Linux Audio

Check our new training course

Buildroot integration, development and maintenance

Need a Buildroot system for your embedded project?
Loading...
v3.5.6
 
   1/*
   2 * Copyright (C) 2007 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
 
  18#include <linux/sched.h>
  19#include <linux/bio.h>
  20#include <linux/slab.h>
  21#include <linux/buffer_head.h>
  22#include <linux/blkdev.h>
  23#include <linux/random.h>
  24#include <linux/iocontext.h>
  25#include <linux/capability.h>
  26#include <linux/ratelimit.h>
  27#include <linux/kthread.h>
  28#include <asm/div64.h>
  29#include "compat.h"
 
 
 
  30#include "ctree.h"
  31#include "extent_map.h"
  32#include "disk-io.h"
  33#include "transaction.h"
  34#include "print-tree.h"
  35#include "volumes.h"
  36#include "async-thread.h"
  37#include "check-integrity.h"
  38#include "rcu-string.h"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  39
  40static int init_first_rw_device(struct btrfs_trans_handle *trans,
  41				struct btrfs_root *root,
  42				struct btrfs_device *device);
  43static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
  44static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  45static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
  46
  47static DEFINE_MUTEX(uuid_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  48static LIST_HEAD(fs_uuids);
 
 
 
 
  49
  50static void lock_chunks(struct btrfs_root *root)
 
 
 
 
 
 
 
 
 
 
  51{
  52	mutex_lock(&root->fs_info->chunk_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  53}
  54
  55static void unlock_chunks(struct btrfs_root *root)
  56{
  57	mutex_unlock(&root->fs_info->chunk_mutex);
 
 
 
 
  58}
  59
  60static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
  61{
  62	struct btrfs_device *device;
 
  63	WARN_ON(fs_devices->opened);
  64	while (!list_empty(&fs_devices->devices)) {
  65		device = list_entry(fs_devices->devices.next,
  66				    struct btrfs_device, dev_list);
  67		list_del(&device->dev_list);
  68		rcu_string_free(device->name);
  69		kfree(device);
  70	}
  71	kfree(fs_devices);
  72}
  73
  74void btrfs_cleanup_fs_uuids(void)
  75{
  76	struct btrfs_fs_devices *fs_devices;
  77
  78	while (!list_empty(&fs_uuids)) {
  79		fs_devices = list_entry(fs_uuids.next,
  80					struct btrfs_fs_devices, list);
  81		list_del(&fs_devices->list);
  82		free_fs_devices(fs_devices);
  83	}
  84}
  85
  86static noinline struct btrfs_device *__find_device(struct list_head *head,
  87						   u64 devid, u8 *uuid)
  88{
  89	struct btrfs_device *dev;
 
 
  90
  91	list_for_each_entry(dev, head, dev_list) {
  92		if (dev->devid == devid &&
  93		    (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
  94			return dev;
 
 
 
 
 
 
  95		}
  96	}
  97	return NULL;
  98}
  99
 100static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
 
 101{
 
 102	struct btrfs_fs_devices *fs_devices;
 103
 104	list_for_each_entry(fs_devices, &fs_uuids, list) {
 105		if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
 
 
 
 
 
 
 
 
 
 
 106			return fs_devices;
 
 107	}
 108	return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 109}
 110
 111static void requeue_list(struct btrfs_pending_bios *pending_bios,
 112			struct bio *head, struct bio *tail)
 
 
 
 113{
 
 114
 115	struct bio *old_head;
 116
 117	old_head = pending_bios->head;
 118	pending_bios->head = head;
 119	if (pending_bios->tail)
 120		tail->bi_next = old_head;
 121	else
 122		pending_bios->tail = tail;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 123}
 124
 125/*
 126 * we try to collect pending bios for a device so we don't get a large
 127 * number of procs sending bios down to the same device.  This greatly
 128 * improves the schedulers ability to collect and merge the bios.
 129 *
 130 * But, it also turns into a long list of bios to process and that is sure
 131 * to eventually make the worker thread block.  The solution here is to
 132 * make some progress and then put this work struct back at the end of
 133 * the list if the block device is congested.  This way, multiple devices
 134 * can make progress from a single worker thread.
 135 */
 136static noinline void run_scheduled_bios(struct btrfs_device *device)
 137{
 138	struct bio *pending;
 139	struct backing_dev_info *bdi;
 140	struct btrfs_fs_info *fs_info;
 141	struct btrfs_pending_bios *pending_bios;
 142	struct bio *tail;
 143	struct bio *cur;
 144	int again = 0;
 145	unsigned long num_run;
 146	unsigned long batch_run = 0;
 147	unsigned long limit;
 148	unsigned long last_waited = 0;
 149	int force_reg = 0;
 150	int sync_pending = 0;
 151	struct blk_plug plug;
 152
 153	/*
 154	 * this function runs all the bios we've collected for
 155	 * a particular device.  We don't want to wander off to
 156	 * another device without first sending all of these down.
 157	 * So, setup a plug here and finish it off before we return
 158	 */
 159	blk_start_plug(&plug);
 160
 161	bdi = blk_get_backing_dev_info(device->bdev);
 162	fs_info = device->dev_root->fs_info;
 163	limit = btrfs_async_submit_limit(fs_info);
 164	limit = limit * 2 / 3;
 165
 166loop:
 167	spin_lock(&device->io_lock);
 168
 169loop_lock:
 170	num_run = 0;
 171
 172	/* take all the bios off the list at once and process them
 173	 * later on (without the lock held).  But, remember the
 174	 * tail and other pointers so the bios can be properly reinserted
 175	 * into the list if we hit congestion
 176	 */
 177	if (!force_reg && device->pending_sync_bios.head) {
 178		pending_bios = &device->pending_sync_bios;
 179		force_reg = 1;
 180	} else {
 181		pending_bios = &device->pending_bios;
 182		force_reg = 0;
 183	}
 184
 185	pending = pending_bios->head;
 186	tail = pending_bios->tail;
 187	WARN_ON(pending && !tail);
 
 
 
 
 
 
 
 
 
 
 188
 189	/*
 190	 * if pending was null this time around, no bios need processing
 191	 * at all and we can stop.  Otherwise it'll loop back up again
 192	 * and do an additional check so no bios are missed.
 193	 *
 194	 * device->running_pending is used to synchronize with the
 195	 * schedule_bio code.
 196	 */
 197	if (device->pending_sync_bios.head == NULL &&
 198	    device->pending_bios.head == NULL) {
 199		again = 0;
 200		device->running_pending = 0;
 201	} else {
 202		again = 1;
 203		device->running_pending = 1;
 204	}
 205
 206	pending_bios->head = NULL;
 207	pending_bios->tail = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 208
 209	spin_unlock(&device->io_lock);
 
 
 
 210
 211	while (pending) {
 
 
 212
 213		rmb();
 214		/* we want to work on both lists, but do more bios on the
 215		 * sync list than the regular list
 216		 */
 217		if ((num_run > 32 &&
 218		    pending_bios != &device->pending_sync_bios &&
 219		    device->pending_sync_bios.head) ||
 220		   (num_run > 64 && pending_bios == &device->pending_sync_bios &&
 221		    device->pending_bios.head)) {
 222			spin_lock(&device->io_lock);
 223			requeue_list(pending_bios, pending, tail);
 224			goto loop_lock;
 225		}
 226
 227		cur = pending;
 228		pending = pending->bi_next;
 229		cur->bi_next = NULL;
 230		atomic_dec(&fs_info->nr_async_bios);
 231
 232		if (atomic_read(&fs_info->nr_async_bios) < limit &&
 233		    waitqueue_active(&fs_info->async_submit_wait))
 234			wake_up(&fs_info->async_submit_wait);
 235
 236		BUG_ON(atomic_read(&cur->bi_cnt) == 0);
 237
 238		/*
 239		 * if we're doing the sync list, record that our
 240		 * plug has some sync requests on it
 241		 *
 242		 * If we're doing the regular list and there are
 243		 * sync requests sitting around, unplug before
 244		 * we add more
 245		 */
 246		if (pending_bios == &device->pending_sync_bios) {
 247			sync_pending = 1;
 248		} else if (sync_pending) {
 249			blk_finish_plug(&plug);
 250			blk_start_plug(&plug);
 251			sync_pending = 0;
 252		}
 253
 254		btrfsic_submit_bio(cur->bi_rw, cur);
 255		num_run++;
 256		batch_run++;
 257		if (need_resched())
 258			cond_resched();
 
 
 
 259
 260		/*
 261		 * we made progress, there is more work to do and the bdi
 262		 * is now congested.  Back off and let other work structs
 263		 * run instead
 264		 */
 265		if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
 266		    fs_info->fs_devices->open_devices > 1) {
 267			struct io_context *ioc;
 268
 269			ioc = current->io_context;
 
 270
 271			/*
 272			 * the main goal here is that we don't want to
 273			 * block if we're going to be able to submit
 274			 * more requests without blocking.
 275			 *
 276			 * This code does two great things, it pokes into
 277			 * the elevator code from a filesystem _and_
 278			 * it makes assumptions about how batching works.
 279			 */
 280			if (ioc && ioc->nr_batch_requests > 0 &&
 281			    time_before(jiffies, ioc->last_waited + HZ/50UL) &&
 282			    (last_waited == 0 ||
 283			     ioc->last_waited == last_waited)) {
 284				/*
 285				 * we want to go through our batch of
 286				 * requests and stop.  So, we copy out
 287				 * the ioc->last_waited time and test
 288				 * against it before looping
 289				 */
 290				last_waited = ioc->last_waited;
 291				if (need_resched())
 292					cond_resched();
 293				continue;
 294			}
 295			spin_lock(&device->io_lock);
 296			requeue_list(pending_bios, pending, tail);
 297			device->running_pending = 1;
 298
 299			spin_unlock(&device->io_lock);
 300			btrfs_requeue_work(&device->work);
 301			goto done;
 302		}
 303		/* unplug every 64 requests just for good measure */
 304		if (batch_run % 64 == 0) {
 305			blk_finish_plug(&plug);
 306			blk_start_plug(&plug);
 307			sync_pending = 0;
 308		}
 309	}
 
 310
 311	cond_resched();
 312	if (again)
 313		goto loop;
 314
 315	spin_lock(&device->io_lock);
 316	if (device->pending_bios.head || device->pending_sync_bios.head)
 317		goto loop_lock;
 318	spin_unlock(&device->io_lock);
 319
 320done:
 321	blk_finish_plug(&plug);
 
 
 
 322}
 323
 324static void pending_bios_fn(struct btrfs_work *work)
 
 
 
 
 
 
 
 325{
 326	struct btrfs_device *device;
 327
 328	device = container_of(work, struct btrfs_device, work);
 329	run_scheduled_bios(device);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 330}
 331
 332static noinline int device_list_add(const char *path,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 333			   struct btrfs_super_block *disk_super,
 334			   u64 devid, struct btrfs_fs_devices **fs_devices_ret)
 335{
 336	struct btrfs_device *device;
 337	struct btrfs_fs_devices *fs_devices;
 338	struct rcu_string *name;
 339	u64 found_transid = btrfs_super_generation(disk_super);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 340
 341	fs_devices = find_fsid(disk_super->fsid);
 342	if (!fs_devices) {
 343		fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
 344		if (!fs_devices)
 345			return -ENOMEM;
 346		INIT_LIST_HEAD(&fs_devices->devices);
 347		INIT_LIST_HEAD(&fs_devices->alloc_list);
 348		list_add(&fs_devices->list, &fs_uuids);
 349		memcpy(fs_devices->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
 350		fs_devices->latest_devid = devid;
 351		fs_devices->latest_trans = found_transid;
 352		mutex_init(&fs_devices->device_list_mutex);
 
 
 
 
 353		device = NULL;
 354	} else {
 355		device = __find_device(&fs_devices->devices, devid,
 356				       disk_super->dev_item.uuid);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 357	}
 
 358	if (!device) {
 359		if (fs_devices->opened)
 360			return -EBUSY;
 361
 362		device = kzalloc(sizeof(*device), GFP_NOFS);
 363		if (!device) {
 
 
 
 
 
 
 
 
 
 
 
 
 364			/* we can safely leave the fs_devices entry around */
 365			return -ENOMEM;
 366		}
 367		device->devid = devid;
 368		device->dev_stats_valid = 0;
 369		device->work.func = pending_bios_fn;
 370		memcpy(device->uuid, disk_super->dev_item.uuid,
 371		       BTRFS_UUID_SIZE);
 372		spin_lock_init(&device->io_lock);
 373
 374		name = rcu_string_strdup(path, GFP_NOFS);
 375		if (!name) {
 376			kfree(device);
 377			return -ENOMEM;
 378		}
 379		rcu_assign_pointer(device->name, name);
 380		INIT_LIST_HEAD(&device->dev_alloc_list);
 381
 382		/* init readahead state */
 383		spin_lock_init(&device->reada_lock);
 384		device->reada_curr_zone = NULL;
 385		atomic_set(&device->reada_in_flight, 0);
 386		device->reada_next = 0;
 387		INIT_RADIX_TREE(&device->reada_zones, GFP_NOFS & ~__GFP_WAIT);
 388		INIT_RADIX_TREE(&device->reada_extents, GFP_NOFS & ~__GFP_WAIT);
 389
 390		mutex_lock(&fs_devices->device_list_mutex);
 391		list_add_rcu(&device->dev_list, &fs_devices->devices);
 392		mutex_unlock(&fs_devices->device_list_mutex);
 393
 394		device->fs_devices = fs_devices;
 395		fs_devices->num_devices++;
 
 
 
 
 
 
 
 
 
 
 
 
 396	} else if (!device->name || strcmp(device->name->str, path)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 397		name = rcu_string_strdup(path, GFP_NOFS);
 398		if (!name)
 399			return -ENOMEM;
 
 
 400		rcu_string_free(device->name);
 401		rcu_assign_pointer(device->name, name);
 402		if (device->missing) {
 403			fs_devices->missing_devices--;
 404			device->missing = 0;
 405		}
 
 406	}
 407
 408	if (found_transid > fs_devices->latest_trans) {
 409		fs_devices->latest_devid = devid;
 410		fs_devices->latest_trans = found_transid;
 
 
 
 
 
 
 
 411	}
 412	*fs_devices_ret = fs_devices;
 413	return 0;
 
 
 
 414}
 415
 416static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
 417{
 418	struct btrfs_fs_devices *fs_devices;
 419	struct btrfs_device *device;
 420	struct btrfs_device *orig_dev;
 
 421
 422	fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
 423	if (!fs_devices)
 424		return ERR_PTR(-ENOMEM);
 425
 426	INIT_LIST_HEAD(&fs_devices->devices);
 427	INIT_LIST_HEAD(&fs_devices->alloc_list);
 428	INIT_LIST_HEAD(&fs_devices->list);
 429	mutex_init(&fs_devices->device_list_mutex);
 430	fs_devices->latest_devid = orig->latest_devid;
 431	fs_devices->latest_trans = orig->latest_trans;
 432	memcpy(fs_devices->fsid, orig->fsid, sizeof(fs_devices->fsid));
 433
 434	/* We have held the volume lock, it is safe to get the devices. */
 435	list_for_each_entry(orig_dev, &orig->devices, dev_list) {
 436		struct rcu_string *name;
 437
 438		device = kzalloc(sizeof(*device), GFP_NOFS);
 439		if (!device)
 440			goto error;
 441
 442		/*
 443		 * This is ok to do without rcu read locked because we hold the
 444		 * uuid mutex so nothing we touch in here is going to disappear.
 445		 */
 446		name = rcu_string_strdup(orig_dev->name->str, GFP_NOFS);
 447		if (!name) {
 448			kfree(device);
 
 
 
 
 449			goto error;
 450		}
 451		rcu_assign_pointer(device->name, name);
 452
 453		device->devid = orig_dev->devid;
 454		device->work.func = pending_bios_fn;
 455		memcpy(device->uuid, orig_dev->uuid, sizeof(device->uuid));
 456		spin_lock_init(&device->io_lock);
 457		INIT_LIST_HEAD(&device->dev_list);
 458		INIT_LIST_HEAD(&device->dev_alloc_list);
 
 
 
 
 
 459
 460		list_add(&device->dev_list, &fs_devices->devices);
 461		device->fs_devices = fs_devices;
 462		fs_devices->num_devices++;
 463	}
 464	return fs_devices;
 465error:
 466	free_fs_devices(fs_devices);
 467	return ERR_PTR(-ENOMEM);
 468}
 469
 470void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices)
 
 471{
 472	struct btrfs_device *device, *next;
 473
 474	struct block_device *latest_bdev = NULL;
 475	u64 latest_devid = 0;
 476	u64 latest_transid = 0;
 477
 478	mutex_lock(&uuid_mutex);
 479again:
 480	/* This is the initialized path, it is safe to release the devices. */
 481	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
 482		if (device->in_fs_metadata) {
 483			if (!latest_transid ||
 484			    device->generation > latest_transid) {
 485				latest_devid = device->devid;
 486				latest_transid = device->generation;
 487				latest_bdev = device->bdev;
 
 
 488			}
 489			continue;
 490		}
 491
 
 
 
 
 
 
 
 492		if (device->bdev) {
 493			blkdev_put(device->bdev, device->mode);
 494			device->bdev = NULL;
 495			fs_devices->open_devices--;
 496		}
 497		if (device->writeable) {
 498			list_del_init(&device->dev_alloc_list);
 499			device->writeable = 0;
 500			fs_devices->rw_devices--;
 501		}
 502		list_del_init(&device->dev_list);
 503		fs_devices->num_devices--;
 504		rcu_string_free(device->name);
 505		kfree(device);
 506	}
 507
 508	if (fs_devices->seed) {
 509		fs_devices = fs_devices->seed;
 510		goto again;
 511	}
 512
 513	fs_devices->latest_bdev = latest_bdev;
 514	fs_devices->latest_devid = latest_devid;
 515	fs_devices->latest_trans = latest_transid;
 516
 517	mutex_unlock(&uuid_mutex);
 518}
 519
 520static void __free_device(struct work_struct *work)
 
 
 
 
 521{
 522	struct btrfs_device *device;
 
 523
 524	device = container_of(work, struct btrfs_device, rcu_work);
 
 525
 526	if (device->bdev)
 527		blkdev_put(device->bdev, device->mode);
 528
 529	rcu_string_free(device->name);
 530	kfree(device);
 
 531}
 532
 533static void free_device(struct rcu_head *head)
 534{
 535	struct btrfs_device *device;
 
 536
 537	device = container_of(head, struct btrfs_device, rcu);
 
 
 
 538
 539	INIT_WORK(&device->rcu_work, __free_device);
 540	schedule_work(&device->rcu_work);
 541}
 542
 543static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
 544{
 545	struct btrfs_device *device;
 546
 547	if (--fs_devices->opened > 0)
 548		return 0;
 
 
 
 549
 550	mutex_lock(&fs_devices->device_list_mutex);
 551	list_for_each_entry(device, &fs_devices->devices, dev_list) {
 552		struct btrfs_device *new_device;
 553		struct rcu_string *name;
 554
 555		if (device->bdev)
 556			fs_devices->open_devices--;
 
 
 557
 558		if (device->writeable) {
 559			list_del_init(&device->dev_alloc_list);
 560			fs_devices->rw_devices--;
 561		}
 
 
 
 562
 563		if (device->can_discard)
 564			fs_devices->num_can_discard--;
 
 565
 566		new_device = kmalloc(sizeof(*new_device), GFP_NOFS);
 567		BUG_ON(!new_device); /* -ENOMEM */
 568		memcpy(new_device, device, sizeof(*new_device));
 569
 570		/* Safe because we are under uuid_mutex */
 571		name = rcu_string_strdup(device->name->str, GFP_NOFS);
 572		BUG_ON(device->name && !name); /* -ENOMEM */
 573		rcu_assign_pointer(new_device->name, name);
 574		new_device->bdev = NULL;
 575		new_device->writeable = 0;
 576		new_device->in_fs_metadata = 0;
 577		new_device->can_discard = 0;
 578		list_replace_rcu(&device->dev_list, &new_device->dev_list);
 579
 580		call_rcu(&device->rcu, free_device);
 581	}
 582	mutex_unlock(&fs_devices->device_list_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 583
 584	WARN_ON(fs_devices->open_devices);
 585	WARN_ON(fs_devices->rw_devices);
 586	fs_devices->opened = 0;
 587	fs_devices->seeding = 0;
 588
 589	return 0;
 590}
 591
 592int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
 593{
 594	struct btrfs_fs_devices *seed_devices = NULL;
 595	int ret;
 596
 597	mutex_lock(&uuid_mutex);
 598	ret = __btrfs_close_devices(fs_devices);
 599	if (!fs_devices->opened) {
 600		seed_devices = fs_devices->seed;
 601		fs_devices->seed = NULL;
 
 
 
 
 
 
 
 
 
 
 602	}
 603	mutex_unlock(&uuid_mutex);
 604
 605	while (seed_devices) {
 606		fs_devices = seed_devices;
 607		seed_devices = fs_devices->seed;
 608		__btrfs_close_devices(fs_devices);
 609		free_fs_devices(fs_devices);
 610	}
 611	return ret;
 612}
 613
 614static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
 615				fmode_t flags, void *holder)
 616{
 617	struct request_queue *q;
 618	struct block_device *bdev;
 619	struct list_head *head = &fs_devices->devices;
 620	struct btrfs_device *device;
 621	struct block_device *latest_bdev = NULL;
 622	struct buffer_head *bh;
 623	struct btrfs_super_block *disk_super;
 624	u64 latest_devid = 0;
 625	u64 latest_transid = 0;
 626	u64 devid;
 627	int seeding = 1;
 628	int ret = 0;
 629
 630	flags |= FMODE_EXCL;
 631
 632	list_for_each_entry(device, head, dev_list) {
 633		if (device->bdev)
 634			continue;
 635		if (!device->name)
 636			continue;
 637
 638		bdev = blkdev_get_by_path(device->name->str, flags, holder);
 639		if (IS_ERR(bdev)) {
 640			printk(KERN_INFO "open %s failed\n", device->name->str);
 641			goto error;
 642		}
 643		filemap_write_and_wait(bdev->bd_inode->i_mapping);
 644		invalidate_bdev(bdev);
 645		set_blocksize(bdev, 4096);
 646
 647		bh = btrfs_read_dev_super(bdev);
 648		if (!bh)
 649			goto error_close;
 650
 651		disk_super = (struct btrfs_super_block *)bh->b_data;
 652		devid = btrfs_stack_device_id(&disk_super->dev_item);
 653		if (devid != device->devid)
 654			goto error_brelse;
 655
 656		if (memcmp(device->uuid, disk_super->dev_item.uuid,
 657			   BTRFS_UUID_SIZE))
 658			goto error_brelse;
 659
 660		device->generation = btrfs_super_generation(disk_super);
 661		if (!latest_transid || device->generation > latest_transid) {
 662			latest_devid = devid;
 663			latest_transid = device->generation;
 664			latest_bdev = bdev;
 665		}
 666
 667		if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
 668			device->writeable = 0;
 669		} else {
 670			device->writeable = !bdev_read_only(bdev);
 671			seeding = 0;
 672		}
 
 
 
 673
 674		q = bdev_get_queue(bdev);
 675		if (blk_queue_discard(q)) {
 676			device->can_discard = 1;
 677			fs_devices->num_can_discard++;
 678		}
 679
 680		device->bdev = bdev;
 681		device->in_fs_metadata = 0;
 682		device->mode = flags;
 683
 684		if (!blk_queue_nonrot(bdev_get_queue(bdev)))
 685			fs_devices->rotating = 1;
 
 
 686
 687		fs_devices->open_devices++;
 688		if (device->writeable) {
 689			fs_devices->rw_devices++;
 690			list_add(&device->dev_alloc_list,
 691				 &fs_devices->alloc_list);
 692		}
 693		brelse(bh);
 694		continue;
 695
 696error_brelse:
 697		brelse(bh);
 698error_close:
 699		blkdev_put(bdev, flags);
 700error:
 701		continue;
 702	}
 703	if (fs_devices->open_devices == 0) {
 704		ret = -EINVAL;
 705		goto out;
 706	}
 707	fs_devices->seeding = seeding;
 708	fs_devices->opened = 1;
 709	fs_devices->latest_bdev = latest_bdev;
 710	fs_devices->latest_devid = latest_devid;
 711	fs_devices->latest_trans = latest_transid;
 712	fs_devices->total_rw_bytes = 0;
 713out:
 714	return ret;
 715}
 716
 717int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
 718		       fmode_t flags, void *holder)
 719{
 720	int ret;
 721
 722	mutex_lock(&uuid_mutex);
 
 
 
 
 
 
 
 
 723	if (fs_devices->opened) {
 724		fs_devices->opened++;
 725		ret = 0;
 726	} else {
 727		ret = __btrfs_open_devices(fs_devices, flags, holder);
 
 728	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 729	mutex_unlock(&uuid_mutex);
 
 730	return ret;
 731}
 732
 733int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
 734			  struct btrfs_fs_devices **fs_devices_ret)
 
 
 
 
 
 735{
 736	struct btrfs_super_block *disk_super;
 
 
 737	struct block_device *bdev;
 738	struct buffer_head *bh;
 739	int ret;
 740	u64 devid;
 741	u64 transid;
 742
 
 
 
 
 
 
 
 
 743	flags |= FMODE_EXCL;
 
 744	bdev = blkdev_get_by_path(path, flags, holder);
 
 
 745
 746	if (IS_ERR(bdev)) {
 747		ret = PTR_ERR(bdev);
 748		goto error;
 
 
 749	}
 750
 751	mutex_lock(&uuid_mutex);
 752	ret = set_blocksize(bdev, 4096);
 753	if (ret)
 754		goto error_close;
 755	bh = btrfs_read_dev_super(bdev);
 756	if (!bh) {
 757		ret = -EINVAL;
 758		goto error_close;
 759	}
 760	disk_super = (struct btrfs_super_block *)bh->b_data;
 761	devid = btrfs_stack_device_id(&disk_super->dev_item);
 762	transid = btrfs_super_generation(disk_super);
 763	if (disk_super->label[0])
 764		printk(KERN_INFO "device label %s ", disk_super->label);
 765	else
 766		printk(KERN_INFO "device fsid %pU ", disk_super->fsid);
 767	printk(KERN_CONT "devid %llu transid %llu %s\n",
 768	       (unsigned long long)devid, (unsigned long long)transid, path);
 769	ret = device_list_add(path, disk_super, devid, fs_devices_ret);
 770
 771	brelse(bh);
 772error_close:
 773	mutex_unlock(&uuid_mutex);
 
 
 
 
 774	blkdev_put(bdev, flags);
 775error:
 776	return ret;
 777}
 778
 779/* helper to account the used device space in the range */
 780int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
 781				   u64 end, u64 *length)
 
 
 
 782{
 783	struct btrfs_key key;
 784	struct btrfs_root *root = device->dev_root;
 785	struct btrfs_dev_extent *dev_extent;
 786	struct btrfs_path *path;
 787	u64 extent_end;
 788	int ret;
 789	int slot;
 790	struct extent_buffer *l;
 791
 792	*length = 0;
 793
 794	if (start >= device->total_bytes)
 795		return 0;
 796
 797	path = btrfs_alloc_path();
 798	if (!path)
 799		return -ENOMEM;
 800	path->reada = 2;
 801
 802	key.objectid = device->devid;
 803	key.offset = start;
 804	key.type = BTRFS_DEV_EXTENT_KEY;
 
 
 
 
 
 
 805
 806	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 807	if (ret < 0)
 808		goto out;
 809	if (ret > 0) {
 810		ret = btrfs_previous_item(root, path, key.objectid, key.type);
 811		if (ret < 0)
 812			goto out;
 
 
 
 
 
 
 
 813	}
 
 814
 815	while (1) {
 816		l = path->nodes[0];
 817		slot = path->slots[0];
 818		if (slot >= btrfs_header_nritems(l)) {
 819			ret = btrfs_next_leaf(root, path);
 820			if (ret == 0)
 821				continue;
 822			if (ret < 0)
 823				goto out;
 824
 825			break;
 
 
 
 
 
 
 
 
 
 
 
 826		}
 827		btrfs_item_key_to_cpu(l, &key, slot);
 828
 829		if (key.objectid < device->devid)
 830			goto next;
 831
 832		if (key.objectid > device->devid)
 833			break;
 
 834
 835		if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
 836			goto next;
 
 
 
 
 837
 838		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
 839		extent_end = key.offset + btrfs_dev_extent_length(l,
 840								  dev_extent);
 841		if (key.offset <= start && extent_end > end) {
 842			*length = end - start + 1;
 843			break;
 844		} else if (key.offset <= start && extent_end > start)
 845			*length += extent_end - start;
 846		else if (key.offset > start && extent_end <= end)
 847			*length += extent_end - key.offset;
 848		else if (key.offset > start && key.offset <= end) {
 849			*length += end - key.offset + 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 850			break;
 851		} else if (key.offset > end)
 
 
 
 
 
 
 
 
 
 852			break;
 
 
 
 853
 854next:
 855		path->slots[0]++;
 856	}
 857	ret = 0;
 858out:
 859	btrfs_free_path(path);
 860	return ret;
 861}
 862
 863/*
 864 * find_free_dev_extent - find free space in the specified device
 865 * @device:	the device which we search the free space in
 866 * @num_bytes:	the size of the free space that we need
 867 * @start:	store the start of the free space.
 868 * @len:	the size of the free space. that we find, or the size of the max
 869 * 		free space if we don't find suitable free space
 870 *
 871 * this uses a pretty simple search, the expectation is that it is
 872 * called very infrequently and that a given device has a small number
 873 * of extents
 
 874 *
 875 * @start is used to store the start of the free space if we find. But if we
 876 * don't find suitable free space, it will be used to store the start position
 877 * of the max free space.
 878 *
 879 * @len is used to store the size of the free space that we find.
 880 * But if we don't find suitable free space, it is used to store the size of
 881 * the max free space.
 
 
 
 
 
 
 882 */
 883int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
 884			 u64 *start, u64 *len)
 
 885{
 
 
 886	struct btrfs_key key;
 887	struct btrfs_root *root = device->dev_root;
 888	struct btrfs_dev_extent *dev_extent;
 889	struct btrfs_path *path;
 890	u64 hole_size;
 891	u64 max_hole_start;
 892	u64 max_hole_size;
 893	u64 extent_end;
 894	u64 search_start;
 895	u64 search_end = device->total_bytes;
 896	int ret;
 897	int slot;
 898	struct extent_buffer *l;
 899
 900	/* FIXME use last free of some kind */
 901
 902	/* we don't want to overwrite the superblock on the drive,
 903	 * so we make sure to start at an offset of at least 1MB
 904	 */
 905	search_start = max(root->fs_info->alloc_start, 1024ull * 1024);
 
 
 906
 907	max_hole_start = search_start;
 908	max_hole_size = 0;
 909	hole_size = 0;
 910
 911	if (search_start >= search_end) {
 
 
 912		ret = -ENOSPC;
 913		goto error;
 914	}
 915
 916	path = btrfs_alloc_path();
 917	if (!path) {
 918		ret = -ENOMEM;
 919		goto error;
 920	}
 921	path->reada = 2;
 922
 923	key.objectid = device->devid;
 924	key.offset = search_start;
 925	key.type = BTRFS_DEV_EXTENT_KEY;
 926
 927	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 928	if (ret < 0)
 929		goto out;
 930	if (ret > 0) {
 931		ret = btrfs_previous_item(root, path, key.objectid, key.type);
 932		if (ret < 0)
 933			goto out;
 934	}
 935
 936	while (1) {
 937		l = path->nodes[0];
 938		slot = path->slots[0];
 939		if (slot >= btrfs_header_nritems(l)) {
 940			ret = btrfs_next_leaf(root, path);
 941			if (ret == 0)
 942				continue;
 943			if (ret < 0)
 944				goto out;
 945
 946			break;
 947		}
 948		btrfs_item_key_to_cpu(l, &key, slot);
 949
 950		if (key.objectid < device->devid)
 951			goto next;
 952
 953		if (key.objectid > device->devid)
 954			break;
 955
 956		if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
 957			goto next;
 958
 
 
 
 959		if (key.offset > search_start) {
 960			hole_size = key.offset - search_start;
 
 
 961
 962			if (hole_size > max_hole_size) {
 963				max_hole_start = search_start;
 964				max_hole_size = hole_size;
 965			}
 966
 967			/*
 968			 * If this free space is greater than which we need,
 969			 * it must be the max free space that we have found
 970			 * until now, so max_hole_start must point to the start
 971			 * of this free space and the length of this free space
 972			 * is stored in max_hole_size. Thus, we return
 973			 * max_hole_start and max_hole_size and go back to the
 974			 * caller.
 975			 */
 976			if (hole_size >= num_bytes) {
 977				ret = 0;
 978				goto out;
 979			}
 980		}
 981
 982		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
 983		extent_end = key.offset + btrfs_dev_extent_length(l,
 984								  dev_extent);
 985		if (extent_end > search_start)
 986			search_start = extent_end;
 987next:
 988		path->slots[0]++;
 989		cond_resched();
 990	}
 991
 992	/*
 993	 * At this point, search_start should be the end of
 994	 * allocated dev extents, and when shrinking the device,
 995	 * search_end may be smaller than search_start.
 996	 */
 997	if (search_end > search_start)
 998		hole_size = search_end - search_start;
 
 
 
 
 
 999
1000	if (hole_size > max_hole_size) {
1001		max_hole_start = search_start;
1002		max_hole_size = hole_size;
 
1003	}
1004
1005	/* See above. */
1006	if (hole_size < num_bytes)
1007		ret = -ENOSPC;
1008	else
1009		ret = 0;
1010
 
1011out:
1012	btrfs_free_path(path);
1013error:
1014	*start = max_hole_start;
1015	if (len)
1016		*len = max_hole_size;
1017	return ret;
1018}
1019
 
 
 
 
 
 
 
1020static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1021			  struct btrfs_device *device,
1022			  u64 start)
1023{
 
 
1024	int ret;
1025	struct btrfs_path *path;
1026	struct btrfs_root *root = device->dev_root;
1027	struct btrfs_key key;
1028	struct btrfs_key found_key;
1029	struct extent_buffer *leaf = NULL;
1030	struct btrfs_dev_extent *extent = NULL;
1031
1032	path = btrfs_alloc_path();
1033	if (!path)
1034		return -ENOMEM;
1035
1036	key.objectid = device->devid;
1037	key.offset = start;
1038	key.type = BTRFS_DEV_EXTENT_KEY;
1039again:
1040	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1041	if (ret > 0) {
1042		ret = btrfs_previous_item(root, path, key.objectid,
1043					  BTRFS_DEV_EXTENT_KEY);
1044		if (ret)
1045			goto out;
1046		leaf = path->nodes[0];
1047		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1048		extent = btrfs_item_ptr(leaf, path->slots[0],
1049					struct btrfs_dev_extent);
1050		BUG_ON(found_key.offset > start || found_key.offset +
1051		       btrfs_dev_extent_length(leaf, extent) < start);
1052		key = found_key;
1053		btrfs_release_path(path);
1054		goto again;
1055	} else if (ret == 0) {
1056		leaf = path->nodes[0];
1057		extent = btrfs_item_ptr(leaf, path->slots[0],
1058					struct btrfs_dev_extent);
1059	} else {
1060		btrfs_error(root->fs_info, ret, "Slot search failed");
1061		goto out;
1062	}
1063
1064	if (device->bytes_used > 0) {
1065		u64 len = btrfs_dev_extent_length(leaf, extent);
1066		device->bytes_used -= len;
1067		spin_lock(&root->fs_info->free_chunk_lock);
1068		root->fs_info->free_chunk_space += len;
1069		spin_unlock(&root->fs_info->free_chunk_lock);
1070	}
1071	ret = btrfs_del_item(trans, root, path);
1072	if (ret) {
1073		btrfs_error(root->fs_info, ret,
1074			    "Failed to remove dev extent item");
1075	}
1076out:
1077	btrfs_free_path(path);
1078	return ret;
1079}
1080
1081int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1082			   struct btrfs_device *device,
1083			   u64 chunk_tree, u64 chunk_objectid,
1084			   u64 chunk_offset, u64 start, u64 num_bytes)
1085{
1086	int ret;
1087	struct btrfs_path *path;
1088	struct btrfs_root *root = device->dev_root;
1089	struct btrfs_dev_extent *extent;
1090	struct extent_buffer *leaf;
1091	struct btrfs_key key;
1092
1093	WARN_ON(!device->in_fs_metadata);
1094	path = btrfs_alloc_path();
1095	if (!path)
1096		return -ENOMEM;
1097
1098	key.objectid = device->devid;
1099	key.offset = start;
1100	key.type = BTRFS_DEV_EXTENT_KEY;
1101	ret = btrfs_insert_empty_item(trans, root, path, &key,
1102				      sizeof(*extent));
1103	if (ret)
1104		goto out;
1105
1106	leaf = path->nodes[0];
1107	extent = btrfs_item_ptr(leaf, path->slots[0],
1108				struct btrfs_dev_extent);
1109	btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1110	btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1111	btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1112
1113	write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
1114		    (unsigned long)btrfs_dev_extent_chunk_tree_uuid(extent),
1115		    BTRFS_UUID_SIZE);
1116
1117	btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1118	btrfs_mark_buffer_dirty(leaf);
 
1119out:
1120	btrfs_free_path(path);
1121	return ret;
1122}
1123
1124static noinline int find_next_chunk(struct btrfs_root *root,
1125				    u64 objectid, u64 *offset)
1126{
1127	struct btrfs_path *path;
1128	int ret;
1129	struct btrfs_key key;
1130	struct btrfs_chunk *chunk;
1131	struct btrfs_key found_key;
1132
1133	path = btrfs_alloc_path();
1134	if (!path)
1135		return -ENOMEM;
1136
1137	key.objectid = objectid;
1138	key.offset = (u64)-1;
1139	key.type = BTRFS_CHUNK_ITEM_KEY;
1140
1141	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1142	if (ret < 0)
1143		goto error;
1144
1145	BUG_ON(ret == 0); /* Corruption */
1146
1147	ret = btrfs_previous_item(root, path, 0, BTRFS_CHUNK_ITEM_KEY);
1148	if (ret) {
1149		*offset = 0;
1150	} else {
1151		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1152				      path->slots[0]);
1153		if (found_key.objectid != objectid)
1154			*offset = 0;
1155		else {
1156			chunk = btrfs_item_ptr(path->nodes[0], path->slots[0],
1157					       struct btrfs_chunk);
1158			*offset = found_key.offset +
1159				btrfs_chunk_length(path->nodes[0], chunk);
1160		}
1161	}
1162	ret = 0;
1163error:
1164	btrfs_free_path(path);
1165	return ret;
1166}
1167
1168static noinline int find_next_devid(struct btrfs_root *root, u64 *objectid)
 
1169{
1170	int ret;
1171	struct btrfs_key key;
1172	struct btrfs_key found_key;
1173	struct btrfs_path *path;
1174
1175	root = root->fs_info->chunk_root;
1176
1177	path = btrfs_alloc_path();
1178	if (!path)
1179		return -ENOMEM;
1180
1181	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1182	key.type = BTRFS_DEV_ITEM_KEY;
1183	key.offset = (u64)-1;
1184
1185	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1186	if (ret < 0)
1187		goto error;
1188
1189	BUG_ON(ret == 0); /* Corruption */
 
 
 
 
 
1190
1191	ret = btrfs_previous_item(root, path, BTRFS_DEV_ITEMS_OBJECTID,
 
1192				  BTRFS_DEV_ITEM_KEY);
1193	if (ret) {
1194		*objectid = 1;
1195	} else {
1196		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1197				      path->slots[0]);
1198		*objectid = found_key.offset + 1;
1199	}
1200	ret = 0;
1201error:
1202	btrfs_free_path(path);
1203	return ret;
1204}
1205
1206/*
1207 * the device information is stored in the chunk root
1208 * the btrfs_device struct should be fully filled in
1209 */
1210int btrfs_add_device(struct btrfs_trans_handle *trans,
1211		     struct btrfs_root *root,
1212		     struct btrfs_device *device)
1213{
1214	int ret;
1215	struct btrfs_path *path;
1216	struct btrfs_dev_item *dev_item;
1217	struct extent_buffer *leaf;
1218	struct btrfs_key key;
1219	unsigned long ptr;
1220
1221	root = root->fs_info->chunk_root;
1222
1223	path = btrfs_alloc_path();
1224	if (!path)
1225		return -ENOMEM;
1226
1227	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1228	key.type = BTRFS_DEV_ITEM_KEY;
1229	key.offset = device->devid;
1230
1231	ret = btrfs_insert_empty_item(trans, root, path, &key,
1232				      sizeof(*dev_item));
 
 
1233	if (ret)
1234		goto out;
1235
1236	leaf = path->nodes[0];
1237	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1238
1239	btrfs_set_device_id(leaf, dev_item, device->devid);
1240	btrfs_set_device_generation(leaf, dev_item, 0);
1241	btrfs_set_device_type(leaf, dev_item, device->type);
1242	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1243	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1244	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1245	btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
1246	btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
 
 
1247	btrfs_set_device_group(leaf, dev_item, 0);
1248	btrfs_set_device_seek_speed(leaf, dev_item, 0);
1249	btrfs_set_device_bandwidth(leaf, dev_item, 0);
1250	btrfs_set_device_start_offset(leaf, dev_item, 0);
1251
1252	ptr = (unsigned long)btrfs_device_uuid(dev_item);
1253	write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1254	ptr = (unsigned long)btrfs_device_fsid(dev_item);
1255	write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
 
1256	btrfs_mark_buffer_dirty(leaf);
1257
1258	ret = 0;
1259out:
1260	btrfs_free_path(path);
1261	return ret;
1262}
1263
1264static int btrfs_rm_dev_item(struct btrfs_root *root,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1265			     struct btrfs_device *device)
1266{
 
1267	int ret;
1268	struct btrfs_path *path;
1269	struct btrfs_key key;
1270	struct btrfs_trans_handle *trans;
1271
1272	root = root->fs_info->chunk_root;
1273
1274	path = btrfs_alloc_path();
1275	if (!path)
1276		return -ENOMEM;
1277
1278	trans = btrfs_start_transaction(root, 0);
1279	if (IS_ERR(trans)) {
1280		btrfs_free_path(path);
1281		return PTR_ERR(trans);
1282	}
1283	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1284	key.type = BTRFS_DEV_ITEM_KEY;
1285	key.offset = device->devid;
1286	lock_chunks(root);
1287
 
1288	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1289	if (ret < 0)
1290		goto out;
1291
1292	if (ret > 0) {
1293		ret = -ENOENT;
1294		goto out;
1295	}
1296
1297	ret = btrfs_del_item(trans, root, path);
1298	if (ret)
1299		goto out;
1300out:
1301	btrfs_free_path(path);
1302	unlock_chunks(root);
1303	btrfs_commit_transaction(trans, root);
1304	return ret;
1305}
1306
1307int btrfs_rm_device(struct btrfs_root *root, char *device_path)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1308{
1309	struct btrfs_device *device;
1310	struct btrfs_device *next_device;
1311	struct block_device *bdev;
1312	struct buffer_head *bh = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1313	struct btrfs_super_block *disk_super;
1314	struct btrfs_fs_devices *cur_devices;
1315	u64 all_avail;
1316	u64 devid;
1317	u64 num_devices;
1318	u8 *dev_uuid;
1319	int ret = 0;
1320	bool clear_super = false;
1321
1322	mutex_lock(&uuid_mutex);
 
 
1323
1324	all_avail = root->fs_info->avail_data_alloc_bits |
1325		root->fs_info->avail_system_alloc_bits |
1326		root->fs_info->avail_metadata_alloc_bits;
1327
1328	if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) &&
1329	    root->fs_info->fs_devices->num_devices <= 4) {
1330		printk(KERN_ERR "btrfs: unable to go below four devices "
1331		       "on raid10\n");
1332		ret = -EINVAL;
1333		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1334	}
1335
1336	if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) &&
1337	    root->fs_info->fs_devices->num_devices <= 2) {
1338		printk(KERN_ERR "btrfs: unable to go below two "
1339		       "devices on raid1\n");
1340		ret = -EINVAL;
1341		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1342	}
1343
1344	if (strcmp(device_path, "missing") == 0) {
1345		struct list_head *devices;
1346		struct btrfs_device *tmp;
 
 
 
1347
1348		device = NULL;
1349		devices = &root->fs_info->fs_devices->devices;
1350		/*
1351		 * It is safe to read the devices since the volume_mutex
1352		 * is held.
1353		 */
1354		list_for_each_entry(tmp, devices, dev_list) {
1355			if (tmp->in_fs_metadata && !tmp->bdev) {
1356				device = tmp;
1357				break;
1358			}
1359		}
1360		bdev = NULL;
1361		bh = NULL;
1362		disk_super = NULL;
1363		if (!device) {
1364			printk(KERN_ERR "btrfs: no missing devices found to "
1365			       "remove\n");
1366			goto out;
1367		}
1368	} else {
1369		bdev = blkdev_get_by_path(device_path, FMODE_READ | FMODE_EXCL,
1370					  root->fs_info->bdev_holder);
1371		if (IS_ERR(bdev)) {
1372			ret = PTR_ERR(bdev);
1373			goto out;
1374		}
1375
1376		set_blocksize(bdev, 4096);
1377		invalidate_bdev(bdev);
1378		bh = btrfs_read_dev_super(bdev);
1379		if (!bh) {
1380			ret = -EINVAL;
1381			goto error_close;
1382		}
1383		disk_super = (struct btrfs_super_block *)bh->b_data;
1384		devid = btrfs_stack_device_id(&disk_super->dev_item);
1385		dev_uuid = disk_super->dev_item.uuid;
1386		device = btrfs_find_device(root, devid, dev_uuid,
1387					   disk_super->fsid);
1388		if (!device) {
1389			ret = -ENOENT;
1390			goto error_brelse;
1391		}
1392	}
1393
1394	if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
1395		printk(KERN_ERR "btrfs: unable to remove the only writeable "
1396		       "device\n");
1397		ret = -EINVAL;
1398		goto error_brelse;
1399	}
 
 
 
 
 
 
 
1400
1401	if (device->writeable) {
1402		lock_chunks(root);
1403		list_del_init(&device->dev_alloc_list);
1404		unlock_chunks(root);
1405		root->fs_info->fs_devices->rw_devices--;
1406		clear_super = true;
1407	}
1408
1409	ret = btrfs_shrink_device(device, 0);
1410	if (ret)
1411		goto error_undo;
1412
1413	ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1414	if (ret)
 
1415		goto error_undo;
 
1416
1417	spin_lock(&root->fs_info->free_chunk_lock);
1418	root->fs_info->free_chunk_space = device->total_bytes -
1419		device->bytes_used;
1420	spin_unlock(&root->fs_info->free_chunk_lock);
 
 
 
 
 
 
1421
1422	device->in_fs_metadata = 0;
1423	btrfs_scrub_cancel_dev(root, device);
1424
1425	/*
1426	 * the device list mutex makes sure that we don't change
1427	 * the device list while someone else is writing out all
1428	 * the device supers.
 
 
 
 
1429	 */
1430
 
 
 
 
 
1431	cur_devices = device->fs_devices;
1432	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1433	list_del_rcu(&device->dev_list);
1434
1435	device->fs_devices->num_devices--;
 
 
 
 
1436
1437	if (device->missing)
1438		root->fs_info->fs_devices->missing_devices--;
1439
1440	next_device = list_entry(root->fs_info->fs_devices->devices.next,
1441				 struct btrfs_device, dev_list);
1442	if (device->bdev == root->fs_info->sb->s_bdev)
1443		root->fs_info->sb->s_bdev = next_device->bdev;
1444	if (device->bdev == root->fs_info->fs_devices->latest_bdev)
1445		root->fs_info->fs_devices->latest_bdev = next_device->bdev;
1446
1447	if (device->bdev)
1448		device->fs_devices->open_devices--;
1449
1450	call_rcu(&device->rcu, free_device);
1451	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1452
1453	num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
1454	btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices);
 
1455
1456	if (cur_devices->open_devices == 0) {
1457		struct btrfs_fs_devices *fs_devices;
1458		fs_devices = root->fs_info->fs_devices;
1459		while (fs_devices) {
1460			if (fs_devices->seed == cur_devices)
1461				break;
1462			fs_devices = fs_devices->seed;
 
 
 
 
 
 
 
 
 
1463		}
1464		fs_devices->seed = cur_devices->seed;
1465		cur_devices->seed = NULL;
1466		lock_chunks(root);
1467		__btrfs_close_devices(cur_devices);
1468		unlock_chunks(root);
1469		free_fs_devices(cur_devices);
1470	}
1471
 
 
 
 
 
1472	/*
1473	 * at this point, the device is zero sized.  We want to
1474	 * remove it from the devices list and zero out the old super
 
 
 
1475	 */
1476	if (clear_super) {
1477		/* make sure this device isn't detected as part of
1478		 * the FS anymore
1479		 */
1480		memset(&disk_super->magic, 0, sizeof(disk_super->magic));
1481		set_buffer_dirty(bh);
1482		sync_dirty_buffer(bh);
1483	}
1484
1485	ret = 0;
1486
1487error_brelse:
1488	brelse(bh);
1489error_close:
1490	if (bdev)
1491		blkdev_put(bdev, FMODE_READ | FMODE_EXCL);
1492out:
1493	mutex_unlock(&uuid_mutex);
1494	return ret;
 
1495error_undo:
1496	if (device->writeable) {
1497		lock_chunks(root);
1498		list_add(&device->dev_alloc_list,
1499			 &root->fs_info->fs_devices->alloc_list);
1500		unlock_chunks(root);
1501		root->fs_info->fs_devices->rw_devices++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1502	}
1503	goto error_brelse;
 
 
 
 
 
 
 
 
 
1504}
1505
1506/*
1507 * does all the dirty work required for changing file system's UUID.
 
 
1508 */
1509static int btrfs_prepare_sprout(struct btrfs_root *root)
1510{
1511	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1512	struct btrfs_fs_devices *old_devices;
1513	struct btrfs_fs_devices *seed_devices;
1514	struct btrfs_super_block *disk_super = root->fs_info->super_copy;
1515	struct btrfs_device *device;
1516	u64 super_flags;
1517
1518	BUG_ON(!mutex_is_locked(&uuid_mutex));
1519	if (!fs_devices->seeding)
1520		return -EINVAL;
1521
1522	seed_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
1523	if (!seed_devices)
1524		return -ENOMEM;
 
 
 
 
1525
 
 
 
 
 
 
1526	old_devices = clone_fs_devices(fs_devices);
1527	if (IS_ERR(old_devices)) {
1528		kfree(seed_devices);
1529		return PTR_ERR(old_devices);
1530	}
1531
1532	list_add(&old_devices->list, &fs_uuids);
1533
1534	memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
1535	seed_devices->opened = 1;
1536	INIT_LIST_HEAD(&seed_devices->devices);
1537	INIT_LIST_HEAD(&seed_devices->alloc_list);
1538	mutex_init(&seed_devices->device_list_mutex);
1539
1540	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1541	list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
1542			      synchronize_rcu);
1543	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1544
1545	list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
1546	list_for_each_entry(device, &seed_devices->devices, dev_list) {
1547		device->fs_devices = seed_devices;
1548	}
1549
1550	fs_devices->seeding = 0;
1551	fs_devices->num_devices = 0;
1552	fs_devices->open_devices = 0;
1553	fs_devices->seed = seed_devices;
 
 
1554
1555	generate_random_uuid(fs_devices->fsid);
1556	memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1557	memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
 
1558	super_flags = btrfs_super_flags(disk_super) &
1559		      ~BTRFS_SUPER_FLAG_SEEDING;
1560	btrfs_set_super_flags(disk_super, super_flags);
1561
1562	return 0;
1563}
1564
1565/*
1566 * strore the expected generation for seed devices in device items.
1567 */
1568static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
1569			       struct btrfs_root *root)
1570{
 
 
 
1571	struct btrfs_path *path;
1572	struct extent_buffer *leaf;
1573	struct btrfs_dev_item *dev_item;
1574	struct btrfs_device *device;
1575	struct btrfs_key key;
1576	u8 fs_uuid[BTRFS_UUID_SIZE];
1577	u8 dev_uuid[BTRFS_UUID_SIZE];
1578	u64 devid;
1579	int ret;
1580
1581	path = btrfs_alloc_path();
1582	if (!path)
1583		return -ENOMEM;
1584
1585	root = root->fs_info->chunk_root;
1586	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1587	key.offset = 0;
1588	key.type = BTRFS_DEV_ITEM_KEY;
1589
1590	while (1) {
 
1591		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
 
1592		if (ret < 0)
1593			goto error;
1594
1595		leaf = path->nodes[0];
1596next_slot:
1597		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1598			ret = btrfs_next_leaf(root, path);
1599			if (ret > 0)
1600				break;
1601			if (ret < 0)
1602				goto error;
1603			leaf = path->nodes[0];
1604			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1605			btrfs_release_path(path);
1606			continue;
1607		}
1608
1609		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1610		if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
1611		    key.type != BTRFS_DEV_ITEM_KEY)
1612			break;
1613
1614		dev_item = btrfs_item_ptr(leaf, path->slots[0],
1615					  struct btrfs_dev_item);
1616		devid = btrfs_device_id(leaf, dev_item);
1617		read_extent_buffer(leaf, dev_uuid,
1618				   (unsigned long)btrfs_device_uuid(dev_item),
1619				   BTRFS_UUID_SIZE);
1620		read_extent_buffer(leaf, fs_uuid,
1621				   (unsigned long)btrfs_device_fsid(dev_item),
1622				   BTRFS_UUID_SIZE);
1623		device = btrfs_find_device(root, devid, dev_uuid, fs_uuid);
 
 
 
 
1624		BUG_ON(!device); /* Logic error */
1625
1626		if (device->fs_devices->seeding) {
1627			btrfs_set_device_generation(leaf, dev_item,
1628						    device->generation);
1629			btrfs_mark_buffer_dirty(leaf);
1630		}
1631
1632		path->slots[0]++;
1633		goto next_slot;
1634	}
1635	ret = 0;
1636error:
1637	btrfs_free_path(path);
1638	return ret;
1639}
1640
1641int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
1642{
1643	struct request_queue *q;
1644	struct btrfs_trans_handle *trans;
1645	struct btrfs_device *device;
1646	struct block_device *bdev;
1647	struct list_head *devices;
1648	struct super_block *sb = root->fs_info->sb;
1649	struct rcu_string *name;
1650	u64 total_bytes;
1651	int seeding_dev = 0;
1652	int ret = 0;
 
 
1653
1654	if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
1655		return -EROFS;
1656
1657	bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
1658				  root->fs_info->bdev_holder);
1659	if (IS_ERR(bdev))
1660		return PTR_ERR(bdev);
1661
1662	if (root->fs_info->fs_devices->seeding) {
1663		seeding_dev = 1;
 
 
 
 
 
1664		down_write(&sb->s_umount);
1665		mutex_lock(&uuid_mutex);
 
1666	}
1667
1668	filemap_write_and_wait(bdev->bd_inode->i_mapping);
1669
1670	devices = &root->fs_info->fs_devices->devices;
1671	/*
1672	 * we have the volume lock, so we don't need the extra
1673	 * device list mutex while reading the list here.
1674	 */
1675	list_for_each_entry(device, devices, dev_list) {
1676		if (device->bdev == bdev) {
1677			ret = -EEXIST;
 
1678			goto error;
1679		}
1680	}
 
1681
1682	device = kzalloc(sizeof(*device), GFP_NOFS);
1683	if (!device) {
1684		/* we can safely leave the fs_devices entry around */
1685		ret = -ENOMEM;
1686		goto error;
1687	}
1688
1689	name = rcu_string_strdup(device_path, GFP_NOFS);
1690	if (!name) {
1691		kfree(device);
1692		ret = -ENOMEM;
1693		goto error;
1694	}
1695	rcu_assign_pointer(device->name, name);
1696
1697	ret = find_next_devid(root, &device->devid);
1698	if (ret) {
1699		rcu_string_free(device->name);
1700		kfree(device);
1701		goto error;
1702	}
1703
1704	trans = btrfs_start_transaction(root, 0);
1705	if (IS_ERR(trans)) {
1706		rcu_string_free(device->name);
1707		kfree(device);
1708		ret = PTR_ERR(trans);
1709		goto error;
1710	}
1711
1712	lock_chunks(root);
1713
1714	q = bdev_get_queue(bdev);
1715	if (blk_queue_discard(q))
1716		device->can_discard = 1;
1717	device->writeable = 1;
1718	device->work.func = pending_bios_fn;
1719	generate_random_uuid(device->uuid);
1720	spin_lock_init(&device->io_lock);
1721	device->generation = trans->transid;
1722	device->io_width = root->sectorsize;
1723	device->io_align = root->sectorsize;
1724	device->sector_size = root->sectorsize;
1725	device->total_bytes = i_size_read(bdev->bd_inode);
 
1726	device->disk_total_bytes = device->total_bytes;
1727	device->dev_root = root->fs_info->dev_root;
1728	device->bdev = bdev;
1729	device->in_fs_metadata = 1;
1730	device->mode = FMODE_EXCL;
1731	set_blocksize(device->bdev, 4096);
 
1732
1733	if (seeding_dev) {
1734		sb->s_flags &= ~MS_RDONLY;
1735		ret = btrfs_prepare_sprout(root);
1736		BUG_ON(ret); /* -ENOMEM */
1737	}
1738
1739	device->fs_devices = root->fs_info->fs_devices;
1740
1741	/*
1742	 * we don't want write_supers to jump in here with our device
1743	 * half setup
1744	 */
1745	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1746	list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices);
1747	list_add(&device->dev_alloc_list,
1748		 &root->fs_info->fs_devices->alloc_list);
1749	root->fs_info->fs_devices->num_devices++;
1750	root->fs_info->fs_devices->open_devices++;
1751	root->fs_info->fs_devices->rw_devices++;
1752	if (device->can_discard)
1753		root->fs_info->fs_devices->num_can_discard++;
1754	root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
1755
1756	spin_lock(&root->fs_info->free_chunk_lock);
1757	root->fs_info->free_chunk_space += device->total_bytes;
1758	spin_unlock(&root->fs_info->free_chunk_lock);
1759
1760	if (!blk_queue_nonrot(bdev_get_queue(bdev)))
1761		root->fs_info->fs_devices->rotating = 1;
1762
1763	total_bytes = btrfs_super_total_bytes(root->fs_info->super_copy);
1764	btrfs_set_super_total_bytes(root->fs_info->super_copy,
1765				    total_bytes + device->total_bytes);
1766
1767	total_bytes = btrfs_super_num_devices(root->fs_info->super_copy);
1768	btrfs_set_super_num_devices(root->fs_info->super_copy,
1769				    total_bytes + 1);
1770	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1771
1772	if (seeding_dev) {
1773		ret = init_first_rw_device(trans, root, device);
1774		if (ret)
1775			goto error_trans;
1776		ret = btrfs_finish_sprout(trans, root);
1777		if (ret)
1778			goto error_trans;
1779	} else {
1780		ret = btrfs_add_device(trans, root, device);
1781		if (ret)
1782			goto error_trans;
 
 
 
 
 
 
 
 
1783	}
1784
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1785	/*
1786	 * we've got more storage, clear any full flags on the space
1787	 * infos
1788	 */
1789	btrfs_clear_space_info_full(root->fs_info);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1790
1791	unlock_chunks(root);
1792	ret = btrfs_commit_transaction(trans, root);
 
 
 
 
 
 
1793
1794	if (seeding_dev) {
1795		mutex_unlock(&uuid_mutex);
1796		up_write(&sb->s_umount);
 
1797
1798		if (ret) /* transaction commit */
1799			return ret;
1800
1801		ret = btrfs_relocate_sys_chunks(root);
1802		if (ret < 0)
1803			btrfs_error(root->fs_info, ret,
1804				    "Failed to relocate sys chunks after "
1805				    "device initialization. This can be fixed "
1806				    "using the \"btrfs balance\" command.");
 
 
 
 
 
 
 
1807	}
1808
 
 
 
 
 
 
 
 
 
 
 
 
1809	return ret;
1810
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1811error_trans:
1812	unlock_chunks(root);
1813	btrfs_abort_transaction(trans, root, ret);
1814	btrfs_end_transaction(trans, root);
1815	rcu_string_free(device->name);
1816	kfree(device);
 
 
 
1817error:
1818	blkdev_put(bdev, FMODE_EXCL);
1819	if (seeding_dev) {
1820		mutex_unlock(&uuid_mutex);
1821		up_write(&sb->s_umount);
1822	}
1823	return ret;
1824}
1825
1826static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
1827					struct btrfs_device *device)
1828{
1829	int ret;
1830	struct btrfs_path *path;
1831	struct btrfs_root *root;
1832	struct btrfs_dev_item *dev_item;
1833	struct extent_buffer *leaf;
1834	struct btrfs_key key;
1835
1836	root = device->dev_root->fs_info->chunk_root;
1837
1838	path = btrfs_alloc_path();
1839	if (!path)
1840		return -ENOMEM;
1841
1842	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1843	key.type = BTRFS_DEV_ITEM_KEY;
1844	key.offset = device->devid;
1845
1846	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1847	if (ret < 0)
1848		goto out;
1849
1850	if (ret > 0) {
1851		ret = -ENOENT;
1852		goto out;
1853	}
1854
1855	leaf = path->nodes[0];
1856	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1857
1858	btrfs_set_device_id(leaf, dev_item, device->devid);
1859	btrfs_set_device_type(leaf, dev_item, device->type);
1860	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1861	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1862	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1863	btrfs_set_device_total_bytes(leaf, dev_item, device->disk_total_bytes);
1864	btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
 
 
1865	btrfs_mark_buffer_dirty(leaf);
1866
1867out:
1868	btrfs_free_path(path);
1869	return ret;
1870}
1871
1872static int __btrfs_grow_device(struct btrfs_trans_handle *trans,
1873		      struct btrfs_device *device, u64 new_size)
1874{
1875	struct btrfs_super_block *super_copy =
1876		device->dev_root->fs_info->super_copy;
1877	u64 old_total = btrfs_super_total_bytes(super_copy);
1878	u64 diff = new_size - device->total_bytes;
 
1879
1880	if (!device->writeable)
1881		return -EACCES;
1882	if (new_size <= device->total_bytes)
 
 
 
 
 
 
 
 
 
1883		return -EINVAL;
 
1884
1885	btrfs_set_super_total_bytes(super_copy, old_total + diff);
 
1886	device->fs_devices->total_rw_bytes += diff;
1887
1888	device->total_bytes = new_size;
1889	device->disk_total_bytes = new_size;
1890	btrfs_clear_space_info_full(device->dev_root->fs_info);
 
 
 
 
1891
1892	return btrfs_update_device(trans, device);
1893}
 
1894
1895int btrfs_grow_device(struct btrfs_trans_handle *trans,
1896		      struct btrfs_device *device, u64 new_size)
1897{
1898	int ret;
1899	lock_chunks(device->dev_root);
1900	ret = __btrfs_grow_device(trans, device, new_size);
1901	unlock_chunks(device->dev_root);
1902	return ret;
1903}
1904
1905static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
1906			    struct btrfs_root *root,
1907			    u64 chunk_tree, u64 chunk_objectid,
1908			    u64 chunk_offset)
1909{
 
 
1910	int ret;
1911	struct btrfs_path *path;
1912	struct btrfs_key key;
1913
1914	root = root->fs_info->chunk_root;
1915	path = btrfs_alloc_path();
1916	if (!path)
1917		return -ENOMEM;
1918
1919	key.objectid = chunk_objectid;
1920	key.offset = chunk_offset;
1921	key.type = BTRFS_CHUNK_ITEM_KEY;
1922
1923	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1924	if (ret < 0)
1925		goto out;
1926	else if (ret > 0) { /* Logic error or corruption */
1927		btrfs_error(root->fs_info, -ENOENT,
1928			    "Failed lookup while freeing chunk.");
1929		ret = -ENOENT;
1930		goto out;
1931	}
1932
1933	ret = btrfs_del_item(trans, root, path);
1934	if (ret < 0)
1935		btrfs_error(root->fs_info, ret,
1936			    "Failed to delete chunk item.");
1937out:
1938	btrfs_free_path(path);
1939	return ret;
1940}
1941
1942static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
1943			chunk_offset)
1944{
1945	struct btrfs_super_block *super_copy = root->fs_info->super_copy;
1946	struct btrfs_disk_key *disk_key;
1947	struct btrfs_chunk *chunk;
1948	u8 *ptr;
1949	int ret = 0;
1950	u32 num_stripes;
1951	u32 array_size;
1952	u32 len = 0;
1953	u32 cur;
1954	struct btrfs_key key;
1955
 
1956	array_size = btrfs_super_sys_array_size(super_copy);
1957
1958	ptr = super_copy->sys_chunk_array;
1959	cur = 0;
1960
1961	while (cur < array_size) {
1962		disk_key = (struct btrfs_disk_key *)ptr;
1963		btrfs_disk_key_to_cpu(&key, disk_key);
1964
1965		len = sizeof(*disk_key);
1966
1967		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
1968			chunk = (struct btrfs_chunk *)(ptr + len);
1969			num_stripes = btrfs_stack_chunk_num_stripes(chunk);
1970			len += btrfs_chunk_item_size(num_stripes);
1971		} else {
1972			ret = -EIO;
1973			break;
1974		}
1975		if (key.objectid == chunk_objectid &&
1976		    key.offset == chunk_offset) {
1977			memmove(ptr, ptr + len, array_size - (cur + len));
1978			array_size -= len;
1979			btrfs_set_super_sys_array_size(super_copy, array_size);
1980		} else {
1981			ptr += len;
1982			cur += len;
1983		}
1984	}
1985	return ret;
1986}
1987
1988static int btrfs_relocate_chunk(struct btrfs_root *root,
1989			 u64 chunk_tree, u64 chunk_objectid,
1990			 u64 chunk_offset)
 
 
 
 
 
 
1991{
1992	struct extent_map_tree *em_tree;
1993	struct btrfs_root *extent_root;
1994	struct btrfs_trans_handle *trans;
1995	struct extent_map *em;
1996	struct map_lookup *map;
1997	int ret;
1998	int i;
1999
2000	root = root->fs_info->chunk_root;
2001	extent_root = root->fs_info->extent_root;
2002	em_tree = &root->fs_info->mapping_tree.map_tree;
 
2003
2004	ret = btrfs_can_relocate(extent_root, chunk_offset);
2005	if (ret)
2006		return -ENOSPC;
 
 
2007
2008	/* step one, relocate all the extents inside this chunk */
2009	ret = btrfs_relocate_block_group(extent_root, chunk_offset);
2010	if (ret)
2011		return ret;
 
 
 
2012
2013	trans = btrfs_start_transaction(root, 0);
2014	BUG_ON(IS_ERR(trans));
 
2015
2016	lock_chunks(root);
 
 
 
2017
2018	/*
2019	 * step two, delete the device extents and the
2020	 * chunk tree entries
 
2021	 */
2022	read_lock(&em_tree->lock);
2023	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
2024	read_unlock(&em_tree->lock);
 
2025
2026	BUG_ON(!em || em->start > chunk_offset ||
2027	       em->start + em->len < chunk_offset);
2028	map = (struct map_lookup *)em->bdev;
 
 
 
 
2029
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2030	for (i = 0; i < map->num_stripes; i++) {
2031		ret = btrfs_free_dev_extent(trans, map->stripes[i].dev,
2032					    map->stripes[i].physical);
2033		BUG_ON(ret);
 
 
 
 
 
 
2034
2035		if (map->stripes[i].dev) {
2036			ret = btrfs_update_device(trans, map->stripes[i].dev);
2037			BUG_ON(ret);
 
 
 
 
2038		}
2039	}
2040	ret = btrfs_free_chunk(trans, root, chunk_tree, chunk_objectid,
2041			       chunk_offset);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2042
2043	BUG_ON(ret);
 
 
 
 
 
 
 
 
2044
2045	trace_btrfs_chunk_free(root, map, chunk_offset, em->len);
2046
2047	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2048		ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
2049		BUG_ON(ret);
 
 
 
2050	}
2051
2052	ret = btrfs_remove_block_group(trans, extent_root, chunk_offset);
2053	BUG_ON(ret);
2054
2055	write_lock(&em_tree->lock);
2056	remove_extent_mapping(em_tree, em);
2057	write_unlock(&em_tree->lock);
 
 
2058
2059	kfree(map);
2060	em->bdev = NULL;
 
 
 
2061
2062	/* once for the tree */
2063	free_extent_map(em);
 
 
 
2064	/* once for us */
2065	free_extent_map(em);
 
 
2066
2067	unlock_chunks(root);
2068	btrfs_end_transaction(trans, root);
2069	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2070}
2071
2072static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
2073{
2074	struct btrfs_root *chunk_root = root->fs_info->chunk_root;
2075	struct btrfs_path *path;
2076	struct extent_buffer *leaf;
2077	struct btrfs_chunk *chunk;
2078	struct btrfs_key key;
2079	struct btrfs_key found_key;
2080	u64 chunk_tree = chunk_root->root_key.objectid;
2081	u64 chunk_type;
2082	bool retried = false;
2083	int failed = 0;
2084	int ret;
2085
2086	path = btrfs_alloc_path();
2087	if (!path)
2088		return -ENOMEM;
2089
2090again:
2091	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2092	key.offset = (u64)-1;
2093	key.type = BTRFS_CHUNK_ITEM_KEY;
2094
2095	while (1) {
 
2096		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2097		if (ret < 0)
 
2098			goto error;
 
2099		BUG_ON(ret == 0); /* Corruption */
2100
2101		ret = btrfs_previous_item(chunk_root, path, key.objectid,
2102					  key.type);
 
 
2103		if (ret < 0)
2104			goto error;
2105		if (ret > 0)
2106			break;
2107
2108		leaf = path->nodes[0];
2109		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2110
2111		chunk = btrfs_item_ptr(leaf, path->slots[0],
2112				       struct btrfs_chunk);
2113		chunk_type = btrfs_chunk_type(leaf, chunk);
2114		btrfs_release_path(path);
2115
2116		if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
2117			ret = btrfs_relocate_chunk(chunk_root, chunk_tree,
2118						   found_key.objectid,
2119						   found_key.offset);
2120			if (ret == -ENOSPC)
2121				failed++;
2122			else if (ret)
2123				BUG();
2124		}
 
2125
2126		if (found_key.offset == 0)
2127			break;
2128		key.offset = found_key.offset - 1;
2129	}
2130	ret = 0;
2131	if (failed && !retried) {
2132		failed = 0;
2133		retried = true;
2134		goto again;
2135	} else if (failed && retried) {
2136		WARN_ON(1);
2137		ret = -ENOSPC;
2138	}
2139error:
2140	btrfs_free_path(path);
2141	return ret;
2142}
2143
2144static int insert_balance_item(struct btrfs_root *root,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2145			       struct btrfs_balance_control *bctl)
2146{
 
2147	struct btrfs_trans_handle *trans;
2148	struct btrfs_balance_item *item;
2149	struct btrfs_disk_balance_args disk_bargs;
2150	struct btrfs_path *path;
2151	struct extent_buffer *leaf;
2152	struct btrfs_key key;
2153	int ret, err;
2154
2155	path = btrfs_alloc_path();
2156	if (!path)
2157		return -ENOMEM;
2158
2159	trans = btrfs_start_transaction(root, 0);
2160	if (IS_ERR(trans)) {
2161		btrfs_free_path(path);
2162		return PTR_ERR(trans);
2163	}
2164
2165	key.objectid = BTRFS_BALANCE_OBJECTID;
2166	key.type = BTRFS_BALANCE_ITEM_KEY;
2167	key.offset = 0;
2168
2169	ret = btrfs_insert_empty_item(trans, root, path, &key,
2170				      sizeof(*item));
2171	if (ret)
2172		goto out;
2173
2174	leaf = path->nodes[0];
2175	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
2176
2177	memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
2178
2179	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
2180	btrfs_set_balance_data(leaf, item, &disk_bargs);
2181	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
2182	btrfs_set_balance_meta(leaf, item, &disk_bargs);
2183	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
2184	btrfs_set_balance_sys(leaf, item, &disk_bargs);
2185
2186	btrfs_set_balance_flags(leaf, item, bctl->flags);
2187
2188	btrfs_mark_buffer_dirty(leaf);
2189out:
2190	btrfs_free_path(path);
2191	err = btrfs_commit_transaction(trans, root);
2192	if (err && !ret)
2193		ret = err;
2194	return ret;
2195}
2196
2197static int del_balance_item(struct btrfs_root *root)
2198{
 
2199	struct btrfs_trans_handle *trans;
2200	struct btrfs_path *path;
2201	struct btrfs_key key;
2202	int ret, err;
2203
2204	path = btrfs_alloc_path();
2205	if (!path)
2206		return -ENOMEM;
2207
2208	trans = btrfs_start_transaction(root, 0);
2209	if (IS_ERR(trans)) {
2210		btrfs_free_path(path);
2211		return PTR_ERR(trans);
2212	}
2213
2214	key.objectid = BTRFS_BALANCE_OBJECTID;
2215	key.type = BTRFS_BALANCE_ITEM_KEY;
2216	key.offset = 0;
2217
2218	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2219	if (ret < 0)
2220		goto out;
2221	if (ret > 0) {
2222		ret = -ENOENT;
2223		goto out;
2224	}
2225
2226	ret = btrfs_del_item(trans, root, path);
2227out:
2228	btrfs_free_path(path);
2229	err = btrfs_commit_transaction(trans, root);
2230	if (err && !ret)
2231		ret = err;
2232	return ret;
2233}
2234
2235/*
2236 * This is a heuristic used to reduce the number of chunks balanced on
2237 * resume after balance was interrupted.
2238 */
2239static void update_balance_args(struct btrfs_balance_control *bctl)
2240{
2241	/*
2242	 * Turn on soft mode for chunk types that were being converted.
2243	 */
2244	if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
2245		bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
2246	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
2247		bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
2248	if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
2249		bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
2250
2251	/*
2252	 * Turn on usage filter if is not already used.  The idea is
2253	 * that chunks that we have already balanced should be
2254	 * reasonably full.  Don't do it for chunks that are being
2255	 * converted - that will keep us from relocating unconverted
2256	 * (albeit full) chunks.
2257	 */
2258	if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
 
2259	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2260		bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
2261		bctl->data.usage = 90;
2262	}
2263	if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
 
2264	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2265		bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
2266		bctl->sys.usage = 90;
2267	}
2268	if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
 
2269	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2270		bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
2271		bctl->meta.usage = 90;
2272	}
2273}
2274
2275/*
2276 * Should be called with both balance and volume mutexes held to
2277 * serialize other volume operations (add_dev/rm_dev/resize) with
2278 * restriper.  Same goes for unset_balance_control.
2279 */
2280static void set_balance_control(struct btrfs_balance_control *bctl)
2281{
2282	struct btrfs_fs_info *fs_info = bctl->fs_info;
2283
2284	BUG_ON(fs_info->balance_ctl);
2285
2286	spin_lock(&fs_info->balance_lock);
2287	fs_info->balance_ctl = bctl;
2288	spin_unlock(&fs_info->balance_lock);
2289}
2290
2291static void unset_balance_control(struct btrfs_fs_info *fs_info)
2292{
2293	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
 
2294
2295	BUG_ON(!fs_info->balance_ctl);
2296
2297	spin_lock(&fs_info->balance_lock);
2298	fs_info->balance_ctl = NULL;
2299	spin_unlock(&fs_info->balance_lock);
2300
2301	kfree(bctl);
 
 
 
2302}
2303
2304/*
2305 * Balance filters.  Return 1 if chunk should be filtered out
2306 * (should not be balanced).
2307 */
2308static int chunk_profiles_filter(u64 chunk_type,
2309				 struct btrfs_balance_args *bargs)
2310{
2311	chunk_type = chunk_to_extended(chunk_type) &
2312				BTRFS_EXTENDED_PROFILE_MASK;
2313
2314	if (bargs->profiles & chunk_type)
2315		return 0;
2316
2317	return 1;
2318}
2319
2320static u64 div_factor_fine(u64 num, int factor)
 
2321{
2322	if (factor <= 0)
2323		return 0;
2324	if (factor >= 100)
2325		return num;
 
2326
2327	num *= factor;
2328	do_div(num, 100);
2329	return num;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2330}
2331
2332static int chunk_usage_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
2333			      struct btrfs_balance_args *bargs)
2334{
2335	struct btrfs_block_group_cache *cache;
2336	u64 chunk_used, user_thresh;
2337	int ret = 1;
2338
2339	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2340	chunk_used = btrfs_block_group_used(&cache->item);
 
 
 
 
 
 
 
2341
2342	user_thresh = div_factor_fine(cache->key.offset, bargs->usage);
2343	if (chunk_used < user_thresh)
2344		ret = 0;
2345
2346	btrfs_put_block_group(cache);
2347	return ret;
2348}
2349
2350static int chunk_devid_filter(struct extent_buffer *leaf,
2351			      struct btrfs_chunk *chunk,
2352			      struct btrfs_balance_args *bargs)
2353{
2354	struct btrfs_stripe *stripe;
2355	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
2356	int i;
2357
2358	for (i = 0; i < num_stripes; i++) {
2359		stripe = btrfs_stripe_nr(chunk, i);
2360		if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
2361			return 0;
2362	}
2363
2364	return 1;
2365}
2366
 
 
 
 
 
 
 
 
 
2367/* [pstart, pend) */
2368static int chunk_drange_filter(struct extent_buffer *leaf,
2369			       struct btrfs_chunk *chunk,
2370			       u64 chunk_offset,
2371			       struct btrfs_balance_args *bargs)
2372{
2373	struct btrfs_stripe *stripe;
2374	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
2375	u64 stripe_offset;
2376	u64 stripe_length;
 
2377	int factor;
2378	int i;
2379
2380	if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
2381		return 0;
2382
2383	if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
2384	     BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10))
2385		factor = 2;
2386	else
2387		factor = 1;
2388	factor = num_stripes / factor;
2389
2390	for (i = 0; i < num_stripes; i++) {
2391		stripe = btrfs_stripe_nr(chunk, i);
2392		if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
2393			continue;
2394
2395		stripe_offset = btrfs_stripe_offset(leaf, stripe);
2396		stripe_length = btrfs_chunk_length(leaf, chunk);
2397		do_div(stripe_length, factor);
2398
2399		if (stripe_offset < bargs->pend &&
2400		    stripe_offset + stripe_length > bargs->pstart)
2401			return 0;
2402	}
2403
2404	return 1;
2405}
2406
2407/* [vstart, vend) */
2408static int chunk_vrange_filter(struct extent_buffer *leaf,
2409			       struct btrfs_chunk *chunk,
2410			       u64 chunk_offset,
2411			       struct btrfs_balance_args *bargs)
2412{
2413	if (chunk_offset < bargs->vend &&
2414	    chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
2415		/* at least part of the chunk is inside this vrange */
2416		return 0;
2417
2418	return 1;
2419}
2420
 
 
 
 
 
 
 
 
 
 
 
 
 
2421static int chunk_soft_convert_filter(u64 chunk_type,
2422				     struct btrfs_balance_args *bargs)
2423{
2424	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
2425		return 0;
2426
2427	chunk_type = chunk_to_extended(chunk_type) &
2428				BTRFS_EXTENDED_PROFILE_MASK;
2429
2430	if (bargs->target == chunk_type)
2431		return 1;
2432
2433	return 0;
2434}
2435
2436static int should_balance_chunk(struct btrfs_root *root,
2437				struct extent_buffer *leaf,
2438				struct btrfs_chunk *chunk, u64 chunk_offset)
2439{
2440	struct btrfs_balance_control *bctl = root->fs_info->balance_ctl;
 
2441	struct btrfs_balance_args *bargs = NULL;
2442	u64 chunk_type = btrfs_chunk_type(leaf, chunk);
2443
2444	/* type filter */
2445	if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
2446	      (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
2447		return 0;
2448	}
2449
2450	if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
2451		bargs = &bctl->data;
2452	else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
2453		bargs = &bctl->sys;
2454	else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
2455		bargs = &bctl->meta;
2456
2457	/* profiles filter */
2458	if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
2459	    chunk_profiles_filter(chunk_type, bargs)) {
2460		return 0;
2461	}
2462
2463	/* usage filter */
2464	if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
2465	    chunk_usage_filter(bctl->fs_info, chunk_offset, bargs)) {
 
 
 
2466		return 0;
2467	}
2468
2469	/* devid filter */
2470	if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
2471	    chunk_devid_filter(leaf, chunk, bargs)) {
2472		return 0;
2473	}
2474
2475	/* drange filter, makes sense only with devid filter */
2476	if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
2477	    chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) {
2478		return 0;
2479	}
2480
2481	/* vrange filter */
2482	if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
2483	    chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
2484		return 0;
2485	}
2486
 
 
 
 
 
 
2487	/* soft profile changing mode */
2488	if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
2489	    chunk_soft_convert_filter(chunk_type, bargs)) {
2490		return 0;
2491	}
2492
2493	return 1;
2494}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2495
2496static u64 div_factor(u64 num, int factor)
2497{
2498	if (factor == 10)
2499		return num;
2500	num *= factor;
2501	do_div(num, 10);
2502	return num;
2503}
2504
2505static int __btrfs_balance(struct btrfs_fs_info *fs_info)
2506{
2507	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
2508	struct btrfs_root *chunk_root = fs_info->chunk_root;
2509	struct btrfs_root *dev_root = fs_info->dev_root;
2510	struct list_head *devices;
2511	struct btrfs_device *device;
2512	u64 old_size;
2513	u64 size_to_free;
2514	struct btrfs_chunk *chunk;
2515	struct btrfs_path *path;
2516	struct btrfs_key key;
2517	struct btrfs_key found_key;
2518	struct btrfs_trans_handle *trans;
2519	struct extent_buffer *leaf;
2520	int slot;
2521	int ret;
2522	int enospc_errors = 0;
2523	bool counting = true;
 
 
 
 
 
 
 
 
2524
2525	/* step one make some room on all the devices */
2526	devices = &fs_info->fs_devices->devices;
2527	list_for_each_entry(device, devices, dev_list) {
2528		old_size = device->total_bytes;
2529		size_to_free = div_factor(old_size, 1);
2530		size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
2531		if (!device->writeable ||
2532		    device->total_bytes - device->bytes_used > size_to_free)
2533			continue;
2534
2535		ret = btrfs_shrink_device(device, old_size - size_to_free);
2536		if (ret == -ENOSPC)
2537			break;
2538		BUG_ON(ret);
2539
2540		trans = btrfs_start_transaction(dev_root, 0);
2541		BUG_ON(IS_ERR(trans));
2542
2543		ret = btrfs_grow_device(trans, device, old_size);
2544		BUG_ON(ret);
2545
2546		btrfs_end_transaction(trans, dev_root);
2547	}
2548
2549	/* step two, relocate all the chunks */
2550	path = btrfs_alloc_path();
2551	if (!path) {
2552		ret = -ENOMEM;
2553		goto error;
2554	}
2555
2556	/* zero out stat counters */
2557	spin_lock(&fs_info->balance_lock);
2558	memset(&bctl->stat, 0, sizeof(bctl->stat));
2559	spin_unlock(&fs_info->balance_lock);
2560again:
 
 
 
 
 
 
 
 
 
2561	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2562	key.offset = (u64)-1;
2563	key.type = BTRFS_CHUNK_ITEM_KEY;
2564
2565	while (1) {
2566		if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
2567		    atomic_read(&fs_info->balance_cancel_req)) {
2568			ret = -ECANCELED;
2569			goto error;
2570		}
2571
 
2572		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2573		if (ret < 0)
 
2574			goto error;
 
2575
2576		/*
2577		 * this shouldn't happen, it means the last relocate
2578		 * failed
2579		 */
2580		if (ret == 0)
2581			BUG(); /* FIXME break ? */
2582
2583		ret = btrfs_previous_item(chunk_root, path, 0,
2584					  BTRFS_CHUNK_ITEM_KEY);
2585		if (ret) {
 
2586			ret = 0;
2587			break;
2588		}
2589
2590		leaf = path->nodes[0];
2591		slot = path->slots[0];
2592		btrfs_item_key_to_cpu(leaf, &found_key, slot);
2593
2594		if (found_key.objectid != key.objectid)
2595			break;
2596
2597		/* chunk zero is special */
2598		if (found_key.offset == 0)
2599			break;
 
2600
2601		chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
 
2602
2603		if (!counting) {
2604			spin_lock(&fs_info->balance_lock);
2605			bctl->stat.considered++;
2606			spin_unlock(&fs_info->balance_lock);
2607		}
2608
2609		ret = should_balance_chunk(chunk_root, leaf, chunk,
2610					   found_key.offset);
2611		btrfs_release_path(path);
2612		if (!ret)
 
2613			goto loop;
 
2614
2615		if (counting) {
 
2616			spin_lock(&fs_info->balance_lock);
2617			bctl->stat.expected++;
2618			spin_unlock(&fs_info->balance_lock);
 
 
 
 
 
 
 
 
2619			goto loop;
2620		}
2621
2622		ret = btrfs_relocate_chunk(chunk_root,
2623					   chunk_root->root_key.objectid,
2624					   found_key.objectid,
2625					   found_key.offset);
2626		if (ret && ret != -ENOSPC)
2627			goto error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2628		if (ret == -ENOSPC) {
2629			enospc_errors++;
 
 
 
 
 
 
 
2630		} else {
2631			spin_lock(&fs_info->balance_lock);
2632			bctl->stat.completed++;
2633			spin_unlock(&fs_info->balance_lock);
2634		}
2635loop:
 
 
2636		key.offset = found_key.offset - 1;
2637	}
2638
2639	if (counting) {
2640		btrfs_release_path(path);
2641		counting = false;
2642		goto again;
2643	}
2644error:
2645	btrfs_free_path(path);
2646	if (enospc_errors) {
2647		printk(KERN_INFO "btrfs: %d enospc errors during balance\n",
2648		       enospc_errors);
2649		if (!ret)
2650			ret = -ENOSPC;
2651	}
2652
2653	return ret;
2654}
2655
2656/**
2657 * alloc_profile_is_valid - see if a given profile is valid and reduced
2658 * @flags: profile to validate
2659 * @extended: if true @flags is treated as an extended profile
 
2660 */
2661static int alloc_profile_is_valid(u64 flags, int extended)
2662{
2663	u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
2664			       BTRFS_BLOCK_GROUP_PROFILE_MASK);
2665
2666	flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
2667
2668	/* 1) check that all other bits are zeroed */
2669	if (flags & ~mask)
2670		return 0;
2671
2672	/* 2) see if profile is reduced */
2673	if (flags == 0)
2674		return !extended; /* "0" is valid for usual profiles */
2675
2676	/* true if exactly one bit set */
2677	return (flags & (flags - 1)) == 0;
2678}
2679
2680static inline int balance_need_close(struct btrfs_fs_info *fs_info)
2681{
2682	/* cancel requested || normal exit path */
2683	return atomic_read(&fs_info->balance_cancel_req) ||
2684		(atomic_read(&fs_info->balance_pause_req) == 0 &&
2685		 atomic_read(&fs_info->balance_cancel_req) == 0);
2686}
2687
2688static void __cancel_balance(struct btrfs_fs_info *fs_info)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2689{
2690	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2691
2692	unset_balance_control(fs_info);
2693	ret = del_balance_item(fs_info->tree_root);
2694	BUG_ON(ret);
 
 
 
2695}
2696
2697void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock,
2698			       struct btrfs_ioctl_balance_args *bargs);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2699
2700/*
2701 * Should be called with both balance and volume mutexes held
2702 */
2703int btrfs_balance(struct btrfs_balance_control *bctl,
 
2704		  struct btrfs_ioctl_balance_args *bargs)
2705{
2706	struct btrfs_fs_info *fs_info = bctl->fs_info;
2707	u64 allowed;
2708	int mixed = 0;
2709	int ret;
 
 
 
 
2710
2711	if (btrfs_fs_closing(fs_info) ||
2712	    atomic_read(&fs_info->balance_pause_req) ||
2713	    atomic_read(&fs_info->balance_cancel_req)) {
2714		ret = -EINVAL;
2715		goto out;
2716	}
2717
2718	allowed = btrfs_super_incompat_flags(fs_info->super_copy);
2719	if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
2720		mixed = 1;
2721
2722	/*
2723	 * In case of mixed groups both data and meta should be picked,
2724	 * and identical options should be given for both of them.
2725	 */
2726	allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
2727	if (mixed && (bctl->flags & allowed)) {
2728		if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
2729		    !(bctl->flags & BTRFS_BALANCE_METADATA) ||
2730		    memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
2731			printk(KERN_ERR "btrfs: with mixed groups data and "
2732			       "metadata balance options must be the same\n");
2733			ret = -EINVAL;
2734			goto out;
2735		}
2736	}
2737
2738	allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
2739	if (fs_info->fs_devices->num_devices == 1)
2740		allowed |= BTRFS_BLOCK_GROUP_DUP;
2741	else if (fs_info->fs_devices->num_devices < 4)
2742		allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
2743	else
2744		allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1 |
2745				BTRFS_BLOCK_GROUP_RAID10);
2746
2747	if ((bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
2748	    (!alloc_profile_is_valid(bctl->data.target, 1) ||
2749	     (bctl->data.target & ~allowed))) {
2750		printk(KERN_ERR "btrfs: unable to start balance with target "
2751		       "data profile %llu\n",
2752		       (unsigned long long)bctl->data.target);
2753		ret = -EINVAL;
2754		goto out;
2755	}
2756	if ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
2757	    (!alloc_profile_is_valid(bctl->meta.target, 1) ||
2758	     (bctl->meta.target & ~allowed))) {
2759		printk(KERN_ERR "btrfs: unable to start balance with target "
2760		       "metadata profile %llu\n",
2761		       (unsigned long long)bctl->meta.target);
2762		ret = -EINVAL;
2763		goto out;
2764	}
2765	if ((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
2766	    (!alloc_profile_is_valid(bctl->sys.target, 1) ||
2767	     (bctl->sys.target & ~allowed))) {
2768		printk(KERN_ERR "btrfs: unable to start balance with target "
2769		       "system profile %llu\n",
2770		       (unsigned long long)bctl->sys.target);
2771		ret = -EINVAL;
2772		goto out;
2773	}
2774
2775	/* allow dup'ed data chunks only in mixed mode */
2776	if (!mixed && (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
2777	    (bctl->data.target & BTRFS_BLOCK_GROUP_DUP)) {
2778		printk(KERN_ERR "btrfs: dup for data is not allowed\n");
2779		ret = -EINVAL;
2780		goto out;
 
 
 
2781	}
 
 
 
 
 
 
 
 
 
 
 
 
2782
2783	/* allow to reduce meta or sys integrity only if force set */
2784	allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
2785			BTRFS_BLOCK_GROUP_RAID10;
2786	if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
2787	     (fs_info->avail_system_alloc_bits & allowed) &&
2788	     !(bctl->sys.target & allowed)) ||
2789	    ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
2790	     (fs_info->avail_metadata_alloc_bits & allowed) &&
2791	     !(bctl->meta.target & allowed))) {
2792		if (bctl->flags & BTRFS_BALANCE_FORCE) {
2793			printk(KERN_INFO "btrfs: force reducing metadata "
2794			       "integrity\n");
2795		} else {
2796			printk(KERN_ERR "btrfs: balance will reduce metadata "
2797			       "integrity, use force if you want this\n");
2798			ret = -EINVAL;
2799			goto out;
2800		}
2801	}
2802
2803	ret = insert_balance_item(fs_info->tree_root, bctl);
 
 
 
 
 
 
 
 
2804	if (ret && ret != -EEXIST)
2805		goto out;
2806
2807	if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
2808		BUG_ON(ret == -EEXIST);
2809		set_balance_control(bctl);
 
 
 
2810	} else {
2811		BUG_ON(ret != -EEXIST);
2812		spin_lock(&fs_info->balance_lock);
2813		update_balance_args(bctl);
2814		spin_unlock(&fs_info->balance_lock);
2815	}
2816
2817	atomic_inc(&fs_info->balance_running);
 
 
2818	mutex_unlock(&fs_info->balance_mutex);
2819
2820	ret = __btrfs_balance(fs_info);
2821
2822	mutex_lock(&fs_info->balance_mutex);
2823	atomic_dec(&fs_info->balance_running);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2824
2825	if (bargs) {
2826		memset(bargs, 0, sizeof(*bargs));
2827		update_ioctl_balance_args(fs_info, 0, bargs);
2828	}
2829
2830	if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
2831	    balance_need_close(fs_info)) {
2832		__cancel_balance(fs_info);
 
2833	}
2834
2835	wake_up(&fs_info->balance_wait_q);
2836
2837	return ret;
2838out:
2839	if (bctl->flags & BTRFS_BALANCE_RESUME)
2840		__cancel_balance(fs_info);
2841	else
2842		kfree(bctl);
 
 
2843	return ret;
2844}
2845
2846static int balance_kthread(void *data)
2847{
2848	struct btrfs_fs_info *fs_info = data;
2849	int ret = 0;
2850
2851	mutex_lock(&fs_info->volume_mutex);
2852	mutex_lock(&fs_info->balance_mutex);
2853
2854	if (fs_info->balance_ctl) {
2855		printk(KERN_INFO "btrfs: continuing balance\n");
2856		ret = btrfs_balance(fs_info->balance_ctl, NULL);
2857	}
2858
2859	mutex_unlock(&fs_info->balance_mutex);
2860	mutex_unlock(&fs_info->volume_mutex);
2861
2862	return ret;
2863}
2864
2865int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
2866{
2867	struct task_struct *tsk;
2868
2869	spin_lock(&fs_info->balance_lock);
2870	if (!fs_info->balance_ctl) {
2871		spin_unlock(&fs_info->balance_lock);
2872		return 0;
2873	}
2874	spin_unlock(&fs_info->balance_lock);
2875
2876	if (btrfs_test_opt(fs_info->tree_root, SKIP_BALANCE)) {
2877		printk(KERN_INFO "btrfs: force skipping balance\n");
2878		return 0;
2879	}
2880
2881	tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
2882	if (IS_ERR(tsk))
2883		return PTR_ERR(tsk);
 
 
 
 
 
 
 
 
 
2884
2885	return 0;
 
2886}
2887
2888int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
2889{
2890	struct btrfs_balance_control *bctl;
2891	struct btrfs_balance_item *item;
2892	struct btrfs_disk_balance_args disk_bargs;
2893	struct btrfs_path *path;
2894	struct extent_buffer *leaf;
2895	struct btrfs_key key;
2896	int ret;
2897
2898	path = btrfs_alloc_path();
2899	if (!path)
2900		return -ENOMEM;
2901
2902	key.objectid = BTRFS_BALANCE_OBJECTID;
2903	key.type = BTRFS_BALANCE_ITEM_KEY;
2904	key.offset = 0;
2905
2906	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2907	if (ret < 0)
2908		goto out;
2909	if (ret > 0) { /* ret = -ENOENT; */
2910		ret = 0;
2911		goto out;
2912	}
2913
2914	bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
2915	if (!bctl) {
2916		ret = -ENOMEM;
2917		goto out;
2918	}
2919
2920	leaf = path->nodes[0];
2921	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
2922
2923	bctl->fs_info = fs_info;
2924	bctl->flags = btrfs_balance_flags(leaf, item);
2925	bctl->flags |= BTRFS_BALANCE_RESUME;
2926
2927	btrfs_balance_data(leaf, item, &disk_bargs);
2928	btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
2929	btrfs_balance_meta(leaf, item, &disk_bargs);
2930	btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
2931	btrfs_balance_sys(leaf, item, &disk_bargs);
2932	btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
2933
2934	mutex_lock(&fs_info->volume_mutex);
2935	mutex_lock(&fs_info->balance_mutex);
 
 
 
 
 
 
 
 
 
 
 
2936
2937	set_balance_control(bctl);
2938
 
 
 
 
 
2939	mutex_unlock(&fs_info->balance_mutex);
2940	mutex_unlock(&fs_info->volume_mutex);
2941out:
2942	btrfs_free_path(path);
2943	return ret;
2944}
2945
2946int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
2947{
2948	int ret = 0;
2949
2950	mutex_lock(&fs_info->balance_mutex);
2951	if (!fs_info->balance_ctl) {
2952		mutex_unlock(&fs_info->balance_mutex);
2953		return -ENOTCONN;
2954	}
2955
2956	if (atomic_read(&fs_info->balance_running)) {
2957		atomic_inc(&fs_info->balance_pause_req);
2958		mutex_unlock(&fs_info->balance_mutex);
2959
2960		wait_event(fs_info->balance_wait_q,
2961			   atomic_read(&fs_info->balance_running) == 0);
2962
2963		mutex_lock(&fs_info->balance_mutex);
2964		/* we are good with balance_ctl ripped off from under us */
2965		BUG_ON(atomic_read(&fs_info->balance_running));
2966		atomic_dec(&fs_info->balance_pause_req);
2967	} else {
2968		ret = -ENOTCONN;
2969	}
2970
2971	mutex_unlock(&fs_info->balance_mutex);
2972	return ret;
2973}
2974
2975int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
2976{
2977	mutex_lock(&fs_info->balance_mutex);
2978	if (!fs_info->balance_ctl) {
2979		mutex_unlock(&fs_info->balance_mutex);
2980		return -ENOTCONN;
2981	}
2982
 
 
 
 
 
 
 
 
 
 
2983	atomic_inc(&fs_info->balance_cancel_req);
2984	/*
2985	 * if we are running just wait and return, balance item is
2986	 * deleted in btrfs_balance in this case
2987	 */
2988	if (atomic_read(&fs_info->balance_running)) {
2989		mutex_unlock(&fs_info->balance_mutex);
2990		wait_event(fs_info->balance_wait_q,
2991			   atomic_read(&fs_info->balance_running) == 0);
2992		mutex_lock(&fs_info->balance_mutex);
2993	} else {
2994		/* __cancel_balance needs volume_mutex */
2995		mutex_unlock(&fs_info->balance_mutex);
2996		mutex_lock(&fs_info->volume_mutex);
 
 
 
2997		mutex_lock(&fs_info->balance_mutex);
2998
2999		if (fs_info->balance_ctl)
3000			__cancel_balance(fs_info);
3001
3002		mutex_unlock(&fs_info->volume_mutex);
 
3003	}
3004
3005	BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
 
3006	atomic_dec(&fs_info->balance_cancel_req);
3007	mutex_unlock(&fs_info->balance_mutex);
3008	return 0;
3009}
3010
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3011/*
3012 * shrinking a device means finding all of the device extents past
3013 * the new size, and then following the back refs to the chunks.
3014 * The chunk relocation code actually frees the device extent
3015 */
3016int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
3017{
 
 
3018	struct btrfs_trans_handle *trans;
3019	struct btrfs_root *root = device->dev_root;
3020	struct btrfs_dev_extent *dev_extent = NULL;
3021	struct btrfs_path *path;
3022	u64 length;
3023	u64 chunk_tree;
3024	u64 chunk_objectid;
3025	u64 chunk_offset;
3026	int ret;
3027	int slot;
3028	int failed = 0;
3029	bool retried = false;
3030	struct extent_buffer *l;
3031	struct btrfs_key key;
3032	struct btrfs_super_block *super_copy = root->fs_info->super_copy;
3033	u64 old_total = btrfs_super_total_bytes(super_copy);
3034	u64 old_size = device->total_bytes;
3035	u64 diff = device->total_bytes - new_size;
 
 
 
 
 
3036
3037	if (new_size >= device->total_bytes)
3038		return -EINVAL;
3039
3040	path = btrfs_alloc_path();
3041	if (!path)
3042		return -ENOMEM;
3043
3044	path->reada = 2;
 
 
 
 
 
 
3045
3046	lock_chunks(root);
3047
3048	device->total_bytes = new_size;
3049	if (device->writeable) {
3050		device->fs_devices->total_rw_bytes -= diff;
3051		spin_lock(&root->fs_info->free_chunk_lock);
3052		root->fs_info->free_chunk_space -= diff;
3053		spin_unlock(&root->fs_info->free_chunk_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
3054	}
3055	unlock_chunks(root);
3056
3057again:
3058	key.objectid = device->devid;
3059	key.offset = (u64)-1;
3060	key.type = BTRFS_DEV_EXTENT_KEY;
3061
3062	do {
 
3063		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3064		if (ret < 0)
 
3065			goto done;
 
3066
3067		ret = btrfs_previous_item(root, path, 0, key.type);
3068		if (ret < 0)
3069			goto done;
3070		if (ret) {
 
 
 
3071			ret = 0;
3072			btrfs_release_path(path);
3073			break;
3074		}
3075
3076		l = path->nodes[0];
3077		slot = path->slots[0];
3078		btrfs_item_key_to_cpu(l, &key, path->slots[0]);
3079
3080		if (key.objectid != device->devid) {
 
3081			btrfs_release_path(path);
3082			break;
3083		}
3084
3085		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3086		length = btrfs_dev_extent_length(l, dev_extent);
3087
3088		if (key.offset + length <= new_size) {
 
3089			btrfs_release_path(path);
3090			break;
3091		}
3092
3093		chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
3094		chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
3095		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
3096		btrfs_release_path(path);
3097
3098		ret = btrfs_relocate_chunk(root, chunk_tree, chunk_objectid,
3099					   chunk_offset);
3100		if (ret && ret != -ENOSPC)
 
 
 
 
 
 
3101			goto done;
3102		if (ret == -ENOSPC)
 
 
 
 
3103			failed++;
 
 
 
 
 
 
 
 
3104	} while (key.offset-- > 0);
3105
3106	if (failed && !retried) {
3107		failed = 0;
3108		retried = true;
3109		goto again;
3110	} else if (failed && retried) {
3111		ret = -ENOSPC;
3112		lock_chunks(root);
3113
3114		device->total_bytes = old_size;
3115		if (device->writeable)
3116			device->fs_devices->total_rw_bytes += diff;
3117		spin_lock(&root->fs_info->free_chunk_lock);
3118		root->fs_info->free_chunk_space += diff;
3119		spin_unlock(&root->fs_info->free_chunk_lock);
3120		unlock_chunks(root);
3121		goto done;
3122	}
3123
3124	/* Shrinking succeeded, else we would be at "done". */
3125	trans = btrfs_start_transaction(root, 0);
3126	if (IS_ERR(trans)) {
3127		ret = PTR_ERR(trans);
3128		goto done;
3129	}
3130
3131	lock_chunks(root);
 
 
 
 
 
 
 
 
 
 
 
 
 
3132
3133	device->disk_total_bytes = new_size;
3134	/* Now btrfs_update_device() will change the on-disk size. */
3135	ret = btrfs_update_device(trans, device);
3136	if (ret) {
3137		unlock_chunks(root);
3138		btrfs_end_transaction(trans, root);
3139		goto done;
 
 
3140	}
3141	WARN_ON(diff > old_total);
3142	btrfs_set_super_total_bytes(super_copy, old_total - diff);
3143	unlock_chunks(root);
3144	btrfs_end_transaction(trans, root);
3145done:
3146	btrfs_free_path(path);
 
 
 
 
 
 
 
 
3147	return ret;
3148}
3149
3150static int btrfs_add_system_chunk(struct btrfs_root *root,
3151			   struct btrfs_key *key,
3152			   struct btrfs_chunk *chunk, int item_size)
3153{
3154	struct btrfs_super_block *super_copy = root->fs_info->super_copy;
3155	struct btrfs_disk_key disk_key;
3156	u32 array_size;
3157	u8 *ptr;
3158
 
 
3159	array_size = btrfs_super_sys_array_size(super_copy);
3160	if (array_size + item_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
 
3161		return -EFBIG;
3162
3163	ptr = super_copy->sys_chunk_array + array_size;
3164	btrfs_cpu_key_to_disk(&disk_key, key);
3165	memcpy(ptr, &disk_key, sizeof(disk_key));
3166	ptr += sizeof(disk_key);
3167	memcpy(ptr, chunk, item_size);
3168	item_size += sizeof(disk_key);
3169	btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
 
3170	return 0;
3171}
3172
3173/*
3174 * sort the devices in descending order by max_avail, total_avail
3175 */
3176static int btrfs_cmp_device_info(const void *a, const void *b)
3177{
3178	const struct btrfs_device_info *di_a = a;
3179	const struct btrfs_device_info *di_b = b;
3180
3181	if (di_a->max_avail > di_b->max_avail)
3182		return -1;
3183	if (di_a->max_avail < di_b->max_avail)
3184		return 1;
3185	if (di_a->total_avail > di_b->total_avail)
3186		return -1;
3187	if (di_a->total_avail < di_b->total_avail)
3188		return 1;
3189	return 0;
3190}
3191
3192static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
3193			       struct btrfs_root *extent_root,
3194			       struct map_lookup **map_ret,
3195			       u64 *num_bytes_out, u64 *stripe_size_out,
3196			       u64 start, u64 type)
3197{
3198	struct btrfs_fs_info *info = extent_root->fs_info;
3199	struct btrfs_fs_devices *fs_devices = info->fs_devices;
3200	struct list_head *cur;
3201	struct map_lookup *map = NULL;
3202	struct extent_map_tree *em_tree;
3203	struct extent_map *em;
3204	struct btrfs_device_info *devices_info = NULL;
3205	u64 total_avail;
3206	int num_stripes;	/* total number of stripes to allocate */
3207	int sub_stripes;	/* sub_stripes info for map */
3208	int dev_stripes;	/* stripes per dev */
3209	int devs_max;		/* max devs to use */
3210	int devs_min;		/* min devs needed */
3211	int devs_increment;	/* ndevs has to be a multiple of this */
3212	int ncopies;		/* how many copies to data has */
3213	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3214	u64 max_stripe_size;
3215	u64 max_chunk_size;
 
3216	u64 stripe_size;
3217	u64 num_bytes;
3218	int ndevs;
3219	int i;
3220	int j;
3221
3222	BUG_ON(!alloc_profile_is_valid(type, 0));
 
 
 
 
3223
3224	if (list_empty(&fs_devices->alloc_list))
3225		return -ENOSPC;
3226
3227	sub_stripes = 1;
3228	dev_stripes = 1;
3229	devs_increment = 1;
3230	ncopies = 1;
3231	devs_max = 0;	/* 0 == as many as possible */
3232	devs_min = 1;
3233
3234	/*
3235	 * define the properties of each RAID type.
3236	 * FIXME: move this to a global table and use it in all RAID
3237	 * calculation code
3238	 */
3239	if (type & (BTRFS_BLOCK_GROUP_DUP)) {
3240		dev_stripes = 2;
3241		ncopies = 2;
3242		devs_max = 1;
3243	} else if (type & (BTRFS_BLOCK_GROUP_RAID0)) {
3244		devs_min = 2;
3245	} else if (type & (BTRFS_BLOCK_GROUP_RAID1)) {
3246		devs_increment = 2;
3247		ncopies = 2;
3248		devs_max = 2;
3249		devs_min = 2;
3250	} else if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
3251		sub_stripes = 2;
3252		devs_increment = 2;
3253		ncopies = 2;
3254		devs_min = 4;
3255	} else {
3256		devs_max = 1;
3257	}
3258
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3259	if (type & BTRFS_BLOCK_GROUP_DATA) {
3260		max_stripe_size = 1024 * 1024 * 1024;
3261		max_chunk_size = 10 * max_stripe_size;
3262	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
3263		/* for larger filesystems, use larger metadata chunks */
3264		if (fs_devices->total_rw_bytes > 50ULL * 1024 * 1024 * 1024)
3265			max_stripe_size = 1024 * 1024 * 1024;
3266		else
3267			max_stripe_size = 256 * 1024 * 1024;
3268		max_chunk_size = max_stripe_size;
3269	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
3270		max_stripe_size = 32 * 1024 * 1024;
3271		max_chunk_size = 2 * max_stripe_size;
 
3272	} else {
3273		printk(KERN_ERR "btrfs: invalid chunk type 0x%llx requested\n",
3274		       type);
3275		BUG_ON(1);
3276	}
3277
3278	/* we don't want a chunk larger than 10% of writeable space */
3279	max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
3280			     max_chunk_size);
3281
3282	devices_info = kzalloc(sizeof(*devices_info) * fs_devices->rw_devices,
3283			       GFP_NOFS);
3284	if (!devices_info)
3285		return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3286
3287	cur = fs_devices->alloc_list.next;
 
 
 
 
 
 
 
 
 
 
 
3288
3289	/*
3290	 * in the first pass through the devices list, we gather information
3291	 * about the available holes on each device.
3292	 */
3293	ndevs = 0;
3294	while (cur != &fs_devices->alloc_list) {
3295		struct btrfs_device *device;
3296		u64 max_avail;
3297		u64 dev_offset;
3298
3299		device = list_entry(cur, struct btrfs_device, dev_alloc_list);
3300
3301		cur = cur->next;
3302
3303		if (!device->writeable) {
3304			printk(KERN_ERR
3305			       "btrfs: read-only device in alloc_list\n");
3306			WARN_ON(1);
3307			continue;
3308		}
3309
3310		if (!device->in_fs_metadata)
 
 
3311			continue;
3312
3313		if (device->total_bytes > device->bytes_used)
3314			total_avail = device->total_bytes - device->bytes_used;
3315		else
3316			total_avail = 0;
3317
3318		/* If there is no space on this device, skip it. */
3319		if (total_avail == 0)
3320			continue;
3321
3322		ret = find_free_dev_extent(device,
3323					   max_stripe_size * dev_stripes,
3324					   &dev_offset, &max_avail);
3325		if (ret && ret != -ENOSPC)
3326			goto error;
3327
3328		if (ret == 0)
3329			max_avail = max_stripe_size * dev_stripes;
3330
3331		if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
 
 
 
 
 
3332			continue;
 
3333
 
 
 
 
 
3334		devices_info[ndevs].dev_offset = dev_offset;
3335		devices_info[ndevs].max_avail = max_avail;
3336		devices_info[ndevs].total_avail = total_avail;
3337		devices_info[ndevs].dev = device;
3338		++ndevs;
3339	}
 
3340
3341	/*
3342	 * now sort the devices by hole size / available space
3343	 */
3344	sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
3345	     btrfs_cmp_device_info, NULL);
3346
3347	/* round down to number of usable stripes */
3348	ndevs -= ndevs % devs_increment;
 
 
 
 
 
 
3349
3350	if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
3351		ret = -ENOSPC;
3352		goto error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3353	}
3354
3355	if (devs_max && ndevs > devs_max)
3356		ndevs = devs_max;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3357	/*
3358	 * the primary goal is to maximize the number of stripes, so use as many
3359	 * devices as possible, even if the stripes are not maximum sized.
3360	 */
3361	stripe_size = devices_info[ndevs-1].max_avail;
3362	num_stripes = ndevs * dev_stripes;
3363
3364	if (stripe_size * ndevs > max_chunk_size * ncopies) {
3365		stripe_size = max_chunk_size * ncopies;
3366		do_div(stripe_size, ndevs);
 
 
 
 
 
 
 
 
 
3367	}
3368
3369	do_div(stripe_size, dev_stripes);
3370
3371	/* align to BTRFS_STRIPE_LEN */
3372	do_div(stripe_size, BTRFS_STRIPE_LEN);
3373	stripe_size *= BTRFS_STRIPE_LEN;
3374
3375	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
3376	if (!map) {
3377		ret = -ENOMEM;
3378		goto error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3379	}
3380	map->num_stripes = num_stripes;
3381
3382	for (i = 0; i < ndevs; ++i) {
3383		for (j = 0; j < dev_stripes; ++j) {
3384			int s = i * dev_stripes + j;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3385			map->stripes[s].dev = devices_info[i].dev;
3386			map->stripes[s].physical = devices_info[i].dev_offset +
3387						   j * stripe_size;
3388		}
3389	}
3390	map->sector_size = extent_root->sectorsize;
3391	map->stripe_len = BTRFS_STRIPE_LEN;
3392	map->io_align = BTRFS_STRIPE_LEN;
3393	map->io_width = BTRFS_STRIPE_LEN;
3394	map->type = type;
3395	map->sub_stripes = sub_stripes;
3396
3397	*map_ret = map;
3398	num_bytes = stripe_size * (num_stripes / ncopies);
3399
3400	*stripe_size_out = stripe_size;
3401	*num_bytes_out = num_bytes;
3402
3403	trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes);
3404
3405	em = alloc_extent_map();
3406	if (!em) {
3407		ret = -ENOMEM;
3408		goto error;
3409	}
3410	em->bdev = (struct block_device *)map;
 
3411	em->start = start;
3412	em->len = num_bytes;
3413	em->block_start = 0;
3414	em->block_len = em->len;
 
3415
3416	em_tree = &extent_root->fs_info->mapping_tree.map_tree;
3417	write_lock(&em_tree->lock);
3418	ret = add_extent_mapping(em_tree, em);
 
 
 
 
 
3419	write_unlock(&em_tree->lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3420	free_extent_map(em);
3421	if (ret)
3422		goto error;
3423
3424	ret = btrfs_make_block_group(trans, extent_root, 0, type,
3425				     BTRFS_FIRST_CHUNK_TREE_OBJECTID,
3426				     start, num_bytes);
3427	if (ret)
3428		goto error;
3429
3430	for (i = 0; i < map->num_stripes; ++i) {
3431		struct btrfs_device *device;
3432		u64 dev_offset;
3433
3434		device = map->stripes[i].dev;
3435		dev_offset = map->stripes[i].physical;
3436
3437		ret = btrfs_alloc_dev_extent(trans, device,
3438				info->chunk_root->root_key.objectid,
3439				BTRFS_FIRST_CHUNK_TREE_OBJECTID,
3440				start, dev_offset, stripe_size);
3441		if (ret) {
3442			btrfs_abort_transaction(trans, extent_root, ret);
3443			goto error;
3444		}
 
 
 
 
 
 
 
 
 
 
 
 
 
3445	}
3446
3447	kfree(devices_info);
3448	return 0;
 
 
 
3449
3450error:
3451	kfree(map);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3452	kfree(devices_info);
3453	return ret;
3454}
3455
3456static int __finish_chunk_alloc(struct btrfs_trans_handle *trans,
3457				struct btrfs_root *extent_root,
3458				struct map_lookup *map, u64 chunk_offset,
3459				u64 chunk_size, u64 stripe_size)
 
 
 
 
 
 
3460{
3461	u64 dev_offset;
 
3462	struct btrfs_key key;
3463	struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
3464	struct btrfs_device *device;
3465	struct btrfs_chunk *chunk;
3466	struct btrfs_stripe *stripe;
3467	size_t item_size = btrfs_chunk_item_size(map->num_stripes);
3468	int index = 0;
 
 
3469	int ret;
3470
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3471	chunk = kzalloc(item_size, GFP_NOFS);
3472	if (!chunk)
3473		return -ENOMEM;
 
 
 
 
 
 
3474
3475	index = 0;
3476	while (index < map->num_stripes) {
3477		device = map->stripes[index].dev;
3478		device->bytes_used += stripe_size;
3479		ret = btrfs_update_device(trans, device);
3480		if (ret)
3481			goto out_free;
3482		index++;
3483	}
3484
3485	spin_lock(&extent_root->fs_info->free_chunk_lock);
3486	extent_root->fs_info->free_chunk_space -= (stripe_size *
3487						   map->num_stripes);
3488	spin_unlock(&extent_root->fs_info->free_chunk_lock);
3489
3490	index = 0;
3491	stripe = &chunk->stripe;
3492	while (index < map->num_stripes) {
3493		device = map->stripes[index].dev;
3494		dev_offset = map->stripes[index].physical;
3495
3496		btrfs_set_stack_stripe_devid(stripe, device->devid);
3497		btrfs_set_stack_stripe_offset(stripe, dev_offset);
3498		memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
3499		stripe++;
3500		index++;
3501	}
3502
3503	btrfs_set_stack_chunk_length(chunk, chunk_size);
3504	btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
3505	btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
3506	btrfs_set_stack_chunk_type(chunk, map->type);
3507	btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
3508	btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
3509	btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
3510	btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
3511	btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
3512
3513	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3514	key.type = BTRFS_CHUNK_ITEM_KEY;
3515	key.offset = chunk_offset;
3516
3517	ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
 
 
3518
3519	if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3520		/*
3521		 * TODO: Cleanup of inserted chunk root in case of
3522		 * failure.
3523		 */
3524		ret = btrfs_add_system_chunk(chunk_root, &key, chunk,
3525					     item_size);
3526	}
3527
3528out_free:
3529	kfree(chunk);
 
3530	return ret;
3531}
3532
3533/*
3534 * Chunk allocation falls into two parts. The first part does works
3535 * that make the new allocated chunk useable, but not do any operation
3536 * that modifies the chunk tree. The second part does the works that
3537 * require modifying the chunk tree. This division is important for the
3538 * bootstrap process of adding storage to a seed btrfs.
3539 */
3540int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
3541		      struct btrfs_root *extent_root, u64 type)
3542{
3543	u64 chunk_offset;
3544	u64 chunk_size;
3545	u64 stripe_size;
3546	struct map_lookup *map;
3547	struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
3548	int ret;
3549
3550	ret = find_next_chunk(chunk_root, BTRFS_FIRST_CHUNK_TREE_OBJECTID,
3551			      &chunk_offset);
3552	if (ret)
3553		return ret;
3554
3555	ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size,
3556				  &stripe_size, chunk_offset, type);
3557	if (ret)
3558		return ret;
3559
3560	ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset,
3561				   chunk_size, stripe_size);
3562	if (ret)
3563		return ret;
3564	return 0;
3565}
3566
3567static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
3568					 struct btrfs_root *root,
3569					 struct btrfs_device *device)
3570{
3571	u64 chunk_offset;
3572	u64 sys_chunk_offset;
3573	u64 chunk_size;
3574	u64 sys_chunk_size;
3575	u64 stripe_size;
3576	u64 sys_stripe_size;
3577	u64 alloc_profile;
3578	struct map_lookup *map;
3579	struct map_lookup *sys_map;
3580	struct btrfs_fs_info *fs_info = root->fs_info;
3581	struct btrfs_root *extent_root = fs_info->extent_root;
3582	int ret;
3583
3584	ret = find_next_chunk(fs_info->chunk_root,
3585			      BTRFS_FIRST_CHUNK_TREE_OBJECTID, &chunk_offset);
3586	if (ret)
3587		return ret;
3588
3589	alloc_profile = BTRFS_BLOCK_GROUP_METADATA |
3590				fs_info->avail_metadata_alloc_bits;
3591	alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile);
3592
3593	ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size,
3594				  &stripe_size, chunk_offset, alloc_profile);
3595	if (ret)
3596		return ret;
3597
3598	sys_chunk_offset = chunk_offset + chunk_size;
3599
3600	alloc_profile = BTRFS_BLOCK_GROUP_SYSTEM |
3601				fs_info->avail_system_alloc_bits;
3602	alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile);
3603
3604	ret = __btrfs_alloc_chunk(trans, extent_root, &sys_map,
3605				  &sys_chunk_size, &sys_stripe_size,
3606				  sys_chunk_offset, alloc_profile);
3607	if (ret)
3608		goto abort;
3609
3610	ret = btrfs_add_device(trans, fs_info->chunk_root, device);
3611	if (ret)
3612		goto abort;
3613
3614	/*
3615	 * Modifying chunk tree needs allocating new blocks from both
3616	 * system block group and metadata block group. So we only can
3617	 * do operations require modifying the chunk tree after both
3618	 * block groups were created.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3619	 */
3620	ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset,
3621				   chunk_size, stripe_size);
3622	if (ret)
3623		goto abort;
3624
3625	ret = __finish_chunk_alloc(trans, extent_root, sys_map,
3626				   sys_chunk_offset, sys_chunk_size,
3627				   sys_stripe_size);
3628	if (ret)
3629		goto abort;
 
 
 
 
3630
3631	return 0;
 
3632
3633abort:
3634	btrfs_abort_transaction(trans, root, ret);
3635	return ret;
 
 
3636}
3637
3638int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
3639{
3640	struct extent_map *em;
3641	struct map_lookup *map;
3642	struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
3643	int readonly = 0;
3644	int i;
 
3645
3646	read_lock(&map_tree->map_tree.lock);
3647	em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
3648	read_unlock(&map_tree->map_tree.lock);
3649	if (!em)
3650		return 1;
3651
3652	if (btrfs_test_opt(root, DEGRADED)) {
3653		free_extent_map(em);
3654		return 0;
3655	}
3656
3657	map = (struct map_lookup *)em->bdev;
3658	for (i = 0; i < map->num_stripes; i++) {
3659		if (!map->stripes[i].dev->writeable) {
3660			readonly = 1;
3661			break;
 
 
 
 
 
 
3662		}
3663	}
3664	free_extent_map(em);
3665	return readonly;
3666}
3667
3668void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
3669{
3670	extent_map_tree_init(&tree->map_tree);
 
 
 
 
 
 
3671}
3672
3673void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
3674{
3675	struct extent_map *em;
3676
3677	while (1) {
3678		write_lock(&tree->map_tree.lock);
3679		em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
3680		if (em)
3681			remove_extent_mapping(&tree->map_tree, em);
3682		write_unlock(&tree->map_tree.lock);
3683		if (!em)
3684			break;
3685		kfree(em->bdev);
3686		/* once for us */
3687		free_extent_map(em);
3688		/* once for the tree */
3689		free_extent_map(em);
3690	}
3691}
3692
3693int btrfs_num_copies(struct btrfs_mapping_tree *map_tree, u64 logical, u64 len)
3694{
3695	struct extent_map *em;
3696	struct map_lookup *map;
3697	struct extent_map_tree *em_tree = &map_tree->map_tree;
3698	int ret;
3699
3700	read_lock(&em_tree->lock);
3701	em = lookup_extent_mapping(em_tree, logical, len);
3702	read_unlock(&em_tree->lock);
3703	BUG_ON(!em);
 
 
 
 
 
3704
3705	BUG_ON(em->start > logical || em->start + em->len < logical);
3706	map = (struct map_lookup *)em->bdev;
3707	if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
 
 
 
 
 
 
 
 
 
 
 
 
 
3708		ret = map->num_stripes;
3709	else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
3710		ret = map->sub_stripes;
3711	else
3712		ret = 1;
3713	free_extent_map(em);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3714	return ret;
3715}
3716
3717static int find_live_mirror(struct map_lookup *map, int first, int num,
3718			    int optimal)
 
3719{
3720	int i;
3721	if (map->stripes[optimal].dev->bdev)
3722		return optimal;
3723	for (i = first; i < first + num; i++) {
3724		if (map->stripes[i].dev->bdev)
3725			return i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3726	}
 
3727	/* we couldn't find one that doesn't fail.  Just return something
3728	 * and the io error handling code will clean up eventually
3729	 */
3730	return optimal;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3731}
3732
3733static int __btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
3734			     u64 logical, u64 *length,
3735			     struct btrfs_bio **bbio_ret,
3736			     int mirror_num)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3737{
3738	struct extent_map *em;
3739	struct map_lookup *map;
3740	struct extent_map_tree *em_tree = &map_tree->map_tree;
 
3741	u64 offset;
3742	u64 stripe_offset;
3743	u64 stripe_end_offset;
3744	u64 stripe_nr;
3745	u64 stripe_nr_orig;
3746	u64 stripe_nr_end;
3747	int stripe_index;
 
 
 
 
 
 
 
 
 
 
3748	int i;
3749	int ret = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3750	int num_stripes;
3751	int max_errors = 0;
3752	struct btrfs_bio *bbio = NULL;
 
 
 
3753
3754	read_lock(&em_tree->lock);
3755	em = lookup_extent_mapping(em_tree, logical, *length);
3756	read_unlock(&em_tree->lock);
 
 
 
3757
3758	if (!em) {
3759		printk(KERN_CRIT "unable to find logical %llu len %llu\n",
3760		       (unsigned long long)logical,
3761		       (unsigned long long)*length);
3762		BUG();
 
 
 
 
3763	}
3764
3765	BUG_ON(em->start > logical || em->start + em->len < logical);
3766	map = (struct map_lookup *)em->bdev;
3767	offset = logical - em->start;
 
 
 
 
 
3768
3769	if (mirror_num > map->num_stripes)
3770		mirror_num = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3771
3772	stripe_nr = offset;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3773	/*
3774	 * stripe_nr counts the total number of stripes we have to stride
3775	 * to get to this block
3776	 */
3777	do_div(stripe_nr, map->stripe_len);
 
 
 
3778
3779	stripe_offset = stripe_nr * map->stripe_len;
3780	BUG_ON(offset < stripe_offset);
 
3781
3782	/* stripe_offset is the offset of this block in its stripe*/
3783	stripe_offset = offset - stripe_offset;
 
 
 
 
3784
3785	if (rw & REQ_DISCARD)
3786		*length = min_t(u64, em->len - offset, *length);
3787	else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
3788		/* we limit the length of each bio to what fits in a stripe */
3789		*length = min_t(u64, em->len - offset,
3790				map->stripe_len - stripe_offset);
 
 
 
 
 
 
 
 
 
 
 
 
 
3791	} else {
3792		*length = em->len - offset;
3793	}
3794
3795	if (!bbio_ret)
3796		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3797
3798	num_stripes = 1;
3799	stripe_index = 0;
3800	stripe_nr_orig = stripe_nr;
3801	stripe_nr_end = (offset + *length + map->stripe_len - 1) &
3802			(~(map->stripe_len - 1));
3803	do_div(stripe_nr_end, map->stripe_len);
3804	stripe_end_offset = stripe_nr_end * map->stripe_len -
3805			    (offset + *length);
3806	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
3807		if (rw & REQ_DISCARD)
3808			num_stripes = min_t(u64, map->num_stripes,
3809					    stripe_nr_end - stripe_nr_orig);
3810		stripe_index = do_div(stripe_nr, map->num_stripes);
3811	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
3812		if (rw & (REQ_WRITE | REQ_DISCARD))
3813			num_stripes = map->num_stripes;
3814		else if (mirror_num)
3815			stripe_index = mirror_num - 1;
3816		else {
3817			stripe_index = find_live_mirror(map, 0,
3818					    map->num_stripes,
3819					    current->pid % map->num_stripes);
3820			mirror_num = stripe_index + 1;
3821		}
3822
3823	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
3824		if (rw & (REQ_WRITE | REQ_DISCARD)) {
3825			num_stripes = map->num_stripes;
3826		} else if (mirror_num) {
3827			stripe_index = mirror_num - 1;
3828		} else {
3829			mirror_num = 1;
3830		}
3831
3832	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3833		int factor = map->num_stripes / map->sub_stripes;
3834
3835		stripe_index = do_div(stripe_nr, factor);
3836		stripe_index *= map->sub_stripes;
3837
3838		if (rw & REQ_WRITE)
3839			num_stripes = map->sub_stripes;
3840		else if (rw & REQ_DISCARD)
3841			num_stripes = min_t(u64, map->sub_stripes *
3842					    (stripe_nr_end - stripe_nr_orig),
3843					    map->num_stripes);
3844		else if (mirror_num)
3845			stripe_index += mirror_num - 1;
3846		else {
3847			int old_stripe_index = stripe_index;
3848			stripe_index = find_live_mirror(map, stripe_index,
3849					      map->sub_stripes, stripe_index +
3850					      current->pid % map->sub_stripes);
3851			mirror_num = stripe_index - old_stripe_index + 1;
3852		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3853	} else {
3854		/*
3855		 * after this do_div call, stripe_nr is the number of stripes
3856		 * on this device we have to walk to find the data, and
3857		 * stripe_index is the number of our device in the stripe array
3858		 */
3859		stripe_index = do_div(stripe_nr, map->num_stripes);
 
3860		mirror_num = stripe_index + 1;
3861	}
3862	BUG_ON(stripe_index >= map->num_stripes);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3863
3864	bbio = kzalloc(btrfs_bio_size(num_stripes), GFP_NOFS);
3865	if (!bbio) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3866		ret = -ENOMEM;
3867		goto out;
3868	}
3869	atomic_set(&bbio->error, 0);
3870
3871	if (rw & REQ_DISCARD) {
3872		int factor = 0;
3873		int sub_stripes = 0;
3874		u64 stripes_per_dev = 0;
3875		u32 remaining_stripes = 0;
3876		u32 last_stripe = 0;
3877
3878		if (map->type &
3879		    (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
3880			if (map->type & BTRFS_BLOCK_GROUP_RAID0)
3881				sub_stripes = 1;
3882			else
3883				sub_stripes = map->sub_stripes;
3884
3885			factor = map->num_stripes / sub_stripes;
3886			stripes_per_dev = div_u64_rem(stripe_nr_end -
3887						      stripe_nr_orig,
3888						      factor,
3889						      &remaining_stripes);
3890			div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
3891			last_stripe *= sub_stripes;
3892		}
3893
3894		for (i = 0; i < num_stripes; i++) {
3895			bbio->stripes[i].physical =
3896				map->stripes[stripe_index].physical +
3897				stripe_offset + stripe_nr * map->stripe_len;
3898			bbio->stripes[i].dev = map->stripes[stripe_index].dev;
3899
3900			if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
3901					 BTRFS_BLOCK_GROUP_RAID10)) {
3902				bbio->stripes[i].length = stripes_per_dev *
3903							  map->stripe_len;
3904
3905				if (i / sub_stripes < remaining_stripes)
3906					bbio->stripes[i].length +=
3907						map->stripe_len;
3908
3909				/*
3910				 * Special for the first stripe and
3911				 * the last stripe:
3912				 *
3913				 * |-------|...|-------|
3914				 *     |----------|
3915				 *    off     end_off
3916				 */
3917				if (i < sub_stripes)
3918					bbio->stripes[i].length -=
3919						stripe_offset;
3920
3921				if (stripe_index >= last_stripe &&
3922				    stripe_index <= (last_stripe +
3923						     sub_stripes - 1))
3924					bbio->stripes[i].length -=
3925						stripe_end_offset;
3926
3927				if (i == sub_stripes - 1)
3928					stripe_offset = 0;
3929			} else
3930				bbio->stripes[i].length = *length;
3931
3932			stripe_index++;
3933			if (stripe_index == map->num_stripes) {
3934				/* This could only happen for RAID0/10 */
3935				stripe_index = 0;
3936				stripe_nr++;
3937			}
3938		}
3939	} else {
3940		for (i = 0; i < num_stripes; i++) {
3941			bbio->stripes[i].physical =
3942				map->stripes[stripe_index].physical +
3943				stripe_offset +
3944				stripe_nr * map->stripe_len;
3945			bbio->stripes[i].dev =
3946				map->stripes[stripe_index].dev;
3947			stripe_index++;
3948		}
3949	}
3950
3951	if (rw & REQ_WRITE) {
3952		if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
3953				 BTRFS_BLOCK_GROUP_RAID10 |
3954				 BTRFS_BLOCK_GROUP_DUP)) {
3955			max_errors = 1;
3956		}
 
3957	}
3958
3959	*bbio_ret = bbio;
3960	bbio->num_stripes = num_stripes;
3961	bbio->max_errors = max_errors;
3962	bbio->mirror_num = mirror_num;
 
 
 
 
 
 
 
 
 
 
 
 
 
3963out:
 
 
 
 
 
3964	free_extent_map(em);
3965	return ret;
3966}
3967
3968int btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
3969		      u64 logical, u64 *length,
3970		      struct btrfs_bio **bbio_ret, int mirror_num)
3971{
3972	return __btrfs_map_block(map_tree, rw, logical, length, bbio_ret,
3973				 mirror_num);
3974}
3975
3976int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
3977		     u64 chunk_start, u64 physical, u64 devid,
3978		     u64 **logical, int *naddrs, int *stripe_len)
 
3979{
3980	struct extent_map_tree *em_tree = &map_tree->map_tree;
3981	struct extent_map *em;
3982	struct map_lookup *map;
3983	u64 *buf;
3984	u64 bytenr;
3985	u64 length;
3986	u64 stripe_nr;
3987	int i, j, nr = 0;
3988
3989	read_lock(&em_tree->lock);
3990	em = lookup_extent_mapping(em_tree, chunk_start, 1);
3991	read_unlock(&em_tree->lock);
3992
3993	BUG_ON(!em || em->start != chunk_start);
3994	map = (struct map_lookup *)em->bdev;
3995
3996	length = em->len;
3997	if (map->type & BTRFS_BLOCK_GROUP_RAID10)
3998		do_div(length, map->num_stripes / map->sub_stripes);
3999	else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
4000		do_div(length, map->num_stripes);
 
 
 
 
4001
4002	buf = kzalloc(sizeof(u64) * map->num_stripes, GFP_NOFS);
4003	BUG_ON(!buf); /* -ENOMEM */
 
 
 
 
 
 
 
4004
4005	for (i = 0; i < map->num_stripes; i++) {
4006		if (devid && map->stripes[i].dev->devid != devid)
4007			continue;
4008		if (map->stripes[i].physical > physical ||
4009		    map->stripes[i].physical + length <= physical)
4010			continue;
4011
4012		stripe_nr = physical - map->stripes[i].physical;
4013		do_div(stripe_nr, map->stripe_len);
 
 
 
 
 
 
 
 
 
 
4014
4015		if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
4016			stripe_nr = stripe_nr * map->num_stripes + i;
4017			do_div(stripe_nr, map->sub_stripes);
4018		} else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
4019			stripe_nr = stripe_nr * map->num_stripes + i;
4020		}
4021		bytenr = chunk_start + stripe_nr * map->stripe_len;
4022		WARN_ON(nr >= map->num_stripes);
4023		for (j = 0; j < nr; j++) {
4024			if (buf[j] == bytenr)
4025				break;
4026		}
4027		if (j == nr) {
4028			WARN_ON(nr >= map->num_stripes);
4029			buf[nr++] = bytenr;
4030		}
4031	}
4032
4033	*logical = buf;
4034	*naddrs = nr;
4035	*stripe_len = map->stripe_len;
 
 
 
 
 
4036
4037	free_extent_map(em);
4038	return 0;
4039}
4040
4041static void *merge_stripe_index_into_bio_private(void *bi_private,
4042						 unsigned int stripe_index)
4043{
 
 
 
4044	/*
4045	 * with single, dup, RAID0, RAID1 and RAID10, stripe_index is
4046	 * at most 1.
4047	 * The alternative solution (instead of stealing bits from the
4048	 * pointer) would be to allocate an intermediate structure
4049	 * that contains the old private pointer plus the stripe_index.
4050	 */
4051	BUG_ON((((uintptr_t)bi_private) & 3) != 0);
4052	BUG_ON(stripe_index > 3);
4053	return (void *)(((uintptr_t)bi_private) | stripe_index);
4054}
4055
4056static struct btrfs_bio *extract_bbio_from_bio_private(void *bi_private)
4057{
4058	return (struct btrfs_bio *)(((uintptr_t)bi_private) & ~((uintptr_t)3));
4059}
 
4060
4061static unsigned int extract_stripe_index_from_bio_private(void *bi_private)
4062{
4063	return (unsigned int)((uintptr_t)bi_private) & 3;
 
 
 
 
 
4064}
4065
4066static void btrfs_end_bio(struct bio *bio, int err)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4067{
4068	struct btrfs_bio *bbio = extract_bbio_from_bio_private(bio->bi_private);
4069	int is_orig_bio = 0;
4070
4071	if (err) {
4072		atomic_inc(&bbio->error);
4073		if (err == -EIO || err == -EREMOTEIO) {
4074			unsigned int stripe_index =
4075				extract_stripe_index_from_bio_private(
4076					bio->bi_private);
4077			struct btrfs_device *dev;
4078
4079			BUG_ON(stripe_index >= bbio->num_stripes);
4080			dev = bbio->stripes[stripe_index].dev;
4081			if (dev->bdev) {
4082				if (bio->bi_rw & WRITE)
4083					btrfs_dev_stat_inc(dev,
4084						BTRFS_DEV_STAT_WRITE_ERRS);
4085				else
4086					btrfs_dev_stat_inc(dev,
4087						BTRFS_DEV_STAT_READ_ERRS);
4088				if ((bio->bi_rw & WRITE_FLUSH) == WRITE_FLUSH)
4089					btrfs_dev_stat_inc(dev,
4090						BTRFS_DEV_STAT_FLUSH_ERRS);
4091				btrfs_dev_stat_print_on_error(dev);
4092			}
 
 
 
 
 
 
 
4093		}
4094	}
 
4095
4096	if (bio == bbio->orig_bio)
4097		is_orig_bio = 1;
 
 
4098
4099	if (atomic_dec_and_test(&bbio->stripes_pending)) {
4100		if (!is_orig_bio) {
4101			bio_put(bio);
4102			bio = bbio->orig_bio;
4103		}
4104		bio->bi_private = bbio->private;
4105		bio->bi_end_io = bbio->end_io;
4106		bio->bi_bdev = (struct block_device *)
4107					(unsigned long)bbio->mirror_num;
4108		/* only send an error to the higher layers if it is
4109		 * beyond the tolerance of the multi-bio
4110		 */
4111		if (atomic_read(&bbio->error) > bbio->max_errors) {
4112			err = -EIO;
4113		} else {
4114			/*
4115			 * this bio is actually up to date, we didn't
4116			 * go over the max number of errors
4117			 */
4118			set_bit(BIO_UPTODATE, &bio->bi_flags);
4119			err = 0;
4120		}
4121		kfree(bbio);
4122
4123		bio_endio(bio, err);
4124	} else if (!is_orig_bio) {
4125		bio_put(bio);
 
 
 
4126	}
 
 
4127}
4128
4129struct async_sched {
4130	struct bio *bio;
4131	int rw;
4132	struct btrfs_fs_info *info;
4133	struct btrfs_work work;
4134};
 
 
 
 
 
 
 
 
 
 
 
 
4135
 
4136/*
4137 * see run_scheduled_bios for a description of why bios are collected for
4138 * async submit.
4139 *
4140 * This will add one bio to the pending list for a device and make sure
4141 * the work struct is scheduled.
4142 */
4143static noinline void schedule_bio(struct btrfs_root *root,
4144				 struct btrfs_device *device,
4145				 int rw, struct bio *bio)
4146{
4147	int should_queue = 1;
4148	struct btrfs_pending_bios *pending_bios;
4149
4150	/* don't bother with additional async steps for reads, right now */
4151	if (!(rw & REQ_WRITE)) {
4152		bio_get(bio);
4153		btrfsic_submit_bio(rw, bio);
4154		bio_put(bio);
4155		return;
4156	}
4157
4158	/*
4159	 * nr_async_bios allows us to reliably return congestion to the
4160	 * higher layers.  Otherwise, the async bio makes it appear we have
4161	 * made progress against dirty pages when we've really just put it
4162	 * on a queue for later
4163	 */
4164	atomic_inc(&root->fs_info->nr_async_bios);
4165	WARN_ON(bio->bi_next);
4166	bio->bi_next = NULL;
4167	bio->bi_rw |= rw;
4168
4169	spin_lock(&device->io_lock);
4170	if (bio->bi_rw & REQ_SYNC)
4171		pending_bios = &device->pending_sync_bios;
4172	else
4173		pending_bios = &device->pending_bios;
4174
4175	if (pending_bios->tail)
4176		pending_bios->tail->bi_next = bio;
4177
4178	pending_bios->tail = bio;
4179	if (!pending_bios->head)
4180		pending_bios->head = bio;
4181	if (device->running_pending)
4182		should_queue = 0;
4183
4184	spin_unlock(&device->io_lock);
 
4185
4186	if (should_queue)
4187		btrfs_queue_worker(&root->fs_info->submit_workers,
4188				   &device->work);
4189}
4190
4191int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
4192		  int mirror_num, int async_submit)
 
 
 
 
 
 
4193{
4194	struct btrfs_mapping_tree *map_tree;
4195	struct btrfs_device *dev;
4196	struct bio *first_bio = bio;
4197	u64 logical = (u64)bio->bi_sector << 9;
4198	u64 length = 0;
4199	u64 map_length;
4200	int ret;
4201	int dev_nr = 0;
4202	int total_devs = 1;
4203	struct btrfs_bio *bbio = NULL;
4204
4205	length = bio->bi_size;
4206	map_tree = &root->fs_info->mapping_tree;
4207	map_length = length;
4208
4209	ret = btrfs_map_block(map_tree, rw, logical, &map_length, &bbio,
4210			      mirror_num);
4211	if (ret) /* -ENOMEM */
4212		return ret;
4213
4214	total_devs = bbio->num_stripes;
4215	if (map_length < length) {
4216		printk(KERN_CRIT "mapping failed logical %llu bio len %llu "
4217		       "len %llu\n", (unsigned long long)logical,
4218		       (unsigned long long)length,
4219		       (unsigned long long)map_length);
4220		BUG();
4221	}
4222
4223	bbio->orig_bio = first_bio;
4224	bbio->private = first_bio->bi_private;
4225	bbio->end_io = first_bio->bi_end_io;
4226	atomic_set(&bbio->stripes_pending, bbio->num_stripes);
4227
4228	while (dev_nr < total_devs) {
4229		if (dev_nr < total_devs - 1) {
4230			bio = bio_clone(first_bio, GFP_NOFS);
4231			BUG_ON(!bio); /* -ENOMEM */
4232		} else {
4233			bio = first_bio;
4234		}
4235		bio->bi_private = bbio;
4236		bio->bi_private = merge_stripe_index_into_bio_private(
4237				bio->bi_private, (unsigned int)dev_nr);
4238		bio->bi_end_io = btrfs_end_bio;
4239		bio->bi_sector = bbio->stripes[dev_nr].physical >> 9;
4240		dev = bbio->stripes[dev_nr].dev;
4241		if (dev && dev->bdev && (rw != WRITE || dev->writeable)) {
4242#ifdef DEBUG
4243			struct rcu_string *name;
4244
4245			rcu_read_lock();
4246			name = rcu_dereference(dev->name);
4247			pr_debug("btrfs_map_bio: rw %d, secor=%llu, dev=%lu "
4248				 "(%s id %llu), size=%u\n", rw,
4249				 (u64)bio->bi_sector, (u_long)dev->bdev->bd_dev,
4250				 name->str, dev->devid, bio->bi_size);
4251			rcu_read_unlock();
4252#endif
4253			bio->bi_bdev = dev->bdev;
4254			if (async_submit)
4255				schedule_bio(root, dev, rw, bio);
4256			else
4257				btrfsic_submit_bio(rw, bio);
4258		} else {
4259			bio->bi_bdev = root->fs_info->fs_devices->latest_bdev;
4260			bio->bi_sector = logical >> 9;
4261			bio_endio(bio, -EIO);
4262		}
4263		dev_nr++;
4264	}
4265	return 0;
4266}
 
4267
4268struct btrfs_device *btrfs_find_device(struct btrfs_root *root, u64 devid,
4269				       u8 *uuid, u8 *fsid)
4270{
4271	struct btrfs_device *device;
4272	struct btrfs_fs_devices *cur_devices;
4273
4274	cur_devices = root->fs_info->fs_devices;
4275	while (cur_devices) {
4276		if (!fsid ||
4277		    !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
4278			device = __find_device(&cur_devices->devices,
4279					       devid, uuid);
4280			if (device)
4281				return device;
4282		}
4283		cur_devices = cur_devices->seed;
4284	}
4285	return NULL;
4286}
4287
4288static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
4289					    u64 devid, u8 *dev_uuid)
4290{
4291	struct btrfs_device *device;
4292	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
 
 
4293
4294	device = kzalloc(sizeof(*device), GFP_NOFS);
4295	if (!device)
4296		return NULL;
4297	list_add(&device->dev_list,
4298		 &fs_devices->devices);
4299	device->dev_root = root->fs_info->dev_root;
4300	device->devid = devid;
4301	device->work.func = pending_bios_fn;
4302	device->fs_devices = fs_devices;
4303	device->missing = 1;
4304	fs_devices->num_devices++;
4305	fs_devices->missing_devices++;
4306	spin_lock_init(&device->io_lock);
4307	INIT_LIST_HEAD(&device->dev_alloc_list);
4308	memcpy(device->uuid, dev_uuid, BTRFS_UUID_SIZE);
4309	return device;
4310}
4311
4312static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
4313			  struct extent_buffer *leaf,
4314			  struct btrfs_chunk *chunk)
4315{
4316	struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
 
 
4317	struct map_lookup *map;
4318	struct extent_map *em;
4319	u64 logical;
4320	u64 length;
4321	u64 devid;
 
4322	u8 uuid[BTRFS_UUID_SIZE];
 
4323	int num_stripes;
4324	int ret;
4325	int i;
4326
4327	logical = key->offset;
4328	length = btrfs_chunk_length(leaf, chunk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4329
4330	read_lock(&map_tree->map_tree.lock);
4331	em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
4332	read_unlock(&map_tree->map_tree.lock);
4333
4334	/* already mapped? */
4335	if (em && em->start <= logical && em->start + em->len > logical) {
4336		free_extent_map(em);
4337		return 0;
4338	} else if (em) {
4339		free_extent_map(em);
4340	}
4341
4342	em = alloc_extent_map();
4343	if (!em)
4344		return -ENOMEM;
4345	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
4346	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4347	if (!map) {
4348		free_extent_map(em);
4349		return -ENOMEM;
4350	}
4351
4352	em->bdev = (struct block_device *)map;
 
4353	em->start = logical;
4354	em->len = length;
 
4355	em->block_start = 0;
4356	em->block_len = em->len;
4357
4358	map->num_stripes = num_stripes;
4359	map->io_width = btrfs_chunk_io_width(leaf, chunk);
4360	map->io_align = btrfs_chunk_io_align(leaf, chunk);
4361	map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
4362	map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
4363	map->type = btrfs_chunk_type(leaf, chunk);
4364	map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
 
 
 
 
 
 
 
 
 
 
4365	for (i = 0; i < num_stripes; i++) {
4366		map->stripes[i].physical =
4367			btrfs_stripe_offset_nr(leaf, chunk, i);
4368		devid = btrfs_stripe_devid_nr(leaf, chunk, i);
 
4369		read_extent_buffer(leaf, uuid, (unsigned long)
4370				   btrfs_stripe_dev_uuid_nr(chunk, i),
4371				   BTRFS_UUID_SIZE);
4372		map->stripes[i].dev = btrfs_find_device(root, devid, uuid,
4373							NULL);
4374		if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
4375			kfree(map);
4376			free_extent_map(em);
4377			return -EIO;
4378		}
4379		if (!map->stripes[i].dev) {
4380			map->stripes[i].dev =
4381				add_missing_dev(root, devid, uuid);
4382			if (!map->stripes[i].dev) {
4383				kfree(map);
4384				free_extent_map(em);
4385				return -EIO;
4386			}
4387		}
4388		map->stripes[i].dev->in_fs_metadata = 1;
 
 
4389	}
4390
4391	write_lock(&map_tree->map_tree.lock);
4392	ret = add_extent_mapping(&map_tree->map_tree, em);
4393	write_unlock(&map_tree->map_tree.lock);
4394	BUG_ON(ret); /* Tree corruption */
 
 
 
 
4395	free_extent_map(em);
4396
4397	return 0;
4398}
4399
4400static void fill_device_from_item(struct extent_buffer *leaf,
4401				 struct btrfs_dev_item *dev_item,
4402				 struct btrfs_device *device)
4403{
4404	unsigned long ptr;
4405
4406	device->devid = btrfs_device_id(leaf, dev_item);
4407	device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
4408	device->total_bytes = device->disk_total_bytes;
 
4409	device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
 
4410	device->type = btrfs_device_type(leaf, dev_item);
4411	device->io_align = btrfs_device_io_align(leaf, dev_item);
4412	device->io_width = btrfs_device_io_width(leaf, dev_item);
4413	device->sector_size = btrfs_device_sector_size(leaf, dev_item);
 
 
4414
4415	ptr = (unsigned long)btrfs_device_uuid(dev_item);
4416	read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
4417}
4418
4419static int open_seed_devices(struct btrfs_root *root, u8 *fsid)
 
4420{
4421	struct btrfs_fs_devices *fs_devices;
4422	int ret;
4423
4424	BUG_ON(!mutex_is_locked(&uuid_mutex));
 
4425
4426	fs_devices = root->fs_info->fs_devices->seed;
4427	while (fs_devices) {
4428		if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
4429			ret = 0;
4430			goto out;
4431		}
4432		fs_devices = fs_devices->seed;
4433	}
4434
4435	fs_devices = find_fsid(fsid);
 
4436	if (!fs_devices) {
4437		ret = -ENOENT;
4438		goto out;
 
 
 
 
 
 
 
 
4439	}
4440
 
 
 
 
4441	fs_devices = clone_fs_devices(fs_devices);
4442	if (IS_ERR(fs_devices)) {
4443		ret = PTR_ERR(fs_devices);
4444		goto out;
4445	}
4446
4447	ret = __btrfs_open_devices(fs_devices, FMODE_READ,
4448				   root->fs_info->bdev_holder);
4449	if (ret) {
4450		free_fs_devices(fs_devices);
4451		goto out;
4452	}
4453
4454	if (!fs_devices->seeding) {
4455		__btrfs_close_devices(fs_devices);
4456		free_fs_devices(fs_devices);
4457		ret = -EINVAL;
4458		goto out;
4459	}
4460
4461	fs_devices->seed = root->fs_info->fs_devices->seed;
4462	root->fs_info->fs_devices->seed = fs_devices;
4463out:
4464	return ret;
4465}
4466
4467static int read_one_dev(struct btrfs_root *root,
4468			struct extent_buffer *leaf,
4469			struct btrfs_dev_item *dev_item)
4470{
 
 
 
4471	struct btrfs_device *device;
4472	u64 devid;
4473	int ret;
4474	u8 fs_uuid[BTRFS_UUID_SIZE];
4475	u8 dev_uuid[BTRFS_UUID_SIZE];
4476
4477	devid = btrfs_device_id(leaf, dev_item);
4478	read_extent_buffer(leaf, dev_uuid,
4479			   (unsigned long)btrfs_device_uuid(dev_item),
4480			   BTRFS_UUID_SIZE);
4481	read_extent_buffer(leaf, fs_uuid,
4482			   (unsigned long)btrfs_device_fsid(dev_item),
4483			   BTRFS_UUID_SIZE);
4484
4485	if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
4486		ret = open_seed_devices(root, fs_uuid);
4487		if (ret && !btrfs_test_opt(root, DEGRADED))
4488			return ret;
 
4489	}
4490
4491	device = btrfs_find_device(root, devid, dev_uuid, fs_uuid);
4492	if (!device || !device->bdev) {
4493		if (!btrfs_test_opt(root, DEGRADED))
4494			return -EIO;
4495
4496		if (!device) {
4497			printk(KERN_WARNING "warning devid %llu missing\n",
4498			       (unsigned long long)devid);
4499			device = add_missing_dev(root, devid, dev_uuid);
4500			if (!device)
4501				return -ENOMEM;
4502		} else if (!device->missing) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4503			/*
4504			 * this happens when a device that was properly setup
4505			 * in the device info lists suddenly goes bad.
4506			 * device->bdev is NULL, and so we have to set
4507			 * device->missing to one here
4508			 */
4509			root->fs_info->fs_devices->missing_devices++;
4510			device->missing = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4511		}
4512	}
4513
4514	if (device->fs_devices != root->fs_info->fs_devices) {
4515		BUG_ON(device->writeable);
4516		if (device->generation !=
4517		    btrfs_device_generation(leaf, dev_item))
4518			return -EINVAL;
4519	}
4520
4521	fill_device_from_item(leaf, dev_item, device);
4522	device->dev_root = root->fs_info->dev_root;
4523	device->in_fs_metadata = 1;
4524	if (device->writeable) {
 
 
 
 
 
 
 
 
 
 
4525		device->fs_devices->total_rw_bytes += device->total_bytes;
4526		spin_lock(&root->fs_info->free_chunk_lock);
4527		root->fs_info->free_chunk_space += device->total_bytes -
4528			device->bytes_used;
4529		spin_unlock(&root->fs_info->free_chunk_lock);
4530	}
4531	ret = 0;
4532	return ret;
4533}
4534
4535int btrfs_read_sys_array(struct btrfs_root *root)
4536{
4537	struct btrfs_super_block *super_copy = root->fs_info->super_copy;
4538	struct extent_buffer *sb;
4539	struct btrfs_disk_key *disk_key;
4540	struct btrfs_chunk *chunk;
4541	u8 *ptr;
4542	unsigned long sb_ptr;
4543	int ret = 0;
4544	u32 num_stripes;
4545	u32 array_size;
4546	u32 len = 0;
4547	u32 cur;
 
4548	struct btrfs_key key;
4549
4550	sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET,
4551					  BTRFS_SUPER_INFO_SIZE);
4552	if (!sb)
4553		return -ENOMEM;
4554	btrfs_set_buffer_uptodate(sb);
4555	btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
4556	/*
4557	 * The sb extent buffer is artifical and just used to read the system array.
4558	 * btrfs_set_buffer_uptodate() call does not properly mark all it's
4559	 * pages up-to-date when the page is larger: extent does not cover the
4560	 * whole page and consequently check_page_uptodate does not find all
4561	 * the page's extents up-to-date (the hole beyond sb),
4562	 * write_extent_buffer then triggers a WARN_ON.
4563	 *
4564	 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
4565	 * but sb spans only this function. Add an explicit SetPageUptodate call
4566	 * to silence the warning eg. on PowerPC 64.
4567	 */
4568	if (PAGE_CACHE_SIZE > BTRFS_SUPER_INFO_SIZE)
4569		SetPageUptodate(sb->pages[0]);
 
 
4570
4571	write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
4572	array_size = btrfs_super_sys_array_size(super_copy);
4573
4574	ptr = super_copy->sys_chunk_array;
4575	sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array);
4576	cur = 0;
 
 
 
 
 
 
4577
4578	while (cur < array_size) {
4579		disk_key = (struct btrfs_disk_key *)ptr;
4580		btrfs_disk_key_to_cpu(&key, disk_key);
4581
4582		len = sizeof(*disk_key); ptr += len;
4583		sb_ptr += len;
4584		cur += len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4585
4586		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
4587			chunk = (struct btrfs_chunk *)sb_ptr;
4588			ret = read_one_chunk(root, &key, sb, chunk);
4589			if (ret)
4590				break;
4591			num_stripes = btrfs_chunk_num_stripes(sb, chunk);
4592			len = btrfs_chunk_item_size(num_stripes);
4593		} else {
4594			ret = -EIO;
4595			break;
4596		}
4597		ptr += len;
4598		sb_ptr += len;
4599		cur += len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4600	}
4601	free_extent_buffer(sb);
4602	return ret;
4603}
4604
4605int btrfs_read_chunk_tree(struct btrfs_root *root)
4606{
 
 
 
 
 
 
 
 
 
 
4607	struct btrfs_path *path;
4608	struct extent_buffer *leaf;
4609	struct btrfs_key key;
4610	struct btrfs_key found_key;
4611	int ret;
4612	int slot;
4613
4614	root = root->fs_info->chunk_root;
 
4615
4616	path = btrfs_alloc_path();
4617	if (!path)
4618		return -ENOMEM;
4619
 
 
 
 
4620	mutex_lock(&uuid_mutex);
4621	lock_chunks(root);
4622
4623	/* first we search for all of the device items, and then we
4624	 * read in all of the chunk items.  This way we can create chunk
4625	 * mappings that reference all of the devices that are afound
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4626	 */
4627	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
4628	key.offset = 0;
4629	key.type = 0;
4630again:
4631	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4632	if (ret < 0)
4633		goto error;
4634	while (1) {
4635		leaf = path->nodes[0];
4636		slot = path->slots[0];
4637		if (slot >= btrfs_header_nritems(leaf)) {
4638			ret = btrfs_next_leaf(root, path);
4639			if (ret == 0)
4640				continue;
4641			if (ret < 0)
4642				goto error;
4643			break;
4644		}
4645		btrfs_item_key_to_cpu(leaf, &found_key, slot);
4646		if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
4647			if (found_key.objectid != BTRFS_DEV_ITEMS_OBJECTID)
4648				break;
4649			if (found_key.type == BTRFS_DEV_ITEM_KEY) {
4650				struct btrfs_dev_item *dev_item;
4651				dev_item = btrfs_item_ptr(leaf, slot,
4652						  struct btrfs_dev_item);
4653				ret = read_one_dev(root, leaf, dev_item);
4654				if (ret)
4655					goto error;
4656			}
4657		} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
4658			struct btrfs_chunk *chunk;
 
 
 
 
 
 
 
 
 
4659			chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
4660			ret = read_one_chunk(root, &found_key, leaf, chunk);
4661			if (ret)
4662				goto error;
4663		}
4664		path->slots[0]++;
4665	}
4666	if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
4667		key.objectid = 0;
4668		btrfs_release_path(path);
4669		goto again;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4670	}
4671	ret = 0;
4672error:
4673	unlock_chunks(root);
4674	mutex_unlock(&uuid_mutex);
4675
4676	btrfs_free_path(path);
4677	return ret;
4678}
4679
4680static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
4681{
4682	int i;
 
 
4683
4684	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
4685		btrfs_dev_stat_reset(dev, i);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4686}
4687
4688int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
 
 
4689{
4690	struct btrfs_key key;
4691	struct btrfs_key found_key;
4692	struct btrfs_root *dev_root = fs_info->dev_root;
4693	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4694	struct extent_buffer *eb;
4695	int slot;
4696	int ret = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4697	struct btrfs_device *device;
4698	struct btrfs_path *path = NULL;
4699	int i;
4700
4701	path = btrfs_alloc_path();
4702	if (!path) {
4703		ret = -ENOMEM;
4704		goto out;
4705	}
4706
4707	mutex_lock(&fs_devices->device_list_mutex);
4708	list_for_each_entry(device, &fs_devices->devices, dev_list) {
4709		int item_size;
4710		struct btrfs_dev_stats_item *ptr;
4711
4712		key.objectid = 0;
4713		key.type = BTRFS_DEV_STATS_KEY;
4714		key.offset = device->devid;
4715		ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
4716		if (ret) {
4717			printk_in_rcu(KERN_WARNING "btrfs: no dev_stats entry found for device %s (devid %llu) (OK on first mount after mkfs)\n",
4718				      rcu_str_deref(device->name),
4719				      (unsigned long long)device->devid);
4720			__btrfs_reset_dev_stats(device);
4721			device->dev_stats_valid = 1;
4722			btrfs_release_path(path);
4723			continue;
4724		}
4725		slot = path->slots[0];
4726		eb = path->nodes[0];
4727		btrfs_item_key_to_cpu(eb, &found_key, slot);
4728		item_size = btrfs_item_size_nr(eb, slot);
4729
4730		ptr = btrfs_item_ptr(eb, slot,
4731				     struct btrfs_dev_stats_item);
4732
4733		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
4734			if (item_size >= (1 + i) * sizeof(__le64))
4735				btrfs_dev_stat_set(device, i,
4736					btrfs_dev_stats_value(eb, ptr, i));
4737			else
4738				btrfs_dev_stat_reset(device, i);
4739		}
4740
4741		device->dev_stats_valid = 1;
4742		btrfs_dev_stat_print_on_load(device);
4743		btrfs_release_path(path);
4744	}
 
4745	mutex_unlock(&fs_devices->device_list_mutex);
4746
4747out:
4748	btrfs_free_path(path);
4749	return ret < 0 ? ret : 0;
4750}
4751
4752static int update_dev_stat_item(struct btrfs_trans_handle *trans,
4753				struct btrfs_root *dev_root,
4754				struct btrfs_device *device)
4755{
 
 
4756	struct btrfs_path *path;
4757	struct btrfs_key key;
4758	struct extent_buffer *eb;
4759	struct btrfs_dev_stats_item *ptr;
4760	int ret;
4761	int i;
4762
4763	key.objectid = 0;
4764	key.type = BTRFS_DEV_STATS_KEY;
4765	key.offset = device->devid;
4766
4767	path = btrfs_alloc_path();
4768	BUG_ON(!path);
 
4769	ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
4770	if (ret < 0) {
4771		printk_in_rcu(KERN_WARNING "btrfs: error %d while searching for dev_stats item for device %s!\n",
4772			      ret, rcu_str_deref(device->name));
 
4773		goto out;
4774	}
4775
4776	if (ret == 0 &&
4777	    btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
4778		/* need to delete old one and insert a new one */
4779		ret = btrfs_del_item(trans, dev_root, path);
4780		if (ret != 0) {
4781			printk_in_rcu(KERN_WARNING "btrfs: delete too small dev_stats item for device %s failed %d!\n",
4782				      rcu_str_deref(device->name), ret);
 
4783			goto out;
4784		}
4785		ret = 1;
4786	}
4787
4788	if (ret == 1) {
4789		/* need to insert a new item */
4790		btrfs_release_path(path);
4791		ret = btrfs_insert_empty_item(trans, dev_root, path,
4792					      &key, sizeof(*ptr));
4793		if (ret < 0) {
4794			printk_in_rcu(KERN_WARNING "btrfs: insert dev_stats item for device %s failed %d!\n",
4795				      rcu_str_deref(device->name), ret);
 
4796			goto out;
4797		}
4798	}
4799
4800	eb = path->nodes[0];
4801	ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
4802	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
4803		btrfs_set_dev_stats_value(eb, ptr, i,
4804					  btrfs_dev_stat_read(device, i));
4805	btrfs_mark_buffer_dirty(eb);
4806
4807out:
4808	btrfs_free_path(path);
4809	return ret;
4810}
4811
4812/*
4813 * called from commit_transaction. Writes all changed device stats to disk.
4814 */
4815int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
4816			struct btrfs_fs_info *fs_info)
4817{
4818	struct btrfs_root *dev_root = fs_info->dev_root;
4819	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
4820	struct btrfs_device *device;
 
4821	int ret = 0;
4822
4823	mutex_lock(&fs_devices->device_list_mutex);
4824	list_for_each_entry(device, &fs_devices->devices, dev_list) {
4825		if (!device->dev_stats_valid || !device->dev_stats_dirty)
 
4826			continue;
4827
4828		ret = update_dev_stat_item(trans, dev_root, device);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4829		if (!ret)
4830			device->dev_stats_dirty = 0;
4831	}
4832	mutex_unlock(&fs_devices->device_list_mutex);
4833
4834	return ret;
4835}
4836
4837void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
4838{
4839	btrfs_dev_stat_inc(dev, index);
4840	btrfs_dev_stat_print_on_error(dev);
4841}
4842
4843void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
4844{
4845	if (!dev->dev_stats_valid)
4846		return;
4847	printk_ratelimited_in_rcu(KERN_ERR
4848			   "btrfs: bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
4849			   rcu_str_deref(dev->name),
4850			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
4851			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
4852			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
4853			   btrfs_dev_stat_read(dev,
4854					       BTRFS_DEV_STAT_CORRUPTION_ERRS),
4855			   btrfs_dev_stat_read(dev,
4856					       BTRFS_DEV_STAT_GENERATION_ERRS));
4857}
4858
4859static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
4860{
4861	printk_in_rcu(KERN_INFO "btrfs: bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
4862	       rcu_str_deref(dev->name),
 
 
 
 
 
 
 
 
 
4863	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
4864	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
4865	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
4866	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
4867	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
4868}
4869
4870int btrfs_get_dev_stats(struct btrfs_root *root,
4871			struct btrfs_ioctl_get_dev_stats *stats,
4872			int reset_after_read)
4873{
 
4874	struct btrfs_device *dev;
4875	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
4876	int i;
4877
4878	mutex_lock(&fs_devices->device_list_mutex);
4879	dev = btrfs_find_device(root, stats->devid, NULL, NULL);
 
4880	mutex_unlock(&fs_devices->device_list_mutex);
4881
4882	if (!dev) {
4883		printk(KERN_WARNING
4884		       "btrfs: get dev_stats failed, device not found\n");
4885		return -ENODEV;
4886	} else if (!dev->dev_stats_valid) {
4887		printk(KERN_WARNING
4888		       "btrfs: get dev_stats failed, not yet valid\n");
4889		return -ENODEV;
4890	} else if (reset_after_read) {
4891		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
4892			if (stats->nr_items > i)
4893				stats->values[i] =
4894					btrfs_dev_stat_read_and_reset(dev, i);
4895			else
4896				btrfs_dev_stat_reset(dev, i);
4897		}
 
 
4898	} else {
4899		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
4900			if (stats->nr_items > i)
4901				stats->values[i] = btrfs_dev_stat_read(dev, i);
4902	}
4903	if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
4904		stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
4905	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4906}
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007 Oracle.  All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   4 */
   5
   6#include <linux/sched.h>
   7#include <linux/sched/mm.h>
   8#include <linux/slab.h>
 
 
 
 
 
   9#include <linux/ratelimit.h>
  10#include <linux/kthread.h>
  11#include <linux/semaphore.h>
  12#include <linux/uuid.h>
  13#include <linux/list_sort.h>
  14#include <linux/namei.h>
  15#include "misc.h"
  16#include "ctree.h"
  17#include "extent_map.h"
  18#include "disk-io.h"
  19#include "transaction.h"
  20#include "print-tree.h"
  21#include "volumes.h"
  22#include "raid56.h"
 
  23#include "rcu-string.h"
  24#include "dev-replace.h"
  25#include "sysfs.h"
  26#include "tree-checker.h"
  27#include "space-info.h"
  28#include "block-group.h"
  29#include "discard.h"
  30#include "zoned.h"
  31#include "fs.h"
  32#include "accessors.h"
  33#include "uuid-tree.h"
  34#include "ioctl.h"
  35#include "relocation.h"
  36#include "scrub.h"
  37#include "super.h"
  38
  39#define BTRFS_BLOCK_GROUP_STRIPE_MASK	(BTRFS_BLOCK_GROUP_RAID0 | \
  40					 BTRFS_BLOCK_GROUP_RAID10 | \
  41					 BTRFS_BLOCK_GROUP_RAID56_MASK)
  42
  43const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
  44	[BTRFS_RAID_RAID10] = {
  45		.sub_stripes	= 2,
  46		.dev_stripes	= 1,
  47		.devs_max	= 0,	/* 0 == as many as possible */
  48		.devs_min	= 2,
  49		.tolerated_failures = 1,
  50		.devs_increment	= 2,
  51		.ncopies	= 2,
  52		.nparity        = 0,
  53		.raid_name	= "raid10",
  54		.bg_flag	= BTRFS_BLOCK_GROUP_RAID10,
  55		.mindev_error	= BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
  56	},
  57	[BTRFS_RAID_RAID1] = {
  58		.sub_stripes	= 1,
  59		.dev_stripes	= 1,
  60		.devs_max	= 2,
  61		.devs_min	= 2,
  62		.tolerated_failures = 1,
  63		.devs_increment	= 2,
  64		.ncopies	= 2,
  65		.nparity        = 0,
  66		.raid_name	= "raid1",
  67		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1,
  68		.mindev_error	= BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
  69	},
  70	[BTRFS_RAID_RAID1C3] = {
  71		.sub_stripes	= 1,
  72		.dev_stripes	= 1,
  73		.devs_max	= 3,
  74		.devs_min	= 3,
  75		.tolerated_failures = 2,
  76		.devs_increment	= 3,
  77		.ncopies	= 3,
  78		.nparity        = 0,
  79		.raid_name	= "raid1c3",
  80		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1C3,
  81		.mindev_error	= BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
  82	},
  83	[BTRFS_RAID_RAID1C4] = {
  84		.sub_stripes	= 1,
  85		.dev_stripes	= 1,
  86		.devs_max	= 4,
  87		.devs_min	= 4,
  88		.tolerated_failures = 3,
  89		.devs_increment	= 4,
  90		.ncopies	= 4,
  91		.nparity        = 0,
  92		.raid_name	= "raid1c4",
  93		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1C4,
  94		.mindev_error	= BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
  95	},
  96	[BTRFS_RAID_DUP] = {
  97		.sub_stripes	= 1,
  98		.dev_stripes	= 2,
  99		.devs_max	= 1,
 100		.devs_min	= 1,
 101		.tolerated_failures = 0,
 102		.devs_increment	= 1,
 103		.ncopies	= 2,
 104		.nparity        = 0,
 105		.raid_name	= "dup",
 106		.bg_flag	= BTRFS_BLOCK_GROUP_DUP,
 107		.mindev_error	= 0,
 108	},
 109	[BTRFS_RAID_RAID0] = {
 110		.sub_stripes	= 1,
 111		.dev_stripes	= 1,
 112		.devs_max	= 0,
 113		.devs_min	= 1,
 114		.tolerated_failures = 0,
 115		.devs_increment	= 1,
 116		.ncopies	= 1,
 117		.nparity        = 0,
 118		.raid_name	= "raid0",
 119		.bg_flag	= BTRFS_BLOCK_GROUP_RAID0,
 120		.mindev_error	= 0,
 121	},
 122	[BTRFS_RAID_SINGLE] = {
 123		.sub_stripes	= 1,
 124		.dev_stripes	= 1,
 125		.devs_max	= 1,
 126		.devs_min	= 1,
 127		.tolerated_failures = 0,
 128		.devs_increment	= 1,
 129		.ncopies	= 1,
 130		.nparity        = 0,
 131		.raid_name	= "single",
 132		.bg_flag	= 0,
 133		.mindev_error	= 0,
 134	},
 135	[BTRFS_RAID_RAID5] = {
 136		.sub_stripes	= 1,
 137		.dev_stripes	= 1,
 138		.devs_max	= 0,
 139		.devs_min	= 2,
 140		.tolerated_failures = 1,
 141		.devs_increment	= 1,
 142		.ncopies	= 1,
 143		.nparity        = 1,
 144		.raid_name	= "raid5",
 145		.bg_flag	= BTRFS_BLOCK_GROUP_RAID5,
 146		.mindev_error	= BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
 147	},
 148	[BTRFS_RAID_RAID6] = {
 149		.sub_stripes	= 1,
 150		.dev_stripes	= 1,
 151		.devs_max	= 0,
 152		.devs_min	= 3,
 153		.tolerated_failures = 2,
 154		.devs_increment	= 1,
 155		.ncopies	= 1,
 156		.nparity        = 2,
 157		.raid_name	= "raid6",
 158		.bg_flag	= BTRFS_BLOCK_GROUP_RAID6,
 159		.mindev_error	= BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
 160	},
 161};
 162
 163/*
 164 * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which
 165 * can be used as index to access btrfs_raid_array[].
 166 */
 167enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags)
 168{
 169	const u64 profile = (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK);
 170
 171	if (!profile)
 172		return BTRFS_RAID_SINGLE;
 173
 174	return BTRFS_BG_FLAG_TO_INDEX(profile);
 175}
 176
 177const char *btrfs_bg_type_to_raid_name(u64 flags)
 178{
 179	const int index = btrfs_bg_flags_to_raid_index(flags);
 180
 181	if (index >= BTRFS_NR_RAID_TYPES)
 182		return NULL;
 183
 184	return btrfs_raid_array[index].raid_name;
 185}
 186
 187int btrfs_nr_parity_stripes(u64 type)
 188{
 189	enum btrfs_raid_types index = btrfs_bg_flags_to_raid_index(type);
 190
 191	return btrfs_raid_array[index].nparity;
 192}
 193
 194/*
 195 * Fill @buf with textual description of @bg_flags, no more than @size_buf
 196 * bytes including terminating null byte.
 197 */
 198void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
 199{
 200	int i;
 201	int ret;
 202	char *bp = buf;
 203	u64 flags = bg_flags;
 204	u32 size_bp = size_buf;
 205
 206	if (!flags) {
 207		strcpy(bp, "NONE");
 208		return;
 209	}
 210
 211#define DESCRIBE_FLAG(flag, desc)						\
 212	do {								\
 213		if (flags & (flag)) {					\
 214			ret = snprintf(bp, size_bp, "%s|", (desc));	\
 215			if (ret < 0 || ret >= size_bp)			\
 216				goto out_overflow;			\
 217			size_bp -= ret;					\
 218			bp += ret;					\
 219			flags &= ~(flag);				\
 220		}							\
 221	} while (0)
 222
 223	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
 224	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
 225	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
 226
 227	DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
 228	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
 229		DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
 230			      btrfs_raid_array[i].raid_name);
 231#undef DESCRIBE_FLAG
 232
 233	if (flags) {
 234		ret = snprintf(bp, size_bp, "0x%llx|", flags);
 235		size_bp -= ret;
 236	}
 237
 238	if (size_bp < size_buf)
 239		buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
 240
 241	/*
 242	 * The text is trimmed, it's up to the caller to provide sufficiently
 243	 * large buffer
 244	 */
 245out_overflow:;
 246}
 247
 248static int init_first_rw_device(struct btrfs_trans_handle *trans);
 249static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
 250static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
 251
 252/*
 253 * Device locking
 254 * ==============
 255 *
 256 * There are several mutexes that protect manipulation of devices and low-level
 257 * structures like chunks but not block groups, extents or files
 258 *
 259 * uuid_mutex (global lock)
 260 * ------------------------
 261 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
 262 * the SCAN_DEV ioctl registration or from mount either implicitly (the first
 263 * device) or requested by the device= mount option
 264 *
 265 * the mutex can be very coarse and can cover long-running operations
 266 *
 267 * protects: updates to fs_devices counters like missing devices, rw devices,
 268 * seeding, structure cloning, opening/closing devices at mount/umount time
 269 *
 270 * global::fs_devs - add, remove, updates to the global list
 271 *
 272 * does not protect: manipulation of the fs_devices::devices list in general
 273 * but in mount context it could be used to exclude list modifications by eg.
 274 * scan ioctl
 275 *
 276 * btrfs_device::name - renames (write side), read is RCU
 277 *
 278 * fs_devices::device_list_mutex (per-fs, with RCU)
 279 * ------------------------------------------------
 280 * protects updates to fs_devices::devices, ie. adding and deleting
 281 *
 282 * simple list traversal with read-only actions can be done with RCU protection
 283 *
 284 * may be used to exclude some operations from running concurrently without any
 285 * modifications to the list (see write_all_supers)
 286 *
 287 * Is not required at mount and close times, because our device list is
 288 * protected by the uuid_mutex at that point.
 289 *
 290 * balance_mutex
 291 * -------------
 292 * protects balance structures (status, state) and context accessed from
 293 * several places (internally, ioctl)
 294 *
 295 * chunk_mutex
 296 * -----------
 297 * protects chunks, adding or removing during allocation, trim or when a new
 298 * device is added/removed. Additionally it also protects post_commit_list of
 299 * individual devices, since they can be added to the transaction's
 300 * post_commit_list only with chunk_mutex held.
 301 *
 302 * cleaner_mutex
 303 * -------------
 304 * a big lock that is held by the cleaner thread and prevents running subvolume
 305 * cleaning together with relocation or delayed iputs
 306 *
 307 *
 308 * Lock nesting
 309 * ============
 310 *
 311 * uuid_mutex
 312 *   device_list_mutex
 313 *     chunk_mutex
 314 *   balance_mutex
 315 *
 316 *
 317 * Exclusive operations
 318 * ====================
 319 *
 320 * Maintains the exclusivity of the following operations that apply to the
 321 * whole filesystem and cannot run in parallel.
 322 *
 323 * - Balance (*)
 324 * - Device add
 325 * - Device remove
 326 * - Device replace (*)
 327 * - Resize
 328 *
 329 * The device operations (as above) can be in one of the following states:
 330 *
 331 * - Running state
 332 * - Paused state
 333 * - Completed state
 334 *
 335 * Only device operations marked with (*) can go into the Paused state for the
 336 * following reasons:
 337 *
 338 * - ioctl (only Balance can be Paused through ioctl)
 339 * - filesystem remounted as read-only
 340 * - filesystem unmounted and mounted as read-only
 341 * - system power-cycle and filesystem mounted as read-only
 342 * - filesystem or device errors leading to forced read-only
 343 *
 344 * The status of exclusive operation is set and cleared atomically.
 345 * During the course of Paused state, fs_info::exclusive_operation remains set.
 346 * A device operation in Paused or Running state can be canceled or resumed
 347 * either by ioctl (Balance only) or when remounted as read-write.
 348 * The exclusive status is cleared when the device operation is canceled or
 349 * completed.
 350 */
 351
 352DEFINE_MUTEX(uuid_mutex);
 353static LIST_HEAD(fs_uuids);
 354struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
 355{
 356	return &fs_uuids;
 357}
 358
 359/*
 360 * alloc_fs_devices - allocate struct btrfs_fs_devices
 361 * @fsid:		if not NULL, copy the UUID to fs_devices::fsid
 362 * @metadata_fsid:	if not NULL, copy the UUID to fs_devices::metadata_fsid
 363 *
 364 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
 365 * The returned struct is not linked onto any lists and can be destroyed with
 366 * kfree() right away.
 367 */
 368static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid,
 369						 const u8 *metadata_fsid)
 370{
 371	struct btrfs_fs_devices *fs_devs;
 372
 373	fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
 374	if (!fs_devs)
 375		return ERR_PTR(-ENOMEM);
 376
 377	mutex_init(&fs_devs->device_list_mutex);
 378
 379	INIT_LIST_HEAD(&fs_devs->devices);
 380	INIT_LIST_HEAD(&fs_devs->alloc_list);
 381	INIT_LIST_HEAD(&fs_devs->fs_list);
 382	INIT_LIST_HEAD(&fs_devs->seed_list);
 383	if (fsid)
 384		memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
 385
 386	if (metadata_fsid)
 387		memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE);
 388	else if (fsid)
 389		memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
 390
 391	return fs_devs;
 392}
 393
 394void btrfs_free_device(struct btrfs_device *device)
 395{
 396	WARN_ON(!list_empty(&device->post_commit_list));
 397	rcu_string_free(device->name);
 398	extent_io_tree_release(&device->alloc_state);
 399	btrfs_destroy_dev_zone_info(device);
 400	kfree(device);
 401}
 402
 403static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
 404{
 405	struct btrfs_device *device;
 406
 407	WARN_ON(fs_devices->opened);
 408	while (!list_empty(&fs_devices->devices)) {
 409		device = list_entry(fs_devices->devices.next,
 410				    struct btrfs_device, dev_list);
 411		list_del(&device->dev_list);
 412		btrfs_free_device(device);
 
 413	}
 414	kfree(fs_devices);
 415}
 416
 417void __exit btrfs_cleanup_fs_uuids(void)
 418{
 419	struct btrfs_fs_devices *fs_devices;
 420
 421	while (!list_empty(&fs_uuids)) {
 422		fs_devices = list_entry(fs_uuids.next,
 423					struct btrfs_fs_devices, fs_list);
 424		list_del(&fs_devices->fs_list);
 425		free_fs_devices(fs_devices);
 426	}
 427}
 428
 429static noinline struct btrfs_fs_devices *find_fsid(
 430		const u8 *fsid, const u8 *metadata_fsid)
 431{
 432	struct btrfs_fs_devices *fs_devices;
 433
 434	ASSERT(fsid);
 435
 436	/* Handle non-split brain cases */
 437	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
 438		if (metadata_fsid) {
 439			if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0
 440			    && memcmp(metadata_fsid, fs_devices->metadata_uuid,
 441				      BTRFS_FSID_SIZE) == 0)
 442				return fs_devices;
 443		} else {
 444			if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
 445				return fs_devices;
 446		}
 447	}
 448	return NULL;
 449}
 450
 451static struct btrfs_fs_devices *find_fsid_with_metadata_uuid(
 452				struct btrfs_super_block *disk_super)
 453{
 454
 455	struct btrfs_fs_devices *fs_devices;
 456
 457	/*
 458	 * Handle scanned device having completed its fsid change but
 459	 * belonging to a fs_devices that was created by first scanning
 460	 * a device which didn't have its fsid/metadata_uuid changed
 461	 * at all and the CHANGING_FSID_V2 flag set.
 462	 */
 463	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
 464		if (fs_devices->fsid_change &&
 465		    memcmp(disk_super->metadata_uuid, fs_devices->fsid,
 466			   BTRFS_FSID_SIZE) == 0 &&
 467		    memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
 468			   BTRFS_FSID_SIZE) == 0) {
 469			return fs_devices;
 470		}
 471	}
 472	/*
 473	 * Handle scanned device having completed its fsid change but
 474	 * belonging to a fs_devices that was created by a device that
 475	 * has an outdated pair of fsid/metadata_uuid and
 476	 * CHANGING_FSID_V2 flag set.
 477	 */
 478	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
 479		if (fs_devices->fsid_change &&
 480		    memcmp(fs_devices->metadata_uuid,
 481			   fs_devices->fsid, BTRFS_FSID_SIZE) != 0 &&
 482		    memcmp(disk_super->metadata_uuid, fs_devices->metadata_uuid,
 483			   BTRFS_FSID_SIZE) == 0) {
 484			return fs_devices;
 485		}
 486	}
 487
 488	return find_fsid(disk_super->fsid, disk_super->metadata_uuid);
 489}
 490
 491
 492static int
 493btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
 494		      int flush, struct block_device **bdev,
 495		      struct btrfs_super_block **disk_super)
 496{
 497	int ret;
 498
 499	*bdev = blkdev_get_by_path(device_path, flags, holder);
 500
 501	if (IS_ERR(*bdev)) {
 502		ret = PTR_ERR(*bdev);
 503		goto error;
 504	}
 505
 506	if (flush)
 507		sync_blockdev(*bdev);
 508	ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
 509	if (ret) {
 510		blkdev_put(*bdev, flags);
 511		goto error;
 512	}
 513	invalidate_bdev(*bdev);
 514	*disk_super = btrfs_read_dev_super(*bdev);
 515	if (IS_ERR(*disk_super)) {
 516		ret = PTR_ERR(*disk_super);
 517		blkdev_put(*bdev, flags);
 518		goto error;
 519	}
 520
 521	return 0;
 522
 523error:
 524	*bdev = NULL;
 525	return ret;
 526}
 527
 528/*
 529 *  Search and remove all stale devices (which are not mounted).  When both
 530 *  inputs are NULL, it will search and release all stale devices.
 531 *
 532 *  @devt:         Optional. When provided will it release all unmounted devices
 533 *                 matching this devt only.
 534 *  @skip_device:  Optional. Will skip this device when searching for the stale
 535 *                 devices.
 536 *
 537 *  Return:	0 for success or if @devt is 0.
 538 *		-EBUSY if @devt is a mounted device.
 539 *		-ENOENT if @devt does not match any device in the list.
 540 */
 541static int btrfs_free_stale_devices(dev_t devt, struct btrfs_device *skip_device)
 542{
 543	struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
 544	struct btrfs_device *device, *tmp_device;
 545	int ret = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 546
 547	lockdep_assert_held(&uuid_mutex);
 
 548
 549	if (devt)
 550		ret = -ENOENT;
 551
 552	list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
 
 
 
 
 
 
 
 
 
 
 
 553
 554		mutex_lock(&fs_devices->device_list_mutex);
 555		list_for_each_entry_safe(device, tmp_device,
 556					 &fs_devices->devices, dev_list) {
 557			if (skip_device && skip_device == device)
 558				continue;
 559			if (devt && devt != device->devt)
 560				continue;
 561			if (fs_devices->opened) {
 562				/* for an already deleted device return 0 */
 563				if (devt && ret != 0)
 564					ret = -EBUSY;
 565				break;
 566			}
 567
 568			/* delete the stale device */
 569			fs_devices->num_devices--;
 570			list_del(&device->dev_list);
 571			btrfs_free_device(device);
 572
 573			ret = 0;
 574		}
 575		mutex_unlock(&fs_devices->device_list_mutex);
 576
 577		if (fs_devices->num_devices == 0) {
 578			btrfs_sysfs_remove_fsid(fs_devices);
 579			list_del(&fs_devices->fs_list);
 580			free_fs_devices(fs_devices);
 581		}
 
 582	}
 583
 584	return ret;
 585}
 586
 587/*
 588 * This is only used on mount, and we are protected from competing things
 589 * messing with our fs_devices by the uuid_mutex, thus we do not need the
 590 * fs_devices->device_list_mutex here.
 591 */
 592static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
 593			struct btrfs_device *device, fmode_t flags,
 594			void *holder)
 595{
 596	struct block_device *bdev;
 597	struct btrfs_super_block *disk_super;
 598	u64 devid;
 599	int ret;
 600
 601	if (device->bdev)
 602		return -EINVAL;
 603	if (!device->name)
 604		return -EINVAL;
 605
 606	ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
 607				    &bdev, &disk_super);
 608	if (ret)
 609		return ret;
 610
 611	devid = btrfs_stack_device_id(&disk_super->dev_item);
 612	if (devid != device->devid)
 613		goto error_free_page;
 614
 615	if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
 616		goto error_free_page;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 617
 618	device->generation = btrfs_super_generation(disk_super);
 619
 620	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
 621		if (btrfs_super_incompat_flags(disk_super) &
 622		    BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
 623			pr_err(
 624		"BTRFS: Invalid seeding and uuid-changed device detected\n");
 625			goto error_free_page;
 
 
 
 
 
 
 
 
 626		}
 627
 628		clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
 629		fs_devices->seeding = true;
 630	} else {
 631		if (bdev_read_only(bdev))
 632			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
 633		else
 634			set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
 635	}
 636
 637	if (!bdev_nonrot(bdev))
 638		fs_devices->rotating = true;
 
 
 
 
 
 
 639
 640	if (bdev_max_discard_sectors(bdev))
 641		fs_devices->discardable = true;
 642
 643	device->bdev = bdev;
 644	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
 645	device->mode = flags;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 646
 647	fs_devices->open_devices++;
 648	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
 649	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
 650		fs_devices->rw_devices++;
 651		list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
 
 
 
 
 
 652	}
 653	btrfs_release_disk_super(disk_super);
 654
 655	return 0;
 
 
 
 
 
 
 
 656
 657error_free_page:
 658	btrfs_release_disk_super(disk_super);
 659	blkdev_put(bdev, flags);
 660
 661	return -EINVAL;
 662}
 663
 664/*
 665 * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices
 666 * being created with a disk that has already completed its fsid change. Such
 667 * disk can belong to an fs which has its FSID changed or to one which doesn't.
 668 * Handle both cases here.
 669 */
 670static struct btrfs_fs_devices *find_fsid_inprogress(
 671					struct btrfs_super_block *disk_super)
 672{
 673	struct btrfs_fs_devices *fs_devices;
 674
 675	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
 676		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
 677			   BTRFS_FSID_SIZE) != 0 &&
 678		    memcmp(fs_devices->metadata_uuid, disk_super->fsid,
 679			   BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) {
 680			return fs_devices;
 681		}
 682	}
 683
 684	return find_fsid(disk_super->fsid, NULL);
 685}
 686
 687
 688static struct btrfs_fs_devices *find_fsid_changed(
 689					struct btrfs_super_block *disk_super)
 690{
 691	struct btrfs_fs_devices *fs_devices;
 692
 693	/*
 694	 * Handles the case where scanned device is part of an fs that had
 695	 * multiple successful changes of FSID but currently device didn't
 696	 * observe it. Meaning our fsid will be different than theirs. We need
 697	 * to handle two subcases :
 698	 *  1 - The fs still continues to have different METADATA/FSID uuids.
 699	 *  2 - The fs is switched back to its original FSID (METADATA/FSID
 700	 *  are equal).
 701	 */
 702	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
 703		/* Changed UUIDs */
 704		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
 705			   BTRFS_FSID_SIZE) != 0 &&
 706		    memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid,
 707			   BTRFS_FSID_SIZE) == 0 &&
 708		    memcmp(fs_devices->fsid, disk_super->fsid,
 709			   BTRFS_FSID_SIZE) != 0)
 710			return fs_devices;
 711
 712		/* Unchanged UUIDs */
 713		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
 714			   BTRFS_FSID_SIZE) == 0 &&
 715		    memcmp(fs_devices->fsid, disk_super->metadata_uuid,
 716			   BTRFS_FSID_SIZE) == 0)
 717			return fs_devices;
 718	}
 719
 720	return NULL;
 721}
 722
 723static struct btrfs_fs_devices *find_fsid_reverted_metadata(
 724				struct btrfs_super_block *disk_super)
 725{
 726	struct btrfs_fs_devices *fs_devices;
 727
 728	/*
 729	 * Handle the case where the scanned device is part of an fs whose last
 730	 * metadata UUID change reverted it to the original FSID. At the same
 731	 * time * fs_devices was first created by another constitutent device
 732	 * which didn't fully observe the operation. This results in an
 733	 * btrfs_fs_devices created with metadata/fsid different AND
 734	 * btrfs_fs_devices::fsid_change set AND the metadata_uuid of the
 735	 * fs_devices equal to the FSID of the disk.
 736	 */
 737	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
 738		if (memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
 739			   BTRFS_FSID_SIZE) != 0 &&
 740		    memcmp(fs_devices->metadata_uuid, disk_super->fsid,
 741			   BTRFS_FSID_SIZE) == 0 &&
 742		    fs_devices->fsid_change)
 743			return fs_devices;
 744	}
 745
 746	return NULL;
 747}
 748/*
 749 * Add new device to list of registered devices
 750 *
 751 * Returns:
 752 * device pointer which was just added or updated when successful
 753 * error pointer when failed
 754 */
 755static noinline struct btrfs_device *device_list_add(const char *path,
 756			   struct btrfs_super_block *disk_super,
 757			   bool *new_device_added)
 758{
 759	struct btrfs_device *device;
 760	struct btrfs_fs_devices *fs_devices = NULL;
 761	struct rcu_string *name;
 762	u64 found_transid = btrfs_super_generation(disk_super);
 763	u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
 764	dev_t path_devt;
 765	int error;
 766	bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
 767		BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
 768	bool fsid_change_in_progress = (btrfs_super_flags(disk_super) &
 769					BTRFS_SUPER_FLAG_CHANGING_FSID_V2);
 770
 771	error = lookup_bdev(path, &path_devt);
 772	if (error) {
 773		btrfs_err(NULL, "failed to lookup block device for path %s: %d",
 774			  path, error);
 775		return ERR_PTR(error);
 776	}
 777
 778	if (fsid_change_in_progress) {
 779		if (!has_metadata_uuid)
 780			fs_devices = find_fsid_inprogress(disk_super);
 781		else
 782			fs_devices = find_fsid_changed(disk_super);
 783	} else if (has_metadata_uuid) {
 784		fs_devices = find_fsid_with_metadata_uuid(disk_super);
 785	} else {
 786		fs_devices = find_fsid_reverted_metadata(disk_super);
 787		if (!fs_devices)
 788			fs_devices = find_fsid(disk_super->fsid, NULL);
 789	}
 790
 791
 
 792	if (!fs_devices) {
 793		if (has_metadata_uuid)
 794			fs_devices = alloc_fs_devices(disk_super->fsid,
 795						      disk_super->metadata_uuid);
 796		else
 797			fs_devices = alloc_fs_devices(disk_super->fsid, NULL);
 798
 799		if (IS_ERR(fs_devices))
 800			return ERR_CAST(fs_devices);
 801
 802		fs_devices->fsid_change = fsid_change_in_progress;
 803
 804		mutex_lock(&fs_devices->device_list_mutex);
 805		list_add(&fs_devices->fs_list, &fs_uuids);
 806
 807		device = NULL;
 808	} else {
 809		struct btrfs_dev_lookup_args args = {
 810			.devid = devid,
 811			.uuid = disk_super->dev_item.uuid,
 812		};
 813
 814		mutex_lock(&fs_devices->device_list_mutex);
 815		device = btrfs_find_device(fs_devices, &args);
 816
 817		/*
 818		 * If this disk has been pulled into an fs devices created by
 819		 * a device which had the CHANGING_FSID_V2 flag then replace the
 820		 * metadata_uuid/fsid values of the fs_devices.
 821		 */
 822		if (fs_devices->fsid_change &&
 823		    found_transid > fs_devices->latest_generation) {
 824			memcpy(fs_devices->fsid, disk_super->fsid,
 825					BTRFS_FSID_SIZE);
 826
 827			if (has_metadata_uuid)
 828				memcpy(fs_devices->metadata_uuid,
 829				       disk_super->metadata_uuid,
 830				       BTRFS_FSID_SIZE);
 831			else
 832				memcpy(fs_devices->metadata_uuid,
 833				       disk_super->fsid, BTRFS_FSID_SIZE);
 834
 835			fs_devices->fsid_change = false;
 836		}
 837	}
 838
 839	if (!device) {
 840		unsigned int nofs_flag;
 
 841
 842		if (fs_devices->opened) {
 843			btrfs_err(NULL,
 844		"device %s belongs to fsid %pU, and the fs is already mounted",
 845				  path, fs_devices->fsid);
 846			mutex_unlock(&fs_devices->device_list_mutex);
 847			return ERR_PTR(-EBUSY);
 848		}
 849
 850		nofs_flag = memalloc_nofs_save();
 851		device = btrfs_alloc_device(NULL, &devid,
 852					    disk_super->dev_item.uuid, path);
 853		memalloc_nofs_restore(nofs_flag);
 854		if (IS_ERR(device)) {
 855			mutex_unlock(&fs_devices->device_list_mutex);
 856			/* we can safely leave the fs_devices entry around */
 857			return device;
 
 
 
 
 
 
 
 
 
 
 
 
 858		}
 
 
 859
 860		device->devt = path_devt;
 
 
 
 
 
 
 861
 
 862		list_add_rcu(&device->dev_list, &fs_devices->devices);
 863		fs_devices->num_devices++;
 864
 865		device->fs_devices = fs_devices;
 866		*new_device_added = true;
 867
 868		if (disk_super->label[0])
 869			pr_info(
 870	"BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n",
 871				disk_super->label, devid, found_transid, path,
 872				current->comm, task_pid_nr(current));
 873		else
 874			pr_info(
 875	"BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n",
 876				disk_super->fsid, devid, found_transid, path,
 877				current->comm, task_pid_nr(current));
 878
 879	} else if (!device->name || strcmp(device->name->str, path)) {
 880		/*
 881		 * When FS is already mounted.
 882		 * 1. If you are here and if the device->name is NULL that
 883		 *    means this device was missing at time of FS mount.
 884		 * 2. If you are here and if the device->name is different
 885		 *    from 'path' that means either
 886		 *      a. The same device disappeared and reappeared with
 887		 *         different name. or
 888		 *      b. The missing-disk-which-was-replaced, has
 889		 *         reappeared now.
 890		 *
 891		 * We must allow 1 and 2a above. But 2b would be a spurious
 892		 * and unintentional.
 893		 *
 894		 * Further in case of 1 and 2a above, the disk at 'path'
 895		 * would have missed some transaction when it was away and
 896		 * in case of 2a the stale bdev has to be updated as well.
 897		 * 2b must not be allowed at all time.
 898		 */
 899
 900		/*
 901		 * For now, we do allow update to btrfs_fs_device through the
 902		 * btrfs dev scan cli after FS has been mounted.  We're still
 903		 * tracking a problem where systems fail mount by subvolume id
 904		 * when we reject replacement on a mounted FS.
 905		 */
 906		if (!fs_devices->opened && found_transid < device->generation) {
 907			/*
 908			 * That is if the FS is _not_ mounted and if you
 909			 * are here, that means there is more than one
 910			 * disk with same uuid and devid.We keep the one
 911			 * with larger generation number or the last-in if
 912			 * generation are equal.
 913			 */
 914			mutex_unlock(&fs_devices->device_list_mutex);
 915			btrfs_err(NULL,
 916"device %s already registered with a higher generation, found %llu expect %llu",
 917				  path, found_transid, device->generation);
 918			return ERR_PTR(-EEXIST);
 919		}
 920
 921		/*
 922		 * We are going to replace the device path for a given devid,
 923		 * make sure it's the same device if the device is mounted
 924		 *
 925		 * NOTE: the device->fs_info may not be reliable here so pass
 926		 * in a NULL to message helpers instead. This avoids a possible
 927		 * use-after-free when the fs_info and fs_info->sb are already
 928		 * torn down.
 929		 */
 930		if (device->bdev) {
 931			if (device->devt != path_devt) {
 932				mutex_unlock(&fs_devices->device_list_mutex);
 933				btrfs_warn_in_rcu(NULL,
 934	"duplicate device %s devid %llu generation %llu scanned by %s (%d)",
 935						  path, devid, found_transid,
 936						  current->comm,
 937						  task_pid_nr(current));
 938				return ERR_PTR(-EEXIST);
 939			}
 940			btrfs_info_in_rcu(NULL,
 941	"devid %llu device path %s changed to %s scanned by %s (%d)",
 942					  devid, btrfs_dev_name(device),
 943					  path, current->comm,
 944					  task_pid_nr(current));
 945		}
 946
 947		name = rcu_string_strdup(path, GFP_NOFS);
 948		if (!name) {
 949			mutex_unlock(&fs_devices->device_list_mutex);
 950			return ERR_PTR(-ENOMEM);
 951		}
 952		rcu_string_free(device->name);
 953		rcu_assign_pointer(device->name, name);
 954		if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
 955			fs_devices->missing_devices--;
 956			clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
 957		}
 958		device->devt = path_devt;
 959	}
 960
 961	/*
 962	 * Unmount does not free the btrfs_device struct but would zero
 963	 * generation along with most of the other members. So just update
 964	 * it back. We need it to pick the disk with largest generation
 965	 * (as above).
 966	 */
 967	if (!fs_devices->opened) {
 968		device->generation = found_transid;
 969		fs_devices->latest_generation = max_t(u64, found_transid,
 970						fs_devices->latest_generation);
 971	}
 972
 973	fs_devices->total_devices = btrfs_super_num_devices(disk_super);
 974
 975	mutex_unlock(&fs_devices->device_list_mutex);
 976	return device;
 977}
 978
 979static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
 980{
 981	struct btrfs_fs_devices *fs_devices;
 982	struct btrfs_device *device;
 983	struct btrfs_device *orig_dev;
 984	int ret = 0;
 985
 986	lockdep_assert_held(&uuid_mutex);
 
 
 987
 988	fs_devices = alloc_fs_devices(orig->fsid, NULL);
 989	if (IS_ERR(fs_devices))
 990		return fs_devices;
 
 
 
 
 991
 992	fs_devices->total_devices = orig->total_devices;
 
 
 993
 994	list_for_each_entry(orig_dev, &orig->devices, dev_list) {
 995		const char *dev_path = NULL;
 
 996
 997		/*
 998		 * This is ok to do without RCU read locked because we hold the
 999		 * uuid mutex so nothing we touch in here is going to disappear.
1000		 */
1001		if (orig_dev->name)
1002			dev_path = orig_dev->name->str;
1003
1004		device = btrfs_alloc_device(NULL, &orig_dev->devid,
1005					    orig_dev->uuid, dev_path);
1006		if (IS_ERR(device)) {
1007			ret = PTR_ERR(device);
1008			goto error;
1009		}
 
1010
1011		if (orig_dev->zone_info) {
1012			struct btrfs_zoned_device_info *zone_info;
1013
1014			zone_info = btrfs_clone_dev_zone_info(orig_dev);
1015			if (!zone_info) {
1016				btrfs_free_device(device);
1017				ret = -ENOMEM;
1018				goto error;
1019			}
1020			device->zone_info = zone_info;
1021		}
1022
1023		list_add(&device->dev_list, &fs_devices->devices);
1024		device->fs_devices = fs_devices;
1025		fs_devices->num_devices++;
1026	}
1027	return fs_devices;
1028error:
1029	free_fs_devices(fs_devices);
1030	return ERR_PTR(ret);
1031}
1032
1033static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices,
1034				      struct btrfs_device **latest_dev)
1035{
1036	struct btrfs_device *device, *next;
1037
 
 
 
 
 
 
1038	/* This is the initialized path, it is safe to release the devices. */
1039	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
1040		if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) {
1041			if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1042				      &device->dev_state) &&
1043			    !test_bit(BTRFS_DEV_STATE_MISSING,
1044				      &device->dev_state) &&
1045			    (!*latest_dev ||
1046			     device->generation > (*latest_dev)->generation)) {
1047				*latest_dev = device;
1048			}
1049			continue;
1050		}
1051
1052		/*
1053		 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID,
1054		 * in btrfs_init_dev_replace() so just continue.
1055		 */
1056		if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1057			continue;
1058
1059		if (device->bdev) {
1060			blkdev_put(device->bdev, device->mode);
1061			device->bdev = NULL;
1062			fs_devices->open_devices--;
1063		}
1064		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1065			list_del_init(&device->dev_alloc_list);
1066			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1067			fs_devices->rw_devices--;
1068		}
1069		list_del_init(&device->dev_list);
1070		fs_devices->num_devices--;
1071		btrfs_free_device(device);
 
 
 
 
 
 
1072	}
1073
 
 
 
 
 
1074}
1075
1076/*
1077 * After we have read the system tree and know devids belonging to this
1078 * filesystem, remove the device which does not belong there.
1079 */
1080void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices)
1081{
1082	struct btrfs_device *latest_dev = NULL;
1083	struct btrfs_fs_devices *seed_dev;
1084
1085	mutex_lock(&uuid_mutex);
1086	__btrfs_free_extra_devids(fs_devices, &latest_dev);
1087
1088	list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list)
1089		__btrfs_free_extra_devids(seed_dev, &latest_dev);
1090
1091	fs_devices->latest_dev = latest_dev;
1092
1093	mutex_unlock(&uuid_mutex);
1094}
1095
1096static void btrfs_close_bdev(struct btrfs_device *device)
1097{
1098	if (!device->bdev)
1099		return;
1100
1101	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1102		sync_blockdev(device->bdev);
1103		invalidate_bdev(device->bdev);
1104	}
1105
1106	blkdev_put(device->bdev, device->mode);
 
1107}
1108
1109static void btrfs_close_one_device(struct btrfs_device *device)
1110{
1111	struct btrfs_fs_devices *fs_devices = device->fs_devices;
1112
1113	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1114	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
1115		list_del_init(&device->dev_alloc_list);
1116		fs_devices->rw_devices--;
1117	}
1118
1119	if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1120		clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
 
 
1121
1122	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
1123		clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
1124		fs_devices->missing_devices--;
1125	}
1126
1127	btrfs_close_bdev(device);
1128	if (device->bdev) {
1129		fs_devices->open_devices--;
1130		device->bdev = NULL;
1131	}
1132	clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1133	btrfs_destroy_dev_zone_info(device);
1134
1135	device->fs_info = NULL;
1136	atomic_set(&device->dev_stats_ccnt, 0);
1137	extent_io_tree_release(&device->alloc_state);
1138
1139	/*
1140	 * Reset the flush error record. We might have a transient flush error
1141	 * in this mount, and if so we aborted the current transaction and set
1142	 * the fs to an error state, guaranteeing no super blocks can be further
1143	 * committed. However that error might be transient and if we unmount the
1144	 * filesystem and mount it again, we should allow the mount to succeed
1145	 * (btrfs_check_rw_degradable() should not fail) - if after mounting the
1146	 * filesystem again we still get flush errors, then we will again abort
1147	 * any transaction and set the error state, guaranteeing no commits of
1148	 * unsafe super blocks.
1149	 */
1150	device->last_flush_error = 0;
 
1151
1152	/* Verify the device is back in a pristine state  */
1153	ASSERT(!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
1154	ASSERT(!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1155	ASSERT(list_empty(&device->dev_alloc_list));
1156	ASSERT(list_empty(&device->post_commit_list));
1157}
1158
1159static void close_fs_devices(struct btrfs_fs_devices *fs_devices)
1160{
1161	struct btrfs_device *device, *tmp;
1162
1163	lockdep_assert_held(&uuid_mutex);
1164
1165	if (--fs_devices->opened > 0)
1166		return;
1167
1168	list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list)
1169		btrfs_close_one_device(device);
1170
1171	WARN_ON(fs_devices->open_devices);
1172	WARN_ON(fs_devices->rw_devices);
1173	fs_devices->opened = 0;
1174	fs_devices->seeding = false;
1175	fs_devices->fs_info = NULL;
 
1176}
1177
1178void btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1179{
1180	LIST_HEAD(list);
1181	struct btrfs_fs_devices *tmp;
1182
1183	mutex_lock(&uuid_mutex);
1184	close_fs_devices(fs_devices);
1185	if (!fs_devices->opened) {
1186		list_splice_init(&fs_devices->seed_list, &list);
1187
1188		/*
1189		 * If the struct btrfs_fs_devices is not assembled with any
1190		 * other device, it can be re-initialized during the next mount
1191		 * without the needing device-scan step. Therefore, it can be
1192		 * fully freed.
1193		 */
1194		if (fs_devices->num_devices == 1) {
1195			list_del(&fs_devices->fs_list);
1196			free_fs_devices(fs_devices);
1197		}
1198	}
 
1199
1200
1201	list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) {
1202		close_fs_devices(fs_devices);
1203		list_del(&fs_devices->seed_list);
1204		free_fs_devices(fs_devices);
1205	}
1206	mutex_unlock(&uuid_mutex);
1207}
1208
1209static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1210				fmode_t flags, void *holder)
1211{
 
 
 
1212	struct btrfs_device *device;
1213	struct btrfs_device *latest_dev = NULL;
1214	struct btrfs_device *tmp_device;
 
 
 
 
 
 
1215
1216	flags |= FMODE_EXCL;
1217
1218	list_for_each_entry_safe(device, tmp_device, &fs_devices->devices,
1219				 dev_list) {
1220		int ret;
1221
1222		ret = btrfs_open_one_device(fs_devices, device, flags, holder);
1223		if (ret == 0 &&
1224		    (!latest_dev || device->generation > latest_dev->generation)) {
1225			latest_dev = device;
1226		} else if (ret == -ENODATA) {
1227			fs_devices->num_devices--;
1228			list_del(&device->dev_list);
1229			btrfs_free_device(device);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1230		}
1231	}
1232	if (fs_devices->open_devices == 0)
1233		return -EINVAL;
1234
1235	fs_devices->opened = 1;
1236	fs_devices->latest_dev = latest_dev;
1237	fs_devices->total_rw_bytes = 0;
1238	fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
1239	fs_devices->read_policy = BTRFS_READ_POLICY_PID;
1240
1241	return 0;
1242}
 
1243
1244static int devid_cmp(void *priv, const struct list_head *a,
1245		     const struct list_head *b)
1246{
1247	const struct btrfs_device *dev1, *dev2;
1248
1249	dev1 = list_entry(a, struct btrfs_device, dev_list);
1250	dev2 = list_entry(b, struct btrfs_device, dev_list);
 
 
 
 
 
 
1251
1252	if (dev1->devid < dev2->devid)
1253		return -1;
1254	else if (dev1->devid > dev2->devid)
1255		return 1;
1256	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1257}
1258
1259int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1260		       fmode_t flags, void *holder)
1261{
1262	int ret;
1263
1264	lockdep_assert_held(&uuid_mutex);
1265	/*
1266	 * The device_list_mutex cannot be taken here in case opening the
1267	 * underlying device takes further locks like open_mutex.
1268	 *
1269	 * We also don't need the lock here as this is called during mount and
1270	 * exclusion is provided by uuid_mutex
1271	 */
1272
1273	if (fs_devices->opened) {
1274		fs_devices->opened++;
1275		ret = 0;
1276	} else {
1277		list_sort(NULL, &fs_devices->devices, devid_cmp);
1278		ret = open_fs_devices(fs_devices, flags, holder);
1279	}
1280
1281	return ret;
1282}
1283
1284void btrfs_release_disk_super(struct btrfs_super_block *super)
1285{
1286	struct page *page = virt_to_page(super);
1287
1288	put_page(page);
1289}
1290
1291static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev,
1292						       u64 bytenr, u64 bytenr_orig)
1293{
1294	struct btrfs_super_block *disk_super;
1295	struct page *page;
1296	void *p;
1297	pgoff_t index;
1298
1299	/* make sure our super fits in the device */
1300	if (bytenr + PAGE_SIZE >= bdev_nr_bytes(bdev))
1301		return ERR_PTR(-EINVAL);
1302
1303	/* make sure our super fits in the page */
1304	if (sizeof(*disk_super) > PAGE_SIZE)
1305		return ERR_PTR(-EINVAL);
1306
1307	/* make sure our super doesn't straddle pages on disk */
1308	index = bytenr >> PAGE_SHIFT;
1309	if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index)
1310		return ERR_PTR(-EINVAL);
1311
1312	/* pull in the page with our super */
1313	page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL);
1314
1315	if (IS_ERR(page))
1316		return ERR_CAST(page);
1317
1318	p = page_address(page);
1319
1320	/* align our pointer to the offset of the super block */
1321	disk_super = p + offset_in_page(bytenr);
1322
1323	if (btrfs_super_bytenr(disk_super) != bytenr_orig ||
1324	    btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1325		btrfs_release_disk_super(p);
1326		return ERR_PTR(-EINVAL);
1327	}
1328
1329	if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1])
1330		disk_super->label[BTRFS_LABEL_SIZE - 1] = 0;
1331
1332	return disk_super;
1333}
1334
1335int btrfs_forget_devices(dev_t devt)
1336{
1337	int ret;
1338
1339	mutex_lock(&uuid_mutex);
1340	ret = btrfs_free_stale_devices(devt, NULL);
1341	mutex_unlock(&uuid_mutex);
1342
1343	return ret;
1344}
1345
1346/*
1347 * Look for a btrfs signature on a device. This may be called out of the mount path
1348 * and we are not allowed to call set_blocksize during the scan. The superblock
1349 * is read via pagecache
1350 */
1351struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags,
1352					   void *holder)
1353{
1354	struct btrfs_super_block *disk_super;
1355	bool new_device_added = false;
1356	struct btrfs_device *device = NULL;
1357	struct block_device *bdev;
1358	u64 bytenr, bytenr_orig;
1359	int ret;
 
 
1360
1361	lockdep_assert_held(&uuid_mutex);
1362
1363	/*
1364	 * we would like to check all the supers, but that would make
1365	 * a btrfs mount succeed after a mkfs from a different FS.
1366	 * So, we need to add a special mount option to scan for
1367	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1368	 */
1369	flags |= FMODE_EXCL;
1370
1371	bdev = blkdev_get_by_path(path, flags, holder);
1372	if (IS_ERR(bdev))
1373		return ERR_CAST(bdev);
1374
1375	bytenr_orig = btrfs_sb_offset(0);
1376	ret = btrfs_sb_log_location_bdev(bdev, 0, READ, &bytenr);
1377	if (ret) {
1378		device = ERR_PTR(ret);
1379		goto error_bdev_put;
1380	}
1381
1382	disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr_orig);
1383	if (IS_ERR(disk_super)) {
1384		device = ERR_CAST(disk_super);
1385		goto error_bdev_put;
 
 
 
 
1386	}
 
 
 
 
 
 
 
 
 
 
1387
1388	device = device_list_add(path, disk_super, &new_device_added);
1389	if (!IS_ERR(device) && new_device_added)
1390		btrfs_free_stale_devices(device->devt, device);
1391
1392	btrfs_release_disk_super(disk_super);
1393
1394error_bdev_put:
1395	blkdev_put(bdev, flags);
1396
1397	return device;
1398}
1399
1400/*
1401 * Try to find a chunk that intersects [start, start + len] range and when one
1402 * such is found, record the end of it in *start
1403 */
1404static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1405				    u64 len)
1406{
1407	u64 physical_start, physical_end;
 
 
 
 
 
 
 
1408
1409	lockdep_assert_held(&device->fs_info->chunk_mutex);
 
 
 
1410
1411	if (!find_first_extent_bit(&device->alloc_state, *start,
1412				   &physical_start, &physical_end,
1413				   CHUNK_ALLOCATED, NULL)) {
 
1414
1415		if (in_range(physical_start, *start, len) ||
1416		    in_range(*start, physical_start,
1417			     physical_end - physical_start)) {
1418			*start = physical_end + 1;
1419			return true;
1420		}
1421	}
1422	return false;
1423}
1424
1425static u64 dev_extent_search_start(struct btrfs_device *device, u64 start)
1426{
1427	switch (device->fs_devices->chunk_alloc_policy) {
1428	case BTRFS_CHUNK_ALLOC_REGULAR:
1429		return max_t(u64, start, BTRFS_DEVICE_RANGE_RESERVED);
1430	case BTRFS_CHUNK_ALLOC_ZONED:
1431		/*
1432		 * We don't care about the starting region like regular
1433		 * allocator, because we anyway use/reserve the first two zones
1434		 * for superblock logging.
1435		 */
1436		return ALIGN(start, device->zone_info->zone_size);
1437	default:
1438		BUG();
1439	}
1440}
1441
1442static bool dev_extent_hole_check_zoned(struct btrfs_device *device,
1443					u64 *hole_start, u64 *hole_size,
1444					u64 num_bytes)
1445{
1446	u64 zone_size = device->zone_info->zone_size;
1447	u64 pos;
1448	int ret;
1449	bool changed = false;
 
1450
1451	ASSERT(IS_ALIGNED(*hole_start, zone_size));
1452
1453	while (*hole_size > 0) {
1454		pos = btrfs_find_allocatable_zones(device, *hole_start,
1455						   *hole_start + *hole_size,
1456						   num_bytes);
1457		if (pos != *hole_start) {
1458			*hole_size = *hole_start + *hole_size - pos;
1459			*hole_start = pos;
1460			changed = true;
1461			if (*hole_size < num_bytes)
1462				break;
1463		}
 
1464
1465		ret = btrfs_ensure_empty_zones(device, pos, num_bytes);
 
1466
1467		/* Range is ensured to be empty */
1468		if (!ret)
1469			return changed;
1470
1471		/* Given hole range was invalid (outside of device) */
1472		if (ret == -ERANGE) {
1473			*hole_start += *hole_size;
1474			*hole_size = 0;
1475			return true;
1476		}
1477
1478		*hole_start += zone_size;
1479		*hole_size -= zone_size;
1480		changed = true;
1481	}
1482
1483	return changed;
1484}
1485
1486/*
1487 * Check if specified hole is suitable for allocation.
1488 *
1489 * @device:	the device which we have the hole
1490 * @hole_start: starting position of the hole
1491 * @hole_size:	the size of the hole
1492 * @num_bytes:	the size of the free space that we need
1493 *
1494 * This function may modify @hole_start and @hole_size to reflect the suitable
1495 * position for allocation. Returns 1 if hole position is updated, 0 otherwise.
1496 */
1497static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
1498				  u64 *hole_size, u64 num_bytes)
1499{
1500	bool changed = false;
1501	u64 hole_end = *hole_start + *hole_size;
1502
1503	for (;;) {
1504		/*
1505		 * Check before we set max_hole_start, otherwise we could end up
1506		 * sending back this offset anyway.
1507		 */
1508		if (contains_pending_extent(device, hole_start, *hole_size)) {
1509			if (hole_end >= *hole_start)
1510				*hole_size = hole_end - *hole_start;
1511			else
1512				*hole_size = 0;
1513			changed = true;
1514		}
1515
1516		switch (device->fs_devices->chunk_alloc_policy) {
1517		case BTRFS_CHUNK_ALLOC_REGULAR:
1518			/* No extra check */
1519			break;
1520		case BTRFS_CHUNK_ALLOC_ZONED:
1521			if (dev_extent_hole_check_zoned(device, hole_start,
1522							hole_size, num_bytes)) {
1523				changed = true;
1524				/*
1525				 * The changed hole can contain pending extent.
1526				 * Loop again to check that.
1527				 */
1528				continue;
1529			}
1530			break;
1531		default:
1532			BUG();
1533		}
1534
1535		break;
 
1536	}
1537
1538	return changed;
 
 
1539}
1540
1541/*
1542 * Find free space in the specified device.
1543 *
1544 * @device:	  the device which we search the free space in
1545 * @num_bytes:	  the size of the free space that we need
1546 * @search_start: the position from which to begin the search
1547 * @start:	  store the start of the free space.
1548 * @len:	  the size of the free space. that we find, or the size
1549 *		  of the max free space if we don't find suitable free space
1550 *
1551 * This does a pretty simple search, the expectation is that it is called very
1552 * infrequently and that a given device has a small number of extents.
1553 *
1554 * @start is used to store the start of the free space if we find. But if we
1555 * don't find suitable free space, it will be used to store the start position
1556 * of the max free space.
1557 *
1558 * @len is used to store the size of the free space that we find.
1559 * But if we don't find suitable free space, it is used to store the size of
1560 * the max free space.
1561 *
1562 * NOTE: This function will search *commit* root of device tree, and does extra
1563 * check to ensure dev extents are not double allocated.
1564 * This makes the function safe to allocate dev extents but may not report
1565 * correct usable device space, as device extent freed in current transaction
1566 * is not reported as available.
1567 */
1568static int find_free_dev_extent_start(struct btrfs_device *device,
1569				u64 num_bytes, u64 search_start, u64 *start,
1570				u64 *len)
1571{
1572	struct btrfs_fs_info *fs_info = device->fs_info;
1573	struct btrfs_root *root = fs_info->dev_root;
1574	struct btrfs_key key;
 
1575	struct btrfs_dev_extent *dev_extent;
1576	struct btrfs_path *path;
1577	u64 hole_size;
1578	u64 max_hole_start;
1579	u64 max_hole_size;
1580	u64 extent_end;
 
1581	u64 search_end = device->total_bytes;
1582	int ret;
1583	int slot;
1584	struct extent_buffer *l;
1585
1586	search_start = dev_extent_search_start(device, search_start);
1587
1588	WARN_ON(device->zone_info &&
1589		!IS_ALIGNED(num_bytes, device->zone_info->zone_size));
1590
1591	path = btrfs_alloc_path();
1592	if (!path)
1593		return -ENOMEM;
1594
1595	max_hole_start = search_start;
1596	max_hole_size = 0;
 
1597
1598again:
1599	if (search_start >= search_end ||
1600		test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1601		ret = -ENOSPC;
1602		goto out;
1603	}
1604
1605	path->reada = READA_FORWARD;
1606	path->search_commit_root = 1;
1607	path->skip_locking = 1;
 
 
 
1608
1609	key.objectid = device->devid;
1610	key.offset = search_start;
1611	key.type = BTRFS_DEV_EXTENT_KEY;
1612
1613	ret = btrfs_search_backwards(root, &key, path);
1614	if (ret < 0)
1615		goto out;
 
 
 
 
 
1616
1617	while (search_start < search_end) {
1618		l = path->nodes[0];
1619		slot = path->slots[0];
1620		if (slot >= btrfs_header_nritems(l)) {
1621			ret = btrfs_next_leaf(root, path);
1622			if (ret == 0)
1623				continue;
1624			if (ret < 0)
1625				goto out;
1626
1627			break;
1628		}
1629		btrfs_item_key_to_cpu(l, &key, slot);
1630
1631		if (key.objectid < device->devid)
1632			goto next;
1633
1634		if (key.objectid > device->devid)
1635			break;
1636
1637		if (key.type != BTRFS_DEV_EXTENT_KEY)
1638			goto next;
1639
1640		if (key.offset > search_end)
1641			break;
1642
1643		if (key.offset > search_start) {
1644			hole_size = key.offset - search_start;
1645			dev_extent_hole_check(device, &search_start, &hole_size,
1646					      num_bytes);
1647
1648			if (hole_size > max_hole_size) {
1649				max_hole_start = search_start;
1650				max_hole_size = hole_size;
1651			}
1652
1653			/*
1654			 * If this free space is greater than which we need,
1655			 * it must be the max free space that we have found
1656			 * until now, so max_hole_start must point to the start
1657			 * of this free space and the length of this free space
1658			 * is stored in max_hole_size. Thus, we return
1659			 * max_hole_start and max_hole_size and go back to the
1660			 * caller.
1661			 */
1662			if (hole_size >= num_bytes) {
1663				ret = 0;
1664				goto out;
1665			}
1666		}
1667
1668		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1669		extent_end = key.offset + btrfs_dev_extent_length(l,
1670								  dev_extent);
1671		if (extent_end > search_start)
1672			search_start = extent_end;
1673next:
1674		path->slots[0]++;
1675		cond_resched();
1676	}
1677
1678	/*
1679	 * At this point, search_start should be the end of
1680	 * allocated dev extents, and when shrinking the device,
1681	 * search_end may be smaller than search_start.
1682	 */
1683	if (search_end > search_start) {
1684		hole_size = search_end - search_start;
1685		if (dev_extent_hole_check(device, &search_start, &hole_size,
1686					  num_bytes)) {
1687			btrfs_release_path(path);
1688			goto again;
1689		}
1690
1691		if (hole_size > max_hole_size) {
1692			max_hole_start = search_start;
1693			max_hole_size = hole_size;
1694		}
1695	}
1696
1697	/* See above. */
1698	if (max_hole_size < num_bytes)
1699		ret = -ENOSPC;
1700	else
1701		ret = 0;
1702
1703	ASSERT(max_hole_start + max_hole_size <= search_end);
1704out:
1705	btrfs_free_path(path);
 
1706	*start = max_hole_start;
1707	if (len)
1708		*len = max_hole_size;
1709	return ret;
1710}
1711
1712int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1713			 u64 *start, u64 *len)
1714{
1715	/* FIXME use last free of some kind */
1716	return find_free_dev_extent_start(device, num_bytes, 0, start, len);
1717}
1718
1719static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1720			  struct btrfs_device *device,
1721			  u64 start, u64 *dev_extent_len)
1722{
1723	struct btrfs_fs_info *fs_info = device->fs_info;
1724	struct btrfs_root *root = fs_info->dev_root;
1725	int ret;
1726	struct btrfs_path *path;
 
1727	struct btrfs_key key;
1728	struct btrfs_key found_key;
1729	struct extent_buffer *leaf = NULL;
1730	struct btrfs_dev_extent *extent = NULL;
1731
1732	path = btrfs_alloc_path();
1733	if (!path)
1734		return -ENOMEM;
1735
1736	key.objectid = device->devid;
1737	key.offset = start;
1738	key.type = BTRFS_DEV_EXTENT_KEY;
1739again:
1740	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1741	if (ret > 0) {
1742		ret = btrfs_previous_item(root, path, key.objectid,
1743					  BTRFS_DEV_EXTENT_KEY);
1744		if (ret)
1745			goto out;
1746		leaf = path->nodes[0];
1747		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1748		extent = btrfs_item_ptr(leaf, path->slots[0],
1749					struct btrfs_dev_extent);
1750		BUG_ON(found_key.offset > start || found_key.offset +
1751		       btrfs_dev_extent_length(leaf, extent) < start);
1752		key = found_key;
1753		btrfs_release_path(path);
1754		goto again;
1755	} else if (ret == 0) {
1756		leaf = path->nodes[0];
1757		extent = btrfs_item_ptr(leaf, path->slots[0],
1758					struct btrfs_dev_extent);
1759	} else {
 
1760		goto out;
1761	}
1762
1763	*dev_extent_len = btrfs_dev_extent_length(leaf, extent);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1764
1765	ret = btrfs_del_item(trans, root, path);
1766	if (ret == 0)
1767		set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1768out:
1769	btrfs_free_path(path);
1770	return ret;
1771}
1772
1773static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
 
1774{
1775	struct extent_map_tree *em_tree;
1776	struct extent_map *em;
1777	struct rb_node *n;
1778	u64 ret = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1779
1780	em_tree = &fs_info->mapping_tree;
1781	read_lock(&em_tree->lock);
1782	n = rb_last(&em_tree->map.rb_root);
1783	if (n) {
1784		em = rb_entry(n, struct extent_map, rb_node);
1785		ret = em->start + em->len;
 
 
 
 
 
 
 
 
1786	}
1787	read_unlock(&em_tree->lock);
1788
 
1789	return ret;
1790}
1791
1792static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1793				    u64 *devid_ret)
1794{
1795	int ret;
1796	struct btrfs_key key;
1797	struct btrfs_key found_key;
1798	struct btrfs_path *path;
1799
 
 
1800	path = btrfs_alloc_path();
1801	if (!path)
1802		return -ENOMEM;
1803
1804	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1805	key.type = BTRFS_DEV_ITEM_KEY;
1806	key.offset = (u64)-1;
1807
1808	ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1809	if (ret < 0)
1810		goto error;
1811
1812	if (ret == 0) {
1813		/* Corruption */
1814		btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1815		ret = -EUCLEAN;
1816		goto error;
1817	}
1818
1819	ret = btrfs_previous_item(fs_info->chunk_root, path,
1820				  BTRFS_DEV_ITEMS_OBJECTID,
1821				  BTRFS_DEV_ITEM_KEY);
1822	if (ret) {
1823		*devid_ret = 1;
1824	} else {
1825		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1826				      path->slots[0]);
1827		*devid_ret = found_key.offset + 1;
1828	}
1829	ret = 0;
1830error:
1831	btrfs_free_path(path);
1832	return ret;
1833}
1834
1835/*
1836 * the device information is stored in the chunk root
1837 * the btrfs_device struct should be fully filled in
1838 */
1839static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1840			    struct btrfs_device *device)
 
1841{
1842	int ret;
1843	struct btrfs_path *path;
1844	struct btrfs_dev_item *dev_item;
1845	struct extent_buffer *leaf;
1846	struct btrfs_key key;
1847	unsigned long ptr;
1848
 
 
1849	path = btrfs_alloc_path();
1850	if (!path)
1851		return -ENOMEM;
1852
1853	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1854	key.type = BTRFS_DEV_ITEM_KEY;
1855	key.offset = device->devid;
1856
1857	btrfs_reserve_chunk_metadata(trans, true);
1858	ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1859				      &key, sizeof(*dev_item));
1860	btrfs_trans_release_chunk_metadata(trans);
1861	if (ret)
1862		goto out;
1863
1864	leaf = path->nodes[0];
1865	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1866
1867	btrfs_set_device_id(leaf, dev_item, device->devid);
1868	btrfs_set_device_generation(leaf, dev_item, 0);
1869	btrfs_set_device_type(leaf, dev_item, device->type);
1870	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1871	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1872	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1873	btrfs_set_device_total_bytes(leaf, dev_item,
1874				     btrfs_device_get_disk_total_bytes(device));
1875	btrfs_set_device_bytes_used(leaf, dev_item,
1876				    btrfs_device_get_bytes_used(device));
1877	btrfs_set_device_group(leaf, dev_item, 0);
1878	btrfs_set_device_seek_speed(leaf, dev_item, 0);
1879	btrfs_set_device_bandwidth(leaf, dev_item, 0);
1880	btrfs_set_device_start_offset(leaf, dev_item, 0);
1881
1882	ptr = btrfs_device_uuid(dev_item);
1883	write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1884	ptr = btrfs_device_fsid(dev_item);
1885	write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1886			    ptr, BTRFS_FSID_SIZE);
1887	btrfs_mark_buffer_dirty(leaf);
1888
1889	ret = 0;
1890out:
1891	btrfs_free_path(path);
1892	return ret;
1893}
1894
1895/*
1896 * Function to update ctime/mtime for a given device path.
1897 * Mainly used for ctime/mtime based probe like libblkid.
1898 *
1899 * We don't care about errors here, this is just to be kind to userspace.
1900 */
1901static void update_dev_time(const char *device_path)
1902{
1903	struct path path;
1904	struct timespec64 now;
1905	int ret;
1906
1907	ret = kern_path(device_path, LOOKUP_FOLLOW, &path);
1908	if (ret)
1909		return;
1910
1911	now = current_time(d_inode(path.dentry));
1912	inode_update_time(d_inode(path.dentry), &now, S_MTIME | S_CTIME);
1913	path_put(&path);
1914}
1915
1916static int btrfs_rm_dev_item(struct btrfs_trans_handle *trans,
1917			     struct btrfs_device *device)
1918{
1919	struct btrfs_root *root = device->fs_info->chunk_root;
1920	int ret;
1921	struct btrfs_path *path;
1922	struct btrfs_key key;
 
 
 
1923
1924	path = btrfs_alloc_path();
1925	if (!path)
1926		return -ENOMEM;
1927
 
 
 
 
 
1928	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1929	key.type = BTRFS_DEV_ITEM_KEY;
1930	key.offset = device->devid;
 
1931
1932	btrfs_reserve_chunk_metadata(trans, false);
1933	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1934	btrfs_trans_release_chunk_metadata(trans);
1935	if (ret) {
1936		if (ret > 0)
1937			ret = -ENOENT;
 
1938		goto out;
1939	}
1940
1941	ret = btrfs_del_item(trans, root, path);
 
 
1942out:
1943	btrfs_free_path(path);
 
 
1944	return ret;
1945}
1946
1947/*
1948 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1949 * filesystem. It's up to the caller to adjust that number regarding eg. device
1950 * replace.
1951 */
1952static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1953		u64 num_devices)
1954{
1955	u64 all_avail;
1956	unsigned seq;
1957	int i;
1958
1959	do {
1960		seq = read_seqbegin(&fs_info->profiles_lock);
1961
1962		all_avail = fs_info->avail_data_alloc_bits |
1963			    fs_info->avail_system_alloc_bits |
1964			    fs_info->avail_metadata_alloc_bits;
1965	} while (read_seqretry(&fs_info->profiles_lock, seq));
1966
1967	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1968		if (!(all_avail & btrfs_raid_array[i].bg_flag))
1969			continue;
1970
1971		if (num_devices < btrfs_raid_array[i].devs_min)
1972			return btrfs_raid_array[i].mindev_error;
1973	}
1974
1975	return 0;
1976}
1977
1978static struct btrfs_device * btrfs_find_next_active_device(
1979		struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
1980{
 
1981	struct btrfs_device *next_device;
1982
1983	list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1984		if (next_device != device &&
1985		    !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
1986		    && next_device->bdev)
1987			return next_device;
1988	}
1989
1990	return NULL;
1991}
1992
1993/*
1994 * Helper function to check if the given device is part of s_bdev / latest_dev
1995 * and replace it with the provided or the next active device, in the context
1996 * where this function called, there should be always be another device (or
1997 * this_dev) which is active.
1998 */
1999void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
2000					    struct btrfs_device *next_device)
2001{
2002	struct btrfs_fs_info *fs_info = device->fs_info;
2003
2004	if (!next_device)
2005		next_device = btrfs_find_next_active_device(fs_info->fs_devices,
2006							    device);
2007	ASSERT(next_device);
2008
2009	if (fs_info->sb->s_bdev &&
2010			(fs_info->sb->s_bdev == device->bdev))
2011		fs_info->sb->s_bdev = next_device->bdev;
2012
2013	if (fs_info->fs_devices->latest_dev->bdev == device->bdev)
2014		fs_info->fs_devices->latest_dev = next_device;
2015}
2016
2017/*
2018 * Return btrfs_fs_devices::num_devices excluding the device that's being
2019 * currently replaced.
2020 */
2021static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
2022{
2023	u64 num_devices = fs_info->fs_devices->num_devices;
2024
2025	down_read(&fs_info->dev_replace.rwsem);
2026	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
2027		ASSERT(num_devices > 1);
2028		num_devices--;
2029	}
2030	up_read(&fs_info->dev_replace.rwsem);
2031
2032	return num_devices;
2033}
2034
2035static void btrfs_scratch_superblock(struct btrfs_fs_info *fs_info,
2036				     struct block_device *bdev, int copy_num)
2037{
2038	struct btrfs_super_block *disk_super;
2039	const size_t len = sizeof(disk_super->magic);
2040	const u64 bytenr = btrfs_sb_offset(copy_num);
2041	int ret;
 
 
 
 
2042
2043	disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr);
2044	if (IS_ERR(disk_super))
2045		return;
2046
2047	memset(&disk_super->magic, 0, len);
2048	folio_mark_dirty(virt_to_folio(disk_super));
2049	btrfs_release_disk_super(disk_super);
2050
2051	ret = sync_blockdev_range(bdev, bytenr, bytenr + len - 1);
2052	if (ret)
2053		btrfs_warn(fs_info, "error clearing superblock number %d (%d)",
2054			copy_num, ret);
2055}
2056
2057void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info,
2058			       struct block_device *bdev,
2059			       const char *device_path)
2060{
2061	int copy_num;
2062
2063	if (!bdev)
2064		return;
2065
2066	for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) {
2067		if (bdev_is_zoned(bdev))
2068			btrfs_reset_sb_log_zones(bdev, copy_num);
2069		else
2070			btrfs_scratch_superblock(fs_info, bdev, copy_num);
2071	}
2072
2073	/* Notify udev that device has changed */
2074	btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
2075
2076	/* Update ctime/mtime for device path for libblkid */
2077	update_dev_time(device_path);
2078}
2079
2080int btrfs_rm_device(struct btrfs_fs_info *fs_info,
2081		    struct btrfs_dev_lookup_args *args,
2082		    struct block_device **bdev, fmode_t *mode)
2083{
2084	struct btrfs_trans_handle *trans;
2085	struct btrfs_device *device;
2086	struct btrfs_fs_devices *cur_devices;
2087	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2088	u64 num_devices;
2089	int ret = 0;
2090
2091	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2092		btrfs_err(fs_info, "device remove not supported on extent tree v2 yet");
2093		return -EINVAL;
2094	}
2095
2096	/*
2097	 * The device list in fs_devices is accessed without locks (neither
2098	 * uuid_mutex nor device_list_mutex) as it won't change on a mounted
2099	 * filesystem and another device rm cannot run.
2100	 */
2101	num_devices = btrfs_num_devices(fs_info);
2102
2103	ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2104	if (ret)
2105		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2106
2107	device = btrfs_find_device(fs_info->fs_devices, args);
2108	if (!device) {
2109		if (args->missing)
2110			ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2111		else
 
 
 
 
 
 
 
 
2112			ret = -ENOENT;
2113		return ret;
 
2114	}
2115
2116	if (btrfs_pinned_by_swapfile(fs_info, device)) {
2117		btrfs_warn_in_rcu(fs_info,
2118		  "cannot remove device %s (devid %llu) due to active swapfile",
2119				  btrfs_dev_name(device), device->devid);
2120		return -ETXTBSY;
2121	}
2122
2123	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
2124		return BTRFS_ERROR_DEV_TGT_REPLACE;
2125
2126	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2127	    fs_info->fs_devices->rw_devices == 1)
2128		return BTRFS_ERROR_DEV_ONLY_WRITABLE;
2129
2130	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2131		mutex_lock(&fs_info->chunk_mutex);
2132		list_del_init(&device->dev_alloc_list);
2133		device->fs_devices->rw_devices--;
2134		mutex_unlock(&fs_info->chunk_mutex);
 
2135	}
2136
2137	ret = btrfs_shrink_device(device, 0);
2138	if (ret)
2139		goto error_undo;
2140
2141	trans = btrfs_start_transaction(fs_info->chunk_root, 0);
2142	if (IS_ERR(trans)) {
2143		ret = PTR_ERR(trans);
2144		goto error_undo;
2145	}
2146
2147	ret = btrfs_rm_dev_item(trans, device);
2148	if (ret) {
2149		/* Any error in dev item removal is critical */
2150		btrfs_crit(fs_info,
2151			   "failed to remove device item for devid %llu: %d",
2152			   device->devid, ret);
2153		btrfs_abort_transaction(trans, ret);
2154		btrfs_end_transaction(trans);
2155		return ret;
2156	}
2157
2158	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2159	btrfs_scrub_cancel_dev(device);
2160
2161	/*
2162	 * the device list mutex makes sure that we don't change
2163	 * the device list while someone else is writing out all
2164	 * the device supers. Whoever is writing all supers, should
2165	 * lock the device list mutex before getting the number of
2166	 * devices in the super block (super_copy). Conversely,
2167	 * whoever updates the number of devices in the super block
2168	 * (super_copy) should hold the device list mutex.
2169	 */
2170
2171	/*
2172	 * In normal cases the cur_devices == fs_devices. But in case
2173	 * of deleting a seed device, the cur_devices should point to
2174	 * its own fs_devices listed under the fs_devices->seed_list.
2175	 */
2176	cur_devices = device->fs_devices;
2177	mutex_lock(&fs_devices->device_list_mutex);
2178	list_del_rcu(&device->dev_list);
2179
2180	cur_devices->num_devices--;
2181	cur_devices->total_devices--;
2182	/* Update total_devices of the parent fs_devices if it's seed */
2183	if (cur_devices != fs_devices)
2184		fs_devices->total_devices--;
2185
2186	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2187		cur_devices->missing_devices--;
2188
2189	btrfs_assign_next_active_device(device, NULL);
 
 
 
 
 
2190
2191	if (device->bdev) {
2192		cur_devices->open_devices--;
2193		/* remove sysfs entry */
2194		btrfs_sysfs_remove_device(device);
2195	}
2196
2197	num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2198	btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2199	mutex_unlock(&fs_devices->device_list_mutex);
2200
2201	/*
2202	 * At this point, the device is zero sized and detached from the
2203	 * devices list.  All that's left is to zero out the old supers and
2204	 * free the device.
2205	 *
2206	 * We cannot call btrfs_close_bdev() here because we're holding the sb
2207	 * write lock, and blkdev_put() will pull in the ->open_mutex on the
2208	 * block device and it's dependencies.  Instead just flush the device
2209	 * and let the caller do the final blkdev_put.
2210	 */
2211	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2212		btrfs_scratch_superblocks(fs_info, device->bdev,
2213					  device->name->str);
2214		if (device->bdev) {
2215			sync_blockdev(device->bdev);
2216			invalidate_bdev(device->bdev);
2217		}
 
 
 
 
 
 
2218	}
2219
2220	*bdev = device->bdev;
2221	*mode = device->mode;
2222	synchronize_rcu();
2223	btrfs_free_device(device);
2224
2225	/*
2226	 * This can happen if cur_devices is the private seed devices list.  We
2227	 * cannot call close_fs_devices() here because it expects the uuid_mutex
2228	 * to be held, but in fact we don't need that for the private
2229	 * seed_devices, we can simply decrement cur_devices->opened and then
2230	 * remove it from our list and free the fs_devices.
2231	 */
2232	if (cur_devices->num_devices == 0) {
2233		list_del_init(&cur_devices->seed_list);
2234		ASSERT(cur_devices->opened == 1);
2235		cur_devices->opened--;
2236		free_fs_devices(cur_devices);
 
 
2237	}
2238
2239	ret = btrfs_commit_transaction(trans);
2240
 
 
 
 
 
 
 
2241	return ret;
2242
2243error_undo:
2244	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2245		mutex_lock(&fs_info->chunk_mutex);
2246		list_add(&device->dev_alloc_list,
2247			 &fs_devices->alloc_list);
2248		device->fs_devices->rw_devices++;
2249		mutex_unlock(&fs_info->chunk_mutex);
2250	}
2251	return ret;
2252}
2253
2254void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2255{
2256	struct btrfs_fs_devices *fs_devices;
2257
2258	lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2259
2260	/*
2261	 * in case of fs with no seed, srcdev->fs_devices will point
2262	 * to fs_devices of fs_info. However when the dev being replaced is
2263	 * a seed dev it will point to the seed's local fs_devices. In short
2264	 * srcdev will have its correct fs_devices in both the cases.
2265	 */
2266	fs_devices = srcdev->fs_devices;
2267
2268	list_del_rcu(&srcdev->dev_list);
2269	list_del(&srcdev->dev_alloc_list);
2270	fs_devices->num_devices--;
2271	if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2272		fs_devices->missing_devices--;
2273
2274	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2275		fs_devices->rw_devices--;
2276
2277	if (srcdev->bdev)
2278		fs_devices->open_devices--;
2279}
2280
2281void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2282{
2283	struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2284
2285	mutex_lock(&uuid_mutex);
2286
2287	btrfs_close_bdev(srcdev);
2288	synchronize_rcu();
2289	btrfs_free_device(srcdev);
2290
2291	/* if this is no devs we rather delete the fs_devices */
2292	if (!fs_devices->num_devices) {
2293		/*
2294		 * On a mounted FS, num_devices can't be zero unless it's a
2295		 * seed. In case of a seed device being replaced, the replace
2296		 * target added to the sprout FS, so there will be no more
2297		 * device left under the seed FS.
2298		 */
2299		ASSERT(fs_devices->seeding);
2300
2301		list_del_init(&fs_devices->seed_list);
2302		close_fs_devices(fs_devices);
2303		free_fs_devices(fs_devices);
2304	}
2305	mutex_unlock(&uuid_mutex);
2306}
2307
2308void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2309{
2310	struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2311
2312	mutex_lock(&fs_devices->device_list_mutex);
2313
2314	btrfs_sysfs_remove_device(tgtdev);
2315
2316	if (tgtdev->bdev)
2317		fs_devices->open_devices--;
2318
2319	fs_devices->num_devices--;
2320
2321	btrfs_assign_next_active_device(tgtdev, NULL);
2322
2323	list_del_rcu(&tgtdev->dev_list);
2324
2325	mutex_unlock(&fs_devices->device_list_mutex);
2326
2327	btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev->bdev,
2328				  tgtdev->name->str);
2329
2330	btrfs_close_bdev(tgtdev);
2331	synchronize_rcu();
2332	btrfs_free_device(tgtdev);
2333}
2334
2335/*
2336 * Populate args from device at path.
2337 *
2338 * @fs_info:	the filesystem
2339 * @args:	the args to populate
2340 * @path:	the path to the device
2341 *
2342 * This will read the super block of the device at @path and populate @args with
2343 * the devid, fsid, and uuid.  This is meant to be used for ioctls that need to
2344 * lookup a device to operate on, but need to do it before we take any locks.
2345 * This properly handles the special case of "missing" that a user may pass in,
2346 * and does some basic sanity checks.  The caller must make sure that @path is
2347 * properly NUL terminated before calling in, and must call
2348 * btrfs_put_dev_args_from_path() in order to free up the temporary fsid and
2349 * uuid buffers.
2350 *
2351 * Return: 0 for success, -errno for failure
2352 */
2353int btrfs_get_dev_args_from_path(struct btrfs_fs_info *fs_info,
2354				 struct btrfs_dev_lookup_args *args,
2355				 const char *path)
2356{
2357	struct btrfs_super_block *disk_super;
2358	struct block_device *bdev;
2359	int ret;
2360
2361	if (!path || !path[0])
2362		return -EINVAL;
2363	if (!strcmp(path, "missing")) {
2364		args->missing = true;
2365		return 0;
2366	}
2367
2368	args->uuid = kzalloc(BTRFS_UUID_SIZE, GFP_KERNEL);
2369	args->fsid = kzalloc(BTRFS_FSID_SIZE, GFP_KERNEL);
2370	if (!args->uuid || !args->fsid) {
2371		btrfs_put_dev_args_from_path(args);
2372		return -ENOMEM;
2373	}
2374
2375	ret = btrfs_get_bdev_and_sb(path, FMODE_READ, fs_info->bdev_holder, 0,
2376				    &bdev, &disk_super);
2377	if (ret) {
2378		btrfs_put_dev_args_from_path(args);
2379		return ret;
2380	}
2381
2382	args->devid = btrfs_stack_device_id(&disk_super->dev_item);
2383	memcpy(args->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE);
2384	if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2385		memcpy(args->fsid, disk_super->metadata_uuid, BTRFS_FSID_SIZE);
2386	else
2387		memcpy(args->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
2388	btrfs_release_disk_super(disk_super);
2389	blkdev_put(bdev, FMODE_READ);
2390	return 0;
2391}
2392
2393/*
2394 * Only use this jointly with btrfs_get_dev_args_from_path() because we will
2395 * allocate our ->uuid and ->fsid pointers, everybody else uses local variables
2396 * that don't need to be freed.
2397 */
2398void btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args *args)
2399{
2400	kfree(args->uuid);
2401	kfree(args->fsid);
2402	args->uuid = NULL;
2403	args->fsid = NULL;
2404}
2405
2406struct btrfs_device *btrfs_find_device_by_devspec(
2407		struct btrfs_fs_info *fs_info, u64 devid,
2408		const char *device_path)
2409{
2410	BTRFS_DEV_LOOKUP_ARGS(args);
2411	struct btrfs_device *device;
2412	int ret;
2413
2414	if (devid) {
2415		args.devid = devid;
2416		device = btrfs_find_device(fs_info->fs_devices, &args);
2417		if (!device)
2418			return ERR_PTR(-ENOENT);
2419		return device;
2420	}
2421
2422	ret = btrfs_get_dev_args_from_path(fs_info, &args, device_path);
2423	if (ret)
2424		return ERR_PTR(ret);
2425	device = btrfs_find_device(fs_info->fs_devices, &args);
2426	btrfs_put_dev_args_from_path(&args);
2427	if (!device)
2428		return ERR_PTR(-ENOENT);
2429	return device;
2430}
2431
2432static struct btrfs_fs_devices *btrfs_init_sprout(struct btrfs_fs_info *fs_info)
2433{
2434	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2435	struct btrfs_fs_devices *old_devices;
2436	struct btrfs_fs_devices *seed_devices;
 
 
 
2437
2438	lockdep_assert_held(&uuid_mutex);
2439	if (!fs_devices->seeding)
2440		return ERR_PTR(-EINVAL);
2441
2442	/*
2443	 * Private copy of the seed devices, anchored at
2444	 * fs_info->fs_devices->seed_list
2445	 */
2446	seed_devices = alloc_fs_devices(NULL, NULL);
2447	if (IS_ERR(seed_devices))
2448		return seed_devices;
2449
2450	/*
2451	 * It's necessary to retain a copy of the original seed fs_devices in
2452	 * fs_uuids so that filesystems which have been seeded can successfully
2453	 * reference the seed device from open_seed_devices. This also supports
2454	 * multiple fs seed.
2455	 */
2456	old_devices = clone_fs_devices(fs_devices);
2457	if (IS_ERR(old_devices)) {
2458		kfree(seed_devices);
2459		return old_devices;
2460	}
2461
2462	list_add(&old_devices->fs_list, &fs_uuids);
2463
2464	memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2465	seed_devices->opened = 1;
2466	INIT_LIST_HEAD(&seed_devices->devices);
2467	INIT_LIST_HEAD(&seed_devices->alloc_list);
2468	mutex_init(&seed_devices->device_list_mutex);
2469
2470	return seed_devices;
2471}
2472
2473/*
2474 * Splice seed devices into the sprout fs_devices.
2475 * Generate a new fsid for the sprouted read-write filesystem.
2476 */
2477static void btrfs_setup_sprout(struct btrfs_fs_info *fs_info,
2478			       struct btrfs_fs_devices *seed_devices)
2479{
2480	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2481	struct btrfs_super_block *disk_super = fs_info->super_copy;
2482	struct btrfs_device *device;
2483	u64 super_flags;
2484
2485	/*
2486	 * We are updating the fsid, the thread leading to device_list_add()
2487	 * could race, so uuid_mutex is needed.
2488	 */
2489	lockdep_assert_held(&uuid_mutex);
2490
2491	/*
2492	 * The threads listed below may traverse dev_list but can do that without
2493	 * device_list_mutex:
2494	 * - All device ops and balance - as we are in btrfs_exclop_start.
2495	 * - Various dev_list readers - are using RCU.
2496	 * - btrfs_ioctl_fitrim() - is using RCU.
2497	 *
2498	 * For-read threads as below are using device_list_mutex:
2499	 * - Readonly scrub btrfs_scrub_dev()
2500	 * - Readonly scrub btrfs_scrub_progress()
2501	 * - btrfs_get_dev_stats()
2502	 */
2503	lockdep_assert_held(&fs_devices->device_list_mutex);
2504
2505	list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2506			      synchronize_rcu);
2507	list_for_each_entry(device, &seed_devices->devices, dev_list)
 
 
 
2508		device->fs_devices = seed_devices;
 
2509
2510	fs_devices->seeding = false;
2511	fs_devices->num_devices = 0;
2512	fs_devices->open_devices = 0;
2513	fs_devices->missing_devices = 0;
2514	fs_devices->rotating = false;
2515	list_add(&seed_devices->seed_list, &fs_devices->seed_list);
2516
2517	generate_random_uuid(fs_devices->fsid);
2518	memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2519	memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2520
2521	super_flags = btrfs_super_flags(disk_super) &
2522		      ~BTRFS_SUPER_FLAG_SEEDING;
2523	btrfs_set_super_flags(disk_super, super_flags);
 
 
2524}
2525
2526/*
2527 * Store the expected generation for seed devices in device items.
2528 */
2529static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
 
2530{
2531	BTRFS_DEV_LOOKUP_ARGS(args);
2532	struct btrfs_fs_info *fs_info = trans->fs_info;
2533	struct btrfs_root *root = fs_info->chunk_root;
2534	struct btrfs_path *path;
2535	struct extent_buffer *leaf;
2536	struct btrfs_dev_item *dev_item;
2537	struct btrfs_device *device;
2538	struct btrfs_key key;
2539	u8 fs_uuid[BTRFS_FSID_SIZE];
2540	u8 dev_uuid[BTRFS_UUID_SIZE];
 
2541	int ret;
2542
2543	path = btrfs_alloc_path();
2544	if (!path)
2545		return -ENOMEM;
2546
 
2547	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2548	key.offset = 0;
2549	key.type = BTRFS_DEV_ITEM_KEY;
2550
2551	while (1) {
2552		btrfs_reserve_chunk_metadata(trans, false);
2553		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2554		btrfs_trans_release_chunk_metadata(trans);
2555		if (ret < 0)
2556			goto error;
2557
2558		leaf = path->nodes[0];
2559next_slot:
2560		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2561			ret = btrfs_next_leaf(root, path);
2562			if (ret > 0)
2563				break;
2564			if (ret < 0)
2565				goto error;
2566			leaf = path->nodes[0];
2567			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2568			btrfs_release_path(path);
2569			continue;
2570		}
2571
2572		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2573		if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2574		    key.type != BTRFS_DEV_ITEM_KEY)
2575			break;
2576
2577		dev_item = btrfs_item_ptr(leaf, path->slots[0],
2578					  struct btrfs_dev_item);
2579		args.devid = btrfs_device_id(leaf, dev_item);
2580		read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
 
 
 
 
2581				   BTRFS_UUID_SIZE);
2582		read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2583				   BTRFS_FSID_SIZE);
2584		args.uuid = dev_uuid;
2585		args.fsid = fs_uuid;
2586		device = btrfs_find_device(fs_info->fs_devices, &args);
2587		BUG_ON(!device); /* Logic error */
2588
2589		if (device->fs_devices->seeding) {
2590			btrfs_set_device_generation(leaf, dev_item,
2591						    device->generation);
2592			btrfs_mark_buffer_dirty(leaf);
2593		}
2594
2595		path->slots[0]++;
2596		goto next_slot;
2597	}
2598	ret = 0;
2599error:
2600	btrfs_free_path(path);
2601	return ret;
2602}
2603
2604int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2605{
2606	struct btrfs_root *root = fs_info->dev_root;
2607	struct btrfs_trans_handle *trans;
2608	struct btrfs_device *device;
2609	struct block_device *bdev;
2610	struct super_block *sb = fs_info->sb;
2611	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2612	struct btrfs_fs_devices *seed_devices;
2613	u64 orig_super_total_bytes;
2614	u64 orig_super_num_devices;
2615	int ret = 0;
2616	bool seeding_dev = false;
2617	bool locked = false;
2618
2619	if (sb_rdonly(sb) && !fs_devices->seeding)
2620		return -EROFS;
2621
2622	bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2623				  fs_info->bdev_holder);
2624	if (IS_ERR(bdev))
2625		return PTR_ERR(bdev);
2626
2627	if (!btrfs_check_device_zone_type(fs_info, bdev)) {
2628		ret = -EINVAL;
2629		goto error;
2630	}
2631
2632	if (fs_devices->seeding) {
2633		seeding_dev = true;
2634		down_write(&sb->s_umount);
2635		mutex_lock(&uuid_mutex);
2636		locked = true;
2637	}
2638
2639	sync_blockdev(bdev);
2640
2641	rcu_read_lock();
2642	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
 
 
 
 
2643		if (device->bdev == bdev) {
2644			ret = -EEXIST;
2645			rcu_read_unlock();
2646			goto error;
2647		}
2648	}
2649	rcu_read_unlock();
2650
2651	device = btrfs_alloc_device(fs_info, NULL, NULL, device_path);
2652	if (IS_ERR(device)) {
2653		/* we can safely leave the fs_devices entry around */
2654		ret = PTR_ERR(device);
2655		goto error;
2656	}
2657
2658	device->fs_info = fs_info;
2659	device->bdev = bdev;
2660	ret = lookup_bdev(device_path, &device->devt);
2661	if (ret)
2662		goto error_free_device;
 
 
2663
2664	ret = btrfs_get_dev_zone_info(device, false);
2665	if (ret)
2666		goto error_free_device;
 
 
 
2667
2668	trans = btrfs_start_transaction(root, 0);
2669	if (IS_ERR(trans)) {
 
 
2670		ret = PTR_ERR(trans);
2671		goto error_free_zone;
2672	}
2673
2674	set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
 
 
 
 
 
 
 
 
2675	device->generation = trans->transid;
2676	device->io_width = fs_info->sectorsize;
2677	device->io_align = fs_info->sectorsize;
2678	device->sector_size = fs_info->sectorsize;
2679	device->total_bytes =
2680		round_down(bdev_nr_bytes(bdev), fs_info->sectorsize);
2681	device->disk_total_bytes = device->total_bytes;
2682	device->commit_total_bytes = device->total_bytes;
2683	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2684	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2685	device->mode = FMODE_EXCL;
2686	device->dev_stats_valid = 1;
2687	set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2688
2689	if (seeding_dev) {
2690		btrfs_clear_sb_rdonly(sb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2691
2692		/* GFP_KERNEL allocation must not be under device_list_mutex */
2693		seed_devices = btrfs_init_sprout(fs_info);
2694		if (IS_ERR(seed_devices)) {
2695			ret = PTR_ERR(seed_devices);
2696			btrfs_abort_transaction(trans, ret);
 
 
 
 
 
2697			goto error_trans;
2698		}
2699	}
2700
2701	mutex_lock(&fs_devices->device_list_mutex);
2702	if (seeding_dev) {
2703		btrfs_setup_sprout(fs_info, seed_devices);
2704		btrfs_assign_next_active_device(fs_info->fs_devices->latest_dev,
2705						device);
2706	}
2707
2708	device->fs_devices = fs_devices;
2709
2710	mutex_lock(&fs_info->chunk_mutex);
2711	list_add_rcu(&device->dev_list, &fs_devices->devices);
2712	list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2713	fs_devices->num_devices++;
2714	fs_devices->open_devices++;
2715	fs_devices->rw_devices++;
2716	fs_devices->total_devices++;
2717	fs_devices->total_rw_bytes += device->total_bytes;
2718
2719	atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2720
2721	if (!bdev_nonrot(bdev))
2722		fs_devices->rotating = true;
2723
2724	orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2725	btrfs_set_super_total_bytes(fs_info->super_copy,
2726		round_down(orig_super_total_bytes + device->total_bytes,
2727			   fs_info->sectorsize));
2728
2729	orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2730	btrfs_set_super_num_devices(fs_info->super_copy,
2731				    orig_super_num_devices + 1);
2732
2733	/*
2734	 * we've got more storage, clear any full flags on the space
2735	 * infos
2736	 */
2737	btrfs_clear_space_info_full(fs_info);
2738
2739	mutex_unlock(&fs_info->chunk_mutex);
2740
2741	/* Add sysfs device entry */
2742	btrfs_sysfs_add_device(device);
2743
2744	mutex_unlock(&fs_devices->device_list_mutex);
2745
2746	if (seeding_dev) {
2747		mutex_lock(&fs_info->chunk_mutex);
2748		ret = init_first_rw_device(trans);
2749		mutex_unlock(&fs_info->chunk_mutex);
2750		if (ret) {
2751			btrfs_abort_transaction(trans, ret);
2752			goto error_sysfs;
2753		}
2754	}
2755
2756	ret = btrfs_add_dev_item(trans, device);
2757	if (ret) {
2758		btrfs_abort_transaction(trans, ret);
2759		goto error_sysfs;
2760	}
2761
2762	if (seeding_dev) {
2763		ret = btrfs_finish_sprout(trans);
2764		if (ret) {
2765			btrfs_abort_transaction(trans, ret);
2766			goto error_sysfs;
2767		}
2768
2769		/*
2770		 * fs_devices now represents the newly sprouted filesystem and
2771		 * its fsid has been changed by btrfs_sprout_splice().
2772		 */
2773		btrfs_sysfs_update_sprout_fsid(fs_devices);
2774	}
2775
2776	ret = btrfs_commit_transaction(trans);
2777
2778	if (seeding_dev) {
2779		mutex_unlock(&uuid_mutex);
2780		up_write(&sb->s_umount);
2781		locked = false;
2782
2783		if (ret) /* transaction commit */
2784			return ret;
2785
2786		ret = btrfs_relocate_sys_chunks(fs_info);
2787		if (ret < 0)
2788			btrfs_handle_fs_error(fs_info, ret,
2789				    "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2790		trans = btrfs_attach_transaction(root);
2791		if (IS_ERR(trans)) {
2792			if (PTR_ERR(trans) == -ENOENT)
2793				return 0;
2794			ret = PTR_ERR(trans);
2795			trans = NULL;
2796			goto error_sysfs;
2797		}
2798		ret = btrfs_commit_transaction(trans);
2799	}
2800
2801	/*
2802	 * Now that we have written a new super block to this device, check all
2803	 * other fs_devices list if device_path alienates any other scanned
2804	 * device.
2805	 * We can ignore the return value as it typically returns -EINVAL and
2806	 * only succeeds if the device was an alien.
2807	 */
2808	btrfs_forget_devices(device->devt);
2809
2810	/* Update ctime/mtime for blkid or udev */
2811	update_dev_time(device_path);
2812
2813	return ret;
2814
2815error_sysfs:
2816	btrfs_sysfs_remove_device(device);
2817	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2818	mutex_lock(&fs_info->chunk_mutex);
2819	list_del_rcu(&device->dev_list);
2820	list_del(&device->dev_alloc_list);
2821	fs_info->fs_devices->num_devices--;
2822	fs_info->fs_devices->open_devices--;
2823	fs_info->fs_devices->rw_devices--;
2824	fs_info->fs_devices->total_devices--;
2825	fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2826	atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2827	btrfs_set_super_total_bytes(fs_info->super_copy,
2828				    orig_super_total_bytes);
2829	btrfs_set_super_num_devices(fs_info->super_copy,
2830				    orig_super_num_devices);
2831	mutex_unlock(&fs_info->chunk_mutex);
2832	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2833error_trans:
2834	if (seeding_dev)
2835		btrfs_set_sb_rdonly(sb);
2836	if (trans)
2837		btrfs_end_transaction(trans);
2838error_free_zone:
2839	btrfs_destroy_dev_zone_info(device);
2840error_free_device:
2841	btrfs_free_device(device);
2842error:
2843	blkdev_put(bdev, FMODE_EXCL);
2844	if (locked) {
2845		mutex_unlock(&uuid_mutex);
2846		up_write(&sb->s_umount);
2847	}
2848	return ret;
2849}
2850
2851static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2852					struct btrfs_device *device)
2853{
2854	int ret;
2855	struct btrfs_path *path;
2856	struct btrfs_root *root = device->fs_info->chunk_root;
2857	struct btrfs_dev_item *dev_item;
2858	struct extent_buffer *leaf;
2859	struct btrfs_key key;
2860
 
 
2861	path = btrfs_alloc_path();
2862	if (!path)
2863		return -ENOMEM;
2864
2865	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2866	key.type = BTRFS_DEV_ITEM_KEY;
2867	key.offset = device->devid;
2868
2869	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2870	if (ret < 0)
2871		goto out;
2872
2873	if (ret > 0) {
2874		ret = -ENOENT;
2875		goto out;
2876	}
2877
2878	leaf = path->nodes[0];
2879	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2880
2881	btrfs_set_device_id(leaf, dev_item, device->devid);
2882	btrfs_set_device_type(leaf, dev_item, device->type);
2883	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2884	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2885	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2886	btrfs_set_device_total_bytes(leaf, dev_item,
2887				     btrfs_device_get_disk_total_bytes(device));
2888	btrfs_set_device_bytes_used(leaf, dev_item,
2889				    btrfs_device_get_bytes_used(device));
2890	btrfs_mark_buffer_dirty(leaf);
2891
2892out:
2893	btrfs_free_path(path);
2894	return ret;
2895}
2896
2897int btrfs_grow_device(struct btrfs_trans_handle *trans,
2898		      struct btrfs_device *device, u64 new_size)
2899{
2900	struct btrfs_fs_info *fs_info = device->fs_info;
2901	struct btrfs_super_block *super_copy = fs_info->super_copy;
2902	u64 old_total;
2903	u64 diff;
2904	int ret;
2905
2906	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2907		return -EACCES;
2908
2909	new_size = round_down(new_size, fs_info->sectorsize);
2910
2911	mutex_lock(&fs_info->chunk_mutex);
2912	old_total = btrfs_super_total_bytes(super_copy);
2913	diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2914
2915	if (new_size <= device->total_bytes ||
2916	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2917		mutex_unlock(&fs_info->chunk_mutex);
2918		return -EINVAL;
2919	}
2920
2921	btrfs_set_super_total_bytes(super_copy,
2922			round_down(old_total + diff, fs_info->sectorsize));
2923	device->fs_devices->total_rw_bytes += diff;
2924
2925	btrfs_device_set_total_bytes(device, new_size);
2926	btrfs_device_set_disk_total_bytes(device, new_size);
2927	btrfs_clear_space_info_full(device->fs_info);
2928	if (list_empty(&device->post_commit_list))
2929		list_add_tail(&device->post_commit_list,
2930			      &trans->transaction->dev_update_list);
2931	mutex_unlock(&fs_info->chunk_mutex);
2932
2933	btrfs_reserve_chunk_metadata(trans, false);
2934	ret = btrfs_update_device(trans, device);
2935	btrfs_trans_release_chunk_metadata(trans);
2936
 
 
 
 
 
 
 
2937	return ret;
2938}
2939
2940static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
 
 
 
2941{
2942	struct btrfs_fs_info *fs_info = trans->fs_info;
2943	struct btrfs_root *root = fs_info->chunk_root;
2944	int ret;
2945	struct btrfs_path *path;
2946	struct btrfs_key key;
2947
 
2948	path = btrfs_alloc_path();
2949	if (!path)
2950		return -ENOMEM;
2951
2952	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2953	key.offset = chunk_offset;
2954	key.type = BTRFS_CHUNK_ITEM_KEY;
2955
2956	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2957	if (ret < 0)
2958		goto out;
2959	else if (ret > 0) { /* Logic error or corruption */
2960		btrfs_handle_fs_error(fs_info, -ENOENT,
2961				      "Failed lookup while freeing chunk.");
2962		ret = -ENOENT;
2963		goto out;
2964	}
2965
2966	ret = btrfs_del_item(trans, root, path);
2967	if (ret < 0)
2968		btrfs_handle_fs_error(fs_info, ret,
2969				      "Failed to delete chunk item.");
2970out:
2971	btrfs_free_path(path);
2972	return ret;
2973}
2974
2975static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
 
2976{
2977	struct btrfs_super_block *super_copy = fs_info->super_copy;
2978	struct btrfs_disk_key *disk_key;
2979	struct btrfs_chunk *chunk;
2980	u8 *ptr;
2981	int ret = 0;
2982	u32 num_stripes;
2983	u32 array_size;
2984	u32 len = 0;
2985	u32 cur;
2986	struct btrfs_key key;
2987
2988	lockdep_assert_held(&fs_info->chunk_mutex);
2989	array_size = btrfs_super_sys_array_size(super_copy);
2990
2991	ptr = super_copy->sys_chunk_array;
2992	cur = 0;
2993
2994	while (cur < array_size) {
2995		disk_key = (struct btrfs_disk_key *)ptr;
2996		btrfs_disk_key_to_cpu(&key, disk_key);
2997
2998		len = sizeof(*disk_key);
2999
3000		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
3001			chunk = (struct btrfs_chunk *)(ptr + len);
3002			num_stripes = btrfs_stack_chunk_num_stripes(chunk);
3003			len += btrfs_chunk_item_size(num_stripes);
3004		} else {
3005			ret = -EIO;
3006			break;
3007		}
3008		if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
3009		    key.offset == chunk_offset) {
3010			memmove(ptr, ptr + len, array_size - (cur + len));
3011			array_size -= len;
3012			btrfs_set_super_sys_array_size(super_copy, array_size);
3013		} else {
3014			ptr += len;
3015			cur += len;
3016		}
3017	}
3018	return ret;
3019}
3020
3021/*
3022 * btrfs_get_chunk_map() - Find the mapping containing the given logical extent.
3023 * @logical: Logical block offset in bytes.
3024 * @length: Length of extent in bytes.
3025 *
3026 * Return: Chunk mapping or ERR_PTR.
3027 */
3028struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
3029				       u64 logical, u64 length)
3030{
3031	struct extent_map_tree *em_tree;
 
 
3032	struct extent_map *em;
 
 
 
3033
3034	em_tree = &fs_info->mapping_tree;
3035	read_lock(&em_tree->lock);
3036	em = lookup_extent_mapping(em_tree, logical, length);
3037	read_unlock(&em_tree->lock);
3038
3039	if (!em) {
3040		btrfs_crit(fs_info, "unable to find logical %llu length %llu",
3041			   logical, length);
3042		return ERR_PTR(-EINVAL);
3043	}
3044
3045	if (em->start > logical || em->start + em->len < logical) {
3046		btrfs_crit(fs_info,
3047			   "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
3048			   logical, length, em->start, em->start + em->len);
3049		free_extent_map(em);
3050		return ERR_PTR(-EINVAL);
3051	}
3052
3053	/* callers are responsible for dropping em's ref. */
3054	return em;
3055}
3056
3057static int remove_chunk_item(struct btrfs_trans_handle *trans,
3058			     struct map_lookup *map, u64 chunk_offset)
3059{
3060	int i;
3061
3062	/*
3063	 * Removing chunk items and updating the device items in the chunks btree
3064	 * requires holding the chunk_mutex.
3065	 * See the comment at btrfs_chunk_alloc() for the details.
3066	 */
3067	lockdep_assert_held(&trans->fs_info->chunk_mutex);
3068
3069	for (i = 0; i < map->num_stripes; i++) {
3070		int ret;
3071
3072		ret = btrfs_update_device(trans, map->stripes[i].dev);
3073		if (ret)
3074			return ret;
3075	}
3076
3077	return btrfs_free_chunk(trans, chunk_offset);
3078}
3079
3080int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
3081{
3082	struct btrfs_fs_info *fs_info = trans->fs_info;
3083	struct extent_map *em;
3084	struct map_lookup *map;
3085	u64 dev_extent_len = 0;
3086	int i, ret = 0;
3087	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3088
3089	em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
3090	if (IS_ERR(em)) {
3091		/*
3092		 * This is a logic error, but we don't want to just rely on the
3093		 * user having built with ASSERT enabled, so if ASSERT doesn't
3094		 * do anything we still error out.
3095		 */
3096		ASSERT(0);
3097		return PTR_ERR(em);
3098	}
3099	map = em->map_lookup;
3100
3101	/*
3102	 * First delete the device extent items from the devices btree.
3103	 * We take the device_list_mutex to avoid racing with the finishing phase
3104	 * of a device replace operation. See the comment below before acquiring
3105	 * fs_info->chunk_mutex. Note that here we do not acquire the chunk_mutex
3106	 * because that can result in a deadlock when deleting the device extent
3107	 * items from the devices btree - COWing an extent buffer from the btree
3108	 * may result in allocating a new metadata chunk, which would attempt to
3109	 * lock again fs_info->chunk_mutex.
3110	 */
3111	mutex_lock(&fs_devices->device_list_mutex);
3112	for (i = 0; i < map->num_stripes; i++) {
3113		struct btrfs_device *device = map->stripes[i].dev;
3114		ret = btrfs_free_dev_extent(trans, device,
3115					    map->stripes[i].physical,
3116					    &dev_extent_len);
3117		if (ret) {
3118			mutex_unlock(&fs_devices->device_list_mutex);
3119			btrfs_abort_transaction(trans, ret);
3120			goto out;
3121		}
3122
3123		if (device->bytes_used > 0) {
3124			mutex_lock(&fs_info->chunk_mutex);
3125			btrfs_device_set_bytes_used(device,
3126					device->bytes_used - dev_extent_len);
3127			atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
3128			btrfs_clear_space_info_full(fs_info);
3129			mutex_unlock(&fs_info->chunk_mutex);
3130		}
3131	}
3132	mutex_unlock(&fs_devices->device_list_mutex);
3133
3134	/*
3135	 * We acquire fs_info->chunk_mutex for 2 reasons:
3136	 *
3137	 * 1) Just like with the first phase of the chunk allocation, we must
3138	 *    reserve system space, do all chunk btree updates and deletions, and
3139	 *    update the system chunk array in the superblock while holding this
3140	 *    mutex. This is for similar reasons as explained on the comment at
3141	 *    the top of btrfs_chunk_alloc();
3142	 *
3143	 * 2) Prevent races with the final phase of a device replace operation
3144	 *    that replaces the device object associated with the map's stripes,
3145	 *    because the device object's id can change at any time during that
3146	 *    final phase of the device replace operation
3147	 *    (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
3148	 *    replaced device and then see it with an ID of
3149	 *    BTRFS_DEV_REPLACE_DEVID, which would cause a failure when updating
3150	 *    the device item, which does not exists on the chunk btree.
3151	 *    The finishing phase of device replace acquires both the
3152	 *    device_list_mutex and the chunk_mutex, in that order, so we are
3153	 *    safe by just acquiring the chunk_mutex.
3154	 */
3155	trans->removing_chunk = true;
3156	mutex_lock(&fs_info->chunk_mutex);
3157
3158	check_system_chunk(trans, map->type);
3159
3160	ret = remove_chunk_item(trans, map, chunk_offset);
3161	/*
3162	 * Normally we should not get -ENOSPC since we reserved space before
3163	 * through the call to check_system_chunk().
3164	 *
3165	 * Despite our system space_info having enough free space, we may not
3166	 * be able to allocate extents from its block groups, because all have
3167	 * an incompatible profile, which will force us to allocate a new system
3168	 * block group with the right profile, or right after we called
3169	 * check_system_space() above, a scrub turned the only system block group
3170	 * with enough free space into RO mode.
3171	 * This is explained with more detail at do_chunk_alloc().
3172	 *
3173	 * So if we get -ENOSPC, allocate a new system chunk and retry once.
3174	 */
3175	if (ret == -ENOSPC) {
3176		const u64 sys_flags = btrfs_system_alloc_profile(fs_info);
3177		struct btrfs_block_group *sys_bg;
3178
3179		sys_bg = btrfs_create_chunk(trans, sys_flags);
3180		if (IS_ERR(sys_bg)) {
3181			ret = PTR_ERR(sys_bg);
3182			btrfs_abort_transaction(trans, ret);
3183			goto out;
3184		}
3185
3186		ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3187		if (ret) {
3188			btrfs_abort_transaction(trans, ret);
3189			goto out;
3190		}
3191
3192		ret = remove_chunk_item(trans, map, chunk_offset);
3193		if (ret) {
3194			btrfs_abort_transaction(trans, ret);
3195			goto out;
3196		}
3197	} else if (ret) {
3198		btrfs_abort_transaction(trans, ret);
3199		goto out;
3200	}
3201
3202	trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
3203
3204	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3205		ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
3206		if (ret) {
3207			btrfs_abort_transaction(trans, ret);
3208			goto out;
3209		}
3210	}
3211
3212	mutex_unlock(&fs_info->chunk_mutex);
3213	trans->removing_chunk = false;
3214
3215	/*
3216	 * We are done with chunk btree updates and deletions, so release the
3217	 * system space we previously reserved (with check_system_chunk()).
3218	 */
3219	btrfs_trans_release_chunk_metadata(trans);
3220
3221	ret = btrfs_remove_block_group(trans, chunk_offset, em);
3222	if (ret) {
3223		btrfs_abort_transaction(trans, ret);
3224		goto out;
3225	}
3226
3227out:
3228	if (trans->removing_chunk) {
3229		mutex_unlock(&fs_info->chunk_mutex);
3230		trans->removing_chunk = false;
3231	}
3232	/* once for us */
3233	free_extent_map(em);
3234	return ret;
3235}
3236
3237int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3238{
3239	struct btrfs_root *root = fs_info->chunk_root;
3240	struct btrfs_trans_handle *trans;
3241	struct btrfs_block_group *block_group;
3242	u64 length;
3243	int ret;
3244
3245	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3246		btrfs_err(fs_info,
3247			  "relocate: not supported on extent tree v2 yet");
3248		return -EINVAL;
3249	}
3250
3251	/*
3252	 * Prevent races with automatic removal of unused block groups.
3253	 * After we relocate and before we remove the chunk with offset
3254	 * chunk_offset, automatic removal of the block group can kick in,
3255	 * resulting in a failure when calling btrfs_remove_chunk() below.
3256	 *
3257	 * Make sure to acquire this mutex before doing a tree search (dev
3258	 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3259	 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3260	 * we release the path used to search the chunk/dev tree and before
3261	 * the current task acquires this mutex and calls us.
3262	 */
3263	lockdep_assert_held(&fs_info->reclaim_bgs_lock);
3264
3265	/* step one, relocate all the extents inside this chunk */
3266	btrfs_scrub_pause(fs_info);
3267	ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3268	btrfs_scrub_continue(fs_info);
3269	if (ret)
3270		return ret;
3271
3272	block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
3273	if (!block_group)
3274		return -ENOENT;
3275	btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
3276	length = block_group->length;
3277	btrfs_put_block_group(block_group);
3278
3279	/*
3280	 * On a zoned file system, discard the whole block group, this will
3281	 * trigger a REQ_OP_ZONE_RESET operation on the device zone. If
3282	 * resetting the zone fails, don't treat it as a fatal problem from the
3283	 * filesystem's point of view.
3284	 */
3285	if (btrfs_is_zoned(fs_info)) {
3286		ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL);
3287		if (ret)
3288			btrfs_info(fs_info,
3289				"failed to reset zone %llu after relocation",
3290				chunk_offset);
3291	}
3292
3293	trans = btrfs_start_trans_remove_block_group(root->fs_info,
3294						     chunk_offset);
3295	if (IS_ERR(trans)) {
3296		ret = PTR_ERR(trans);
3297		btrfs_handle_fs_error(root->fs_info, ret, NULL);
3298		return ret;
3299	}
3300
3301	/*
3302	 * step two, delete the device extents and the
3303	 * chunk tree entries
3304	 */
3305	ret = btrfs_remove_chunk(trans, chunk_offset);
3306	btrfs_end_transaction(trans);
3307	return ret;
3308}
3309
3310static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3311{
3312	struct btrfs_root *chunk_root = fs_info->chunk_root;
3313	struct btrfs_path *path;
3314	struct extent_buffer *leaf;
3315	struct btrfs_chunk *chunk;
3316	struct btrfs_key key;
3317	struct btrfs_key found_key;
 
3318	u64 chunk_type;
3319	bool retried = false;
3320	int failed = 0;
3321	int ret;
3322
3323	path = btrfs_alloc_path();
3324	if (!path)
3325		return -ENOMEM;
3326
3327again:
3328	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3329	key.offset = (u64)-1;
3330	key.type = BTRFS_CHUNK_ITEM_KEY;
3331
3332	while (1) {
3333		mutex_lock(&fs_info->reclaim_bgs_lock);
3334		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3335		if (ret < 0) {
3336			mutex_unlock(&fs_info->reclaim_bgs_lock);
3337			goto error;
3338		}
3339		BUG_ON(ret == 0); /* Corruption */
3340
3341		ret = btrfs_previous_item(chunk_root, path, key.objectid,
3342					  key.type);
3343		if (ret)
3344			mutex_unlock(&fs_info->reclaim_bgs_lock);
3345		if (ret < 0)
3346			goto error;
3347		if (ret > 0)
3348			break;
3349
3350		leaf = path->nodes[0];
3351		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3352
3353		chunk = btrfs_item_ptr(leaf, path->slots[0],
3354				       struct btrfs_chunk);
3355		chunk_type = btrfs_chunk_type(leaf, chunk);
3356		btrfs_release_path(path);
3357
3358		if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3359			ret = btrfs_relocate_chunk(fs_info, found_key.offset);
 
 
3360			if (ret == -ENOSPC)
3361				failed++;
3362			else
3363				BUG_ON(ret);
3364		}
3365		mutex_unlock(&fs_info->reclaim_bgs_lock);
3366
3367		if (found_key.offset == 0)
3368			break;
3369		key.offset = found_key.offset - 1;
3370	}
3371	ret = 0;
3372	if (failed && !retried) {
3373		failed = 0;
3374		retried = true;
3375		goto again;
3376	} else if (WARN_ON(failed && retried)) {
 
3377		ret = -ENOSPC;
3378	}
3379error:
3380	btrfs_free_path(path);
3381	return ret;
3382}
3383
3384/*
3385 * return 1 : allocate a data chunk successfully,
3386 * return <0: errors during allocating a data chunk,
3387 * return 0 : no need to allocate a data chunk.
3388 */
3389static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3390				      u64 chunk_offset)
3391{
3392	struct btrfs_block_group *cache;
3393	u64 bytes_used;
3394	u64 chunk_type;
3395
3396	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3397	ASSERT(cache);
3398	chunk_type = cache->flags;
3399	btrfs_put_block_group(cache);
3400
3401	if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
3402		return 0;
3403
3404	spin_lock(&fs_info->data_sinfo->lock);
3405	bytes_used = fs_info->data_sinfo->bytes_used;
3406	spin_unlock(&fs_info->data_sinfo->lock);
3407
3408	if (!bytes_used) {
3409		struct btrfs_trans_handle *trans;
3410		int ret;
3411
3412		trans =	btrfs_join_transaction(fs_info->tree_root);
3413		if (IS_ERR(trans))
3414			return PTR_ERR(trans);
3415
3416		ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
3417		btrfs_end_transaction(trans);
3418		if (ret < 0)
3419			return ret;
3420		return 1;
3421	}
3422
3423	return 0;
3424}
3425
3426static int insert_balance_item(struct btrfs_fs_info *fs_info,
3427			       struct btrfs_balance_control *bctl)
3428{
3429	struct btrfs_root *root = fs_info->tree_root;
3430	struct btrfs_trans_handle *trans;
3431	struct btrfs_balance_item *item;
3432	struct btrfs_disk_balance_args disk_bargs;
3433	struct btrfs_path *path;
3434	struct extent_buffer *leaf;
3435	struct btrfs_key key;
3436	int ret, err;
3437
3438	path = btrfs_alloc_path();
3439	if (!path)
3440		return -ENOMEM;
3441
3442	trans = btrfs_start_transaction(root, 0);
3443	if (IS_ERR(trans)) {
3444		btrfs_free_path(path);
3445		return PTR_ERR(trans);
3446	}
3447
3448	key.objectid = BTRFS_BALANCE_OBJECTID;
3449	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3450	key.offset = 0;
3451
3452	ret = btrfs_insert_empty_item(trans, root, path, &key,
3453				      sizeof(*item));
3454	if (ret)
3455		goto out;
3456
3457	leaf = path->nodes[0];
3458	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3459
3460	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3461
3462	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3463	btrfs_set_balance_data(leaf, item, &disk_bargs);
3464	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3465	btrfs_set_balance_meta(leaf, item, &disk_bargs);
3466	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3467	btrfs_set_balance_sys(leaf, item, &disk_bargs);
3468
3469	btrfs_set_balance_flags(leaf, item, bctl->flags);
3470
3471	btrfs_mark_buffer_dirty(leaf);
3472out:
3473	btrfs_free_path(path);
3474	err = btrfs_commit_transaction(trans);
3475	if (err && !ret)
3476		ret = err;
3477	return ret;
3478}
3479
3480static int del_balance_item(struct btrfs_fs_info *fs_info)
3481{
3482	struct btrfs_root *root = fs_info->tree_root;
3483	struct btrfs_trans_handle *trans;
3484	struct btrfs_path *path;
3485	struct btrfs_key key;
3486	int ret, err;
3487
3488	path = btrfs_alloc_path();
3489	if (!path)
3490		return -ENOMEM;
3491
3492	trans = btrfs_start_transaction_fallback_global_rsv(root, 0);
3493	if (IS_ERR(trans)) {
3494		btrfs_free_path(path);
3495		return PTR_ERR(trans);
3496	}
3497
3498	key.objectid = BTRFS_BALANCE_OBJECTID;
3499	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3500	key.offset = 0;
3501
3502	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3503	if (ret < 0)
3504		goto out;
3505	if (ret > 0) {
3506		ret = -ENOENT;
3507		goto out;
3508	}
3509
3510	ret = btrfs_del_item(trans, root, path);
3511out:
3512	btrfs_free_path(path);
3513	err = btrfs_commit_transaction(trans);
3514	if (err && !ret)
3515		ret = err;
3516	return ret;
3517}
3518
3519/*
3520 * This is a heuristic used to reduce the number of chunks balanced on
3521 * resume after balance was interrupted.
3522 */
3523static void update_balance_args(struct btrfs_balance_control *bctl)
3524{
3525	/*
3526	 * Turn on soft mode for chunk types that were being converted.
3527	 */
3528	if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3529		bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3530	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3531		bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3532	if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3533		bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3534
3535	/*
3536	 * Turn on usage filter if is not already used.  The idea is
3537	 * that chunks that we have already balanced should be
3538	 * reasonably full.  Don't do it for chunks that are being
3539	 * converted - that will keep us from relocating unconverted
3540	 * (albeit full) chunks.
3541	 */
3542	if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3543	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3544	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3545		bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3546		bctl->data.usage = 90;
3547	}
3548	if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3549	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3550	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3551		bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3552		bctl->sys.usage = 90;
3553	}
3554	if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3555	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3556	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3557		bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3558		bctl->meta.usage = 90;
3559	}
3560}
3561
3562/*
3563 * Clear the balance status in fs_info and delete the balance item from disk.
 
 
3564 */
3565static void reset_balance_state(struct btrfs_fs_info *fs_info)
 
 
 
 
 
 
 
 
 
 
 
3566{
3567	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3568	int ret;
3569
3570	BUG_ON(!fs_info->balance_ctl);
3571
3572	spin_lock(&fs_info->balance_lock);
3573	fs_info->balance_ctl = NULL;
3574	spin_unlock(&fs_info->balance_lock);
3575
3576	kfree(bctl);
3577	ret = del_balance_item(fs_info);
3578	if (ret)
3579		btrfs_handle_fs_error(fs_info, ret, NULL);
3580}
3581
3582/*
3583 * Balance filters.  Return 1 if chunk should be filtered out
3584 * (should not be balanced).
3585 */
3586static int chunk_profiles_filter(u64 chunk_type,
3587				 struct btrfs_balance_args *bargs)
3588{
3589	chunk_type = chunk_to_extended(chunk_type) &
3590				BTRFS_EXTENDED_PROFILE_MASK;
3591
3592	if (bargs->profiles & chunk_type)
3593		return 0;
3594
3595	return 1;
3596}
3597
3598static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3599			      struct btrfs_balance_args *bargs)
3600{
3601	struct btrfs_block_group *cache;
3602	u64 chunk_used;
3603	u64 user_thresh_min;
3604	u64 user_thresh_max;
3605	int ret = 1;
3606
3607	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3608	chunk_used = cache->used;
3609
3610	if (bargs->usage_min == 0)
3611		user_thresh_min = 0;
3612	else
3613		user_thresh_min = mult_perc(cache->length, bargs->usage_min);
3614
3615	if (bargs->usage_max == 0)
3616		user_thresh_max = 1;
3617	else if (bargs->usage_max > 100)
3618		user_thresh_max = cache->length;
3619	else
3620		user_thresh_max = mult_perc(cache->length, bargs->usage_max);
3621
3622	if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3623		ret = 0;
3624
3625	btrfs_put_block_group(cache);
3626	return ret;
3627}
3628
3629static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3630		u64 chunk_offset, struct btrfs_balance_args *bargs)
3631{
3632	struct btrfs_block_group *cache;
3633	u64 chunk_used, user_thresh;
3634	int ret = 1;
3635
3636	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3637	chunk_used = cache->used;
3638
3639	if (bargs->usage_min == 0)
3640		user_thresh = 1;
3641	else if (bargs->usage > 100)
3642		user_thresh = cache->length;
3643	else
3644		user_thresh = mult_perc(cache->length, bargs->usage);
3645
 
3646	if (chunk_used < user_thresh)
3647		ret = 0;
3648
3649	btrfs_put_block_group(cache);
3650	return ret;
3651}
3652
3653static int chunk_devid_filter(struct extent_buffer *leaf,
3654			      struct btrfs_chunk *chunk,
3655			      struct btrfs_balance_args *bargs)
3656{
3657	struct btrfs_stripe *stripe;
3658	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3659	int i;
3660
3661	for (i = 0; i < num_stripes; i++) {
3662		stripe = btrfs_stripe_nr(chunk, i);
3663		if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3664			return 0;
3665	}
3666
3667	return 1;
3668}
3669
3670static u64 calc_data_stripes(u64 type, int num_stripes)
3671{
3672	const int index = btrfs_bg_flags_to_raid_index(type);
3673	const int ncopies = btrfs_raid_array[index].ncopies;
3674	const int nparity = btrfs_raid_array[index].nparity;
3675
3676	return (num_stripes - nparity) / ncopies;
3677}
3678
3679/* [pstart, pend) */
3680static int chunk_drange_filter(struct extent_buffer *leaf,
3681			       struct btrfs_chunk *chunk,
 
3682			       struct btrfs_balance_args *bargs)
3683{
3684	struct btrfs_stripe *stripe;
3685	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3686	u64 stripe_offset;
3687	u64 stripe_length;
3688	u64 type;
3689	int factor;
3690	int i;
3691
3692	if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3693		return 0;
3694
3695	type = btrfs_chunk_type(leaf, chunk);
3696	factor = calc_data_stripes(type, num_stripes);
 
 
 
 
3697
3698	for (i = 0; i < num_stripes; i++) {
3699		stripe = btrfs_stripe_nr(chunk, i);
3700		if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3701			continue;
3702
3703		stripe_offset = btrfs_stripe_offset(leaf, stripe);
3704		stripe_length = btrfs_chunk_length(leaf, chunk);
3705		stripe_length = div_u64(stripe_length, factor);
3706
3707		if (stripe_offset < bargs->pend &&
3708		    stripe_offset + stripe_length > bargs->pstart)
3709			return 0;
3710	}
3711
3712	return 1;
3713}
3714
3715/* [vstart, vend) */
3716static int chunk_vrange_filter(struct extent_buffer *leaf,
3717			       struct btrfs_chunk *chunk,
3718			       u64 chunk_offset,
3719			       struct btrfs_balance_args *bargs)
3720{
3721	if (chunk_offset < bargs->vend &&
3722	    chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3723		/* at least part of the chunk is inside this vrange */
3724		return 0;
3725
3726	return 1;
3727}
3728
3729static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3730			       struct btrfs_chunk *chunk,
3731			       struct btrfs_balance_args *bargs)
3732{
3733	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3734
3735	if (bargs->stripes_min <= num_stripes
3736			&& num_stripes <= bargs->stripes_max)
3737		return 0;
3738
3739	return 1;
3740}
3741
3742static int chunk_soft_convert_filter(u64 chunk_type,
3743				     struct btrfs_balance_args *bargs)
3744{
3745	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3746		return 0;
3747
3748	chunk_type = chunk_to_extended(chunk_type) &
3749				BTRFS_EXTENDED_PROFILE_MASK;
3750
3751	if (bargs->target == chunk_type)
3752		return 1;
3753
3754	return 0;
3755}
3756
3757static int should_balance_chunk(struct extent_buffer *leaf,
 
3758				struct btrfs_chunk *chunk, u64 chunk_offset)
3759{
3760	struct btrfs_fs_info *fs_info = leaf->fs_info;
3761	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3762	struct btrfs_balance_args *bargs = NULL;
3763	u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3764
3765	/* type filter */
3766	if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3767	      (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3768		return 0;
3769	}
3770
3771	if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3772		bargs = &bctl->data;
3773	else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3774		bargs = &bctl->sys;
3775	else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3776		bargs = &bctl->meta;
3777
3778	/* profiles filter */
3779	if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3780	    chunk_profiles_filter(chunk_type, bargs)) {
3781		return 0;
3782	}
3783
3784	/* usage filter */
3785	if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3786	    chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3787		return 0;
3788	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3789	    chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3790		return 0;
3791	}
3792
3793	/* devid filter */
3794	if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3795	    chunk_devid_filter(leaf, chunk, bargs)) {
3796		return 0;
3797	}
3798
3799	/* drange filter, makes sense only with devid filter */
3800	if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3801	    chunk_drange_filter(leaf, chunk, bargs)) {
3802		return 0;
3803	}
3804
3805	/* vrange filter */
3806	if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3807	    chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3808		return 0;
3809	}
3810
3811	/* stripes filter */
3812	if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3813	    chunk_stripes_range_filter(leaf, chunk, bargs)) {
3814		return 0;
3815	}
3816
3817	/* soft profile changing mode */
3818	if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3819	    chunk_soft_convert_filter(chunk_type, bargs)) {
3820		return 0;
3821	}
3822
3823	/*
3824	 * limited by count, must be the last filter
3825	 */
3826	if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3827		if (bargs->limit == 0)
3828			return 0;
3829		else
3830			bargs->limit--;
3831	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3832		/*
3833		 * Same logic as the 'limit' filter; the minimum cannot be
3834		 * determined here because we do not have the global information
3835		 * about the count of all chunks that satisfy the filters.
3836		 */
3837		if (bargs->limit_max == 0)
3838			return 0;
3839		else
3840			bargs->limit_max--;
3841	}
3842
3843	return 1;
 
 
 
 
 
 
3844}
3845
3846static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3847{
3848	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3849	struct btrfs_root *chunk_root = fs_info->chunk_root;
3850	u64 chunk_type;
 
 
 
 
3851	struct btrfs_chunk *chunk;
3852	struct btrfs_path *path = NULL;
3853	struct btrfs_key key;
3854	struct btrfs_key found_key;
 
3855	struct extent_buffer *leaf;
3856	int slot;
3857	int ret;
3858	int enospc_errors = 0;
3859	bool counting = true;
3860	/* The single value limit and min/max limits use the same bytes in the */
3861	u64 limit_data = bctl->data.limit;
3862	u64 limit_meta = bctl->meta.limit;
3863	u64 limit_sys = bctl->sys.limit;
3864	u32 count_data = 0;
3865	u32 count_meta = 0;
3866	u32 count_sys = 0;
3867	int chunk_reserved = 0;
3868
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3869	path = btrfs_alloc_path();
3870	if (!path) {
3871		ret = -ENOMEM;
3872		goto error;
3873	}
3874
3875	/* zero out stat counters */
3876	spin_lock(&fs_info->balance_lock);
3877	memset(&bctl->stat, 0, sizeof(bctl->stat));
3878	spin_unlock(&fs_info->balance_lock);
3879again:
3880	if (!counting) {
3881		/*
3882		 * The single value limit and min/max limits use the same bytes
3883		 * in the
3884		 */
3885		bctl->data.limit = limit_data;
3886		bctl->meta.limit = limit_meta;
3887		bctl->sys.limit = limit_sys;
3888	}
3889	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3890	key.offset = (u64)-1;
3891	key.type = BTRFS_CHUNK_ITEM_KEY;
3892
3893	while (1) {
3894		if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3895		    atomic_read(&fs_info->balance_cancel_req)) {
3896			ret = -ECANCELED;
3897			goto error;
3898		}
3899
3900		mutex_lock(&fs_info->reclaim_bgs_lock);
3901		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3902		if (ret < 0) {
3903			mutex_unlock(&fs_info->reclaim_bgs_lock);
3904			goto error;
3905		}
3906
3907		/*
3908		 * this shouldn't happen, it means the last relocate
3909		 * failed
3910		 */
3911		if (ret == 0)
3912			BUG(); /* FIXME break ? */
3913
3914		ret = btrfs_previous_item(chunk_root, path, 0,
3915					  BTRFS_CHUNK_ITEM_KEY);
3916		if (ret) {
3917			mutex_unlock(&fs_info->reclaim_bgs_lock);
3918			ret = 0;
3919			break;
3920		}
3921
3922		leaf = path->nodes[0];
3923		slot = path->slots[0];
3924		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3925
3926		if (found_key.objectid != key.objectid) {
3927			mutex_unlock(&fs_info->reclaim_bgs_lock);
 
 
 
3928			break;
3929		}
3930
3931		chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3932		chunk_type = btrfs_chunk_type(leaf, chunk);
3933
3934		if (!counting) {
3935			spin_lock(&fs_info->balance_lock);
3936			bctl->stat.considered++;
3937			spin_unlock(&fs_info->balance_lock);
3938		}
3939
3940		ret = should_balance_chunk(leaf, chunk, found_key.offset);
3941
3942		btrfs_release_path(path);
3943		if (!ret) {
3944			mutex_unlock(&fs_info->reclaim_bgs_lock);
3945			goto loop;
3946		}
3947
3948		if (counting) {
3949			mutex_unlock(&fs_info->reclaim_bgs_lock);
3950			spin_lock(&fs_info->balance_lock);
3951			bctl->stat.expected++;
3952			spin_unlock(&fs_info->balance_lock);
3953
3954			if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3955				count_data++;
3956			else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3957				count_sys++;
3958			else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3959				count_meta++;
3960
3961			goto loop;
3962		}
3963
3964		/*
3965		 * Apply limit_min filter, no need to check if the LIMITS
3966		 * filter is used, limit_min is 0 by default
3967		 */
3968		if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3969					count_data < bctl->data.limit_min)
3970				|| ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3971					count_meta < bctl->meta.limit_min)
3972				|| ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3973					count_sys < bctl->sys.limit_min)) {
3974			mutex_unlock(&fs_info->reclaim_bgs_lock);
3975			goto loop;
3976		}
3977
3978		if (!chunk_reserved) {
3979			/*
3980			 * We may be relocating the only data chunk we have,
3981			 * which could potentially end up with losing data's
3982			 * raid profile, so lets allocate an empty one in
3983			 * advance.
3984			 */
3985			ret = btrfs_may_alloc_data_chunk(fs_info,
3986							 found_key.offset);
3987			if (ret < 0) {
3988				mutex_unlock(&fs_info->reclaim_bgs_lock);
3989				goto error;
3990			} else if (ret == 1) {
3991				chunk_reserved = 1;
3992			}
3993		}
3994
3995		ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3996		mutex_unlock(&fs_info->reclaim_bgs_lock);
3997		if (ret == -ENOSPC) {
3998			enospc_errors++;
3999		} else if (ret == -ETXTBSY) {
4000			btrfs_info(fs_info,
4001	   "skipping relocation of block group %llu due to active swapfile",
4002				   found_key.offset);
4003			ret = 0;
4004		} else if (ret) {
4005			goto error;
4006		} else {
4007			spin_lock(&fs_info->balance_lock);
4008			bctl->stat.completed++;
4009			spin_unlock(&fs_info->balance_lock);
4010		}
4011loop:
4012		if (found_key.offset == 0)
4013			break;
4014		key.offset = found_key.offset - 1;
4015	}
4016
4017	if (counting) {
4018		btrfs_release_path(path);
4019		counting = false;
4020		goto again;
4021	}
4022error:
4023	btrfs_free_path(path);
4024	if (enospc_errors) {
4025		btrfs_info(fs_info, "%d enospc errors during balance",
4026			   enospc_errors);
4027		if (!ret)
4028			ret = -ENOSPC;
4029	}
4030
4031	return ret;
4032}
4033
4034/*
4035 * See if a given profile is valid and reduced.
4036 *
4037 * @flags:     profile to validate
4038 * @extended:  if true @flags is treated as an extended profile
4039 */
4040static int alloc_profile_is_valid(u64 flags, int extended)
4041{
4042	u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
4043			       BTRFS_BLOCK_GROUP_PROFILE_MASK);
4044
4045	flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
4046
4047	/* 1) check that all other bits are zeroed */
4048	if (flags & ~mask)
4049		return 0;
4050
4051	/* 2) see if profile is reduced */
4052	if (flags == 0)
4053		return !extended; /* "0" is valid for usual profiles */
4054
4055	return has_single_bit_set(flags);
 
4056}
4057
4058static inline int balance_need_close(struct btrfs_fs_info *fs_info)
4059{
4060	/* cancel requested || normal exit path */
4061	return atomic_read(&fs_info->balance_cancel_req) ||
4062		(atomic_read(&fs_info->balance_pause_req) == 0 &&
4063		 atomic_read(&fs_info->balance_cancel_req) == 0);
4064}
4065
4066/*
4067 * Validate target profile against allowed profiles and return true if it's OK.
4068 * Otherwise print the error message and return false.
4069 */
4070static inline int validate_convert_profile(struct btrfs_fs_info *fs_info,
4071		const struct btrfs_balance_args *bargs,
4072		u64 allowed, const char *type)
4073{
4074	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
4075		return true;
4076
4077	/* Profile is valid and does not have bits outside of the allowed set */
4078	if (alloc_profile_is_valid(bargs->target, 1) &&
4079	    (bargs->target & ~allowed) == 0)
4080		return true;
4081
4082	btrfs_err(fs_info, "balance: invalid convert %s profile %s",
4083			type, btrfs_bg_type_to_raid_name(bargs->target));
4084	return false;
4085}
4086
4087/*
4088 * Fill @buf with textual description of balance filter flags @bargs, up to
4089 * @size_buf including the terminating null. The output may be trimmed if it
4090 * does not fit into the provided buffer.
4091 */
4092static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
4093				 u32 size_buf)
4094{
4095	int ret;
4096	u32 size_bp = size_buf;
4097	char *bp = buf;
4098	u64 flags = bargs->flags;
4099	char tmp_buf[128] = {'\0'};
4100
4101	if (!flags)
4102		return;
4103
4104#define CHECK_APPEND_NOARG(a)						\
4105	do {								\
4106		ret = snprintf(bp, size_bp, (a));			\
4107		if (ret < 0 || ret >= size_bp)				\
4108			goto out_overflow;				\
4109		size_bp -= ret;						\
4110		bp += ret;						\
4111	} while (0)
4112
4113#define CHECK_APPEND_1ARG(a, v1)					\
4114	do {								\
4115		ret = snprintf(bp, size_bp, (a), (v1));			\
4116		if (ret < 0 || ret >= size_bp)				\
4117			goto out_overflow;				\
4118		size_bp -= ret;						\
4119		bp += ret;						\
4120	} while (0)
4121
4122#define CHECK_APPEND_2ARG(a, v1, v2)					\
4123	do {								\
4124		ret = snprintf(bp, size_bp, (a), (v1), (v2));		\
4125		if (ret < 0 || ret >= size_bp)				\
4126			goto out_overflow;				\
4127		size_bp -= ret;						\
4128		bp += ret;						\
4129	} while (0)
4130
4131	if (flags & BTRFS_BALANCE_ARGS_CONVERT)
4132		CHECK_APPEND_1ARG("convert=%s,",
4133				  btrfs_bg_type_to_raid_name(bargs->target));
4134
4135	if (flags & BTRFS_BALANCE_ARGS_SOFT)
4136		CHECK_APPEND_NOARG("soft,");
4137
4138	if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
4139		btrfs_describe_block_groups(bargs->profiles, tmp_buf,
4140					    sizeof(tmp_buf));
4141		CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
4142	}
4143
4144	if (flags & BTRFS_BALANCE_ARGS_USAGE)
4145		CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
4146
4147	if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
4148		CHECK_APPEND_2ARG("usage=%u..%u,",
4149				  bargs->usage_min, bargs->usage_max);
4150
4151	if (flags & BTRFS_BALANCE_ARGS_DEVID)
4152		CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
4153
4154	if (flags & BTRFS_BALANCE_ARGS_DRANGE)
4155		CHECK_APPEND_2ARG("drange=%llu..%llu,",
4156				  bargs->pstart, bargs->pend);
4157
4158	if (flags & BTRFS_BALANCE_ARGS_VRANGE)
4159		CHECK_APPEND_2ARG("vrange=%llu..%llu,",
4160				  bargs->vstart, bargs->vend);
4161
4162	if (flags & BTRFS_BALANCE_ARGS_LIMIT)
4163		CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
4164
4165	if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
4166		CHECK_APPEND_2ARG("limit=%u..%u,",
4167				bargs->limit_min, bargs->limit_max);
4168
4169	if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
4170		CHECK_APPEND_2ARG("stripes=%u..%u,",
4171				  bargs->stripes_min, bargs->stripes_max);
4172
4173#undef CHECK_APPEND_2ARG
4174#undef CHECK_APPEND_1ARG
4175#undef CHECK_APPEND_NOARG
4176
4177out_overflow:
4178
4179	if (size_bp < size_buf)
4180		buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
4181	else
4182		buf[0] = '\0';
4183}
4184
4185static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
4186{
4187	u32 size_buf = 1024;
4188	char tmp_buf[192] = {'\0'};
4189	char *buf;
4190	char *bp;
4191	u32 size_bp = size_buf;
4192	int ret;
4193	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4194
4195	buf = kzalloc(size_buf, GFP_KERNEL);
4196	if (!buf)
4197		return;
4198
4199	bp = buf;
4200
4201#define CHECK_APPEND_1ARG(a, v1)					\
4202	do {								\
4203		ret = snprintf(bp, size_bp, (a), (v1));			\
4204		if (ret < 0 || ret >= size_bp)				\
4205			goto out_overflow;				\
4206		size_bp -= ret;						\
4207		bp += ret;						\
4208	} while (0)
4209
4210	if (bctl->flags & BTRFS_BALANCE_FORCE)
4211		CHECK_APPEND_1ARG("%s", "-f ");
4212
4213	if (bctl->flags & BTRFS_BALANCE_DATA) {
4214		describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
4215		CHECK_APPEND_1ARG("-d%s ", tmp_buf);
4216	}
4217
4218	if (bctl->flags & BTRFS_BALANCE_METADATA) {
4219		describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
4220		CHECK_APPEND_1ARG("-m%s ", tmp_buf);
4221	}
4222
4223	if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
4224		describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
4225		CHECK_APPEND_1ARG("-s%s ", tmp_buf);
4226	}
4227
4228#undef CHECK_APPEND_1ARG
4229
4230out_overflow:
4231
4232	if (size_bp < size_buf)
4233		buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
4234	btrfs_info(fs_info, "balance: %s %s",
4235		   (bctl->flags & BTRFS_BALANCE_RESUME) ?
4236		   "resume" : "start", buf);
4237
4238	kfree(buf);
4239}
4240
4241/*
4242 * Should be called with balance mutexe held
4243 */
4244int btrfs_balance(struct btrfs_fs_info *fs_info,
4245		  struct btrfs_balance_control *bctl,
4246		  struct btrfs_ioctl_balance_args *bargs)
4247{
4248	u64 meta_target, data_target;
4249	u64 allowed;
4250	int mixed = 0;
4251	int ret;
4252	u64 num_devices;
4253	unsigned seq;
4254	bool reducing_redundancy;
4255	int i;
4256
4257	if (btrfs_fs_closing(fs_info) ||
4258	    atomic_read(&fs_info->balance_pause_req) ||
4259	    btrfs_should_cancel_balance(fs_info)) {
4260		ret = -EINVAL;
4261		goto out;
4262	}
4263
4264	allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4265	if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4266		mixed = 1;
4267
4268	/*
4269	 * In case of mixed groups both data and meta should be picked,
4270	 * and identical options should be given for both of them.
4271	 */
4272	allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4273	if (mixed && (bctl->flags & allowed)) {
4274		if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4275		    !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4276		    memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
4277			btrfs_err(fs_info,
4278	  "balance: mixed groups data and metadata options must be the same");
4279			ret = -EINVAL;
4280			goto out;
4281		}
4282	}
4283
4284	/*
4285	 * rw_devices will not change at the moment, device add/delete/replace
4286	 * are exclusive
4287	 */
4288	num_devices = fs_info->fs_devices->rw_devices;
 
 
 
4289
4290	/*
4291	 * SINGLE profile on-disk has no profile bit, but in-memory we have a
4292	 * special bit for it, to make it easier to distinguish.  Thus we need
4293	 * to set it manually, or balance would refuse the profile.
4294	 */
4295	allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
4296	for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4297		if (num_devices >= btrfs_raid_array[i].devs_min)
4298			allowed |= btrfs_raid_array[i].bg_flag;
4299
4300	if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") ||
4301	    !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") ||
4302	    !validate_convert_profile(fs_info, &bctl->sys,  allowed, "system")) {
 
 
 
 
 
 
 
 
 
 
 
4303		ret = -EINVAL;
4304		goto out;
4305	}
4306
4307	/*
4308	 * Allow to reduce metadata or system integrity only if force set for
4309	 * profiles with redundancy (copies, parity)
4310	 */
4311	allowed = 0;
4312	for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4313		if (btrfs_raid_array[i].ncopies >= 2 ||
4314		    btrfs_raid_array[i].tolerated_failures >= 1)
4315			allowed |= btrfs_raid_array[i].bg_flag;
4316	}
4317	do {
4318		seq = read_seqbegin(&fs_info->profiles_lock);
4319
4320		if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4321		     (fs_info->avail_system_alloc_bits & allowed) &&
4322		     !(bctl->sys.target & allowed)) ||
4323		    ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4324		     (fs_info->avail_metadata_alloc_bits & allowed) &&
4325		     !(bctl->meta.target & allowed)))
4326			reducing_redundancy = true;
4327		else
4328			reducing_redundancy = false;
4329
4330		/* if we're not converting, the target field is uninitialized */
4331		meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4332			bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4333		data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4334			bctl->data.target : fs_info->avail_data_alloc_bits;
4335	} while (read_seqretry(&fs_info->profiles_lock, seq));
4336
4337	if (reducing_redundancy) {
 
4338		if (bctl->flags & BTRFS_BALANCE_FORCE) {
4339			btrfs_info(fs_info,
4340			   "balance: force reducing metadata redundancy");
4341		} else {
4342			btrfs_err(fs_info,
4343	"balance: reduces metadata redundancy, use --force if you want this");
4344			ret = -EINVAL;
4345			goto out;
4346		}
4347	}
4348
4349	if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4350		btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4351		btrfs_warn(fs_info,
4352	"balance: metadata profile %s has lower redundancy than data profile %s",
4353				btrfs_bg_type_to_raid_name(meta_target),
4354				btrfs_bg_type_to_raid_name(data_target));
4355	}
4356
4357	ret = insert_balance_item(fs_info, bctl);
4358	if (ret && ret != -EEXIST)
4359		goto out;
4360
4361	if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4362		BUG_ON(ret == -EEXIST);
4363		BUG_ON(fs_info->balance_ctl);
4364		spin_lock(&fs_info->balance_lock);
4365		fs_info->balance_ctl = bctl;
4366		spin_unlock(&fs_info->balance_lock);
4367	} else {
4368		BUG_ON(ret != -EEXIST);
4369		spin_lock(&fs_info->balance_lock);
4370		update_balance_args(bctl);
4371		spin_unlock(&fs_info->balance_lock);
4372	}
4373
4374	ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4375	set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4376	describe_balance_start_or_resume(fs_info);
4377	mutex_unlock(&fs_info->balance_mutex);
4378
4379	ret = __btrfs_balance(fs_info);
4380
4381	mutex_lock(&fs_info->balance_mutex);
4382	if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req)) {
4383		btrfs_info(fs_info, "balance: paused");
4384		btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
4385	}
4386	/*
4387	 * Balance can be canceled by:
4388	 *
4389	 * - Regular cancel request
4390	 *   Then ret == -ECANCELED and balance_cancel_req > 0
4391	 *
4392	 * - Fatal signal to "btrfs" process
4393	 *   Either the signal caught by wait_reserve_ticket() and callers
4394	 *   got -EINTR, or caught by btrfs_should_cancel_balance() and
4395	 *   got -ECANCELED.
4396	 *   Either way, in this case balance_cancel_req = 0, and
4397	 *   ret == -EINTR or ret == -ECANCELED.
4398	 *
4399	 * So here we only check the return value to catch canceled balance.
4400	 */
4401	else if (ret == -ECANCELED || ret == -EINTR)
4402		btrfs_info(fs_info, "balance: canceled");
4403	else
4404		btrfs_info(fs_info, "balance: ended with status: %d", ret);
4405
4406	clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4407
4408	if (bargs) {
4409		memset(bargs, 0, sizeof(*bargs));
4410		btrfs_update_ioctl_balance_args(fs_info, bargs);
4411	}
4412
4413	if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
4414	    balance_need_close(fs_info)) {
4415		reset_balance_state(fs_info);
4416		btrfs_exclop_finish(fs_info);
4417	}
4418
4419	wake_up(&fs_info->balance_wait_q);
4420
4421	return ret;
4422out:
4423	if (bctl->flags & BTRFS_BALANCE_RESUME)
4424		reset_balance_state(fs_info);
4425	else
4426		kfree(bctl);
4427	btrfs_exclop_finish(fs_info);
4428
4429	return ret;
4430}
4431
4432static int balance_kthread(void *data)
4433{
4434	struct btrfs_fs_info *fs_info = data;
4435	int ret = 0;
4436
4437	sb_start_write(fs_info->sb);
4438	mutex_lock(&fs_info->balance_mutex);
4439	if (fs_info->balance_ctl)
4440		ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
 
 
 
 
4441	mutex_unlock(&fs_info->balance_mutex);
4442	sb_end_write(fs_info->sb);
4443
4444	return ret;
4445}
4446
4447int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4448{
4449	struct task_struct *tsk;
4450
4451	mutex_lock(&fs_info->balance_mutex);
4452	if (!fs_info->balance_ctl) {
4453		mutex_unlock(&fs_info->balance_mutex);
4454		return 0;
4455	}
4456	mutex_unlock(&fs_info->balance_mutex);
4457
4458	if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4459		btrfs_info(fs_info, "balance: resume skipped");
4460		return 0;
4461	}
4462
4463	spin_lock(&fs_info->super_lock);
4464	ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
4465	fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE;
4466	spin_unlock(&fs_info->super_lock);
4467	/*
4468	 * A ro->rw remount sequence should continue with the paused balance
4469	 * regardless of who pauses it, system or the user as of now, so set
4470	 * the resume flag.
4471	 */
4472	spin_lock(&fs_info->balance_lock);
4473	fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4474	spin_unlock(&fs_info->balance_lock);
4475
4476	tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4477	return PTR_ERR_OR_ZERO(tsk);
4478}
4479
4480int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4481{
4482	struct btrfs_balance_control *bctl;
4483	struct btrfs_balance_item *item;
4484	struct btrfs_disk_balance_args disk_bargs;
4485	struct btrfs_path *path;
4486	struct extent_buffer *leaf;
4487	struct btrfs_key key;
4488	int ret;
4489
4490	path = btrfs_alloc_path();
4491	if (!path)
4492		return -ENOMEM;
4493
4494	key.objectid = BTRFS_BALANCE_OBJECTID;
4495	key.type = BTRFS_TEMPORARY_ITEM_KEY;
4496	key.offset = 0;
4497
4498	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4499	if (ret < 0)
4500		goto out;
4501	if (ret > 0) { /* ret = -ENOENT; */
4502		ret = 0;
4503		goto out;
4504	}
4505
4506	bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4507	if (!bctl) {
4508		ret = -ENOMEM;
4509		goto out;
4510	}
4511
4512	leaf = path->nodes[0];
4513	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4514
 
4515	bctl->flags = btrfs_balance_flags(leaf, item);
4516	bctl->flags |= BTRFS_BALANCE_RESUME;
4517
4518	btrfs_balance_data(leaf, item, &disk_bargs);
4519	btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4520	btrfs_balance_meta(leaf, item, &disk_bargs);
4521	btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4522	btrfs_balance_sys(leaf, item, &disk_bargs);
4523	btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4524
4525	/*
4526	 * This should never happen, as the paused balance state is recovered
4527	 * during mount without any chance of other exclusive ops to collide.
4528	 *
4529	 * This gives the exclusive op status to balance and keeps in paused
4530	 * state until user intervention (cancel or umount). If the ownership
4531	 * cannot be assigned, show a message but do not fail. The balance
4532	 * is in a paused state and must have fs_info::balance_ctl properly
4533	 * set up.
4534	 */
4535	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED))
4536		btrfs_warn(fs_info,
4537	"balance: cannot set exclusive op status, resume manually");
4538
4539	btrfs_release_path(path);
4540
4541	mutex_lock(&fs_info->balance_mutex);
4542	BUG_ON(fs_info->balance_ctl);
4543	spin_lock(&fs_info->balance_lock);
4544	fs_info->balance_ctl = bctl;
4545	spin_unlock(&fs_info->balance_lock);
4546	mutex_unlock(&fs_info->balance_mutex);
 
4547out:
4548	btrfs_free_path(path);
4549	return ret;
4550}
4551
4552int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4553{
4554	int ret = 0;
4555
4556	mutex_lock(&fs_info->balance_mutex);
4557	if (!fs_info->balance_ctl) {
4558		mutex_unlock(&fs_info->balance_mutex);
4559		return -ENOTCONN;
4560	}
4561
4562	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4563		atomic_inc(&fs_info->balance_pause_req);
4564		mutex_unlock(&fs_info->balance_mutex);
4565
4566		wait_event(fs_info->balance_wait_q,
4567			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4568
4569		mutex_lock(&fs_info->balance_mutex);
4570		/* we are good with balance_ctl ripped off from under us */
4571		BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4572		atomic_dec(&fs_info->balance_pause_req);
4573	} else {
4574		ret = -ENOTCONN;
4575	}
4576
4577	mutex_unlock(&fs_info->balance_mutex);
4578	return ret;
4579}
4580
4581int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4582{
4583	mutex_lock(&fs_info->balance_mutex);
4584	if (!fs_info->balance_ctl) {
4585		mutex_unlock(&fs_info->balance_mutex);
4586		return -ENOTCONN;
4587	}
4588
4589	/*
4590	 * A paused balance with the item stored on disk can be resumed at
4591	 * mount time if the mount is read-write. Otherwise it's still paused
4592	 * and we must not allow cancelling as it deletes the item.
4593	 */
4594	if (sb_rdonly(fs_info->sb)) {
4595		mutex_unlock(&fs_info->balance_mutex);
4596		return -EROFS;
4597	}
4598
4599	atomic_inc(&fs_info->balance_cancel_req);
4600	/*
4601	 * if we are running just wait and return, balance item is
4602	 * deleted in btrfs_balance in this case
4603	 */
4604	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4605		mutex_unlock(&fs_info->balance_mutex);
4606		wait_event(fs_info->balance_wait_q,
4607			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4608		mutex_lock(&fs_info->balance_mutex);
4609	} else {
 
4610		mutex_unlock(&fs_info->balance_mutex);
4611		/*
4612		 * Lock released to allow other waiters to continue, we'll
4613		 * reexamine the status again.
4614		 */
4615		mutex_lock(&fs_info->balance_mutex);
4616
4617		if (fs_info->balance_ctl) {
4618			reset_balance_state(fs_info);
4619			btrfs_exclop_finish(fs_info);
4620			btrfs_info(fs_info, "balance: canceled");
4621		}
4622	}
4623
4624	BUG_ON(fs_info->balance_ctl ||
4625		test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4626	atomic_dec(&fs_info->balance_cancel_req);
4627	mutex_unlock(&fs_info->balance_mutex);
4628	return 0;
4629}
4630
4631int btrfs_uuid_scan_kthread(void *data)
4632{
4633	struct btrfs_fs_info *fs_info = data;
4634	struct btrfs_root *root = fs_info->tree_root;
4635	struct btrfs_key key;
4636	struct btrfs_path *path = NULL;
4637	int ret = 0;
4638	struct extent_buffer *eb;
4639	int slot;
4640	struct btrfs_root_item root_item;
4641	u32 item_size;
4642	struct btrfs_trans_handle *trans = NULL;
4643	bool closing = false;
4644
4645	path = btrfs_alloc_path();
4646	if (!path) {
4647		ret = -ENOMEM;
4648		goto out;
4649	}
4650
4651	key.objectid = 0;
4652	key.type = BTRFS_ROOT_ITEM_KEY;
4653	key.offset = 0;
4654
4655	while (1) {
4656		if (btrfs_fs_closing(fs_info)) {
4657			closing = true;
4658			break;
4659		}
4660		ret = btrfs_search_forward(root, &key, path,
4661				BTRFS_OLDEST_GENERATION);
4662		if (ret) {
4663			if (ret > 0)
4664				ret = 0;
4665			break;
4666		}
4667
4668		if (key.type != BTRFS_ROOT_ITEM_KEY ||
4669		    (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4670		     key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4671		    key.objectid > BTRFS_LAST_FREE_OBJECTID)
4672			goto skip;
4673
4674		eb = path->nodes[0];
4675		slot = path->slots[0];
4676		item_size = btrfs_item_size(eb, slot);
4677		if (item_size < sizeof(root_item))
4678			goto skip;
4679
4680		read_extent_buffer(eb, &root_item,
4681				   btrfs_item_ptr_offset(eb, slot),
4682				   (int)sizeof(root_item));
4683		if (btrfs_root_refs(&root_item) == 0)
4684			goto skip;
4685
4686		if (!btrfs_is_empty_uuid(root_item.uuid) ||
4687		    !btrfs_is_empty_uuid(root_item.received_uuid)) {
4688			if (trans)
4689				goto update_tree;
4690
4691			btrfs_release_path(path);
4692			/*
4693			 * 1 - subvol uuid item
4694			 * 1 - received_subvol uuid item
4695			 */
4696			trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4697			if (IS_ERR(trans)) {
4698				ret = PTR_ERR(trans);
4699				break;
4700			}
4701			continue;
4702		} else {
4703			goto skip;
4704		}
4705update_tree:
4706		btrfs_release_path(path);
4707		if (!btrfs_is_empty_uuid(root_item.uuid)) {
4708			ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4709						  BTRFS_UUID_KEY_SUBVOL,
4710						  key.objectid);
4711			if (ret < 0) {
4712				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4713					ret);
4714				break;
4715			}
4716		}
4717
4718		if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4719			ret = btrfs_uuid_tree_add(trans,
4720						  root_item.received_uuid,
4721						 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4722						  key.objectid);
4723			if (ret < 0) {
4724				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4725					ret);
4726				break;
4727			}
4728		}
4729
4730skip:
4731		btrfs_release_path(path);
4732		if (trans) {
4733			ret = btrfs_end_transaction(trans);
4734			trans = NULL;
4735			if (ret)
4736				break;
4737		}
4738
4739		if (key.offset < (u64)-1) {
4740			key.offset++;
4741		} else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4742			key.offset = 0;
4743			key.type = BTRFS_ROOT_ITEM_KEY;
4744		} else if (key.objectid < (u64)-1) {
4745			key.offset = 0;
4746			key.type = BTRFS_ROOT_ITEM_KEY;
4747			key.objectid++;
4748		} else {
4749			break;
4750		}
4751		cond_resched();
4752	}
4753
4754out:
4755	btrfs_free_path(path);
4756	if (trans && !IS_ERR(trans))
4757		btrfs_end_transaction(trans);
4758	if (ret)
4759		btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4760	else if (!closing)
4761		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4762	up(&fs_info->uuid_tree_rescan_sem);
4763	return 0;
4764}
4765
4766int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4767{
4768	struct btrfs_trans_handle *trans;
4769	struct btrfs_root *tree_root = fs_info->tree_root;
4770	struct btrfs_root *uuid_root;
4771	struct task_struct *task;
4772	int ret;
4773
4774	/*
4775	 * 1 - root node
4776	 * 1 - root item
4777	 */
4778	trans = btrfs_start_transaction(tree_root, 2);
4779	if (IS_ERR(trans))
4780		return PTR_ERR(trans);
4781
4782	uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
4783	if (IS_ERR(uuid_root)) {
4784		ret = PTR_ERR(uuid_root);
4785		btrfs_abort_transaction(trans, ret);
4786		btrfs_end_transaction(trans);
4787		return ret;
4788	}
4789
4790	fs_info->uuid_root = uuid_root;
4791
4792	ret = btrfs_commit_transaction(trans);
4793	if (ret)
4794		return ret;
4795
4796	down(&fs_info->uuid_tree_rescan_sem);
4797	task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4798	if (IS_ERR(task)) {
4799		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
4800		btrfs_warn(fs_info, "failed to start uuid_scan task");
4801		up(&fs_info->uuid_tree_rescan_sem);
4802		return PTR_ERR(task);
4803	}
4804
4805	return 0;
4806}
4807
4808/*
4809 * shrinking a device means finding all of the device extents past
4810 * the new size, and then following the back refs to the chunks.
4811 * The chunk relocation code actually frees the device extent
4812 */
4813int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4814{
4815	struct btrfs_fs_info *fs_info = device->fs_info;
4816	struct btrfs_root *root = fs_info->dev_root;
4817	struct btrfs_trans_handle *trans;
 
4818	struct btrfs_dev_extent *dev_extent = NULL;
4819	struct btrfs_path *path;
4820	u64 length;
 
 
4821	u64 chunk_offset;
4822	int ret;
4823	int slot;
4824	int failed = 0;
4825	bool retried = false;
4826	struct extent_buffer *l;
4827	struct btrfs_key key;
4828	struct btrfs_super_block *super_copy = fs_info->super_copy;
4829	u64 old_total = btrfs_super_total_bytes(super_copy);
4830	u64 old_size = btrfs_device_get_total_bytes(device);
4831	u64 diff;
4832	u64 start;
4833
4834	new_size = round_down(new_size, fs_info->sectorsize);
4835	start = new_size;
4836	diff = round_down(old_size - new_size, fs_info->sectorsize);
4837
4838	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4839		return -EINVAL;
4840
4841	path = btrfs_alloc_path();
4842	if (!path)
4843		return -ENOMEM;
4844
4845	path->reada = READA_BACK;
4846
4847	trans = btrfs_start_transaction(root, 0);
4848	if (IS_ERR(trans)) {
4849		btrfs_free_path(path);
4850		return PTR_ERR(trans);
4851	}
4852
4853	mutex_lock(&fs_info->chunk_mutex);
4854
4855	btrfs_device_set_total_bytes(device, new_size);
4856	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4857		device->fs_devices->total_rw_bytes -= diff;
4858		atomic64_sub(diff, &fs_info->free_chunk_space);
4859	}
4860
4861	/*
4862	 * Once the device's size has been set to the new size, ensure all
4863	 * in-memory chunks are synced to disk so that the loop below sees them
4864	 * and relocates them accordingly.
4865	 */
4866	if (contains_pending_extent(device, &start, diff)) {
4867		mutex_unlock(&fs_info->chunk_mutex);
4868		ret = btrfs_commit_transaction(trans);
4869		if (ret)
4870			goto done;
4871	} else {
4872		mutex_unlock(&fs_info->chunk_mutex);
4873		btrfs_end_transaction(trans);
4874	}
 
4875
4876again:
4877	key.objectid = device->devid;
4878	key.offset = (u64)-1;
4879	key.type = BTRFS_DEV_EXTENT_KEY;
4880
4881	do {
4882		mutex_lock(&fs_info->reclaim_bgs_lock);
4883		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4884		if (ret < 0) {
4885			mutex_unlock(&fs_info->reclaim_bgs_lock);
4886			goto done;
4887		}
4888
4889		ret = btrfs_previous_item(root, path, 0, key.type);
 
 
4890		if (ret) {
4891			mutex_unlock(&fs_info->reclaim_bgs_lock);
4892			if (ret < 0)
4893				goto done;
4894			ret = 0;
4895			btrfs_release_path(path);
4896			break;
4897		}
4898
4899		l = path->nodes[0];
4900		slot = path->slots[0];
4901		btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4902
4903		if (key.objectid != device->devid) {
4904			mutex_unlock(&fs_info->reclaim_bgs_lock);
4905			btrfs_release_path(path);
4906			break;
4907		}
4908
4909		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4910		length = btrfs_dev_extent_length(l, dev_extent);
4911
4912		if (key.offset + length <= new_size) {
4913			mutex_unlock(&fs_info->reclaim_bgs_lock);
4914			btrfs_release_path(path);
4915			break;
4916		}
4917
 
 
4918		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4919		btrfs_release_path(path);
4920
4921		/*
4922		 * We may be relocating the only data chunk we have,
4923		 * which could potentially end up with losing data's
4924		 * raid profile, so lets allocate an empty one in
4925		 * advance.
4926		 */
4927		ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4928		if (ret < 0) {
4929			mutex_unlock(&fs_info->reclaim_bgs_lock);
4930			goto done;
4931		}
4932
4933		ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4934		mutex_unlock(&fs_info->reclaim_bgs_lock);
4935		if (ret == -ENOSPC) {
4936			failed++;
4937		} else if (ret) {
4938			if (ret == -ETXTBSY) {
4939				btrfs_warn(fs_info,
4940		   "could not shrink block group %llu due to active swapfile",
4941					   chunk_offset);
4942			}
4943			goto done;
4944		}
4945	} while (key.offset-- > 0);
4946
4947	if (failed && !retried) {
4948		failed = 0;
4949		retried = true;
4950		goto again;
4951	} else if (failed && retried) {
4952		ret = -ENOSPC;
 
 
 
 
 
 
 
 
 
4953		goto done;
4954	}
4955
4956	/* Shrinking succeeded, else we would be at "done". */
4957	trans = btrfs_start_transaction(root, 0);
4958	if (IS_ERR(trans)) {
4959		ret = PTR_ERR(trans);
4960		goto done;
4961	}
4962
4963	mutex_lock(&fs_info->chunk_mutex);
4964	/* Clear all state bits beyond the shrunk device size */
4965	clear_extent_bits(&device->alloc_state, new_size, (u64)-1,
4966			  CHUNK_STATE_MASK);
4967
4968	btrfs_device_set_disk_total_bytes(device, new_size);
4969	if (list_empty(&device->post_commit_list))
4970		list_add_tail(&device->post_commit_list,
4971			      &trans->transaction->dev_update_list);
4972
4973	WARN_ON(diff > old_total);
4974	btrfs_set_super_total_bytes(super_copy,
4975			round_down(old_total - diff, fs_info->sectorsize));
4976	mutex_unlock(&fs_info->chunk_mutex);
4977
4978	btrfs_reserve_chunk_metadata(trans, false);
4979	/* Now btrfs_update_device() will change the on-disk size. */
4980	ret = btrfs_update_device(trans, device);
4981	btrfs_trans_release_chunk_metadata(trans);
4982	if (ret < 0) {
4983		btrfs_abort_transaction(trans, ret);
4984		btrfs_end_transaction(trans);
4985	} else {
4986		ret = btrfs_commit_transaction(trans);
4987	}
 
 
 
 
4988done:
4989	btrfs_free_path(path);
4990	if (ret) {
4991		mutex_lock(&fs_info->chunk_mutex);
4992		btrfs_device_set_total_bytes(device, old_size);
4993		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
4994			device->fs_devices->total_rw_bytes += diff;
4995		atomic64_add(diff, &fs_info->free_chunk_space);
4996		mutex_unlock(&fs_info->chunk_mutex);
4997	}
4998	return ret;
4999}
5000
5001static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
5002			   struct btrfs_key *key,
5003			   struct btrfs_chunk *chunk, int item_size)
5004{
5005	struct btrfs_super_block *super_copy = fs_info->super_copy;
5006	struct btrfs_disk_key disk_key;
5007	u32 array_size;
5008	u8 *ptr;
5009
5010	lockdep_assert_held(&fs_info->chunk_mutex);
5011
5012	array_size = btrfs_super_sys_array_size(super_copy);
5013	if (array_size + item_size + sizeof(disk_key)
5014			> BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
5015		return -EFBIG;
5016
5017	ptr = super_copy->sys_chunk_array + array_size;
5018	btrfs_cpu_key_to_disk(&disk_key, key);
5019	memcpy(ptr, &disk_key, sizeof(disk_key));
5020	ptr += sizeof(disk_key);
5021	memcpy(ptr, chunk, item_size);
5022	item_size += sizeof(disk_key);
5023	btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
5024
5025	return 0;
5026}
5027
5028/*
5029 * sort the devices in descending order by max_avail, total_avail
5030 */
5031static int btrfs_cmp_device_info(const void *a, const void *b)
5032{
5033	const struct btrfs_device_info *di_a = a;
5034	const struct btrfs_device_info *di_b = b;
5035
5036	if (di_a->max_avail > di_b->max_avail)
5037		return -1;
5038	if (di_a->max_avail < di_b->max_avail)
5039		return 1;
5040	if (di_a->total_avail > di_b->total_avail)
5041		return -1;
5042	if (di_a->total_avail < di_b->total_avail)
5043		return 1;
5044	return 0;
5045}
5046
5047static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
 
 
 
 
5048{
5049	if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
5050		return;
5051
5052	btrfs_set_fs_incompat(info, RAID56);
5053}
5054
5055static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
5056{
5057	if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
5058		return;
5059
5060	btrfs_set_fs_incompat(info, RAID1C34);
5061}
5062
5063/*
5064 * Structure used internally for btrfs_create_chunk() function.
5065 * Wraps needed parameters.
5066 */
5067struct alloc_chunk_ctl {
5068	u64 start;
5069	u64 type;
5070	/* Total number of stripes to allocate */
5071	int num_stripes;
5072	/* sub_stripes info for map */
5073	int sub_stripes;
5074	/* Stripes per device */
5075	int dev_stripes;
5076	/* Maximum number of devices to use */
5077	int devs_max;
5078	/* Minimum number of devices to use */
5079	int devs_min;
5080	/* ndevs has to be a multiple of this */
5081	int devs_increment;
5082	/* Number of copies */
5083	int ncopies;
5084	/* Number of stripes worth of bytes to store parity information */
5085	int nparity;
5086	u64 max_stripe_size;
5087	u64 max_chunk_size;
5088	u64 dev_extent_min;
5089	u64 stripe_size;
5090	u64 chunk_size;
5091	int ndevs;
5092};
 
5093
5094static void init_alloc_chunk_ctl_policy_regular(
5095				struct btrfs_fs_devices *fs_devices,
5096				struct alloc_chunk_ctl *ctl)
5097{
5098	struct btrfs_space_info *space_info;
5099
5100	space_info = btrfs_find_space_info(fs_devices->fs_info, ctl->type);
5101	ASSERT(space_info);
5102
5103	ctl->max_chunk_size = READ_ONCE(space_info->chunk_size);
5104	ctl->max_stripe_size = ctl->max_chunk_size;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5105
5106	if (ctl->type & BTRFS_BLOCK_GROUP_SYSTEM)
5107		ctl->devs_max = min_t(int, ctl->devs_max, BTRFS_MAX_DEVS_SYS_CHUNK);
5108
5109	/* We don't want a chunk larger than 10% of writable space */
5110	ctl->max_chunk_size = min(mult_perc(fs_devices->total_rw_bytes, 10),
5111				  ctl->max_chunk_size);
5112	ctl->dev_extent_min = BTRFS_STRIPE_LEN * ctl->dev_stripes;
5113}
5114
5115static void init_alloc_chunk_ctl_policy_zoned(
5116				      struct btrfs_fs_devices *fs_devices,
5117				      struct alloc_chunk_ctl *ctl)
5118{
5119	u64 zone_size = fs_devices->fs_info->zone_size;
5120	u64 limit;
5121	int min_num_stripes = ctl->devs_min * ctl->dev_stripes;
5122	int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies;
5123	u64 min_chunk_size = min_data_stripes * zone_size;
5124	u64 type = ctl->type;
5125
5126	ctl->max_stripe_size = zone_size;
5127	if (type & BTRFS_BLOCK_GROUP_DATA) {
5128		ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE,
5129						 zone_size);
5130	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
5131		ctl->max_chunk_size = ctl->max_stripe_size;
 
 
 
 
 
5132	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
5133		ctl->max_chunk_size = 2 * ctl->max_stripe_size;
5134		ctl->devs_max = min_t(int, ctl->devs_max,
5135				      BTRFS_MAX_DEVS_SYS_CHUNK);
5136	} else {
5137		BUG();
 
 
5138	}
5139
5140	/* We don't want a chunk larger than 10% of writable space */
5141	limit = max(round_down(mult_perc(fs_devices->total_rw_bytes, 10),
5142			       zone_size),
5143		    min_chunk_size);
5144	ctl->max_chunk_size = min(limit, ctl->max_chunk_size);
5145	ctl->dev_extent_min = zone_size * ctl->dev_stripes;
5146}
5147
5148static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices,
5149				 struct alloc_chunk_ctl *ctl)
5150{
5151	int index = btrfs_bg_flags_to_raid_index(ctl->type);
5152
5153	ctl->sub_stripes = btrfs_raid_array[index].sub_stripes;
5154	ctl->dev_stripes = btrfs_raid_array[index].dev_stripes;
5155	ctl->devs_max = btrfs_raid_array[index].devs_max;
5156	if (!ctl->devs_max)
5157		ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info);
5158	ctl->devs_min = btrfs_raid_array[index].devs_min;
5159	ctl->devs_increment = btrfs_raid_array[index].devs_increment;
5160	ctl->ncopies = btrfs_raid_array[index].ncopies;
5161	ctl->nparity = btrfs_raid_array[index].nparity;
5162	ctl->ndevs = 0;
5163
5164	switch (fs_devices->chunk_alloc_policy) {
5165	case BTRFS_CHUNK_ALLOC_REGULAR:
5166		init_alloc_chunk_ctl_policy_regular(fs_devices, ctl);
5167		break;
5168	case BTRFS_CHUNK_ALLOC_ZONED:
5169		init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl);
5170		break;
5171	default:
5172		BUG();
5173	}
5174}
5175
5176static int gather_device_info(struct btrfs_fs_devices *fs_devices,
5177			      struct alloc_chunk_ctl *ctl,
5178			      struct btrfs_device_info *devices_info)
5179{
5180	struct btrfs_fs_info *info = fs_devices->fs_info;
5181	struct btrfs_device *device;
5182	u64 total_avail;
5183	u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes;
5184	int ret;
5185	int ndevs = 0;
5186	u64 max_avail;
5187	u64 dev_offset;
5188
5189	/*
5190	 * in the first pass through the devices list, we gather information
5191	 * about the available holes on each device.
5192	 */
5193	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
5194		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5195			WARN(1, KERN_ERR
5196			       "BTRFS: read-only device in alloc_list\n");
 
 
 
 
 
 
 
 
 
 
5197			continue;
5198		}
5199
5200		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
5201					&device->dev_state) ||
5202		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
5203			continue;
5204
5205		if (device->total_bytes > device->bytes_used)
5206			total_avail = device->total_bytes - device->bytes_used;
5207		else
5208			total_avail = 0;
5209
5210		/* If there is no space on this device, skip it. */
5211		if (total_avail < ctl->dev_extent_min)
5212			continue;
5213
5214		ret = find_free_dev_extent(device, dev_extent_want, &dev_offset,
5215					   &max_avail);
 
5216		if (ret && ret != -ENOSPC)
5217			return ret;
5218
5219		if (ret == 0)
5220			max_avail = dev_extent_want;
5221
5222		if (max_avail < ctl->dev_extent_min) {
5223			if (btrfs_test_opt(info, ENOSPC_DEBUG))
5224				btrfs_debug(info,
5225			"%s: devid %llu has no free space, have=%llu want=%llu",
5226					    __func__, device->devid, max_avail,
5227					    ctl->dev_extent_min);
5228			continue;
5229		}
5230
5231		if (ndevs == fs_devices->rw_devices) {
5232			WARN(1, "%s: found more than %llu devices\n",
5233			     __func__, fs_devices->rw_devices);
5234			break;
5235		}
5236		devices_info[ndevs].dev_offset = dev_offset;
5237		devices_info[ndevs].max_avail = max_avail;
5238		devices_info[ndevs].total_avail = total_avail;
5239		devices_info[ndevs].dev = device;
5240		++ndevs;
5241	}
5242	ctl->ndevs = ndevs;
5243
5244	/*
5245	 * now sort the devices by hole size / available space
5246	 */
5247	sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
5248	     btrfs_cmp_device_info, NULL);
5249
5250	return 0;
5251}
5252
5253static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl,
5254				      struct btrfs_device_info *devices_info)
5255{
5256	/* Number of stripes that count for block group size */
5257	int data_stripes;
5258
5259	/*
5260	 * The primary goal is to maximize the number of stripes, so use as
5261	 * many devices as possible, even if the stripes are not maximum sized.
5262	 *
5263	 * The DUP profile stores more than one stripe per device, the
5264	 * max_avail is the total size so we have to adjust.
5265	 */
5266	ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail,
5267				   ctl->dev_stripes);
5268	ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5269
5270	/* This will have to be fixed for RAID1 and RAID10 over more drives */
5271	data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5272
5273	/*
5274	 * Use the number of data stripes to figure out how big this chunk is
5275	 * really going to be in terms of logical address space, and compare
5276	 * that answer with the max chunk size. If it's higher, we try to
5277	 * reduce stripe_size.
5278	 */
5279	if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5280		/*
5281		 * Reduce stripe_size, round it up to a 16MB boundary again and
5282		 * then use it, unless it ends up being even bigger than the
5283		 * previous value we had already.
5284		 */
5285		ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size,
5286							data_stripes), SZ_16M),
5287				       ctl->stripe_size);
5288	}
5289
5290	/* Stripe size should not go beyond 1G. */
5291	ctl->stripe_size = min_t(u64, ctl->stripe_size, SZ_1G);
5292
5293	/* Align to BTRFS_STRIPE_LEN */
5294	ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
5295	ctl->chunk_size = ctl->stripe_size * data_stripes;
5296
5297	return 0;
5298}
5299
5300static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl,
5301				    struct btrfs_device_info *devices_info)
5302{
5303	u64 zone_size = devices_info[0].dev->zone_info->zone_size;
5304	/* Number of stripes that count for block group size */
5305	int data_stripes;
5306
5307	/*
5308	 * It should hold because:
5309	 *    dev_extent_min == dev_extent_want == zone_size * dev_stripes
5310	 */
5311	ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min);
 
5312
5313	ctl->stripe_size = zone_size;
5314	ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5315	data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5316
5317	/* stripe_size is fixed in zoned filesysmte. Reduce ndevs instead. */
5318	if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5319		ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies,
5320					     ctl->stripe_size) + ctl->nparity,
5321				     ctl->dev_stripes);
5322		ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5323		data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5324		ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size);
5325	}
5326
5327	ctl->chunk_size = ctl->stripe_size * data_stripes;
5328
5329	return 0;
5330}
 
5331
5332static int decide_stripe_size(struct btrfs_fs_devices *fs_devices,
5333			      struct alloc_chunk_ctl *ctl,
5334			      struct btrfs_device_info *devices_info)
5335{
5336	struct btrfs_fs_info *info = fs_devices->fs_info;
5337
5338	/*
5339	 * Round down to number of usable stripes, devs_increment can be any
5340	 * number so we can't use round_down() that requires power of 2, while
5341	 * rounddown is safe.
5342	 */
5343	ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment);
5344
5345	if (ctl->ndevs < ctl->devs_min) {
5346		if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5347			btrfs_debug(info,
5348	"%s: not enough devices with free space: have=%d minimum required=%d",
5349				    __func__, ctl->ndevs, ctl->devs_min);
5350		}
5351		return -ENOSPC;
5352	}
 
5353
5354	ctl->ndevs = min(ctl->ndevs, ctl->devs_max);
5355
5356	switch (fs_devices->chunk_alloc_policy) {
5357	case BTRFS_CHUNK_ALLOC_REGULAR:
5358		return decide_stripe_size_regular(ctl, devices_info);
5359	case BTRFS_CHUNK_ALLOC_ZONED:
5360		return decide_stripe_size_zoned(ctl, devices_info);
5361	default:
5362		BUG();
5363	}
5364}
5365
5366static struct btrfs_block_group *create_chunk(struct btrfs_trans_handle *trans,
5367			struct alloc_chunk_ctl *ctl,
5368			struct btrfs_device_info *devices_info)
5369{
5370	struct btrfs_fs_info *info = trans->fs_info;
5371	struct map_lookup *map = NULL;
5372	struct extent_map_tree *em_tree;
5373	struct btrfs_block_group *block_group;
5374	struct extent_map *em;
5375	u64 start = ctl->start;
5376	u64 type = ctl->type;
5377	int ret;
5378	int i;
5379	int j;
5380
5381	map = kmalloc(map_lookup_size(ctl->num_stripes), GFP_NOFS);
5382	if (!map)
5383		return ERR_PTR(-ENOMEM);
5384	map->num_stripes = ctl->num_stripes;
5385
5386	for (i = 0; i < ctl->ndevs; ++i) {
5387		for (j = 0; j < ctl->dev_stripes; ++j) {
5388			int s = i * ctl->dev_stripes + j;
5389			map->stripes[s].dev = devices_info[i].dev;
5390			map->stripes[s].physical = devices_info[i].dev_offset +
5391						   j * ctl->stripe_size;
5392		}
5393	}
 
5394	map->stripe_len = BTRFS_STRIPE_LEN;
5395	map->io_align = BTRFS_STRIPE_LEN;
5396	map->io_width = BTRFS_STRIPE_LEN;
5397	map->type = type;
5398	map->sub_stripes = ctl->sub_stripes;
5399
5400	trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size);
 
 
 
 
 
 
5401
5402	em = alloc_extent_map();
5403	if (!em) {
5404		kfree(map);
5405		return ERR_PTR(-ENOMEM);
5406	}
5407	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
5408	em->map_lookup = map;
5409	em->start = start;
5410	em->len = ctl->chunk_size;
5411	em->block_start = 0;
5412	em->block_len = em->len;
5413	em->orig_block_len = ctl->stripe_size;
5414
5415	em_tree = &info->mapping_tree;
5416	write_lock(&em_tree->lock);
5417	ret = add_extent_mapping(em_tree, em, 0);
5418	if (ret) {
5419		write_unlock(&em_tree->lock);
5420		free_extent_map(em);
5421		return ERR_PTR(ret);
5422	}
5423	write_unlock(&em_tree->lock);
5424
5425	block_group = btrfs_make_block_group(trans, 0, type, start, ctl->chunk_size);
5426	if (IS_ERR(block_group))
5427		goto error_del_extent;
5428
5429	for (i = 0; i < map->num_stripes; i++) {
5430		struct btrfs_device *dev = map->stripes[i].dev;
5431
5432		btrfs_device_set_bytes_used(dev,
5433					    dev->bytes_used + ctl->stripe_size);
5434		if (list_empty(&dev->post_commit_list))
5435			list_add_tail(&dev->post_commit_list,
5436				      &trans->transaction->dev_update_list);
5437	}
5438
5439	atomic64_sub(ctl->stripe_size * map->num_stripes,
5440		     &info->free_chunk_space);
5441
5442	free_extent_map(em);
5443	check_raid56_incompat_flag(info, type);
5444	check_raid1c34_incompat_flag(info, type);
5445
5446	return block_group;
 
 
 
 
5447
5448error_del_extent:
5449	write_lock(&em_tree->lock);
5450	remove_extent_mapping(em_tree, em);
5451	write_unlock(&em_tree->lock);
5452
5453	/* One for our allocation */
5454	free_extent_map(em);
5455	/* One for the tree reference */
5456	free_extent_map(em);
5457
5458	return block_group;
5459}
5460
5461struct btrfs_block_group *btrfs_create_chunk(struct btrfs_trans_handle *trans,
5462					    u64 type)
5463{
5464	struct btrfs_fs_info *info = trans->fs_info;
5465	struct btrfs_fs_devices *fs_devices = info->fs_devices;
5466	struct btrfs_device_info *devices_info = NULL;
5467	struct alloc_chunk_ctl ctl;
5468	struct btrfs_block_group *block_group;
5469	int ret;
5470
5471	lockdep_assert_held(&info->chunk_mutex);
5472
5473	if (!alloc_profile_is_valid(type, 0)) {
5474		ASSERT(0);
5475		return ERR_PTR(-EINVAL);
5476	}
5477
5478	if (list_empty(&fs_devices->alloc_list)) {
5479		if (btrfs_test_opt(info, ENOSPC_DEBUG))
5480			btrfs_debug(info, "%s: no writable device", __func__);
5481		return ERR_PTR(-ENOSPC);
5482	}
5483
5484	if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
5485		btrfs_err(info, "invalid chunk type 0x%llx requested", type);
5486		ASSERT(0);
5487		return ERR_PTR(-EINVAL);
5488	}
5489
5490	ctl.start = find_next_chunk(info);
5491	ctl.type = type;
5492	init_alloc_chunk_ctl(fs_devices, &ctl);
5493
5494	devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
5495			       GFP_NOFS);
5496	if (!devices_info)
5497		return ERR_PTR(-ENOMEM);
5498
5499	ret = gather_device_info(fs_devices, &ctl, devices_info);
5500	if (ret < 0) {
5501		block_group = ERR_PTR(ret);
5502		goto out;
5503	}
5504
5505	ret = decide_stripe_size(fs_devices, &ctl, devices_info);
5506	if (ret < 0) {
5507		block_group = ERR_PTR(ret);
5508		goto out;
5509	}
5510
5511	block_group = create_chunk(trans, &ctl, devices_info);
5512
5513out:
5514	kfree(devices_info);
5515	return block_group;
5516}
5517
5518/*
5519 * This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the
5520 * phase 1 of chunk allocation. It belongs to phase 2 only when allocating system
5521 * chunks.
5522 *
5523 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
5524 * phases.
5525 */
5526int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans,
5527				     struct btrfs_block_group *bg)
5528{
5529	struct btrfs_fs_info *fs_info = trans->fs_info;
5530	struct btrfs_root *chunk_root = fs_info->chunk_root;
5531	struct btrfs_key key;
 
 
5532	struct btrfs_chunk *chunk;
5533	struct btrfs_stripe *stripe;
5534	struct extent_map *em;
5535	struct map_lookup *map;
5536	size_t item_size;
5537	int i;
5538	int ret;
5539
5540	/*
5541	 * We take the chunk_mutex for 2 reasons:
5542	 *
5543	 * 1) Updates and insertions in the chunk btree must be done while holding
5544	 *    the chunk_mutex, as well as updating the system chunk array in the
5545	 *    superblock. See the comment on top of btrfs_chunk_alloc() for the
5546	 *    details;
5547	 *
5548	 * 2) To prevent races with the final phase of a device replace operation
5549	 *    that replaces the device object associated with the map's stripes,
5550	 *    because the device object's id can change at any time during that
5551	 *    final phase of the device replace operation
5552	 *    (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
5553	 *    replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
5554	 *    which would cause a failure when updating the device item, which does
5555	 *    not exists, or persisting a stripe of the chunk item with such ID.
5556	 *    Here we can't use the device_list_mutex because our caller already
5557	 *    has locked the chunk_mutex, and the final phase of device replace
5558	 *    acquires both mutexes - first the device_list_mutex and then the
5559	 *    chunk_mutex. Using any of those two mutexes protects us from a
5560	 *    concurrent device replace.
5561	 */
5562	lockdep_assert_held(&fs_info->chunk_mutex);
5563
5564	em = btrfs_get_chunk_map(fs_info, bg->start, bg->length);
5565	if (IS_ERR(em)) {
5566		ret = PTR_ERR(em);
5567		btrfs_abort_transaction(trans, ret);
5568		return ret;
5569	}
5570
5571	map = em->map_lookup;
5572	item_size = btrfs_chunk_item_size(map->num_stripes);
5573
5574	chunk = kzalloc(item_size, GFP_NOFS);
5575	if (!chunk) {
5576		ret = -ENOMEM;
5577		btrfs_abort_transaction(trans, ret);
5578		goto out;
5579	}
5580
5581	for (i = 0; i < map->num_stripes; i++) {
5582		struct btrfs_device *device = map->stripes[i].dev;
5583
 
 
 
 
5584		ret = btrfs_update_device(trans, device);
5585		if (ret)
5586			goto out;
 
5587	}
5588
 
 
 
 
 
 
5589	stripe = &chunk->stripe;
5590	for (i = 0; i < map->num_stripes; i++) {
5591		struct btrfs_device *device = map->stripes[i].dev;
5592		const u64 dev_offset = map->stripes[i].physical;
5593
5594		btrfs_set_stack_stripe_devid(stripe, device->devid);
5595		btrfs_set_stack_stripe_offset(stripe, dev_offset);
5596		memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5597		stripe++;
 
5598	}
5599
5600	btrfs_set_stack_chunk_length(chunk, bg->length);
5601	btrfs_set_stack_chunk_owner(chunk, BTRFS_EXTENT_TREE_OBJECTID);
5602	btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
5603	btrfs_set_stack_chunk_type(chunk, map->type);
5604	btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5605	btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
5606	btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
5607	btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5608	btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5609
5610	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5611	key.type = BTRFS_CHUNK_ITEM_KEY;
5612	key.offset = bg->start;
5613
5614	ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5615	if (ret)
5616		goto out;
5617
5618	set_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED, &bg->runtime_flags);
5619
5620	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5621		ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5622		if (ret)
5623			goto out;
 
5624	}
5625
5626out:
5627	kfree(chunk);
5628	free_extent_map(em);
5629	return ret;
5630}
5631
5632static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5633{
5634	struct btrfs_fs_info *fs_info = trans->fs_info;
 
 
 
 
 
5635	u64 alloc_profile;
5636	struct btrfs_block_group *meta_bg;
5637	struct btrfs_block_group *sys_bg;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5638
5639	/*
5640	 * When adding a new device for sprouting, the seed device is read-only
5641	 * so we must first allocate a metadata and a system chunk. But before
5642	 * adding the block group items to the extent, device and chunk btrees,
5643	 * we must first:
5644	 *
5645	 * 1) Create both chunks without doing any changes to the btrees, as
5646	 *    otherwise we would get -ENOSPC since the block groups from the
5647	 *    seed device are read-only;
5648	 *
5649	 * 2) Add the device item for the new sprout device - finishing the setup
5650	 *    of a new block group requires updating the device item in the chunk
5651	 *    btree, so it must exist when we attempt to do it. The previous step
5652	 *    ensures this does not fail with -ENOSPC.
5653	 *
5654	 * After that we can add the block group items to their btrees:
5655	 * update existing device item in the chunk btree, add a new block group
5656	 * item to the extent btree, add a new chunk item to the chunk btree and
5657	 * finally add the new device extent items to the devices btree.
5658	 */
 
 
 
 
5659
5660	alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5661	meta_bg = btrfs_create_chunk(trans, alloc_profile);
5662	if (IS_ERR(meta_bg))
5663		return PTR_ERR(meta_bg);
5664
5665	alloc_profile = btrfs_system_alloc_profile(fs_info);
5666	sys_bg = btrfs_create_chunk(trans, alloc_profile);
5667	if (IS_ERR(sys_bg))
5668		return PTR_ERR(sys_bg);
5669
5670	return 0;
5671}
5672
5673static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5674{
5675	const int index = btrfs_bg_flags_to_raid_index(map->type);
5676
5677	return btrfs_raid_array[index].tolerated_failures;
5678}
5679
5680bool btrfs_chunk_writeable(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5681{
5682	struct extent_map *em;
5683	struct map_lookup *map;
5684	int miss_ndevs = 0;
 
5685	int i;
5686	bool ret = true;
5687
5688	em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5689	if (IS_ERR(em))
5690		return false;
 
 
 
 
 
 
 
5691
5692	map = em->map_lookup;
5693	for (i = 0; i < map->num_stripes; i++) {
5694		if (test_bit(BTRFS_DEV_STATE_MISSING,
5695					&map->stripes[i].dev->dev_state)) {
5696			miss_ndevs++;
5697			continue;
5698		}
5699		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5700					&map->stripes[i].dev->dev_state)) {
5701			ret = false;
5702			goto end;
5703		}
5704	}
 
 
 
5705
5706	/*
5707	 * If the number of missing devices is larger than max errors, we can
5708	 * not write the data into that chunk successfully.
5709	 */
5710	if (miss_ndevs > btrfs_chunk_max_errors(map))
5711		ret = false;
5712end:
5713	free_extent_map(em);
5714	return ret;
5715}
5716
5717void btrfs_mapping_tree_free(struct extent_map_tree *tree)
5718{
5719	struct extent_map *em;
5720
5721	while (1) {
5722		write_lock(&tree->lock);
5723		em = lookup_extent_mapping(tree, 0, (u64)-1);
5724		if (em)
5725			remove_extent_mapping(tree, em);
5726		write_unlock(&tree->lock);
5727		if (!em)
5728			break;
 
5729		/* once for us */
5730		free_extent_map(em);
5731		/* once for the tree */
5732		free_extent_map(em);
5733	}
5734}
5735
5736int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5737{
5738	struct extent_map *em;
5739	struct map_lookup *map;
5740	enum btrfs_raid_types index;
5741	int ret = 1;
5742
5743	em = btrfs_get_chunk_map(fs_info, logical, len);
5744	if (IS_ERR(em))
5745		/*
5746		 * We could return errors for these cases, but that could get
5747		 * ugly and we'd probably do the same thing which is just not do
5748		 * anything else and exit, so return 1 so the callers don't try
5749		 * to use other copies.
5750		 */
5751		return 1;
5752
5753	map = em->map_lookup;
5754	index = btrfs_bg_flags_to_raid_index(map->type);
5755
5756	/* Non-RAID56, use their ncopies from btrfs_raid_array. */
5757	if (!(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK))
5758		ret = btrfs_raid_array[index].ncopies;
5759	else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5760		ret = 2;
5761	else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5762		/*
5763		 * There could be two corrupted data stripes, we need
5764		 * to loop retry in order to rebuild the correct data.
5765		 *
5766		 * Fail a stripe at a time on every retry except the
5767		 * stripe under reconstruction.
5768		 */
5769		ret = map->num_stripes;
 
 
 
 
5770	free_extent_map(em);
5771
5772	down_read(&fs_info->dev_replace.rwsem);
5773	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5774	    fs_info->dev_replace.tgtdev)
5775		ret++;
5776	up_read(&fs_info->dev_replace.rwsem);
5777
5778	return ret;
5779}
5780
5781unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5782				    u64 logical)
5783{
5784	struct extent_map *em;
5785	struct map_lookup *map;
5786	unsigned long len = fs_info->sectorsize;
5787
5788	if (!btrfs_fs_incompat(fs_info, RAID56))
5789		return len;
5790
5791	em = btrfs_get_chunk_map(fs_info, logical, len);
5792
5793	if (!WARN_ON(IS_ERR(em))) {
5794		map = em->map_lookup;
5795		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5796			len = map->stripe_len * nr_data_stripes(map);
5797		free_extent_map(em);
5798	}
5799	return len;
5800}
5801
5802int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5803{
5804	struct extent_map *em;
5805	struct map_lookup *map;
5806	int ret = 0;
5807
5808	if (!btrfs_fs_incompat(fs_info, RAID56))
5809		return 0;
5810
5811	em = btrfs_get_chunk_map(fs_info, logical, len);
5812
5813	if(!WARN_ON(IS_ERR(em))) {
5814		map = em->map_lookup;
5815		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5816			ret = 1;
5817		free_extent_map(em);
5818	}
5819	return ret;
5820}
5821
5822static int find_live_mirror(struct btrfs_fs_info *fs_info,
5823			    struct map_lookup *map, int first,
5824			    int dev_replace_is_ongoing)
5825{
5826	int i;
5827	int num_stripes;
5828	int preferred_mirror;
5829	int tolerance;
5830	struct btrfs_device *srcdev;
5831
5832	ASSERT((map->type &
5833		 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
5834
5835	if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5836		num_stripes = map->sub_stripes;
5837	else
5838		num_stripes = map->num_stripes;
5839
5840	switch (fs_info->fs_devices->read_policy) {
5841	default:
5842		/* Shouldn't happen, just warn and use pid instead of failing */
5843		btrfs_warn_rl(fs_info,
5844			      "unknown read_policy type %u, reset to pid",
5845			      fs_info->fs_devices->read_policy);
5846		fs_info->fs_devices->read_policy = BTRFS_READ_POLICY_PID;
5847		fallthrough;
5848	case BTRFS_READ_POLICY_PID:
5849		preferred_mirror = first + (current->pid % num_stripes);
5850		break;
5851	}
5852
5853	if (dev_replace_is_ongoing &&
5854	    fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5855	     BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5856		srcdev = fs_info->dev_replace.srcdev;
5857	else
5858		srcdev = NULL;
5859
5860	/*
5861	 * try to avoid the drive that is the source drive for a
5862	 * dev-replace procedure, only choose it if no other non-missing
5863	 * mirror is available
5864	 */
5865	for (tolerance = 0; tolerance < 2; tolerance++) {
5866		if (map->stripes[preferred_mirror].dev->bdev &&
5867		    (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5868			return preferred_mirror;
5869		for (i = first; i < first + num_stripes; i++) {
5870			if (map->stripes[i].dev->bdev &&
5871			    (tolerance || map->stripes[i].dev != srcdev))
5872				return i;
5873		}
5874	}
5875
5876	/* we couldn't find one that doesn't fail.  Just return something
5877	 * and the io error handling code will clean up eventually
5878	 */
5879	return preferred_mirror;
5880}
5881
5882/* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5883static void sort_parity_stripes(struct btrfs_io_context *bioc, int num_stripes)
5884{
5885	int i;
5886	int again = 1;
5887
5888	while (again) {
5889		again = 0;
5890		for (i = 0; i < num_stripes - 1; i++) {
5891			/* Swap if parity is on a smaller index */
5892			if (bioc->raid_map[i] > bioc->raid_map[i + 1]) {
5893				swap(bioc->stripes[i], bioc->stripes[i + 1]);
5894				swap(bioc->raid_map[i], bioc->raid_map[i + 1]);
5895				again = 1;
5896			}
5897		}
5898	}
5899}
5900
5901static struct btrfs_io_context *alloc_btrfs_io_context(struct btrfs_fs_info *fs_info,
5902						       int total_stripes,
5903						       int real_stripes)
5904{
5905	struct btrfs_io_context *bioc = kzalloc(
5906		 /* The size of btrfs_io_context */
5907		sizeof(struct btrfs_io_context) +
5908		/* Plus the variable array for the stripes */
5909		sizeof(struct btrfs_io_stripe) * (total_stripes) +
5910		/* Plus the variable array for the tgt dev */
5911		sizeof(int) * (real_stripes) +
5912		/*
5913		 * Plus the raid_map, which includes both the tgt dev
5914		 * and the stripes.
5915		 */
5916		sizeof(u64) * (total_stripes),
5917		GFP_NOFS);
5918
5919	if (!bioc)
5920		return NULL;
5921
5922	refcount_set(&bioc->refs, 1);
5923
5924	bioc->fs_info = fs_info;
5925	bioc->tgtdev_map = (int *)(bioc->stripes + total_stripes);
5926	bioc->raid_map = (u64 *)(bioc->tgtdev_map + real_stripes);
5927
5928	return bioc;
5929}
5930
5931void btrfs_get_bioc(struct btrfs_io_context *bioc)
5932{
5933	WARN_ON(!refcount_read(&bioc->refs));
5934	refcount_inc(&bioc->refs);
5935}
5936
5937void btrfs_put_bioc(struct btrfs_io_context *bioc)
5938{
5939	if (!bioc)
5940		return;
5941	if (refcount_dec_and_test(&bioc->refs))
5942		kfree(bioc);
5943}
5944
5945/*
5946 * Please note that, discard won't be sent to target device of device
5947 * replace.
5948 */
5949struct btrfs_discard_stripe *btrfs_map_discard(struct btrfs_fs_info *fs_info,
5950					       u64 logical, u64 *length_ret,
5951					       u32 *num_stripes)
5952{
5953	struct extent_map *em;
5954	struct map_lookup *map;
5955	struct btrfs_discard_stripe *stripes;
5956	u64 length = *length_ret;
5957	u64 offset;
 
 
5958	u64 stripe_nr;
 
5959	u64 stripe_nr_end;
5960	u64 stripe_end_offset;
5961	u64 stripe_cnt;
5962	u64 stripe_len;
5963	u64 stripe_offset;
5964	u32 stripe_index;
5965	u32 factor = 0;
5966	u32 sub_stripes = 0;
5967	u64 stripes_per_dev = 0;
5968	u32 remaining_stripes = 0;
5969	u32 last_stripe = 0;
5970	int ret;
5971	int i;
5972
5973	em = btrfs_get_chunk_map(fs_info, logical, length);
5974	if (IS_ERR(em))
5975		return ERR_CAST(em);
5976
5977	map = em->map_lookup;
5978
5979	/* we don't discard raid56 yet */
5980	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5981		ret = -EOPNOTSUPP;
5982		goto out_free_map;
5983}
5984
5985	offset = logical - em->start;
5986	length = min_t(u64, em->start + em->len - logical, length);
5987	*length_ret = length;
5988
5989	stripe_len = map->stripe_len;
5990	/*
5991	 * stripe_nr counts the total number of stripes we have to stride
5992	 * to get to this block
5993	 */
5994	stripe_nr = div64_u64(offset, stripe_len);
5995
5996	/* stripe_offset is the offset of this block in its stripe */
5997	stripe_offset = offset - stripe_nr * stripe_len;
5998
5999	stripe_nr_end = round_up(offset + length, map->stripe_len);
6000	stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
6001	stripe_cnt = stripe_nr_end - stripe_nr;
6002	stripe_end_offset = stripe_nr_end * map->stripe_len -
6003			    (offset + length);
6004	/*
6005	 * after this, stripe_nr is the number of stripes on this
6006	 * device we have to walk to find the data, and stripe_index is
6007	 * the number of our device in the stripe array
6008	 */
6009	*num_stripes = 1;
6010	stripe_index = 0;
6011	if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6012			 BTRFS_BLOCK_GROUP_RAID10)) {
6013		if (map->type & BTRFS_BLOCK_GROUP_RAID0)
6014			sub_stripes = 1;
6015		else
6016			sub_stripes = map->sub_stripes;
6017
6018		factor = map->num_stripes / sub_stripes;
6019		*num_stripes = min_t(u64, map->num_stripes,
6020				    sub_stripes * stripe_cnt);
6021		stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
6022		stripe_index *= sub_stripes;
6023		stripes_per_dev = div_u64_rem(stripe_cnt, factor,
6024					      &remaining_stripes);
6025		div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
6026		last_stripe *= sub_stripes;
6027	} else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
6028				BTRFS_BLOCK_GROUP_DUP)) {
6029		*num_stripes = map->num_stripes;
6030	} else {
6031		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6032					&stripe_index);
6033	}
6034
6035	stripes = kcalloc(*num_stripes, sizeof(*stripes), GFP_NOFS);
6036	if (!stripes) {
6037		ret = -ENOMEM;
6038		goto out_free_map;
6039	}
6040
6041	for (i = 0; i < *num_stripes; i++) {
6042		stripes[i].physical =
6043			map->stripes[stripe_index].physical +
6044			stripe_offset + stripe_nr * map->stripe_len;
6045		stripes[i].dev = map->stripes[stripe_index].dev;
6046
6047		if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6048				 BTRFS_BLOCK_GROUP_RAID10)) {
6049			stripes[i].length = stripes_per_dev * map->stripe_len;
6050
6051			if (i / sub_stripes < remaining_stripes)
6052				stripes[i].length += map->stripe_len;
6053
6054			/*
6055			 * Special for the first stripe and
6056			 * the last stripe:
6057			 *
6058			 * |-------|...|-------|
6059			 *     |----------|
6060			 *    off     end_off
6061			 */
6062			if (i < sub_stripes)
6063				stripes[i].length -= stripe_offset;
6064
6065			if (stripe_index >= last_stripe &&
6066			    stripe_index <= (last_stripe +
6067					     sub_stripes - 1))
6068				stripes[i].length -= stripe_end_offset;
6069
6070			if (i == sub_stripes - 1)
6071				stripe_offset = 0;
6072		} else {
6073			stripes[i].length = length;
6074		}
6075
6076		stripe_index++;
6077		if (stripe_index == map->num_stripes) {
6078			stripe_index = 0;
6079			stripe_nr++;
6080		}
6081	}
6082
6083	free_extent_map(em);
6084	return stripes;
6085out_free_map:
6086	free_extent_map(em);
6087	return ERR_PTR(ret);
6088}
6089
6090/*
6091 * In dev-replace case, for repair case (that's the only case where the mirror
6092 * is selected explicitly when calling btrfs_map_block), blocks left of the
6093 * left cursor can also be read from the target drive.
6094 *
6095 * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
6096 * array of stripes.
6097 * For READ, it also needs to be supported using the same mirror number.
6098 *
6099 * If the requested block is not left of the left cursor, EIO is returned. This
6100 * can happen because btrfs_num_copies() returns one more in the dev-replace
6101 * case.
6102 */
6103static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
6104					 u64 logical, u64 length,
6105					 u64 srcdev_devid, int *mirror_num,
6106					 u64 *physical)
6107{
6108	struct btrfs_io_context *bioc = NULL;
6109	int num_stripes;
6110	int index_srcdev = 0;
6111	int found = 0;
6112	u64 physical_of_found = 0;
6113	int i;
6114	int ret = 0;
6115
6116	ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
6117				logical, &length, &bioc, NULL, NULL, 0);
6118	if (ret) {
6119		ASSERT(bioc == NULL);
6120		return ret;
6121	}
6122
6123	num_stripes = bioc->num_stripes;
6124	if (*mirror_num > num_stripes) {
6125		/*
6126		 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
6127		 * that means that the requested area is not left of the left
6128		 * cursor
6129		 */
6130		btrfs_put_bioc(bioc);
6131		return -EIO;
6132	}
6133
6134	/*
6135	 * process the rest of the function using the mirror_num of the source
6136	 * drive. Therefore look it up first.  At the end, patch the device
6137	 * pointer to the one of the target drive.
6138	 */
6139	for (i = 0; i < num_stripes; i++) {
6140		if (bioc->stripes[i].dev->devid != srcdev_devid)
6141			continue;
6142
6143		/*
6144		 * In case of DUP, in order to keep it simple, only add the
6145		 * mirror with the lowest physical address
6146		 */
6147		if (found &&
6148		    physical_of_found <= bioc->stripes[i].physical)
6149			continue;
6150
6151		index_srcdev = i;
6152		found = 1;
6153		physical_of_found = bioc->stripes[i].physical;
6154	}
6155
6156	btrfs_put_bioc(bioc);
6157
6158	ASSERT(found);
6159	if (!found)
6160		return -EIO;
6161
6162	*mirror_num = index_srcdev + 1;
6163	*physical = physical_of_found;
6164	return ret;
6165}
6166
6167static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical)
6168{
6169	struct btrfs_block_group *cache;
6170	bool ret;
6171
6172	/* Non zoned filesystem does not use "to_copy" flag */
6173	if (!btrfs_is_zoned(fs_info))
6174		return false;
6175
6176	cache = btrfs_lookup_block_group(fs_info, logical);
6177
6178	ret = test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags);
6179
6180	btrfs_put_block_group(cache);
6181	return ret;
6182}
6183
6184static void handle_ops_on_dev_replace(enum btrfs_map_op op,
6185				      struct btrfs_io_context **bioc_ret,
6186				      struct btrfs_dev_replace *dev_replace,
6187				      u64 logical,
6188				      int *num_stripes_ret, int *max_errors_ret)
6189{
6190	struct btrfs_io_context *bioc = *bioc_ret;
6191	u64 srcdev_devid = dev_replace->srcdev->devid;
6192	int tgtdev_indexes = 0;
6193	int num_stripes = *num_stripes_ret;
6194	int max_errors = *max_errors_ret;
6195	int i;
6196
6197	if (op == BTRFS_MAP_WRITE) {
6198		int index_where_to_add;
6199
6200		/*
6201		 * A block group which have "to_copy" set will eventually
6202		 * copied by dev-replace process. We can avoid cloning IO here.
6203		 */
6204		if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical))
6205			return;
6206
6207		/*
6208		 * duplicate the write operations while the dev replace
6209		 * procedure is running. Since the copying of the old disk to
6210		 * the new disk takes place at run time while the filesystem is
6211		 * mounted writable, the regular write operations to the old
6212		 * disk have to be duplicated to go to the new disk as well.
6213		 *
6214		 * Note that device->missing is handled by the caller, and that
6215		 * the write to the old disk is already set up in the stripes
6216		 * array.
6217		 */
6218		index_where_to_add = num_stripes;
6219		for (i = 0; i < num_stripes; i++) {
6220			if (bioc->stripes[i].dev->devid == srcdev_devid) {
6221				/* write to new disk, too */
6222				struct btrfs_io_stripe *new =
6223					bioc->stripes + index_where_to_add;
6224				struct btrfs_io_stripe *old =
6225					bioc->stripes + i;
6226
6227				new->physical = old->physical;
6228				new->dev = dev_replace->tgtdev;
6229				bioc->tgtdev_map[i] = index_where_to_add;
6230				index_where_to_add++;
6231				max_errors++;
6232				tgtdev_indexes++;
6233			}
6234		}
6235		num_stripes = index_where_to_add;
6236	} else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
6237		int index_srcdev = 0;
6238		int found = 0;
6239		u64 physical_of_found = 0;
6240
6241		/*
6242		 * During the dev-replace procedure, the target drive can also
6243		 * be used to read data in case it is needed to repair a corrupt
6244		 * block elsewhere. This is possible if the requested area is
6245		 * left of the left cursor. In this area, the target drive is a
6246		 * full copy of the source drive.
6247		 */
6248		for (i = 0; i < num_stripes; i++) {
6249			if (bioc->stripes[i].dev->devid == srcdev_devid) {
6250				/*
6251				 * In case of DUP, in order to keep it simple,
6252				 * only add the mirror with the lowest physical
6253				 * address
6254				 */
6255				if (found &&
6256				    physical_of_found <= bioc->stripes[i].physical)
6257					continue;
6258				index_srcdev = i;
6259				found = 1;
6260				physical_of_found = bioc->stripes[i].physical;
6261			}
6262		}
6263		if (found) {
6264			struct btrfs_io_stripe *tgtdev_stripe =
6265				bioc->stripes + num_stripes;
6266
6267			tgtdev_stripe->physical = physical_of_found;
6268			tgtdev_stripe->dev = dev_replace->tgtdev;
6269			bioc->tgtdev_map[index_srcdev] = num_stripes;
6270
6271			tgtdev_indexes++;
6272			num_stripes++;
6273		}
6274	}
6275
6276	*num_stripes_ret = num_stripes;
6277	*max_errors_ret = max_errors;
6278	bioc->num_tgtdevs = tgtdev_indexes;
6279	*bioc_ret = bioc;
6280}
6281
6282static bool need_full_stripe(enum btrfs_map_op op)
6283{
6284	return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
6285}
6286
6287/*
6288 * Calculate the geometry of a particular (address, len) tuple. This
6289 * information is used to calculate how big a particular bio can get before it
6290 * straddles a stripe.
6291 *
6292 * @fs_info: the filesystem
6293 * @em:      mapping containing the logical extent
6294 * @op:      type of operation - write or read
6295 * @logical: address that we want to figure out the geometry of
6296 * @io_geom: pointer used to return values
6297 *
6298 * Returns < 0 in case a chunk for the given logical address cannot be found,
6299 * usually shouldn't happen unless @logical is corrupted, 0 otherwise.
6300 */
6301int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, struct extent_map *em,
6302			  enum btrfs_map_op op, u64 logical,
6303			  struct btrfs_io_geometry *io_geom)
6304{
6305	struct map_lookup *map;
6306	u64 len;
6307	u64 offset;
6308	u64 stripe_offset;
6309	u64 stripe_nr;
6310	u32 stripe_len;
6311	u64 raid56_full_stripe_start = (u64)-1;
6312	int data_stripes;
6313
6314	ASSERT(op != BTRFS_MAP_DISCARD);
6315
6316	map = em->map_lookup;
6317	/* Offset of this logical address in the chunk */
6318	offset = logical - em->start;
6319	/* Len of a stripe in a chunk */
6320	stripe_len = map->stripe_len;
6321	/*
6322	 * Stripe_nr is where this block falls in
6323	 * stripe_offset is the offset of this block in its stripe.
6324	 */
6325	stripe_nr = div64_u64_rem(offset, stripe_len, &stripe_offset);
6326	ASSERT(stripe_offset < U32_MAX);
6327
6328	data_stripes = nr_data_stripes(map);
6329
6330	/* Only stripe based profiles needs to check against stripe length. */
6331	if (map->type & BTRFS_BLOCK_GROUP_STRIPE_MASK) {
6332		u64 max_len = stripe_len - stripe_offset;
6333
6334		/*
6335		 * In case of raid56, we need to know the stripe aligned start
6336		 */
6337		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6338			unsigned long full_stripe_len = stripe_len * data_stripes;
6339			raid56_full_stripe_start = offset;
6340
6341			/*
6342			 * Allow a write of a full stripe, but make sure we
6343			 * don't allow straddling of stripes
6344			 */
6345			raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
6346					full_stripe_len);
6347			raid56_full_stripe_start *= full_stripe_len;
6348
6349			/*
6350			 * For writes to RAID[56], allow a full stripeset across
6351			 * all disks. For other RAID types and for RAID[56]
6352			 * reads, just allow a single stripe (on a single disk).
6353			 */
6354			if (op == BTRFS_MAP_WRITE) {
6355				max_len = stripe_len * data_stripes -
6356					  (offset - raid56_full_stripe_start);
6357			}
6358		}
6359		len = min_t(u64, em->len - offset, max_len);
6360	} else {
6361		len = em->len - offset;
6362	}
6363
6364	io_geom->len = len;
6365	io_geom->offset = offset;
6366	io_geom->stripe_len = stripe_len;
6367	io_geom->stripe_nr = stripe_nr;
6368	io_geom->stripe_offset = stripe_offset;
6369	io_geom->raid56_stripe_offset = raid56_full_stripe_start;
6370
6371	return 0;
6372}
6373
6374static void set_io_stripe(struct btrfs_io_stripe *dst, const struct map_lookup *map,
6375		          u32 stripe_index, u64 stripe_offset, u64 stripe_nr)
6376{
6377	dst->dev = map->stripes[stripe_index].dev;
6378	dst->physical = map->stripes[stripe_index].physical +
6379			stripe_offset + stripe_nr * map->stripe_len;
6380}
6381
6382int __btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6383		      u64 logical, u64 *length,
6384		      struct btrfs_io_context **bioc_ret,
6385		      struct btrfs_io_stripe *smap, int *mirror_num_ret,
6386		      int need_raid_map)
6387{
6388	struct extent_map *em;
6389	struct map_lookup *map;
6390	u64 stripe_offset;
6391	u64 stripe_nr;
6392	u64 stripe_len;
6393	u32 stripe_index;
6394	int data_stripes;
6395	int i;
6396	int ret = 0;
6397	int mirror_num = (mirror_num_ret ? *mirror_num_ret : 0);
6398	int num_stripes;
6399	int max_errors = 0;
6400	int tgtdev_indexes = 0;
6401	struct btrfs_io_context *bioc = NULL;
6402	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6403	int dev_replace_is_ongoing = 0;
6404	int num_alloc_stripes;
6405	int patch_the_first_stripe_for_dev_replace = 0;
6406	u64 physical_to_patch_in_first_stripe = 0;
6407	u64 raid56_full_stripe_start = (u64)-1;
6408	struct btrfs_io_geometry geom;
6409
6410	ASSERT(bioc_ret);
6411	ASSERT(op != BTRFS_MAP_DISCARD);
6412
6413	em = btrfs_get_chunk_map(fs_info, logical, *length);
6414	ASSERT(!IS_ERR(em));
6415
6416	ret = btrfs_get_io_geometry(fs_info, em, op, logical, &geom);
6417	if (ret < 0)
6418		return ret;
6419
6420	map = em->map_lookup;
6421
6422	*length = geom.len;
6423	stripe_len = geom.stripe_len;
6424	stripe_nr = geom.stripe_nr;
6425	stripe_offset = geom.stripe_offset;
6426	raid56_full_stripe_start = geom.raid56_stripe_offset;
6427	data_stripes = nr_data_stripes(map);
6428
6429	down_read(&dev_replace->rwsem);
6430	dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6431	/*
6432	 * Hold the semaphore for read during the whole operation, write is
6433	 * requested at commit time but must wait.
6434	 */
6435	if (!dev_replace_is_ongoing)
6436		up_read(&dev_replace->rwsem);
6437
6438	if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
6439	    !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
6440		ret = get_extra_mirror_from_replace(fs_info, logical, *length,
6441						    dev_replace->srcdev->devid,
6442						    &mirror_num,
6443					    &physical_to_patch_in_first_stripe);
6444		if (ret)
6445			goto out;
6446		else
6447			patch_the_first_stripe_for_dev_replace = 1;
6448	} else if (mirror_num > map->num_stripes) {
6449		mirror_num = 0;
6450	}
6451
6452	num_stripes = 1;
6453	stripe_index = 0;
 
 
 
 
 
 
6454	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6455		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6456				&stripe_index);
6457		if (!need_full_stripe(op))
6458			mirror_num = 1;
6459	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
6460		if (need_full_stripe(op))
6461			num_stripes = map->num_stripes;
6462		else if (mirror_num)
6463			stripe_index = mirror_num - 1;
6464		else {
6465			stripe_index = find_live_mirror(fs_info, map, 0,
6466					    dev_replace_is_ongoing);
 
6467			mirror_num = stripe_index + 1;
6468		}
6469
6470	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
6471		if (need_full_stripe(op)) {
6472			num_stripes = map->num_stripes;
6473		} else if (mirror_num) {
6474			stripe_index = mirror_num - 1;
6475		} else {
6476			mirror_num = 1;
6477		}
6478
6479	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6480		u32 factor = map->num_stripes / map->sub_stripes;
6481
6482		stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
6483		stripe_index *= map->sub_stripes;
6484
6485		if (need_full_stripe(op))
6486			num_stripes = map->sub_stripes;
 
 
 
 
6487		else if (mirror_num)
6488			stripe_index += mirror_num - 1;
6489		else {
6490			int old_stripe_index = stripe_index;
6491			stripe_index = find_live_mirror(fs_info, map,
6492					      stripe_index,
6493					      dev_replace_is_ongoing);
6494			mirror_num = stripe_index - old_stripe_index + 1;
6495		}
6496
6497	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6498		ASSERT(map->stripe_len == BTRFS_STRIPE_LEN);
6499		if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
6500			/* push stripe_nr back to the start of the full stripe */
6501			stripe_nr = div64_u64(raid56_full_stripe_start,
6502					stripe_len * data_stripes);
6503
6504			/* RAID[56] write or recovery. Return all stripes */
6505			num_stripes = map->num_stripes;
6506			max_errors = btrfs_chunk_max_errors(map);
6507
6508			/* Return the length to the full stripe end */
6509			*length = min(logical + *length,
6510				      raid56_full_stripe_start + em->start +
6511				      data_stripes * stripe_len) - logical;
6512			stripe_index = 0;
6513			stripe_offset = 0;
6514		} else {
6515			/*
6516			 * Mirror #0 or #1 means the original data block.
6517			 * Mirror #2 is RAID5 parity block.
6518			 * Mirror #3 is RAID6 Q block.
6519			 */
6520			stripe_nr = div_u64_rem(stripe_nr,
6521					data_stripes, &stripe_index);
6522			if (mirror_num > 1)
6523				stripe_index = data_stripes + mirror_num - 2;
6524
6525			/* We distribute the parity blocks across stripes */
6526			div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
6527					&stripe_index);
6528			if (!need_full_stripe(op) && mirror_num <= 1)
6529				mirror_num = 1;
6530		}
6531	} else {
6532		/*
6533		 * after this, stripe_nr is the number of stripes on this
6534		 * device we have to walk to find the data, and stripe_index is
6535		 * the number of our device in the stripe array
6536		 */
6537		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6538				&stripe_index);
6539		mirror_num = stripe_index + 1;
6540	}
6541	if (stripe_index >= map->num_stripes) {
6542		btrfs_crit(fs_info,
6543			   "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6544			   stripe_index, map->num_stripes);
6545		ret = -EINVAL;
6546		goto out;
6547	}
6548
6549	num_alloc_stripes = num_stripes;
6550	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
6551		if (op == BTRFS_MAP_WRITE)
6552			num_alloc_stripes <<= 1;
6553		if (op == BTRFS_MAP_GET_READ_MIRRORS)
6554			num_alloc_stripes++;
6555		tgtdev_indexes = num_stripes;
6556	}
6557
6558	/*
6559	 * If this I/O maps to a single device, try to return the device and
6560	 * physical block information on the stack instead of allocating an
6561	 * I/O context structure.
6562	 */
6563	if (smap && num_alloc_stripes == 1 &&
6564	    !((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) && mirror_num > 1) &&
6565	    (!need_full_stripe(op) || !dev_replace_is_ongoing ||
6566	     !dev_replace->tgtdev)) {
6567		if (patch_the_first_stripe_for_dev_replace) {
6568			smap->dev = dev_replace->tgtdev;
6569			smap->physical = physical_to_patch_in_first_stripe;
6570			*mirror_num_ret = map->num_stripes + 1;
6571		} else {
6572			set_io_stripe(smap, map, stripe_index, stripe_offset,
6573				      stripe_nr);
6574			*mirror_num_ret = mirror_num;
6575		}
6576		*bioc_ret = NULL;
6577		ret = 0;
6578		goto out;
6579	}
6580
6581	bioc = alloc_btrfs_io_context(fs_info, num_alloc_stripes, tgtdev_indexes);
6582	if (!bioc) {
6583		ret = -ENOMEM;
6584		goto out;
6585	}
 
6586
6587	for (i = 0; i < num_stripes; i++) {
6588		set_io_stripe(&bioc->stripes[i], map, stripe_index, stripe_offset,
6589			      stripe_nr);
6590		stripe_index++;
6591	}
 
 
 
 
 
 
 
 
6592
6593	/* Build raid_map */
6594	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
6595	    (need_full_stripe(op) || mirror_num > 1)) {
6596		u64 tmp;
6597		unsigned rot;
 
 
 
6598
6599		/* Work out the disk rotation on this stripe-set */
6600		div_u64_rem(stripe_nr, num_stripes, &rot);
 
 
 
 
 
 
 
 
 
 
 
 
6601
6602		/* Fill in the logical address of each stripe */
6603		tmp = stripe_nr * data_stripes;
6604		for (i = 0; i < data_stripes; i++)
6605			bioc->raid_map[(i + rot) % num_stripes] =
6606				em->start + (tmp + i) * map->stripe_len;
6607
6608		bioc->raid_map[(i + rot) % map->num_stripes] = RAID5_P_STRIPE;
6609		if (map->type & BTRFS_BLOCK_GROUP_RAID6)
6610			bioc->raid_map[(i + rot + 1) % num_stripes] =
6611				RAID6_Q_STRIPE;
6612
6613		sort_parity_stripes(bioc, num_stripes);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6614	}
6615
6616	if (need_full_stripe(op))
6617		max_errors = btrfs_chunk_max_errors(map);
6618
6619	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6620	    need_full_stripe(op)) {
6621		handle_ops_on_dev_replace(op, &bioc, dev_replace, logical,
6622					  &num_stripes, &max_errors);
6623	}
6624
6625	*bioc_ret = bioc;
6626	bioc->map_type = map->type;
6627	bioc->num_stripes = num_stripes;
6628	bioc->max_errors = max_errors;
6629	bioc->mirror_num = mirror_num;
6630
6631	/*
6632	 * this is the case that REQ_READ && dev_replace_is_ongoing &&
6633	 * mirror_num == num_stripes + 1 && dev_replace target drive is
6634	 * available as a mirror
6635	 */
6636	if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
6637		WARN_ON(num_stripes > 1);
6638		bioc->stripes[0].dev = dev_replace->tgtdev;
6639		bioc->stripes[0].physical = physical_to_patch_in_first_stripe;
6640		bioc->mirror_num = map->num_stripes + 1;
6641	}
6642out:
6643	if (dev_replace_is_ongoing) {
6644		lockdep_assert_held(&dev_replace->rwsem);
6645		/* Unlock and let waiting writers proceed */
6646		up_read(&dev_replace->rwsem);
6647	}
6648	free_extent_map(em);
6649	return ret;
6650}
6651
6652int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6653		      u64 logical, u64 *length,
6654		      struct btrfs_io_context **bioc_ret, int mirror_num)
6655{
6656	return __btrfs_map_block(fs_info, op, logical, length, bioc_ret,
6657				 NULL, &mirror_num, 0);
6658}
6659
6660/* For Scrub/replace */
6661int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6662		     u64 logical, u64 *length,
6663		     struct btrfs_io_context **bioc_ret)
6664{
6665	return __btrfs_map_block(fs_info, op, logical, length, bioc_ret,
6666				 NULL, NULL, 1);
6667}
 
 
 
 
 
 
 
 
 
 
 
 
6668
6669static bool dev_args_match_fs_devices(const struct btrfs_dev_lookup_args *args,
6670				      const struct btrfs_fs_devices *fs_devices)
6671{
6672	if (args->fsid == NULL)
6673		return true;
6674	if (memcmp(fs_devices->metadata_uuid, args->fsid, BTRFS_FSID_SIZE) == 0)
6675		return true;
6676	return false;
6677}
6678
6679static bool dev_args_match_device(const struct btrfs_dev_lookup_args *args,
6680				  const struct btrfs_device *device)
6681{
6682	if (args->missing) {
6683		if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state) &&
6684		    !device->bdev)
6685			return true;
6686		return false;
6687	}
6688
6689	if (device->devid != args->devid)
6690		return false;
6691	if (args->uuid && memcmp(device->uuid, args->uuid, BTRFS_UUID_SIZE) != 0)
6692		return false;
6693	return true;
6694}
6695
6696/*
6697 * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6698 * return NULL.
6699 *
6700 * If devid and uuid are both specified, the match must be exact, otherwise
6701 * only devid is used.
6702 */
6703struct btrfs_device *btrfs_find_device(const struct btrfs_fs_devices *fs_devices,
6704				       const struct btrfs_dev_lookup_args *args)
6705{
6706	struct btrfs_device *device;
6707	struct btrfs_fs_devices *seed_devs;
6708
6709	if (dev_args_match_fs_devices(args, fs_devices)) {
6710		list_for_each_entry(device, &fs_devices->devices, dev_list) {
6711			if (dev_args_match_device(args, device))
6712				return device;
 
 
 
 
 
 
 
 
 
 
 
6713		}
6714	}
6715
6716	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
6717		if (!dev_args_match_fs_devices(args, seed_devs))
6718			continue;
6719		list_for_each_entry(device, &seed_devs->devices, dev_list) {
6720			if (dev_args_match_device(args, device))
6721				return device;
6722		}
6723	}
6724
6725	return NULL;
 
6726}
6727
6728static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6729					    u64 devid, u8 *dev_uuid)
6730{
6731	struct btrfs_device *device;
6732	unsigned int nofs_flag;
6733
6734	/*
6735	 * We call this under the chunk_mutex, so we want to use NOFS for this
6736	 * allocation, however we don't want to change btrfs_alloc_device() to
6737	 * always do NOFS because we use it in a lot of other GFP_KERNEL safe
6738	 * places.
 
6739	 */
 
 
 
 
6740
6741	nofs_flag = memalloc_nofs_save();
6742	device = btrfs_alloc_device(NULL, &devid, dev_uuid, NULL);
6743	memalloc_nofs_restore(nofs_flag);
6744	if (IS_ERR(device))
6745		return device;
6746
6747	list_add(&device->dev_list, &fs_devices->devices);
6748	device->fs_devices = fs_devices;
6749	fs_devices->num_devices++;
6750
6751	set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6752	fs_devices->missing_devices++;
6753
6754	return device;
6755}
6756
6757/*
6758 * Allocate new device struct, set up devid and UUID.
6759 *
6760 * @fs_info:	used only for generating a new devid, can be NULL if
6761 *		devid is provided (i.e. @devid != NULL).
6762 * @devid:	a pointer to devid for this device.  If NULL a new devid
6763 *		is generated.
6764 * @uuid:	a pointer to UUID for this device.  If NULL a new UUID
6765 *		is generated.
6766 * @path:	a pointer to device path if available, NULL otherwise.
6767 *
6768 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6769 * on error.  Returned struct is not linked onto any lists and must be
6770 * destroyed with btrfs_free_device.
6771 */
6772struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6773					const u64 *devid, const u8 *uuid,
6774					const char *path)
6775{
6776	struct btrfs_device *dev;
6777	u64 tmp;
6778
6779	if (WARN_ON(!devid && !fs_info))
6780		return ERR_PTR(-EINVAL);
 
 
 
 
 
6781
6782	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
6783	if (!dev)
6784		return ERR_PTR(-ENOMEM);
6785
6786	INIT_LIST_HEAD(&dev->dev_list);
6787	INIT_LIST_HEAD(&dev->dev_alloc_list);
6788	INIT_LIST_HEAD(&dev->post_commit_list);
6789
6790	atomic_set(&dev->dev_stats_ccnt, 0);
6791	btrfs_device_data_ordered_init(dev);
6792	extent_io_tree_init(fs_info, &dev->alloc_state, IO_TREE_DEVICE_ALLOC_STATE);
6793
6794	if (devid)
6795		tmp = *devid;
6796	else {
6797		int ret;
6798
6799		ret = find_next_devid(fs_info, &tmp);
6800		if (ret) {
6801			btrfs_free_device(dev);
6802			return ERR_PTR(ret);
6803		}
6804	}
6805	dev->devid = tmp;
6806
6807	if (uuid)
6808		memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6809	else
6810		generate_random_uuid(dev->uuid);
6811
6812	if (path) {
6813		struct rcu_string *name;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6814
6815		name = rcu_string_strdup(path, GFP_KERNEL);
6816		if (!name) {
6817			btrfs_free_device(dev);
6818			return ERR_PTR(-ENOMEM);
6819		}
6820		rcu_assign_pointer(dev->name, name);
6821	}
6822
6823	return dev;
6824}
6825
6826static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6827					u64 devid, u8 *uuid, bool error)
6828{
6829	if (error)
6830		btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6831			      devid, uuid);
6832	else
6833		btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6834			      devid, uuid);
6835}
6836
6837u64 btrfs_calc_stripe_length(const struct extent_map *em)
6838{
6839	const struct map_lookup *map = em->map_lookup;
6840	const int data_stripes = calc_data_stripes(map->type, map->num_stripes);
6841
6842	return div_u64(em->len, data_stripes);
6843}
6844
6845#if BITS_PER_LONG == 32
6846/*
6847 * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE
6848 * can't be accessed on 32bit systems.
6849 *
6850 * This function do mount time check to reject the fs if it already has
6851 * metadata chunk beyond that limit.
6852 */
6853static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6854				  u64 logical, u64 length, u64 type)
6855{
6856	if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6857		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6858
6859	if (logical + length < MAX_LFS_FILESIZE)
6860		return 0;
6861
6862	btrfs_err_32bit_limit(fs_info);
6863	return -EOVERFLOW;
 
6864}
6865
6866/*
6867 * This is to give early warning for any metadata chunk reaching
6868 * BTRFS_32BIT_EARLY_WARN_THRESHOLD.
6869 * Although we can still access the metadata, it's not going to be possible
6870 * once the limit is reached.
6871 */
6872static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6873				  u64 logical, u64 length, u64 type)
6874{
6875	if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6876		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6877
6878	if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD)
6879		return;
 
 
 
 
 
 
6880
6881	btrfs_warn_32bit_limit(fs_info);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6882}
6883#endif
6884
6885static struct btrfs_device *handle_missing_device(struct btrfs_fs_info *fs_info,
6886						  u64 devid, u8 *uuid)
6887{
6888	struct btrfs_device *dev;
 
6889
6890	if (!btrfs_test_opt(fs_info, DEGRADED)) {
6891		btrfs_report_missing_device(fs_info, devid, uuid, true);
6892		return ERR_PTR(-ENOENT);
 
 
 
 
 
 
 
6893	}
 
 
6894
6895	dev = add_missing_dev(fs_info->fs_devices, devid, uuid);
6896	if (IS_ERR(dev)) {
6897		btrfs_err(fs_info, "failed to init missing device %llu: %ld",
6898			  devid, PTR_ERR(dev));
6899		return dev;
6900	}
6901	btrfs_report_missing_device(fs_info, devid, uuid, false);
6902
6903	return dev;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6904}
6905
6906static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
 
6907			  struct btrfs_chunk *chunk)
6908{
6909	BTRFS_DEV_LOOKUP_ARGS(args);
6910	struct btrfs_fs_info *fs_info = leaf->fs_info;
6911	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
6912	struct map_lookup *map;
6913	struct extent_map *em;
6914	u64 logical;
6915	u64 length;
6916	u64 devid;
6917	u64 type;
6918	u8 uuid[BTRFS_UUID_SIZE];
6919	int index;
6920	int num_stripes;
6921	int ret;
6922	int i;
6923
6924	logical = key->offset;
6925	length = btrfs_chunk_length(leaf, chunk);
6926	type = btrfs_chunk_type(leaf, chunk);
6927	index = btrfs_bg_flags_to_raid_index(type);
6928	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6929
6930#if BITS_PER_LONG == 32
6931	ret = check_32bit_meta_chunk(fs_info, logical, length, type);
6932	if (ret < 0)
6933		return ret;
6934	warn_32bit_meta_chunk(fs_info, logical, length, type);
6935#endif
6936
6937	/*
6938	 * Only need to verify chunk item if we're reading from sys chunk array,
6939	 * as chunk item in tree block is already verified by tree-checker.
6940	 */
6941	if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
6942		ret = btrfs_check_chunk_valid(leaf, chunk, logical);
6943		if (ret)
6944			return ret;
6945	}
6946
6947	read_lock(&map_tree->lock);
6948	em = lookup_extent_mapping(map_tree, logical, 1);
6949	read_unlock(&map_tree->lock);
6950
6951	/* already mapped? */
6952	if (em && em->start <= logical && em->start + em->len > logical) {
6953		free_extent_map(em);
6954		return 0;
6955	} else if (em) {
6956		free_extent_map(em);
6957	}
6958
6959	em = alloc_extent_map();
6960	if (!em)
6961		return -ENOMEM;
 
6962	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6963	if (!map) {
6964		free_extent_map(em);
6965		return -ENOMEM;
6966	}
6967
6968	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6969	em->map_lookup = map;
6970	em->start = logical;
6971	em->len = length;
6972	em->orig_start = 0;
6973	em->block_start = 0;
6974	em->block_len = em->len;
6975
6976	map->num_stripes = num_stripes;
6977	map->io_width = btrfs_chunk_io_width(leaf, chunk);
6978	map->io_align = btrfs_chunk_io_align(leaf, chunk);
 
6979	map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6980	map->type = type;
6981	/*
6982	 * We can't use the sub_stripes value, as for profiles other than
6983	 * RAID10, they may have 0 as sub_stripes for filesystems created by
6984	 * older mkfs (<v5.4).
6985	 * In that case, it can cause divide-by-zero errors later.
6986	 * Since currently sub_stripes is fixed for each profile, let's
6987	 * use the trusted value instead.
6988	 */
6989	map->sub_stripes = btrfs_raid_array[index].sub_stripes;
6990	map->verified_stripes = 0;
6991	em->orig_block_len = btrfs_calc_stripe_length(em);
6992	for (i = 0; i < num_stripes; i++) {
6993		map->stripes[i].physical =
6994			btrfs_stripe_offset_nr(leaf, chunk, i);
6995		devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6996		args.devid = devid;
6997		read_extent_buffer(leaf, uuid, (unsigned long)
6998				   btrfs_stripe_dev_uuid_nr(chunk, i),
6999				   BTRFS_UUID_SIZE);
7000		args.uuid = uuid;
7001		map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices, &args);
 
 
 
 
 
7002		if (!map->stripes[i].dev) {
7003			map->stripes[i].dev = handle_missing_device(fs_info,
7004								    devid, uuid);
7005			if (IS_ERR(map->stripes[i].dev)) {
7006				ret = PTR_ERR(map->stripes[i].dev);
7007				free_extent_map(em);
7008				return ret;
7009			}
7010		}
7011
7012		set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
7013				&(map->stripes[i].dev->dev_state));
7014	}
7015
7016	write_lock(&map_tree->lock);
7017	ret = add_extent_mapping(map_tree, em, 0);
7018	write_unlock(&map_tree->lock);
7019	if (ret < 0) {
7020		btrfs_err(fs_info,
7021			  "failed to add chunk map, start=%llu len=%llu: %d",
7022			  em->start, em->len, ret);
7023	}
7024	free_extent_map(em);
7025
7026	return ret;
7027}
7028
7029static void fill_device_from_item(struct extent_buffer *leaf,
7030				 struct btrfs_dev_item *dev_item,
7031				 struct btrfs_device *device)
7032{
7033	unsigned long ptr;
7034
7035	device->devid = btrfs_device_id(leaf, dev_item);
7036	device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
7037	device->total_bytes = device->disk_total_bytes;
7038	device->commit_total_bytes = device->disk_total_bytes;
7039	device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
7040	device->commit_bytes_used = device->bytes_used;
7041	device->type = btrfs_device_type(leaf, dev_item);
7042	device->io_align = btrfs_device_io_align(leaf, dev_item);
7043	device->io_width = btrfs_device_io_width(leaf, dev_item);
7044	device->sector_size = btrfs_device_sector_size(leaf, dev_item);
7045	WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
7046	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
7047
7048	ptr = btrfs_device_uuid(dev_item);
7049	read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
7050}
7051
7052static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
7053						  u8 *fsid)
7054{
7055	struct btrfs_fs_devices *fs_devices;
7056	int ret;
7057
7058	lockdep_assert_held(&uuid_mutex);
7059	ASSERT(fsid);
7060
7061	/* This will match only for multi-device seed fs */
7062	list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list)
7063		if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
7064			return fs_devices;
 
 
 
 
7065
7066
7067	fs_devices = find_fsid(fsid, NULL);
7068	if (!fs_devices) {
7069		if (!btrfs_test_opt(fs_info, DEGRADED))
7070			return ERR_PTR(-ENOENT);
7071
7072		fs_devices = alloc_fs_devices(fsid, NULL);
7073		if (IS_ERR(fs_devices))
7074			return fs_devices;
7075
7076		fs_devices->seeding = true;
7077		fs_devices->opened = 1;
7078		return fs_devices;
7079	}
7080
7081	/*
7082	 * Upon first call for a seed fs fsid, just create a private copy of the
7083	 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list
7084	 */
7085	fs_devices = clone_fs_devices(fs_devices);
7086	if (IS_ERR(fs_devices))
7087		return fs_devices;
 
 
7088
7089	ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder);
 
7090	if (ret) {
7091		free_fs_devices(fs_devices);
7092		return ERR_PTR(ret);
7093	}
7094
7095	if (!fs_devices->seeding) {
7096		close_fs_devices(fs_devices);
7097		free_fs_devices(fs_devices);
7098		return ERR_PTR(-EINVAL);
 
7099	}
7100
7101	list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list);
7102
7103	return fs_devices;
 
7104}
7105
7106static int read_one_dev(struct extent_buffer *leaf,
 
7107			struct btrfs_dev_item *dev_item)
7108{
7109	BTRFS_DEV_LOOKUP_ARGS(args);
7110	struct btrfs_fs_info *fs_info = leaf->fs_info;
7111	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7112	struct btrfs_device *device;
7113	u64 devid;
7114	int ret;
7115	u8 fs_uuid[BTRFS_FSID_SIZE];
7116	u8 dev_uuid[BTRFS_UUID_SIZE];
7117
7118	devid = btrfs_device_id(leaf, dev_item);
7119	args.devid = devid;
7120	read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
7121			   BTRFS_UUID_SIZE);
7122	read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
7123			   BTRFS_FSID_SIZE);
7124	args.uuid = dev_uuid;
7125	args.fsid = fs_uuid;
7126
7127	if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
7128		fs_devices = open_seed_devices(fs_info, fs_uuid);
7129		if (IS_ERR(fs_devices))
7130			return PTR_ERR(fs_devices);
7131	}
7132
7133	device = btrfs_find_device(fs_info->fs_devices, &args);
7134	if (!device) {
7135		if (!btrfs_test_opt(fs_info, DEGRADED)) {
7136			btrfs_report_missing_device(fs_info, devid,
7137							dev_uuid, true);
7138			return -ENOENT;
7139		}
7140
7141		device = add_missing_dev(fs_devices, devid, dev_uuid);
7142		if (IS_ERR(device)) {
7143			btrfs_err(fs_info,
7144				"failed to add missing dev %llu: %ld",
7145				devid, PTR_ERR(device));
7146			return PTR_ERR(device);
7147		}
7148		btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
7149	} else {
7150		if (!device->bdev) {
7151			if (!btrfs_test_opt(fs_info, DEGRADED)) {
7152				btrfs_report_missing_device(fs_info,
7153						devid, dev_uuid, true);
7154				return -ENOENT;
7155			}
7156			btrfs_report_missing_device(fs_info, devid,
7157							dev_uuid, false);
7158		}
7159
7160		if (!device->bdev &&
7161		    !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
7162			/*
7163			 * this happens when a device that was properly setup
7164			 * in the device info lists suddenly goes bad.
7165			 * device->bdev is NULL, and so we have to set
7166			 * device->missing to one here
7167			 */
7168			device->fs_devices->missing_devices++;
7169			set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
7170		}
7171
7172		/* Move the device to its own fs_devices */
7173		if (device->fs_devices != fs_devices) {
7174			ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
7175							&device->dev_state));
7176
7177			list_move(&device->dev_list, &fs_devices->devices);
7178			device->fs_devices->num_devices--;
7179			fs_devices->num_devices++;
7180
7181			device->fs_devices->missing_devices--;
7182			fs_devices->missing_devices++;
7183
7184			device->fs_devices = fs_devices;
7185		}
7186	}
7187
7188	if (device->fs_devices != fs_info->fs_devices) {
7189		BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
7190		if (device->generation !=
7191		    btrfs_device_generation(leaf, dev_item))
7192			return -EINVAL;
7193	}
7194
7195	fill_device_from_item(leaf, dev_item, device);
7196	if (device->bdev) {
7197		u64 max_total_bytes = bdev_nr_bytes(device->bdev);
7198
7199		if (device->total_bytes > max_total_bytes) {
7200			btrfs_err(fs_info,
7201			"device total_bytes should be at most %llu but found %llu",
7202				  max_total_bytes, device->total_bytes);
7203			return -EINVAL;
7204		}
7205	}
7206	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
7207	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
7208	   !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
7209		device->fs_devices->total_rw_bytes += device->total_bytes;
7210		atomic64_add(device->total_bytes - device->bytes_used,
7211				&fs_info->free_chunk_space);
 
 
7212	}
7213	ret = 0;
7214	return ret;
7215}
7216
7217int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
7218{
7219	struct btrfs_super_block *super_copy = fs_info->super_copy;
7220	struct extent_buffer *sb;
7221	struct btrfs_disk_key *disk_key;
7222	struct btrfs_chunk *chunk;
7223	u8 *array_ptr;
7224	unsigned long sb_array_offset;
7225	int ret = 0;
7226	u32 num_stripes;
7227	u32 array_size;
7228	u32 len = 0;
7229	u32 cur_offset;
7230	u64 type;
7231	struct btrfs_key key;
7232
7233	ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
7234
 
 
 
 
7235	/*
7236	 * We allocated a dummy extent, just to use extent buffer accessors.
7237	 * There will be unused space after BTRFS_SUPER_INFO_SIZE, but
7238	 * that's fine, we will not go beyond system chunk array anyway.
 
 
 
 
 
 
 
7239	 */
7240	sb = alloc_dummy_extent_buffer(fs_info, BTRFS_SUPER_INFO_OFFSET);
7241	if (!sb)
7242		return -ENOMEM;
7243	set_extent_buffer_uptodate(sb);
7244
7245	write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
7246	array_size = btrfs_super_sys_array_size(super_copy);
7247
7248	array_ptr = super_copy->sys_chunk_array;
7249	sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
7250	cur_offset = 0;
7251
7252	while (cur_offset < array_size) {
7253		disk_key = (struct btrfs_disk_key *)array_ptr;
7254		len = sizeof(*disk_key);
7255		if (cur_offset + len > array_size)
7256			goto out_short_read;
7257
 
 
7258		btrfs_disk_key_to_cpu(&key, disk_key);
7259
7260		array_ptr += len;
7261		sb_array_offset += len;
7262		cur_offset += len;
7263
7264		if (key.type != BTRFS_CHUNK_ITEM_KEY) {
7265			btrfs_err(fs_info,
7266			    "unexpected item type %u in sys_array at offset %u",
7267				  (u32)key.type, cur_offset);
7268			ret = -EIO;
7269			break;
7270		}
7271
7272		chunk = (struct btrfs_chunk *)sb_array_offset;
7273		/*
7274		 * At least one btrfs_chunk with one stripe must be present,
7275		 * exact stripe count check comes afterwards
7276		 */
7277		len = btrfs_chunk_item_size(1);
7278		if (cur_offset + len > array_size)
7279			goto out_short_read;
7280
7281		num_stripes = btrfs_chunk_num_stripes(sb, chunk);
7282		if (!num_stripes) {
7283			btrfs_err(fs_info,
7284			"invalid number of stripes %u in sys_array at offset %u",
7285				  num_stripes, cur_offset);
7286			ret = -EIO;
7287			break;
7288		}
7289
7290		type = btrfs_chunk_type(sb, chunk);
7291		if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
7292			btrfs_err(fs_info,
7293			"invalid chunk type %llu in sys_array at offset %u",
7294				  type, cur_offset);
 
 
 
7295			ret = -EIO;
7296			break;
7297		}
7298
7299		len = btrfs_chunk_item_size(num_stripes);
7300		if (cur_offset + len > array_size)
7301			goto out_short_read;
7302
7303		ret = read_one_chunk(&key, sb, chunk);
7304		if (ret)
7305			break;
7306
7307		array_ptr += len;
7308		sb_array_offset += len;
7309		cur_offset += len;
7310	}
7311	clear_extent_buffer_uptodate(sb);
7312	free_extent_buffer_stale(sb);
7313	return ret;
7314
7315out_short_read:
7316	btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
7317			len, cur_offset);
7318	clear_extent_buffer_uptodate(sb);
7319	free_extent_buffer_stale(sb);
7320	return -EIO;
7321}
7322
7323/*
7324 * Check if all chunks in the fs are OK for read-write degraded mount
7325 *
7326 * If the @failing_dev is specified, it's accounted as missing.
7327 *
7328 * Return true if all chunks meet the minimal RW mount requirements.
7329 * Return false if any chunk doesn't meet the minimal RW mount requirements.
7330 */
7331bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7332					struct btrfs_device *failing_dev)
7333{
7334	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
7335	struct extent_map *em;
7336	u64 next_start = 0;
7337	bool ret = true;
7338
7339	read_lock(&map_tree->lock);
7340	em = lookup_extent_mapping(map_tree, 0, (u64)-1);
7341	read_unlock(&map_tree->lock);
7342	/* No chunk at all? Return false anyway */
7343	if (!em) {
7344		ret = false;
7345		goto out;
7346	}
7347	while (em) {
7348		struct map_lookup *map;
7349		int missing = 0;
7350		int max_tolerated;
7351		int i;
7352
7353		map = em->map_lookup;
7354		max_tolerated =
7355			btrfs_get_num_tolerated_disk_barrier_failures(
7356					map->type);
7357		for (i = 0; i < map->num_stripes; i++) {
7358			struct btrfs_device *dev = map->stripes[i].dev;
7359
7360			if (!dev || !dev->bdev ||
7361			    test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7362			    dev->last_flush_error)
7363				missing++;
7364			else if (failing_dev && failing_dev == dev)
7365				missing++;
7366		}
7367		if (missing > max_tolerated) {
7368			if (!failing_dev)
7369				btrfs_warn(fs_info,
7370	"chunk %llu missing %d devices, max tolerance is %d for writable mount",
7371				   em->start, missing, max_tolerated);
7372			free_extent_map(em);
7373			ret = false;
7374			goto out;
7375		}
7376		next_start = extent_map_end(em);
7377		free_extent_map(em);
7378
7379		read_lock(&map_tree->lock);
7380		em = lookup_extent_mapping(map_tree, next_start,
7381					   (u64)(-1) - next_start);
7382		read_unlock(&map_tree->lock);
7383	}
7384out:
7385	return ret;
7386}
7387
7388static void readahead_tree_node_children(struct extent_buffer *node)
7389{
7390	int i;
7391	const int nr_items = btrfs_header_nritems(node);
7392
7393	for (i = 0; i < nr_items; i++)
7394		btrfs_readahead_node_child(node, i);
7395}
7396
7397int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7398{
7399	struct btrfs_root *root = fs_info->chunk_root;
7400	struct btrfs_path *path;
7401	struct extent_buffer *leaf;
7402	struct btrfs_key key;
7403	struct btrfs_key found_key;
7404	int ret;
7405	int slot;
7406	int iter_ret = 0;
7407	u64 total_dev = 0;
7408	u64 last_ra_node = 0;
7409
7410	path = btrfs_alloc_path();
7411	if (!path)
7412		return -ENOMEM;
7413
7414	/*
7415	 * uuid_mutex is needed only if we are mounting a sprout FS
7416	 * otherwise we don't need it.
7417	 */
7418	mutex_lock(&uuid_mutex);
 
7419
7420	/*
7421	 * It is possible for mount and umount to race in such a way that
7422	 * we execute this code path, but open_fs_devices failed to clear
7423	 * total_rw_bytes. We certainly want it cleared before reading the
7424	 * device items, so clear it here.
7425	 */
7426	fs_info->fs_devices->total_rw_bytes = 0;
7427
7428	/*
7429	 * Lockdep complains about possible circular locking dependency between
7430	 * a disk's open_mutex (struct gendisk.open_mutex), the rw semaphores
7431	 * used for freeze procection of a fs (struct super_block.s_writers),
7432	 * which we take when starting a transaction, and extent buffers of the
7433	 * chunk tree if we call read_one_dev() while holding a lock on an
7434	 * extent buffer of the chunk tree. Since we are mounting the filesystem
7435	 * and at this point there can't be any concurrent task modifying the
7436	 * chunk tree, to keep it simple, just skip locking on the chunk tree.
7437	 */
7438	ASSERT(!test_bit(BTRFS_FS_OPEN, &fs_info->flags));
7439	path->skip_locking = 1;
7440
7441	/*
7442	 * Read all device items, and then all the chunk items. All
7443	 * device items are found before any chunk item (their object id
7444	 * is smaller than the lowest possible object id for a chunk
7445	 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7446	 */
7447	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7448	key.offset = 0;
7449	key.type = 0;
7450	btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
7451		struct extent_buffer *node = path->nodes[1];
7452
 
 
7453		leaf = path->nodes[0];
7454		slot = path->slots[0];
7455
7456		if (node) {
7457			if (last_ra_node != node->start) {
7458				readahead_tree_node_children(node);
7459				last_ra_node = node->start;
7460			}
 
7461		}
7462		if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7463			struct btrfs_dev_item *dev_item;
7464			dev_item = btrfs_item_ptr(leaf, slot,
 
 
 
 
7465						  struct btrfs_dev_item);
7466			ret = read_one_dev(leaf, dev_item);
7467			if (ret)
7468				goto error;
7469			total_dev++;
7470		} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7471			struct btrfs_chunk *chunk;
7472
7473			/*
7474			 * We are only called at mount time, so no need to take
7475			 * fs_info->chunk_mutex. Plus, to avoid lockdep warnings,
7476			 * we always lock first fs_info->chunk_mutex before
7477			 * acquiring any locks on the chunk tree. This is a
7478			 * requirement for chunk allocation, see the comment on
7479			 * top of btrfs_chunk_alloc() for details.
7480			 */
7481			chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7482			ret = read_one_chunk(&found_key, leaf, chunk);
7483			if (ret)
7484				goto error;
7485		}
 
7486	}
7487	/* Catch error found during iteration */
7488	if (iter_ret < 0) {
7489		ret = iter_ret;
7490		goto error;
7491	}
7492
7493	/*
7494	 * After loading chunk tree, we've got all device information,
7495	 * do another round of validation checks.
7496	 */
7497	if (total_dev != fs_info->fs_devices->total_devices) {
7498		btrfs_warn(fs_info,
7499"super block num_devices %llu mismatch with DEV_ITEM count %llu, will be repaired on next transaction commit",
7500			  btrfs_super_num_devices(fs_info->super_copy),
7501			  total_dev);
7502		fs_info->fs_devices->total_devices = total_dev;
7503		btrfs_set_super_num_devices(fs_info->super_copy, total_dev);
7504	}
7505	if (btrfs_super_total_bytes(fs_info->super_copy) <
7506	    fs_info->fs_devices->total_rw_bytes) {
7507		btrfs_err(fs_info,
7508	"super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7509			  btrfs_super_total_bytes(fs_info->super_copy),
7510			  fs_info->fs_devices->total_rw_bytes);
7511		ret = -EINVAL;
7512		goto error;
7513	}
7514	ret = 0;
7515error:
 
7516	mutex_unlock(&uuid_mutex);
7517
7518	btrfs_free_path(path);
7519	return ret;
7520}
7521
7522int btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7523{
7524	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7525	struct btrfs_device *device;
7526	int ret = 0;
7527
7528	fs_devices->fs_info = fs_info;
7529
7530	mutex_lock(&fs_devices->device_list_mutex);
7531	list_for_each_entry(device, &fs_devices->devices, dev_list)
7532		device->fs_info = fs_info;
7533
7534	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7535		list_for_each_entry(device, &seed_devs->devices, dev_list) {
7536			device->fs_info = fs_info;
7537			ret = btrfs_get_dev_zone_info(device, false);
7538			if (ret)
7539				break;
7540		}
7541
7542		seed_devs->fs_info = fs_info;
7543	}
7544	mutex_unlock(&fs_devices->device_list_mutex);
7545
7546	return ret;
7547}
7548
7549static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7550				 const struct btrfs_dev_stats_item *ptr,
7551				 int index)
7552{
7553	u64 val;
7554
7555	read_extent_buffer(eb, &val,
7556			   offsetof(struct btrfs_dev_stats_item, values) +
7557			    ((unsigned long)ptr) + (index * sizeof(u64)),
7558			   sizeof(val));
7559	return val;
7560}
7561
7562static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7563				      struct btrfs_dev_stats_item *ptr,
7564				      int index, u64 val)
7565{
7566	write_extent_buffer(eb, &val,
7567			    offsetof(struct btrfs_dev_stats_item, values) +
7568			     ((unsigned long)ptr) + (index * sizeof(u64)),
7569			    sizeof(val));
7570}
7571
7572static int btrfs_device_init_dev_stats(struct btrfs_device *device,
7573				       struct btrfs_path *path)
7574{
7575	struct btrfs_dev_stats_item *ptr;
7576	struct extent_buffer *eb;
7577	struct btrfs_key key;
7578	int item_size;
7579	int i, ret, slot;
7580
7581	if (!device->fs_info->dev_root)
7582		return 0;
7583
7584	key.objectid = BTRFS_DEV_STATS_OBJECTID;
7585	key.type = BTRFS_PERSISTENT_ITEM_KEY;
7586	key.offset = device->devid;
7587	ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0);
7588	if (ret) {
7589		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7590			btrfs_dev_stat_set(device, i, 0);
7591		device->dev_stats_valid = 1;
7592		btrfs_release_path(path);
7593		return ret < 0 ? ret : 0;
7594	}
7595	slot = path->slots[0];
7596	eb = path->nodes[0];
7597	item_size = btrfs_item_size(eb, slot);
7598
7599	ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item);
7600
7601	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7602		if (item_size >= (1 + i) * sizeof(__le64))
7603			btrfs_dev_stat_set(device, i,
7604					   btrfs_dev_stats_value(eb, ptr, i));
7605		else
7606			btrfs_dev_stat_set(device, i, 0);
7607	}
7608
7609	device->dev_stats_valid = 1;
7610	btrfs_dev_stat_print_on_load(device);
7611	btrfs_release_path(path);
7612
7613	return 0;
7614}
7615
7616int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7617{
7618	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7619	struct btrfs_device *device;
7620	struct btrfs_path *path = NULL;
7621	int ret = 0;
7622
7623	path = btrfs_alloc_path();
7624	if (!path)
7625		return -ENOMEM;
 
 
7626
7627	mutex_lock(&fs_devices->device_list_mutex);
7628	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7629		ret = btrfs_device_init_dev_stats(device, path);
7630		if (ret)
7631			goto out;
7632	}
7633	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7634		list_for_each_entry(device, &seed_devs->devices, dev_list) {
7635			ret = btrfs_device_init_dev_stats(device, path);
7636			if (ret)
7637				goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7638		}
 
 
 
 
7639	}
7640out:
7641	mutex_unlock(&fs_devices->device_list_mutex);
7642
 
7643	btrfs_free_path(path);
7644	return ret;
7645}
7646
7647static int update_dev_stat_item(struct btrfs_trans_handle *trans,
 
7648				struct btrfs_device *device)
7649{
7650	struct btrfs_fs_info *fs_info = trans->fs_info;
7651	struct btrfs_root *dev_root = fs_info->dev_root;
7652	struct btrfs_path *path;
7653	struct btrfs_key key;
7654	struct extent_buffer *eb;
7655	struct btrfs_dev_stats_item *ptr;
7656	int ret;
7657	int i;
7658
7659	key.objectid = BTRFS_DEV_STATS_OBJECTID;
7660	key.type = BTRFS_PERSISTENT_ITEM_KEY;
7661	key.offset = device->devid;
7662
7663	path = btrfs_alloc_path();
7664	if (!path)
7665		return -ENOMEM;
7666	ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7667	if (ret < 0) {
7668		btrfs_warn_in_rcu(fs_info,
7669			"error %d while searching for dev_stats item for device %s",
7670				  ret, btrfs_dev_name(device));
7671		goto out;
7672	}
7673
7674	if (ret == 0 &&
7675	    btrfs_item_size(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7676		/* need to delete old one and insert a new one */
7677		ret = btrfs_del_item(trans, dev_root, path);
7678		if (ret != 0) {
7679			btrfs_warn_in_rcu(fs_info,
7680				"delete too small dev_stats item for device %s failed %d",
7681					  btrfs_dev_name(device), ret);
7682			goto out;
7683		}
7684		ret = 1;
7685	}
7686
7687	if (ret == 1) {
7688		/* need to insert a new item */
7689		btrfs_release_path(path);
7690		ret = btrfs_insert_empty_item(trans, dev_root, path,
7691					      &key, sizeof(*ptr));
7692		if (ret < 0) {
7693			btrfs_warn_in_rcu(fs_info,
7694				"insert dev_stats item for device %s failed %d",
7695				btrfs_dev_name(device), ret);
7696			goto out;
7697		}
7698	}
7699
7700	eb = path->nodes[0];
7701	ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7702	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7703		btrfs_set_dev_stats_value(eb, ptr, i,
7704					  btrfs_dev_stat_read(device, i));
7705	btrfs_mark_buffer_dirty(eb);
7706
7707out:
7708	btrfs_free_path(path);
7709	return ret;
7710}
7711
7712/*
7713 * called from commit_transaction. Writes all changed device stats to disk.
7714 */
7715int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
 
7716{
7717	struct btrfs_fs_info *fs_info = trans->fs_info;
7718	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7719	struct btrfs_device *device;
7720	int stats_cnt;
7721	int ret = 0;
7722
7723	mutex_lock(&fs_devices->device_list_mutex);
7724	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7725		stats_cnt = atomic_read(&device->dev_stats_ccnt);
7726		if (!device->dev_stats_valid || stats_cnt == 0)
7727			continue;
7728
7729
7730		/*
7731		 * There is a LOAD-LOAD control dependency between the value of
7732		 * dev_stats_ccnt and updating the on-disk values which requires
7733		 * reading the in-memory counters. Such control dependencies
7734		 * require explicit read memory barriers.
7735		 *
7736		 * This memory barriers pairs with smp_mb__before_atomic in
7737		 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7738		 * barrier implied by atomic_xchg in
7739		 * btrfs_dev_stats_read_and_reset
7740		 */
7741		smp_rmb();
7742
7743		ret = update_dev_stat_item(trans, device);
7744		if (!ret)
7745			atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7746	}
7747	mutex_unlock(&fs_devices->device_list_mutex);
7748
7749	return ret;
7750}
7751
7752void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7753{
7754	btrfs_dev_stat_inc(dev, index);
 
 
7755
 
 
7756	if (!dev->dev_stats_valid)
7757		return;
7758	btrfs_err_rl_in_rcu(dev->fs_info,
7759		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7760			   btrfs_dev_name(dev),
7761			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7762			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7763			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7764			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7765			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
 
 
7766}
7767
7768static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7769{
7770	int i;
7771
7772	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7773		if (btrfs_dev_stat_read(dev, i) != 0)
7774			break;
7775	if (i == BTRFS_DEV_STAT_VALUES_MAX)
7776		return; /* all values == 0, suppress message */
7777
7778	btrfs_info_in_rcu(dev->fs_info,
7779		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7780	       btrfs_dev_name(dev),
7781	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7782	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7783	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7784	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7785	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7786}
7787
7788int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7789			struct btrfs_ioctl_get_dev_stats *stats)
 
7790{
7791	BTRFS_DEV_LOOKUP_ARGS(args);
7792	struct btrfs_device *dev;
7793	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7794	int i;
7795
7796	mutex_lock(&fs_devices->device_list_mutex);
7797	args.devid = stats->devid;
7798	dev = btrfs_find_device(fs_info->fs_devices, &args);
7799	mutex_unlock(&fs_devices->device_list_mutex);
7800
7801	if (!dev) {
7802		btrfs_warn(fs_info, "get dev_stats failed, device not found");
 
7803		return -ENODEV;
7804	} else if (!dev->dev_stats_valid) {
7805		btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
 
7806		return -ENODEV;
7807	} else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7808		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7809			if (stats->nr_items > i)
7810				stats->values[i] =
7811					btrfs_dev_stat_read_and_reset(dev, i);
7812			else
7813				btrfs_dev_stat_set(dev, i, 0);
7814		}
7815		btrfs_info(fs_info, "device stats zeroed by %s (%d)",
7816			   current->comm, task_pid_nr(current));
7817	} else {
7818		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7819			if (stats->nr_items > i)
7820				stats->values[i] = btrfs_dev_stat_read(dev, i);
7821	}
7822	if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7823		stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7824	return 0;
7825}
7826
7827/*
7828 * Update the size and bytes used for each device where it changed.  This is
7829 * delayed since we would otherwise get errors while writing out the
7830 * superblocks.
7831 *
7832 * Must be invoked during transaction commit.
7833 */
7834void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
7835{
7836	struct btrfs_device *curr, *next;
7837
7838	ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
7839
7840	if (list_empty(&trans->dev_update_list))
7841		return;
7842
7843	/*
7844	 * We don't need the device_list_mutex here.  This list is owned by the
7845	 * transaction and the transaction must complete before the device is
7846	 * released.
7847	 */
7848	mutex_lock(&trans->fs_info->chunk_mutex);
7849	list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7850				 post_commit_list) {
7851		list_del_init(&curr->post_commit_list);
7852		curr->commit_total_bytes = curr->disk_total_bytes;
7853		curr->commit_bytes_used = curr->bytes_used;
7854	}
7855	mutex_unlock(&trans->fs_info->chunk_mutex);
7856}
7857
7858/*
7859 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7860 */
7861int btrfs_bg_type_to_factor(u64 flags)
7862{
7863	const int index = btrfs_bg_flags_to_raid_index(flags);
7864
7865	return btrfs_raid_array[index].ncopies;
7866}
7867
7868
7869
7870static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7871				 u64 chunk_offset, u64 devid,
7872				 u64 physical_offset, u64 physical_len)
7873{
7874	struct btrfs_dev_lookup_args args = { .devid = devid };
7875	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7876	struct extent_map *em;
7877	struct map_lookup *map;
7878	struct btrfs_device *dev;
7879	u64 stripe_len;
7880	bool found = false;
7881	int ret = 0;
7882	int i;
7883
7884	read_lock(&em_tree->lock);
7885	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
7886	read_unlock(&em_tree->lock);
7887
7888	if (!em) {
7889		btrfs_err(fs_info,
7890"dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7891			  physical_offset, devid);
7892		ret = -EUCLEAN;
7893		goto out;
7894	}
7895
7896	map = em->map_lookup;
7897	stripe_len = btrfs_calc_stripe_length(em);
7898	if (physical_len != stripe_len) {
7899		btrfs_err(fs_info,
7900"dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7901			  physical_offset, devid, em->start, physical_len,
7902			  stripe_len);
7903		ret = -EUCLEAN;
7904		goto out;
7905	}
7906
7907	/*
7908	 * Very old mkfs.btrfs (before v4.1) will not respect the reserved
7909	 * space. Although kernel can handle it without problem, better to warn
7910	 * the users.
7911	 */
7912	if (physical_offset < BTRFS_DEVICE_RANGE_RESERVED)
7913		btrfs_warn(fs_info,
7914		"devid %llu physical %llu len %llu inside the reserved space",
7915			   devid, physical_offset, physical_len);
7916
7917	for (i = 0; i < map->num_stripes; i++) {
7918		if (map->stripes[i].dev->devid == devid &&
7919		    map->stripes[i].physical == physical_offset) {
7920			found = true;
7921			if (map->verified_stripes >= map->num_stripes) {
7922				btrfs_err(fs_info,
7923				"too many dev extents for chunk %llu found",
7924					  em->start);
7925				ret = -EUCLEAN;
7926				goto out;
7927			}
7928			map->verified_stripes++;
7929			break;
7930		}
7931	}
7932	if (!found) {
7933		btrfs_err(fs_info,
7934	"dev extent physical offset %llu devid %llu has no corresponding chunk",
7935			physical_offset, devid);
7936		ret = -EUCLEAN;
7937	}
7938
7939	/* Make sure no dev extent is beyond device boundary */
7940	dev = btrfs_find_device(fs_info->fs_devices, &args);
7941	if (!dev) {
7942		btrfs_err(fs_info, "failed to find devid %llu", devid);
7943		ret = -EUCLEAN;
7944		goto out;
7945	}
7946
7947	if (physical_offset + physical_len > dev->disk_total_bytes) {
7948		btrfs_err(fs_info,
7949"dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
7950			  devid, physical_offset, physical_len,
7951			  dev->disk_total_bytes);
7952		ret = -EUCLEAN;
7953		goto out;
7954	}
7955
7956	if (dev->zone_info) {
7957		u64 zone_size = dev->zone_info->zone_size;
7958
7959		if (!IS_ALIGNED(physical_offset, zone_size) ||
7960		    !IS_ALIGNED(physical_len, zone_size)) {
7961			btrfs_err(fs_info,
7962"zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone",
7963				  devid, physical_offset, physical_len);
7964			ret = -EUCLEAN;
7965			goto out;
7966		}
7967	}
7968
7969out:
7970	free_extent_map(em);
7971	return ret;
7972}
7973
7974static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
7975{
7976	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7977	struct extent_map *em;
7978	struct rb_node *node;
7979	int ret = 0;
7980
7981	read_lock(&em_tree->lock);
7982	for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
7983		em = rb_entry(node, struct extent_map, rb_node);
7984		if (em->map_lookup->num_stripes !=
7985		    em->map_lookup->verified_stripes) {
7986			btrfs_err(fs_info,
7987			"chunk %llu has missing dev extent, have %d expect %d",
7988				  em->start, em->map_lookup->verified_stripes,
7989				  em->map_lookup->num_stripes);
7990			ret = -EUCLEAN;
7991			goto out;
7992		}
7993	}
7994out:
7995	read_unlock(&em_tree->lock);
7996	return ret;
7997}
7998
7999/*
8000 * Ensure that all dev extents are mapped to correct chunk, otherwise
8001 * later chunk allocation/free would cause unexpected behavior.
8002 *
8003 * NOTE: This will iterate through the whole device tree, which should be of
8004 * the same size level as the chunk tree.  This slightly increases mount time.
8005 */
8006int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
8007{
8008	struct btrfs_path *path;
8009	struct btrfs_root *root = fs_info->dev_root;
8010	struct btrfs_key key;
8011	u64 prev_devid = 0;
8012	u64 prev_dev_ext_end = 0;
8013	int ret = 0;
8014
8015	/*
8016	 * We don't have a dev_root because we mounted with ignorebadroots and
8017	 * failed to load the root, so we want to skip the verification in this
8018	 * case for sure.
8019	 *
8020	 * However if the dev root is fine, but the tree itself is corrupted
8021	 * we'd still fail to mount.  This verification is only to make sure
8022	 * writes can happen safely, so instead just bypass this check
8023	 * completely in the case of IGNOREBADROOTS.
8024	 */
8025	if (btrfs_test_opt(fs_info, IGNOREBADROOTS))
8026		return 0;
8027
8028	key.objectid = 1;
8029	key.type = BTRFS_DEV_EXTENT_KEY;
8030	key.offset = 0;
8031
8032	path = btrfs_alloc_path();
8033	if (!path)
8034		return -ENOMEM;
8035
8036	path->reada = READA_FORWARD;
8037	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8038	if (ret < 0)
8039		goto out;
8040
8041	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
8042		ret = btrfs_next_leaf(root, path);
8043		if (ret < 0)
8044			goto out;
8045		/* No dev extents at all? Not good */
8046		if (ret > 0) {
8047			ret = -EUCLEAN;
8048			goto out;
8049		}
8050	}
8051	while (1) {
8052		struct extent_buffer *leaf = path->nodes[0];
8053		struct btrfs_dev_extent *dext;
8054		int slot = path->slots[0];
8055		u64 chunk_offset;
8056		u64 physical_offset;
8057		u64 physical_len;
8058		u64 devid;
8059
8060		btrfs_item_key_to_cpu(leaf, &key, slot);
8061		if (key.type != BTRFS_DEV_EXTENT_KEY)
8062			break;
8063		devid = key.objectid;
8064		physical_offset = key.offset;
8065
8066		dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
8067		chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
8068		physical_len = btrfs_dev_extent_length(leaf, dext);
8069
8070		/* Check if this dev extent overlaps with the previous one */
8071		if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
8072			btrfs_err(fs_info,
8073"dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
8074				  devid, physical_offset, prev_dev_ext_end);
8075			ret = -EUCLEAN;
8076			goto out;
8077		}
8078
8079		ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
8080					    physical_offset, physical_len);
8081		if (ret < 0)
8082			goto out;
8083		prev_devid = devid;
8084		prev_dev_ext_end = physical_offset + physical_len;
8085
8086		ret = btrfs_next_item(root, path);
8087		if (ret < 0)
8088			goto out;
8089		if (ret > 0) {
8090			ret = 0;
8091			break;
8092		}
8093	}
8094
8095	/* Ensure all chunks have corresponding dev extents */
8096	ret = verify_chunk_dev_extent_mapping(fs_info);
8097out:
8098	btrfs_free_path(path);
8099	return ret;
8100}
8101
8102/*
8103 * Check whether the given block group or device is pinned by any inode being
8104 * used as a swapfile.
8105 */
8106bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
8107{
8108	struct btrfs_swapfile_pin *sp;
8109	struct rb_node *node;
8110
8111	spin_lock(&fs_info->swapfile_pins_lock);
8112	node = fs_info->swapfile_pins.rb_node;
8113	while (node) {
8114		sp = rb_entry(node, struct btrfs_swapfile_pin, node);
8115		if (ptr < sp->ptr)
8116			node = node->rb_left;
8117		else if (ptr > sp->ptr)
8118			node = node->rb_right;
8119		else
8120			break;
8121	}
8122	spin_unlock(&fs_info->swapfile_pins_lock);
8123	return node != NULL;
8124}
8125
8126static int relocating_repair_kthread(void *data)
8127{
8128	struct btrfs_block_group *cache = data;
8129	struct btrfs_fs_info *fs_info = cache->fs_info;
8130	u64 target;
8131	int ret = 0;
8132
8133	target = cache->start;
8134	btrfs_put_block_group(cache);
8135
8136	sb_start_write(fs_info->sb);
8137	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
8138		btrfs_info(fs_info,
8139			   "zoned: skip relocating block group %llu to repair: EBUSY",
8140			   target);
8141		sb_end_write(fs_info->sb);
8142		return -EBUSY;
8143	}
8144
8145	mutex_lock(&fs_info->reclaim_bgs_lock);
8146
8147	/* Ensure block group still exists */
8148	cache = btrfs_lookup_block_group(fs_info, target);
8149	if (!cache)
8150		goto out;
8151
8152	if (!test_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags))
8153		goto out;
8154
8155	ret = btrfs_may_alloc_data_chunk(fs_info, target);
8156	if (ret < 0)
8157		goto out;
8158
8159	btrfs_info(fs_info,
8160		   "zoned: relocating block group %llu to repair IO failure",
8161		   target);
8162	ret = btrfs_relocate_chunk(fs_info, target);
8163
8164out:
8165	if (cache)
8166		btrfs_put_block_group(cache);
8167	mutex_unlock(&fs_info->reclaim_bgs_lock);
8168	btrfs_exclop_finish(fs_info);
8169	sb_end_write(fs_info->sb);
8170
8171	return ret;
8172}
8173
8174bool btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical)
8175{
8176	struct btrfs_block_group *cache;
8177
8178	if (!btrfs_is_zoned(fs_info))
8179		return false;
8180
8181	/* Do not attempt to repair in degraded state */
8182	if (btrfs_test_opt(fs_info, DEGRADED))
8183		return true;
8184
8185	cache = btrfs_lookup_block_group(fs_info, logical);
8186	if (!cache)
8187		return true;
8188
8189	if (test_and_set_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags)) {
8190		btrfs_put_block_group(cache);
8191		return true;
8192	}
8193
8194	kthread_run(relocating_repair_kthread, cache,
8195		    "btrfs-relocating-repair");
8196
8197	return true;
8198}