186
6187 switch (cmd) {
6188 case IPC_INFO:
6189 case SHM_INFO:
6190 /* No specific object, just general system-wide information. */
6191 return avc_has_perm(&selinux_state,
6192 current_sid(), SECINITSID_KERNEL,
6193 SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6194 case IPC_STAT:
6195 case SHM_STAT:
6196 case SHM_STAT_ANY:
6197 perms = SHM__GETATTR | SHM__ASSOCIATE;
6198 break;
6199 case IPC_SET:
6200 perms = SHM__SETATTR;
6201 break;
6202 case SHM_LOCK:
6203 case SHM_UNLOCK:
6204 perms = SHM__LOCK;
6205 break;
6206 case IPC_RMID:
6207 perms = SHM__DESTROY;
6208 break;
6209 default:
6210 return 0;
6211 }
6212
6213 err = ipc_has_perm(shp, perms);
6214 return err;
6215}
6216
6217static int selinux_shm_shmat(struct kern_ipc_perm *shp,
6218 char __user *shmaddr, int shmflg)
6219{
6220 u32 perms;
6221
6222 if (shmflg & SHM_RDONLY)
6223 perms = SHM__READ;
6224 else
6225 perms = SHM__READ | SHM__WRITE;
6226
6227 return ipc_has_perm(shp, perms);
6228}
6229
6230/* Semaphore security operations */
6231static int selinux_sem_alloc_security(struct kern_ipc_perm *sma)
6232{
6233 struct ipc_security_struct *isec;
6234 struct common_audit_data ad;
6235 u32 sid = current_sid();
6236
6237 isec = selinux_ipc(sma);
6238 ipc_init_security(isec, SECCLASS_SEM);
6239
6240 ad.type = LSM_AUDIT_DATA_IPC;
6241 ad.u.ipc_id = sma->key;
6242
6243 return avc_has_perm(&selinux_state,
6244 sid, isec->sid, SECCLASS_SEM,
6245 SEM__CREATE, &ad);
6246}
6247
6248static int selinux_sem_associate(struct kern_ipc_perm *sma, int semflg)
6249{
6250 struct ipc_security_struct *isec;
6251 struct common_audit_data ad;
6252 u32 sid = current_sid();
6253
6254 isec = selinux_ipc(sma);
6255
6256 ad.type = LSM_AUDIT_DATA_IPC;
6257 ad.u.ipc_id = sma->key;
6258
6259 return avc_has_perm(&selinux_state,
6260 sid, isec->sid, SECCLASS_SEM,
6261 SEM__ASSOCIATE, &ad);
6262}
6263
6264/* Note, at this point, sma is locked down */
6265static int selinux_sem_semctl(struct kern_ipc_perm *sma, int cmd)
6266{
6267 int err;
6268 u32 perms;
6269
6270 switch (cmd) {
6271 case IPC_INFO:
6272 case SEM_INFO:
6273 /* No specific object, just general system-wide information. */
6274 return avc_has_perm(&selinux_state,
6275 current_sid(), SECINITSID_KERNEL,
6276 SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6277 case GETPID:
6278 case GETNCNT:
6279 case GETZCNT:
6280 perms = SEM__GETATTR;
6281 break;
6282 case GETVAL:
6283 case GETALL:
6284 perms = SEM__READ;
6285 break;
6286 case SETVAL:
6287 case SETALL:
6288 perms = SEM__WRITE;
6289 break;
6290 case IPC_RMID:
6291 perms = SEM__DESTROY;
6292 break;
6293 case IPC_SET:
6294 perms = SEM__SETATTR;
6295 break;
6296 case IPC_STAT:
6297 case SEM_STAT:
6298 case SEM_STAT_ANY:
6299 perms = SEM__GETATTR | SEM__ASSOCIATE;
6300 break;
6301 default:
6302 return 0;
6303 }
6304
6305 err = ipc_has_perm(sma, perms);
6306 return err;
6307}
6308
6309static int selinux_sem_semop(struct kern_ipc_perm *sma,
6310 struct sembuf *sops, unsigned nsops, int alter)
6311{
6312 u32 perms;
6313
6314 if (alter)
6315 perms = SEM__READ | SEM__WRITE;
6316 else
6317 perms = SEM__READ;
6318
6319 return ipc_has_perm(sma, perms);
6320}
6321
6322static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
6323{
6324 u32 av = 0;
6325
6326 av = 0;
6327 if (flag & S_IRUGO)
6328 av |= IPC__UNIX_READ;
6329 if (flag & S_IWUGO)
6330 av |= IPC__UNIX_WRITE;
6331
6332 if (av == 0)
6333 return 0;
6334
6335 return ipc_has_perm(ipcp, av);
6336}
6337
6338static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
6339{
6340 struct ipc_security_struct *isec = selinux_ipc(ipcp);
6341 *secid = isec->sid;
6342}
6343
6344static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
6345{
6346 if (inode)
6347 inode_doinit_with_dentry(inode, dentry);
6348}
6349
6350static int selinux_getprocattr(struct task_struct *p,
6351 const char *name, char **value)
6352{
6353 const struct task_security_struct *__tsec;
6354 u32 sid;
6355 int error;
6356 unsigned len;
6357
6358 rcu_read_lock();
6359 __tsec = selinux_cred(__task_cred(p));
6360
6361 if (current != p) {
6362 error = avc_has_perm(&selinux_state,
6363 current_sid(), __tsec->sid,
6364 SECCLASS_PROCESS, PROCESS__GETATTR, NULL);
6365 if (error)
6366 goto bad;
6367 }
6368
6369 if (!strcmp(name, "current"))
6370 sid = __tsec->sid;
6371 else if (!strcmp(name, "prev"))
6372 sid = __tsec->osid;
6373 else if (!strcmp(name, "exec"))
6374 sid = __tsec->exec_sid;
6375 else if (!strcmp(name, "fscreate"))
6376 sid = __tsec->create_sid;
6377 else if (!strcmp(name, "keycreate"))
6378 sid = __tsec->keycreate_sid;
6379 else if (!strcmp(name, "sockcreate"))
6380 sid = __tsec->sockcreate_sid;
6381 else {
6382 error = -EINVAL;
6383 goto bad;
6384 }
6385 rcu_read_unlock();
6386
6387 if (!sid)
6388 return 0;
6389
6390 error = security_sid_to_context(&selinux_state, sid, value, &len);
6391 if (error)
6392 return error;
6393 return len;
6394
6395bad:
6396 rcu_read_unlock();
6397 return error;
6398}
6399
6400static int selinux_setprocattr(const char *name, void *value, size_t size)
6401{
6402 struct task_security_struct *tsec;
6403 struct cred *new;
6404 u32 mysid = current_sid(), sid = 0, ptsid;
6405 int error;
6406 char *str = value;
6407
6408 /*
6409 * Basic control over ability to set these attributes at all.
6410 */
6411 if (!strcmp(name, "exec"))
6412 error = avc_has_perm(&selinux_state,
6413 mysid, mysid, SECCLASS_PROCESS,
6414 PROCESS__SETEXEC, NULL);
6415 else if (!strcmp(name, "fscreate"))
6416 error = avc_has_perm(&selinux_state,
6417 mysid, mysid, SECCLASS_PROCESS,
6418 PROCESS__SETFSCREATE, NULL);
6419 else if (!strcmp(name, "keycreate"))
6420 error = avc_has_perm(&selinux_state,
6421 mysid, mysid, SECCLASS_PROCESS,
6422 PROCESS__SETKEYCREATE, NULL);
6423 else if (!strcmp(name, "sockcreate"))
6424 error = avc_has_perm(&selinux_state,
6425 mysid, mysid, SECCLASS_PROCESS,
6426 PROCESS__SETSOCKCREATE, NULL);
6427 else if (!strcmp(name, "current"))
6428 error = avc_has_perm(&selinux_state,
6429 mysid, mysid, SECCLASS_PROCESS,
6430 PROCESS__SETCURRENT, NULL);
6431 else
6432 error = -EINVAL;
6433 if (error)
6434 return error;
6435
6436 /* Obtain a SID for the context, if one was specified. */
6437 if (size && str[0] && str[0] != '\n') {
6438 if (str[size-1] == '\n') {
6439 str[size-1] = 0;
6440 size--;
6441 }
6442 error = security_context_to_sid(&selinux_state, value, size,
6443 &sid, GFP_KERNEL);
6444 if (error == -EINVAL && !strcmp(name, "fscreate")) {
6445 if (!has_cap_mac_admin(true)) {
6446 struct audit_buffer *ab;
6447 size_t audit_size;
6448
6449 /* We strip a nul only if it is at the end, otherwise the
6450 * context contains a nul and we should audit that */
6451 if (str[size - 1] == '\0')
6452 audit_size = size - 1;
6453 else
6454 audit_size = size;
6455 ab = audit_log_start(audit_context(),
6456 GFP_ATOMIC,
6457 AUDIT_SELINUX_ERR);
6458 if (!ab)
6459 return error;
6460 audit_log_format(ab, "op=fscreate invalid_context=");
6461 audit_log_n_untrustedstring(ab, value, audit_size);
6462 audit_log_end(ab);
6463
6464 return error;
6465 }
6466 error = security_context_to_sid_force(
6467 &selinux_state,
6468 value, size, &sid);
6469 }
6470 if (error)
6471 return error;
6472 }
6473
6474 new = prepare_creds();
6475 if (!new)
6476 return -ENOMEM;
6477
6478 /* Permission checking based on the specified context is
6479 performed during the actual operation (execve,
6480 open/mkdir/...), when we know the full context of the
6481 operation. See selinux_bprm_creds_for_exec for the execve
6482 checks and may_create for the file creation checks. The
6483 operation will then fail if the context is not permitted. */
6484 tsec = selinux_cred(new);
6485 if (!strcmp(name, "exec")) {
6486 tsec->exec_sid = sid;
6487 } else if (!strcmp(name, "fscreate")) {
6488 tsec->create_sid = sid;
6489 } else if (!strcmp(name, "keycreate")) {
6490 if (sid) {
6491 error = avc_has_perm(&selinux_state, mysid, sid,
6492 SECCLASS_KEY, KEY__CREATE, NULL);
6493 if (error)
6494 goto abort_change;
6495 }
6496 tsec->keycreate_sid = sid;
6497 } else if (!strcmp(name, "sockcreate")) {
6498 tsec->sockcreate_sid = sid;
6499 } else if (!strcmp(name, "current")) {
6500 error = -EINVAL;
6501 if (sid == 0)
6502 goto abort_change;
6503
6504 /* Only allow single threaded processes to change context */
6505 if (!current_is_single_threaded()) {
6506 error = security_bounded_transition(&selinux_state,
6507 tsec->sid, sid);
6508 if (error)
6509 goto abort_change;
6510 }
6511
6512 /* Check permissions for the transition. */
6513 error = avc_has_perm(&selinux_state,
6514 tsec->sid, sid, SECCLASS_PROCESS,
6515 PROCESS__DYNTRANSITION, NULL);
6516 if (error)
6517 goto abort_change;
6518
6519 /* Check for ptracing, and update the task SID if ok.
6520 Otherwise, leave SID unchanged and fail. */
6521 ptsid = ptrace_parent_sid();
6522 if (ptsid != 0) {
6523 error = avc_has_perm(&selinux_state,
6524 ptsid, sid, SECCLASS_PROCESS,
6525 PROCESS__PTRACE, NULL);
6526 if (error)
6527 goto abort_change;
6528 }
6529
6530 tsec->sid = sid;
6531 } else {
6532 error = -EINVAL;
6533 goto abort_change;
6534 }
6535
6536 commit_creds(new);
6537 return size;
6538
6539abort_change:
6540 abort_creds(new);
6541 return error;
6542}
6543
6544static int selinux_ismaclabel(const char *name)
6545{
6546 return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0);
6547}
6548
6549static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
6550{
6551 return security_sid_to_context(&selinux_state, secid,
6552 secdata, seclen);
6553}
6554
6555static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
6556{
6557 return security_context_to_sid(&selinux_state, secdata, seclen,
6558 secid, GFP_KERNEL);
6559}
6560
6561static void selinux_release_secctx(char *secdata, u32 seclen)
6562{
6563 kfree(secdata);
6564}
6565
6566static void selinux_inode_invalidate_secctx(struct inode *inode)
6567{
6568 struct inode_security_struct *isec = selinux_inode(inode);
6569
6570 spin_lock(&isec->lock);
6571 isec->initialized = LABEL_INVALID;
6572 spin_unlock(&isec->lock);
6573}
6574
6575/*
6576 * called with inode->i_mutex locked
6577 */
6578static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
6579{
6580 int rc = selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX,
6581 ctx, ctxlen, 0);
6582 /* Do not return error when suppressing label (SBLABEL_MNT not set). */
6583 return rc == -EOPNOTSUPP ? 0 : rc;
6584}
6585
6586/*
6587 * called with inode->i_mutex locked
6588 */
6589static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
6590{
6591 return __vfs_setxattr_noperm(&init_user_ns, dentry, XATTR_NAME_SELINUX,
6592 ctx, ctxlen, 0);
6593}
6594
6595static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
6596{
6597 int len = 0;
6598 len = selinux_inode_getsecurity(&init_user_ns, inode,
6599 XATTR_SELINUX_SUFFIX, ctx, true);
6600 if (len < 0)
6601 return len;
6602 *ctxlen = len;
6603 return 0;
6604}
6605#ifdef CONFIG_KEYS
6606
6607static int selinux_key_alloc(struct key *k, const struct cred *cred,
6608 unsigned long flags)
6609{
6610 const struct task_security_struct *tsec;
6611 struct key_security_struct *ksec;
6612
6613 ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
6614 if (!ksec)
6615 return -ENOMEM;
6616
6617 tsec = selinux_cred(cred);
6618 if (tsec->keycreate_sid)
6619 ksec->sid = tsec->keycreate_sid;
6620 else
6621 ksec->sid = tsec->sid;
6622
6623 k->security = ksec;
6624 return 0;
6625}
6626
6627static void selinux_key_free(struct key *k)
6628{
6629 struct key_security_struct *ksec = k->security;
6630
6631 k->security = NULL;
6632 kfree(ksec);
6633}
6634
6635static int selinux_key_permission(key_ref_t key_ref,
6636 const struct cred *cred,
6637 enum key_need_perm need_perm)
6638{
6639 struct key *key;
6640 struct key_security_struct *ksec;
6641 u32 perm, sid;
6642
6643 switch (need_perm) {
6644 case KEY_NEED_VIEW:
6645 perm = KEY__VIEW;
6646 break;
6647 case KEY_NEED_READ:
6648 perm = KEY__READ;
6649 break;
6650 case KEY_NEED_WRITE:
6651 perm = KEY__WRITE;
6652 break;
6653 case KEY_NEED_SEARCH:
6654 perm = KEY__SEARCH;
6655 break;
6656 case KEY_NEED_LINK:
6657 perm = KEY__LINK;
6658 break;
6659 case KEY_NEED_SETATTR:
6660 perm = KEY__SETATTR;
6661 break;
6662 case KEY_NEED_UNLINK:
6663 case KEY_SYSADMIN_OVERRIDE:
6664 case KEY_AUTHTOKEN_OVERRIDE:
6665 case KEY_DEFER_PERM_CHECK:
6666 return 0;
6667 default:
6668 WARN_ON(1);
6669 return -EPERM;
6670
6671 }
6672
6673 sid = cred_sid(cred);
6674 key = key_ref_to_ptr(key_ref);
6675 ksec = key->security;
6676
6677 return avc_has_perm(&selinux_state,
6678 sid, ksec->sid, SECCLASS_KEY, perm, NULL);
6679}
6680
6681static int selinux_key_getsecurity(struct key *key, char **_buffer)
6682{
6683 struct key_security_struct *ksec = key->security;
6684 char *context = NULL;
6685 unsigned len;
6686 int rc;
6687
6688 rc = security_sid_to_context(&selinux_state, ksec->sid,
6689 &context, &len);
6690 if (!rc)
6691 rc = len;
6692 *_buffer = context;
6693 return rc;
6694}
6695
6696#ifdef CONFIG_KEY_NOTIFICATIONS
6697static int selinux_watch_key(struct key *key)
6698{
6699 struct key_security_struct *ksec = key->security;
6700 u32 sid = current_sid();
6701
6702 return avc_has_perm(&selinux_state,
6703 sid, ksec->sid, SECCLASS_KEY, KEY__VIEW, NULL);
6704}
6705#endif
6706#endif
6707
6708#ifdef CONFIG_SECURITY_INFINIBAND
6709static int selinux_ib_pkey_access(void *ib_sec, u64 subnet_prefix, u16 pkey_val)
6710{
6711 struct common_audit_data ad;
6712 int err;
6713 u32 sid = 0;
6714 struct ib_security_struct *sec = ib_sec;
6715 struct lsm_ibpkey_audit ibpkey;
6716
6717 err = sel_ib_pkey_sid(subnet_prefix, pkey_val, &sid);
6718 if (err)
6719 return err;
6720
6721 ad.type = LSM_AUDIT_DATA_IBPKEY;
6722 ibpkey.subnet_prefix = subnet_prefix;
6723 ibpkey.pkey = pkey_val;
6724 ad.u.ibpkey = &ibpkey;
6725 return avc_has_perm(&selinux_state,
6726 sec->sid, sid,
6727 SECCLASS_INFINIBAND_PKEY,
6728 INFINIBAND_PKEY__ACCESS, &ad);
6729}
6730
6731static int selinux_ib_endport_manage_subnet(void *ib_sec, const char *dev_name,
6732 u8 port_num)
6733{
6734 struct common_audit_data ad;
6735 int err;
6736 u32 sid = 0;
6737 struct ib_security_struct *sec = ib_sec;
6738 struct lsm_ibendport_audit ibendport;
6739
6740 err = security_ib_endport_sid(&selinux_state, dev_name, port_num,
6741 &sid);
6742
6743 if (err)
6744 return err;
6745
6746 ad.type = LSM_AUDIT_DATA_IBENDPORT;
6747 ibendport.dev_name = dev_name;
6748 ibendport.port = port_num;
6749 ad.u.ibendport = &ibendport;
6750 return avc_has_perm(&selinux_state,
6751 sec->sid, sid,
6752 SECCLASS_INFINIBAND_ENDPORT,
6753 INFINIBAND_ENDPORT__MANAGE_SUBNET, &ad);
6754}
6755
6756static int selinux_ib_alloc_security(void **ib_sec)
6757{
6758 struct ib_security_struct *sec;
6759
6760 sec = kzalloc(sizeof(*sec), GFP_KERNEL);
6761 if (!sec)
6762 return -ENOMEM;
6763 sec->sid = current_sid();
6764
6765 *ib_sec = sec;
6766 return 0;
6767}
6768
6769static void selinux_ib_free_security(void *ib_sec)
6770{
6771 kfree(ib_sec);
6772}
6773#endif
6774
6775#ifdef CONFIG_BPF_SYSCALL
6776static int selinux_bpf(int cmd, union bpf_attr *attr,
6777 unsigned int size)
6778{
6779 u32 sid = current_sid();
6780 int ret;
6781
6782 switch (cmd) {
6783 case BPF_MAP_CREATE:
6784 ret = avc_has_perm(&selinux_state,
6785 sid, sid, SECCLASS_BPF, BPF__MAP_CREATE,
6786 NULL);
6787 break;
6788 case BPF_PROG_LOAD:
6789 ret = avc_has_perm(&selinux_state,
6790 sid, sid, SECCLASS_BPF, BPF__PROG_LOAD,
6791 NULL);
6792 break;
6793 default:
6794 ret = 0;
6795 break;
6796 }
6797
6798 return ret;
6799}
6800
6801static u32 bpf_map_fmode_to_av(fmode_t fmode)
6802{
6803 u32 av = 0;
6804
6805 if (fmode & FMODE_READ)
6806 av |= BPF__MAP_READ;
6807 if (fmode & FMODE_WRITE)
6808 av |= BPF__MAP_WRITE;
6809 return av;
6810}
6811
6812/* This function will check the file pass through unix socket or binder to see
6813 * if it is a bpf related object. And apply corresponding checks on the bpf
6814 * object based on the type. The bpf maps and programs, not like other files and
6815 * socket, are using a shared anonymous inode inside the kernel as their inode.
6816 * So checking that inode cannot identify if the process have privilege to
6817 * access the bpf object and that's why we have to add this additional check in
6818 * selinux_file_receive and selinux_binder_transfer_files.
6819 */
6820static int bpf_fd_pass(struct file *file, u32 sid)
6821{
6822 struct bpf_security_struct *bpfsec;
6823 struct bpf_prog *prog;
6824 struct bpf_map *map;
6825 int ret;
6826
6827 if (file->f_op == &bpf_map_fops) {
6828 map = file->private_data;
6829 bpfsec = map->security;
6830 ret = avc_has_perm(&selinux_state,
6831 sid, bpfsec->sid, SECCLASS_BPF,
6832 bpf_map_fmode_to_av(file->f_mode), NULL);
6833 if (ret)
6834 return ret;
6835 } else if (file->f_op == &bpf_prog_fops) {
6836 prog = file->private_data;
6837 bpfsec = prog->aux->security;
6838 ret = avc_has_perm(&selinux_state,
6839 sid, bpfsec->sid, SECCLASS_BPF,
6840 BPF__PROG_RUN, NULL);
6841 if (ret)
6842 return ret;
6843 }
6844 return 0;
6845}
6846
6847static int selinux_bpf_map(struct bpf_map *map, fmode_t fmode)
6848{
6849 u32 sid = current_sid();
6850 struct bpf_security_struct *bpfsec;
6851
6852 bpfsec = map->security;
6853 return avc_has_perm(&selinux_state,
6854 sid, bpfsec->sid, SECCLASS_BPF,
6855 bpf_map_fmode_to_av(fmode), NULL);
6856}
6857
6858static int selinux_bpf_prog(struct bpf_prog *prog)
6859{
6860 u32 sid = current_sid();
6861 struct bpf_security_struct *bpfsec;
6862
6863 bpfsec = prog->aux->security;
6864 return avc_has_perm(&selinux_state,
6865 sid, bpfsec->sid, SECCLASS_BPF,
6866 BPF__PROG_RUN, NULL);
6867}
6868
6869static int selinux_bpf_map_alloc(struct bpf_map *map)
6870{
6871 struct bpf_security_struct *bpfsec;
6872
6873 bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6874 if (!bpfsec)
6875 return -ENOMEM;
6876
6877 bpfsec->sid = current_sid();
6878 map->security = bpfsec;
6879
6880 return 0;
6881}
6882
6883static void selinux_bpf_map_free(struct bpf_map *map)
6884{
6885 struct bpf_security_struct *bpfsec = map->security;
6886
6887 map->security = NULL;
6888 kfree(bpfsec);
6889}
6890
6891static int selinux_bpf_prog_alloc(struct bpf_prog_aux *aux)
6892{
6893 struct bpf_security_struct *bpfsec;
6894
6895 bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6896 if (!bpfsec)
6897 return -ENOMEM;
6898
6899 bpfsec->sid = current_sid();
6900 aux->security = bpfsec;
6901
6902 return 0;
6903}
6904
6905static void selinux_bpf_prog_free(struct bpf_prog_aux *aux)
6906{
6907 struct bpf_security_struct *bpfsec = aux->security;
6908
6909 aux->security = NULL;
6910 kfree(bpfsec);
6911}
6912#endif
6913
6914struct lsm_blob_sizes selinux_blob_sizes __lsm_ro_after_init = {
6915 .lbs_cred = sizeof(struct task_security_struct),
6916 .lbs_file = sizeof(struct file_security_struct),
6917 .lbs_inode = sizeof(struct inode_security_struct),
6918 .lbs_ipc = sizeof(struct ipc_security_struct),
6919 .lbs_msg_msg = sizeof(struct msg_security_struct),
6920 .lbs_superblock = sizeof(struct superblock_security_struct),
6921};
6922
6923#ifdef CONFIG_PERF_EVENTS
6924static int selinux_perf_event_open(struct perf_event_attr *attr, int type)
6925{
6926 u32 requested, sid = current_sid();
6927
6928 if (type == PERF_SECURITY_OPEN)
6929 requested = PERF_EVENT__OPEN;
6930 else if (type == PERF_SECURITY_CPU)
6931 requested = PERF_EVENT__CPU;
6932 else if (type == PERF_SECURITY_KERNEL)
6933 requested = PERF_EVENT__KERNEL;
6934 else if (type == PERF_SECURITY_TRACEPOINT)
6935 requested = PERF_EVENT__TRACEPOINT;
6936 else
6937 return -EINVAL;
6938
6939 return avc_has_perm(&selinux_state, sid, sid, SECCLASS_PERF_EVENT,
6940 requested, NULL);
6941}
6942
6943static int selinux_perf_event_alloc(struct perf_event *event)
6944{
6945 struct perf_event_security_struct *perfsec;
6946
6947 perfsec = kzalloc(sizeof(*perfsec), GFP_KERNEL);
6948 if (!perfsec)
6949 return -ENOMEM;
6950
6951 perfsec->sid = current_sid();
6952 event->security = perfsec;
6953
6954 return 0;
6955}
6956
6957static void selinux_perf_event_free(struct perf_event *event)
6958{
6959 struct perf_event_security_struct *perfsec = event->security;
6960
6961 event->security = NULL;
6962 kfree(perfsec);
6963}
6964
6965static int selinux_perf_event_read(struct perf_event *event)
6966{
6967 struct perf_event_security_struct *perfsec = event->security;
6968 u32 sid = current_sid();
6969
6970 return avc_has_perm(&selinux_state, sid, perfsec->sid,
6971 SECCLASS_PERF_EVENT, PERF_EVENT__READ, NULL);
6972}
6973
6974static int selinux_perf_event_write(struct perf_event *event)
6975{
6976 struct perf_event_security_struct *perfsec = event->security;
6977 u32 sid = current_sid();
6978
6979 return avc_has_perm(&selinux_state, sid, perfsec->sid,
6980 SECCLASS_PERF_EVENT, PERF_EVENT__WRITE, NULL);
6981}
6982#endif
6983
6984#ifdef CONFIG_IO_URING
6985/**
6986 * selinux_uring_override_creds - check the requested cred override
6987 * @new: the target creds
6988 *
6989 * Check to see if the current task is allowed to override it's credentials
6990 * to service an io_uring operation.
6991 */
6992static int selinux_uring_override_creds(const struct cred *new)
6993{
6994 return avc_has_perm(&selinux_state, current_sid(), cred_sid(new),
6995 SECCLASS_IO_URING, IO_URING__OVERRIDE_CREDS, NULL);
6996}
6997
6998/**
6999 * selinux_uring_sqpoll - check if a io_uring polling thread can be created
7000 *
7001 * Check to see if the current task is allowed to create a new io_uring
7002 * kernel polling thread.
7003 */
7004static int selinux_uring_sqpoll(void)
7005{
7006 int sid = current_sid();
7007
7008 return avc_has_perm(&selinux_state, sid, sid,
7009 SECCLASS_IO_URING, IO_URING__SQPOLL, NULL);
7010}
7011
7012/**
7013 * selinux_uring_cmd - check if IORING_OP_URING_CMD is allowed
7014 * @ioucmd: the io_uring command structure
7015 *
7016 * Check to see if the current domain is allowed to execute an
7017 * IORING_OP_URING_CMD against the device/file specified in @ioucmd.
7018 *
7019 */
7020static int selinux_uring_cmd(struct io_uring_cmd *ioucmd)
7021{
7022 struct file *file = ioucmd->file;
7023 struct inode *inode = file_inode(file);
7024 struct inode_security_struct *isec = selinux_inode(inode);
7025 struct common_audit_data ad;
7026
7027 ad.type = LSM_AUDIT_DATA_FILE;
7028 ad.u.file = file;
7029
7030 return avc_has_perm(&selinux_state, current_sid(), isec->sid,
7031 SECCLASS_IO_URING, IO_URING__CMD, &ad);
7032}
7033#endif /* CONFIG_IO_URING */
7034
7035/*
7036 * IMPORTANT NOTE: When adding new hooks, please be careful to keep this order:
7037 * 1. any hooks that don't belong to (2.) or (3.) below,
7038 * 2. hooks that both access structures allocated by other hooks, and allocate
7039 * structures that can be later accessed by other hooks (mostly "cloning"
7040 * hooks),
7041 * 3. hooks that only allocate structures that can be later accessed by other
7042 * hooks ("allocating" hooks).
7043 *
7044 * Please follow block comment delimiters in the list to keep this order.
7045 *
7046 * This ordering is needed for SELinux runtime disable to work at least somewhat
7047 * safely. Breaking the ordering rules above might lead to NULL pointer derefs
7048 * when disabling SELinux at runtime.
7049 */
7050static struct security_hook_list selinux_hooks[] __lsm_ro_after_init = {
7051 LSM_HOOK_INIT(binder_set_context_mgr, selinux_binder_set_context_mgr),
7052 LSM_HOOK_INIT(binder_transaction, selinux_binder_transaction),
7053 LSM_HOOK_INIT(binder_transfer_binder, selinux_binder_transfer_binder),
7054 LSM_HOOK_INIT(binder_transfer_file, selinux_binder_transfer_file),
7055
7056 LSM_HOOK_INIT(ptrace_access_check, selinux_ptrace_access_check),
7057 LSM_HOOK_INIT(ptrace_traceme, selinux_ptrace_traceme),
7058 LSM_HOOK_INIT(capget, selinux_capget),
7059 LSM_HOOK_INIT(capset, selinux_capset),
7060 LSM_HOOK_INIT(capable, selinux_capable),
7061 LSM_HOOK_INIT(quotactl, selinux_quotactl),
7062 LSM_HOOK_INIT(quota_on, selinux_quota_on),
7063 LSM_HOOK_INIT(syslog, selinux_syslog),
7064 LSM_HOOK_INIT(vm_enough_memory, selinux_vm_enough_memory),
7065
7066 LSM_HOOK_INIT(netlink_send, selinux_netlink_send),
7067
7068 LSM_HOOK_INIT(bprm_creds_for_exec, selinux_bprm_creds_for_exec),
7069 LSM_HOOK_INIT(bprm_committing_creds, selinux_bprm_committing_creds),
7070 LSM_HOOK_INIT(bprm_committed_creds, selinux_bprm_committed_creds),
7071
7072 LSM_HOOK_INIT(sb_free_mnt_opts, selinux_free_mnt_opts),
7073 LSM_HOOK_INIT(sb_mnt_opts_compat, selinux_sb_mnt_opts_compat),
7074 LSM_HOOK_INIT(sb_remount, selinux_sb_remount),
7075 LSM_HOOK_INIT(sb_kern_mount, selinux_sb_kern_mount),
7076 LSM_HOOK_INIT(sb_show_options, selinux_sb_show_options),
7077 LSM_HOOK_INIT(sb_statfs, selinux_sb_statfs),
7078 LSM_HOOK_INIT(sb_mount, selinux_mount),
7079 LSM_HOOK_INIT(sb_umount, selinux_umount),
7080 LSM_HOOK_INIT(sb_set_mnt_opts, selinux_set_mnt_opts),
7081 LSM_HOOK_INIT(sb_clone_mnt_opts, selinux_sb_clone_mnt_opts),
7082
7083 LSM_HOOK_INIT(move_mount, selinux_move_mount),
7084
7085 LSM_HOOK_INIT(dentry_init_security, selinux_dentry_init_security),
7086 LSM_HOOK_INIT(dentry_create_files_as, selinux_dentry_create_files_as),
7087
7088 LSM_HOOK_INIT(inode_free_security, selinux_inode_free_security),
7089 LSM_HOOK_INIT(inode_init_security, selinux_inode_init_security),
7090 LSM_HOOK_INIT(inode_init_security_anon, selinux_inode_init_security_anon),
7091 LSM_HOOK_INIT(inode_create, selinux_inode_create),
7092 LSM_HOOK_INIT(inode_link, selinux_inode_link),
7093 LSM_HOOK_INIT(inode_unlink, selinux_inode_unlink),
7094 LSM_HOOK_INIT(inode_symlink, selinux_inode_symlink),
7095 LSM_HOOK_INIT(inode_mkdir, selinux_inode_mkdir),
7096 LSM_HOOK_INIT(inode_rmdir, selinux_inode_rmdir),
7097 LSM_HOOK_INIT(inode_mknod, selinux_inode_mknod),
7098 LSM_HOOK_INIT(inode_rename, selinux_inode_rename),
7099 LSM_HOOK_INIT(inode_readlink, selinux_inode_readlink),
7100 LSM_HOOK_INIT(inode_follow_link, selinux_inode_follow_link),
7101 LSM_HOOK_INIT(inode_permission, selinux_inode_permission),
7102 LSM_HOOK_INIT(inode_setattr, selinux_inode_setattr),
7103 LSM_HOOK_INIT(inode_getattr, selinux_inode_getattr),
7104 LSM_HOOK_INIT(inode_setxattr, selinux_inode_setxattr),
7105 LSM_HOOK_INIT(inode_post_setxattr, selinux_inode_post_setxattr),
7106 LSM_HOOK_INIT(inode_getxattr, selinux_inode_getxattr),
7107 LSM_HOOK_INIT(inode_listxattr, selinux_inode_listxattr),
7108 LSM_HOOK_INIT(inode_removexattr, selinux_inode_removexattr),
7109 LSM_HOOK_INIT(inode_set_acl, selinux_inode_set_acl),
7110 LSM_HOOK_INIT(inode_get_acl, selinux_inode_get_acl),
7111 LSM_HOOK_INIT(inode_remove_acl, selinux_inode_remove_acl),
7112 LSM_HOOK_INIT(inode_getsecurity, selinux_inode_getsecurity),
7113 LSM_HOOK_INIT(inode_setsecurity, selinux_inode_setsecurity),
7114 LSM_HOOK_INIT(inode_listsecurity, selinux_inode_listsecurity),
7115 LSM_HOOK_INIT(inode_getsecid, selinux_inode_getsecid),
7116 LSM_HOOK_INIT(inode_copy_up, selinux_inode_copy_up),
7117 LSM_HOOK_INIT(inode_copy_up_xattr, selinux_inode_copy_up_xattr),
7118 LSM_HOOK_INIT(path_notify, selinux_path_notify),
7119
7120 LSM_HOOK_INIT(kernfs_init_security, selinux_kernfs_init_security),
7121
7122 LSM_HOOK_INIT(file_permission, selinux_file_permission),
7123 LSM_HOOK_INIT(file_alloc_security, selinux_file_alloc_security),
7124 LSM_HOOK_INIT(file_ioctl, selinux_file_ioctl),
7125 LSM_HOOK_INIT(mmap_file, selinux_mmap_file),
7126 LSM_HOOK_INIT(mmap_addr, selinux_mmap_addr),
7127 LSM_HOOK_INIT(file_mprotect, selinux_file_mprotect),
7128 LSM_HOOK_INIT(file_lock, selinux_file_lock),
7129 LSM_HOOK_INIT(file_fcntl, selinux_file_fcntl),
7130 LSM_HOOK_INIT(file_set_fowner, selinux_file_set_fowner),
7131 LSM_HOOK_INIT(file_send_sigiotask, selinux_file_send_sigiotask),
7132 LSM_HOOK_INIT(file_receive, selinux_file_receive),
7133
7134 LSM_HOOK_INIT(file_open, selinux_file_open),
7135
7136 LSM_HOOK_INIT(task_alloc, selinux_task_alloc),
7137 LSM_HOOK_INIT(cred_prepare, selinux_cred_prepare),
7138 LSM_HOOK_INIT(cred_transfer, selinux_cred_transfer),
7139 LSM_HOOK_INIT(cred_getsecid, selinux_cred_getsecid),
7140 LSM_HOOK_INIT(kernel_act_as, selinux_kernel_act_as),
7141 LSM_HOOK_INIT(kernel_create_files_as, selinux_kernel_create_files_as),
7142 LSM_HOOK_INIT(kernel_module_request, selinux_kernel_module_request),
7143 LSM_HOOK_INIT(kernel_load_data, selinux_kernel_load_data),
7144 LSM_HOOK_INIT(kernel_read_file, selinux_kernel_read_file),
7145 LSM_HOOK_INIT(task_setpgid, selinux_task_setpgid),
7146 LSM_HOOK_INIT(task_getpgid, selinux_task_getpgid),
7147 LSM_HOOK_INIT(task_getsid, selinux_task_getsid),
7148 LSM_HOOK_INIT(current_getsecid_subj, selinux_current_getsecid_subj),
7149 LSM_HOOK_INIT(task_getsecid_obj, selinux_task_getsecid_obj),
7150 LSM_HOOK_INIT(task_setnice, selinux_task_setnice),
7151 LSM_HOOK_INIT(task_setioprio, selinux_task_setioprio),
7152 LSM_HOOK_INIT(task_getioprio, selinux_task_getioprio),
7153 LSM_HOOK_INIT(task_prlimit, selinux_task_prlimit),
7154 LSM_HOOK_INIT(task_setrlimit, selinux_task_setrlimit),
7155 LSM_HOOK_INIT(task_setscheduler, selinux_task_setscheduler),
7156 LSM_HOOK_INIT(task_getscheduler, selinux_task_getscheduler),
7157 LSM_HOOK_INIT(task_movememory, selinux_task_movememory),
7158 LSM_HOOK_INIT(task_kill, selinux_task_kill),
7159 LSM_HOOK_INIT(task_to_inode, selinux_task_to_inode),
7160 LSM_HOOK_INIT(userns_create, selinux_userns_create),
7161
7162 LSM_HOOK_INIT(ipc_permission, selinux_ipc_permission),
7163 LSM_HOOK_INIT(ipc_getsecid, selinux_ipc_getsecid),
7164
7165 LSM_HOOK_INIT(msg_queue_associate, selinux_msg_queue_associate),
7166 LSM_HOOK_INIT(msg_queue_msgctl, selinux_msg_queue_msgctl),
7167 LSM_HOOK_INIT(msg_queue_msgsnd, selinux_msg_queue_msgsnd),
7168 LSM_HOOK_INIT(msg_queue_msgrcv, selinux_msg_queue_msgrcv),
7169
7170 LSM_HOOK_INIT(shm_associate, selinux_shm_associate),
7171 LSM_HOOK_INIT(shm_shmctl, selinux_shm_shmctl),
7172 LSM_HOOK_INIT(shm_shmat, selinux_shm_shmat),
7173
7174 LSM_HOOK_INIT(sem_associate, selinux_sem_associate),
7175 LSM_HOOK_INIT(sem_semctl, selinux_sem_semctl),
7176 LSM_HOOK_INIT(sem_semop, selinux_sem_semop),
7177
7178 LSM_HOOK_INIT(d_instantiate, selinux_d_instantiate),
7179
7180 LSM_HOOK_INIT(getprocattr, selinux_getprocattr),
7181 LSM_HOOK_INIT(setprocattr, selinux_setprocattr),
7182
7183 LSM_HOOK_INIT(ismaclabel, selinux_ismaclabel),
7184 LSM_HOOK_INIT(secctx_to_secid, selinux_secctx_to_secid),
7185 LSM_HOOK_INIT(release_secctx, selinux_release_secctx),
7186 LSM_HOOK_INIT(inode_invalidate_secctx, selinux_inode_invalidate_secctx),
7187 LSM_HOOK_INIT(inode_notifysecctx, selinux_inode_notifysecctx),
7188 LSM_HOOK_INIT(inode_setsecctx, selinux_inode_setsecctx),
7189
7190 LSM_HOOK_INIT(unix_stream_connect, selinux_socket_unix_stream_connect),
7191 LSM_HOOK_INIT(unix_may_send, selinux_socket_unix_may_send),
7192
7193 LSM_HOOK_INIT(socket_create, selinux_socket_create),
7194 LSM_HOOK_INIT(socket_post_create, selinux_socket_post_create),
7195 LSM_HOOK_INIT(socket_socketpair, selinux_socket_socketpair),
7196 LSM_HOOK_INIT(socket_bind, selinux_socket_bind),
7197 LSM_HOOK_INIT(socket_connect, selinux_socket_connect),
7198 LSM_HOOK_INIT(socket_listen, selinux_socket_listen),
7199 LSM_HOOK_INIT(socket_accept, selinux_socket_accept),
7200 LSM_HOOK_INIT(socket_sendmsg, selinux_socket_sendmsg),
7201 LSM_HOOK_INIT(socket_recvmsg, selinux_socket_recvmsg),
7202 LSM_HOOK_INIT(socket_getsockname, selinux_socket_getsockname),
7203 LSM_HOOK_INIT(socket_getpeername, selinux_socket_getpeername),
7204 LSM_HOOK_INIT(socket_getsockopt, selinux_socket_getsockopt),
7205 LSM_HOOK_INIT(socket_setsockopt, selinux_socket_setsockopt),
7206 LSM_HOOK_INIT(socket_shutdown, selinux_socket_shutdown),
7207 LSM_HOOK_INIT(socket_sock_rcv_skb, selinux_socket_sock_rcv_skb),
7208 LSM_HOOK_INIT(socket_getpeersec_stream,
7209 selinux_socket_getpeersec_stream),
7210 LSM_HOOK_INIT(socket_getpeersec_dgram, selinux_socket_getpeersec_dgram),
7211 LSM_HOOK_INIT(sk_free_security, selinux_sk_free_security),
7212 LSM_HOOK_INIT(sk_clone_security, selinux_sk_clone_security),
7213 LSM_HOOK_INIT(sk_getsecid, selinux_sk_getsecid),
7214 LSM_HOOK_INIT(sock_graft, selinux_sock_graft),
7215 LSM_HOOK_INIT(sctp_assoc_request, selinux_sctp_assoc_request),
7216 LSM_HOOK_INIT(sctp_sk_clone, selinux_sctp_sk_clone),
7217 LSM_HOOK_INIT(sctp_bind_connect, selinux_sctp_bind_connect),
7218 LSM_HOOK_INIT(sctp_assoc_established, selinux_sctp_assoc_established),
7219 LSM_HOOK_INIT(inet_conn_request, selinux_inet_conn_request),
7220 LSM_HOOK_INIT(inet_csk_clone, selinux_inet_csk_clone),
7221 LSM_HOOK_INIT(inet_conn_established, selinux_inet_conn_established),
7222 LSM_HOOK_INIT(secmark_relabel_packet, selinux_secmark_relabel_packet),
7223 LSM_HOOK_INIT(secmark_refcount_inc, selinux_secmark_refcount_inc),
7224 LSM_HOOK_INIT(secmark_refcount_dec, selinux_secmark_refcount_dec),
7225 LSM_HOOK_INIT(req_classify_flow, selinux_req_classify_flow),
7226 LSM_HOOK_INIT(tun_dev_free_security, selinux_tun_dev_free_security),
7227 LSM_HOOK_INIT(tun_dev_create, selinux_tun_dev_create),
7228 LSM_HOOK_INIT(tun_dev_attach_queue, selinux_tun_dev_attach_queue),
7229 LSM_HOOK_INIT(tun_dev_attach, selinux_tun_dev_attach),
7230 LSM_HOOK_INIT(tun_dev_open, selinux_tun_dev_open),
7231#ifdef CONFIG_SECURITY_INFINIBAND
7232 LSM_HOOK_INIT(ib_pkey_access, selinux_ib_pkey_access),
7233 LSM_HOOK_INIT(ib_endport_manage_subnet,
7234 selinux_ib_endport_manage_subnet),
7235 LSM_HOOK_INIT(ib_free_security, selinux_ib_free_security),
7236#endif
7237#ifdef CONFIG_SECURITY_NETWORK_XFRM
7238 LSM_HOOK_INIT(xfrm_policy_free_security, selinux_xfrm_policy_free),
7239 LSM_HOOK_INIT(xfrm_policy_delete_security, selinux_xfrm_policy_delete),
7240 LSM_HOOK_INIT(xfrm_state_free_security, selinux_xfrm_state_free),
7241 LSM_HOOK_INIT(xfrm_state_delete_security, selinux_xfrm_state_delete),
7242 LSM_HOOK_INIT(xfrm_policy_lookup, selinux_xfrm_policy_lookup),
7243 LSM_HOOK_INIT(xfrm_state_pol_flow_match,
7244 selinux_xfrm_state_pol_flow_match),
7245 LSM_HOOK_INIT(xfrm_decode_session, selinux_xfrm_decode_session),
7246#endif
7247
7248#ifdef CONFIG_KEYS
7249 LSM_HOOK_INIT(key_free, selinux_key_free),
7250 LSM_HOOK_INIT(key_permission, selinux_key_permission),
7251 LSM_HOOK_INIT(key_getsecurity, selinux_key_getsecurity),
7252#ifdef CONFIG_KEY_NOTIFICATIONS
7253 LSM_HOOK_INIT(watch_key, selinux_watch_key),
7254#endif
7255#endif
7256
7257#ifdef CONFIG_AUDIT
7258 LSM_HOOK_INIT(audit_rule_known, selinux_audit_rule_known),
7259 LSM_HOOK_INIT(audit_rule_match, selinux_audit_rule_match),
7260 LSM_HOOK_INIT(audit_rule_free, selinux_audit_rule_free),
7261#endif
7262
7263#ifdef CONFIG_BPF_SYSCALL
7264 LSM_HOOK_INIT(bpf, selinux_bpf),
7265 LSM_HOOK_INIT(bpf_map, selinux_bpf_map),
7266 LSM_HOOK_INIT(bpf_prog, selinux_bpf_prog),
7267 LSM_HOOK_INIT(bpf_map_free_security, selinux_bpf_map_free),
7268 LSM_HOOK_INIT(bpf_prog_free_security, selinux_bpf_prog_free),
7269#endif
7270
7271#ifdef CONFIG_PERF_EVENTS
7272 LSM_HOOK_INIT(perf_event_open, selinux_perf_event_open),
7273 LSM_HOOK_INIT(perf_event_free, selinux_perf_event_free),
7274 LSM_HOOK_INIT(perf_event_read, selinux_perf_event_read),
7275 LSM_HOOK_INIT(perf_event_write, selinux_perf_event_write),
7276#endif
7277
7278#ifdef CONFIG_IO_URING
7279 LSM_HOOK_INIT(uring_override_creds, selinux_uring_override_creds),
7280 LSM_HOOK_INIT(uring_sqpoll, selinux_uring_sqpoll),
7281 LSM_HOOK_INIT(uring_cmd, selinux_uring_cmd),
7282#endif
7283
7284 /*
7285 * PUT "CLONING" (ACCESSING + ALLOCATING) HOOKS HERE
7286 */
7287 LSM_HOOK_INIT(fs_context_dup, selinux_fs_context_dup),
7288 LSM_HOOK_INIT(fs_context_parse_param, selinux_fs_context_parse_param),
7289 LSM_HOOK_INIT(sb_eat_lsm_opts, selinux_sb_eat_lsm_opts),
7290#ifdef CONFIG_SECURITY_NETWORK_XFRM
7291 LSM_HOOK_INIT(xfrm_policy_clone_security, selinux_xfrm_policy_clone),
7292#endif
7293
7294 /*
7295 * PUT "ALLOCATING" HOOKS HERE
7296 */
7297 LSM_HOOK_INIT(msg_msg_alloc_security, selinux_msg_msg_alloc_security),
7298 LSM_HOOK_INIT(msg_queue_alloc_security,
7299 selinux_msg_queue_alloc_security),
7300 LSM_HOOK_INIT(shm_alloc_security, selinux_shm_alloc_security),
7301 LSM_HOOK_INIT(sb_alloc_security, selinux_sb_alloc_security),
7302 LSM_HOOK_INIT(inode_alloc_security, selinux_inode_alloc_security),
7303 LSM_HOOK_INIT(sem_alloc_security, selinux_sem_alloc_security),
7304 LSM_HOOK_INIT(secid_to_secctx, selinux_secid_to_secctx),
7305 LSM_HOOK_INIT(inode_getsecctx, selinux_inode_getsecctx),
7306 LSM_HOOK_INIT(sk_alloc_security, selinux_sk_alloc_security),
7307 LSM_HOOK_INIT(tun_dev_alloc_security, selinux_tun_dev_alloc_security),
7308#ifdef CONFIG_SECURITY_INFINIBAND
7309 LSM_HOOK_INIT(ib_alloc_security, selinux_ib_alloc_security),
7310#endif
7311#ifdef CONFIG_SECURITY_NETWORK_XFRM
7312 LSM_HOOK_INIT(xfrm_policy_alloc_security, selinux_xfrm_policy_alloc),
7313 LSM_HOOK_INIT(xfrm_state_alloc, selinux_xfrm_state_alloc),
7314 LSM_HOOK_INIT(xfrm_state_alloc_acquire,
7315 selinux_xfrm_state_alloc_acquire),
7316#endif
7317#ifdef CONFIG_KEYS
7318 LSM_HOOK_INIT(key_alloc, selinux_key_alloc),
7319#endif
7320#ifdef CONFIG_AUDIT
7321 LSM_HOOK_INIT(audit_rule_init, selinux_audit_rule_init),
7322#endif
7323#ifdef CONFIG_BPF_SYSCALL
7324 LSM_HOOK_INIT(bpf_map_alloc_security, selinux_bpf_map_alloc),
7325 LSM_HOOK_INIT(bpf_prog_alloc_security, selinux_bpf_prog_alloc),
7326#endif
7327#ifdef CONFIG_PERF_EVENTS
7328 LSM_HOOK_INIT(perf_event_alloc, selinux_perf_event_alloc),
7329#endif
7330};
7331
7332static __init int selinux_init(void)
7333{
7334 pr_info("SELinux: Initializing.\n");
7335
7336 memset(&selinux_state, 0, sizeof(selinux_state));
7337 enforcing_set(&selinux_state, selinux_enforcing_boot);
7338 if (CONFIG_SECURITY_SELINUX_CHECKREQPROT_VALUE)
7339 pr_err("SELinux: CONFIG_SECURITY_SELINUX_CHECKREQPROT_VALUE is non-zero. This is deprecated and will be rejected in a future kernel release.\n");
7340 checkreqprot_set(&selinux_state, selinux_checkreqprot_boot);
7341 selinux_avc_init(&selinux_state.avc);
7342 mutex_init(&selinux_state.status_lock);
7343 mutex_init(&selinux_state.policy_mutex);
7344
7345 /* Set the security state for the initial task. */
7346 cred_init_security();
7347
7348 default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
7349
7350 avc_init();
7351
7352 avtab_cache_init();
7353
7354 ebitmap_cache_init();
7355
7356 hashtab_cache_init();
7357
7358 security_add_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks), "selinux");
7359
7360 if (avc_add_callback(selinux_netcache_avc_callback, AVC_CALLBACK_RESET))
7361 panic("SELinux: Unable to register AVC netcache callback\n");
7362
7363 if (avc_add_callback(selinux_lsm_notifier_avc_callback, AVC_CALLBACK_RESET))
7364 panic("SELinux: Unable to register AVC LSM notifier callback\n");
7365
7366 if (selinux_enforcing_boot)
7367 pr_debug("SELinux: Starting in enforcing mode\n");
7368 else
7369 pr_debug("SELinux: Starting in permissive mode\n");
7370
7371 fs_validate_description("selinux", selinux_fs_parameters);
7372
7373 return 0;
7374}
7375
7376static void delayed_superblock_init(struct super_block *sb, void *unused)
7377{
7378 selinux_set_mnt_opts(sb, NULL, 0, NULL);
7379}
7380
7381void selinux_complete_init(void)
7382{
7383 pr_debug("SELinux: Completing initialization.\n");
7384
7385 /* Set up any superblocks initialized prior to the policy load. */
7386 pr_debug("SELinux: Setting up existing superblocks.\n");
7387 iterate_supers(delayed_superblock_init, NULL);
7388}
7389
7390/* SELinux requires early initialization in order to label
7391 all processes and objects when they are created. */
7392DEFINE_LSM(selinux) = {
7393 .name = "selinux",
7394 .flags = LSM_FLAG_LEGACY_MAJOR | LSM_FLAG_EXCLUSIVE,
7395 .enabled = &selinux_enabled_boot,
7396 .blobs = &selinux_blob_sizes,
7397 .init = selinux_init,
7398};
7399
7400#if defined(CONFIG_NETFILTER)
7401
7402static const struct nf_hook_ops selinux_nf_ops[] = {
7403 {
7404 .hook = selinux_ip_postroute,
7405 .pf = NFPROTO_IPV4,
7406 .hooknum = NF_INET_POST_ROUTING,
7407 .priority = NF_IP_PRI_SELINUX_LAST,
7408 },
7409 {
7410 .hook = selinux_ip_forward,
7411 .pf = NFPROTO_IPV4,
7412 .hooknum = NF_INET_FORWARD,
7413 .priority = NF_IP_PRI_SELINUX_FIRST,
7414 },
7415 {
7416 .hook = selinux_ip_output,
7417 .pf = NFPROTO_IPV4,
7418 .hooknum = NF_INET_LOCAL_OUT,
7419 .priority = NF_IP_PRI_SELINUX_FIRST,
7420 },
7421#if IS_ENABLED(CONFIG_IPV6)
7422 {
7423 .hook = selinux_ip_postroute,
7424 .pf = NFPROTO_IPV6,
7425 .hooknum = NF_INET_POST_ROUTING,
7426 .priority = NF_IP6_PRI_SELINUX_LAST,
7427 },
7428 {
7429 .hook = selinux_ip_forward,
7430 .pf = NFPROTO_IPV6,
7431 .hooknum = NF_INET_FORWARD,
7432 .priority = NF_IP6_PRI_SELINUX_FIRST,
7433 },
7434 {
7435 .hook = selinux_ip_output,
7436 .pf = NFPROTO_IPV6,
7437 .hooknum = NF_INET_LOCAL_OUT,
7438 .priority = NF_IP6_PRI_SELINUX_FIRST,
7439 },
7440#endif /* IPV6 */
7441};
7442
7443static int __net_init selinux_nf_register(struct net *net)
7444{
7445 return nf_register_net_hooks(net, selinux_nf_ops,
7446 ARRAY_SIZE(selinux_nf_ops));
7447}
7448
7449static void __net_exit selinux_nf_unregister(struct net *net)
7450{
7451 nf_unregister_net_hooks(net, selinux_nf_ops,
7452 ARRAY_SIZE(selinux_nf_ops));
7453}
7454
7455static struct pernet_operations selinux_net_ops = {
7456 .init = selinux_nf_register,
7457 .exit = selinux_nf_unregister,
7458};
7459
7460static int __init selinux_nf_ip_init(void)
7461{
7462 int err;
7463
7464 if (!selinux_enabled_boot)
7465 return 0;
7466
7467 pr_debug("SELinux: Registering netfilter hooks\n");
7468
7469 err = register_pernet_subsys(&selinux_net_ops);
7470 if (err)
7471 panic("SELinux: register_pernet_subsys: error %d\n", err);
7472
7473 return 0;
7474}
7475__initcall(selinux_nf_ip_init);
7476
7477#ifdef CONFIG_SECURITY_SELINUX_DISABLE
7478static void selinux_nf_ip_exit(void)
7479{
7480 pr_debug("SELinux: Unregistering netfilter hooks\n");
7481
7482 unregister_pernet_subsys(&selinux_net_ops);
7483}
7484#endif
7485
7486#else /* CONFIG_NETFILTER */
7487
7488#ifdef CONFIG_SECURITY_SELINUX_DISABLE
7489#define selinux_nf_ip_exit()
7490#endif
7491
7492#endif /* CONFIG_NETFILTER */
7493
7494#ifdef CONFIG_SECURITY_SELINUX_DISABLE
7495int selinux_disable(struct selinux_state *state)
7496{
7497 if (selinux_initialized(state)) {
7498 /* Not permitted after initial policy load. */
7499 return -EINVAL;
7500 }
7501
7502 if (selinux_disabled(state)) {
7503 /* Only do this once. */
7504 return -EINVAL;
7505 }
7506
7507 selinux_mark_disabled(state);
7508
7509 pr_info("SELinux: Disabled at runtime.\n");
7510
7511 /*
7512 * Unregister netfilter hooks.
7513 * Must be done before security_delete_hooks() to avoid breaking
7514 * runtime disable.
7515 */
7516 selinux_nf_ip_exit();
7517
7518 security_delete_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks));
7519
7520 /* Try to destroy the avc node cache */
7521 avc_disable();
7522
7523 /* Unregister selinuxfs. */
7524 exit_sel_fs();
7525
7526 return 0;
7527}
7528#endif