Linux Audio

Check our new training course

Loading...
v3.5.6
 
   1/*
   2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   3 *		operating system.  INET is implemented using the  BSD Socket
   4 *		interface as the means of communication with the user level.
   5 *
   6 *		Implementation of the Transmission Control Protocol(TCP).
   7 *
   8 * Authors:	Ross Biro
   9 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  10 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
  11 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
  12 *		Florian La Roche, <flla@stud.uni-sb.de>
  13 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
  14 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
  15 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
  16 *		Matthew Dillon, <dillon@apollo.west.oic.com>
  17 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  18 *		Jorge Cwik, <jorge@laser.satlink.net>
  19 *
  20 * Fixes:
  21 *		Alan Cox	:	Numerous verify_area() calls
  22 *		Alan Cox	:	Set the ACK bit on a reset
  23 *		Alan Cox	:	Stopped it crashing if it closed while
  24 *					sk->inuse=1 and was trying to connect
  25 *					(tcp_err()).
  26 *		Alan Cox	:	All icmp error handling was broken
  27 *					pointers passed where wrong and the
  28 *					socket was looked up backwards. Nobody
  29 *					tested any icmp error code obviously.
  30 *		Alan Cox	:	tcp_err() now handled properly. It
  31 *					wakes people on errors. poll
  32 *					behaves and the icmp error race
  33 *					has gone by moving it into sock.c
  34 *		Alan Cox	:	tcp_send_reset() fixed to work for
  35 *					everything not just packets for
  36 *					unknown sockets.
  37 *		Alan Cox	:	tcp option processing.
  38 *		Alan Cox	:	Reset tweaked (still not 100%) [Had
  39 *					syn rule wrong]
  40 *		Herp Rosmanith  :	More reset fixes
  41 *		Alan Cox	:	No longer acks invalid rst frames.
  42 *					Acking any kind of RST is right out.
  43 *		Alan Cox	:	Sets an ignore me flag on an rst
  44 *					receive otherwise odd bits of prattle
  45 *					escape still
  46 *		Alan Cox	:	Fixed another acking RST frame bug.
  47 *					Should stop LAN workplace lockups.
  48 *		Alan Cox	: 	Some tidyups using the new skb list
  49 *					facilities
  50 *		Alan Cox	:	sk->keepopen now seems to work
  51 *		Alan Cox	:	Pulls options out correctly on accepts
  52 *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
  53 *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
  54 *					bit to skb ops.
  55 *		Alan Cox	:	Tidied tcp_data to avoid a potential
  56 *					nasty.
  57 *		Alan Cox	:	Added some better commenting, as the
  58 *					tcp is hard to follow
  59 *		Alan Cox	:	Removed incorrect check for 20 * psh
  60 *	Michael O'Reilly	:	ack < copied bug fix.
  61 *	Johannes Stille		:	Misc tcp fixes (not all in yet).
  62 *		Alan Cox	:	FIN with no memory -> CRASH
  63 *		Alan Cox	:	Added socket option proto entries.
  64 *					Also added awareness of them to accept.
  65 *		Alan Cox	:	Added TCP options (SOL_TCP)
  66 *		Alan Cox	:	Switched wakeup calls to callbacks,
  67 *					so the kernel can layer network
  68 *					sockets.
  69 *		Alan Cox	:	Use ip_tos/ip_ttl settings.
  70 *		Alan Cox	:	Handle FIN (more) properly (we hope).
  71 *		Alan Cox	:	RST frames sent on unsynchronised
  72 *					state ack error.
  73 *		Alan Cox	:	Put in missing check for SYN bit.
  74 *		Alan Cox	:	Added tcp_select_window() aka NET2E
  75 *					window non shrink trick.
  76 *		Alan Cox	:	Added a couple of small NET2E timer
  77 *					fixes
  78 *		Charles Hedrick :	TCP fixes
  79 *		Toomas Tamm	:	TCP window fixes
  80 *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
  81 *		Charles Hedrick	:	Rewrote most of it to actually work
  82 *		Linus		:	Rewrote tcp_read() and URG handling
  83 *					completely
  84 *		Gerhard Koerting:	Fixed some missing timer handling
  85 *		Matthew Dillon  :	Reworked TCP machine states as per RFC
  86 *		Gerhard Koerting:	PC/TCP workarounds
  87 *		Adam Caldwell	:	Assorted timer/timing errors
  88 *		Matthew Dillon	:	Fixed another RST bug
  89 *		Alan Cox	:	Move to kernel side addressing changes.
  90 *		Alan Cox	:	Beginning work on TCP fastpathing
  91 *					(not yet usable)
  92 *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
  93 *		Alan Cox	:	TCP fast path debugging
  94 *		Alan Cox	:	Window clamping
  95 *		Michael Riepe	:	Bug in tcp_check()
  96 *		Matt Dillon	:	More TCP improvements and RST bug fixes
  97 *		Matt Dillon	:	Yet more small nasties remove from the
  98 *					TCP code (Be very nice to this man if
  99 *					tcp finally works 100%) 8)
 100 *		Alan Cox	:	BSD accept semantics.
 101 *		Alan Cox	:	Reset on closedown bug.
 102 *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
 103 *		Michael Pall	:	Handle poll() after URG properly in
 104 *					all cases.
 105 *		Michael Pall	:	Undo the last fix in tcp_read_urg()
 106 *					(multi URG PUSH broke rlogin).
 107 *		Michael Pall	:	Fix the multi URG PUSH problem in
 108 *					tcp_readable(), poll() after URG
 109 *					works now.
 110 *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
 111 *					BSD api.
 112 *		Alan Cox	:	Changed the semantics of sk->socket to
 113 *					fix a race and a signal problem with
 114 *					accept() and async I/O.
 115 *		Alan Cox	:	Relaxed the rules on tcp_sendto().
 116 *		Yury Shevchuk	:	Really fixed accept() blocking problem.
 117 *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
 118 *					clients/servers which listen in on
 119 *					fixed ports.
 120 *		Alan Cox	:	Cleaned the above up and shrank it to
 121 *					a sensible code size.
 122 *		Alan Cox	:	Self connect lockup fix.
 123 *		Alan Cox	:	No connect to multicast.
 124 *		Ross Biro	:	Close unaccepted children on master
 125 *					socket close.
 126 *		Alan Cox	:	Reset tracing code.
 127 *		Alan Cox	:	Spurious resets on shutdown.
 128 *		Alan Cox	:	Giant 15 minute/60 second timer error
 129 *		Alan Cox	:	Small whoops in polling before an
 130 *					accept.
 131 *		Alan Cox	:	Kept the state trace facility since
 132 *					it's handy for debugging.
 133 *		Alan Cox	:	More reset handler fixes.
 134 *		Alan Cox	:	Started rewriting the code based on
 135 *					the RFC's for other useful protocol
 136 *					references see: Comer, KA9Q NOS, and
 137 *					for a reference on the difference
 138 *					between specifications and how BSD
 139 *					works see the 4.4lite source.
 140 *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
 141 *					close.
 142 *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
 143 *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
 144 *		Alan Cox	:	Reimplemented timers as per the RFC
 145 *					and using multiple timers for sanity.
 146 *		Alan Cox	:	Small bug fixes, and a lot of new
 147 *					comments.
 148 *		Alan Cox	:	Fixed dual reader crash by locking
 149 *					the buffers (much like datagram.c)
 150 *		Alan Cox	:	Fixed stuck sockets in probe. A probe
 151 *					now gets fed up of retrying without
 152 *					(even a no space) answer.
 153 *		Alan Cox	:	Extracted closing code better
 154 *		Alan Cox	:	Fixed the closing state machine to
 155 *					resemble the RFC.
 156 *		Alan Cox	:	More 'per spec' fixes.
 157 *		Jorge Cwik	:	Even faster checksumming.
 158 *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
 159 *					only frames. At least one pc tcp stack
 160 *					generates them.
 161 *		Alan Cox	:	Cache last socket.
 162 *		Alan Cox	:	Per route irtt.
 163 *		Matt Day	:	poll()->select() match BSD precisely on error
 164 *		Alan Cox	:	New buffers
 165 *		Marc Tamsky	:	Various sk->prot->retransmits and
 166 *					sk->retransmits misupdating fixed.
 167 *					Fixed tcp_write_timeout: stuck close,
 168 *					and TCP syn retries gets used now.
 169 *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
 170 *					ack if state is TCP_CLOSED.
 171 *		Alan Cox	:	Look up device on a retransmit - routes may
 172 *					change. Doesn't yet cope with MSS shrink right
 173 *					but it's a start!
 174 *		Marc Tamsky	:	Closing in closing fixes.
 175 *		Mike Shaver	:	RFC1122 verifications.
 176 *		Alan Cox	:	rcv_saddr errors.
 177 *		Alan Cox	:	Block double connect().
 178 *		Alan Cox	:	Small hooks for enSKIP.
 179 *		Alexey Kuznetsov:	Path MTU discovery.
 180 *		Alan Cox	:	Support soft errors.
 181 *		Alan Cox	:	Fix MTU discovery pathological case
 182 *					when the remote claims no mtu!
 183 *		Marc Tamsky	:	TCP_CLOSE fix.
 184 *		Colin (G3TNE)	:	Send a reset on syn ack replies in
 185 *					window but wrong (fixes NT lpd problems)
 186 *		Pedro Roque	:	Better TCP window handling, delayed ack.
 187 *		Joerg Reuter	:	No modification of locked buffers in
 188 *					tcp_do_retransmit()
 189 *		Eric Schenk	:	Changed receiver side silly window
 190 *					avoidance algorithm to BSD style
 191 *					algorithm. This doubles throughput
 192 *					against machines running Solaris,
 193 *					and seems to result in general
 194 *					improvement.
 195 *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
 196 *	Willy Konynenberg	:	Transparent proxying support.
 197 *	Mike McLagan		:	Routing by source
 198 *		Keith Owens	:	Do proper merging with partial SKB's in
 199 *					tcp_do_sendmsg to avoid burstiness.
 200 *		Eric Schenk	:	Fix fast close down bug with
 201 *					shutdown() followed by close().
 202 *		Andi Kleen 	:	Make poll agree with SIGIO
 203 *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
 204 *					lingertime == 0 (RFC 793 ABORT Call)
 205 *	Hirokazu Takahashi	:	Use copy_from_user() instead of
 206 *					csum_and_copy_from_user() if possible.
 207 *
 208 *		This program is free software; you can redistribute it and/or
 209 *		modify it under the terms of the GNU General Public License
 210 *		as published by the Free Software Foundation; either version
 211 *		2 of the License, or(at your option) any later version.
 212 *
 213 * Description of States:
 214 *
 215 *	TCP_SYN_SENT		sent a connection request, waiting for ack
 216 *
 217 *	TCP_SYN_RECV		received a connection request, sent ack,
 218 *				waiting for final ack in three-way handshake.
 219 *
 220 *	TCP_ESTABLISHED		connection established
 221 *
 222 *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
 223 *				transmission of remaining buffered data
 224 *
 225 *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
 226 *				to shutdown
 227 *
 228 *	TCP_CLOSING		both sides have shutdown but we still have
 229 *				data we have to finish sending
 230 *
 231 *	TCP_TIME_WAIT		timeout to catch resent junk before entering
 232 *				closed, can only be entered from FIN_WAIT2
 233 *				or CLOSING.  Required because the other end
 234 *				may not have gotten our last ACK causing it
 235 *				to retransmit the data packet (which we ignore)
 236 *
 237 *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
 238 *				us to finish writing our data and to shutdown
 239 *				(we have to close() to move on to LAST_ACK)
 240 *
 241 *	TCP_LAST_ACK		out side has shutdown after remote has
 242 *				shutdown.  There may still be data in our
 243 *				buffer that we have to finish sending
 244 *
 245 *	TCP_CLOSE		socket is finished
 246 */
 247
 248#define pr_fmt(fmt) "TCP: " fmt
 249
 
 250#include <linux/kernel.h>
 251#include <linux/module.h>
 252#include <linux/types.h>
 253#include <linux/fcntl.h>
 254#include <linux/poll.h>
 
 255#include <linux/init.h>
 256#include <linux/fs.h>
 257#include <linux/skbuff.h>
 258#include <linux/scatterlist.h>
 259#include <linux/splice.h>
 260#include <linux/net.h>
 261#include <linux/socket.h>
 262#include <linux/random.h>
 263#include <linux/bootmem.h>
 264#include <linux/highmem.h>
 265#include <linux/swap.h>
 266#include <linux/cache.h>
 267#include <linux/err.h>
 268#include <linux/crypto.h>
 269#include <linux/time.h>
 270#include <linux/slab.h>
 
 
 
 271
 272#include <net/icmp.h>
 
 273#include <net/tcp.h>
 
 274#include <net/xfrm.h>
 275#include <net/ip.h>
 276#include <net/netdma.h>
 277#include <net/sock.h>
 278
 279#include <asm/uaccess.h>
 280#include <asm/ioctls.h>
 
 281
 282int sysctl_tcp_fin_timeout __read_mostly = TCP_FIN_TIMEOUT;
 283
 284struct percpu_counter tcp_orphan_count;
 285EXPORT_SYMBOL_GPL(tcp_orphan_count);
 
 286
 287int sysctl_tcp_wmem[3] __read_mostly;
 288int sysctl_tcp_rmem[3] __read_mostly;
 289
 290EXPORT_SYMBOL(sysctl_tcp_rmem);
 291EXPORT_SYMBOL(sysctl_tcp_wmem);
 292
 293atomic_long_t tcp_memory_allocated;	/* Current allocated memory. */
 294EXPORT_SYMBOL(tcp_memory_allocated);
 
 
 
 
 
 
 
 295
 296/*
 297 * Current number of TCP sockets.
 298 */
 299struct percpu_counter tcp_sockets_allocated;
 300EXPORT_SYMBOL(tcp_sockets_allocated);
 301
 302/*
 303 * TCP splice context
 304 */
 305struct tcp_splice_state {
 306	struct pipe_inode_info *pipe;
 307	size_t len;
 308	unsigned int flags;
 309};
 310
 311/*
 312 * Pressure flag: try to collapse.
 313 * Technical note: it is used by multiple contexts non atomically.
 314 * All the __sk_mem_schedule() is of this nature: accounting
 315 * is strict, actions are advisory and have some latency.
 316 */
 317int tcp_memory_pressure __read_mostly;
 318EXPORT_SYMBOL(tcp_memory_pressure);
 319
 320void tcp_enter_memory_pressure(struct sock *sk)
 321{
 322	if (!tcp_memory_pressure) {
 
 
 
 
 
 
 
 
 323		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
 324		tcp_memory_pressure = 1;
 325	}
 326}
 327EXPORT_SYMBOL(tcp_enter_memory_pressure);
 
 
 
 
 
 
 
 
 
 
 
 
 
 328
 329/* Convert seconds to retransmits based on initial and max timeout */
 330static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
 331{
 332	u8 res = 0;
 333
 334	if (seconds > 0) {
 335		int period = timeout;
 336
 337		res = 1;
 338		while (seconds > period && res < 255) {
 339			res++;
 340			timeout <<= 1;
 341			if (timeout > rto_max)
 342				timeout = rto_max;
 343			period += timeout;
 344		}
 345	}
 346	return res;
 347}
 348
 349/* Convert retransmits to seconds based on initial and max timeout */
 350static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
 351{
 352	int period = 0;
 353
 354	if (retrans > 0) {
 355		period = timeout;
 356		while (--retrans) {
 357			timeout <<= 1;
 358			if (timeout > rto_max)
 359				timeout = rto_max;
 360			period += timeout;
 361		}
 362	}
 363	return period;
 364}
 365
 
 
 
 
 
 
 
 
 
 
 
 
 
 366/* Address-family independent initialization for a tcp_sock.
 367 *
 368 * NOTE: A lot of things set to zero explicitly by call to
 369 *       sk_alloc() so need not be done here.
 370 */
 371void tcp_init_sock(struct sock *sk)
 372{
 373	struct inet_connection_sock *icsk = inet_csk(sk);
 374	struct tcp_sock *tp = tcp_sk(sk);
 375
 376	skb_queue_head_init(&tp->out_of_order_queue);
 
 377	tcp_init_xmit_timers(sk);
 378	tcp_prequeue_init(tp);
 
 379
 380	icsk->icsk_rto = TCP_TIMEOUT_INIT;
 381	tp->mdev = TCP_TIMEOUT_INIT;
 
 
 
 382
 383	/* So many TCP implementations out there (incorrectly) count the
 384	 * initial SYN frame in their delayed-ACK and congestion control
 385	 * algorithms that we must have the following bandaid to talk
 386	 * efficiently to them.  -DaveM
 387	 */
 388	tp->snd_cwnd = TCP_INIT_CWND;
 
 
 
 
 389
 390	/* See draft-stevens-tcpca-spec-01 for discussion of the
 391	 * initialization of these values.
 392	 */
 393	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
 394	tp->snd_cwnd_clamp = ~0;
 395	tp->mss_cache = TCP_MSS_DEFAULT;
 396
 397	tp->reordering = sysctl_tcp_reordering;
 398	tcp_enable_early_retrans(tp);
 399	icsk->icsk_ca_ops = &tcp_init_congestion_ops;
 400
 401	sk->sk_state = TCP_CLOSE;
 
 402
 403	sk->sk_write_space = sk_stream_write_space;
 404	sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
 405
 406	icsk->icsk_sync_mss = tcp_sync_mss;
 407
 408	/* TCP Cookie Transactions */
 409	if (sysctl_tcp_cookie_size > 0) {
 410		/* Default, cookies without s_data_payload. */
 411		tp->cookie_values =
 412			kzalloc(sizeof(*tp->cookie_values),
 413				sk->sk_allocation);
 414		if (tp->cookie_values != NULL)
 415			kref_init(&tp->cookie_values->kref);
 416	}
 417	/* Presumed zeroed, in order of appearance:
 418	 *	cookie_in_always, cookie_out_never,
 419	 *	s_data_constant, s_data_in, s_data_out
 420	 */
 421	sk->sk_sndbuf = sysctl_tcp_wmem[1];
 422	sk->sk_rcvbuf = sysctl_tcp_rmem[1];
 423
 424	local_bh_disable();
 425	sock_update_memcg(sk);
 426	sk_sockets_allocated_inc(sk);
 427	local_bh_enable();
 428}
 429EXPORT_SYMBOL(tcp_init_sock);
 430
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 431/*
 432 *	Wait for a TCP event.
 433 *
 434 *	Note that we don't need to lock the socket, as the upper poll layers
 435 *	take care of normal races (between the test and the event) and we don't
 436 *	go look at any of the socket buffers directly.
 437 */
 438unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
 439{
 440	unsigned int mask;
 441	struct sock *sk = sock->sk;
 442	const struct tcp_sock *tp = tcp_sk(sk);
 
 443
 444	sock_poll_wait(file, sk_sleep(sk), wait);
 445	if (sk->sk_state == TCP_LISTEN)
 
 
 446		return inet_csk_listen_poll(sk);
 447
 448	/* Socket is not locked. We are protected from async events
 449	 * by poll logic and correct handling of state changes
 450	 * made by other threads is impossible in any case.
 451	 */
 452
 453	mask = 0;
 454
 455	/*
 456	 * POLLHUP is certainly not done right. But poll() doesn't
 457	 * have a notion of HUP in just one direction, and for a
 458	 * socket the read side is more interesting.
 459	 *
 460	 * Some poll() documentation says that POLLHUP is incompatible
 461	 * with the POLLOUT/POLLWR flags, so somebody should check this
 462	 * all. But careful, it tends to be safer to return too many
 463	 * bits than too few, and you can easily break real applications
 464	 * if you don't tell them that something has hung up!
 465	 *
 466	 * Check-me.
 467	 *
 468	 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
 469	 * our fs/select.c). It means that after we received EOF,
 470	 * poll always returns immediately, making impossible poll() on write()
 471	 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
 472	 * if and only if shutdown has been made in both directions.
 473	 * Actually, it is interesting to look how Solaris and DUX
 474	 * solve this dilemma. I would prefer, if POLLHUP were maskable,
 475	 * then we could set it on SND_SHUTDOWN. BTW examples given
 476	 * in Stevens' books assume exactly this behaviour, it explains
 477	 * why POLLHUP is incompatible with POLLOUT.	--ANK
 478	 *
 479	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
 480	 * blocking on fresh not-connected or disconnected socket. --ANK
 481	 */
 482	if (sk->sk_shutdown == SHUTDOWN_MASK || sk->sk_state == TCP_CLOSE)
 483		mask |= POLLHUP;
 484	if (sk->sk_shutdown & RCV_SHUTDOWN)
 485		mask |= POLLIN | POLLRDNORM | POLLRDHUP;
 486
 487	/* Connected? */
 488	if ((1 << sk->sk_state) & ~(TCPF_SYN_SENT | TCPF_SYN_RECV)) {
 
 489		int target = sock_rcvlowat(sk, 0, INT_MAX);
 
 490
 491		if (tp->urg_seq == tp->copied_seq &&
 492		    !sock_flag(sk, SOCK_URGINLINE) &&
 493		    tp->urg_data)
 494			target++;
 495
 496		/* Potential race condition. If read of tp below will
 497		 * escape above sk->sk_state, we can be illegally awaken
 498		 * in SYN_* states. */
 499		if (tp->rcv_nxt - tp->copied_seq >= target)
 500			mask |= POLLIN | POLLRDNORM;
 501
 502		if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
 503			if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
 504				mask |= POLLOUT | POLLWRNORM;
 505			} else {  /* send SIGIO later */
 506				set_bit(SOCK_ASYNC_NOSPACE,
 507					&sk->sk_socket->flags);
 508				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
 509
 510				/* Race breaker. If space is freed after
 511				 * wspace test but before the flags are set,
 512				 * IO signal will be lost.
 
 513				 */
 514				if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk))
 515					mask |= POLLOUT | POLLWRNORM;
 
 516			}
 517		} else
 518			mask |= POLLOUT | POLLWRNORM;
 519
 520		if (tp->urg_data & TCP_URG_VALID)
 521			mask |= POLLPRI;
 
 
 
 
 
 
 522	}
 523	/* This barrier is coupled with smp_wmb() in tcp_reset() */
 524	smp_rmb();
 525	if (sk->sk_err)
 526		mask |= POLLERR;
 527
 528	return mask;
 529}
 530EXPORT_SYMBOL(tcp_poll);
 531
 532int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
 533{
 534	struct tcp_sock *tp = tcp_sk(sk);
 535	int answ;
 
 536
 537	switch (cmd) {
 538	case SIOCINQ:
 539		if (sk->sk_state == TCP_LISTEN)
 540			return -EINVAL;
 541
 542		lock_sock(sk);
 543		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
 544			answ = 0;
 545		else if (sock_flag(sk, SOCK_URGINLINE) ||
 546			 !tp->urg_data ||
 547			 before(tp->urg_seq, tp->copied_seq) ||
 548			 !before(tp->urg_seq, tp->rcv_nxt)) {
 549			struct sk_buff *skb;
 550
 551			answ = tp->rcv_nxt - tp->copied_seq;
 552
 553			/* Subtract 1, if FIN is in queue. */
 554			skb = skb_peek_tail(&sk->sk_receive_queue);
 555			if (answ && skb)
 556				answ -= tcp_hdr(skb)->fin;
 557		} else
 558			answ = tp->urg_seq - tp->copied_seq;
 559		release_sock(sk);
 560		break;
 561	case SIOCATMARK:
 562		answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
 
 563		break;
 564	case SIOCOUTQ:
 565		if (sk->sk_state == TCP_LISTEN)
 566			return -EINVAL;
 567
 568		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
 569			answ = 0;
 570		else
 571			answ = tp->write_seq - tp->snd_una;
 572		break;
 573	case SIOCOUTQNSD:
 574		if (sk->sk_state == TCP_LISTEN)
 575			return -EINVAL;
 576
 577		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
 578			answ = 0;
 579		else
 580			answ = tp->write_seq - tp->snd_nxt;
 
 581		break;
 582	default:
 583		return -ENOIOCTLCMD;
 584	}
 585
 586	return put_user(answ, (int __user *)arg);
 587}
 588EXPORT_SYMBOL(tcp_ioctl);
 589
 590static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
 591{
 592	TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
 593	tp->pushed_seq = tp->write_seq;
 594}
 595
 596static inline bool forced_push(const struct tcp_sock *tp)
 597{
 598	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
 599}
 600
 601static inline void skb_entail(struct sock *sk, struct sk_buff *skb)
 602{
 603	struct tcp_sock *tp = tcp_sk(sk);
 604	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
 605
 606	skb->csum    = 0;
 607	tcb->seq     = tcb->end_seq = tp->write_seq;
 608	tcb->tcp_flags = TCPHDR_ACK;
 609	tcb->sacked  = 0;
 610	skb_header_release(skb);
 611	tcp_add_write_queue_tail(sk, skb);
 612	sk->sk_wmem_queued += skb->truesize;
 613	sk_mem_charge(sk, skb->truesize);
 614	if (tp->nonagle & TCP_NAGLE_PUSH)
 615		tp->nonagle &= ~TCP_NAGLE_PUSH;
 
 
 616}
 617
 618static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
 619{
 620	if (flags & MSG_OOB)
 621		tp->snd_up = tp->write_seq;
 622}
 623
 624static inline void tcp_push(struct sock *sk, int flags, int mss_now,
 625			    int nonagle)
 
 
 
 
 
 
 
 
 
 
 626{
 627	if (tcp_send_head(sk)) {
 628		struct tcp_sock *tp = tcp_sk(sk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 629
 630		if (!(flags & MSG_MORE) || forced_push(tp))
 631			tcp_mark_push(tp, tcp_write_queue_tail(sk));
 632
 633		tcp_mark_urg(tp, flags);
 634		__tcp_push_pending_frames(sk, mss_now,
 635					  (flags & MSG_MORE) ? TCP_NAGLE_CORK : nonagle);
 
 
 
 
 
 
 
 
 
 636	}
 
 
 
 
 
 637}
 638
 639static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
 640				unsigned int offset, size_t len)
 641{
 642	struct tcp_splice_state *tss = rd_desc->arg.data;
 643	int ret;
 644
 645	ret = skb_splice_bits(skb, offset, tss->pipe, min(rd_desc->count, len),
 646			      tss->flags);
 647	if (ret > 0)
 648		rd_desc->count -= ret;
 649	return ret;
 650}
 651
 652static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
 653{
 654	/* Store TCP splice context information in read_descriptor_t. */
 655	read_descriptor_t rd_desc = {
 656		.arg.data = tss,
 657		.count	  = tss->len,
 658	};
 659
 660	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
 661}
 662
 663/**
 664 *  tcp_splice_read - splice data from TCP socket to a pipe
 665 * @sock:	socket to splice from
 666 * @ppos:	position (not valid)
 667 * @pipe:	pipe to splice to
 668 * @len:	number of bytes to splice
 669 * @flags:	splice modifier flags
 670 *
 671 * Description:
 672 *    Will read pages from given socket and fill them into a pipe.
 673 *
 674 **/
 675ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
 676			struct pipe_inode_info *pipe, size_t len,
 677			unsigned int flags)
 678{
 679	struct sock *sk = sock->sk;
 680	struct tcp_splice_state tss = {
 681		.pipe = pipe,
 682		.len = len,
 683		.flags = flags,
 684	};
 685	long timeo;
 686	ssize_t spliced;
 687	int ret;
 688
 689	sock_rps_record_flow(sk);
 690	/*
 691	 * We can't seek on a socket input
 692	 */
 693	if (unlikely(*ppos))
 694		return -ESPIPE;
 695
 696	ret = spliced = 0;
 697
 698	lock_sock(sk);
 699
 700	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
 701	while (tss.len) {
 702		ret = __tcp_splice_read(sk, &tss);
 703		if (ret < 0)
 704			break;
 705		else if (!ret) {
 706			if (spliced)
 707				break;
 708			if (sock_flag(sk, SOCK_DONE))
 709				break;
 710			if (sk->sk_err) {
 711				ret = sock_error(sk);
 712				break;
 713			}
 714			if (sk->sk_shutdown & RCV_SHUTDOWN)
 715				break;
 716			if (sk->sk_state == TCP_CLOSE) {
 717				/*
 718				 * This occurs when user tries to read
 719				 * from never connected socket.
 720				 */
 721				if (!sock_flag(sk, SOCK_DONE))
 722					ret = -ENOTCONN;
 723				break;
 724			}
 725			if (!timeo) {
 726				ret = -EAGAIN;
 727				break;
 728			}
 729			sk_wait_data(sk, &timeo);
 
 
 
 
 
 
 730			if (signal_pending(current)) {
 731				ret = sock_intr_errno(timeo);
 732				break;
 733			}
 734			continue;
 735		}
 736		tss.len -= ret;
 737		spliced += ret;
 738
 739		if (!timeo)
 740			break;
 741		release_sock(sk);
 742		lock_sock(sk);
 743
 744		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
 745		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
 746		    signal_pending(current))
 747			break;
 748	}
 749
 750	release_sock(sk);
 751
 752	if (spliced)
 753		return spliced;
 754
 755	return ret;
 756}
 757EXPORT_SYMBOL(tcp_splice_read);
 758
 759struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp)
 
 760{
 761	struct sk_buff *skb;
 762
 763	/* The TCP header must be at least 32-bit aligned.  */
 764	size = ALIGN(size, 4);
 765
 766	skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
 767	if (skb) {
 768		if (sk_wmem_schedule(sk, skb->truesize)) {
 769			skb_reserve(skb, sk->sk_prot->max_header);
 770			/*
 771			 * Make sure that we have exactly size bytes
 772			 * available to the caller, no more, no less.
 773			 */
 774			skb->avail_size = size;
 
 
 
 775			return skb;
 776		}
 777		__kfree_skb(skb);
 778	} else {
 779		sk->sk_prot->enter_memory_pressure(sk);
 780		sk_stream_moderate_sndbuf(sk);
 781	}
 782	return NULL;
 783}
 784
 785static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
 786				       int large_allowed)
 787{
 788	struct tcp_sock *tp = tcp_sk(sk);
 789	u32 xmit_size_goal, old_size_goal;
 790
 791	xmit_size_goal = mss_now;
 792
 793	if (large_allowed && sk_can_gso(sk)) {
 794		xmit_size_goal = ((sk->sk_gso_max_size - 1) -
 795				  inet_csk(sk)->icsk_af_ops->net_header_len -
 796				  inet_csk(sk)->icsk_ext_hdr_len -
 797				  tp->tcp_header_len);
 798
 799		xmit_size_goal = tcp_bound_to_half_wnd(tp, xmit_size_goal);
 
 800
 801		/* We try hard to avoid divides here */
 802		old_size_goal = tp->xmit_size_goal_segs * mss_now;
 803
 804		if (likely(old_size_goal <= xmit_size_goal &&
 805			   old_size_goal + mss_now > xmit_size_goal)) {
 806			xmit_size_goal = old_size_goal;
 807		} else {
 808			tp->xmit_size_goal_segs =
 809				min_t(u16, xmit_size_goal / mss_now,
 810				      sk->sk_gso_max_segs);
 811			xmit_size_goal = tp->xmit_size_goal_segs * mss_now;
 812		}
 813	}
 814
 815	return max(xmit_size_goal, mss_now);
 816}
 817
 818static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
 819{
 820	int mss_now;
 821
 822	mss_now = tcp_current_mss(sk);
 823	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
 824
 825	return mss_now;
 826}
 827
 828static ssize_t do_tcp_sendpages(struct sock *sk, struct page **pages, int poffset,
 829			 size_t psize, int flags)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 830{
 831	struct tcp_sock *tp = tcp_sk(sk);
 832	int mss_now, size_goal;
 833	int err;
 834	ssize_t copied;
 835	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
 836
 837	/* Wait for a connection to finish. */
 838	if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
 839		if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
 
 
 
 
 
 
 
 
 
 
 840			goto out_err;
 
 841
 842	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
 843
 844	mss_now = tcp_send_mss(sk, &size_goal, flags);
 845	copied = 0;
 846
 847	err = -EPIPE;
 848	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
 849		goto out_err;
 850
 851	while (psize > 0) {
 852		struct sk_buff *skb = tcp_write_queue_tail(sk);
 853		struct page *page = pages[poffset / PAGE_SIZE];
 854		int copy, i;
 855		int offset = poffset % PAGE_SIZE;
 856		int size = min_t(size_t, psize, PAGE_SIZE - offset);
 857		bool can_coalesce;
 858
 859		if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0) {
 860new_segment:
 861			if (!sk_stream_memory_free(sk))
 862				goto wait_for_sndbuf;
 863
 864			skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation);
 865			if (!skb)
 866				goto wait_for_memory;
 867
 868			skb_entail(sk, skb);
 869			copy = size_goal;
 870		}
 871
 872		if (copy > size)
 873			copy = size;
 874
 875		i = skb_shinfo(skb)->nr_frags;
 876		can_coalesce = skb_can_coalesce(skb, i, page, offset);
 877		if (!can_coalesce && i >= MAX_SKB_FRAGS) {
 878			tcp_mark_push(tp, skb);
 879			goto new_segment;
 880		}
 881		if (!sk_wmem_schedule(sk, copy))
 882			goto wait_for_memory;
 883
 884		if (can_coalesce) {
 885			skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
 886		} else {
 887			get_page(page);
 888			skb_fill_page_desc(skb, i, page, offset, copy);
 889		}
 890
 891		skb->len += copy;
 892		skb->data_len += copy;
 893		skb->truesize += copy;
 894		sk->sk_wmem_queued += copy;
 895		sk_mem_charge(sk, copy);
 896		skb->ip_summed = CHECKSUM_PARTIAL;
 897		tp->write_seq += copy;
 898		TCP_SKB_CB(skb)->end_seq += copy;
 899		skb_shinfo(skb)->gso_segs = 0;
 900
 901		if (!copied)
 902			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
 903
 904		copied += copy;
 905		poffset += copy;
 906		if (!(psize -= copy))
 
 907			goto out;
 908
 909		if (skb->len < size_goal || (flags & MSG_OOB))
 910			continue;
 911
 912		if (forced_push(tp)) {
 913			tcp_mark_push(tp, skb);
 914			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
 915		} else if (skb == tcp_send_head(sk))
 916			tcp_push_one(sk, mss_now);
 917		continue;
 918
 919wait_for_sndbuf:
 920		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
 921wait_for_memory:
 922		tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
 923
 924		if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
 
 925			goto do_error;
 926
 927		mss_now = tcp_send_mss(sk, &size_goal, flags);
 928	}
 929
 930out:
 931	if (copied && !(flags & MSG_SENDPAGE_NOTLAST))
 932		tcp_push(sk, flags, mss_now, tp->nonagle);
 
 
 
 933	return copied;
 934
 935do_error:
 
 936	if (copied)
 937		goto out;
 938out_err:
 
 
 
 
 
 939	return sk_stream_error(sk, flags, err);
 940}
 
 
 
 
 
 
 
 
 
 
 
 
 
 941
 942int tcp_sendpage(struct sock *sk, struct page *page, int offset,
 943		 size_t size, int flags)
 944{
 945	ssize_t res;
 946
 947	if (!(sk->sk_route_caps & NETIF_F_SG) ||
 948	    !(sk->sk_route_caps & NETIF_F_ALL_CSUM))
 949		return sock_no_sendpage(sk->sk_socket, page, offset, size,
 950					flags);
 951
 952	lock_sock(sk);
 953	res = do_tcp_sendpages(sk, &page, offset, size, flags);
 954	release_sock(sk);
 955	return res;
 
 956}
 957EXPORT_SYMBOL(tcp_sendpage);
 958
 959static inline int select_size(const struct sock *sk, bool sg)
 960{
 961	const struct tcp_sock *tp = tcp_sk(sk);
 962	int tmp = tp->mss_cache;
 
 
 
 963
 964	if (sg) {
 965		if (sk_can_gso(sk)) {
 966			/* Small frames wont use a full page:
 967			 * Payload will immediately follow tcp header.
 968			 */
 969			tmp = SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER);
 970		} else {
 971			int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
 972
 973			if (tmp >= pgbreak &&
 974			    tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
 975				tmp = pgbreak;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 976		}
 977	}
 978
 979	return tmp;
 
 
 
 
 
 
 
 
 
 
 980}
 981
 982int tcp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
 983		size_t size)
 984{
 985	struct iovec *iov;
 986	struct tcp_sock *tp = tcp_sk(sk);
 
 987	struct sk_buff *skb;
 988	int iovlen, flags, err, copied;
 989	int mss_now = 0, size_goal;
 990	bool sg;
 
 
 991	long timeo;
 992
 993	lock_sock(sk);
 994
 995	flags = msg->msg_flags;
 996	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
 997
 998	/* Wait for a connection to finish. */
 999	if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
1000		if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1001			goto out_err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1002
1003	if (unlikely(tp->repair)) {
1004		if (tp->repair_queue == TCP_RECV_QUEUE) {
1005			copied = tcp_send_rcvq(sk, msg, size);
1006			goto out;
1007		}
1008
1009		err = -EINVAL;
1010		if (tp->repair_queue == TCP_NO_QUEUE)
1011			goto out_err;
1012
1013		/* 'common' sending to sendq */
1014	}
1015
1016	/* This should be in poll */
1017	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
 
 
 
 
 
 
1018
1019	mss_now = tcp_send_mss(sk, &size_goal, flags);
 
1020
1021	/* Ok commence sending. */
1022	iovlen = msg->msg_iovlen;
1023	iov = msg->msg_iov;
1024	copied = 0;
1025
 
 
 
1026	err = -EPIPE;
1027	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1028		goto out_err;
1029
1030	sg = !!(sk->sk_route_caps & NETIF_F_SG);
 
1031
1032	while (--iovlen >= 0) {
1033		size_t seglen = iov->iov_len;
1034		unsigned char __user *from = iov->iov_base;
1035
1036		iov++;
 
1037
1038		while (seglen > 0) {
1039			int copy = 0;
1040			int max = size_goal;
1041
1042			skb = tcp_write_queue_tail(sk);
1043			if (tcp_send_head(sk)) {
1044				if (skb->ip_summed == CHECKSUM_NONE)
1045					max = mss_now;
1046				copy = max - skb->len;
1047			}
 
 
 
 
 
1048
1049			if (copy <= 0) {
1050new_segment:
1051				/* Allocate new segment. If the interface is SG,
1052				 * allocate skb fitting to single page.
1053				 */
1054				if (!sk_stream_memory_free(sk))
1055					goto wait_for_sndbuf;
1056
1057				skb = sk_stream_alloc_skb(sk,
1058							  select_size(sk, sg),
1059							  sk->sk_allocation);
1060				if (!skb)
1061					goto wait_for_memory;
1062
1063				/*
1064				 * Check whether we can use HW checksum.
1065				 */
1066				if (sk->sk_route_caps & NETIF_F_ALL_CSUM)
1067					skb->ip_summed = CHECKSUM_PARTIAL;
 
 
1068
1069				skb_entail(sk, skb);
1070				copy = size_goal;
1071				max = size_goal;
1072			}
1073
1074			/* Try to append data to the end of skb. */
1075			if (copy > seglen)
1076				copy = seglen;
1077
1078			/* Where to copy to? */
1079			if (skb_availroom(skb) > 0) {
1080				/* We have some space in skb head. Superb! */
1081				copy = min_t(int, copy, skb_availroom(skb));
1082				err = skb_add_data_nocache(sk, skb, from, copy);
1083				if (err)
1084					goto do_fault;
1085			} else {
1086				bool merge = false;
1087				int i = skb_shinfo(skb)->nr_frags;
1088				struct page *page = sk->sk_sndmsg_page;
1089				int off;
1090
1091				if (page && page_count(page) == 1)
1092					sk->sk_sndmsg_off = 0;
1093
1094				off = sk->sk_sndmsg_off;
1095
1096				if (skb_can_coalesce(skb, i, page, off) &&
1097				    off != PAGE_SIZE) {
1098					/* We can extend the last page
1099					 * fragment. */
1100					merge = true;
1101				} else if (i == MAX_SKB_FRAGS || !sg) {
1102					/* Need to add new fragment and cannot
1103					 * do this because interface is non-SG,
1104					 * or because all the page slots are
1105					 * busy. */
1106					tcp_mark_push(tp, skb);
1107					goto new_segment;
1108				} else if (page) {
1109					if (off == PAGE_SIZE) {
1110						put_page(page);
1111						sk->sk_sndmsg_page = page = NULL;
1112						off = 0;
1113					}
1114				} else
1115					off = 0;
1116
1117				if (copy > PAGE_SIZE - off)
1118					copy = PAGE_SIZE - off;
1119
1120				if (!sk_wmem_schedule(sk, copy))
1121					goto wait_for_memory;
 
 
 
1122
1123				if (!page) {
1124					/* Allocate new cache page. */
1125					if (!(page = sk_stream_alloc_page(sk)))
1126						goto wait_for_memory;
1127				}
 
 
 
 
 
1128
1129				/* Time to copy data. We are close to
1130				 * the end! */
1131				err = skb_copy_to_page_nocache(sk, from, skb,
1132							       page, off, copy);
1133				if (err) {
1134					/* If this page was new, give it to the
1135					 * socket so it does not get leaked.
1136					 */
1137					if (!sk->sk_sndmsg_page) {
1138						sk->sk_sndmsg_page = page;
1139						sk->sk_sndmsg_off = 0;
1140					}
1141					goto do_error;
1142				}
 
1143
1144				/* Update the skb. */
1145				if (merge) {
1146					skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1147				} else {
1148					skb_fill_page_desc(skb, i, page, off, copy);
1149					if (sk->sk_sndmsg_page) {
1150						get_page(page);
1151					} else if (off + copy < PAGE_SIZE) {
1152						get_page(page);
1153						sk->sk_sndmsg_page = page;
1154					}
1155				}
1156
1157				sk->sk_sndmsg_off = off + copy;
 
 
 
1158			}
 
 
 
 
1159
1160			if (!copied)
1161				TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1162
1163			tp->write_seq += copy;
1164			TCP_SKB_CB(skb)->end_seq += copy;
1165			skb_shinfo(skb)->gso_segs = 0;
1166
1167			from += copy;
1168			copied += copy;
1169			if ((seglen -= copy) == 0 && iovlen == 0)
1170				goto out;
1171
1172			if (skb->len < max || (flags & MSG_OOB) || unlikely(tp->repair))
1173				continue;
 
 
 
 
1174
1175			if (forced_push(tp)) {
1176				tcp_mark_push(tp, skb);
1177				__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1178			} else if (skb == tcp_send_head(sk))
1179				tcp_push_one(sk, mss_now);
1180			continue;
1181
1182wait_for_sndbuf:
1183			set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1184wait_for_memory:
1185			if (copied && likely(!tp->repair))
1186				tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
 
1187
1188			if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
1189				goto do_error;
 
 
 
1190
1191			mss_now = tcp_send_mss(sk, &size_goal, flags);
1192		}
 
 
 
1193	}
1194
1195out:
1196	if (copied && likely(!tp->repair))
1197		tcp_push(sk, flags, mss_now, tp->nonagle);
1198	release_sock(sk);
1199	return copied;
1200
1201do_fault:
1202	if (!skb->len) {
1203		tcp_unlink_write_queue(skb, sk);
1204		/* It is the one place in all of TCP, except connection
1205		 * reset, where we can be unlinking the send_head.
1206		 */
1207		tcp_check_send_head(sk, skb);
1208		sk_wmem_free_skb(sk, skb);
1209	}
1210
1211do_error:
1212	if (copied)
 
 
1213		goto out;
1214out_err:
 
1215	err = sk_stream_error(sk, flags, err);
1216	release_sock(sk);
 
 
 
 
1217	return err;
1218}
 
 
 
 
 
 
 
 
 
 
 
 
1219EXPORT_SYMBOL(tcp_sendmsg);
1220
1221/*
1222 *	Handle reading urgent data. BSD has very simple semantics for
1223 *	this, no blocking and very strange errors 8)
1224 */
1225
1226static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1227{
1228	struct tcp_sock *tp = tcp_sk(sk);
1229
1230	/* No URG data to read. */
1231	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1232	    tp->urg_data == TCP_URG_READ)
1233		return -EINVAL;	/* Yes this is right ! */
1234
1235	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1236		return -ENOTCONN;
1237
1238	if (tp->urg_data & TCP_URG_VALID) {
1239		int err = 0;
1240		char c = tp->urg_data;
1241
1242		if (!(flags & MSG_PEEK))
1243			tp->urg_data = TCP_URG_READ;
1244
1245		/* Read urgent data. */
1246		msg->msg_flags |= MSG_OOB;
1247
1248		if (len > 0) {
1249			if (!(flags & MSG_TRUNC))
1250				err = memcpy_toiovec(msg->msg_iov, &c, 1);
1251			len = 1;
1252		} else
1253			msg->msg_flags |= MSG_TRUNC;
1254
1255		return err ? -EFAULT : len;
1256	}
1257
1258	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1259		return 0;
1260
1261	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1262	 * the available implementations agree in this case:
1263	 * this call should never block, independent of the
1264	 * blocking state of the socket.
1265	 * Mike <pall@rz.uni-karlsruhe.de>
1266	 */
1267	return -EAGAIN;
1268}
1269
1270static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1271{
1272	struct sk_buff *skb;
1273	int copied = 0, err = 0;
1274
1275	/* XXX -- need to support SO_PEEK_OFF */
1276
 
 
 
 
 
 
 
1277	skb_queue_walk(&sk->sk_write_queue, skb) {
1278		err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, skb->len);
1279		if (err)
1280			break;
1281
1282		copied += skb->len;
1283	}
1284
1285	return err ?: copied;
1286}
1287
1288/* Clean up the receive buffer for full frames taken by the user,
1289 * then send an ACK if necessary.  COPIED is the number of bytes
1290 * tcp_recvmsg has given to the user so far, it speeds up the
1291 * calculation of whether or not we must ACK for the sake of
1292 * a window update.
1293 */
1294void tcp_cleanup_rbuf(struct sock *sk, int copied)
1295{
1296	struct tcp_sock *tp = tcp_sk(sk);
1297	bool time_to_ack = false;
1298
1299	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1300
1301	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1302	     "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1303	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1304
1305	if (inet_csk_ack_scheduled(sk)) {
1306		const struct inet_connection_sock *icsk = inet_csk(sk);
1307		   /* Delayed ACKs frequently hit locked sockets during bulk
1308		    * receive. */
1309		if (icsk->icsk_ack.blocked ||
1310		    /* Once-per-two-segments ACK was not sent by tcp_input.c */
1311		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1312		    /*
1313		     * If this read emptied read buffer, we send ACK, if
1314		     * connection is not bidirectional, user drained
1315		     * receive buffer and there was a small segment
1316		     * in queue.
1317		     */
1318		    (copied > 0 &&
1319		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1320		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1321		       !icsk->icsk_ack.pingpong)) &&
1322		      !atomic_read(&sk->sk_rmem_alloc)))
1323			time_to_ack = true;
1324	}
1325
1326	/* We send an ACK if we can now advertise a non-zero window
1327	 * which has been raised "significantly".
1328	 *
1329	 * Even if window raised up to infinity, do not send window open ACK
1330	 * in states, where we will not receive more. It is useless.
1331	 */
1332	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1333		__u32 rcv_window_now = tcp_receive_window(tp);
1334
1335		/* Optimize, __tcp_select_window() is not cheap. */
1336		if (2*rcv_window_now <= tp->window_clamp) {
1337			__u32 new_window = __tcp_select_window(sk);
1338
1339			/* Send ACK now, if this read freed lots of space
1340			 * in our buffer. Certainly, new_window is new window.
1341			 * We can advertise it now, if it is not less than current one.
1342			 * "Lots" means "at least twice" here.
1343			 */
1344			if (new_window && new_window >= 2 * rcv_window_now)
1345				time_to_ack = true;
1346		}
1347	}
1348	if (time_to_ack)
1349		tcp_send_ack(sk);
1350}
1351
1352static void tcp_prequeue_process(struct sock *sk)
1353{
1354	struct sk_buff *skb;
1355	struct tcp_sock *tp = tcp_sk(sk);
1356
1357	NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPPREQUEUED);
1358
1359	/* RX process wants to run with disabled BHs, though it is not
1360	 * necessary */
1361	local_bh_disable();
1362	while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL)
1363		sk_backlog_rcv(sk, skb);
1364	local_bh_enable();
1365
1366	/* Clear memory counter. */
1367	tp->ucopy.memory = 0;
1368}
1369
1370#ifdef CONFIG_NET_DMA
1371static void tcp_service_net_dma(struct sock *sk, bool wait)
1372{
1373	dma_cookie_t done, used;
1374	dma_cookie_t last_issued;
1375	struct tcp_sock *tp = tcp_sk(sk);
1376
1377	if (!tp->ucopy.dma_chan)
1378		return;
1379
1380	last_issued = tp->ucopy.dma_cookie;
1381	dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1382
1383	do {
1384		if (dma_async_memcpy_complete(tp->ucopy.dma_chan,
1385					      last_issued, &done,
1386					      &used) == DMA_SUCCESS) {
1387			/* Safe to free early-copied skbs now */
1388			__skb_queue_purge(&sk->sk_async_wait_queue);
1389			break;
1390		} else {
1391			struct sk_buff *skb;
1392			while ((skb = skb_peek(&sk->sk_async_wait_queue)) &&
1393			       (dma_async_is_complete(skb->dma_cookie, done,
1394						      used) == DMA_SUCCESS)) {
1395				__skb_dequeue(&sk->sk_async_wait_queue);
1396				kfree_skb(skb);
1397			}
1398		}
1399	} while (wait);
1400}
1401#endif
1402
1403static inline struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1404{
1405	struct sk_buff *skb;
1406	u32 offset;
1407
1408	skb_queue_walk(&sk->sk_receive_queue, skb) {
1409		offset = seq - TCP_SKB_CB(skb)->seq;
1410		if (tcp_hdr(skb)->syn)
 
1411			offset--;
1412		if (offset < skb->len || tcp_hdr(skb)->fin) {
 
1413			*off = offset;
1414			return skb;
1415		}
 
 
 
 
 
1416	}
1417	return NULL;
1418}
 
1419
1420/*
1421 * This routine provides an alternative to tcp_recvmsg() for routines
1422 * that would like to handle copying from skbuffs directly in 'sendfile'
1423 * fashion.
1424 * Note:
1425 *	- It is assumed that the socket was locked by the caller.
1426 *	- The routine does not block.
1427 *	- At present, there is no support for reading OOB data
1428 *	  or for 'peeking' the socket using this routine
1429 *	  (although both would be easy to implement).
1430 */
1431int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1432		  sk_read_actor_t recv_actor)
1433{
1434	struct sk_buff *skb;
1435	struct tcp_sock *tp = tcp_sk(sk);
1436	u32 seq = tp->copied_seq;
1437	u32 offset;
1438	int copied = 0;
1439
1440	if (sk->sk_state == TCP_LISTEN)
1441		return -ENOTCONN;
1442	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1443		if (offset < skb->len) {
1444			int used;
1445			size_t len;
1446
1447			len = skb->len - offset;
1448			/* Stop reading if we hit a patch of urgent data */
1449			if (tp->urg_data) {
1450				u32 urg_offset = tp->urg_seq - seq;
1451				if (urg_offset < len)
1452					len = urg_offset;
1453				if (!len)
1454					break;
1455			}
1456			used = recv_actor(desc, skb, offset, len);
1457			if (used < 0) {
1458				if (!copied)
1459					copied = used;
1460				break;
1461			} else if (used <= len) {
1462				seq += used;
1463				copied += used;
1464				offset += used;
1465			}
1466			/*
1467			 * If recv_actor drops the lock (e.g. TCP splice
 
 
 
 
 
1468			 * receive) the skb pointer might be invalid when
1469			 * getting here: tcp_collapse might have deleted it
1470			 * while aggregating skbs from the socket queue.
1471			 */
1472			skb = tcp_recv_skb(sk, seq-1, &offset);
1473			if (!skb || (offset+1 != skb->len))
1474				break;
 
 
 
 
 
1475		}
1476		if (tcp_hdr(skb)->fin) {
1477			sk_eat_skb(sk, skb, false);
1478			++seq;
1479			break;
1480		}
1481		sk_eat_skb(sk, skb, false);
1482		if (!desc->count)
1483			break;
1484		tp->copied_seq = seq;
1485	}
1486	tp->copied_seq = seq;
1487
1488	tcp_rcv_space_adjust(sk);
1489
1490	/* Clean up data we have read: This will do ACK frames. */
1491	if (copied > 0)
 
1492		tcp_cleanup_rbuf(sk, copied);
 
1493	return copied;
1494}
1495EXPORT_SYMBOL(tcp_read_sock);
1496
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1497/*
1498 *	This routine copies from a sock struct into the user buffer.
1499 *
1500 *	Technical note: in 2.3 we work on _locked_ socket, so that
1501 *	tricks with *seq access order and skb->users are not required.
1502 *	Probably, code can be easily improved even more.
1503 */
1504
1505int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1506		size_t len, int nonblock, int flags, int *addr_len)
 
1507{
1508	struct tcp_sock *tp = tcp_sk(sk);
1509	int copied = 0;
1510	u32 peek_seq;
1511	u32 *seq;
1512	unsigned long used;
1513	int err;
1514	int target;		/* Read at least this many bytes */
1515	long timeo;
1516	struct task_struct *user_recv = NULL;
1517	bool copied_early = false;
1518	struct sk_buff *skb;
1519	u32 urg_hole = 0;
1520
1521	lock_sock(sk);
1522
1523	err = -ENOTCONN;
1524	if (sk->sk_state == TCP_LISTEN)
1525		goto out;
1526
1527	timeo = sock_rcvtimeo(sk, nonblock);
 
 
 
 
1528
1529	/* Urgent data needs to be handled specially. */
1530	if (flags & MSG_OOB)
1531		goto recv_urg;
1532
1533	if (unlikely(tp->repair)) {
1534		err = -EPERM;
1535		if (!(flags & MSG_PEEK))
1536			goto out;
1537
1538		if (tp->repair_queue == TCP_SEND_QUEUE)
1539			goto recv_sndq;
1540
1541		err = -EINVAL;
1542		if (tp->repair_queue == TCP_NO_QUEUE)
1543			goto out;
1544
1545		/* 'common' recv queue MSG_PEEK-ing */
1546	}
1547
1548	seq = &tp->copied_seq;
1549	if (flags & MSG_PEEK) {
1550		peek_seq = tp->copied_seq;
1551		seq = &peek_seq;
1552	}
1553
1554	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1555
1556#ifdef CONFIG_NET_DMA
1557	tp->ucopy.dma_chan = NULL;
1558	preempt_disable();
1559	skb = skb_peek_tail(&sk->sk_receive_queue);
1560	{
1561		int available = 0;
1562
1563		if (skb)
1564			available = TCP_SKB_CB(skb)->seq + skb->len - (*seq);
1565		if ((available < target) &&
1566		    (len > sysctl_tcp_dma_copybreak) && !(flags & MSG_PEEK) &&
1567		    !sysctl_tcp_low_latency &&
1568		    net_dma_find_channel()) {
1569			preempt_enable_no_resched();
1570			tp->ucopy.pinned_list =
1571					dma_pin_iovec_pages(msg->msg_iov, len);
1572		} else {
1573			preempt_enable_no_resched();
1574		}
1575	}
1576#endif
1577
1578	do {
1579		u32 offset;
1580
1581		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1582		if (tp->urg_data && tp->urg_seq == *seq) {
1583			if (copied)
1584				break;
1585			if (signal_pending(current)) {
1586				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1587				break;
1588			}
1589		}
1590
1591		/* Next get a buffer. */
1592
 
1593		skb_queue_walk(&sk->sk_receive_queue, skb) {
 
1594			/* Now that we have two receive queues this
1595			 * shouldn't happen.
1596			 */
1597			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
1598				 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n",
1599				 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
1600				 flags))
1601				break;
1602
1603			offset = *seq - TCP_SKB_CB(skb)->seq;
1604			if (tcp_hdr(skb)->syn)
 
1605				offset--;
 
1606			if (offset < skb->len)
1607				goto found_ok_skb;
1608			if (tcp_hdr(skb)->fin)
1609				goto found_fin_ok;
1610			WARN(!(flags & MSG_PEEK),
1611			     "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n",
1612			     *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
1613		}
1614
1615		/* Well, if we have backlog, try to process it now yet. */
1616
1617		if (copied >= target && !sk->sk_backlog.tail)
1618			break;
1619
1620		if (copied) {
1621			if (sk->sk_err ||
 
1622			    sk->sk_state == TCP_CLOSE ||
1623			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
1624			    !timeo ||
1625			    signal_pending(current))
1626				break;
1627		} else {
1628			if (sock_flag(sk, SOCK_DONE))
1629				break;
1630
1631			if (sk->sk_err) {
1632				copied = sock_error(sk);
1633				break;
1634			}
1635
1636			if (sk->sk_shutdown & RCV_SHUTDOWN)
1637				break;
1638
1639			if (sk->sk_state == TCP_CLOSE) {
1640				if (!sock_flag(sk, SOCK_DONE)) {
1641					/* This occurs when user tries to read
1642					 * from never connected socket.
1643					 */
1644					copied = -ENOTCONN;
1645					break;
1646				}
1647				break;
1648			}
1649
1650			if (!timeo) {
1651				copied = -EAGAIN;
1652				break;
1653			}
1654
1655			if (signal_pending(current)) {
1656				copied = sock_intr_errno(timeo);
1657				break;
1658			}
1659		}
1660
1661		tcp_cleanup_rbuf(sk, copied);
1662
1663		if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) {
1664			/* Install new reader */
1665			if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) {
1666				user_recv = current;
1667				tp->ucopy.task = user_recv;
1668				tp->ucopy.iov = msg->msg_iov;
1669			}
1670
1671			tp->ucopy.len = len;
1672
1673			WARN_ON(tp->copied_seq != tp->rcv_nxt &&
1674				!(flags & (MSG_PEEK | MSG_TRUNC)));
1675
1676			/* Ugly... If prequeue is not empty, we have to
1677			 * process it before releasing socket, otherwise
1678			 * order will be broken at second iteration.
1679			 * More elegant solution is required!!!
1680			 *
1681			 * Look: we have the following (pseudo)queues:
1682			 *
1683			 * 1. packets in flight
1684			 * 2. backlog
1685			 * 3. prequeue
1686			 * 4. receive_queue
1687			 *
1688			 * Each queue can be processed only if the next ones
1689			 * are empty. At this point we have empty receive_queue.
1690			 * But prequeue _can_ be not empty after 2nd iteration,
1691			 * when we jumped to start of loop because backlog
1692			 * processing added something to receive_queue.
1693			 * We cannot release_sock(), because backlog contains
1694			 * packets arrived _after_ prequeued ones.
1695			 *
1696			 * Shortly, algorithm is clear --- to process all
1697			 * the queues in order. We could make it more directly,
1698			 * requeueing packets from backlog to prequeue, if
1699			 * is not empty. It is more elegant, but eats cycles,
1700			 * unfortunately.
1701			 */
1702			if (!skb_queue_empty(&tp->ucopy.prequeue))
1703				goto do_prequeue;
1704
1705			/* __ Set realtime policy in scheduler __ */
1706		}
1707
1708#ifdef CONFIG_NET_DMA
1709		if (tp->ucopy.dma_chan)
1710			dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1711#endif
1712		if (copied >= target) {
1713			/* Do not sleep, just process backlog. */
1714			release_sock(sk);
1715			lock_sock(sk);
1716		} else
1717			sk_wait_data(sk, &timeo);
1718
1719#ifdef CONFIG_NET_DMA
1720		tcp_service_net_dma(sk, false);  /* Don't block */
1721		tp->ucopy.wakeup = 0;
1722#endif
1723
1724		if (user_recv) {
1725			int chunk;
1726
1727			/* __ Restore normal policy in scheduler __ */
1728
1729			if ((chunk = len - tp->ucopy.len) != 0) {
1730				NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk);
1731				len -= chunk;
1732				copied += chunk;
1733			}
1734
1735			if (tp->rcv_nxt == tp->copied_seq &&
1736			    !skb_queue_empty(&tp->ucopy.prequeue)) {
1737do_prequeue:
1738				tcp_prequeue_process(sk);
1739
1740				if ((chunk = len - tp->ucopy.len) != 0) {
1741					NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1742					len -= chunk;
1743					copied += chunk;
1744				}
1745			}
1746		}
 
1747		if ((flags & MSG_PEEK) &&
1748		    (peek_seq - copied - urg_hole != tp->copied_seq)) {
1749			net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
1750					    current->comm,
1751					    task_pid_nr(current));
1752			peek_seq = tp->copied_seq;
1753		}
1754		continue;
1755
1756	found_ok_skb:
1757		/* Ok so how much can we use? */
1758		used = skb->len - offset;
1759		if (len < used)
1760			used = len;
1761
1762		/* Do we have urgent data here? */
1763		if (tp->urg_data) {
1764			u32 urg_offset = tp->urg_seq - *seq;
1765			if (urg_offset < used) {
1766				if (!urg_offset) {
1767					if (!sock_flag(sk, SOCK_URGINLINE)) {
1768						++*seq;
1769						urg_hole++;
1770						offset++;
1771						used--;
1772						if (!used)
1773							goto skip_copy;
1774					}
1775				} else
1776					used = urg_offset;
1777			}
1778		}
1779
1780		if (!(flags & MSG_TRUNC)) {
1781#ifdef CONFIG_NET_DMA
1782			if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1783				tp->ucopy.dma_chan = net_dma_find_channel();
1784
1785			if (tp->ucopy.dma_chan) {
1786				tp->ucopy.dma_cookie = dma_skb_copy_datagram_iovec(
1787					tp->ucopy.dma_chan, skb, offset,
1788					msg->msg_iov, used,
1789					tp->ucopy.pinned_list);
1790
1791				if (tp->ucopy.dma_cookie < 0) {
1792
1793					pr_alert("%s: dma_cookie < 0\n",
1794						 __func__);
1795
1796					/* Exception. Bailout! */
1797					if (!copied)
1798						copied = -EFAULT;
1799					break;
1800				}
1801
1802				dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1803
1804				if ((offset + used) == skb->len)
1805					copied_early = true;
1806
1807			} else
1808#endif
1809			{
1810				err = skb_copy_datagram_iovec(skb, offset,
1811						msg->msg_iov, used);
1812				if (err) {
1813					/* Exception. Bailout! */
1814					if (!copied)
1815						copied = -EFAULT;
1816					break;
1817				}
1818			}
1819		}
1820
1821		*seq += used;
1822		copied += used;
1823		len -= used;
1824
1825		tcp_rcv_space_adjust(sk);
1826
1827skip_copy:
1828		if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1829			tp->urg_data = 0;
1830			tcp_fast_path_check(sk);
1831		}
 
 
 
 
 
 
1832		if (used + offset < skb->len)
1833			continue;
1834
1835		if (tcp_hdr(skb)->fin)
1836			goto found_fin_ok;
1837		if (!(flags & MSG_PEEK)) {
1838			sk_eat_skb(sk, skb, copied_early);
1839			copied_early = false;
1840		}
1841		continue;
1842
1843	found_fin_ok:
1844		/* Process the FIN. */
1845		++*seq;
1846		if (!(flags & MSG_PEEK)) {
1847			sk_eat_skb(sk, skb, copied_early);
1848			copied_early = false;
1849		}
1850		break;
1851	} while (len > 0);
1852
1853	if (user_recv) {
1854		if (!skb_queue_empty(&tp->ucopy.prequeue)) {
1855			int chunk;
1856
1857			tp->ucopy.len = copied > 0 ? len : 0;
1858
1859			tcp_prequeue_process(sk);
1860
1861			if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) {
1862				NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1863				len -= chunk;
1864				copied += chunk;
1865			}
1866		}
1867
1868		tp->ucopy.task = NULL;
1869		tp->ucopy.len = 0;
1870	}
1871
1872#ifdef CONFIG_NET_DMA
1873	tcp_service_net_dma(sk, true);  /* Wait for queue to drain */
1874	tp->ucopy.dma_chan = NULL;
1875
1876	if (tp->ucopy.pinned_list) {
1877		dma_unpin_iovec_pages(tp->ucopy.pinned_list);
1878		tp->ucopy.pinned_list = NULL;
1879	}
1880#endif
1881
1882	/* According to UNIX98, msg_name/msg_namelen are ignored
1883	 * on connected socket. I was just happy when found this 8) --ANK
1884	 */
1885
1886	/* Clean up data we have read: This will do ACK frames. */
1887	tcp_cleanup_rbuf(sk, copied);
1888
1889	release_sock(sk);
1890	return copied;
1891
1892out:
1893	release_sock(sk);
1894	return err;
1895
1896recv_urg:
1897	err = tcp_recv_urg(sk, msg, len, flags);
1898	goto out;
1899
1900recv_sndq:
1901	err = tcp_peek_sndq(sk, msg, len);
1902	goto out;
1903}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1904EXPORT_SYMBOL(tcp_recvmsg);
1905
1906void tcp_set_state(struct sock *sk, int state)
1907{
1908	int oldstate = sk->sk_state;
1909
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1910	switch (state) {
1911	case TCP_ESTABLISHED:
1912		if (oldstate != TCP_ESTABLISHED)
1913			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1914		break;
1915
1916	case TCP_CLOSE:
1917		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
1918			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
1919
1920		sk->sk_prot->unhash(sk);
1921		if (inet_csk(sk)->icsk_bind_hash &&
1922		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1923			inet_put_port(sk);
1924		/* fall through */
1925	default:
1926		if (oldstate == TCP_ESTABLISHED)
1927			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1928	}
1929
1930	/* Change state AFTER socket is unhashed to avoid closed
1931	 * socket sitting in hash tables.
1932	 */
1933	sk->sk_state = state;
1934
1935#ifdef STATE_TRACE
1936	SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]);
1937#endif
1938}
1939EXPORT_SYMBOL_GPL(tcp_set_state);
1940
1941/*
1942 *	State processing on a close. This implements the state shift for
1943 *	sending our FIN frame. Note that we only send a FIN for some
1944 *	states. A shutdown() may have already sent the FIN, or we may be
1945 *	closed.
1946 */
1947
1948static const unsigned char new_state[16] = {
1949  /* current state:        new state:      action:	*/
1950  /* (Invalid)		*/ TCP_CLOSE,
1951  /* TCP_ESTABLISHED	*/ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1952  /* TCP_SYN_SENT	*/ TCP_CLOSE,
1953  /* TCP_SYN_RECV	*/ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1954  /* TCP_FIN_WAIT1	*/ TCP_FIN_WAIT1,
1955  /* TCP_FIN_WAIT2	*/ TCP_FIN_WAIT2,
1956  /* TCP_TIME_WAIT	*/ TCP_CLOSE,
1957  /* TCP_CLOSE		*/ TCP_CLOSE,
1958  /* TCP_CLOSE_WAIT	*/ TCP_LAST_ACK  | TCP_ACTION_FIN,
1959  /* TCP_LAST_ACK	*/ TCP_LAST_ACK,
1960  /* TCP_LISTEN		*/ TCP_CLOSE,
1961  /* TCP_CLOSING	*/ TCP_CLOSING,
 
1962};
1963
1964static int tcp_close_state(struct sock *sk)
1965{
1966	int next = (int)new_state[sk->sk_state];
1967	int ns = next & TCP_STATE_MASK;
1968
1969	tcp_set_state(sk, ns);
1970
1971	return next & TCP_ACTION_FIN;
1972}
1973
1974/*
1975 *	Shutdown the sending side of a connection. Much like close except
1976 *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
1977 */
1978
1979void tcp_shutdown(struct sock *sk, int how)
1980{
1981	/*	We need to grab some memory, and put together a FIN,
1982	 *	and then put it into the queue to be sent.
1983	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
1984	 */
1985	if (!(how & SEND_SHUTDOWN))
1986		return;
1987
1988	/* If we've already sent a FIN, or it's a closed state, skip this. */
1989	if ((1 << sk->sk_state) &
1990	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
1991	     TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
1992		/* Clear out any half completed packets.  FIN if needed. */
1993		if (tcp_close_state(sk))
1994			tcp_send_fin(sk);
1995	}
1996}
1997EXPORT_SYMBOL(tcp_shutdown);
1998
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1999bool tcp_check_oom(struct sock *sk, int shift)
2000{
2001	bool too_many_orphans, out_of_socket_memory;
2002
2003	too_many_orphans = tcp_too_many_orphans(sk, shift);
2004	out_of_socket_memory = tcp_out_of_memory(sk);
2005
2006	if (too_many_orphans)
2007		net_info_ratelimited("too many orphaned sockets\n");
2008	if (out_of_socket_memory)
2009		net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2010	return too_many_orphans || out_of_socket_memory;
2011}
2012
2013void tcp_close(struct sock *sk, long timeout)
2014{
2015	struct sk_buff *skb;
2016	int data_was_unread = 0;
2017	int state;
2018
2019	lock_sock(sk);
2020	sk->sk_shutdown = SHUTDOWN_MASK;
2021
2022	if (sk->sk_state == TCP_LISTEN) {
2023		tcp_set_state(sk, TCP_CLOSE);
2024
2025		/* Special case. */
2026		inet_csk_listen_stop(sk);
2027
2028		goto adjudge_to_death;
2029	}
2030
2031	/*  We need to flush the recv. buffs.  We do this only on the
2032	 *  descriptor close, not protocol-sourced closes, because the
2033	 *  reader process may not have drained the data yet!
2034	 */
2035	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2036		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq -
2037			  tcp_hdr(skb)->fin;
 
 
2038		data_was_unread += len;
2039		__kfree_skb(skb);
2040	}
2041
2042	sk_mem_reclaim(sk);
2043
2044	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2045	if (sk->sk_state == TCP_CLOSE)
2046		goto adjudge_to_death;
2047
2048	/* As outlined in RFC 2525, section 2.17, we send a RST here because
2049	 * data was lost. To witness the awful effects of the old behavior of
2050	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2051	 * GET in an FTP client, suspend the process, wait for the client to
2052	 * advertise a zero window, then kill -9 the FTP client, wheee...
2053	 * Note: timeout is always zero in such a case.
2054	 */
2055	if (unlikely(tcp_sk(sk)->repair)) {
2056		sk->sk_prot->disconnect(sk, 0);
2057	} else if (data_was_unread) {
2058		/* Unread data was tossed, zap the connection. */
2059		NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2060		tcp_set_state(sk, TCP_CLOSE);
2061		tcp_send_active_reset(sk, sk->sk_allocation);
2062	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2063		/* Check zero linger _after_ checking for unread data. */
2064		sk->sk_prot->disconnect(sk, 0);
2065		NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2066	} else if (tcp_close_state(sk)) {
2067		/* We FIN if the application ate all the data before
2068		 * zapping the connection.
2069		 */
2070
2071		/* RED-PEN. Formally speaking, we have broken TCP state
2072		 * machine. State transitions:
2073		 *
2074		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2075		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (forget it, it's impossible)
2076		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2077		 *
2078		 * are legal only when FIN has been sent (i.e. in window),
2079		 * rather than queued out of window. Purists blame.
2080		 *
2081		 * F.e. "RFC state" is ESTABLISHED,
2082		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2083		 *
2084		 * The visible declinations are that sometimes
2085		 * we enter time-wait state, when it is not required really
2086		 * (harmless), do not send active resets, when they are
2087		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2088		 * they look as CLOSING or LAST_ACK for Linux)
2089		 * Probably, I missed some more holelets.
2090		 * 						--ANK
 
 
 
 
2091		 */
2092		tcp_send_fin(sk);
2093	}
2094
2095	sk_stream_wait_close(sk, timeout);
2096
2097adjudge_to_death:
2098	state = sk->sk_state;
2099	sock_hold(sk);
2100	sock_orphan(sk);
2101
2102	/* It is the last release_sock in its life. It will remove backlog. */
2103	release_sock(sk);
2104
2105
2106	/* Now socket is owned by kernel and we acquire BH lock
2107	   to finish close. No need to check for user refs.
2108	 */
2109	local_bh_disable();
2110	bh_lock_sock(sk);
2111	WARN_ON(sock_owned_by_user(sk));
 
2112
2113	percpu_counter_inc(sk->sk_prot->orphan_count);
2114
2115	/* Have we already been destroyed by a softirq or backlog? */
2116	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2117		goto out;
2118
2119	/*	This is a (useful) BSD violating of the RFC. There is a
2120	 *	problem with TCP as specified in that the other end could
2121	 *	keep a socket open forever with no application left this end.
2122	 *	We use a 3 minute timeout (about the same as BSD) then kill
2123	 *	our end. If they send after that then tough - BUT: long enough
2124	 *	that we won't make the old 4*rto = almost no time - whoops
2125	 *	reset mistake.
2126	 *
2127	 *	Nope, it was not mistake. It is really desired behaviour
2128	 *	f.e. on http servers, when such sockets are useless, but
2129	 *	consume significant resources. Let's do it with special
2130	 *	linger2	option.					--ANK
2131	 */
2132
2133	if (sk->sk_state == TCP_FIN_WAIT2) {
2134		struct tcp_sock *tp = tcp_sk(sk);
2135		if (tp->linger2 < 0) {
2136			tcp_set_state(sk, TCP_CLOSE);
2137			tcp_send_active_reset(sk, GFP_ATOMIC);
2138			NET_INC_STATS_BH(sock_net(sk),
2139					LINUX_MIB_TCPABORTONLINGER);
2140		} else {
2141			const int tmo = tcp_fin_time(sk);
2142
2143			if (tmo > TCP_TIMEWAIT_LEN) {
2144				inet_csk_reset_keepalive_timer(sk,
2145						tmo - TCP_TIMEWAIT_LEN);
2146			} else {
2147				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2148				goto out;
2149			}
2150		}
2151	}
2152	if (sk->sk_state != TCP_CLOSE) {
2153		sk_mem_reclaim(sk);
2154		if (tcp_check_oom(sk, 0)) {
2155			tcp_set_state(sk, TCP_CLOSE);
2156			tcp_send_active_reset(sk, GFP_ATOMIC);
2157			NET_INC_STATS_BH(sock_net(sk),
2158					LINUX_MIB_TCPABORTONMEMORY);
 
 
 
2159		}
2160	}
2161
2162	if (sk->sk_state == TCP_CLOSE)
 
 
 
 
 
 
 
 
 
 
2163		inet_csk_destroy_sock(sk);
 
2164	/* Otherwise, socket is reprieved until protocol close. */
2165
2166out:
2167	bh_unlock_sock(sk);
2168	local_bh_enable();
 
 
 
 
 
 
 
2169	sock_put(sk);
2170}
2171EXPORT_SYMBOL(tcp_close);
2172
2173/* These states need RST on ABORT according to RFC793 */
2174
2175static inline bool tcp_need_reset(int state)
2176{
2177	return (1 << state) &
2178	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2179		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2180}
2181
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2182int tcp_disconnect(struct sock *sk, int flags)
2183{
2184	struct inet_sock *inet = inet_sk(sk);
2185	struct inet_connection_sock *icsk = inet_csk(sk);
2186	struct tcp_sock *tp = tcp_sk(sk);
2187	int err = 0;
2188	int old_state = sk->sk_state;
 
2189
2190	if (old_state != TCP_CLOSE)
2191		tcp_set_state(sk, TCP_CLOSE);
2192
2193	/* ABORT function of RFC793 */
2194	if (old_state == TCP_LISTEN) {
2195		inet_csk_listen_stop(sk);
2196	} else if (unlikely(tp->repair)) {
2197		sk->sk_err = ECONNABORTED;
2198	} else if (tcp_need_reset(old_state) ||
2199		   (tp->snd_nxt != tp->write_seq &&
2200		    (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2201		/* The last check adjusts for discrepancy of Linux wrt. RFC
2202		 * states
2203		 */
2204		tcp_send_active_reset(sk, gfp_any());
2205		sk->sk_err = ECONNRESET;
2206	} else if (old_state == TCP_SYN_SENT)
2207		sk->sk_err = ECONNRESET;
2208
2209	tcp_clear_xmit_timers(sk);
2210	__skb_queue_purge(&sk->sk_receive_queue);
 
 
2211	tcp_write_queue_purge(sk);
2212	__skb_queue_purge(&tp->out_of_order_queue);
2213#ifdef CONFIG_NET_DMA
2214	__skb_queue_purge(&sk->sk_async_wait_queue);
2215#endif
2216
2217	inet->inet_dport = 0;
2218
2219	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2220		inet_reset_saddr(sk);
2221
2222	sk->sk_shutdown = 0;
2223	sock_reset_flag(sk, SOCK_DONE);
2224	tp->srtt = 0;
2225	if ((tp->write_seq += tp->max_window + 2) == 0)
2226		tp->write_seq = 1;
 
 
 
 
 
 
2227	icsk->icsk_backoff = 0;
2228	tp->snd_cwnd = 2;
2229	icsk->icsk_probes_out = 0;
2230	tp->packets_out = 0;
 
 
 
2231	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
 
2232	tp->snd_cwnd_cnt = 0;
2233	tp->bytes_acked = 0;
 
2234	tp->window_clamp = 0;
 
 
 
 
 
 
2235	tcp_set_ca_state(sk, TCP_CA_Open);
 
2236	tcp_clear_retrans(tp);
 
2237	inet_csk_delack_init(sk);
2238	tcp_init_send_head(sk);
 
 
 
2239	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2240	__sk_dst_reset(sk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2241
2242	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2243
2244	sk->sk_error_report(sk);
2245	return err;
 
 
 
 
 
2246}
2247EXPORT_SYMBOL(tcp_disconnect);
2248
2249static inline bool tcp_can_repair_sock(const struct sock *sk)
2250{
2251	return capable(CAP_NET_ADMIN) &&
2252		((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_ESTABLISHED));
2253}
2254
2255static int tcp_repair_options_est(struct tcp_sock *tp,
2256		struct tcp_repair_opt __user *optbuf, unsigned int len)
2257{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2258	struct tcp_repair_opt opt;
 
2259
2260	while (len >= sizeof(opt)) {
2261		if (copy_from_user(&opt, optbuf, sizeof(opt)))
2262			return -EFAULT;
2263
2264		optbuf++;
2265		len -= sizeof(opt);
2266
2267		switch (opt.opt_code) {
2268		case TCPOPT_MSS:
2269			tp->rx_opt.mss_clamp = opt.opt_val;
 
2270			break;
2271		case TCPOPT_WINDOW:
2272			if (opt.opt_val > 14)
2273				return -EFBIG;
 
 
 
 
2274
2275			tp->rx_opt.snd_wscale = opt.opt_val;
 
 
 
2276			break;
2277		case TCPOPT_SACK_PERM:
2278			if (opt.opt_val != 0)
2279				return -EINVAL;
2280
2281			tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
2282			if (sysctl_tcp_fack)
2283				tcp_enable_fack(tp);
2284			break;
2285		case TCPOPT_TIMESTAMP:
2286			if (opt.opt_val != 0)
2287				return -EINVAL;
2288
2289			tp->rx_opt.tstamp_ok = 1;
2290			break;
2291		}
2292	}
2293
2294	return 0;
2295}
2296
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2297/*
2298 *	Socket option code for TCP.
2299 */
2300static int do_tcp_setsockopt(struct sock *sk, int level,
2301		int optname, char __user *optval, unsigned int optlen)
2302{
2303	struct tcp_sock *tp = tcp_sk(sk);
2304	struct inet_connection_sock *icsk = inet_csk(sk);
 
2305	int val;
2306	int err = 0;
2307
2308	/* These are data/string values, all the others are ints */
2309	switch (optname) {
2310	case TCP_CONGESTION: {
2311		char name[TCP_CA_NAME_MAX];
2312
2313		if (optlen < 1)
2314			return -EINVAL;
2315
2316		val = strncpy_from_user(name, optval,
2317					min_t(long, TCP_CA_NAME_MAX-1, optlen));
2318		if (val < 0)
2319			return -EFAULT;
2320		name[val] = 0;
2321
2322		lock_sock(sk);
2323		err = tcp_set_congestion_control(sk, name);
2324		release_sock(sk);
 
 
2325		return err;
2326	}
2327	case TCP_COOKIE_TRANSACTIONS: {
2328		struct tcp_cookie_transactions ctd;
2329		struct tcp_cookie_values *cvp = NULL;
2330
2331		if (sizeof(ctd) > optlen)
2332			return -EINVAL;
2333		if (copy_from_user(&ctd, optval, sizeof(ctd)))
2334			return -EFAULT;
2335
2336		if (ctd.tcpct_used > sizeof(ctd.tcpct_value) ||
2337		    ctd.tcpct_s_data_desired > TCP_MSS_DESIRED)
2338			return -EINVAL;
2339
2340		if (ctd.tcpct_cookie_desired == 0) {
2341			/* default to global value */
2342		} else if ((0x1 & ctd.tcpct_cookie_desired) ||
2343			   ctd.tcpct_cookie_desired > TCP_COOKIE_MAX ||
2344			   ctd.tcpct_cookie_desired < TCP_COOKIE_MIN) {
2345			return -EINVAL;
2346		}
2347
2348		if (TCP_COOKIE_OUT_NEVER & ctd.tcpct_flags) {
2349			/* Supercedes all other values */
2350			lock_sock(sk);
2351			if (tp->cookie_values != NULL) {
2352				kref_put(&tp->cookie_values->kref,
2353					 tcp_cookie_values_release);
2354				tp->cookie_values = NULL;
2355			}
2356			tp->rx_opt.cookie_in_always = 0; /* false */
2357			tp->rx_opt.cookie_out_never = 1; /* true */
2358			release_sock(sk);
2359			return err;
2360		}
2361
2362		/* Allocate ancillary memory before locking.
 
2363		 */
2364		if (ctd.tcpct_used > 0 ||
2365		    (tp->cookie_values == NULL &&
2366		     (sysctl_tcp_cookie_size > 0 ||
2367		      ctd.tcpct_cookie_desired > 0 ||
2368		      ctd.tcpct_s_data_desired > 0))) {
2369			cvp = kzalloc(sizeof(*cvp) + ctd.tcpct_used,
2370				      GFP_KERNEL);
2371			if (cvp == NULL)
2372				return -ENOMEM;
2373
2374			kref_init(&cvp->kref);
2375		}
2376		lock_sock(sk);
2377		tp->rx_opt.cookie_in_always =
2378			(TCP_COOKIE_IN_ALWAYS & ctd.tcpct_flags);
2379		tp->rx_opt.cookie_out_never = 0; /* false */
2380
2381		if (tp->cookie_values != NULL) {
2382			if (cvp != NULL) {
2383				/* Changed values are recorded by a changed
2384				 * pointer, ensuring the cookie will differ,
2385				 * without separately hashing each value later.
2386				 */
2387				kref_put(&tp->cookie_values->kref,
2388					 tcp_cookie_values_release);
2389			} else {
2390				cvp = tp->cookie_values;
2391			}
2392		}
2393
2394		if (cvp != NULL) {
2395			cvp->cookie_desired = ctd.tcpct_cookie_desired;
2396
2397			if (ctd.tcpct_used > 0) {
2398				memcpy(cvp->s_data_payload, ctd.tcpct_value,
2399				       ctd.tcpct_used);
2400				cvp->s_data_desired = ctd.tcpct_used;
2401				cvp->s_data_constant = 1; /* true */
2402			} else {
2403				/* No constant payload data. */
2404				cvp->s_data_desired = ctd.tcpct_s_data_desired;
2405				cvp->s_data_constant = 0; /* false */
2406			}
2407
2408			tp->cookie_values = cvp;
2409		}
2410		release_sock(sk);
2411		return err;
2412	}
2413	default:
2414		/* fallthru */
2415		break;
2416	}
2417
2418	if (optlen < sizeof(int))
2419		return -EINVAL;
2420
2421	if (get_user(val, (int __user *)optval))
2422		return -EFAULT;
2423
2424	lock_sock(sk);
2425
2426	switch (optname) {
2427	case TCP_MAXSEG:
2428		/* Values greater than interface MTU won't take effect. However
2429		 * at the point when this call is done we typically don't yet
2430		 * know which interface is going to be used */
2431		if (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW) {
 
2432			err = -EINVAL;
2433			break;
2434		}
2435		tp->rx_opt.user_mss = val;
2436		break;
2437
2438	case TCP_NODELAY:
2439		if (val) {
2440			/* TCP_NODELAY is weaker than TCP_CORK, so that
2441			 * this option on corked socket is remembered, but
2442			 * it is not activated until cork is cleared.
2443			 *
2444			 * However, when TCP_NODELAY is set we make
2445			 * an explicit push, which overrides even TCP_CORK
2446			 * for currently queued segments.
2447			 */
2448			tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2449			tcp_push_pending_frames(sk);
2450		} else {
2451			tp->nonagle &= ~TCP_NAGLE_OFF;
2452		}
2453		break;
2454
2455	case TCP_THIN_LINEAR_TIMEOUTS:
2456		if (val < 0 || val > 1)
2457			err = -EINVAL;
2458		else
2459			tp->thin_lto = val;
2460		break;
2461
2462	case TCP_THIN_DUPACK:
2463		if (val < 0 || val > 1)
2464			err = -EINVAL;
2465		else
2466			tp->thin_dupack = val;
2467			if (tp->thin_dupack)
2468				tcp_disable_early_retrans(tp);
2469		break;
2470
2471	case TCP_REPAIR:
2472		if (!tcp_can_repair_sock(sk))
2473			err = -EPERM;
2474		else if (val == 1) {
2475			tp->repair = 1;
2476			sk->sk_reuse = SK_FORCE_REUSE;
2477			tp->repair_queue = TCP_NO_QUEUE;
2478		} else if (val == 0) {
2479			tp->repair = 0;
2480			sk->sk_reuse = SK_NO_REUSE;
2481			tcp_send_window_probe(sk);
 
 
 
2482		} else
2483			err = -EINVAL;
2484
2485		break;
2486
2487	case TCP_REPAIR_QUEUE:
2488		if (!tp->repair)
2489			err = -EPERM;
2490		else if (val < TCP_QUEUES_NR)
2491			tp->repair_queue = val;
2492		else
2493			err = -EINVAL;
2494		break;
2495
2496	case TCP_QUEUE_SEQ:
2497		if (sk->sk_state != TCP_CLOSE)
2498			err = -EPERM;
2499		else if (tp->repair_queue == TCP_SEND_QUEUE)
2500			tp->write_seq = val;
2501		else if (tp->repair_queue == TCP_RECV_QUEUE)
2502			tp->rcv_nxt = val;
2503		else
 
 
 
 
 
 
 
 
2504			err = -EINVAL;
 
2505		break;
2506
2507	case TCP_REPAIR_OPTIONS:
2508		if (!tp->repair)
2509			err = -EINVAL;
2510		else if (sk->sk_state == TCP_ESTABLISHED)
2511			err = tcp_repair_options_est(tp,
2512					(struct tcp_repair_opt __user *)optval,
2513					optlen);
2514		else
2515			err = -EPERM;
2516		break;
2517
2518	case TCP_CORK:
2519		/* When set indicates to always queue non-full frames.
2520		 * Later the user clears this option and we transmit
2521		 * any pending partial frames in the queue.  This is
2522		 * meant to be used alongside sendfile() to get properly
2523		 * filled frames when the user (for example) must write
2524		 * out headers with a write() call first and then use
2525		 * sendfile to send out the data parts.
2526		 *
2527		 * TCP_CORK can be set together with TCP_NODELAY and it is
2528		 * stronger than TCP_NODELAY.
2529		 */
2530		if (val) {
2531			tp->nonagle |= TCP_NAGLE_CORK;
2532		} else {
2533			tp->nonagle &= ~TCP_NAGLE_CORK;
2534			if (tp->nonagle&TCP_NAGLE_OFF)
2535				tp->nonagle |= TCP_NAGLE_PUSH;
2536			tcp_push_pending_frames(sk);
2537		}
2538		break;
2539
2540	case TCP_KEEPIDLE:
2541		if (val < 1 || val > MAX_TCP_KEEPIDLE)
2542			err = -EINVAL;
2543		else {
2544			tp->keepalive_time = val * HZ;
2545			if (sock_flag(sk, SOCK_KEEPOPEN) &&
2546			    !((1 << sk->sk_state) &
2547			      (TCPF_CLOSE | TCPF_LISTEN))) {
2548				u32 elapsed = keepalive_time_elapsed(tp);
2549				if (tp->keepalive_time > elapsed)
2550					elapsed = tp->keepalive_time - elapsed;
2551				else
2552					elapsed = 0;
2553				inet_csk_reset_keepalive_timer(sk, elapsed);
2554			}
2555		}
2556		break;
2557	case TCP_KEEPINTVL:
2558		if (val < 1 || val > MAX_TCP_KEEPINTVL)
2559			err = -EINVAL;
2560		else
2561			tp->keepalive_intvl = val * HZ;
2562		break;
2563	case TCP_KEEPCNT:
2564		if (val < 1 || val > MAX_TCP_KEEPCNT)
2565			err = -EINVAL;
2566		else
2567			tp->keepalive_probes = val;
2568		break;
2569	case TCP_SYNCNT:
2570		if (val < 1 || val > MAX_TCP_SYNCNT)
2571			err = -EINVAL;
2572		else
2573			icsk->icsk_syn_retries = val;
2574		break;
2575
 
 
 
 
 
 
 
 
2576	case TCP_LINGER2:
2577		if (val < 0)
2578			tp->linger2 = -1;
2579		else if (val > sysctl_tcp_fin_timeout / HZ)
2580			tp->linger2 = 0;
2581		else
2582			tp->linger2 = val * HZ;
2583		break;
2584
2585	case TCP_DEFER_ACCEPT:
2586		/* Translate value in seconds to number of retransmits */
2587		icsk->icsk_accept_queue.rskq_defer_accept =
2588			secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
2589					TCP_RTO_MAX / HZ);
2590		break;
2591
2592	case TCP_WINDOW_CLAMP:
2593		if (!val) {
2594			if (sk->sk_state != TCP_CLOSE) {
2595				err = -EINVAL;
2596				break;
2597			}
2598			tp->window_clamp = 0;
2599		} else
2600			tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2601						SOCK_MIN_RCVBUF / 2 : val;
2602		break;
2603
2604	case TCP_QUICKACK:
2605		if (!val) {
2606			icsk->icsk_ack.pingpong = 1;
2607		} else {
2608			icsk->icsk_ack.pingpong = 0;
2609			if ((1 << sk->sk_state) &
2610			    (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2611			    inet_csk_ack_scheduled(sk)) {
2612				icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2613				tcp_cleanup_rbuf(sk, 1);
2614				if (!(val & 1))
2615					icsk->icsk_ack.pingpong = 1;
2616			}
2617		}
2618		break;
2619
2620#ifdef CONFIG_TCP_MD5SIG
2621	case TCP_MD5SIG:
2622		/* Read the IP->Key mappings from userspace */
2623		err = tp->af_specific->md5_parse(sk, optval, optlen);
2624		break;
2625#endif
2626	case TCP_USER_TIMEOUT:
2627		/* Cap the max timeout in ms TCP will retry/retrans
2628		 * before giving up and aborting (ETIMEDOUT) a connection.
2629		 */
2630		if (val < 0)
2631			err = -EINVAL;
2632		else
2633			icsk->icsk_user_timeout = msecs_to_jiffies(val);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2634		break;
2635	default:
2636		err = -ENOPROTOOPT;
2637		break;
2638	}
2639
2640	release_sock(sk);
2641	return err;
2642}
2643
2644int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
2645		   unsigned int optlen)
2646{
2647	const struct inet_connection_sock *icsk = inet_csk(sk);
2648
2649	if (level != SOL_TCP)
2650		return icsk->icsk_af_ops->setsockopt(sk, level, optname,
2651						     optval, optlen);
 
2652	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2653}
2654EXPORT_SYMBOL(tcp_setsockopt);
2655
2656#ifdef CONFIG_COMPAT
2657int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
2658			  char __user *optval, unsigned int optlen)
2659{
2660	if (level != SOL_TCP)
2661		return inet_csk_compat_setsockopt(sk, level, optname,
2662						  optval, optlen);
2663	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
 
 
 
 
 
 
 
 
 
 
2664}
2665EXPORT_SYMBOL(compat_tcp_setsockopt);
2666#endif
2667
2668/* Return information about state of tcp endpoint in API format. */
2669void tcp_get_info(const struct sock *sk, struct tcp_info *info)
2670{
2671	const struct tcp_sock *tp = tcp_sk(sk);
2672	const struct inet_connection_sock *icsk = inet_csk(sk);
2673	u32 now = tcp_time_stamp;
 
 
 
2674
2675	memset(info, 0, sizeof(*info));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2676
2677	info->tcpi_state = sk->sk_state;
2678	info->tcpi_ca_state = icsk->icsk_ca_state;
2679	info->tcpi_retransmits = icsk->icsk_retransmits;
2680	info->tcpi_probes = icsk->icsk_probes_out;
2681	info->tcpi_backoff = icsk->icsk_backoff;
2682
2683	if (tp->rx_opt.tstamp_ok)
2684		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
2685	if (tcp_is_sack(tp))
2686		info->tcpi_options |= TCPI_OPT_SACK;
2687	if (tp->rx_opt.wscale_ok) {
2688		info->tcpi_options |= TCPI_OPT_WSCALE;
2689		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2690		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2691	}
2692
2693	if (tp->ecn_flags & TCP_ECN_OK)
2694		info->tcpi_options |= TCPI_OPT_ECN;
2695	if (tp->ecn_flags & TCP_ECN_SEEN)
2696		info->tcpi_options |= TCPI_OPT_ECN_SEEN;
 
 
2697
2698	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
2699	info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
2700	info->tcpi_snd_mss = tp->mss_cache;
2701	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
2702
2703	if (sk->sk_state == TCP_LISTEN) {
2704		info->tcpi_unacked = sk->sk_ack_backlog;
2705		info->tcpi_sacked = sk->sk_max_ack_backlog;
2706	} else {
2707		info->tcpi_unacked = tp->packets_out;
2708		info->tcpi_sacked = tp->sacked_out;
2709	}
2710	info->tcpi_lost = tp->lost_out;
2711	info->tcpi_retrans = tp->retrans_out;
2712	info->tcpi_fackets = tp->fackets_out;
2713
 
2714	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
2715	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
2716	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
2717
2718	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
2719	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
2720	info->tcpi_rtt = jiffies_to_usecs(tp->srtt)>>3;
2721	info->tcpi_rttvar = jiffies_to_usecs(tp->mdev)>>2;
2722	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
2723	info->tcpi_snd_cwnd = tp->snd_cwnd;
2724	info->tcpi_advmss = tp->advmss;
2725	info->tcpi_reordering = tp->reordering;
2726
2727	info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3;
2728	info->tcpi_rcv_space = tp->rcvq_space.space;
2729
2730	info->tcpi_total_retrans = tp->total_retrans;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2731}
2732EXPORT_SYMBOL_GPL(tcp_get_info);
2733
2734static int do_tcp_getsockopt(struct sock *sk, int level,
2735		int optname, char __user *optval, int __user *optlen)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2736{
2737	struct inet_connection_sock *icsk = inet_csk(sk);
2738	struct tcp_sock *tp = tcp_sk(sk);
 
2739	int val, len;
2740
2741	if (get_user(len, optlen))
2742		return -EFAULT;
2743
2744	len = min_t(unsigned int, len, sizeof(int));
2745
2746	if (len < 0)
2747		return -EINVAL;
2748
2749	switch (optname) {
2750	case TCP_MAXSEG:
2751		val = tp->mss_cache;
2752		if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
2753			val = tp->rx_opt.user_mss;
2754		if (tp->repair)
2755			val = tp->rx_opt.mss_clamp;
2756		break;
2757	case TCP_NODELAY:
2758		val = !!(tp->nonagle&TCP_NAGLE_OFF);
2759		break;
2760	case TCP_CORK:
2761		val = !!(tp->nonagle&TCP_NAGLE_CORK);
2762		break;
2763	case TCP_KEEPIDLE:
2764		val = keepalive_time_when(tp) / HZ;
2765		break;
2766	case TCP_KEEPINTVL:
2767		val = keepalive_intvl_when(tp) / HZ;
2768		break;
2769	case TCP_KEEPCNT:
2770		val = keepalive_probes(tp);
2771		break;
2772	case TCP_SYNCNT:
2773		val = icsk->icsk_syn_retries ? : sysctl_tcp_syn_retries;
 
2774		break;
2775	case TCP_LINGER2:
2776		val = tp->linger2;
2777		if (val >= 0)
2778			val = (val ? : sysctl_tcp_fin_timeout) / HZ;
2779		break;
2780	case TCP_DEFER_ACCEPT:
2781		val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
2782				      TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
2783		break;
2784	case TCP_WINDOW_CLAMP:
2785		val = tp->window_clamp;
2786		break;
2787	case TCP_INFO: {
2788		struct tcp_info info;
2789
2790		if (get_user(len, optlen))
2791			return -EFAULT;
2792
2793		tcp_get_info(sk, &info);
2794
2795		len = min_t(unsigned int, len, sizeof(info));
2796		if (put_user(len, optlen))
2797			return -EFAULT;
2798		if (copy_to_user(optval, &info, len))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2799			return -EFAULT;
2800		return 0;
2801	}
2802	case TCP_QUICKACK:
2803		val = !icsk->icsk_ack.pingpong;
2804		break;
2805
2806	case TCP_CONGESTION:
2807		if (get_user(len, optlen))
2808			return -EFAULT;
2809		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
2810		if (put_user(len, optlen))
2811			return -EFAULT;
2812		if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
2813			return -EFAULT;
2814		return 0;
2815
2816	case TCP_COOKIE_TRANSACTIONS: {
2817		struct tcp_cookie_transactions ctd;
2818		struct tcp_cookie_values *cvp = tp->cookie_values;
2819
2820		if (get_user(len, optlen))
2821			return -EFAULT;
2822		if (len < sizeof(ctd))
2823			return -EINVAL;
2824
2825		memset(&ctd, 0, sizeof(ctd));
2826		ctd.tcpct_flags = (tp->rx_opt.cookie_in_always ?
2827				   TCP_COOKIE_IN_ALWAYS : 0)
2828				| (tp->rx_opt.cookie_out_never ?
2829				   TCP_COOKIE_OUT_NEVER : 0);
2830
2831		if (cvp != NULL) {
2832			ctd.tcpct_flags |= (cvp->s_data_in ?
2833					    TCP_S_DATA_IN : 0)
2834					 | (cvp->s_data_out ?
2835					    TCP_S_DATA_OUT : 0);
2836
2837			ctd.tcpct_cookie_desired = cvp->cookie_desired;
2838			ctd.tcpct_s_data_desired = cvp->s_data_desired;
 
2839
2840			memcpy(&ctd.tcpct_value[0], &cvp->cookie_pair[0],
2841			       cvp->cookie_pair_size);
2842			ctd.tcpct_used = cvp->cookie_pair_size;
2843		}
2844
2845		if (put_user(sizeof(ctd), optlen))
 
 
 
2846			return -EFAULT;
2847		if (copy_to_user(optval, &ctd, sizeof(ctd)))
2848			return -EFAULT;
2849		return 0;
2850	}
2851	case TCP_THIN_LINEAR_TIMEOUTS:
2852		val = tp->thin_lto;
2853		break;
 
2854	case TCP_THIN_DUPACK:
2855		val = tp->thin_dupack;
2856		break;
2857
2858	case TCP_REPAIR:
2859		val = tp->repair;
2860		break;
2861
2862	case TCP_REPAIR_QUEUE:
2863		if (tp->repair)
2864			val = tp->repair_queue;
2865		else
2866			return -EINVAL;
2867		break;
2868
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2869	case TCP_QUEUE_SEQ:
2870		if (tp->repair_queue == TCP_SEND_QUEUE)
2871			val = tp->write_seq;
2872		else if (tp->repair_queue == TCP_RECV_QUEUE)
2873			val = tp->rcv_nxt;
2874		else
2875			return -EINVAL;
2876		break;
2877
2878	case TCP_USER_TIMEOUT:
2879		val = jiffies_to_msecs(icsk->icsk_user_timeout);
2880		break;
2881	default:
2882		return -ENOPROTOOPT;
2883	}
2884
2885	if (put_user(len, optlen))
2886		return -EFAULT;
2887	if (copy_to_user(optval, &val, len))
2888		return -EFAULT;
2889	return 0;
2890}
2891
2892int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
2893		   int __user *optlen)
2894{
2895	struct inet_connection_sock *icsk = inet_csk(sk);
2896
2897	if (level != SOL_TCP)
2898		return icsk->icsk_af_ops->getsockopt(sk, level, optname,
2899						     optval, optlen);
2900	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2901}
2902EXPORT_SYMBOL(tcp_getsockopt);
2903
2904#ifdef CONFIG_COMPAT
2905int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
2906			  char __user *optval, int __user *optlen)
2907{
2908	if (level != SOL_TCP)
2909		return inet_csk_compat_getsockopt(sk, level, optname,
2910						  optval, optlen);
2911	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2912}
2913EXPORT_SYMBOL(compat_tcp_getsockopt);
2914#endif
2915
2916struct sk_buff *tcp_tso_segment(struct sk_buff *skb,
2917	netdev_features_t features)
2918{
2919	struct sk_buff *segs = ERR_PTR(-EINVAL);
2920	struct tcphdr *th;
2921	unsigned int thlen;
2922	unsigned int seq;
2923	__be32 delta;
2924	unsigned int oldlen;
2925	unsigned int mss;
2926
2927	if (!pskb_may_pull(skb, sizeof(*th)))
2928		goto out;
2929
2930	th = tcp_hdr(skb);
2931	thlen = th->doff * 4;
2932	if (thlen < sizeof(*th))
2933		goto out;
2934
2935	if (!pskb_may_pull(skb, thlen))
2936		goto out;
2937
2938	oldlen = (u16)~skb->len;
2939	__skb_pull(skb, thlen);
2940
2941	mss = skb_shinfo(skb)->gso_size;
2942	if (unlikely(skb->len <= mss))
2943		goto out;
2944
2945	if (skb_gso_ok(skb, features | NETIF_F_GSO_ROBUST)) {
2946		/* Packet is from an untrusted source, reset gso_segs. */
2947		int type = skb_shinfo(skb)->gso_type;
2948
2949		if (unlikely(type &
2950			     ~(SKB_GSO_TCPV4 |
2951			       SKB_GSO_DODGY |
2952			       SKB_GSO_TCP_ECN |
2953			       SKB_GSO_TCPV6 |
2954			       0) ||
2955			     !(type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))))
2956			goto out;
2957
2958		skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss);
2959
2960		segs = NULL;
2961		goto out;
2962	}
2963
2964	segs = skb_segment(skb, features);
2965	if (IS_ERR(segs))
2966		goto out;
2967
2968	delta = htonl(oldlen + (thlen + mss));
2969
2970	skb = segs;
2971	th = tcp_hdr(skb);
2972	seq = ntohl(th->seq);
2973
2974	do {
2975		th->fin = th->psh = 0;
2976
2977		th->check = ~csum_fold((__force __wsum)((__force u32)th->check +
2978				       (__force u32)delta));
2979		if (skb->ip_summed != CHECKSUM_PARTIAL)
2980			th->check =
2981			     csum_fold(csum_partial(skb_transport_header(skb),
2982						    thlen, skb->csum));
2983
2984		seq += mss;
2985		skb = skb->next;
2986		th = tcp_hdr(skb);
2987
2988		th->seq = htonl(seq);
2989		th->cwr = 0;
2990	} while (skb->next);
2991
2992	delta = htonl(oldlen + (skb->tail - skb->transport_header) +
2993		      skb->data_len);
2994	th->check = ~csum_fold((__force __wsum)((__force u32)th->check +
2995				(__force u32)delta));
2996	if (skb->ip_summed != CHECKSUM_PARTIAL)
2997		th->check = csum_fold(csum_partial(skb_transport_header(skb),
2998						   thlen, skb->csum));
2999
3000out:
3001	return segs;
3002}
3003EXPORT_SYMBOL(tcp_tso_segment);
3004
3005struct sk_buff **tcp_gro_receive(struct sk_buff **head, struct sk_buff *skb)
3006{
3007	struct sk_buff **pp = NULL;
3008	struct sk_buff *p;
3009	struct tcphdr *th;
3010	struct tcphdr *th2;
3011	unsigned int len;
3012	unsigned int thlen;
3013	__be32 flags;
3014	unsigned int mss = 1;
3015	unsigned int hlen;
3016	unsigned int off;
3017	int flush = 1;
3018	int i;
3019
3020	off = skb_gro_offset(skb);
3021	hlen = off + sizeof(*th);
3022	th = skb_gro_header_fast(skb, off);
3023	if (skb_gro_header_hard(skb, hlen)) {
3024		th = skb_gro_header_slow(skb, hlen, off);
3025		if (unlikely(!th))
3026			goto out;
3027	}
3028
3029	thlen = th->doff * 4;
3030	if (thlen < sizeof(*th))
3031		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
3032
3033	hlen = off + thlen;
3034	if (skb_gro_header_hard(skb, hlen)) {
3035		th = skb_gro_header_slow(skb, hlen, off);
3036		if (unlikely(!th))
3037			goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3038	}
 
 
 
 
 
3039
3040	skb_gro_pull(skb, thlen);
3041
3042	len = skb_gro_len(skb);
3043	flags = tcp_flag_word(th);
3044
3045	for (; (p = *head); head = &p->next) {
3046		if (!NAPI_GRO_CB(p)->same_flow)
3047			continue;
3048
3049		th2 = tcp_hdr(p);
3050
3051		if (*(u32 *)&th->source ^ *(u32 *)&th2->source) {
3052			NAPI_GRO_CB(p)->same_flow = 0;
3053			continue;
3054		}
3055
3056		goto found;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3057	}
3058
3059	goto out_check_final;
3060
3061found:
3062	flush = NAPI_GRO_CB(p)->flush;
3063	flush |= (__force int)(flags & TCP_FLAG_CWR);
3064	flush |= (__force int)((flags ^ tcp_flag_word(th2)) &
3065		  ~(TCP_FLAG_CWR | TCP_FLAG_FIN | TCP_FLAG_PSH));
3066	flush |= (__force int)(th->ack_seq ^ th2->ack_seq);
3067	for (i = sizeof(*th); i < thlen; i += 4)
3068		flush |= *(u32 *)((u8 *)th + i) ^
3069			 *(u32 *)((u8 *)th2 + i);
3070
3071	mss = skb_shinfo(p)->gso_size;
3072
3073	flush |= (len - 1) >= mss;
3074	flush |= (ntohl(th2->seq) + skb_gro_len(p)) ^ ntohl(th->seq);
3075
3076	if (flush || skb_gro_receive(head, skb)) {
3077		mss = 1;
3078		goto out_check_final;
3079	}
3080
3081	p = *head;
3082	th2 = tcp_hdr(p);
3083	tcp_flag_word(th2) |= flags & (TCP_FLAG_FIN | TCP_FLAG_PSH);
3084
3085out_check_final:
3086	flush = len < mss;
3087	flush |= (__force int)(flags & (TCP_FLAG_URG | TCP_FLAG_PSH |
3088					TCP_FLAG_RST | TCP_FLAG_SYN |
3089					TCP_FLAG_FIN));
3090
3091	if (p && (!NAPI_GRO_CB(skb)->same_flow || flush))
3092		pp = head;
3093
3094out:
3095	NAPI_GRO_CB(skb)->flush |= flush;
3096
3097	return pp;
3098}
3099EXPORT_SYMBOL(tcp_gro_receive);
3100
3101int tcp_gro_complete(struct sk_buff *skb)
3102{
3103	struct tcphdr *th = tcp_hdr(skb);
3104
3105	skb->csum_start = skb_transport_header(skb) - skb->head;
3106	skb->csum_offset = offsetof(struct tcphdr, check);
3107	skb->ip_summed = CHECKSUM_PARTIAL;
3108
3109	skb_shinfo(skb)->gso_segs = NAPI_GRO_CB(skb)->count;
3110
3111	if (th->cwr)
3112		skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
3113
3114	return 0;
3115}
3116EXPORT_SYMBOL(tcp_gro_complete);
3117
3118#ifdef CONFIG_TCP_MD5SIG
3119static unsigned long tcp_md5sig_users;
3120static struct tcp_md5sig_pool __percpu *tcp_md5sig_pool;
3121static DEFINE_SPINLOCK(tcp_md5sig_pool_lock);
3122
3123static void __tcp_free_md5sig_pool(struct tcp_md5sig_pool __percpu *pool)
3124{
3125	int cpu;
3126
3127	for_each_possible_cpu(cpu) {
3128		struct tcp_md5sig_pool *p = per_cpu_ptr(pool, cpu);
 
3129
3130		if (p->md5_desc.tfm)
3131			crypto_free_hash(p->md5_desc.tfm);
3132	}
3133	free_percpu(pool);
3134}
 
3135
3136void tcp_free_md5sig_pool(void)
 
3137{
3138	struct tcp_md5sig_pool __percpu *pool = NULL;
3139
3140	spin_lock_bh(&tcp_md5sig_pool_lock);
3141	if (--tcp_md5sig_users == 0) {
3142		pool = tcp_md5sig_pool;
3143		tcp_md5sig_pool = NULL;
3144	}
3145	spin_unlock_bh(&tcp_md5sig_pool_lock);
3146	if (pool)
3147		__tcp_free_md5sig_pool(pool);
3148}
3149EXPORT_SYMBOL(tcp_free_md5sig_pool);
 
 
 
 
 
3150
3151static struct tcp_md5sig_pool __percpu *
3152__tcp_alloc_md5sig_pool(struct sock *sk)
3153{
 
3154	int cpu;
3155	struct tcp_md5sig_pool __percpu *pool;
3156
3157	pool = alloc_percpu(struct tcp_md5sig_pool);
3158	if (!pool)
3159		return NULL;
3160
3161	for_each_possible_cpu(cpu) {
3162		struct crypto_hash *hash;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3163
3164		hash = crypto_alloc_hash("md5", 0, CRYPTO_ALG_ASYNC);
3165		if (!hash || IS_ERR(hash))
3166			goto out_free;
3167
3168		per_cpu_ptr(pool, cpu)->md5_desc.tfm = hash;
3169	}
3170	return pool;
3171out_free:
3172	__tcp_free_md5sig_pool(pool);
3173	return NULL;
 
 
 
 
3174}
3175
3176struct tcp_md5sig_pool __percpu *tcp_alloc_md5sig_pool(struct sock *sk)
3177{
3178	struct tcp_md5sig_pool __percpu *pool;
3179	bool alloc = false;
 
3180
3181retry:
3182	spin_lock_bh(&tcp_md5sig_pool_lock);
3183	pool = tcp_md5sig_pool;
3184	if (tcp_md5sig_users++ == 0) {
3185		alloc = true;
3186		spin_unlock_bh(&tcp_md5sig_pool_lock);
3187	} else if (!pool) {
3188		tcp_md5sig_users--;
3189		spin_unlock_bh(&tcp_md5sig_pool_lock);
3190		cpu_relax();
3191		goto retry;
3192	} else
3193		spin_unlock_bh(&tcp_md5sig_pool_lock);
3194
3195	if (alloc) {
3196		/* we cannot hold spinlock here because this may sleep. */
3197		struct tcp_md5sig_pool __percpu *p;
3198
3199		p = __tcp_alloc_md5sig_pool(sk);
3200		spin_lock_bh(&tcp_md5sig_pool_lock);
3201		if (!p) {
3202			tcp_md5sig_users--;
3203			spin_unlock_bh(&tcp_md5sig_pool_lock);
3204			return NULL;
3205		}
3206		pool = tcp_md5sig_pool;
3207		if (pool) {
3208			/* oops, it has already been assigned. */
3209			spin_unlock_bh(&tcp_md5sig_pool_lock);
3210			__tcp_free_md5sig_pool(p);
3211		} else {
3212			tcp_md5sig_pool = pool = p;
3213			spin_unlock_bh(&tcp_md5sig_pool_lock);
3214		}
3215	}
3216	return pool;
 
3217}
3218EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
3219
3220
3221/**
3222 *	tcp_get_md5sig_pool - get md5sig_pool for this user
3223 *
3224 *	We use percpu structure, so if we succeed, we exit with preemption
3225 *	and BH disabled, to make sure another thread or softirq handling
3226 *	wont try to get same context.
3227 */
3228struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
3229{
3230	struct tcp_md5sig_pool __percpu *p;
3231
3232	local_bh_disable();
3233
3234	spin_lock(&tcp_md5sig_pool_lock);
3235	p = tcp_md5sig_pool;
3236	if (p)
3237		tcp_md5sig_users++;
3238	spin_unlock(&tcp_md5sig_pool_lock);
3239
3240	if (p)
3241		return this_cpu_ptr(p);
3242
3243	local_bh_enable();
3244	return NULL;
3245}
3246EXPORT_SYMBOL(tcp_get_md5sig_pool);
3247
3248void tcp_put_md5sig_pool(void)
3249{
3250	local_bh_enable();
3251	tcp_free_md5sig_pool();
3252}
3253EXPORT_SYMBOL(tcp_put_md5sig_pool);
3254
3255int tcp_md5_hash_header(struct tcp_md5sig_pool *hp,
3256			const struct tcphdr *th)
3257{
3258	struct scatterlist sg;
3259	struct tcphdr hdr;
3260	int err;
3261
3262	/* We are not allowed to change tcphdr, make a local copy */
3263	memcpy(&hdr, th, sizeof(hdr));
3264	hdr.check = 0;
3265
3266	/* options aren't included in the hash */
3267	sg_init_one(&sg, &hdr, sizeof(hdr));
3268	err = crypto_hash_update(&hp->md5_desc, &sg, sizeof(hdr));
3269	return err;
3270}
3271EXPORT_SYMBOL(tcp_md5_hash_header);
3272
3273int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
3274			  const struct sk_buff *skb, unsigned int header_len)
3275{
3276	struct scatterlist sg;
3277	const struct tcphdr *tp = tcp_hdr(skb);
3278	struct hash_desc *desc = &hp->md5_desc;
3279	unsigned int i;
3280	const unsigned int head_data_len = skb_headlen(skb) > header_len ?
3281					   skb_headlen(skb) - header_len : 0;
3282	const struct skb_shared_info *shi = skb_shinfo(skb);
3283	struct sk_buff *frag_iter;
3284
3285	sg_init_table(&sg, 1);
3286
3287	sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
3288	if (crypto_hash_update(desc, &sg, head_data_len))
 
3289		return 1;
3290
3291	for (i = 0; i < shi->nr_frags; ++i) {
3292		const struct skb_frag_struct *f = &shi->frags[i];
3293		struct page *page = skb_frag_page(f);
3294		sg_set_page(&sg, page, skb_frag_size(f), f->page_offset);
3295		if (crypto_hash_update(desc, &sg, skb_frag_size(f)))
 
 
 
 
3296			return 1;
3297	}
3298
3299	skb_walk_frags(skb, frag_iter)
3300		if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
3301			return 1;
3302
3303	return 0;
3304}
3305EXPORT_SYMBOL(tcp_md5_hash_skb_data);
3306
3307int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
3308{
 
3309	struct scatterlist sg;
3310
3311	sg_init_one(&sg, key->key, key->keylen);
3312	return crypto_hash_update(&hp->md5_desc, &sg, key->keylen);
 
 
 
3313}
3314EXPORT_SYMBOL(tcp_md5_hash_key);
3315
3316#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3317
3318/**
3319 * Each Responder maintains up to two secret values concurrently for
3320 * efficient secret rollover.  Each secret value has 4 states:
3321 *
3322 * Generating.  (tcp_secret_generating != tcp_secret_primary)
3323 *    Generates new Responder-Cookies, but not yet used for primary
3324 *    verification.  This is a short-term state, typically lasting only
3325 *    one round trip time (RTT).
3326 *
3327 * Primary.  (tcp_secret_generating == tcp_secret_primary)
3328 *    Used both for generation and primary verification.
3329 *
3330 * Retiring.  (tcp_secret_retiring != tcp_secret_secondary)
3331 *    Used for verification, until the first failure that can be
3332 *    verified by the newer Generating secret.  At that time, this
3333 *    cookie's state is changed to Secondary, and the Generating
3334 *    cookie's state is changed to Primary.  This is a short-term state,
3335 *    typically lasting only one round trip time (RTT).
3336 *
3337 * Secondary.  (tcp_secret_retiring == tcp_secret_secondary)
3338 *    Used for secondary verification, after primary verification
3339 *    failures.  This state lasts no more than twice the Maximum Segment
3340 *    Lifetime (2MSL).  Then, the secret is discarded.
3341 */
3342struct tcp_cookie_secret {
3343	/* The secret is divided into two parts.  The digest part is the
3344	 * equivalent of previously hashing a secret and saving the state,
3345	 * and serves as an initialization vector (IV).  The message part
3346	 * serves as the trailing secret.
3347	 */
3348	u32				secrets[COOKIE_WORKSPACE_WORDS];
3349	unsigned long			expires;
3350};
3351
3352#define TCP_SECRET_1MSL (HZ * TCP_PAWS_MSL)
3353#define TCP_SECRET_2MSL (HZ * TCP_PAWS_MSL * 2)
3354#define TCP_SECRET_LIFE (HZ * 600)
3355
3356static struct tcp_cookie_secret tcp_secret_one;
3357static struct tcp_cookie_secret tcp_secret_two;
3358
3359/* Essentially a circular list, without dynamic allocation. */
3360static struct tcp_cookie_secret *tcp_secret_generating;
3361static struct tcp_cookie_secret *tcp_secret_primary;
3362static struct tcp_cookie_secret *tcp_secret_retiring;
3363static struct tcp_cookie_secret *tcp_secret_secondary;
3364
3365static DEFINE_SPINLOCK(tcp_secret_locker);
 
 
3366
3367/* Select a pseudo-random word in the cookie workspace.
3368 */
3369static inline u32 tcp_cookie_work(const u32 *ws, const int n)
3370{
3371	return ws[COOKIE_DIGEST_WORDS + ((COOKIE_MESSAGE_WORDS-1) & ws[n])];
3372}
3373
3374/* Fill bakery[COOKIE_WORKSPACE_WORDS] with generator, updating as needed.
3375 * Called in softirq context.
3376 * Returns: 0 for success.
3377 */
3378int tcp_cookie_generator(u32 *bakery)
3379{
3380	unsigned long jiffy = jiffies;
3381
3382	if (unlikely(time_after_eq(jiffy, tcp_secret_generating->expires))) {
3383		spin_lock_bh(&tcp_secret_locker);
3384		if (!time_after_eq(jiffy, tcp_secret_generating->expires)) {
3385			/* refreshed by another */
3386			memcpy(bakery,
3387			       &tcp_secret_generating->secrets[0],
3388			       COOKIE_WORKSPACE_WORDS);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3389		} else {
3390			/* still needs refreshing */
3391			get_random_bytes(bakery, COOKIE_WORKSPACE_WORDS);
3392
3393			/* The first time, paranoia assumes that the
3394			 * randomization function isn't as strong.  But,
3395			 * this secret initialization is delayed until
3396			 * the last possible moment (packet arrival).
3397			 * Although that time is observable, it is
3398			 * unpredictably variable.  Mash in the most
3399			 * volatile clock bits available, and expire the
3400			 * secret extra quickly.
3401			 */
3402			if (unlikely(tcp_secret_primary->expires ==
3403				     tcp_secret_secondary->expires)) {
3404				struct timespec tv;
3405
3406				getnstimeofday(&tv);
3407				bakery[COOKIE_DIGEST_WORDS+0] ^=
3408					(u32)tv.tv_nsec;
3409
3410				tcp_secret_secondary->expires = jiffy
3411					+ TCP_SECRET_1MSL
3412					+ (0x0f & tcp_cookie_work(bakery, 0));
3413			} else {
3414				tcp_secret_secondary->expires = jiffy
3415					+ TCP_SECRET_LIFE
3416					+ (0xff & tcp_cookie_work(bakery, 1));
3417				tcp_secret_primary->expires = jiffy
3418					+ TCP_SECRET_2MSL
3419					+ (0x1f & tcp_cookie_work(bakery, 2));
3420			}
3421			memcpy(&tcp_secret_secondary->secrets[0],
3422			       bakery, COOKIE_WORKSPACE_WORDS);
3423
3424			rcu_assign_pointer(tcp_secret_generating,
3425					   tcp_secret_secondary);
3426			rcu_assign_pointer(tcp_secret_retiring,
3427					   tcp_secret_primary);
3428			/*
3429			 * Neither call_rcu() nor synchronize_rcu() needed.
3430			 * Retiring data is not freed.  It is replaced after
3431			 * further (locked) pointer updates, and a quiet time
3432			 * (minimum 1MSL, maximum LIFE - 2MSL).
3433			 */
3434		}
3435		spin_unlock_bh(&tcp_secret_locker);
3436	} else {
3437		rcu_read_lock_bh();
3438		memcpy(bakery,
3439		       &rcu_dereference(tcp_secret_generating)->secrets[0],
3440		       COOKIE_WORKSPACE_WORDS);
3441		rcu_read_unlock_bh();
3442	}
3443	return 0;
3444}
3445EXPORT_SYMBOL(tcp_cookie_generator);
 
 
3446
3447void tcp_done(struct sock *sk)
3448{
 
 
 
 
 
 
 
 
3449	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
3450		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
3451
3452	tcp_set_state(sk, TCP_CLOSE);
3453	tcp_clear_xmit_timers(sk);
 
 
3454
3455	sk->sk_shutdown = SHUTDOWN_MASK;
3456
3457	if (!sock_flag(sk, SOCK_DEAD))
3458		sk->sk_state_change(sk);
3459	else
3460		inet_csk_destroy_sock(sk);
3461}
3462EXPORT_SYMBOL_GPL(tcp_done);
3463
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3464extern struct tcp_congestion_ops tcp_reno;
3465
3466static __initdata unsigned long thash_entries;
3467static int __init set_thash_entries(char *str)
3468{
3469	ssize_t ret;
3470
3471	if (!str)
3472		return 0;
3473
3474	ret = kstrtoul(str, 0, &thash_entries);
3475	if (ret)
3476		return 0;
3477
3478	return 1;
3479}
3480__setup("thash_entries=", set_thash_entries);
3481
3482void tcp_init_mem(struct net *net)
3483{
3484	unsigned long limit = nr_free_buffer_pages() / 8;
 
3485	limit = max(limit, 128UL);
3486	net->ipv4.sysctl_tcp_mem[0] = limit / 4 * 3;
3487	net->ipv4.sysctl_tcp_mem[1] = limit;
3488	net->ipv4.sysctl_tcp_mem[2] = net->ipv4.sysctl_tcp_mem[0] * 2;
3489}
3490
3491void __init tcp_init(void)
3492{
3493	struct sk_buff *skb = NULL;
3494	unsigned long limit;
3495	int max_rshare, max_wshare, cnt;
 
3496	unsigned int i;
3497	unsigned long jiffy = jiffies;
3498
3499	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > sizeof(skb->cb));
3500
3501	percpu_counter_init(&tcp_sockets_allocated, 0);
3502	percpu_counter_init(&tcp_orphan_count, 0);
 
 
 
 
 
 
 
 
 
 
3503	tcp_hashinfo.bind_bucket_cachep =
3504		kmem_cache_create("tcp_bind_bucket",
3505				  sizeof(struct inet_bind_bucket), 0,
3506				  SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
 
 
 
 
 
 
 
 
3507
3508	/* Size and allocate the main established and bind bucket
3509	 * hash tables.
3510	 *
3511	 * The methodology is similar to that of the buffer cache.
3512	 */
3513	tcp_hashinfo.ehash =
3514		alloc_large_system_hash("TCP established",
3515					sizeof(struct inet_ehash_bucket),
3516					thash_entries,
3517					(totalram_pages >= 128 * 1024) ?
3518					13 : 15,
3519					0,
3520					NULL,
3521					&tcp_hashinfo.ehash_mask,
3522					0,
3523					thash_entries ? 0 : 512 * 1024);
3524	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) {
3525		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
3526		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].twchain, i);
3527	}
3528	if (inet_ehash_locks_alloc(&tcp_hashinfo))
3529		panic("TCP: failed to alloc ehash_locks");
3530	tcp_hashinfo.bhash =
3531		alloc_large_system_hash("TCP bind",
3532					sizeof(struct inet_bind_hashbucket),
3533					tcp_hashinfo.ehash_mask + 1,
3534					(totalram_pages >= 128 * 1024) ?
3535					13 : 15,
3536					0,
3537					&tcp_hashinfo.bhash_size,
3538					NULL,
3539					0,
3540					64 * 1024);
3541	tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
 
3542	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
3543		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
3544		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
 
 
3545	}
3546
 
3547
3548	cnt = tcp_hashinfo.ehash_mask + 1;
3549
3550	tcp_death_row.sysctl_max_tw_buckets = cnt / 2;
3551	sysctl_tcp_max_orphans = cnt / 2;
3552	sysctl_max_syn_backlog = max(128, cnt / 256);
3553
3554	tcp_init_mem(&init_net);
3555	/* Set per-socket limits to no more than 1/128 the pressure threshold */
3556	limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
3557	max_wshare = min(4UL*1024*1024, limit);
3558	max_rshare = min(6UL*1024*1024, limit);
3559
3560	sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
3561	sysctl_tcp_wmem[1] = 16*1024;
3562	sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
3563
3564	sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
3565	sysctl_tcp_rmem[1] = 87380;
3566	sysctl_tcp_rmem[2] = max(87380, max_rshare);
3567
3568	pr_info("Hash tables configured (established %u bind %u)\n",
3569		tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
3570
3571	tcp_register_congestion_control(&tcp_reno);
3572
3573	memset(&tcp_secret_one.secrets[0], 0, sizeof(tcp_secret_one.secrets));
3574	memset(&tcp_secret_two.secrets[0], 0, sizeof(tcp_secret_two.secrets));
3575	tcp_secret_one.expires = jiffy; /* past due */
3576	tcp_secret_two.expires = jiffy; /* past due */
3577	tcp_secret_generating = &tcp_secret_one;
3578	tcp_secret_primary = &tcp_secret_one;
3579	tcp_secret_retiring = &tcp_secret_two;
3580	tcp_secret_secondary = &tcp_secret_two;
3581}
v6.2
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   4 *		operating system.  INET is implemented using the  BSD Socket
   5 *		interface as the means of communication with the user level.
   6 *
   7 *		Implementation of the Transmission Control Protocol(TCP).
   8 *
   9 * Authors:	Ross Biro
  10 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  11 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
  12 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
  13 *		Florian La Roche, <flla@stud.uni-sb.de>
  14 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
  15 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
  16 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
  17 *		Matthew Dillon, <dillon@apollo.west.oic.com>
  18 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  19 *		Jorge Cwik, <jorge@laser.satlink.net>
  20 *
  21 * Fixes:
  22 *		Alan Cox	:	Numerous verify_area() calls
  23 *		Alan Cox	:	Set the ACK bit on a reset
  24 *		Alan Cox	:	Stopped it crashing if it closed while
  25 *					sk->inuse=1 and was trying to connect
  26 *					(tcp_err()).
  27 *		Alan Cox	:	All icmp error handling was broken
  28 *					pointers passed where wrong and the
  29 *					socket was looked up backwards. Nobody
  30 *					tested any icmp error code obviously.
  31 *		Alan Cox	:	tcp_err() now handled properly. It
  32 *					wakes people on errors. poll
  33 *					behaves and the icmp error race
  34 *					has gone by moving it into sock.c
  35 *		Alan Cox	:	tcp_send_reset() fixed to work for
  36 *					everything not just packets for
  37 *					unknown sockets.
  38 *		Alan Cox	:	tcp option processing.
  39 *		Alan Cox	:	Reset tweaked (still not 100%) [Had
  40 *					syn rule wrong]
  41 *		Herp Rosmanith  :	More reset fixes
  42 *		Alan Cox	:	No longer acks invalid rst frames.
  43 *					Acking any kind of RST is right out.
  44 *		Alan Cox	:	Sets an ignore me flag on an rst
  45 *					receive otherwise odd bits of prattle
  46 *					escape still
  47 *		Alan Cox	:	Fixed another acking RST frame bug.
  48 *					Should stop LAN workplace lockups.
  49 *		Alan Cox	: 	Some tidyups using the new skb list
  50 *					facilities
  51 *		Alan Cox	:	sk->keepopen now seems to work
  52 *		Alan Cox	:	Pulls options out correctly on accepts
  53 *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
  54 *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
  55 *					bit to skb ops.
  56 *		Alan Cox	:	Tidied tcp_data to avoid a potential
  57 *					nasty.
  58 *		Alan Cox	:	Added some better commenting, as the
  59 *					tcp is hard to follow
  60 *		Alan Cox	:	Removed incorrect check for 20 * psh
  61 *	Michael O'Reilly	:	ack < copied bug fix.
  62 *	Johannes Stille		:	Misc tcp fixes (not all in yet).
  63 *		Alan Cox	:	FIN with no memory -> CRASH
  64 *		Alan Cox	:	Added socket option proto entries.
  65 *					Also added awareness of them to accept.
  66 *		Alan Cox	:	Added TCP options (SOL_TCP)
  67 *		Alan Cox	:	Switched wakeup calls to callbacks,
  68 *					so the kernel can layer network
  69 *					sockets.
  70 *		Alan Cox	:	Use ip_tos/ip_ttl settings.
  71 *		Alan Cox	:	Handle FIN (more) properly (we hope).
  72 *		Alan Cox	:	RST frames sent on unsynchronised
  73 *					state ack error.
  74 *		Alan Cox	:	Put in missing check for SYN bit.
  75 *		Alan Cox	:	Added tcp_select_window() aka NET2E
  76 *					window non shrink trick.
  77 *		Alan Cox	:	Added a couple of small NET2E timer
  78 *					fixes
  79 *		Charles Hedrick :	TCP fixes
  80 *		Toomas Tamm	:	TCP window fixes
  81 *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
  82 *		Charles Hedrick	:	Rewrote most of it to actually work
  83 *		Linus		:	Rewrote tcp_read() and URG handling
  84 *					completely
  85 *		Gerhard Koerting:	Fixed some missing timer handling
  86 *		Matthew Dillon  :	Reworked TCP machine states as per RFC
  87 *		Gerhard Koerting:	PC/TCP workarounds
  88 *		Adam Caldwell	:	Assorted timer/timing errors
  89 *		Matthew Dillon	:	Fixed another RST bug
  90 *		Alan Cox	:	Move to kernel side addressing changes.
  91 *		Alan Cox	:	Beginning work on TCP fastpathing
  92 *					(not yet usable)
  93 *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
  94 *		Alan Cox	:	TCP fast path debugging
  95 *		Alan Cox	:	Window clamping
  96 *		Michael Riepe	:	Bug in tcp_check()
  97 *		Matt Dillon	:	More TCP improvements and RST bug fixes
  98 *		Matt Dillon	:	Yet more small nasties remove from the
  99 *					TCP code (Be very nice to this man if
 100 *					tcp finally works 100%) 8)
 101 *		Alan Cox	:	BSD accept semantics.
 102 *		Alan Cox	:	Reset on closedown bug.
 103 *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
 104 *		Michael Pall	:	Handle poll() after URG properly in
 105 *					all cases.
 106 *		Michael Pall	:	Undo the last fix in tcp_read_urg()
 107 *					(multi URG PUSH broke rlogin).
 108 *		Michael Pall	:	Fix the multi URG PUSH problem in
 109 *					tcp_readable(), poll() after URG
 110 *					works now.
 111 *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
 112 *					BSD api.
 113 *		Alan Cox	:	Changed the semantics of sk->socket to
 114 *					fix a race and a signal problem with
 115 *					accept() and async I/O.
 116 *		Alan Cox	:	Relaxed the rules on tcp_sendto().
 117 *		Yury Shevchuk	:	Really fixed accept() blocking problem.
 118 *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
 119 *					clients/servers which listen in on
 120 *					fixed ports.
 121 *		Alan Cox	:	Cleaned the above up and shrank it to
 122 *					a sensible code size.
 123 *		Alan Cox	:	Self connect lockup fix.
 124 *		Alan Cox	:	No connect to multicast.
 125 *		Ross Biro	:	Close unaccepted children on master
 126 *					socket close.
 127 *		Alan Cox	:	Reset tracing code.
 128 *		Alan Cox	:	Spurious resets on shutdown.
 129 *		Alan Cox	:	Giant 15 minute/60 second timer error
 130 *		Alan Cox	:	Small whoops in polling before an
 131 *					accept.
 132 *		Alan Cox	:	Kept the state trace facility since
 133 *					it's handy for debugging.
 134 *		Alan Cox	:	More reset handler fixes.
 135 *		Alan Cox	:	Started rewriting the code based on
 136 *					the RFC's for other useful protocol
 137 *					references see: Comer, KA9Q NOS, and
 138 *					for a reference on the difference
 139 *					between specifications and how BSD
 140 *					works see the 4.4lite source.
 141 *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
 142 *					close.
 143 *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
 144 *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
 145 *		Alan Cox	:	Reimplemented timers as per the RFC
 146 *					and using multiple timers for sanity.
 147 *		Alan Cox	:	Small bug fixes, and a lot of new
 148 *					comments.
 149 *		Alan Cox	:	Fixed dual reader crash by locking
 150 *					the buffers (much like datagram.c)
 151 *		Alan Cox	:	Fixed stuck sockets in probe. A probe
 152 *					now gets fed up of retrying without
 153 *					(even a no space) answer.
 154 *		Alan Cox	:	Extracted closing code better
 155 *		Alan Cox	:	Fixed the closing state machine to
 156 *					resemble the RFC.
 157 *		Alan Cox	:	More 'per spec' fixes.
 158 *		Jorge Cwik	:	Even faster checksumming.
 159 *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
 160 *					only frames. At least one pc tcp stack
 161 *					generates them.
 162 *		Alan Cox	:	Cache last socket.
 163 *		Alan Cox	:	Per route irtt.
 164 *		Matt Day	:	poll()->select() match BSD precisely on error
 165 *		Alan Cox	:	New buffers
 166 *		Marc Tamsky	:	Various sk->prot->retransmits and
 167 *					sk->retransmits misupdating fixed.
 168 *					Fixed tcp_write_timeout: stuck close,
 169 *					and TCP syn retries gets used now.
 170 *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
 171 *					ack if state is TCP_CLOSED.
 172 *		Alan Cox	:	Look up device on a retransmit - routes may
 173 *					change. Doesn't yet cope with MSS shrink right
 174 *					but it's a start!
 175 *		Marc Tamsky	:	Closing in closing fixes.
 176 *		Mike Shaver	:	RFC1122 verifications.
 177 *		Alan Cox	:	rcv_saddr errors.
 178 *		Alan Cox	:	Block double connect().
 179 *		Alan Cox	:	Small hooks for enSKIP.
 180 *		Alexey Kuznetsov:	Path MTU discovery.
 181 *		Alan Cox	:	Support soft errors.
 182 *		Alan Cox	:	Fix MTU discovery pathological case
 183 *					when the remote claims no mtu!
 184 *		Marc Tamsky	:	TCP_CLOSE fix.
 185 *		Colin (G3TNE)	:	Send a reset on syn ack replies in
 186 *					window but wrong (fixes NT lpd problems)
 187 *		Pedro Roque	:	Better TCP window handling, delayed ack.
 188 *		Joerg Reuter	:	No modification of locked buffers in
 189 *					tcp_do_retransmit()
 190 *		Eric Schenk	:	Changed receiver side silly window
 191 *					avoidance algorithm to BSD style
 192 *					algorithm. This doubles throughput
 193 *					against machines running Solaris,
 194 *					and seems to result in general
 195 *					improvement.
 196 *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
 197 *	Willy Konynenberg	:	Transparent proxying support.
 198 *	Mike McLagan		:	Routing by source
 199 *		Keith Owens	:	Do proper merging with partial SKB's in
 200 *					tcp_do_sendmsg to avoid burstiness.
 201 *		Eric Schenk	:	Fix fast close down bug with
 202 *					shutdown() followed by close().
 203 *		Andi Kleen 	:	Make poll agree with SIGIO
 204 *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
 205 *					lingertime == 0 (RFC 793 ABORT Call)
 206 *	Hirokazu Takahashi	:	Use copy_from_user() instead of
 207 *					csum_and_copy_from_user() if possible.
 208 *
 
 
 
 
 
 209 * Description of States:
 210 *
 211 *	TCP_SYN_SENT		sent a connection request, waiting for ack
 212 *
 213 *	TCP_SYN_RECV		received a connection request, sent ack,
 214 *				waiting for final ack in three-way handshake.
 215 *
 216 *	TCP_ESTABLISHED		connection established
 217 *
 218 *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
 219 *				transmission of remaining buffered data
 220 *
 221 *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
 222 *				to shutdown
 223 *
 224 *	TCP_CLOSING		both sides have shutdown but we still have
 225 *				data we have to finish sending
 226 *
 227 *	TCP_TIME_WAIT		timeout to catch resent junk before entering
 228 *				closed, can only be entered from FIN_WAIT2
 229 *				or CLOSING.  Required because the other end
 230 *				may not have gotten our last ACK causing it
 231 *				to retransmit the data packet (which we ignore)
 232 *
 233 *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
 234 *				us to finish writing our data and to shutdown
 235 *				(we have to close() to move on to LAST_ACK)
 236 *
 237 *	TCP_LAST_ACK		out side has shutdown after remote has
 238 *				shutdown.  There may still be data in our
 239 *				buffer that we have to finish sending
 240 *
 241 *	TCP_CLOSE		socket is finished
 242 */
 243
 244#define pr_fmt(fmt) "TCP: " fmt
 245
 246#include <crypto/hash.h>
 247#include <linux/kernel.h>
 248#include <linux/module.h>
 249#include <linux/types.h>
 250#include <linux/fcntl.h>
 251#include <linux/poll.h>
 252#include <linux/inet_diag.h>
 253#include <linux/init.h>
 254#include <linux/fs.h>
 255#include <linux/skbuff.h>
 256#include <linux/scatterlist.h>
 257#include <linux/splice.h>
 258#include <linux/net.h>
 259#include <linux/socket.h>
 260#include <linux/random.h>
 261#include <linux/memblock.h>
 262#include <linux/highmem.h>
 
 263#include <linux/cache.h>
 264#include <linux/err.h>
 
 265#include <linux/time.h>
 266#include <linux/slab.h>
 267#include <linux/errqueue.h>
 268#include <linux/static_key.h>
 269#include <linux/btf.h>
 270
 271#include <net/icmp.h>
 272#include <net/inet_common.h>
 273#include <net/tcp.h>
 274#include <net/mptcp.h>
 275#include <net/xfrm.h>
 276#include <net/ip.h>
 
 277#include <net/sock.h>
 278
 279#include <linux/uaccess.h>
 280#include <asm/ioctls.h>
 281#include <net/busy_poll.h>
 282
 283/* Track pending CMSGs. */
 284enum {
 285	TCP_CMSG_INQ = 1,
 286	TCP_CMSG_TS = 2
 287};
 288
 289DEFINE_PER_CPU(unsigned int, tcp_orphan_count);
 290EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count);
 291
 292long sysctl_tcp_mem[3] __read_mostly;
 293EXPORT_SYMBOL(sysctl_tcp_mem);
 294
 295atomic_long_t tcp_memory_allocated ____cacheline_aligned_in_smp;	/* Current allocated memory. */
 296EXPORT_SYMBOL(tcp_memory_allocated);
 297DEFINE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc);
 298EXPORT_PER_CPU_SYMBOL_GPL(tcp_memory_per_cpu_fw_alloc);
 299
 300#if IS_ENABLED(CONFIG_SMC)
 301DEFINE_STATIC_KEY_FALSE(tcp_have_smc);
 302EXPORT_SYMBOL(tcp_have_smc);
 303#endif
 304
 305/*
 306 * Current number of TCP sockets.
 307 */
 308struct percpu_counter tcp_sockets_allocated ____cacheline_aligned_in_smp;
 309EXPORT_SYMBOL(tcp_sockets_allocated);
 310
 311/*
 312 * TCP splice context
 313 */
 314struct tcp_splice_state {
 315	struct pipe_inode_info *pipe;
 316	size_t len;
 317	unsigned int flags;
 318};
 319
 320/*
 321 * Pressure flag: try to collapse.
 322 * Technical note: it is used by multiple contexts non atomically.
 323 * All the __sk_mem_schedule() is of this nature: accounting
 324 * is strict, actions are advisory and have some latency.
 325 */
 326unsigned long tcp_memory_pressure __read_mostly;
 327EXPORT_SYMBOL_GPL(tcp_memory_pressure);
 328
 329void tcp_enter_memory_pressure(struct sock *sk)
 330{
 331	unsigned long val;
 332
 333	if (READ_ONCE(tcp_memory_pressure))
 334		return;
 335	val = jiffies;
 336
 337	if (!val)
 338		val--;
 339	if (!cmpxchg(&tcp_memory_pressure, 0, val))
 340		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
 
 
 341}
 342EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure);
 343
 344void tcp_leave_memory_pressure(struct sock *sk)
 345{
 346	unsigned long val;
 347
 348	if (!READ_ONCE(tcp_memory_pressure))
 349		return;
 350	val = xchg(&tcp_memory_pressure, 0);
 351	if (val)
 352		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
 353			      jiffies_to_msecs(jiffies - val));
 354}
 355EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure);
 356
 357/* Convert seconds to retransmits based on initial and max timeout */
 358static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
 359{
 360	u8 res = 0;
 361
 362	if (seconds > 0) {
 363		int period = timeout;
 364
 365		res = 1;
 366		while (seconds > period && res < 255) {
 367			res++;
 368			timeout <<= 1;
 369			if (timeout > rto_max)
 370				timeout = rto_max;
 371			period += timeout;
 372		}
 373	}
 374	return res;
 375}
 376
 377/* Convert retransmits to seconds based on initial and max timeout */
 378static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
 379{
 380	int period = 0;
 381
 382	if (retrans > 0) {
 383		period = timeout;
 384		while (--retrans) {
 385			timeout <<= 1;
 386			if (timeout > rto_max)
 387				timeout = rto_max;
 388			period += timeout;
 389		}
 390	}
 391	return period;
 392}
 393
 394static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
 395{
 396	u32 rate = READ_ONCE(tp->rate_delivered);
 397	u32 intv = READ_ONCE(tp->rate_interval_us);
 398	u64 rate64 = 0;
 399
 400	if (rate && intv) {
 401		rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
 402		do_div(rate64, intv);
 403	}
 404	return rate64;
 405}
 406
 407/* Address-family independent initialization for a tcp_sock.
 408 *
 409 * NOTE: A lot of things set to zero explicitly by call to
 410 *       sk_alloc() so need not be done here.
 411 */
 412void tcp_init_sock(struct sock *sk)
 413{
 414	struct inet_connection_sock *icsk = inet_csk(sk);
 415	struct tcp_sock *tp = tcp_sk(sk);
 416
 417	tp->out_of_order_queue = RB_ROOT;
 418	sk->tcp_rtx_queue = RB_ROOT;
 419	tcp_init_xmit_timers(sk);
 420	INIT_LIST_HEAD(&tp->tsq_node);
 421	INIT_LIST_HEAD(&tp->tsorted_sent_queue);
 422
 423	icsk->icsk_rto = TCP_TIMEOUT_INIT;
 424	icsk->icsk_rto_min = TCP_RTO_MIN;
 425	icsk->icsk_delack_max = TCP_DELACK_MAX;
 426	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
 427	minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
 428
 429	/* So many TCP implementations out there (incorrectly) count the
 430	 * initial SYN frame in their delayed-ACK and congestion control
 431	 * algorithms that we must have the following bandaid to talk
 432	 * efficiently to them.  -DaveM
 433	 */
 434	tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
 435
 436	/* There's a bubble in the pipe until at least the first ACK. */
 437	tp->app_limited = ~0U;
 438	tp->rate_app_limited = 1;
 439
 440	/* See draft-stevens-tcpca-spec-01 for discussion of the
 441	 * initialization of these values.
 442	 */
 443	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
 444	tp->snd_cwnd_clamp = ~0;
 445	tp->mss_cache = TCP_MSS_DEFAULT;
 446
 447	tp->reordering = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering);
 448	tcp_assign_congestion_control(sk);
 
 449
 450	tp->tsoffset = 0;
 451	tp->rack.reo_wnd_steps = 1;
 452
 453	sk->sk_write_space = sk_stream_write_space;
 454	sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
 455
 456	icsk->icsk_sync_mss = tcp_sync_mss;
 457
 458	WRITE_ONCE(sk->sk_sndbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[1]));
 459	WRITE_ONCE(sk->sk_rcvbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[1]));
 
 
 
 
 
 
 
 
 
 
 
 
 
 460
 461	set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
 
 462	sk_sockets_allocated_inc(sk);
 
 463}
 464EXPORT_SYMBOL(tcp_init_sock);
 465
 466static void tcp_tx_timestamp(struct sock *sk, u16 tsflags)
 467{
 468	struct sk_buff *skb = tcp_write_queue_tail(sk);
 469
 470	if (tsflags && skb) {
 471		struct skb_shared_info *shinfo = skb_shinfo(skb);
 472		struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
 473
 474		sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
 475		if (tsflags & SOF_TIMESTAMPING_TX_ACK)
 476			tcb->txstamp_ack = 1;
 477		if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
 478			shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
 479	}
 480}
 481
 482static bool tcp_stream_is_readable(struct sock *sk, int target)
 483{
 484	if (tcp_epollin_ready(sk, target))
 485		return true;
 486	return sk_is_readable(sk);
 487}
 488
 489/*
 490 *	Wait for a TCP event.
 491 *
 492 *	Note that we don't need to lock the socket, as the upper poll layers
 493 *	take care of normal races (between the test and the event) and we don't
 494 *	go look at any of the socket buffers directly.
 495 */
 496__poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
 497{
 498	__poll_t mask;
 499	struct sock *sk = sock->sk;
 500	const struct tcp_sock *tp = tcp_sk(sk);
 501	int state;
 502
 503	sock_poll_wait(file, sock, wait);
 504
 505	state = inet_sk_state_load(sk);
 506	if (state == TCP_LISTEN)
 507		return inet_csk_listen_poll(sk);
 508
 509	/* Socket is not locked. We are protected from async events
 510	 * by poll logic and correct handling of state changes
 511	 * made by other threads is impossible in any case.
 512	 */
 513
 514	mask = 0;
 515
 516	/*
 517	 * EPOLLHUP is certainly not done right. But poll() doesn't
 518	 * have a notion of HUP in just one direction, and for a
 519	 * socket the read side is more interesting.
 520	 *
 521	 * Some poll() documentation says that EPOLLHUP is incompatible
 522	 * with the EPOLLOUT/POLLWR flags, so somebody should check this
 523	 * all. But careful, it tends to be safer to return too many
 524	 * bits than too few, and you can easily break real applications
 525	 * if you don't tell them that something has hung up!
 526	 *
 527	 * Check-me.
 528	 *
 529	 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and
 530	 * our fs/select.c). It means that after we received EOF,
 531	 * poll always returns immediately, making impossible poll() on write()
 532	 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP
 533	 * if and only if shutdown has been made in both directions.
 534	 * Actually, it is interesting to look how Solaris and DUX
 535	 * solve this dilemma. I would prefer, if EPOLLHUP were maskable,
 536	 * then we could set it on SND_SHUTDOWN. BTW examples given
 537	 * in Stevens' books assume exactly this behaviour, it explains
 538	 * why EPOLLHUP is incompatible with EPOLLOUT.	--ANK
 539	 *
 540	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
 541	 * blocking on fresh not-connected or disconnected socket. --ANK
 542	 */
 543	if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
 544		mask |= EPOLLHUP;
 545	if (sk->sk_shutdown & RCV_SHUTDOWN)
 546		mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
 547
 548	/* Connected or passive Fast Open socket? */
 549	if (state != TCP_SYN_SENT &&
 550	    (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) {
 551		int target = sock_rcvlowat(sk, 0, INT_MAX);
 552		u16 urg_data = READ_ONCE(tp->urg_data);
 553
 554		if (unlikely(urg_data) &&
 555		    READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) &&
 556		    !sock_flag(sk, SOCK_URGINLINE))
 557			target++;
 558
 559		if (tcp_stream_is_readable(sk, target))
 560			mask |= EPOLLIN | EPOLLRDNORM;
 
 
 
 561
 562		if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
 563			if (__sk_stream_is_writeable(sk, 1)) {
 564				mask |= EPOLLOUT | EPOLLWRNORM;
 565			} else {  /* send SIGIO later */
 566				sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
 
 567				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
 568
 569				/* Race breaker. If space is freed after
 570				 * wspace test but before the flags are set,
 571				 * IO signal will be lost. Memory barrier
 572				 * pairs with the input side.
 573				 */
 574				smp_mb__after_atomic();
 575				if (__sk_stream_is_writeable(sk, 1))
 576					mask |= EPOLLOUT | EPOLLWRNORM;
 577			}
 578		} else
 579			mask |= EPOLLOUT | EPOLLWRNORM;
 580
 581		if (urg_data & TCP_URG_VALID)
 582			mask |= EPOLLPRI;
 583	} else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) {
 584		/* Active TCP fastopen socket with defer_connect
 585		 * Return EPOLLOUT so application can call write()
 586		 * in order for kernel to generate SYN+data
 587		 */
 588		mask |= EPOLLOUT | EPOLLWRNORM;
 589	}
 590	/* This barrier is coupled with smp_wmb() in tcp_reset() */
 591	smp_rmb();
 592	if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue))
 593		mask |= EPOLLERR;
 594
 595	return mask;
 596}
 597EXPORT_SYMBOL(tcp_poll);
 598
 599int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
 600{
 601	struct tcp_sock *tp = tcp_sk(sk);
 602	int answ;
 603	bool slow;
 604
 605	switch (cmd) {
 606	case SIOCINQ:
 607		if (sk->sk_state == TCP_LISTEN)
 608			return -EINVAL;
 609
 610		slow = lock_sock_fast(sk);
 611		answ = tcp_inq(sk);
 612		unlock_sock_fast(sk, slow);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 613		break;
 614	case SIOCATMARK:
 615		answ = READ_ONCE(tp->urg_data) &&
 616		       READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq);
 617		break;
 618	case SIOCOUTQ:
 619		if (sk->sk_state == TCP_LISTEN)
 620			return -EINVAL;
 621
 622		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
 623			answ = 0;
 624		else
 625			answ = READ_ONCE(tp->write_seq) - tp->snd_una;
 626		break;
 627	case SIOCOUTQNSD:
 628		if (sk->sk_state == TCP_LISTEN)
 629			return -EINVAL;
 630
 631		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
 632			answ = 0;
 633		else
 634			answ = READ_ONCE(tp->write_seq) -
 635			       READ_ONCE(tp->snd_nxt);
 636		break;
 637	default:
 638		return -ENOIOCTLCMD;
 639	}
 640
 641	return put_user(answ, (int __user *)arg);
 642}
 643EXPORT_SYMBOL(tcp_ioctl);
 644
 645void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
 646{
 647	TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
 648	tp->pushed_seq = tp->write_seq;
 649}
 650
 651static inline bool forced_push(const struct tcp_sock *tp)
 652{
 653	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
 654}
 655
 656void tcp_skb_entail(struct sock *sk, struct sk_buff *skb)
 657{
 658	struct tcp_sock *tp = tcp_sk(sk);
 659	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
 660
 
 661	tcb->seq     = tcb->end_seq = tp->write_seq;
 662	tcb->tcp_flags = TCPHDR_ACK;
 663	__skb_header_release(skb);
 
 664	tcp_add_write_queue_tail(sk, skb);
 665	sk_wmem_queued_add(sk, skb->truesize);
 666	sk_mem_charge(sk, skb->truesize);
 667	if (tp->nonagle & TCP_NAGLE_PUSH)
 668		tp->nonagle &= ~TCP_NAGLE_PUSH;
 669
 670	tcp_slow_start_after_idle_check(sk);
 671}
 672
 673static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
 674{
 675	if (flags & MSG_OOB)
 676		tp->snd_up = tp->write_seq;
 677}
 678
 679/* If a not yet filled skb is pushed, do not send it if
 680 * we have data packets in Qdisc or NIC queues :
 681 * Because TX completion will happen shortly, it gives a chance
 682 * to coalesce future sendmsg() payload into this skb, without
 683 * need for a timer, and with no latency trade off.
 684 * As packets containing data payload have a bigger truesize
 685 * than pure acks (dataless) packets, the last checks prevent
 686 * autocorking if we only have an ACK in Qdisc/NIC queues,
 687 * or if TX completion was delayed after we processed ACK packet.
 688 */
 689static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
 690				int size_goal)
 691{
 692	return skb->len < size_goal &&
 693	       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_autocorking) &&
 694	       !tcp_rtx_queue_empty(sk) &&
 695	       refcount_read(&sk->sk_wmem_alloc) > skb->truesize &&
 696	       tcp_skb_can_collapse_to(skb);
 697}
 698
 699void tcp_push(struct sock *sk, int flags, int mss_now,
 700	      int nonagle, int size_goal)
 701{
 702	struct tcp_sock *tp = tcp_sk(sk);
 703	struct sk_buff *skb;
 704
 705	skb = tcp_write_queue_tail(sk);
 706	if (!skb)
 707		return;
 708	if (!(flags & MSG_MORE) || forced_push(tp))
 709		tcp_mark_push(tp, skb);
 710
 711	tcp_mark_urg(tp, flags);
 
 712
 713	if (tcp_should_autocork(sk, skb, size_goal)) {
 714
 715		/* avoid atomic op if TSQ_THROTTLED bit is already set */
 716		if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
 717			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
 718			set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
 719		}
 720		/* It is possible TX completion already happened
 721		 * before we set TSQ_THROTTLED.
 722		 */
 723		if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
 724			return;
 725	}
 726
 727	if (flags & MSG_MORE)
 728		nonagle = TCP_NAGLE_CORK;
 729
 730	__tcp_push_pending_frames(sk, mss_now, nonagle);
 731}
 732
 733static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
 734				unsigned int offset, size_t len)
 735{
 736	struct tcp_splice_state *tss = rd_desc->arg.data;
 737	int ret;
 738
 739	ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
 740			      min(rd_desc->count, len), tss->flags);
 741	if (ret > 0)
 742		rd_desc->count -= ret;
 743	return ret;
 744}
 745
 746static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
 747{
 748	/* Store TCP splice context information in read_descriptor_t. */
 749	read_descriptor_t rd_desc = {
 750		.arg.data = tss,
 751		.count	  = tss->len,
 752	};
 753
 754	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
 755}
 756
 757/**
 758 *  tcp_splice_read - splice data from TCP socket to a pipe
 759 * @sock:	socket to splice from
 760 * @ppos:	position (not valid)
 761 * @pipe:	pipe to splice to
 762 * @len:	number of bytes to splice
 763 * @flags:	splice modifier flags
 764 *
 765 * Description:
 766 *    Will read pages from given socket and fill them into a pipe.
 767 *
 768 **/
 769ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
 770			struct pipe_inode_info *pipe, size_t len,
 771			unsigned int flags)
 772{
 773	struct sock *sk = sock->sk;
 774	struct tcp_splice_state tss = {
 775		.pipe = pipe,
 776		.len = len,
 777		.flags = flags,
 778	};
 779	long timeo;
 780	ssize_t spliced;
 781	int ret;
 782
 783	sock_rps_record_flow(sk);
 784	/*
 785	 * We can't seek on a socket input
 786	 */
 787	if (unlikely(*ppos))
 788		return -ESPIPE;
 789
 790	ret = spliced = 0;
 791
 792	lock_sock(sk);
 793
 794	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
 795	while (tss.len) {
 796		ret = __tcp_splice_read(sk, &tss);
 797		if (ret < 0)
 798			break;
 799		else if (!ret) {
 800			if (spliced)
 801				break;
 802			if (sock_flag(sk, SOCK_DONE))
 803				break;
 804			if (sk->sk_err) {
 805				ret = sock_error(sk);
 806				break;
 807			}
 808			if (sk->sk_shutdown & RCV_SHUTDOWN)
 809				break;
 810			if (sk->sk_state == TCP_CLOSE) {
 811				/*
 812				 * This occurs when user tries to read
 813				 * from never connected socket.
 814				 */
 815				ret = -ENOTCONN;
 
 816				break;
 817			}
 818			if (!timeo) {
 819				ret = -EAGAIN;
 820				break;
 821			}
 822			/* if __tcp_splice_read() got nothing while we have
 823			 * an skb in receive queue, we do not want to loop.
 824			 * This might happen with URG data.
 825			 */
 826			if (!skb_queue_empty(&sk->sk_receive_queue))
 827				break;
 828			sk_wait_data(sk, &timeo, NULL);
 829			if (signal_pending(current)) {
 830				ret = sock_intr_errno(timeo);
 831				break;
 832			}
 833			continue;
 834		}
 835		tss.len -= ret;
 836		spliced += ret;
 837
 838		if (!timeo)
 839			break;
 840		release_sock(sk);
 841		lock_sock(sk);
 842
 843		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
 844		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
 845		    signal_pending(current))
 846			break;
 847	}
 848
 849	release_sock(sk);
 850
 851	if (spliced)
 852		return spliced;
 853
 854	return ret;
 855}
 856EXPORT_SYMBOL(tcp_splice_read);
 857
 858struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
 859				     bool force_schedule)
 860{
 861	struct sk_buff *skb;
 862
 863	skb = alloc_skb_fclone(size + MAX_TCP_HEADER, gfp);
 864	if (likely(skb)) {
 865		bool mem_scheduled;
 866
 867		skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
 868		if (force_schedule) {
 869			mem_scheduled = true;
 870			sk_forced_mem_schedule(sk, skb->truesize);
 871		} else {
 872			mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
 873		}
 874		if (likely(mem_scheduled)) {
 875			skb_reserve(skb, MAX_TCP_HEADER);
 876			skb->ip_summed = CHECKSUM_PARTIAL;
 877			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
 878			return skb;
 879		}
 880		__kfree_skb(skb);
 881	} else {
 882		sk->sk_prot->enter_memory_pressure(sk);
 883		sk_stream_moderate_sndbuf(sk);
 884	}
 885	return NULL;
 886}
 887
 888static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
 889				       int large_allowed)
 890{
 891	struct tcp_sock *tp = tcp_sk(sk);
 892	u32 new_size_goal, size_goal;
 
 
 893
 894	if (!large_allowed)
 895		return mss_now;
 
 
 
 896
 897	/* Note : tcp_tso_autosize() will eventually split this later */
 898	new_size_goal = tcp_bound_to_half_wnd(tp, sk->sk_gso_max_size);
 899
 900	/* We try hard to avoid divides here */
 901	size_goal = tp->gso_segs * mss_now;
 902	if (unlikely(new_size_goal < size_goal ||
 903		     new_size_goal >= size_goal + mss_now)) {
 904		tp->gso_segs = min_t(u16, new_size_goal / mss_now,
 905				     sk->sk_gso_max_segs);
 906		size_goal = tp->gso_segs * mss_now;
 
 
 
 
 
 907	}
 908
 909	return max(size_goal, mss_now);
 910}
 911
 912int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
 913{
 914	int mss_now;
 915
 916	mss_now = tcp_current_mss(sk);
 917	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
 918
 919	return mss_now;
 920}
 921
 922/* In some cases, both sendpage() and sendmsg() could have added
 923 * an skb to the write queue, but failed adding payload on it.
 924 * We need to remove it to consume less memory, but more
 925 * importantly be able to generate EPOLLOUT for Edge Trigger epoll()
 926 * users.
 927 */
 928void tcp_remove_empty_skb(struct sock *sk)
 929{
 930	struct sk_buff *skb = tcp_write_queue_tail(sk);
 931
 932	if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
 933		tcp_unlink_write_queue(skb, sk);
 934		if (tcp_write_queue_empty(sk))
 935			tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
 936		tcp_wmem_free_skb(sk, skb);
 937	}
 938}
 939
 940/* skb changing from pure zc to mixed, must charge zc */
 941static int tcp_downgrade_zcopy_pure(struct sock *sk, struct sk_buff *skb)
 942{
 943	if (unlikely(skb_zcopy_pure(skb))) {
 944		u32 extra = skb->truesize -
 945			    SKB_TRUESIZE(skb_end_offset(skb));
 946
 947		if (!sk_wmem_schedule(sk, extra))
 948			return -ENOMEM;
 949
 950		sk_mem_charge(sk, extra);
 951		skb_shinfo(skb)->flags &= ~SKBFL_PURE_ZEROCOPY;
 952	}
 953	return 0;
 954}
 955
 956
 957static int tcp_wmem_schedule(struct sock *sk, int copy)
 958{
 959	int left;
 960
 961	if (likely(sk_wmem_schedule(sk, copy)))
 962		return copy;
 963
 964	/* We could be in trouble if we have nothing queued.
 965	 * Use whatever is left in sk->sk_forward_alloc and tcp_wmem[0]
 966	 * to guarantee some progress.
 967	 */
 968	left = sock_net(sk)->ipv4.sysctl_tcp_wmem[0] - sk->sk_wmem_queued;
 969	if (left > 0)
 970		sk_forced_mem_schedule(sk, min(left, copy));
 971	return min(copy, sk->sk_forward_alloc);
 972}
 973
 974static struct sk_buff *tcp_build_frag(struct sock *sk, int size_goal, int flags,
 975				      struct page *page, int offset, size_t *size)
 976{
 977	struct sk_buff *skb = tcp_write_queue_tail(sk);
 978	struct tcp_sock *tp = tcp_sk(sk);
 979	bool can_coalesce;
 980	int copy, i;
 981
 982	if (!skb || (copy = size_goal - skb->len) <= 0 ||
 983	    !tcp_skb_can_collapse_to(skb)) {
 984new_segment:
 985		if (!sk_stream_memory_free(sk))
 986			return NULL;
 987
 988		skb = tcp_stream_alloc_skb(sk, 0, sk->sk_allocation,
 989					   tcp_rtx_and_write_queues_empty(sk));
 990		if (!skb)
 991			return NULL;
 992
 993#ifdef CONFIG_TLS_DEVICE
 994		skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED);
 995#endif
 996		tcp_skb_entail(sk, skb);
 997		copy = size_goal;
 998	}
 999
1000	if (copy > *size)
1001		copy = *size;
1002
1003	i = skb_shinfo(skb)->nr_frags;
1004	can_coalesce = skb_can_coalesce(skb, i, page, offset);
1005	if (!can_coalesce && i >= READ_ONCE(sysctl_max_skb_frags)) {
1006		tcp_mark_push(tp, skb);
1007		goto new_segment;
1008	}
1009	if (tcp_downgrade_zcopy_pure(sk, skb))
1010		return NULL;
1011
1012	copy = tcp_wmem_schedule(sk, copy);
1013	if (!copy)
1014		return NULL;
1015
1016	if (can_coalesce) {
1017		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1018	} else {
1019		get_page(page);
1020		skb_fill_page_desc_noacc(skb, i, page, offset, copy);
1021	}
1022
1023	if (!(flags & MSG_NO_SHARED_FRAGS))
1024		skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG;
1025
1026	skb->len += copy;
1027	skb->data_len += copy;
1028	skb->truesize += copy;
1029	sk_wmem_queued_add(sk, copy);
1030	sk_mem_charge(sk, copy);
1031	WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1032	TCP_SKB_CB(skb)->end_seq += copy;
1033	tcp_skb_pcount_set(skb, 0);
1034
1035	*size = copy;
1036	return skb;
1037}
1038
1039ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
1040			 size_t size, int flags)
1041{
1042	struct tcp_sock *tp = tcp_sk(sk);
1043	int mss_now, size_goal;
1044	int err;
1045	ssize_t copied;
1046	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1047
1048	if (IS_ENABLED(CONFIG_DEBUG_VM) &&
1049	    WARN_ONCE(!sendpage_ok(page),
1050		      "page must not be a Slab one and have page_count > 0"))
1051		return -EINVAL;
1052
1053	/* Wait for a connection to finish. One exception is TCP Fast Open
1054	 * (passive side) where data is allowed to be sent before a connection
1055	 * is fully established.
1056	 */
1057	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1058	    !tcp_passive_fastopen(sk)) {
1059		err = sk_stream_wait_connect(sk, &timeo);
1060		if (err != 0)
1061			goto out_err;
1062	}
1063
1064	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1065
1066	mss_now = tcp_send_mss(sk, &size_goal, flags);
1067	copied = 0;
1068
1069	err = -EPIPE;
1070	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1071		goto out_err;
1072
1073	while (size > 0) {
1074		struct sk_buff *skb;
1075		size_t copy = size;
1076
1077		skb = tcp_build_frag(sk, size_goal, flags, page, offset, &copy);
1078		if (!skb)
1079			goto wait_for_space;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1080
1081		if (!copied)
1082			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1083
1084		copied += copy;
1085		offset += copy;
1086		size -= copy;
1087		if (!size)
1088			goto out;
1089
1090		if (skb->len < size_goal || (flags & MSG_OOB))
1091			continue;
1092
1093		if (forced_push(tp)) {
1094			tcp_mark_push(tp, skb);
1095			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1096		} else if (skb == tcp_send_head(sk))
1097			tcp_push_one(sk, mss_now);
1098		continue;
1099
1100wait_for_space:
1101		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1102		tcp_push(sk, flags & ~MSG_MORE, mss_now,
1103			 TCP_NAGLE_PUSH, size_goal);
1104
1105		err = sk_stream_wait_memory(sk, &timeo);
1106		if (err != 0)
1107			goto do_error;
1108
1109		mss_now = tcp_send_mss(sk, &size_goal, flags);
1110	}
1111
1112out:
1113	if (copied) {
1114		tcp_tx_timestamp(sk, sk->sk_tsflags);
1115		if (!(flags & MSG_SENDPAGE_NOTLAST))
1116			tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1117	}
1118	return copied;
1119
1120do_error:
1121	tcp_remove_empty_skb(sk);
1122	if (copied)
1123		goto out;
1124out_err:
1125	/* make sure we wake any epoll edge trigger waiter */
1126	if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1127		sk->sk_write_space(sk);
1128		tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1129	}
1130	return sk_stream_error(sk, flags, err);
1131}
1132EXPORT_SYMBOL_GPL(do_tcp_sendpages);
1133
1134int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
1135			size_t size, int flags)
1136{
1137	if (!(sk->sk_route_caps & NETIF_F_SG))
1138		return sock_no_sendpage_locked(sk, page, offset, size, flags);
1139
1140	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
1141
1142	return do_tcp_sendpages(sk, page, offset, size, flags);
1143}
1144EXPORT_SYMBOL_GPL(tcp_sendpage_locked);
1145
1146int tcp_sendpage(struct sock *sk, struct page *page, int offset,
1147		 size_t size, int flags)
1148{
1149	int ret;
 
 
 
 
 
1150
1151	lock_sock(sk);
1152	ret = tcp_sendpage_locked(sk, page, offset, size, flags);
1153	release_sock(sk);
1154
1155	return ret;
1156}
1157EXPORT_SYMBOL(tcp_sendpage);
1158
1159void tcp_free_fastopen_req(struct tcp_sock *tp)
1160{
1161	if (tp->fastopen_req) {
1162		kfree(tp->fastopen_req);
1163		tp->fastopen_req = NULL;
1164	}
1165}
1166
1167int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied,
1168			 size_t size, struct ubuf_info *uarg)
1169{
1170	struct tcp_sock *tp = tcp_sk(sk);
1171	struct inet_sock *inet = inet_sk(sk);
1172	struct sockaddr *uaddr = msg->msg_name;
1173	int err, flags;
 
1174
1175	if (!(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) &
1176	      TFO_CLIENT_ENABLE) ||
1177	    (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
1178	     uaddr->sa_family == AF_UNSPEC))
1179		return -EOPNOTSUPP;
1180	if (tp->fastopen_req)
1181		return -EALREADY; /* Another Fast Open is in progress */
1182
1183	tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1184				   sk->sk_allocation);
1185	if (unlikely(!tp->fastopen_req))
1186		return -ENOBUFS;
1187	tp->fastopen_req->data = msg;
1188	tp->fastopen_req->size = size;
1189	tp->fastopen_req->uarg = uarg;
1190
1191	if (inet->defer_connect) {
1192		err = tcp_connect(sk);
1193		/* Same failure procedure as in tcp_v4/6_connect */
1194		if (err) {
1195			tcp_set_state(sk, TCP_CLOSE);
1196			inet->inet_dport = 0;
1197			sk->sk_route_caps = 0;
1198		}
1199	}
1200	flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1201	err = __inet_stream_connect(sk->sk_socket, uaddr,
1202				    msg->msg_namelen, flags, 1);
1203	/* fastopen_req could already be freed in __inet_stream_connect
1204	 * if the connection times out or gets rst
1205	 */
1206	if (tp->fastopen_req) {
1207		*copied = tp->fastopen_req->copied;
1208		tcp_free_fastopen_req(tp);
1209		inet->defer_connect = 0;
1210	}
1211	return err;
1212}
1213
1214int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
 
1215{
 
1216	struct tcp_sock *tp = tcp_sk(sk);
1217	struct ubuf_info *uarg = NULL;
1218	struct sk_buff *skb;
1219	struct sockcm_cookie sockc;
1220	int flags, err, copied = 0;
1221	int mss_now = 0, size_goal, copied_syn = 0;
1222	int process_backlog = 0;
1223	bool zc = false;
1224	long timeo;
1225
 
 
1226	flags = msg->msg_flags;
 
1227
1228	if ((flags & MSG_ZEROCOPY) && size) {
1229		skb = tcp_write_queue_tail(sk);
1230
1231		if (msg->msg_ubuf) {
1232			uarg = msg->msg_ubuf;
1233			net_zcopy_get(uarg);
1234			zc = sk->sk_route_caps & NETIF_F_SG;
1235		} else if (sock_flag(sk, SOCK_ZEROCOPY)) {
1236			uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb));
1237			if (!uarg) {
1238				err = -ENOBUFS;
1239				goto out_err;
1240			}
1241			zc = sk->sk_route_caps & NETIF_F_SG;
1242			if (!zc)
1243				uarg_to_msgzc(uarg)->zerocopy = 0;
1244		}
1245	}
1246
1247	if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) &&
1248	    !tp->repair) {
1249		err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg);
1250		if (err == -EINPROGRESS && copied_syn > 0)
1251			goto out;
1252		else if (err)
1253			goto out_err;
1254	}
1255
1256	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1257
1258	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
1259
1260	/* Wait for a connection to finish. One exception is TCP Fast Open
1261	 * (passive side) where data is allowed to be sent before a connection
1262	 * is fully established.
1263	 */
1264	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1265	    !tcp_passive_fastopen(sk)) {
1266		err = sk_stream_wait_connect(sk, &timeo);
1267		if (err != 0)
1268			goto do_error;
1269	}
1270
1271	if (unlikely(tp->repair)) {
1272		if (tp->repair_queue == TCP_RECV_QUEUE) {
1273			copied = tcp_send_rcvq(sk, msg, size);
1274			goto out_nopush;
1275		}
1276
1277		err = -EINVAL;
1278		if (tp->repair_queue == TCP_NO_QUEUE)
1279			goto out_err;
1280
1281		/* 'common' sending to sendq */
1282	}
1283
1284	sockcm_init(&sockc, sk);
1285	if (msg->msg_controllen) {
1286		err = sock_cmsg_send(sk, msg, &sockc);
1287		if (unlikely(err)) {
1288			err = -EINVAL;
1289			goto out_err;
1290		}
1291	}
1292
1293	/* This should be in poll */
1294	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1295
1296	/* Ok commence sending. */
 
 
1297	copied = 0;
1298
1299restart:
1300	mss_now = tcp_send_mss(sk, &size_goal, flags);
1301
1302	err = -EPIPE;
1303	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1304		goto do_error;
1305
1306	while (msg_data_left(msg)) {
1307		int copy = 0;
1308
1309		skb = tcp_write_queue_tail(sk);
1310		if (skb)
1311			copy = size_goal - skb->len;
1312
1313		if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1314			bool first_skb;
1315
1316new_segment:
1317			if (!sk_stream_memory_free(sk))
1318				goto wait_for_space;
1319
1320			if (unlikely(process_backlog >= 16)) {
1321				process_backlog = 0;
1322				if (sk_flush_backlog(sk))
1323					goto restart;
 
1324			}
1325			first_skb = tcp_rtx_and_write_queues_empty(sk);
1326			skb = tcp_stream_alloc_skb(sk, 0, sk->sk_allocation,
1327						   first_skb);
1328			if (!skb)
1329				goto wait_for_space;
1330
1331			process_backlog++;
 
 
 
 
 
 
1332
1333			tcp_skb_entail(sk, skb);
1334			copy = size_goal;
 
 
 
1335
1336			/* All packets are restored as if they have
1337			 * already been sent. skb_mstamp_ns isn't set to
1338			 * avoid wrong rtt estimation.
1339			 */
1340			if (tp->repair)
1341				TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1342		}
1343
1344		/* Try to append data to the end of skb. */
1345		if (copy > msg_data_left(msg))
1346			copy = msg_data_left(msg);
1347
1348		if (!zc) {
1349			bool merge = true;
1350			int i = skb_shinfo(skb)->nr_frags;
1351			struct page_frag *pfrag = sk_page_frag(sk);
1352
1353			if (!sk_page_frag_refill(sk, pfrag))
1354				goto wait_for_space;
1355
1356			if (!skb_can_coalesce(skb, i, pfrag->page,
1357					      pfrag->offset)) {
1358				if (i >= READ_ONCE(sysctl_max_skb_frags)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1359					tcp_mark_push(tp, skb);
1360					goto new_segment;
1361				}
1362				merge = false;
1363			}
 
 
 
 
 
1364
1365			copy = min_t(int, copy, pfrag->size - pfrag->offset);
 
1366
1367			if (unlikely(skb_zcopy_pure(skb) || skb_zcopy_managed(skb))) {
1368				if (tcp_downgrade_zcopy_pure(sk, skb))
1369					goto wait_for_space;
1370				skb_zcopy_downgrade_managed(skb);
1371			}
1372
1373			copy = tcp_wmem_schedule(sk, copy);
1374			if (!copy)
1375				goto wait_for_space;
1376
1377			err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1378						       pfrag->page,
1379						       pfrag->offset,
1380						       copy);
1381			if (err)
1382				goto do_error;
1383
1384			/* Update the skb. */
1385			if (merge) {
1386				skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1387			} else {
1388				skb_fill_page_desc(skb, i, pfrag->page,
1389						   pfrag->offset, copy);
1390				page_ref_inc(pfrag->page);
1391			}
1392			pfrag->offset += copy;
1393		} else {
1394			/* First append to a fragless skb builds initial
1395			 * pure zerocopy skb
1396			 */
1397			if (!skb->len)
1398				skb_shinfo(skb)->flags |= SKBFL_PURE_ZEROCOPY;
1399
1400			if (!skb_zcopy_pure(skb)) {
1401				copy = tcp_wmem_schedule(sk, copy);
1402				if (!copy)
1403					goto wait_for_space;
1404			}
 
 
 
 
 
 
 
1405
1406			err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg);
1407			if (err == -EMSGSIZE || err == -EEXIST) {
1408				tcp_mark_push(tp, skb);
1409				goto new_segment;
1410			}
1411			if (err < 0)
1412				goto do_error;
1413			copy = err;
1414		}
1415
1416		if (!copied)
1417			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1418
1419		WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1420		TCP_SKB_CB(skb)->end_seq += copy;
1421		tcp_skb_pcount_set(skb, 0);
 
 
 
 
 
1422
1423		copied += copy;
1424		if (!msg_data_left(msg)) {
1425			if (unlikely(flags & MSG_EOR))
1426				TCP_SKB_CB(skb)->eor = 1;
1427			goto out;
1428		}
1429
1430		if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair))
 
 
 
 
1431			continue;
1432
1433		if (forced_push(tp)) {
1434			tcp_mark_push(tp, skb);
1435			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1436		} else if (skb == tcp_send_head(sk))
1437			tcp_push_one(sk, mss_now);
1438		continue;
1439
1440wait_for_space:
1441		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1442		if (copied)
1443			tcp_push(sk, flags & ~MSG_MORE, mss_now,
1444				 TCP_NAGLE_PUSH, size_goal);
1445
1446		err = sk_stream_wait_memory(sk, &timeo);
1447		if (err != 0)
1448			goto do_error;
1449
1450		mss_now = tcp_send_mss(sk, &size_goal, flags);
1451	}
1452
1453out:
1454	if (copied) {
1455		tcp_tx_timestamp(sk, sockc.tsflags);
1456		tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1457	}
1458out_nopush:
1459	net_zcopy_put(uarg);
1460	return copied + copied_syn;
 
 
 
 
 
 
 
1461
1462do_error:
1463	tcp_remove_empty_skb(sk);
1464
1465	if (copied + copied_syn)
1466		goto out;
1467out_err:
1468	net_zcopy_put_abort(uarg, true);
1469	err = sk_stream_error(sk, flags, err);
1470	/* make sure we wake any epoll edge trigger waiter */
1471	if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1472		sk->sk_write_space(sk);
1473		tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1474	}
1475	return err;
1476}
1477EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
1478
1479int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1480{
1481	int ret;
1482
1483	lock_sock(sk);
1484	ret = tcp_sendmsg_locked(sk, msg, size);
1485	release_sock(sk);
1486
1487	return ret;
1488}
1489EXPORT_SYMBOL(tcp_sendmsg);
1490
1491/*
1492 *	Handle reading urgent data. BSD has very simple semantics for
1493 *	this, no blocking and very strange errors 8)
1494 */
1495
1496static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1497{
1498	struct tcp_sock *tp = tcp_sk(sk);
1499
1500	/* No URG data to read. */
1501	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1502	    tp->urg_data == TCP_URG_READ)
1503		return -EINVAL;	/* Yes this is right ! */
1504
1505	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1506		return -ENOTCONN;
1507
1508	if (tp->urg_data & TCP_URG_VALID) {
1509		int err = 0;
1510		char c = tp->urg_data;
1511
1512		if (!(flags & MSG_PEEK))
1513			WRITE_ONCE(tp->urg_data, TCP_URG_READ);
1514
1515		/* Read urgent data. */
1516		msg->msg_flags |= MSG_OOB;
1517
1518		if (len > 0) {
1519			if (!(flags & MSG_TRUNC))
1520				err = memcpy_to_msg(msg, &c, 1);
1521			len = 1;
1522		} else
1523			msg->msg_flags |= MSG_TRUNC;
1524
1525		return err ? -EFAULT : len;
1526	}
1527
1528	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1529		return 0;
1530
1531	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1532	 * the available implementations agree in this case:
1533	 * this call should never block, independent of the
1534	 * blocking state of the socket.
1535	 * Mike <pall@rz.uni-karlsruhe.de>
1536	 */
1537	return -EAGAIN;
1538}
1539
1540static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1541{
1542	struct sk_buff *skb;
1543	int copied = 0, err = 0;
1544
1545	/* XXX -- need to support SO_PEEK_OFF */
1546
1547	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
1548		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1549		if (err)
1550			return err;
1551		copied += skb->len;
1552	}
1553
1554	skb_queue_walk(&sk->sk_write_queue, skb) {
1555		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1556		if (err)
1557			break;
1558
1559		copied += skb->len;
1560	}
1561
1562	return err ?: copied;
1563}
1564
1565/* Clean up the receive buffer for full frames taken by the user,
1566 * then send an ACK if necessary.  COPIED is the number of bytes
1567 * tcp_recvmsg has given to the user so far, it speeds up the
1568 * calculation of whether or not we must ACK for the sake of
1569 * a window update.
1570 */
1571static void __tcp_cleanup_rbuf(struct sock *sk, int copied)
1572{
1573	struct tcp_sock *tp = tcp_sk(sk);
1574	bool time_to_ack = false;
1575
 
 
 
 
 
 
1576	if (inet_csk_ack_scheduled(sk)) {
1577		const struct inet_connection_sock *icsk = inet_csk(sk);
1578
1579		if (/* Once-per-two-segments ACK was not sent by tcp_input.c */
 
 
1580		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1581		    /*
1582		     * If this read emptied read buffer, we send ACK, if
1583		     * connection is not bidirectional, user drained
1584		     * receive buffer and there was a small segment
1585		     * in queue.
1586		     */
1587		    (copied > 0 &&
1588		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1589		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1590		       !inet_csk_in_pingpong_mode(sk))) &&
1591		      !atomic_read(&sk->sk_rmem_alloc)))
1592			time_to_ack = true;
1593	}
1594
1595	/* We send an ACK if we can now advertise a non-zero window
1596	 * which has been raised "significantly".
1597	 *
1598	 * Even if window raised up to infinity, do not send window open ACK
1599	 * in states, where we will not receive more. It is useless.
1600	 */
1601	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1602		__u32 rcv_window_now = tcp_receive_window(tp);
1603
1604		/* Optimize, __tcp_select_window() is not cheap. */
1605		if (2*rcv_window_now <= tp->window_clamp) {
1606			__u32 new_window = __tcp_select_window(sk);
1607
1608			/* Send ACK now, if this read freed lots of space
1609			 * in our buffer. Certainly, new_window is new window.
1610			 * We can advertise it now, if it is not less than current one.
1611			 * "Lots" means "at least twice" here.
1612			 */
1613			if (new_window && new_window >= 2 * rcv_window_now)
1614				time_to_ack = true;
1615		}
1616	}
1617	if (time_to_ack)
1618		tcp_send_ack(sk);
1619}
1620
1621void tcp_cleanup_rbuf(struct sock *sk, int copied)
1622{
1623	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1624	struct tcp_sock *tp = tcp_sk(sk);
1625
1626	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1627	     "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1628	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1629	__tcp_cleanup_rbuf(sk, copied);
 
 
 
 
 
 
 
1630}
1631
1632static void tcp_eat_recv_skb(struct sock *sk, struct sk_buff *skb)
 
1633{
1634	__skb_unlink(skb, &sk->sk_receive_queue);
1635	if (likely(skb->destructor == sock_rfree)) {
1636		sock_rfree(skb);
1637		skb->destructor = NULL;
1638		skb->sk = NULL;
1639		return skb_attempt_defer_free(skb);
1640	}
1641	__kfree_skb(skb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1642}
 
1643
1644struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1645{
1646	struct sk_buff *skb;
1647	u32 offset;
1648
1649	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1650		offset = seq - TCP_SKB_CB(skb)->seq;
1651		if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1652			pr_err_once("%s: found a SYN, please report !\n", __func__);
1653			offset--;
1654		}
1655		if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1656			*off = offset;
1657			return skb;
1658		}
1659		/* This looks weird, but this can happen if TCP collapsing
1660		 * splitted a fat GRO packet, while we released socket lock
1661		 * in skb_splice_bits()
1662		 */
1663		tcp_eat_recv_skb(sk, skb);
1664	}
1665	return NULL;
1666}
1667EXPORT_SYMBOL(tcp_recv_skb);
1668
1669/*
1670 * This routine provides an alternative to tcp_recvmsg() for routines
1671 * that would like to handle copying from skbuffs directly in 'sendfile'
1672 * fashion.
1673 * Note:
1674 *	- It is assumed that the socket was locked by the caller.
1675 *	- The routine does not block.
1676 *	- At present, there is no support for reading OOB data
1677 *	  or for 'peeking' the socket using this routine
1678 *	  (although both would be easy to implement).
1679 */
1680int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1681		  sk_read_actor_t recv_actor)
1682{
1683	struct sk_buff *skb;
1684	struct tcp_sock *tp = tcp_sk(sk);
1685	u32 seq = tp->copied_seq;
1686	u32 offset;
1687	int copied = 0;
1688
1689	if (sk->sk_state == TCP_LISTEN)
1690		return -ENOTCONN;
1691	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1692		if (offset < skb->len) {
1693			int used;
1694			size_t len;
1695
1696			len = skb->len - offset;
1697			/* Stop reading if we hit a patch of urgent data */
1698			if (unlikely(tp->urg_data)) {
1699				u32 urg_offset = tp->urg_seq - seq;
1700				if (urg_offset < len)
1701					len = urg_offset;
1702				if (!len)
1703					break;
1704			}
1705			used = recv_actor(desc, skb, offset, len);
1706			if (used <= 0) {
1707				if (!copied)
1708					copied = used;
1709				break;
 
 
 
 
1710			}
1711			if (WARN_ON_ONCE(used > len))
1712				used = len;
1713			seq += used;
1714			copied += used;
1715			offset += used;
1716
1717			/* If recv_actor drops the lock (e.g. TCP splice
1718			 * receive) the skb pointer might be invalid when
1719			 * getting here: tcp_collapse might have deleted it
1720			 * while aggregating skbs from the socket queue.
1721			 */
1722			skb = tcp_recv_skb(sk, seq - 1, &offset);
1723			if (!skb)
1724				break;
1725			/* TCP coalescing might have appended data to the skb.
1726			 * Try to splice more frags
1727			 */
1728			if (offset + 1 != skb->len)
1729				continue;
1730		}
1731		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1732			tcp_eat_recv_skb(sk, skb);
1733			++seq;
1734			break;
1735		}
1736		tcp_eat_recv_skb(sk, skb);
1737		if (!desc->count)
1738			break;
1739		WRITE_ONCE(tp->copied_seq, seq);
1740	}
1741	WRITE_ONCE(tp->copied_seq, seq);
1742
1743	tcp_rcv_space_adjust(sk);
1744
1745	/* Clean up data we have read: This will do ACK frames. */
1746	if (copied > 0) {
1747		tcp_recv_skb(sk, seq, &offset);
1748		tcp_cleanup_rbuf(sk, copied);
1749	}
1750	return copied;
1751}
1752EXPORT_SYMBOL(tcp_read_sock);
1753
1754int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor)
1755{
1756	struct tcp_sock *tp = tcp_sk(sk);
1757	u32 seq = tp->copied_seq;
1758	struct sk_buff *skb;
1759	int copied = 0;
1760	u32 offset;
1761
1762	if (sk->sk_state == TCP_LISTEN)
1763		return -ENOTCONN;
1764
1765	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1766		u8 tcp_flags;
1767		int used;
1768
1769		__skb_unlink(skb, &sk->sk_receive_queue);
1770		WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk));
1771		tcp_flags = TCP_SKB_CB(skb)->tcp_flags;
1772		used = recv_actor(sk, skb);
1773		consume_skb(skb);
1774		if (used < 0) {
1775			if (!copied)
1776				copied = used;
1777			break;
1778		}
1779		seq += used;
1780		copied += used;
1781
1782		if (tcp_flags & TCPHDR_FIN) {
1783			++seq;
1784			break;
1785		}
1786	}
1787	WRITE_ONCE(tp->copied_seq, seq);
1788
1789	tcp_rcv_space_adjust(sk);
1790
1791	/* Clean up data we have read: This will do ACK frames. */
1792	if (copied > 0)
1793		__tcp_cleanup_rbuf(sk, copied);
1794
1795	return copied;
1796}
1797EXPORT_SYMBOL(tcp_read_skb);
1798
1799void tcp_read_done(struct sock *sk, size_t len)
1800{
1801	struct tcp_sock *tp = tcp_sk(sk);
1802	u32 seq = tp->copied_seq;
1803	struct sk_buff *skb;
1804	size_t left;
1805	u32 offset;
1806
1807	if (sk->sk_state == TCP_LISTEN)
1808		return;
1809
1810	left = len;
1811	while (left && (skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1812		int used;
1813
1814		used = min_t(size_t, skb->len - offset, left);
1815		seq += used;
1816		left -= used;
1817
1818		if (skb->len > offset + used)
1819			break;
1820
1821		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1822			tcp_eat_recv_skb(sk, skb);
1823			++seq;
1824			break;
1825		}
1826		tcp_eat_recv_skb(sk, skb);
1827	}
1828	WRITE_ONCE(tp->copied_seq, seq);
1829
1830	tcp_rcv_space_adjust(sk);
1831
1832	/* Clean up data we have read: This will do ACK frames. */
1833	if (left != len)
1834		tcp_cleanup_rbuf(sk, len - left);
1835}
1836EXPORT_SYMBOL(tcp_read_done);
1837
1838int tcp_peek_len(struct socket *sock)
1839{
1840	return tcp_inq(sock->sk);
1841}
1842EXPORT_SYMBOL(tcp_peek_len);
1843
1844/* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */
1845int tcp_set_rcvlowat(struct sock *sk, int val)
1846{
1847	int cap;
1848
1849	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1850		cap = sk->sk_rcvbuf >> 1;
1851	else
1852		cap = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
1853	val = min(val, cap);
1854	WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1855
1856	/* Check if we need to signal EPOLLIN right now */
1857	tcp_data_ready(sk);
1858
1859	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1860		return 0;
1861
1862	val <<= 1;
1863	if (val > sk->sk_rcvbuf) {
1864		WRITE_ONCE(sk->sk_rcvbuf, val);
1865		tcp_sk(sk)->window_clamp = tcp_win_from_space(sk, val);
1866	}
1867	return 0;
1868}
1869EXPORT_SYMBOL(tcp_set_rcvlowat);
1870
1871void tcp_update_recv_tstamps(struct sk_buff *skb,
1872			     struct scm_timestamping_internal *tss)
1873{
1874	if (skb->tstamp)
1875		tss->ts[0] = ktime_to_timespec64(skb->tstamp);
1876	else
1877		tss->ts[0] = (struct timespec64) {0};
1878
1879	if (skb_hwtstamps(skb)->hwtstamp)
1880		tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp);
1881	else
1882		tss->ts[2] = (struct timespec64) {0};
1883}
1884
1885#ifdef CONFIG_MMU
1886static const struct vm_operations_struct tcp_vm_ops = {
1887};
1888
1889int tcp_mmap(struct file *file, struct socket *sock,
1890	     struct vm_area_struct *vma)
1891{
1892	if (vma->vm_flags & (VM_WRITE | VM_EXEC))
1893		return -EPERM;
1894	vma->vm_flags &= ~(VM_MAYWRITE | VM_MAYEXEC);
1895
1896	/* Instruct vm_insert_page() to not mmap_read_lock(mm) */
1897	vma->vm_flags |= VM_MIXEDMAP;
1898
1899	vma->vm_ops = &tcp_vm_ops;
1900	return 0;
1901}
1902EXPORT_SYMBOL(tcp_mmap);
1903
1904static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb,
1905				       u32 *offset_frag)
1906{
1907	skb_frag_t *frag;
1908
1909	if (unlikely(offset_skb >= skb->len))
1910		return NULL;
1911
1912	offset_skb -= skb_headlen(skb);
1913	if ((int)offset_skb < 0 || skb_has_frag_list(skb))
1914		return NULL;
1915
1916	frag = skb_shinfo(skb)->frags;
1917	while (offset_skb) {
1918		if (skb_frag_size(frag) > offset_skb) {
1919			*offset_frag = offset_skb;
1920			return frag;
1921		}
1922		offset_skb -= skb_frag_size(frag);
1923		++frag;
1924	}
1925	*offset_frag = 0;
1926	return frag;
1927}
1928
1929static bool can_map_frag(const skb_frag_t *frag)
1930{
1931	return skb_frag_size(frag) == PAGE_SIZE && !skb_frag_off(frag);
1932}
1933
1934static int find_next_mappable_frag(const skb_frag_t *frag,
1935				   int remaining_in_skb)
1936{
1937	int offset = 0;
1938
1939	if (likely(can_map_frag(frag)))
1940		return 0;
1941
1942	while (offset < remaining_in_skb && !can_map_frag(frag)) {
1943		offset += skb_frag_size(frag);
1944		++frag;
1945	}
1946	return offset;
1947}
1948
1949static void tcp_zerocopy_set_hint_for_skb(struct sock *sk,
1950					  struct tcp_zerocopy_receive *zc,
1951					  struct sk_buff *skb, u32 offset)
1952{
1953	u32 frag_offset, partial_frag_remainder = 0;
1954	int mappable_offset;
1955	skb_frag_t *frag;
1956
1957	/* worst case: skip to next skb. try to improve on this case below */
1958	zc->recv_skip_hint = skb->len - offset;
1959
1960	/* Find the frag containing this offset (and how far into that frag) */
1961	frag = skb_advance_to_frag(skb, offset, &frag_offset);
1962	if (!frag)
1963		return;
1964
1965	if (frag_offset) {
1966		struct skb_shared_info *info = skb_shinfo(skb);
1967
1968		/* We read part of the last frag, must recvmsg() rest of skb. */
1969		if (frag == &info->frags[info->nr_frags - 1])
1970			return;
1971
1972		/* Else, we must at least read the remainder in this frag. */
1973		partial_frag_remainder = skb_frag_size(frag) - frag_offset;
1974		zc->recv_skip_hint -= partial_frag_remainder;
1975		++frag;
1976	}
1977
1978	/* partial_frag_remainder: If part way through a frag, must read rest.
1979	 * mappable_offset: Bytes till next mappable frag, *not* counting bytes
1980	 * in partial_frag_remainder.
1981	 */
1982	mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint);
1983	zc->recv_skip_hint = mappable_offset + partial_frag_remainder;
1984}
1985
1986static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
1987			      int flags, struct scm_timestamping_internal *tss,
1988			      int *cmsg_flags);
1989static int receive_fallback_to_copy(struct sock *sk,
1990				    struct tcp_zerocopy_receive *zc, int inq,
1991				    struct scm_timestamping_internal *tss)
1992{
1993	unsigned long copy_address = (unsigned long)zc->copybuf_address;
1994	struct msghdr msg = {};
1995	struct iovec iov;
1996	int err;
1997
1998	zc->length = 0;
1999	zc->recv_skip_hint = 0;
2000
2001	if (copy_address != zc->copybuf_address)
2002		return -EINVAL;
2003
2004	err = import_single_range(ITER_DEST, (void __user *)copy_address,
2005				  inq, &iov, &msg.msg_iter);
2006	if (err)
2007		return err;
2008
2009	err = tcp_recvmsg_locked(sk, &msg, inq, MSG_DONTWAIT,
2010				 tss, &zc->msg_flags);
2011	if (err < 0)
2012		return err;
2013
2014	zc->copybuf_len = err;
2015	if (likely(zc->copybuf_len)) {
2016		struct sk_buff *skb;
2017		u32 offset;
2018
2019		skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset);
2020		if (skb)
2021			tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset);
2022	}
2023	return 0;
2024}
2025
2026static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc,
2027				   struct sk_buff *skb, u32 copylen,
2028				   u32 *offset, u32 *seq)
2029{
2030	unsigned long copy_address = (unsigned long)zc->copybuf_address;
2031	struct msghdr msg = {};
2032	struct iovec iov;
2033	int err;
2034
2035	if (copy_address != zc->copybuf_address)
2036		return -EINVAL;
2037
2038	err = import_single_range(ITER_DEST, (void __user *)copy_address,
2039				  copylen, &iov, &msg.msg_iter);
2040	if (err)
2041		return err;
2042	err = skb_copy_datagram_msg(skb, *offset, &msg, copylen);
2043	if (err)
2044		return err;
2045	zc->recv_skip_hint -= copylen;
2046	*offset += copylen;
2047	*seq += copylen;
2048	return (__s32)copylen;
2049}
2050
2051static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc,
2052				  struct sock *sk,
2053				  struct sk_buff *skb,
2054				  u32 *seq,
2055				  s32 copybuf_len,
2056				  struct scm_timestamping_internal *tss)
2057{
2058	u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint);
2059
2060	if (!copylen)
2061		return 0;
2062	/* skb is null if inq < PAGE_SIZE. */
2063	if (skb) {
2064		offset = *seq - TCP_SKB_CB(skb)->seq;
2065	} else {
2066		skb = tcp_recv_skb(sk, *seq, &offset);
2067		if (TCP_SKB_CB(skb)->has_rxtstamp) {
2068			tcp_update_recv_tstamps(skb, tss);
2069			zc->msg_flags |= TCP_CMSG_TS;
2070		}
2071	}
2072
2073	zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset,
2074						  seq);
2075	return zc->copybuf_len < 0 ? 0 : copylen;
2076}
2077
2078static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma,
2079					      struct page **pending_pages,
2080					      unsigned long pages_remaining,
2081					      unsigned long *address,
2082					      u32 *length,
2083					      u32 *seq,
2084					      struct tcp_zerocopy_receive *zc,
2085					      u32 total_bytes_to_map,
2086					      int err)
2087{
2088	/* At least one page did not map. Try zapping if we skipped earlier. */
2089	if (err == -EBUSY &&
2090	    zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) {
2091		u32 maybe_zap_len;
2092
2093		maybe_zap_len = total_bytes_to_map -  /* All bytes to map */
2094				*length + /* Mapped or pending */
2095				(pages_remaining * PAGE_SIZE); /* Failed map. */
2096		zap_page_range(vma, *address, maybe_zap_len);
2097		err = 0;
2098	}
2099
2100	if (!err) {
2101		unsigned long leftover_pages = pages_remaining;
2102		int bytes_mapped;
2103
2104		/* We called zap_page_range, try to reinsert. */
2105		err = vm_insert_pages(vma, *address,
2106				      pending_pages,
2107				      &pages_remaining);
2108		bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining);
2109		*seq += bytes_mapped;
2110		*address += bytes_mapped;
2111	}
2112	if (err) {
2113		/* Either we were unable to zap, OR we zapped, retried an
2114		 * insert, and still had an issue. Either ways, pages_remaining
2115		 * is the number of pages we were unable to map, and we unroll
2116		 * some state we speculatively touched before.
2117		 */
2118		const int bytes_not_mapped = PAGE_SIZE * pages_remaining;
2119
2120		*length -= bytes_not_mapped;
2121		zc->recv_skip_hint += bytes_not_mapped;
2122	}
2123	return err;
2124}
2125
2126static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma,
2127					struct page **pages,
2128					unsigned int pages_to_map,
2129					unsigned long *address,
2130					u32 *length,
2131					u32 *seq,
2132					struct tcp_zerocopy_receive *zc,
2133					u32 total_bytes_to_map)
2134{
2135	unsigned long pages_remaining = pages_to_map;
2136	unsigned int pages_mapped;
2137	unsigned int bytes_mapped;
2138	int err;
2139
2140	err = vm_insert_pages(vma, *address, pages, &pages_remaining);
2141	pages_mapped = pages_to_map - (unsigned int)pages_remaining;
2142	bytes_mapped = PAGE_SIZE * pages_mapped;
2143	/* Even if vm_insert_pages fails, it may have partially succeeded in
2144	 * mapping (some but not all of the pages).
2145	 */
2146	*seq += bytes_mapped;
2147	*address += bytes_mapped;
2148
2149	if (likely(!err))
2150		return 0;
2151
2152	/* Error: maybe zap and retry + rollback state for failed inserts. */
2153	return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped,
2154		pages_remaining, address, length, seq, zc, total_bytes_to_map,
2155		err);
2156}
2157
2158#define TCP_VALID_ZC_MSG_FLAGS   (TCP_CMSG_TS)
2159static void tcp_zc_finalize_rx_tstamp(struct sock *sk,
2160				      struct tcp_zerocopy_receive *zc,
2161				      struct scm_timestamping_internal *tss)
2162{
2163	unsigned long msg_control_addr;
2164	struct msghdr cmsg_dummy;
2165
2166	msg_control_addr = (unsigned long)zc->msg_control;
2167	cmsg_dummy.msg_control = (void *)msg_control_addr;
2168	cmsg_dummy.msg_controllen =
2169		(__kernel_size_t)zc->msg_controllen;
2170	cmsg_dummy.msg_flags = in_compat_syscall()
2171		? MSG_CMSG_COMPAT : 0;
2172	cmsg_dummy.msg_control_is_user = true;
2173	zc->msg_flags = 0;
2174	if (zc->msg_control == msg_control_addr &&
2175	    zc->msg_controllen == cmsg_dummy.msg_controllen) {
2176		tcp_recv_timestamp(&cmsg_dummy, sk, tss);
2177		zc->msg_control = (__u64)
2178			((uintptr_t)cmsg_dummy.msg_control);
2179		zc->msg_controllen =
2180			(__u64)cmsg_dummy.msg_controllen;
2181		zc->msg_flags = (__u32)cmsg_dummy.msg_flags;
2182	}
2183}
2184
2185#define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32
2186static int tcp_zerocopy_receive(struct sock *sk,
2187				struct tcp_zerocopy_receive *zc,
2188				struct scm_timestamping_internal *tss)
2189{
2190	u32 length = 0, offset, vma_len, avail_len, copylen = 0;
2191	unsigned long address = (unsigned long)zc->address;
2192	struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE];
2193	s32 copybuf_len = zc->copybuf_len;
2194	struct tcp_sock *tp = tcp_sk(sk);
2195	const skb_frag_t *frags = NULL;
2196	unsigned int pages_to_map = 0;
2197	struct vm_area_struct *vma;
2198	struct sk_buff *skb = NULL;
2199	u32 seq = tp->copied_seq;
2200	u32 total_bytes_to_map;
2201	int inq = tcp_inq(sk);
2202	int ret;
2203
2204	zc->copybuf_len = 0;
2205	zc->msg_flags = 0;
2206
2207	if (address & (PAGE_SIZE - 1) || address != zc->address)
2208		return -EINVAL;
2209
2210	if (sk->sk_state == TCP_LISTEN)
2211		return -ENOTCONN;
2212
2213	sock_rps_record_flow(sk);
2214
2215	if (inq && inq <= copybuf_len)
2216		return receive_fallback_to_copy(sk, zc, inq, tss);
2217
2218	if (inq < PAGE_SIZE) {
2219		zc->length = 0;
2220		zc->recv_skip_hint = inq;
2221		if (!inq && sock_flag(sk, SOCK_DONE))
2222			return -EIO;
2223		return 0;
2224	}
2225
2226	mmap_read_lock(current->mm);
2227
2228	vma = vma_lookup(current->mm, address);
2229	if (!vma || vma->vm_ops != &tcp_vm_ops) {
2230		mmap_read_unlock(current->mm);
2231		return -EINVAL;
2232	}
2233	vma_len = min_t(unsigned long, zc->length, vma->vm_end - address);
2234	avail_len = min_t(u32, vma_len, inq);
2235	total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1);
2236	if (total_bytes_to_map) {
2237		if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT))
2238			zap_page_range(vma, address, total_bytes_to_map);
2239		zc->length = total_bytes_to_map;
2240		zc->recv_skip_hint = 0;
2241	} else {
2242		zc->length = avail_len;
2243		zc->recv_skip_hint = avail_len;
2244	}
2245	ret = 0;
2246	while (length + PAGE_SIZE <= zc->length) {
2247		int mappable_offset;
2248		struct page *page;
2249
2250		if (zc->recv_skip_hint < PAGE_SIZE) {
2251			u32 offset_frag;
2252
2253			if (skb) {
2254				if (zc->recv_skip_hint > 0)
2255					break;
2256				skb = skb->next;
2257				offset = seq - TCP_SKB_CB(skb)->seq;
2258			} else {
2259				skb = tcp_recv_skb(sk, seq, &offset);
2260			}
2261
2262			if (TCP_SKB_CB(skb)->has_rxtstamp) {
2263				tcp_update_recv_tstamps(skb, tss);
2264				zc->msg_flags |= TCP_CMSG_TS;
2265			}
2266			zc->recv_skip_hint = skb->len - offset;
2267			frags = skb_advance_to_frag(skb, offset, &offset_frag);
2268			if (!frags || offset_frag)
2269				break;
2270		}
2271
2272		mappable_offset = find_next_mappable_frag(frags,
2273							  zc->recv_skip_hint);
2274		if (mappable_offset) {
2275			zc->recv_skip_hint = mappable_offset;
2276			break;
2277		}
2278		page = skb_frag_page(frags);
2279		prefetchw(page);
2280		pages[pages_to_map++] = page;
2281		length += PAGE_SIZE;
2282		zc->recv_skip_hint -= PAGE_SIZE;
2283		frags++;
2284		if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE ||
2285		    zc->recv_skip_hint < PAGE_SIZE) {
2286			/* Either full batch, or we're about to go to next skb
2287			 * (and we cannot unroll failed ops across skbs).
2288			 */
2289			ret = tcp_zerocopy_vm_insert_batch(vma, pages,
2290							   pages_to_map,
2291							   &address, &length,
2292							   &seq, zc,
2293							   total_bytes_to_map);
2294			if (ret)
2295				goto out;
2296			pages_to_map = 0;
2297		}
2298	}
2299	if (pages_to_map) {
2300		ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map,
2301						   &address, &length, &seq,
2302						   zc, total_bytes_to_map);
2303	}
2304out:
2305	mmap_read_unlock(current->mm);
2306	/* Try to copy straggler data. */
2307	if (!ret)
2308		copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss);
2309
2310	if (length + copylen) {
2311		WRITE_ONCE(tp->copied_seq, seq);
2312		tcp_rcv_space_adjust(sk);
2313
2314		/* Clean up data we have read: This will do ACK frames. */
2315		tcp_recv_skb(sk, seq, &offset);
2316		tcp_cleanup_rbuf(sk, length + copylen);
2317		ret = 0;
2318		if (length == zc->length)
2319			zc->recv_skip_hint = 0;
2320	} else {
2321		if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE))
2322			ret = -EIO;
2323	}
2324	zc->length = length;
2325	return ret;
2326}
2327#endif
2328
2329/* Similar to __sock_recv_timestamp, but does not require an skb */
2330void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
2331			struct scm_timestamping_internal *tss)
2332{
2333	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
2334	bool has_timestamping = false;
2335
2336	if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
2337		if (sock_flag(sk, SOCK_RCVTSTAMP)) {
2338			if (sock_flag(sk, SOCK_RCVTSTAMPNS)) {
2339				if (new_tstamp) {
2340					struct __kernel_timespec kts = {
2341						.tv_sec = tss->ts[0].tv_sec,
2342						.tv_nsec = tss->ts[0].tv_nsec,
2343					};
2344					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
2345						 sizeof(kts), &kts);
2346				} else {
2347					struct __kernel_old_timespec ts_old = {
2348						.tv_sec = tss->ts[0].tv_sec,
2349						.tv_nsec = tss->ts[0].tv_nsec,
2350					};
2351					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
2352						 sizeof(ts_old), &ts_old);
2353				}
2354			} else {
2355				if (new_tstamp) {
2356					struct __kernel_sock_timeval stv = {
2357						.tv_sec = tss->ts[0].tv_sec,
2358						.tv_usec = tss->ts[0].tv_nsec / 1000,
2359					};
2360					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
2361						 sizeof(stv), &stv);
2362				} else {
2363					struct __kernel_old_timeval tv = {
2364						.tv_sec = tss->ts[0].tv_sec,
2365						.tv_usec = tss->ts[0].tv_nsec / 1000,
2366					};
2367					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
2368						 sizeof(tv), &tv);
2369				}
2370			}
2371		}
2372
2373		if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE)
2374			has_timestamping = true;
2375		else
2376			tss->ts[0] = (struct timespec64) {0};
2377	}
2378
2379	if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
2380		if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)
2381			has_timestamping = true;
2382		else
2383			tss->ts[2] = (struct timespec64) {0};
2384	}
2385
2386	if (has_timestamping) {
2387		tss->ts[1] = (struct timespec64) {0};
2388		if (sock_flag(sk, SOCK_TSTAMP_NEW))
2389			put_cmsg_scm_timestamping64(msg, tss);
2390		else
2391			put_cmsg_scm_timestamping(msg, tss);
2392	}
2393}
2394
2395static int tcp_inq_hint(struct sock *sk)
2396{
2397	const struct tcp_sock *tp = tcp_sk(sk);
2398	u32 copied_seq = READ_ONCE(tp->copied_seq);
2399	u32 rcv_nxt = READ_ONCE(tp->rcv_nxt);
2400	int inq;
2401
2402	inq = rcv_nxt - copied_seq;
2403	if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) {
2404		lock_sock(sk);
2405		inq = tp->rcv_nxt - tp->copied_seq;
2406		release_sock(sk);
2407	}
2408	/* After receiving a FIN, tell the user-space to continue reading
2409	 * by returning a non-zero inq.
2410	 */
2411	if (inq == 0 && sock_flag(sk, SOCK_DONE))
2412		inq = 1;
2413	return inq;
2414}
2415
2416/*
2417 *	This routine copies from a sock struct into the user buffer.
2418 *
2419 *	Technical note: in 2.3 we work on _locked_ socket, so that
2420 *	tricks with *seq access order and skb->users are not required.
2421 *	Probably, code can be easily improved even more.
2422 */
2423
2424static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
2425			      int flags, struct scm_timestamping_internal *tss,
2426			      int *cmsg_flags)
2427{
2428	struct tcp_sock *tp = tcp_sk(sk);
2429	int copied = 0;
2430	u32 peek_seq;
2431	u32 *seq;
2432	unsigned long used;
2433	int err;
2434	int target;		/* Read at least this many bytes */
2435	long timeo;
2436	struct sk_buff *skb, *last;
 
 
2437	u32 urg_hole = 0;
2438
 
 
2439	err = -ENOTCONN;
2440	if (sk->sk_state == TCP_LISTEN)
2441		goto out;
2442
2443	if (tp->recvmsg_inq) {
2444		*cmsg_flags = TCP_CMSG_INQ;
2445		msg->msg_get_inq = 1;
2446	}
2447	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2448
2449	/* Urgent data needs to be handled specially. */
2450	if (flags & MSG_OOB)
2451		goto recv_urg;
2452
2453	if (unlikely(tp->repair)) {
2454		err = -EPERM;
2455		if (!(flags & MSG_PEEK))
2456			goto out;
2457
2458		if (tp->repair_queue == TCP_SEND_QUEUE)
2459			goto recv_sndq;
2460
2461		err = -EINVAL;
2462		if (tp->repair_queue == TCP_NO_QUEUE)
2463			goto out;
2464
2465		/* 'common' recv queue MSG_PEEK-ing */
2466	}
2467
2468	seq = &tp->copied_seq;
2469	if (flags & MSG_PEEK) {
2470		peek_seq = tp->copied_seq;
2471		seq = &peek_seq;
2472	}
2473
2474	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2475
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2476	do {
2477		u32 offset;
2478
2479		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
2480		if (unlikely(tp->urg_data) && tp->urg_seq == *seq) {
2481			if (copied)
2482				break;
2483			if (signal_pending(current)) {
2484				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
2485				break;
2486			}
2487		}
2488
2489		/* Next get a buffer. */
2490
2491		last = skb_peek_tail(&sk->sk_receive_queue);
2492		skb_queue_walk(&sk->sk_receive_queue, skb) {
2493			last = skb;
2494			/* Now that we have two receive queues this
2495			 * shouldn't happen.
2496			 */
2497			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
2498				 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n",
2499				 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
2500				 flags))
2501				break;
2502
2503			offset = *seq - TCP_SKB_CB(skb)->seq;
2504			if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2505				pr_err_once("%s: found a SYN, please report !\n", __func__);
2506				offset--;
2507			}
2508			if (offset < skb->len)
2509				goto found_ok_skb;
2510			if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2511				goto found_fin_ok;
2512			WARN(!(flags & MSG_PEEK),
2513			     "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n",
2514			     *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
2515		}
2516
2517		/* Well, if we have backlog, try to process it now yet. */
2518
2519		if (copied >= target && !READ_ONCE(sk->sk_backlog.tail))
2520			break;
2521
2522		if (copied) {
2523			if (!timeo ||
2524			    sk->sk_err ||
2525			    sk->sk_state == TCP_CLOSE ||
2526			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
 
2527			    signal_pending(current))
2528				break;
2529		} else {
2530			if (sock_flag(sk, SOCK_DONE))
2531				break;
2532
2533			if (sk->sk_err) {
2534				copied = sock_error(sk);
2535				break;
2536			}
2537
2538			if (sk->sk_shutdown & RCV_SHUTDOWN)
2539				break;
2540
2541			if (sk->sk_state == TCP_CLOSE) {
2542				/* This occurs when user tries to read
2543				 * from never connected socket.
2544				 */
2545				copied = -ENOTCONN;
 
 
 
2546				break;
2547			}
2548
2549			if (!timeo) {
2550				copied = -EAGAIN;
2551				break;
2552			}
2553
2554			if (signal_pending(current)) {
2555				copied = sock_intr_errno(timeo);
2556				break;
2557			}
2558		}
2559
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2560		if (copied >= target) {
2561			/* Do not sleep, just process backlog. */
2562			__sk_flush_backlog(sk);
2563		} else {
2564			tcp_cleanup_rbuf(sk, copied);
2565			sk_wait_data(sk, &timeo, last);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2566		}
2567
2568		if ((flags & MSG_PEEK) &&
2569		    (peek_seq - copied - urg_hole != tp->copied_seq)) {
2570			net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
2571					    current->comm,
2572					    task_pid_nr(current));
2573			peek_seq = tp->copied_seq;
2574		}
2575		continue;
2576
2577found_ok_skb:
2578		/* Ok so how much can we use? */
2579		used = skb->len - offset;
2580		if (len < used)
2581			used = len;
2582
2583		/* Do we have urgent data here? */
2584		if (unlikely(tp->urg_data)) {
2585			u32 urg_offset = tp->urg_seq - *seq;
2586			if (urg_offset < used) {
2587				if (!urg_offset) {
2588					if (!sock_flag(sk, SOCK_URGINLINE)) {
2589						WRITE_ONCE(*seq, *seq + 1);
2590						urg_hole++;
2591						offset++;
2592						used--;
2593						if (!used)
2594							goto skip_copy;
2595					}
2596				} else
2597					used = urg_offset;
2598			}
2599		}
2600
2601		if (!(flags & MSG_TRUNC)) {
2602			err = skb_copy_datagram_msg(skb, offset, msg, used);
2603			if (err) {
2604				/* Exception. Bailout! */
2605				if (!copied)
2606					copied = -EFAULT;
2607				break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2608			}
2609		}
2610
2611		WRITE_ONCE(*seq, *seq + used);
2612		copied += used;
2613		len -= used;
2614
2615		tcp_rcv_space_adjust(sk);
2616
2617skip_copy:
2618		if (unlikely(tp->urg_data) && after(tp->copied_seq, tp->urg_seq)) {
2619			WRITE_ONCE(tp->urg_data, 0);
2620			tcp_fast_path_check(sk);
2621		}
2622
2623		if (TCP_SKB_CB(skb)->has_rxtstamp) {
2624			tcp_update_recv_tstamps(skb, tss);
2625			*cmsg_flags |= TCP_CMSG_TS;
2626		}
2627
2628		if (used + offset < skb->len)
2629			continue;
2630
2631		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2632			goto found_fin_ok;
2633		if (!(flags & MSG_PEEK))
2634			tcp_eat_recv_skb(sk, skb);
 
 
2635		continue;
2636
2637found_fin_ok:
2638		/* Process the FIN. */
2639		WRITE_ONCE(*seq, *seq + 1);
2640		if (!(flags & MSG_PEEK))
2641			tcp_eat_recv_skb(sk, skb);
 
 
2642		break;
2643	} while (len > 0);
2644
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2645	/* According to UNIX98, msg_name/msg_namelen are ignored
2646	 * on connected socket. I was just happy when found this 8) --ANK
2647	 */
2648
2649	/* Clean up data we have read: This will do ACK frames. */
2650	tcp_cleanup_rbuf(sk, copied);
 
 
2651	return copied;
2652
2653out:
 
2654	return err;
2655
2656recv_urg:
2657	err = tcp_recv_urg(sk, msg, len, flags);
2658	goto out;
2659
2660recv_sndq:
2661	err = tcp_peek_sndq(sk, msg, len);
2662	goto out;
2663}
2664
2665int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags,
2666		int *addr_len)
2667{
2668	int cmsg_flags = 0, ret;
2669	struct scm_timestamping_internal tss;
2670
2671	if (unlikely(flags & MSG_ERRQUEUE))
2672		return inet_recv_error(sk, msg, len, addr_len);
2673
2674	if (sk_can_busy_loop(sk) &&
2675	    skb_queue_empty_lockless(&sk->sk_receive_queue) &&
2676	    sk->sk_state == TCP_ESTABLISHED)
2677		sk_busy_loop(sk, flags & MSG_DONTWAIT);
2678
2679	lock_sock(sk);
2680	ret = tcp_recvmsg_locked(sk, msg, len, flags, &tss, &cmsg_flags);
2681	release_sock(sk);
2682
2683	if ((cmsg_flags || msg->msg_get_inq) && ret >= 0) {
2684		if (cmsg_flags & TCP_CMSG_TS)
2685			tcp_recv_timestamp(msg, sk, &tss);
2686		if (msg->msg_get_inq) {
2687			msg->msg_inq = tcp_inq_hint(sk);
2688			if (cmsg_flags & TCP_CMSG_INQ)
2689				put_cmsg(msg, SOL_TCP, TCP_CM_INQ,
2690					 sizeof(msg->msg_inq), &msg->msg_inq);
2691		}
2692	}
2693	return ret;
2694}
2695EXPORT_SYMBOL(tcp_recvmsg);
2696
2697void tcp_set_state(struct sock *sk, int state)
2698{
2699	int oldstate = sk->sk_state;
2700
2701	/* We defined a new enum for TCP states that are exported in BPF
2702	 * so as not force the internal TCP states to be frozen. The
2703	 * following checks will detect if an internal state value ever
2704	 * differs from the BPF value. If this ever happens, then we will
2705	 * need to remap the internal value to the BPF value before calling
2706	 * tcp_call_bpf_2arg.
2707	 */
2708	BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED);
2709	BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT);
2710	BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV);
2711	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1);
2712	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2);
2713	BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT);
2714	BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE);
2715	BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT);
2716	BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK);
2717	BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN);
2718	BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING);
2719	BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV);
2720	BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES);
2721
2722	/* bpf uapi header bpf.h defines an anonymous enum with values
2723	 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux
2724	 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON.
2725	 * But clang built vmlinux does not have this enum in DWARF
2726	 * since clang removes the above code before generating IR/debuginfo.
2727	 * Let us explicitly emit the type debuginfo to ensure the
2728	 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF
2729	 * regardless of which compiler is used.
2730	 */
2731	BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED);
2732
2733	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG))
2734		tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state);
2735
2736	switch (state) {
2737	case TCP_ESTABLISHED:
2738		if (oldstate != TCP_ESTABLISHED)
2739			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2740		break;
2741
2742	case TCP_CLOSE:
2743		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2744			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2745
2746		sk->sk_prot->unhash(sk);
2747		if (inet_csk(sk)->icsk_bind_hash &&
2748		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2749			inet_put_port(sk);
2750		fallthrough;
2751	default:
2752		if (oldstate == TCP_ESTABLISHED)
2753			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2754	}
2755
2756	/* Change state AFTER socket is unhashed to avoid closed
2757	 * socket sitting in hash tables.
2758	 */
2759	inet_sk_state_store(sk, state);
 
 
 
 
2760}
2761EXPORT_SYMBOL_GPL(tcp_set_state);
2762
2763/*
2764 *	State processing on a close. This implements the state shift for
2765 *	sending our FIN frame. Note that we only send a FIN for some
2766 *	states. A shutdown() may have already sent the FIN, or we may be
2767 *	closed.
2768 */
2769
2770static const unsigned char new_state[16] = {
2771  /* current state:        new state:      action:	*/
2772  [0 /* (Invalid) */]	= TCP_CLOSE,
2773  [TCP_ESTABLISHED]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2774  [TCP_SYN_SENT]	= TCP_CLOSE,
2775  [TCP_SYN_RECV]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2776  [TCP_FIN_WAIT1]	= TCP_FIN_WAIT1,
2777  [TCP_FIN_WAIT2]	= TCP_FIN_WAIT2,
2778  [TCP_TIME_WAIT]	= TCP_CLOSE,
2779  [TCP_CLOSE]		= TCP_CLOSE,
2780  [TCP_CLOSE_WAIT]	= TCP_LAST_ACK  | TCP_ACTION_FIN,
2781  [TCP_LAST_ACK]	= TCP_LAST_ACK,
2782  [TCP_LISTEN]		= TCP_CLOSE,
2783  [TCP_CLOSING]		= TCP_CLOSING,
2784  [TCP_NEW_SYN_RECV]	= TCP_CLOSE,	/* should not happen ! */
2785};
2786
2787static int tcp_close_state(struct sock *sk)
2788{
2789	int next = (int)new_state[sk->sk_state];
2790	int ns = next & TCP_STATE_MASK;
2791
2792	tcp_set_state(sk, ns);
2793
2794	return next & TCP_ACTION_FIN;
2795}
2796
2797/*
2798 *	Shutdown the sending side of a connection. Much like close except
2799 *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2800 */
2801
2802void tcp_shutdown(struct sock *sk, int how)
2803{
2804	/*	We need to grab some memory, and put together a FIN,
2805	 *	and then put it into the queue to be sent.
2806	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2807	 */
2808	if (!(how & SEND_SHUTDOWN))
2809		return;
2810
2811	/* If we've already sent a FIN, or it's a closed state, skip this. */
2812	if ((1 << sk->sk_state) &
2813	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2814	     TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2815		/* Clear out any half completed packets.  FIN if needed. */
2816		if (tcp_close_state(sk))
2817			tcp_send_fin(sk);
2818	}
2819}
2820EXPORT_SYMBOL(tcp_shutdown);
2821
2822int tcp_orphan_count_sum(void)
2823{
2824	int i, total = 0;
2825
2826	for_each_possible_cpu(i)
2827		total += per_cpu(tcp_orphan_count, i);
2828
2829	return max(total, 0);
2830}
2831
2832static int tcp_orphan_cache;
2833static struct timer_list tcp_orphan_timer;
2834#define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100)
2835
2836static void tcp_orphan_update(struct timer_list *unused)
2837{
2838	WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum());
2839	mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
2840}
2841
2842static bool tcp_too_many_orphans(int shift)
2843{
2844	return READ_ONCE(tcp_orphan_cache) << shift >
2845		READ_ONCE(sysctl_tcp_max_orphans);
2846}
2847
2848bool tcp_check_oom(struct sock *sk, int shift)
2849{
2850	bool too_many_orphans, out_of_socket_memory;
2851
2852	too_many_orphans = tcp_too_many_orphans(shift);
2853	out_of_socket_memory = tcp_out_of_memory(sk);
2854
2855	if (too_many_orphans)
2856		net_info_ratelimited("too many orphaned sockets\n");
2857	if (out_of_socket_memory)
2858		net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2859	return too_many_orphans || out_of_socket_memory;
2860}
2861
2862void __tcp_close(struct sock *sk, long timeout)
2863{
2864	struct sk_buff *skb;
2865	int data_was_unread = 0;
2866	int state;
2867
 
2868	sk->sk_shutdown = SHUTDOWN_MASK;
2869
2870	if (sk->sk_state == TCP_LISTEN) {
2871		tcp_set_state(sk, TCP_CLOSE);
2872
2873		/* Special case. */
2874		inet_csk_listen_stop(sk);
2875
2876		goto adjudge_to_death;
2877	}
2878
2879	/*  We need to flush the recv. buffs.  We do this only on the
2880	 *  descriptor close, not protocol-sourced closes, because the
2881	 *  reader process may not have drained the data yet!
2882	 */
2883	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2884		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2885
2886		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2887			len--;
2888		data_was_unread += len;
2889		__kfree_skb(skb);
2890	}
2891
 
 
2892	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2893	if (sk->sk_state == TCP_CLOSE)
2894		goto adjudge_to_death;
2895
2896	/* As outlined in RFC 2525, section 2.17, we send a RST here because
2897	 * data was lost. To witness the awful effects of the old behavior of
2898	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2899	 * GET in an FTP client, suspend the process, wait for the client to
2900	 * advertise a zero window, then kill -9 the FTP client, wheee...
2901	 * Note: timeout is always zero in such a case.
2902	 */
2903	if (unlikely(tcp_sk(sk)->repair)) {
2904		sk->sk_prot->disconnect(sk, 0);
2905	} else if (data_was_unread) {
2906		/* Unread data was tossed, zap the connection. */
2907		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2908		tcp_set_state(sk, TCP_CLOSE);
2909		tcp_send_active_reset(sk, sk->sk_allocation);
2910	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2911		/* Check zero linger _after_ checking for unread data. */
2912		sk->sk_prot->disconnect(sk, 0);
2913		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2914	} else if (tcp_close_state(sk)) {
2915		/* We FIN if the application ate all the data before
2916		 * zapping the connection.
2917		 */
2918
2919		/* RED-PEN. Formally speaking, we have broken TCP state
2920		 * machine. State transitions:
2921		 *
2922		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2923		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (forget it, it's impossible)
2924		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2925		 *
2926		 * are legal only when FIN has been sent (i.e. in window),
2927		 * rather than queued out of window. Purists blame.
2928		 *
2929		 * F.e. "RFC state" is ESTABLISHED,
2930		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2931		 *
2932		 * The visible declinations are that sometimes
2933		 * we enter time-wait state, when it is not required really
2934		 * (harmless), do not send active resets, when they are
2935		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2936		 * they look as CLOSING or LAST_ACK for Linux)
2937		 * Probably, I missed some more holelets.
2938		 * 						--ANK
2939		 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2940		 * in a single packet! (May consider it later but will
2941		 * probably need API support or TCP_CORK SYN-ACK until
2942		 * data is written and socket is closed.)
2943		 */
2944		tcp_send_fin(sk);
2945	}
2946
2947	sk_stream_wait_close(sk, timeout);
2948
2949adjudge_to_death:
2950	state = sk->sk_state;
2951	sock_hold(sk);
2952	sock_orphan(sk);
2953
 
 
 
 
 
 
 
2954	local_bh_disable();
2955	bh_lock_sock(sk);
2956	/* remove backlog if any, without releasing ownership. */
2957	__release_sock(sk);
2958
2959	this_cpu_inc(tcp_orphan_count);
2960
2961	/* Have we already been destroyed by a softirq or backlog? */
2962	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2963		goto out;
2964
2965	/*	This is a (useful) BSD violating of the RFC. There is a
2966	 *	problem with TCP as specified in that the other end could
2967	 *	keep a socket open forever with no application left this end.
2968	 *	We use a 1 minute timeout (about the same as BSD) then kill
2969	 *	our end. If they send after that then tough - BUT: long enough
2970	 *	that we won't make the old 4*rto = almost no time - whoops
2971	 *	reset mistake.
2972	 *
2973	 *	Nope, it was not mistake. It is really desired behaviour
2974	 *	f.e. on http servers, when such sockets are useless, but
2975	 *	consume significant resources. Let's do it with special
2976	 *	linger2	option.					--ANK
2977	 */
2978
2979	if (sk->sk_state == TCP_FIN_WAIT2) {
2980		struct tcp_sock *tp = tcp_sk(sk);
2981		if (tp->linger2 < 0) {
2982			tcp_set_state(sk, TCP_CLOSE);
2983			tcp_send_active_reset(sk, GFP_ATOMIC);
2984			__NET_INC_STATS(sock_net(sk),
2985					LINUX_MIB_TCPABORTONLINGER);
2986		} else {
2987			const int tmo = tcp_fin_time(sk);
2988
2989			if (tmo > TCP_TIMEWAIT_LEN) {
2990				inet_csk_reset_keepalive_timer(sk,
2991						tmo - TCP_TIMEWAIT_LEN);
2992			} else {
2993				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2994				goto out;
2995			}
2996		}
2997	}
2998	if (sk->sk_state != TCP_CLOSE) {
 
2999		if (tcp_check_oom(sk, 0)) {
3000			tcp_set_state(sk, TCP_CLOSE);
3001			tcp_send_active_reset(sk, GFP_ATOMIC);
3002			__NET_INC_STATS(sock_net(sk),
3003					LINUX_MIB_TCPABORTONMEMORY);
3004		} else if (!check_net(sock_net(sk))) {
3005			/* Not possible to send reset; just close */
3006			tcp_set_state(sk, TCP_CLOSE);
3007		}
3008	}
3009
3010	if (sk->sk_state == TCP_CLOSE) {
3011		struct request_sock *req;
3012
3013		req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
3014						lockdep_sock_is_held(sk));
3015		/* We could get here with a non-NULL req if the socket is
3016		 * aborted (e.g., closed with unread data) before 3WHS
3017		 * finishes.
3018		 */
3019		if (req)
3020			reqsk_fastopen_remove(sk, req, false);
3021		inet_csk_destroy_sock(sk);
3022	}
3023	/* Otherwise, socket is reprieved until protocol close. */
3024
3025out:
3026	bh_unlock_sock(sk);
3027	local_bh_enable();
3028}
3029
3030void tcp_close(struct sock *sk, long timeout)
3031{
3032	lock_sock(sk);
3033	__tcp_close(sk, timeout);
3034	release_sock(sk);
3035	sock_put(sk);
3036}
3037EXPORT_SYMBOL(tcp_close);
3038
3039/* These states need RST on ABORT according to RFC793 */
3040
3041static inline bool tcp_need_reset(int state)
3042{
3043	return (1 << state) &
3044	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
3045		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
3046}
3047
3048static void tcp_rtx_queue_purge(struct sock *sk)
3049{
3050	struct rb_node *p = rb_first(&sk->tcp_rtx_queue);
3051
3052	tcp_sk(sk)->highest_sack = NULL;
3053	while (p) {
3054		struct sk_buff *skb = rb_to_skb(p);
3055
3056		p = rb_next(p);
3057		/* Since we are deleting whole queue, no need to
3058		 * list_del(&skb->tcp_tsorted_anchor)
3059		 */
3060		tcp_rtx_queue_unlink(skb, sk);
3061		tcp_wmem_free_skb(sk, skb);
3062	}
3063}
3064
3065void tcp_write_queue_purge(struct sock *sk)
3066{
3067	struct sk_buff *skb;
3068
3069	tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3070	while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
3071		tcp_skb_tsorted_anchor_cleanup(skb);
3072		tcp_wmem_free_skb(sk, skb);
3073	}
3074	tcp_rtx_queue_purge(sk);
3075	INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue);
3076	tcp_clear_all_retrans_hints(tcp_sk(sk));
3077	tcp_sk(sk)->packets_out = 0;
3078	inet_csk(sk)->icsk_backoff = 0;
3079}
3080
3081int tcp_disconnect(struct sock *sk, int flags)
3082{
3083	struct inet_sock *inet = inet_sk(sk);
3084	struct inet_connection_sock *icsk = inet_csk(sk);
3085	struct tcp_sock *tp = tcp_sk(sk);
 
3086	int old_state = sk->sk_state;
3087	u32 seq;
3088
3089	if (old_state != TCP_CLOSE)
3090		tcp_set_state(sk, TCP_CLOSE);
3091
3092	/* ABORT function of RFC793 */
3093	if (old_state == TCP_LISTEN) {
3094		inet_csk_listen_stop(sk);
3095	} else if (unlikely(tp->repair)) {
3096		sk->sk_err = ECONNABORTED;
3097	} else if (tcp_need_reset(old_state) ||
3098		   (tp->snd_nxt != tp->write_seq &&
3099		    (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
3100		/* The last check adjusts for discrepancy of Linux wrt. RFC
3101		 * states
3102		 */
3103		tcp_send_active_reset(sk, gfp_any());
3104		sk->sk_err = ECONNRESET;
3105	} else if (old_state == TCP_SYN_SENT)
3106		sk->sk_err = ECONNRESET;
3107
3108	tcp_clear_xmit_timers(sk);
3109	__skb_queue_purge(&sk->sk_receive_queue);
3110	WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
3111	WRITE_ONCE(tp->urg_data, 0);
3112	tcp_write_queue_purge(sk);
3113	tcp_fastopen_active_disable_ofo_check(sk);
3114	skb_rbtree_purge(&tp->out_of_order_queue);
 
 
3115
3116	inet->inet_dport = 0;
3117
3118	inet_bhash2_reset_saddr(sk);
 
3119
3120	sk->sk_shutdown = 0;
3121	sock_reset_flag(sk, SOCK_DONE);
3122	tp->srtt_us = 0;
3123	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
3124	tp->rcv_rtt_last_tsecr = 0;
3125
3126	seq = tp->write_seq + tp->max_window + 2;
3127	if (!seq)
3128		seq = 1;
3129	WRITE_ONCE(tp->write_seq, seq);
3130
3131	icsk->icsk_backoff = 0;
 
3132	icsk->icsk_probes_out = 0;
3133	icsk->icsk_probes_tstamp = 0;
3134	icsk->icsk_rto = TCP_TIMEOUT_INIT;
3135	icsk->icsk_rto_min = TCP_RTO_MIN;
3136	icsk->icsk_delack_max = TCP_DELACK_MAX;
3137	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
3138	tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
3139	tp->snd_cwnd_cnt = 0;
3140	tp->is_cwnd_limited = 0;
3141	tp->max_packets_out = 0;
3142	tp->window_clamp = 0;
3143	tp->delivered = 0;
3144	tp->delivered_ce = 0;
3145	if (icsk->icsk_ca_ops->release)
3146		icsk->icsk_ca_ops->release(sk);
3147	memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv));
3148	icsk->icsk_ca_initialized = 0;
3149	tcp_set_ca_state(sk, TCP_CA_Open);
3150	tp->is_sack_reneg = 0;
3151	tcp_clear_retrans(tp);
3152	tp->total_retrans = 0;
3153	inet_csk_delack_init(sk);
3154	/* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
3155	 * issue in __tcp_select_window()
3156	 */
3157	icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
3158	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
3159	__sk_dst_reset(sk);
3160	dst_release(xchg((__force struct dst_entry **)&sk->sk_rx_dst, NULL));
3161	tcp_saved_syn_free(tp);
3162	tp->compressed_ack = 0;
3163	tp->segs_in = 0;
3164	tp->segs_out = 0;
3165	tp->bytes_sent = 0;
3166	tp->bytes_acked = 0;
3167	tp->bytes_received = 0;
3168	tp->bytes_retrans = 0;
3169	tp->data_segs_in = 0;
3170	tp->data_segs_out = 0;
3171	tp->duplicate_sack[0].start_seq = 0;
3172	tp->duplicate_sack[0].end_seq = 0;
3173	tp->dsack_dups = 0;
3174	tp->reord_seen = 0;
3175	tp->retrans_out = 0;
3176	tp->sacked_out = 0;
3177	tp->tlp_high_seq = 0;
3178	tp->last_oow_ack_time = 0;
3179	tp->plb_rehash = 0;
3180	/* There's a bubble in the pipe until at least the first ACK. */
3181	tp->app_limited = ~0U;
3182	tp->rate_app_limited = 1;
3183	tp->rack.mstamp = 0;
3184	tp->rack.advanced = 0;
3185	tp->rack.reo_wnd_steps = 1;
3186	tp->rack.last_delivered = 0;
3187	tp->rack.reo_wnd_persist = 0;
3188	tp->rack.dsack_seen = 0;
3189	tp->syn_data_acked = 0;
3190	tp->rx_opt.saw_tstamp = 0;
3191	tp->rx_opt.dsack = 0;
3192	tp->rx_opt.num_sacks = 0;
3193	tp->rcv_ooopack = 0;
3194
3195
3196	/* Clean up fastopen related fields */
3197	tcp_free_fastopen_req(tp);
3198	inet->defer_connect = 0;
3199	tp->fastopen_client_fail = 0;
3200
3201	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
3202
3203	if (sk->sk_frag.page) {
3204		put_page(sk->sk_frag.page);
3205		sk->sk_frag.page = NULL;
3206		sk->sk_frag.offset = 0;
3207	}
3208	sk_error_report(sk);
3209	return 0;
3210}
3211EXPORT_SYMBOL(tcp_disconnect);
3212
3213static inline bool tcp_can_repair_sock(const struct sock *sk)
3214{
3215	return sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
3216		(sk->sk_state != TCP_LISTEN);
3217}
3218
3219static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len)
 
3220{
3221	struct tcp_repair_window opt;
3222
3223	if (!tp->repair)
3224		return -EPERM;
3225
3226	if (len != sizeof(opt))
3227		return -EINVAL;
3228
3229	if (copy_from_sockptr(&opt, optbuf, sizeof(opt)))
3230		return -EFAULT;
3231
3232	if (opt.max_window < opt.snd_wnd)
3233		return -EINVAL;
3234
3235	if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
3236		return -EINVAL;
3237
3238	if (after(opt.rcv_wup, tp->rcv_nxt))
3239		return -EINVAL;
3240
3241	tp->snd_wl1	= opt.snd_wl1;
3242	tp->snd_wnd	= opt.snd_wnd;
3243	tp->max_window	= opt.max_window;
3244
3245	tp->rcv_wnd	= opt.rcv_wnd;
3246	tp->rcv_wup	= opt.rcv_wup;
3247
3248	return 0;
3249}
3250
3251static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf,
3252		unsigned int len)
3253{
3254	struct tcp_sock *tp = tcp_sk(sk);
3255	struct tcp_repair_opt opt;
3256	size_t offset = 0;
3257
3258	while (len >= sizeof(opt)) {
3259		if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt)))
3260			return -EFAULT;
3261
3262		offset += sizeof(opt);
3263		len -= sizeof(opt);
3264
3265		switch (opt.opt_code) {
3266		case TCPOPT_MSS:
3267			tp->rx_opt.mss_clamp = opt.opt_val;
3268			tcp_mtup_init(sk);
3269			break;
3270		case TCPOPT_WINDOW:
3271			{
3272				u16 snd_wscale = opt.opt_val & 0xFFFF;
3273				u16 rcv_wscale = opt.opt_val >> 16;
3274
3275				if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
3276					return -EFBIG;
3277
3278				tp->rx_opt.snd_wscale = snd_wscale;
3279				tp->rx_opt.rcv_wscale = rcv_wscale;
3280				tp->rx_opt.wscale_ok = 1;
3281			}
3282			break;
3283		case TCPOPT_SACK_PERM:
3284			if (opt.opt_val != 0)
3285				return -EINVAL;
3286
3287			tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
 
 
3288			break;
3289		case TCPOPT_TIMESTAMP:
3290			if (opt.opt_val != 0)
3291				return -EINVAL;
3292
3293			tp->rx_opt.tstamp_ok = 1;
3294			break;
3295		}
3296	}
3297
3298	return 0;
3299}
3300
3301DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
3302EXPORT_SYMBOL(tcp_tx_delay_enabled);
3303
3304static void tcp_enable_tx_delay(void)
3305{
3306	if (!static_branch_unlikely(&tcp_tx_delay_enabled)) {
3307		static int __tcp_tx_delay_enabled = 0;
3308
3309		if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) {
3310			static_branch_enable(&tcp_tx_delay_enabled);
3311			pr_info("TCP_TX_DELAY enabled\n");
3312		}
3313	}
3314}
3315
3316/* When set indicates to always queue non-full frames.  Later the user clears
3317 * this option and we transmit any pending partial frames in the queue.  This is
3318 * meant to be used alongside sendfile() to get properly filled frames when the
3319 * user (for example) must write out headers with a write() call first and then
3320 * use sendfile to send out the data parts.
3321 *
3322 * TCP_CORK can be set together with TCP_NODELAY and it is stronger than
3323 * TCP_NODELAY.
3324 */
3325void __tcp_sock_set_cork(struct sock *sk, bool on)
3326{
3327	struct tcp_sock *tp = tcp_sk(sk);
3328
3329	if (on) {
3330		tp->nonagle |= TCP_NAGLE_CORK;
3331	} else {
3332		tp->nonagle &= ~TCP_NAGLE_CORK;
3333		if (tp->nonagle & TCP_NAGLE_OFF)
3334			tp->nonagle |= TCP_NAGLE_PUSH;
3335		tcp_push_pending_frames(sk);
3336	}
3337}
3338
3339void tcp_sock_set_cork(struct sock *sk, bool on)
3340{
3341	lock_sock(sk);
3342	__tcp_sock_set_cork(sk, on);
3343	release_sock(sk);
3344}
3345EXPORT_SYMBOL(tcp_sock_set_cork);
3346
3347/* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is
3348 * remembered, but it is not activated until cork is cleared.
3349 *
3350 * However, when TCP_NODELAY is set we make an explicit push, which overrides
3351 * even TCP_CORK for currently queued segments.
3352 */
3353void __tcp_sock_set_nodelay(struct sock *sk, bool on)
3354{
3355	if (on) {
3356		tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
3357		tcp_push_pending_frames(sk);
3358	} else {
3359		tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF;
3360	}
3361}
3362
3363void tcp_sock_set_nodelay(struct sock *sk)
3364{
3365	lock_sock(sk);
3366	__tcp_sock_set_nodelay(sk, true);
3367	release_sock(sk);
3368}
3369EXPORT_SYMBOL(tcp_sock_set_nodelay);
3370
3371static void __tcp_sock_set_quickack(struct sock *sk, int val)
3372{
3373	if (!val) {
3374		inet_csk_enter_pingpong_mode(sk);
3375		return;
3376	}
3377
3378	inet_csk_exit_pingpong_mode(sk);
3379	if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
3380	    inet_csk_ack_scheduled(sk)) {
3381		inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED;
3382		tcp_cleanup_rbuf(sk, 1);
3383		if (!(val & 1))
3384			inet_csk_enter_pingpong_mode(sk);
3385	}
3386}
3387
3388void tcp_sock_set_quickack(struct sock *sk, int val)
3389{
3390	lock_sock(sk);
3391	__tcp_sock_set_quickack(sk, val);
3392	release_sock(sk);
3393}
3394EXPORT_SYMBOL(tcp_sock_set_quickack);
3395
3396int tcp_sock_set_syncnt(struct sock *sk, int val)
3397{
3398	if (val < 1 || val > MAX_TCP_SYNCNT)
3399		return -EINVAL;
3400
3401	lock_sock(sk);
3402	inet_csk(sk)->icsk_syn_retries = val;
3403	release_sock(sk);
3404	return 0;
3405}
3406EXPORT_SYMBOL(tcp_sock_set_syncnt);
3407
3408void tcp_sock_set_user_timeout(struct sock *sk, u32 val)
3409{
3410	lock_sock(sk);
3411	inet_csk(sk)->icsk_user_timeout = val;
3412	release_sock(sk);
3413}
3414EXPORT_SYMBOL(tcp_sock_set_user_timeout);
3415
3416int tcp_sock_set_keepidle_locked(struct sock *sk, int val)
3417{
3418	struct tcp_sock *tp = tcp_sk(sk);
3419
3420	if (val < 1 || val > MAX_TCP_KEEPIDLE)
3421		return -EINVAL;
3422
3423	tp->keepalive_time = val * HZ;
3424	if (sock_flag(sk, SOCK_KEEPOPEN) &&
3425	    !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) {
3426		u32 elapsed = keepalive_time_elapsed(tp);
3427
3428		if (tp->keepalive_time > elapsed)
3429			elapsed = tp->keepalive_time - elapsed;
3430		else
3431			elapsed = 0;
3432		inet_csk_reset_keepalive_timer(sk, elapsed);
3433	}
3434
3435	return 0;
3436}
3437
3438int tcp_sock_set_keepidle(struct sock *sk, int val)
3439{
3440	int err;
3441
3442	lock_sock(sk);
3443	err = tcp_sock_set_keepidle_locked(sk, val);
3444	release_sock(sk);
3445	return err;
3446}
3447EXPORT_SYMBOL(tcp_sock_set_keepidle);
3448
3449int tcp_sock_set_keepintvl(struct sock *sk, int val)
3450{
3451	if (val < 1 || val > MAX_TCP_KEEPINTVL)
3452		return -EINVAL;
3453
3454	lock_sock(sk);
3455	tcp_sk(sk)->keepalive_intvl = val * HZ;
3456	release_sock(sk);
3457	return 0;
3458}
3459EXPORT_SYMBOL(tcp_sock_set_keepintvl);
3460
3461int tcp_sock_set_keepcnt(struct sock *sk, int val)
3462{
3463	if (val < 1 || val > MAX_TCP_KEEPCNT)
3464		return -EINVAL;
3465
3466	lock_sock(sk);
3467	tcp_sk(sk)->keepalive_probes = val;
3468	release_sock(sk);
3469	return 0;
3470}
3471EXPORT_SYMBOL(tcp_sock_set_keepcnt);
3472
3473int tcp_set_window_clamp(struct sock *sk, int val)
3474{
3475	struct tcp_sock *tp = tcp_sk(sk);
3476
3477	if (!val) {
3478		if (sk->sk_state != TCP_CLOSE)
3479			return -EINVAL;
3480		tp->window_clamp = 0;
3481	} else {
3482		tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
3483			SOCK_MIN_RCVBUF / 2 : val;
3484		tp->rcv_ssthresh = min(tp->rcv_wnd, tp->window_clamp);
3485	}
3486	return 0;
3487}
3488
3489/*
3490 *	Socket option code for TCP.
3491 */
3492int do_tcp_setsockopt(struct sock *sk, int level, int optname,
3493		      sockptr_t optval, unsigned int optlen)
3494{
3495	struct tcp_sock *tp = tcp_sk(sk);
3496	struct inet_connection_sock *icsk = inet_csk(sk);
3497	struct net *net = sock_net(sk);
3498	int val;
3499	int err = 0;
3500
3501	/* These are data/string values, all the others are ints */
3502	switch (optname) {
3503	case TCP_CONGESTION: {
3504		char name[TCP_CA_NAME_MAX];
3505
3506		if (optlen < 1)
3507			return -EINVAL;
3508
3509		val = strncpy_from_sockptr(name, optval,
3510					min_t(long, TCP_CA_NAME_MAX-1, optlen));
3511		if (val < 0)
3512			return -EFAULT;
3513		name[val] = 0;
3514
3515		sockopt_lock_sock(sk);
3516		err = tcp_set_congestion_control(sk, name, !has_current_bpf_ctx(),
3517						 sockopt_ns_capable(sock_net(sk)->user_ns,
3518								    CAP_NET_ADMIN));
3519		sockopt_release_sock(sk);
3520		return err;
3521	}
3522	case TCP_ULP: {
3523		char name[TCP_ULP_NAME_MAX];
 
3524
3525		if (optlen < 1)
 
 
 
 
 
 
3526			return -EINVAL;
3527
3528		val = strncpy_from_sockptr(name, optval,
3529					min_t(long, TCP_ULP_NAME_MAX - 1,
3530					      optlen));
3531		if (val < 0)
3532			return -EFAULT;
3533		name[val] = 0;
 
3534
3535		sockopt_lock_sock(sk);
3536		err = tcp_set_ulp(sk, name);
3537		sockopt_release_sock(sk);
3538		return err;
3539	}
3540	case TCP_FASTOPEN_KEY: {
3541		__u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH];
3542		__u8 *backup_key = NULL;
 
 
 
 
 
3543
3544		/* Allow a backup key as well to facilitate key rotation
3545		 * First key is the active one.
3546		 */
3547		if (optlen != TCP_FASTOPEN_KEY_LENGTH &&
3548		    optlen != TCP_FASTOPEN_KEY_BUF_LENGTH)
3549			return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3550
3551		if (copy_from_sockptr(key, optval, optlen))
3552			return -EFAULT;
3553
3554		if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH)
3555			backup_key = key + TCP_FASTOPEN_KEY_LENGTH;
 
 
 
 
 
 
 
 
3556
3557		return tcp_fastopen_reset_cipher(net, sk, key, backup_key);
 
 
 
3558	}
3559	default:
3560		/* fallthru */
3561		break;
3562	}
3563
3564	if (optlen < sizeof(int))
3565		return -EINVAL;
3566
3567	if (copy_from_sockptr(&val, optval, sizeof(val)))
3568		return -EFAULT;
3569
3570	sockopt_lock_sock(sk);
3571
3572	switch (optname) {
3573	case TCP_MAXSEG:
3574		/* Values greater than interface MTU won't take effect. However
3575		 * at the point when this call is done we typically don't yet
3576		 * know which interface is going to be used
3577		 */
3578		if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) {
3579			err = -EINVAL;
3580			break;
3581		}
3582		tp->rx_opt.user_mss = val;
3583		break;
3584
3585	case TCP_NODELAY:
3586		__tcp_sock_set_nodelay(sk, val);
 
 
 
 
 
 
 
 
 
 
 
 
 
3587		break;
3588
3589	case TCP_THIN_LINEAR_TIMEOUTS:
3590		if (val < 0 || val > 1)
3591			err = -EINVAL;
3592		else
3593			tp->thin_lto = val;
3594		break;
3595
3596	case TCP_THIN_DUPACK:
3597		if (val < 0 || val > 1)
3598			err = -EINVAL;
 
 
 
 
3599		break;
3600
3601	case TCP_REPAIR:
3602		if (!tcp_can_repair_sock(sk))
3603			err = -EPERM;
3604		else if (val == TCP_REPAIR_ON) {
3605			tp->repair = 1;
3606			sk->sk_reuse = SK_FORCE_REUSE;
3607			tp->repair_queue = TCP_NO_QUEUE;
3608		} else if (val == TCP_REPAIR_OFF) {
3609			tp->repair = 0;
3610			sk->sk_reuse = SK_NO_REUSE;
3611			tcp_send_window_probe(sk);
3612		} else if (val == TCP_REPAIR_OFF_NO_WP) {
3613			tp->repair = 0;
3614			sk->sk_reuse = SK_NO_REUSE;
3615		} else
3616			err = -EINVAL;
3617
3618		break;
3619
3620	case TCP_REPAIR_QUEUE:
3621		if (!tp->repair)
3622			err = -EPERM;
3623		else if ((unsigned int)val < TCP_QUEUES_NR)
3624			tp->repair_queue = val;
3625		else
3626			err = -EINVAL;
3627		break;
3628
3629	case TCP_QUEUE_SEQ:
3630		if (sk->sk_state != TCP_CLOSE) {
3631			err = -EPERM;
3632		} else if (tp->repair_queue == TCP_SEND_QUEUE) {
3633			if (!tcp_rtx_queue_empty(sk))
3634				err = -EPERM;
3635			else
3636				WRITE_ONCE(tp->write_seq, val);
3637		} else if (tp->repair_queue == TCP_RECV_QUEUE) {
3638			if (tp->rcv_nxt != tp->copied_seq) {
3639				err = -EPERM;
3640			} else {
3641				WRITE_ONCE(tp->rcv_nxt, val);
3642				WRITE_ONCE(tp->copied_seq, val);
3643			}
3644		} else {
3645			err = -EINVAL;
3646		}
3647		break;
3648
3649	case TCP_REPAIR_OPTIONS:
3650		if (!tp->repair)
3651			err = -EINVAL;
3652		else if (sk->sk_state == TCP_ESTABLISHED && !tp->bytes_sent)
3653			err = tcp_repair_options_est(sk, optval, optlen);
 
 
3654		else
3655			err = -EPERM;
3656		break;
3657
3658	case TCP_CORK:
3659		__tcp_sock_set_cork(sk, val);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3660		break;
3661
3662	case TCP_KEEPIDLE:
3663		err = tcp_sock_set_keepidle_locked(sk, val);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3664		break;
3665	case TCP_KEEPINTVL:
3666		if (val < 1 || val > MAX_TCP_KEEPINTVL)
3667			err = -EINVAL;
3668		else
3669			tp->keepalive_intvl = val * HZ;
3670		break;
3671	case TCP_KEEPCNT:
3672		if (val < 1 || val > MAX_TCP_KEEPCNT)
3673			err = -EINVAL;
3674		else
3675			tp->keepalive_probes = val;
3676		break;
3677	case TCP_SYNCNT:
3678		if (val < 1 || val > MAX_TCP_SYNCNT)
3679			err = -EINVAL;
3680		else
3681			icsk->icsk_syn_retries = val;
3682		break;
3683
3684	case TCP_SAVE_SYN:
3685		/* 0: disable, 1: enable, 2: start from ether_header */
3686		if (val < 0 || val > 2)
3687			err = -EINVAL;
3688		else
3689			tp->save_syn = val;
3690		break;
3691
3692	case TCP_LINGER2:
3693		if (val < 0)
3694			tp->linger2 = -1;
3695		else if (val > TCP_FIN_TIMEOUT_MAX / HZ)
3696			tp->linger2 = TCP_FIN_TIMEOUT_MAX;
3697		else
3698			tp->linger2 = val * HZ;
3699		break;
3700
3701	case TCP_DEFER_ACCEPT:
3702		/* Translate value in seconds to number of retransmits */
3703		icsk->icsk_accept_queue.rskq_defer_accept =
3704			secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
3705					TCP_RTO_MAX / HZ);
3706		break;
3707
3708	case TCP_WINDOW_CLAMP:
3709		err = tcp_set_window_clamp(sk, val);
 
 
 
 
 
 
 
 
3710		break;
3711
3712	case TCP_QUICKACK:
3713		__tcp_sock_set_quickack(sk, val);
 
 
 
 
 
 
 
 
 
 
 
 
3714		break;
3715
3716#ifdef CONFIG_TCP_MD5SIG
3717	case TCP_MD5SIG:
3718	case TCP_MD5SIG_EXT:
3719		err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
3720		break;
3721#endif
3722	case TCP_USER_TIMEOUT:
3723		/* Cap the max time in ms TCP will retry or probe the window
3724		 * before giving up and aborting (ETIMEDOUT) a connection.
3725		 */
3726		if (val < 0)
3727			err = -EINVAL;
3728		else
3729			icsk->icsk_user_timeout = val;
3730		break;
3731
3732	case TCP_FASTOPEN:
3733		if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
3734		    TCPF_LISTEN))) {
3735			tcp_fastopen_init_key_once(net);
3736
3737			fastopen_queue_tune(sk, val);
3738		} else {
3739			err = -EINVAL;
3740		}
3741		break;
3742	case TCP_FASTOPEN_CONNECT:
3743		if (val > 1 || val < 0) {
3744			err = -EINVAL;
3745		} else if (READ_ONCE(net->ipv4.sysctl_tcp_fastopen) &
3746			   TFO_CLIENT_ENABLE) {
3747			if (sk->sk_state == TCP_CLOSE)
3748				tp->fastopen_connect = val;
3749			else
3750				err = -EINVAL;
3751		} else {
3752			err = -EOPNOTSUPP;
3753		}
3754		break;
3755	case TCP_FASTOPEN_NO_COOKIE:
3756		if (val > 1 || val < 0)
3757			err = -EINVAL;
3758		else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3759			err = -EINVAL;
3760		else
3761			tp->fastopen_no_cookie = val;
3762		break;
3763	case TCP_TIMESTAMP:
3764		if (!tp->repair)
3765			err = -EPERM;
3766		else
3767			tp->tsoffset = val - tcp_time_stamp_raw();
3768		break;
3769	case TCP_REPAIR_WINDOW:
3770		err = tcp_repair_set_window(tp, optval, optlen);
3771		break;
3772	case TCP_NOTSENT_LOWAT:
3773		tp->notsent_lowat = val;
3774		sk->sk_write_space(sk);
3775		break;
3776	case TCP_INQ:
3777		if (val > 1 || val < 0)
3778			err = -EINVAL;
3779		else
3780			tp->recvmsg_inq = val;
3781		break;
3782	case TCP_TX_DELAY:
3783		if (val)
3784			tcp_enable_tx_delay();
3785		tp->tcp_tx_delay = val;
3786		break;
3787	default:
3788		err = -ENOPROTOOPT;
3789		break;
3790	}
3791
3792	sockopt_release_sock(sk);
3793	return err;
3794}
3795
3796int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
3797		   unsigned int optlen)
3798{
3799	const struct inet_connection_sock *icsk = inet_csk(sk);
3800
3801	if (level != SOL_TCP)
3802		/* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
3803		return READ_ONCE(icsk->icsk_af_ops)->setsockopt(sk, level, optname,
3804								optval, optlen);
3805	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
3806}
3807EXPORT_SYMBOL(tcp_setsockopt);
3808
3809static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
3810				      struct tcp_info *info)
 
3811{
3812	u64 stats[__TCP_CHRONO_MAX], total = 0;
3813	enum tcp_chrono i;
3814
3815	for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
3816		stats[i] = tp->chrono_stat[i - 1];
3817		if (i == tp->chrono_type)
3818			stats[i] += tcp_jiffies32 - tp->chrono_start;
3819		stats[i] *= USEC_PER_SEC / HZ;
3820		total += stats[i];
3821	}
3822
3823	info->tcpi_busy_time = total;
3824	info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
3825	info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
3826}
 
 
3827
3828/* Return information about state of tcp endpoint in API format. */
3829void tcp_get_info(struct sock *sk, struct tcp_info *info)
3830{
3831	const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
3832	const struct inet_connection_sock *icsk = inet_csk(sk);
3833	unsigned long rate;
3834	u32 now;
3835	u64 rate64;
3836	bool slow;
3837
3838	memset(info, 0, sizeof(*info));
3839	if (sk->sk_type != SOCK_STREAM)
3840		return;
3841
3842	info->tcpi_state = inet_sk_state_load(sk);
3843
3844	/* Report meaningful fields for all TCP states, including listeners */
3845	rate = READ_ONCE(sk->sk_pacing_rate);
3846	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3847	info->tcpi_pacing_rate = rate64;
3848
3849	rate = READ_ONCE(sk->sk_max_pacing_rate);
3850	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3851	info->tcpi_max_pacing_rate = rate64;
3852
3853	info->tcpi_reordering = tp->reordering;
3854	info->tcpi_snd_cwnd = tcp_snd_cwnd(tp);
3855
3856	if (info->tcpi_state == TCP_LISTEN) {
3857		/* listeners aliased fields :
3858		 * tcpi_unacked -> Number of children ready for accept()
3859		 * tcpi_sacked  -> max backlog
3860		 */
3861		info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog);
3862		info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog);
3863		return;
3864	}
3865
3866	slow = lock_sock_fast(sk);
3867
 
3868	info->tcpi_ca_state = icsk->icsk_ca_state;
3869	info->tcpi_retransmits = icsk->icsk_retransmits;
3870	info->tcpi_probes = icsk->icsk_probes_out;
3871	info->tcpi_backoff = icsk->icsk_backoff;
3872
3873	if (tp->rx_opt.tstamp_ok)
3874		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
3875	if (tcp_is_sack(tp))
3876		info->tcpi_options |= TCPI_OPT_SACK;
3877	if (tp->rx_opt.wscale_ok) {
3878		info->tcpi_options |= TCPI_OPT_WSCALE;
3879		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
3880		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
3881	}
3882
3883	if (tp->ecn_flags & TCP_ECN_OK)
3884		info->tcpi_options |= TCPI_OPT_ECN;
3885	if (tp->ecn_flags & TCP_ECN_SEEN)
3886		info->tcpi_options |= TCPI_OPT_ECN_SEEN;
3887	if (tp->syn_data_acked)
3888		info->tcpi_options |= TCPI_OPT_SYN_DATA;
3889
3890	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
3891	info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
3892	info->tcpi_snd_mss = tp->mss_cache;
3893	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
3894
3895	info->tcpi_unacked = tp->packets_out;
3896	info->tcpi_sacked = tp->sacked_out;
3897
 
 
 
 
3898	info->tcpi_lost = tp->lost_out;
3899	info->tcpi_retrans = tp->retrans_out;
 
3900
3901	now = tcp_jiffies32;
3902	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
3903	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
3904	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
3905
3906	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
3907	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
3908	info->tcpi_rtt = tp->srtt_us >> 3;
3909	info->tcpi_rttvar = tp->mdev_us >> 2;
3910	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
 
3911	info->tcpi_advmss = tp->advmss;
 
3912
3913	info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
3914	info->tcpi_rcv_space = tp->rcvq_space.space;
3915
3916	info->tcpi_total_retrans = tp->total_retrans;
3917
3918	info->tcpi_bytes_acked = tp->bytes_acked;
3919	info->tcpi_bytes_received = tp->bytes_received;
3920	info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
3921	tcp_get_info_chrono_stats(tp, info);
3922
3923	info->tcpi_segs_out = tp->segs_out;
3924
3925	/* segs_in and data_segs_in can be updated from tcp_segs_in() from BH */
3926	info->tcpi_segs_in = READ_ONCE(tp->segs_in);
3927	info->tcpi_data_segs_in = READ_ONCE(tp->data_segs_in);
3928
3929	info->tcpi_min_rtt = tcp_min_rtt(tp);
3930	info->tcpi_data_segs_out = tp->data_segs_out;
3931
3932	info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
3933	rate64 = tcp_compute_delivery_rate(tp);
3934	if (rate64)
3935		info->tcpi_delivery_rate = rate64;
3936	info->tcpi_delivered = tp->delivered;
3937	info->tcpi_delivered_ce = tp->delivered_ce;
3938	info->tcpi_bytes_sent = tp->bytes_sent;
3939	info->tcpi_bytes_retrans = tp->bytes_retrans;
3940	info->tcpi_dsack_dups = tp->dsack_dups;
3941	info->tcpi_reord_seen = tp->reord_seen;
3942	info->tcpi_rcv_ooopack = tp->rcv_ooopack;
3943	info->tcpi_snd_wnd = tp->snd_wnd;
3944	info->tcpi_rcv_wnd = tp->rcv_wnd;
3945	info->tcpi_rehash = tp->plb_rehash + tp->timeout_rehash;
3946	info->tcpi_fastopen_client_fail = tp->fastopen_client_fail;
3947	unlock_sock_fast(sk, slow);
3948}
3949EXPORT_SYMBOL_GPL(tcp_get_info);
3950
3951static size_t tcp_opt_stats_get_size(void)
3952{
3953	return
3954		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */
3955		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */
3956		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */
3957		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */
3958		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */
3959		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */
3960		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */
3961		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */
3962		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */
3963		nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */
3964		nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */
3965		nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */
3966		nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */
3967		nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */
3968		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */
3969		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */
3970		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */
3971		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */
3972		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */
3973		nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */
3974		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */
3975		nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */
3976		nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */
3977		nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */
3978		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */
3979		nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */
3980		nla_total_size(sizeof(u32)) + /* TCP_NLA_REHASH */
3981		0;
3982}
3983
3984/* Returns TTL or hop limit of an incoming packet from skb. */
3985static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb)
3986{
3987	if (skb->protocol == htons(ETH_P_IP))
3988		return ip_hdr(skb)->ttl;
3989	else if (skb->protocol == htons(ETH_P_IPV6))
3990		return ipv6_hdr(skb)->hop_limit;
3991	else
3992		return 0;
3993}
3994
3995struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk,
3996					       const struct sk_buff *orig_skb,
3997					       const struct sk_buff *ack_skb)
3998{
3999	const struct tcp_sock *tp = tcp_sk(sk);
4000	struct sk_buff *stats;
4001	struct tcp_info info;
4002	unsigned long rate;
4003	u64 rate64;
4004
4005	stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC);
4006	if (!stats)
4007		return NULL;
4008
4009	tcp_get_info_chrono_stats(tp, &info);
4010	nla_put_u64_64bit(stats, TCP_NLA_BUSY,
4011			  info.tcpi_busy_time, TCP_NLA_PAD);
4012	nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
4013			  info.tcpi_rwnd_limited, TCP_NLA_PAD);
4014	nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
4015			  info.tcpi_sndbuf_limited, TCP_NLA_PAD);
4016	nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
4017			  tp->data_segs_out, TCP_NLA_PAD);
4018	nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
4019			  tp->total_retrans, TCP_NLA_PAD);
4020
4021	rate = READ_ONCE(sk->sk_pacing_rate);
4022	rate64 = (rate != ~0UL) ? rate : ~0ULL;
4023	nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD);
4024
4025	rate64 = tcp_compute_delivery_rate(tp);
4026	nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD);
4027
4028	nla_put_u32(stats, TCP_NLA_SND_CWND, tcp_snd_cwnd(tp));
4029	nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering);
4030	nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp));
4031
4032	nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits);
4033	nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited);
4034	nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh);
4035	nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered);
4036	nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce);
4037
4038	nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una);
4039	nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state);
4040
4041	nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent,
4042			  TCP_NLA_PAD);
4043	nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans,
4044			  TCP_NLA_PAD);
4045	nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups);
4046	nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen);
4047	nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3);
4048	nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash);
4049	nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT,
4050		    max_t(int, 0, tp->write_seq - tp->snd_nxt));
4051	nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns,
4052			  TCP_NLA_PAD);
4053	if (ack_skb)
4054		nla_put_u8(stats, TCP_NLA_TTL,
4055			   tcp_skb_ttl_or_hop_limit(ack_skb));
4056
4057	nla_put_u32(stats, TCP_NLA_REHASH, tp->plb_rehash + tp->timeout_rehash);
4058	return stats;
4059}
4060
4061int do_tcp_getsockopt(struct sock *sk, int level,
4062		      int optname, sockptr_t optval, sockptr_t optlen)
4063{
4064	struct inet_connection_sock *icsk = inet_csk(sk);
4065	struct tcp_sock *tp = tcp_sk(sk);
4066	struct net *net = sock_net(sk);
4067	int val, len;
4068
4069	if (copy_from_sockptr(&len, optlen, sizeof(int)))
4070		return -EFAULT;
4071
4072	len = min_t(unsigned int, len, sizeof(int));
4073
4074	if (len < 0)
4075		return -EINVAL;
4076
4077	switch (optname) {
4078	case TCP_MAXSEG:
4079		val = tp->mss_cache;
4080		if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
4081			val = tp->rx_opt.user_mss;
4082		if (tp->repair)
4083			val = tp->rx_opt.mss_clamp;
4084		break;
4085	case TCP_NODELAY:
4086		val = !!(tp->nonagle&TCP_NAGLE_OFF);
4087		break;
4088	case TCP_CORK:
4089		val = !!(tp->nonagle&TCP_NAGLE_CORK);
4090		break;
4091	case TCP_KEEPIDLE:
4092		val = keepalive_time_when(tp) / HZ;
4093		break;
4094	case TCP_KEEPINTVL:
4095		val = keepalive_intvl_when(tp) / HZ;
4096		break;
4097	case TCP_KEEPCNT:
4098		val = keepalive_probes(tp);
4099		break;
4100	case TCP_SYNCNT:
4101		val = icsk->icsk_syn_retries ? :
4102			READ_ONCE(net->ipv4.sysctl_tcp_syn_retries);
4103		break;
4104	case TCP_LINGER2:
4105		val = tp->linger2;
4106		if (val >= 0)
4107			val = (val ? : READ_ONCE(net->ipv4.sysctl_tcp_fin_timeout)) / HZ;
4108		break;
4109	case TCP_DEFER_ACCEPT:
4110		val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
4111				      TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
4112		break;
4113	case TCP_WINDOW_CLAMP:
4114		val = tp->window_clamp;
4115		break;
4116	case TCP_INFO: {
4117		struct tcp_info info;
4118
4119		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4120			return -EFAULT;
4121
4122		tcp_get_info(sk, &info);
4123
4124		len = min_t(unsigned int, len, sizeof(info));
4125		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4126			return -EFAULT;
4127		if (copy_to_sockptr(optval, &info, len))
4128			return -EFAULT;
4129		return 0;
4130	}
4131	case TCP_CC_INFO: {
4132		const struct tcp_congestion_ops *ca_ops;
4133		union tcp_cc_info info;
4134		size_t sz = 0;
4135		int attr;
4136
4137		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4138			return -EFAULT;
4139
4140		ca_ops = icsk->icsk_ca_ops;
4141		if (ca_ops && ca_ops->get_info)
4142			sz = ca_ops->get_info(sk, ~0U, &attr, &info);
4143
4144		len = min_t(unsigned int, len, sz);
4145		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4146			return -EFAULT;
4147		if (copy_to_sockptr(optval, &info, len))
4148			return -EFAULT;
4149		return 0;
4150	}
4151	case TCP_QUICKACK:
4152		val = !inet_csk_in_pingpong_mode(sk);
4153		break;
4154
4155	case TCP_CONGESTION:
4156		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4157			return -EFAULT;
4158		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
4159		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4160			return -EFAULT;
4161		if (copy_to_sockptr(optval, icsk->icsk_ca_ops->name, len))
4162			return -EFAULT;
4163		return 0;
4164
4165	case TCP_ULP:
4166		if (copy_from_sockptr(&len, optlen, sizeof(int)))
 
 
 
4167			return -EFAULT;
4168		len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
4169		if (!icsk->icsk_ulp_ops) {
4170			len = 0;
4171			if (copy_to_sockptr(optlen, &len, sizeof(int)))
4172				return -EFAULT;
4173			return 0;
4174		}
4175		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4176			return -EFAULT;
4177		if (copy_to_sockptr(optval, icsk->icsk_ulp_ops->name, len))
4178			return -EFAULT;
4179		return 0;
 
 
4180
4181	case TCP_FASTOPEN_KEY: {
4182		u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)];
4183		unsigned int key_len;
4184
4185		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4186			return -EFAULT;
 
 
4187
4188		key_len = tcp_fastopen_get_cipher(net, icsk, key) *
4189				TCP_FASTOPEN_KEY_LENGTH;
4190		len = min_t(unsigned int, len, key_len);
4191		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4192			return -EFAULT;
4193		if (copy_to_sockptr(optval, key, len))
4194			return -EFAULT;
4195		return 0;
4196	}
4197	case TCP_THIN_LINEAR_TIMEOUTS:
4198		val = tp->thin_lto;
4199		break;
4200
4201	case TCP_THIN_DUPACK:
4202		val = 0;
4203		break;
4204
4205	case TCP_REPAIR:
4206		val = tp->repair;
4207		break;
4208
4209	case TCP_REPAIR_QUEUE:
4210		if (tp->repair)
4211			val = tp->repair_queue;
4212		else
4213			return -EINVAL;
4214		break;
4215
4216	case TCP_REPAIR_WINDOW: {
4217		struct tcp_repair_window opt;
4218
4219		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4220			return -EFAULT;
4221
4222		if (len != sizeof(opt))
4223			return -EINVAL;
4224
4225		if (!tp->repair)
4226			return -EPERM;
4227
4228		opt.snd_wl1	= tp->snd_wl1;
4229		opt.snd_wnd	= tp->snd_wnd;
4230		opt.max_window	= tp->max_window;
4231		opt.rcv_wnd	= tp->rcv_wnd;
4232		opt.rcv_wup	= tp->rcv_wup;
4233
4234		if (copy_to_sockptr(optval, &opt, len))
4235			return -EFAULT;
4236		return 0;
4237	}
4238	case TCP_QUEUE_SEQ:
4239		if (tp->repair_queue == TCP_SEND_QUEUE)
4240			val = tp->write_seq;
4241		else if (tp->repair_queue == TCP_RECV_QUEUE)
4242			val = tp->rcv_nxt;
4243		else
4244			return -EINVAL;
4245		break;
4246
4247	case TCP_USER_TIMEOUT:
4248		val = icsk->icsk_user_timeout;
4249		break;
 
 
 
4250
4251	case TCP_FASTOPEN:
4252		val = icsk->icsk_accept_queue.fastopenq.max_qlen;
4253		break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4254
4255	case TCP_FASTOPEN_CONNECT:
4256		val = tp->fastopen_connect;
4257		break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4258
4259	case TCP_FASTOPEN_NO_COOKIE:
4260		val = tp->fastopen_no_cookie;
4261		break;
 
4262
4263	case TCP_TX_DELAY:
4264		val = tp->tcp_tx_delay;
4265		break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4266
4267	case TCP_TIMESTAMP:
4268		val = tcp_time_stamp_raw() + tp->tsoffset;
4269		break;
4270	case TCP_NOTSENT_LOWAT:
4271		val = tp->notsent_lowat;
4272		break;
4273	case TCP_INQ:
4274		val = tp->recvmsg_inq;
4275		break;
4276	case TCP_SAVE_SYN:
4277		val = tp->save_syn;
4278		break;
4279	case TCP_SAVED_SYN: {
4280		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4281			return -EFAULT;
4282
4283		sockopt_lock_sock(sk);
4284		if (tp->saved_syn) {
4285			if (len < tcp_saved_syn_len(tp->saved_syn)) {
4286				len = tcp_saved_syn_len(tp->saved_syn);
4287				if (copy_to_sockptr(optlen, &len, sizeof(int))) {
4288					sockopt_release_sock(sk);
4289					return -EFAULT;
4290				}
4291				sockopt_release_sock(sk);
4292				return -EINVAL;
4293			}
4294			len = tcp_saved_syn_len(tp->saved_syn);
4295			if (copy_to_sockptr(optlen, &len, sizeof(int))) {
4296				sockopt_release_sock(sk);
4297				return -EFAULT;
4298			}
4299			if (copy_to_sockptr(optval, tp->saved_syn->data, len)) {
4300				sockopt_release_sock(sk);
4301				return -EFAULT;
4302			}
4303			tcp_saved_syn_free(tp);
4304			sockopt_release_sock(sk);
4305		} else {
4306			sockopt_release_sock(sk);
4307			len = 0;
4308			if (copy_to_sockptr(optlen, &len, sizeof(int)))
4309				return -EFAULT;
4310		}
4311		return 0;
4312	}
4313#ifdef CONFIG_MMU
4314	case TCP_ZEROCOPY_RECEIVE: {
4315		struct scm_timestamping_internal tss;
4316		struct tcp_zerocopy_receive zc = {};
4317		int err;
4318
4319		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4320			return -EFAULT;
4321		if (len < 0 ||
4322		    len < offsetofend(struct tcp_zerocopy_receive, length))
4323			return -EINVAL;
4324		if (unlikely(len > sizeof(zc))) {
4325			err = check_zeroed_sockptr(optval, sizeof(zc),
4326						   len - sizeof(zc));
4327			if (err < 1)
4328				return err == 0 ? -EINVAL : err;
4329			len = sizeof(zc);
4330			if (copy_to_sockptr(optlen, &len, sizeof(int)))
4331				return -EFAULT;
 
4332		}
4333		if (copy_from_sockptr(&zc, optval, len))
4334			return -EFAULT;
4335		if (zc.reserved)
4336			return -EINVAL;
4337		if (zc.msg_flags &  ~(TCP_VALID_ZC_MSG_FLAGS))
4338			return -EINVAL;
4339		sockopt_lock_sock(sk);
4340		err = tcp_zerocopy_receive(sk, &zc, &tss);
4341		err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname,
4342							  &zc, &len, err);
4343		sockopt_release_sock(sk);
4344		if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags))
4345			goto zerocopy_rcv_cmsg;
4346		switch (len) {
4347		case offsetofend(struct tcp_zerocopy_receive, msg_flags):
4348			goto zerocopy_rcv_cmsg;
4349		case offsetofend(struct tcp_zerocopy_receive, msg_controllen):
4350		case offsetofend(struct tcp_zerocopy_receive, msg_control):
4351		case offsetofend(struct tcp_zerocopy_receive, flags):
4352		case offsetofend(struct tcp_zerocopy_receive, copybuf_len):
4353		case offsetofend(struct tcp_zerocopy_receive, copybuf_address):
4354		case offsetofend(struct tcp_zerocopy_receive, err):
4355			goto zerocopy_rcv_sk_err;
4356		case offsetofend(struct tcp_zerocopy_receive, inq):
4357			goto zerocopy_rcv_inq;
4358		case offsetofend(struct tcp_zerocopy_receive, length):
4359		default:
4360			goto zerocopy_rcv_out;
4361		}
4362zerocopy_rcv_cmsg:
4363		if (zc.msg_flags & TCP_CMSG_TS)
4364			tcp_zc_finalize_rx_tstamp(sk, &zc, &tss);
4365		else
4366			zc.msg_flags = 0;
4367zerocopy_rcv_sk_err:
4368		if (!err)
4369			zc.err = sock_error(sk);
4370zerocopy_rcv_inq:
4371		zc.inq = tcp_inq_hint(sk);
4372zerocopy_rcv_out:
4373		if (!err && copy_to_sockptr(optval, &zc, len))
4374			err = -EFAULT;
4375		return err;
4376	}
4377#endif
4378	default:
4379		return -ENOPROTOOPT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4380	}
4381
4382	if (copy_to_sockptr(optlen, &len, sizeof(int)))
4383		return -EFAULT;
4384	if (copy_to_sockptr(optval, &val, len))
4385		return -EFAULT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4386	return 0;
4387}
 
 
 
 
 
 
4388
4389bool tcp_bpf_bypass_getsockopt(int level, int optname)
4390{
4391	/* TCP do_tcp_getsockopt has optimized getsockopt implementation
4392	 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE.
4393	 */
4394	if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE)
4395		return true;
4396
4397	return false;
 
 
 
4398}
4399EXPORT_SYMBOL(tcp_bpf_bypass_getsockopt);
4400
4401int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
4402		   int __user *optlen)
4403{
4404	struct inet_connection_sock *icsk = inet_csk(sk);
4405
4406	if (level != SOL_TCP)
4407		/* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
4408		return READ_ONCE(icsk->icsk_af_ops)->getsockopt(sk, level, optname,
4409								optval, optlen);
4410	return do_tcp_getsockopt(sk, level, optname, USER_SOCKPTR(optval),
4411				 USER_SOCKPTR(optlen));
 
 
4412}
4413EXPORT_SYMBOL(tcp_getsockopt);
4414
4415#ifdef CONFIG_TCP_MD5SIG
4416static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
4417static DEFINE_MUTEX(tcp_md5sig_mutex);
4418static bool tcp_md5sig_pool_populated = false;
4419
4420static void __tcp_alloc_md5sig_pool(void)
 
4421{
4422	struct crypto_ahash *hash;
4423	int cpu;
 
4424
4425	hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
4426	if (IS_ERR(hash))
4427		return;
4428
4429	for_each_possible_cpu(cpu) {
4430		void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch;
4431		struct ahash_request *req;
4432
4433		if (!scratch) {
4434			scratch = kmalloc_node(sizeof(union tcp_md5sum_block) +
4435					       sizeof(struct tcphdr),
4436					       GFP_KERNEL,
4437					       cpu_to_node(cpu));
4438			if (!scratch)
4439				return;
4440			per_cpu(tcp_md5sig_pool, cpu).scratch = scratch;
4441		}
4442		if (per_cpu(tcp_md5sig_pool, cpu).md5_req)
4443			continue;
4444
4445		req = ahash_request_alloc(hash, GFP_KERNEL);
4446		if (!req)
4447			return;
4448
4449		ahash_request_set_callback(req, 0, NULL, NULL);
 
 
4450
4451		per_cpu(tcp_md5sig_pool, cpu).md5_req = req;
4452	}
4453	/* before setting tcp_md5sig_pool_populated, we must commit all writes
4454	 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
4455	 */
4456	smp_wmb();
4457	/* Paired with READ_ONCE() from tcp_alloc_md5sig_pool()
4458	 * and tcp_get_md5sig_pool().
4459	*/
4460	WRITE_ONCE(tcp_md5sig_pool_populated, true);
4461}
4462
4463bool tcp_alloc_md5sig_pool(void)
4464{
4465	/* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */
4466	if (unlikely(!READ_ONCE(tcp_md5sig_pool_populated))) {
4467		mutex_lock(&tcp_md5sig_mutex);
4468
4469		if (!tcp_md5sig_pool_populated)
4470			__tcp_alloc_md5sig_pool();
4471
4472		mutex_unlock(&tcp_md5sig_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4473	}
4474	/* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */
4475	return READ_ONCE(tcp_md5sig_pool_populated);
4476}
4477EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
4478
4479
4480/**
4481 *	tcp_get_md5sig_pool - get md5sig_pool for this user
4482 *
4483 *	We use percpu structure, so if we succeed, we exit with preemption
4484 *	and BH disabled, to make sure another thread or softirq handling
4485 *	wont try to get same context.
4486 */
4487struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
4488{
 
 
4489	local_bh_disable();
4490
4491	/* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */
4492	if (READ_ONCE(tcp_md5sig_pool_populated)) {
4493		/* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
4494		smp_rmb();
4495		return this_cpu_ptr(&tcp_md5sig_pool);
4496	}
 
 
 
4497	local_bh_enable();
4498	return NULL;
4499}
4500EXPORT_SYMBOL(tcp_get_md5sig_pool);
4501
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4502int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
4503			  const struct sk_buff *skb, unsigned int header_len)
4504{
4505	struct scatterlist sg;
4506	const struct tcphdr *tp = tcp_hdr(skb);
4507	struct ahash_request *req = hp->md5_req;
4508	unsigned int i;
4509	const unsigned int head_data_len = skb_headlen(skb) > header_len ?
4510					   skb_headlen(skb) - header_len : 0;
4511	const struct skb_shared_info *shi = skb_shinfo(skb);
4512	struct sk_buff *frag_iter;
4513
4514	sg_init_table(&sg, 1);
4515
4516	sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
4517	ahash_request_set_crypt(req, &sg, NULL, head_data_len);
4518	if (crypto_ahash_update(req))
4519		return 1;
4520
4521	for (i = 0; i < shi->nr_frags; ++i) {
4522		const skb_frag_t *f = &shi->frags[i];
4523		unsigned int offset = skb_frag_off(f);
4524		struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
4525
4526		sg_set_page(&sg, page, skb_frag_size(f),
4527			    offset_in_page(offset));
4528		ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f));
4529		if (crypto_ahash_update(req))
4530			return 1;
4531	}
4532
4533	skb_walk_frags(skb, frag_iter)
4534		if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
4535			return 1;
4536
4537	return 0;
4538}
4539EXPORT_SYMBOL(tcp_md5_hash_skb_data);
4540
4541int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
4542{
4543	u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */
4544	struct scatterlist sg;
4545
4546	sg_init_one(&sg, key->key, keylen);
4547	ahash_request_set_crypt(hp->md5_req, &sg, NULL, keylen);
4548
4549	/* We use data_race() because tcp_md5_do_add() might change key->key under us */
4550	return data_race(crypto_ahash_update(hp->md5_req));
4551}
4552EXPORT_SYMBOL(tcp_md5_hash_key);
4553
4554/* Called with rcu_read_lock() */
4555enum skb_drop_reason
4556tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
4557		     const void *saddr, const void *daddr,
4558		     int family, int dif, int sdif)
4559{
4560	/*
4561	 * This gets called for each TCP segment that arrives
4562	 * so we want to be efficient.
4563	 * We have 3 drop cases:
4564	 * o No MD5 hash and one expected.
4565	 * o MD5 hash and we're not expecting one.
4566	 * o MD5 hash and its wrong.
4567	 */
4568	const __u8 *hash_location = NULL;
4569	struct tcp_md5sig_key *hash_expected;
4570	const struct tcphdr *th = tcp_hdr(skb);
4571	struct tcp_sock *tp = tcp_sk(sk);
4572	int genhash, l3index;
4573	u8 newhash[16];
4574
4575	/* sdif set, means packet ingressed via a device
4576	 * in an L3 domain and dif is set to the l3mdev
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4577	 */
4578	l3index = sdif ? dif : 0;
 
 
4579
4580	hash_expected = tcp_md5_do_lookup(sk, l3index, saddr, family);
4581	hash_location = tcp_parse_md5sig_option(th);
 
 
 
 
 
 
 
 
 
 
4582
4583	/* We've parsed the options - do we have a hash? */
4584	if (!hash_expected && !hash_location)
4585		return SKB_NOT_DROPPED_YET;
4586
4587	if (hash_expected && !hash_location) {
4588		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
4589		return SKB_DROP_REASON_TCP_MD5NOTFOUND;
4590	}
 
 
4591
4592	if (!hash_expected && hash_location) {
4593		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
4594		return SKB_DROP_REASON_TCP_MD5UNEXPECTED;
4595	}
 
 
 
4596
4597	/* Check the signature.
4598	 * To support dual stack listeners, we need to handle
4599	 * IPv4-mapped case.
4600	 */
4601	if (family == AF_INET)
4602		genhash = tcp_v4_md5_hash_skb(newhash,
4603					      hash_expected,
4604					      NULL, skb);
4605	else
4606		genhash = tp->af_specific->calc_md5_hash(newhash,
4607							 hash_expected,
4608							 NULL, skb);
4609
4610	if (genhash || memcmp(hash_location, newhash, 16) != 0) {
4611		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE);
4612		if (family == AF_INET) {
4613			net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s L3 index %d\n",
4614					saddr, ntohs(th->source),
4615					daddr, ntohs(th->dest),
4616					genhash ? " tcp_v4_calc_md5_hash failed"
4617					: "", l3index);
4618		} else {
4619			net_info_ratelimited("MD5 Hash %s for [%pI6c]:%u->[%pI6c]:%u L3 index %d\n",
4620					genhash ? "failed" : "mismatch",
4621					saddr, ntohs(th->source),
4622					daddr, ntohs(th->dest), l3index);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4623		}
4624		return SKB_DROP_REASON_TCP_MD5FAILURE;
 
 
 
 
 
 
4625	}
4626	return SKB_NOT_DROPPED_YET;
4627}
4628EXPORT_SYMBOL(tcp_inbound_md5_hash);
4629
4630#endif
4631
4632void tcp_done(struct sock *sk)
4633{
4634	struct request_sock *req;
4635
4636	/* We might be called with a new socket, after
4637	 * inet_csk_prepare_forced_close() has been called
4638	 * so we can not use lockdep_sock_is_held(sk)
4639	 */
4640	req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1);
4641
4642	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
4643		TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
4644
4645	tcp_set_state(sk, TCP_CLOSE);
4646	tcp_clear_xmit_timers(sk);
4647	if (req)
4648		reqsk_fastopen_remove(sk, req, false);
4649
4650	sk->sk_shutdown = SHUTDOWN_MASK;
4651
4652	if (!sock_flag(sk, SOCK_DEAD))
4653		sk->sk_state_change(sk);
4654	else
4655		inet_csk_destroy_sock(sk);
4656}
4657EXPORT_SYMBOL_GPL(tcp_done);
4658
4659int tcp_abort(struct sock *sk, int err)
4660{
4661	int state = inet_sk_state_load(sk);
4662
4663	if (state == TCP_NEW_SYN_RECV) {
4664		struct request_sock *req = inet_reqsk(sk);
4665
4666		local_bh_disable();
4667		inet_csk_reqsk_queue_drop(req->rsk_listener, req);
4668		local_bh_enable();
4669		return 0;
4670	}
4671	if (state == TCP_TIME_WAIT) {
4672		struct inet_timewait_sock *tw = inet_twsk(sk);
4673
4674		refcount_inc(&tw->tw_refcnt);
4675		local_bh_disable();
4676		inet_twsk_deschedule_put(tw);
4677		local_bh_enable();
4678		return 0;
4679	}
4680
4681	/* Don't race with userspace socket closes such as tcp_close. */
4682	lock_sock(sk);
4683
4684	if (sk->sk_state == TCP_LISTEN) {
4685		tcp_set_state(sk, TCP_CLOSE);
4686		inet_csk_listen_stop(sk);
4687	}
4688
4689	/* Don't race with BH socket closes such as inet_csk_listen_stop. */
4690	local_bh_disable();
4691	bh_lock_sock(sk);
4692
4693	if (!sock_flag(sk, SOCK_DEAD)) {
4694		sk->sk_err = err;
4695		/* This barrier is coupled with smp_rmb() in tcp_poll() */
4696		smp_wmb();
4697		sk_error_report(sk);
4698		if (tcp_need_reset(sk->sk_state))
4699			tcp_send_active_reset(sk, GFP_ATOMIC);
4700		tcp_done(sk);
4701	}
4702
4703	bh_unlock_sock(sk);
4704	local_bh_enable();
4705	tcp_write_queue_purge(sk);
4706	release_sock(sk);
4707	return 0;
4708}
4709EXPORT_SYMBOL_GPL(tcp_abort);
4710
4711extern struct tcp_congestion_ops tcp_reno;
4712
4713static __initdata unsigned long thash_entries;
4714static int __init set_thash_entries(char *str)
4715{
4716	ssize_t ret;
4717
4718	if (!str)
4719		return 0;
4720
4721	ret = kstrtoul(str, 0, &thash_entries);
4722	if (ret)
4723		return 0;
4724
4725	return 1;
4726}
4727__setup("thash_entries=", set_thash_entries);
4728
4729static void __init tcp_init_mem(void)
4730{
4731	unsigned long limit = nr_free_buffer_pages() / 16;
4732
4733	limit = max(limit, 128UL);
4734	sysctl_tcp_mem[0] = limit / 4 * 3;		/* 4.68 % */
4735	sysctl_tcp_mem[1] = limit;			/* 6.25 % */
4736	sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;	/* 9.37 % */
4737}
4738
4739void __init tcp_init(void)
4740{
 
 
4741	int max_rshare, max_wshare, cnt;
4742	unsigned long limit;
4743	unsigned int i;
 
 
 
4744
4745	BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE);
4746	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
4747		     sizeof_field(struct sk_buff, cb));
4748
4749	percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
4750
4751	timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE);
4752	mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
4753
4754	inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash",
4755			    thash_entries, 21,  /* one slot per 2 MB*/
4756			    0, 64 * 1024);
4757	tcp_hashinfo.bind_bucket_cachep =
4758		kmem_cache_create("tcp_bind_bucket",
4759				  sizeof(struct inet_bind_bucket), 0,
4760				  SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4761				  SLAB_ACCOUNT,
4762				  NULL);
4763	tcp_hashinfo.bind2_bucket_cachep =
4764		kmem_cache_create("tcp_bind2_bucket",
4765				  sizeof(struct inet_bind2_bucket), 0,
4766				  SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4767				  SLAB_ACCOUNT,
4768				  NULL);
4769
4770	/* Size and allocate the main established and bind bucket
4771	 * hash tables.
4772	 *
4773	 * The methodology is similar to that of the buffer cache.
4774	 */
4775	tcp_hashinfo.ehash =
4776		alloc_large_system_hash("TCP established",
4777					sizeof(struct inet_ehash_bucket),
4778					thash_entries,
4779					17, /* one slot per 128 KB of memory */
 
4780					0,
4781					NULL,
4782					&tcp_hashinfo.ehash_mask,
4783					0,
4784					thash_entries ? 0 : 512 * 1024);
4785	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
4786		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
4787
 
4788	if (inet_ehash_locks_alloc(&tcp_hashinfo))
4789		panic("TCP: failed to alloc ehash_locks");
4790	tcp_hashinfo.bhash =
4791		alloc_large_system_hash("TCP bind",
4792					2 * sizeof(struct inet_bind_hashbucket),
4793					tcp_hashinfo.ehash_mask + 1,
4794					17, /* one slot per 128 KB of memory */
 
4795					0,
4796					&tcp_hashinfo.bhash_size,
4797					NULL,
4798					0,
4799					64 * 1024);
4800	tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
4801	tcp_hashinfo.bhash2 = tcp_hashinfo.bhash + tcp_hashinfo.bhash_size;
4802	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
4803		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
4804		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
4805		spin_lock_init(&tcp_hashinfo.bhash2[i].lock);
4806		INIT_HLIST_HEAD(&tcp_hashinfo.bhash2[i].chain);
4807	}
4808
4809	tcp_hashinfo.pernet = false;
4810
4811	cnt = tcp_hashinfo.ehash_mask + 1;
 
 
4812	sysctl_tcp_max_orphans = cnt / 2;
 
4813
4814	tcp_init_mem();
4815	/* Set per-socket limits to no more than 1/128 the pressure threshold */
4816	limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
4817	max_wshare = min(4UL*1024*1024, limit);
4818	max_rshare = min(6UL*1024*1024, limit);
4819
4820	init_net.ipv4.sysctl_tcp_wmem[0] = PAGE_SIZE;
4821	init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024;
4822	init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
4823
4824	init_net.ipv4.sysctl_tcp_rmem[0] = PAGE_SIZE;
4825	init_net.ipv4.sysctl_tcp_rmem[1] = 131072;
4826	init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare);
4827
4828	pr_info("Hash tables configured (established %u bind %u)\n",
4829		tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
4830
4831	tcp_v4_init();
4832	tcp_metrics_init();
4833	BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
4834	tcp_tasklet_init();
4835	mptcp_init();
 
 
 
 
 
4836}