Loading...
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18#include <linux/sched.h>
19#include <linux/bio.h>
20#include <linux/slab.h>
21#include <linux/buffer_head.h>
22#include <linux/blkdev.h>
23#include <linux/random.h>
24#include <linux/iocontext.h>
25#include <linux/capability.h>
26#include <linux/ratelimit.h>
27#include <linux/kthread.h>
28#include <asm/div64.h>
29#include "compat.h"
30#include "ctree.h"
31#include "extent_map.h"
32#include "disk-io.h"
33#include "transaction.h"
34#include "print-tree.h"
35#include "volumes.h"
36#include "async-thread.h"
37#include "check-integrity.h"
38#include "rcu-string.h"
39
40static int init_first_rw_device(struct btrfs_trans_handle *trans,
41 struct btrfs_root *root,
42 struct btrfs_device *device);
43static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
44static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
45static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
46
47static DEFINE_MUTEX(uuid_mutex);
48static LIST_HEAD(fs_uuids);
49
50static void lock_chunks(struct btrfs_root *root)
51{
52 mutex_lock(&root->fs_info->chunk_mutex);
53}
54
55static void unlock_chunks(struct btrfs_root *root)
56{
57 mutex_unlock(&root->fs_info->chunk_mutex);
58}
59
60static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
61{
62 struct btrfs_device *device;
63 WARN_ON(fs_devices->opened);
64 while (!list_empty(&fs_devices->devices)) {
65 device = list_entry(fs_devices->devices.next,
66 struct btrfs_device, dev_list);
67 list_del(&device->dev_list);
68 rcu_string_free(device->name);
69 kfree(device);
70 }
71 kfree(fs_devices);
72}
73
74void btrfs_cleanup_fs_uuids(void)
75{
76 struct btrfs_fs_devices *fs_devices;
77
78 while (!list_empty(&fs_uuids)) {
79 fs_devices = list_entry(fs_uuids.next,
80 struct btrfs_fs_devices, list);
81 list_del(&fs_devices->list);
82 free_fs_devices(fs_devices);
83 }
84}
85
86static noinline struct btrfs_device *__find_device(struct list_head *head,
87 u64 devid, u8 *uuid)
88{
89 struct btrfs_device *dev;
90
91 list_for_each_entry(dev, head, dev_list) {
92 if (dev->devid == devid &&
93 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
94 return dev;
95 }
96 }
97 return NULL;
98}
99
100static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
101{
102 struct btrfs_fs_devices *fs_devices;
103
104 list_for_each_entry(fs_devices, &fs_uuids, list) {
105 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
106 return fs_devices;
107 }
108 return NULL;
109}
110
111static void requeue_list(struct btrfs_pending_bios *pending_bios,
112 struct bio *head, struct bio *tail)
113{
114
115 struct bio *old_head;
116
117 old_head = pending_bios->head;
118 pending_bios->head = head;
119 if (pending_bios->tail)
120 tail->bi_next = old_head;
121 else
122 pending_bios->tail = tail;
123}
124
125/*
126 * we try to collect pending bios for a device so we don't get a large
127 * number of procs sending bios down to the same device. This greatly
128 * improves the schedulers ability to collect and merge the bios.
129 *
130 * But, it also turns into a long list of bios to process and that is sure
131 * to eventually make the worker thread block. The solution here is to
132 * make some progress and then put this work struct back at the end of
133 * the list if the block device is congested. This way, multiple devices
134 * can make progress from a single worker thread.
135 */
136static noinline void run_scheduled_bios(struct btrfs_device *device)
137{
138 struct bio *pending;
139 struct backing_dev_info *bdi;
140 struct btrfs_fs_info *fs_info;
141 struct btrfs_pending_bios *pending_bios;
142 struct bio *tail;
143 struct bio *cur;
144 int again = 0;
145 unsigned long num_run;
146 unsigned long batch_run = 0;
147 unsigned long limit;
148 unsigned long last_waited = 0;
149 int force_reg = 0;
150 int sync_pending = 0;
151 struct blk_plug plug;
152
153 /*
154 * this function runs all the bios we've collected for
155 * a particular device. We don't want to wander off to
156 * another device without first sending all of these down.
157 * So, setup a plug here and finish it off before we return
158 */
159 blk_start_plug(&plug);
160
161 bdi = blk_get_backing_dev_info(device->bdev);
162 fs_info = device->dev_root->fs_info;
163 limit = btrfs_async_submit_limit(fs_info);
164 limit = limit * 2 / 3;
165
166loop:
167 spin_lock(&device->io_lock);
168
169loop_lock:
170 num_run = 0;
171
172 /* take all the bios off the list at once and process them
173 * later on (without the lock held). But, remember the
174 * tail and other pointers so the bios can be properly reinserted
175 * into the list if we hit congestion
176 */
177 if (!force_reg && device->pending_sync_bios.head) {
178 pending_bios = &device->pending_sync_bios;
179 force_reg = 1;
180 } else {
181 pending_bios = &device->pending_bios;
182 force_reg = 0;
183 }
184
185 pending = pending_bios->head;
186 tail = pending_bios->tail;
187 WARN_ON(pending && !tail);
188
189 /*
190 * if pending was null this time around, no bios need processing
191 * at all and we can stop. Otherwise it'll loop back up again
192 * and do an additional check so no bios are missed.
193 *
194 * device->running_pending is used to synchronize with the
195 * schedule_bio code.
196 */
197 if (device->pending_sync_bios.head == NULL &&
198 device->pending_bios.head == NULL) {
199 again = 0;
200 device->running_pending = 0;
201 } else {
202 again = 1;
203 device->running_pending = 1;
204 }
205
206 pending_bios->head = NULL;
207 pending_bios->tail = NULL;
208
209 spin_unlock(&device->io_lock);
210
211 while (pending) {
212
213 rmb();
214 /* we want to work on both lists, but do more bios on the
215 * sync list than the regular list
216 */
217 if ((num_run > 32 &&
218 pending_bios != &device->pending_sync_bios &&
219 device->pending_sync_bios.head) ||
220 (num_run > 64 && pending_bios == &device->pending_sync_bios &&
221 device->pending_bios.head)) {
222 spin_lock(&device->io_lock);
223 requeue_list(pending_bios, pending, tail);
224 goto loop_lock;
225 }
226
227 cur = pending;
228 pending = pending->bi_next;
229 cur->bi_next = NULL;
230 atomic_dec(&fs_info->nr_async_bios);
231
232 if (atomic_read(&fs_info->nr_async_bios) < limit &&
233 waitqueue_active(&fs_info->async_submit_wait))
234 wake_up(&fs_info->async_submit_wait);
235
236 BUG_ON(atomic_read(&cur->bi_cnt) == 0);
237
238 /*
239 * if we're doing the sync list, record that our
240 * plug has some sync requests on it
241 *
242 * If we're doing the regular list and there are
243 * sync requests sitting around, unplug before
244 * we add more
245 */
246 if (pending_bios == &device->pending_sync_bios) {
247 sync_pending = 1;
248 } else if (sync_pending) {
249 blk_finish_plug(&plug);
250 blk_start_plug(&plug);
251 sync_pending = 0;
252 }
253
254 btrfsic_submit_bio(cur->bi_rw, cur);
255 num_run++;
256 batch_run++;
257 if (need_resched())
258 cond_resched();
259
260 /*
261 * we made progress, there is more work to do and the bdi
262 * is now congested. Back off and let other work structs
263 * run instead
264 */
265 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
266 fs_info->fs_devices->open_devices > 1) {
267 struct io_context *ioc;
268
269 ioc = current->io_context;
270
271 /*
272 * the main goal here is that we don't want to
273 * block if we're going to be able to submit
274 * more requests without blocking.
275 *
276 * This code does two great things, it pokes into
277 * the elevator code from a filesystem _and_
278 * it makes assumptions about how batching works.
279 */
280 if (ioc && ioc->nr_batch_requests > 0 &&
281 time_before(jiffies, ioc->last_waited + HZ/50UL) &&
282 (last_waited == 0 ||
283 ioc->last_waited == last_waited)) {
284 /*
285 * we want to go through our batch of
286 * requests and stop. So, we copy out
287 * the ioc->last_waited time and test
288 * against it before looping
289 */
290 last_waited = ioc->last_waited;
291 if (need_resched())
292 cond_resched();
293 continue;
294 }
295 spin_lock(&device->io_lock);
296 requeue_list(pending_bios, pending, tail);
297 device->running_pending = 1;
298
299 spin_unlock(&device->io_lock);
300 btrfs_requeue_work(&device->work);
301 goto done;
302 }
303 /* unplug every 64 requests just for good measure */
304 if (batch_run % 64 == 0) {
305 blk_finish_plug(&plug);
306 blk_start_plug(&plug);
307 sync_pending = 0;
308 }
309 }
310
311 cond_resched();
312 if (again)
313 goto loop;
314
315 spin_lock(&device->io_lock);
316 if (device->pending_bios.head || device->pending_sync_bios.head)
317 goto loop_lock;
318 spin_unlock(&device->io_lock);
319
320done:
321 blk_finish_plug(&plug);
322}
323
324static void pending_bios_fn(struct btrfs_work *work)
325{
326 struct btrfs_device *device;
327
328 device = container_of(work, struct btrfs_device, work);
329 run_scheduled_bios(device);
330}
331
332static noinline int device_list_add(const char *path,
333 struct btrfs_super_block *disk_super,
334 u64 devid, struct btrfs_fs_devices **fs_devices_ret)
335{
336 struct btrfs_device *device;
337 struct btrfs_fs_devices *fs_devices;
338 struct rcu_string *name;
339 u64 found_transid = btrfs_super_generation(disk_super);
340
341 fs_devices = find_fsid(disk_super->fsid);
342 if (!fs_devices) {
343 fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
344 if (!fs_devices)
345 return -ENOMEM;
346 INIT_LIST_HEAD(&fs_devices->devices);
347 INIT_LIST_HEAD(&fs_devices->alloc_list);
348 list_add(&fs_devices->list, &fs_uuids);
349 memcpy(fs_devices->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
350 fs_devices->latest_devid = devid;
351 fs_devices->latest_trans = found_transid;
352 mutex_init(&fs_devices->device_list_mutex);
353 device = NULL;
354 } else {
355 device = __find_device(&fs_devices->devices, devid,
356 disk_super->dev_item.uuid);
357 }
358 if (!device) {
359 if (fs_devices->opened)
360 return -EBUSY;
361
362 device = kzalloc(sizeof(*device), GFP_NOFS);
363 if (!device) {
364 /* we can safely leave the fs_devices entry around */
365 return -ENOMEM;
366 }
367 device->devid = devid;
368 device->dev_stats_valid = 0;
369 device->work.func = pending_bios_fn;
370 memcpy(device->uuid, disk_super->dev_item.uuid,
371 BTRFS_UUID_SIZE);
372 spin_lock_init(&device->io_lock);
373
374 name = rcu_string_strdup(path, GFP_NOFS);
375 if (!name) {
376 kfree(device);
377 return -ENOMEM;
378 }
379 rcu_assign_pointer(device->name, name);
380 INIT_LIST_HEAD(&device->dev_alloc_list);
381
382 /* init readahead state */
383 spin_lock_init(&device->reada_lock);
384 device->reada_curr_zone = NULL;
385 atomic_set(&device->reada_in_flight, 0);
386 device->reada_next = 0;
387 INIT_RADIX_TREE(&device->reada_zones, GFP_NOFS & ~__GFP_WAIT);
388 INIT_RADIX_TREE(&device->reada_extents, GFP_NOFS & ~__GFP_WAIT);
389
390 mutex_lock(&fs_devices->device_list_mutex);
391 list_add_rcu(&device->dev_list, &fs_devices->devices);
392 mutex_unlock(&fs_devices->device_list_mutex);
393
394 device->fs_devices = fs_devices;
395 fs_devices->num_devices++;
396 } else if (!device->name || strcmp(device->name->str, path)) {
397 name = rcu_string_strdup(path, GFP_NOFS);
398 if (!name)
399 return -ENOMEM;
400 rcu_string_free(device->name);
401 rcu_assign_pointer(device->name, name);
402 if (device->missing) {
403 fs_devices->missing_devices--;
404 device->missing = 0;
405 }
406 }
407
408 if (found_transid > fs_devices->latest_trans) {
409 fs_devices->latest_devid = devid;
410 fs_devices->latest_trans = found_transid;
411 }
412 *fs_devices_ret = fs_devices;
413 return 0;
414}
415
416static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
417{
418 struct btrfs_fs_devices *fs_devices;
419 struct btrfs_device *device;
420 struct btrfs_device *orig_dev;
421
422 fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
423 if (!fs_devices)
424 return ERR_PTR(-ENOMEM);
425
426 INIT_LIST_HEAD(&fs_devices->devices);
427 INIT_LIST_HEAD(&fs_devices->alloc_list);
428 INIT_LIST_HEAD(&fs_devices->list);
429 mutex_init(&fs_devices->device_list_mutex);
430 fs_devices->latest_devid = orig->latest_devid;
431 fs_devices->latest_trans = orig->latest_trans;
432 memcpy(fs_devices->fsid, orig->fsid, sizeof(fs_devices->fsid));
433
434 /* We have held the volume lock, it is safe to get the devices. */
435 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
436 struct rcu_string *name;
437
438 device = kzalloc(sizeof(*device), GFP_NOFS);
439 if (!device)
440 goto error;
441
442 /*
443 * This is ok to do without rcu read locked because we hold the
444 * uuid mutex so nothing we touch in here is going to disappear.
445 */
446 name = rcu_string_strdup(orig_dev->name->str, GFP_NOFS);
447 if (!name) {
448 kfree(device);
449 goto error;
450 }
451 rcu_assign_pointer(device->name, name);
452
453 device->devid = orig_dev->devid;
454 device->work.func = pending_bios_fn;
455 memcpy(device->uuid, orig_dev->uuid, sizeof(device->uuid));
456 spin_lock_init(&device->io_lock);
457 INIT_LIST_HEAD(&device->dev_list);
458 INIT_LIST_HEAD(&device->dev_alloc_list);
459
460 list_add(&device->dev_list, &fs_devices->devices);
461 device->fs_devices = fs_devices;
462 fs_devices->num_devices++;
463 }
464 return fs_devices;
465error:
466 free_fs_devices(fs_devices);
467 return ERR_PTR(-ENOMEM);
468}
469
470void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices)
471{
472 struct btrfs_device *device, *next;
473
474 struct block_device *latest_bdev = NULL;
475 u64 latest_devid = 0;
476 u64 latest_transid = 0;
477
478 mutex_lock(&uuid_mutex);
479again:
480 /* This is the initialized path, it is safe to release the devices. */
481 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
482 if (device->in_fs_metadata) {
483 if (!latest_transid ||
484 device->generation > latest_transid) {
485 latest_devid = device->devid;
486 latest_transid = device->generation;
487 latest_bdev = device->bdev;
488 }
489 continue;
490 }
491
492 if (device->bdev) {
493 blkdev_put(device->bdev, device->mode);
494 device->bdev = NULL;
495 fs_devices->open_devices--;
496 }
497 if (device->writeable) {
498 list_del_init(&device->dev_alloc_list);
499 device->writeable = 0;
500 fs_devices->rw_devices--;
501 }
502 list_del_init(&device->dev_list);
503 fs_devices->num_devices--;
504 rcu_string_free(device->name);
505 kfree(device);
506 }
507
508 if (fs_devices->seed) {
509 fs_devices = fs_devices->seed;
510 goto again;
511 }
512
513 fs_devices->latest_bdev = latest_bdev;
514 fs_devices->latest_devid = latest_devid;
515 fs_devices->latest_trans = latest_transid;
516
517 mutex_unlock(&uuid_mutex);
518}
519
520static void __free_device(struct work_struct *work)
521{
522 struct btrfs_device *device;
523
524 device = container_of(work, struct btrfs_device, rcu_work);
525
526 if (device->bdev)
527 blkdev_put(device->bdev, device->mode);
528
529 rcu_string_free(device->name);
530 kfree(device);
531}
532
533static void free_device(struct rcu_head *head)
534{
535 struct btrfs_device *device;
536
537 device = container_of(head, struct btrfs_device, rcu);
538
539 INIT_WORK(&device->rcu_work, __free_device);
540 schedule_work(&device->rcu_work);
541}
542
543static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
544{
545 struct btrfs_device *device;
546
547 if (--fs_devices->opened > 0)
548 return 0;
549
550 mutex_lock(&fs_devices->device_list_mutex);
551 list_for_each_entry(device, &fs_devices->devices, dev_list) {
552 struct btrfs_device *new_device;
553 struct rcu_string *name;
554
555 if (device->bdev)
556 fs_devices->open_devices--;
557
558 if (device->writeable) {
559 list_del_init(&device->dev_alloc_list);
560 fs_devices->rw_devices--;
561 }
562
563 if (device->can_discard)
564 fs_devices->num_can_discard--;
565
566 new_device = kmalloc(sizeof(*new_device), GFP_NOFS);
567 BUG_ON(!new_device); /* -ENOMEM */
568 memcpy(new_device, device, sizeof(*new_device));
569
570 /* Safe because we are under uuid_mutex */
571 name = rcu_string_strdup(device->name->str, GFP_NOFS);
572 BUG_ON(device->name && !name); /* -ENOMEM */
573 rcu_assign_pointer(new_device->name, name);
574 new_device->bdev = NULL;
575 new_device->writeable = 0;
576 new_device->in_fs_metadata = 0;
577 new_device->can_discard = 0;
578 list_replace_rcu(&device->dev_list, &new_device->dev_list);
579
580 call_rcu(&device->rcu, free_device);
581 }
582 mutex_unlock(&fs_devices->device_list_mutex);
583
584 WARN_ON(fs_devices->open_devices);
585 WARN_ON(fs_devices->rw_devices);
586 fs_devices->opened = 0;
587 fs_devices->seeding = 0;
588
589 return 0;
590}
591
592int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
593{
594 struct btrfs_fs_devices *seed_devices = NULL;
595 int ret;
596
597 mutex_lock(&uuid_mutex);
598 ret = __btrfs_close_devices(fs_devices);
599 if (!fs_devices->opened) {
600 seed_devices = fs_devices->seed;
601 fs_devices->seed = NULL;
602 }
603 mutex_unlock(&uuid_mutex);
604
605 while (seed_devices) {
606 fs_devices = seed_devices;
607 seed_devices = fs_devices->seed;
608 __btrfs_close_devices(fs_devices);
609 free_fs_devices(fs_devices);
610 }
611 return ret;
612}
613
614static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
615 fmode_t flags, void *holder)
616{
617 struct request_queue *q;
618 struct block_device *bdev;
619 struct list_head *head = &fs_devices->devices;
620 struct btrfs_device *device;
621 struct block_device *latest_bdev = NULL;
622 struct buffer_head *bh;
623 struct btrfs_super_block *disk_super;
624 u64 latest_devid = 0;
625 u64 latest_transid = 0;
626 u64 devid;
627 int seeding = 1;
628 int ret = 0;
629
630 flags |= FMODE_EXCL;
631
632 list_for_each_entry(device, head, dev_list) {
633 if (device->bdev)
634 continue;
635 if (!device->name)
636 continue;
637
638 bdev = blkdev_get_by_path(device->name->str, flags, holder);
639 if (IS_ERR(bdev)) {
640 printk(KERN_INFO "open %s failed\n", device->name->str);
641 goto error;
642 }
643 filemap_write_and_wait(bdev->bd_inode->i_mapping);
644 invalidate_bdev(bdev);
645 set_blocksize(bdev, 4096);
646
647 bh = btrfs_read_dev_super(bdev);
648 if (!bh)
649 goto error_close;
650
651 disk_super = (struct btrfs_super_block *)bh->b_data;
652 devid = btrfs_stack_device_id(&disk_super->dev_item);
653 if (devid != device->devid)
654 goto error_brelse;
655
656 if (memcmp(device->uuid, disk_super->dev_item.uuid,
657 BTRFS_UUID_SIZE))
658 goto error_brelse;
659
660 device->generation = btrfs_super_generation(disk_super);
661 if (!latest_transid || device->generation > latest_transid) {
662 latest_devid = devid;
663 latest_transid = device->generation;
664 latest_bdev = bdev;
665 }
666
667 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
668 device->writeable = 0;
669 } else {
670 device->writeable = !bdev_read_only(bdev);
671 seeding = 0;
672 }
673
674 q = bdev_get_queue(bdev);
675 if (blk_queue_discard(q)) {
676 device->can_discard = 1;
677 fs_devices->num_can_discard++;
678 }
679
680 device->bdev = bdev;
681 device->in_fs_metadata = 0;
682 device->mode = flags;
683
684 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
685 fs_devices->rotating = 1;
686
687 fs_devices->open_devices++;
688 if (device->writeable) {
689 fs_devices->rw_devices++;
690 list_add(&device->dev_alloc_list,
691 &fs_devices->alloc_list);
692 }
693 brelse(bh);
694 continue;
695
696error_brelse:
697 brelse(bh);
698error_close:
699 blkdev_put(bdev, flags);
700error:
701 continue;
702 }
703 if (fs_devices->open_devices == 0) {
704 ret = -EINVAL;
705 goto out;
706 }
707 fs_devices->seeding = seeding;
708 fs_devices->opened = 1;
709 fs_devices->latest_bdev = latest_bdev;
710 fs_devices->latest_devid = latest_devid;
711 fs_devices->latest_trans = latest_transid;
712 fs_devices->total_rw_bytes = 0;
713out:
714 return ret;
715}
716
717int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
718 fmode_t flags, void *holder)
719{
720 int ret;
721
722 mutex_lock(&uuid_mutex);
723 if (fs_devices->opened) {
724 fs_devices->opened++;
725 ret = 0;
726 } else {
727 ret = __btrfs_open_devices(fs_devices, flags, holder);
728 }
729 mutex_unlock(&uuid_mutex);
730 return ret;
731}
732
733int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
734 struct btrfs_fs_devices **fs_devices_ret)
735{
736 struct btrfs_super_block *disk_super;
737 struct block_device *bdev;
738 struct buffer_head *bh;
739 int ret;
740 u64 devid;
741 u64 transid;
742
743 flags |= FMODE_EXCL;
744 bdev = blkdev_get_by_path(path, flags, holder);
745
746 if (IS_ERR(bdev)) {
747 ret = PTR_ERR(bdev);
748 goto error;
749 }
750
751 mutex_lock(&uuid_mutex);
752 ret = set_blocksize(bdev, 4096);
753 if (ret)
754 goto error_close;
755 bh = btrfs_read_dev_super(bdev);
756 if (!bh) {
757 ret = -EINVAL;
758 goto error_close;
759 }
760 disk_super = (struct btrfs_super_block *)bh->b_data;
761 devid = btrfs_stack_device_id(&disk_super->dev_item);
762 transid = btrfs_super_generation(disk_super);
763 if (disk_super->label[0])
764 printk(KERN_INFO "device label %s ", disk_super->label);
765 else
766 printk(KERN_INFO "device fsid %pU ", disk_super->fsid);
767 printk(KERN_CONT "devid %llu transid %llu %s\n",
768 (unsigned long long)devid, (unsigned long long)transid, path);
769 ret = device_list_add(path, disk_super, devid, fs_devices_ret);
770
771 brelse(bh);
772error_close:
773 mutex_unlock(&uuid_mutex);
774 blkdev_put(bdev, flags);
775error:
776 return ret;
777}
778
779/* helper to account the used device space in the range */
780int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
781 u64 end, u64 *length)
782{
783 struct btrfs_key key;
784 struct btrfs_root *root = device->dev_root;
785 struct btrfs_dev_extent *dev_extent;
786 struct btrfs_path *path;
787 u64 extent_end;
788 int ret;
789 int slot;
790 struct extent_buffer *l;
791
792 *length = 0;
793
794 if (start >= device->total_bytes)
795 return 0;
796
797 path = btrfs_alloc_path();
798 if (!path)
799 return -ENOMEM;
800 path->reada = 2;
801
802 key.objectid = device->devid;
803 key.offset = start;
804 key.type = BTRFS_DEV_EXTENT_KEY;
805
806 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
807 if (ret < 0)
808 goto out;
809 if (ret > 0) {
810 ret = btrfs_previous_item(root, path, key.objectid, key.type);
811 if (ret < 0)
812 goto out;
813 }
814
815 while (1) {
816 l = path->nodes[0];
817 slot = path->slots[0];
818 if (slot >= btrfs_header_nritems(l)) {
819 ret = btrfs_next_leaf(root, path);
820 if (ret == 0)
821 continue;
822 if (ret < 0)
823 goto out;
824
825 break;
826 }
827 btrfs_item_key_to_cpu(l, &key, slot);
828
829 if (key.objectid < device->devid)
830 goto next;
831
832 if (key.objectid > device->devid)
833 break;
834
835 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
836 goto next;
837
838 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
839 extent_end = key.offset + btrfs_dev_extent_length(l,
840 dev_extent);
841 if (key.offset <= start && extent_end > end) {
842 *length = end - start + 1;
843 break;
844 } else if (key.offset <= start && extent_end > start)
845 *length += extent_end - start;
846 else if (key.offset > start && extent_end <= end)
847 *length += extent_end - key.offset;
848 else if (key.offset > start && key.offset <= end) {
849 *length += end - key.offset + 1;
850 break;
851 } else if (key.offset > end)
852 break;
853
854next:
855 path->slots[0]++;
856 }
857 ret = 0;
858out:
859 btrfs_free_path(path);
860 return ret;
861}
862
863/*
864 * find_free_dev_extent - find free space in the specified device
865 * @device: the device which we search the free space in
866 * @num_bytes: the size of the free space that we need
867 * @start: store the start of the free space.
868 * @len: the size of the free space. that we find, or the size of the max
869 * free space if we don't find suitable free space
870 *
871 * this uses a pretty simple search, the expectation is that it is
872 * called very infrequently and that a given device has a small number
873 * of extents
874 *
875 * @start is used to store the start of the free space if we find. But if we
876 * don't find suitable free space, it will be used to store the start position
877 * of the max free space.
878 *
879 * @len is used to store the size of the free space that we find.
880 * But if we don't find suitable free space, it is used to store the size of
881 * the max free space.
882 */
883int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
884 u64 *start, u64 *len)
885{
886 struct btrfs_key key;
887 struct btrfs_root *root = device->dev_root;
888 struct btrfs_dev_extent *dev_extent;
889 struct btrfs_path *path;
890 u64 hole_size;
891 u64 max_hole_start;
892 u64 max_hole_size;
893 u64 extent_end;
894 u64 search_start;
895 u64 search_end = device->total_bytes;
896 int ret;
897 int slot;
898 struct extent_buffer *l;
899
900 /* FIXME use last free of some kind */
901
902 /* we don't want to overwrite the superblock on the drive,
903 * so we make sure to start at an offset of at least 1MB
904 */
905 search_start = max(root->fs_info->alloc_start, 1024ull * 1024);
906
907 max_hole_start = search_start;
908 max_hole_size = 0;
909 hole_size = 0;
910
911 if (search_start >= search_end) {
912 ret = -ENOSPC;
913 goto error;
914 }
915
916 path = btrfs_alloc_path();
917 if (!path) {
918 ret = -ENOMEM;
919 goto error;
920 }
921 path->reada = 2;
922
923 key.objectid = device->devid;
924 key.offset = search_start;
925 key.type = BTRFS_DEV_EXTENT_KEY;
926
927 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
928 if (ret < 0)
929 goto out;
930 if (ret > 0) {
931 ret = btrfs_previous_item(root, path, key.objectid, key.type);
932 if (ret < 0)
933 goto out;
934 }
935
936 while (1) {
937 l = path->nodes[0];
938 slot = path->slots[0];
939 if (slot >= btrfs_header_nritems(l)) {
940 ret = btrfs_next_leaf(root, path);
941 if (ret == 0)
942 continue;
943 if (ret < 0)
944 goto out;
945
946 break;
947 }
948 btrfs_item_key_to_cpu(l, &key, slot);
949
950 if (key.objectid < device->devid)
951 goto next;
952
953 if (key.objectid > device->devid)
954 break;
955
956 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
957 goto next;
958
959 if (key.offset > search_start) {
960 hole_size = key.offset - search_start;
961
962 if (hole_size > max_hole_size) {
963 max_hole_start = search_start;
964 max_hole_size = hole_size;
965 }
966
967 /*
968 * If this free space is greater than which we need,
969 * it must be the max free space that we have found
970 * until now, so max_hole_start must point to the start
971 * of this free space and the length of this free space
972 * is stored in max_hole_size. Thus, we return
973 * max_hole_start and max_hole_size and go back to the
974 * caller.
975 */
976 if (hole_size >= num_bytes) {
977 ret = 0;
978 goto out;
979 }
980 }
981
982 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
983 extent_end = key.offset + btrfs_dev_extent_length(l,
984 dev_extent);
985 if (extent_end > search_start)
986 search_start = extent_end;
987next:
988 path->slots[0]++;
989 cond_resched();
990 }
991
992 /*
993 * At this point, search_start should be the end of
994 * allocated dev extents, and when shrinking the device,
995 * search_end may be smaller than search_start.
996 */
997 if (search_end > search_start)
998 hole_size = search_end - search_start;
999
1000 if (hole_size > max_hole_size) {
1001 max_hole_start = search_start;
1002 max_hole_size = hole_size;
1003 }
1004
1005 /* See above. */
1006 if (hole_size < num_bytes)
1007 ret = -ENOSPC;
1008 else
1009 ret = 0;
1010
1011out:
1012 btrfs_free_path(path);
1013error:
1014 *start = max_hole_start;
1015 if (len)
1016 *len = max_hole_size;
1017 return ret;
1018}
1019
1020static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1021 struct btrfs_device *device,
1022 u64 start)
1023{
1024 int ret;
1025 struct btrfs_path *path;
1026 struct btrfs_root *root = device->dev_root;
1027 struct btrfs_key key;
1028 struct btrfs_key found_key;
1029 struct extent_buffer *leaf = NULL;
1030 struct btrfs_dev_extent *extent = NULL;
1031
1032 path = btrfs_alloc_path();
1033 if (!path)
1034 return -ENOMEM;
1035
1036 key.objectid = device->devid;
1037 key.offset = start;
1038 key.type = BTRFS_DEV_EXTENT_KEY;
1039again:
1040 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1041 if (ret > 0) {
1042 ret = btrfs_previous_item(root, path, key.objectid,
1043 BTRFS_DEV_EXTENT_KEY);
1044 if (ret)
1045 goto out;
1046 leaf = path->nodes[0];
1047 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1048 extent = btrfs_item_ptr(leaf, path->slots[0],
1049 struct btrfs_dev_extent);
1050 BUG_ON(found_key.offset > start || found_key.offset +
1051 btrfs_dev_extent_length(leaf, extent) < start);
1052 key = found_key;
1053 btrfs_release_path(path);
1054 goto again;
1055 } else if (ret == 0) {
1056 leaf = path->nodes[0];
1057 extent = btrfs_item_ptr(leaf, path->slots[0],
1058 struct btrfs_dev_extent);
1059 } else {
1060 btrfs_error(root->fs_info, ret, "Slot search failed");
1061 goto out;
1062 }
1063
1064 if (device->bytes_used > 0) {
1065 u64 len = btrfs_dev_extent_length(leaf, extent);
1066 device->bytes_used -= len;
1067 spin_lock(&root->fs_info->free_chunk_lock);
1068 root->fs_info->free_chunk_space += len;
1069 spin_unlock(&root->fs_info->free_chunk_lock);
1070 }
1071 ret = btrfs_del_item(trans, root, path);
1072 if (ret) {
1073 btrfs_error(root->fs_info, ret,
1074 "Failed to remove dev extent item");
1075 }
1076out:
1077 btrfs_free_path(path);
1078 return ret;
1079}
1080
1081int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1082 struct btrfs_device *device,
1083 u64 chunk_tree, u64 chunk_objectid,
1084 u64 chunk_offset, u64 start, u64 num_bytes)
1085{
1086 int ret;
1087 struct btrfs_path *path;
1088 struct btrfs_root *root = device->dev_root;
1089 struct btrfs_dev_extent *extent;
1090 struct extent_buffer *leaf;
1091 struct btrfs_key key;
1092
1093 WARN_ON(!device->in_fs_metadata);
1094 path = btrfs_alloc_path();
1095 if (!path)
1096 return -ENOMEM;
1097
1098 key.objectid = device->devid;
1099 key.offset = start;
1100 key.type = BTRFS_DEV_EXTENT_KEY;
1101 ret = btrfs_insert_empty_item(trans, root, path, &key,
1102 sizeof(*extent));
1103 if (ret)
1104 goto out;
1105
1106 leaf = path->nodes[0];
1107 extent = btrfs_item_ptr(leaf, path->slots[0],
1108 struct btrfs_dev_extent);
1109 btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1110 btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1111 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1112
1113 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
1114 (unsigned long)btrfs_dev_extent_chunk_tree_uuid(extent),
1115 BTRFS_UUID_SIZE);
1116
1117 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1118 btrfs_mark_buffer_dirty(leaf);
1119out:
1120 btrfs_free_path(path);
1121 return ret;
1122}
1123
1124static noinline int find_next_chunk(struct btrfs_root *root,
1125 u64 objectid, u64 *offset)
1126{
1127 struct btrfs_path *path;
1128 int ret;
1129 struct btrfs_key key;
1130 struct btrfs_chunk *chunk;
1131 struct btrfs_key found_key;
1132
1133 path = btrfs_alloc_path();
1134 if (!path)
1135 return -ENOMEM;
1136
1137 key.objectid = objectid;
1138 key.offset = (u64)-1;
1139 key.type = BTRFS_CHUNK_ITEM_KEY;
1140
1141 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1142 if (ret < 0)
1143 goto error;
1144
1145 BUG_ON(ret == 0); /* Corruption */
1146
1147 ret = btrfs_previous_item(root, path, 0, BTRFS_CHUNK_ITEM_KEY);
1148 if (ret) {
1149 *offset = 0;
1150 } else {
1151 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1152 path->slots[0]);
1153 if (found_key.objectid != objectid)
1154 *offset = 0;
1155 else {
1156 chunk = btrfs_item_ptr(path->nodes[0], path->slots[0],
1157 struct btrfs_chunk);
1158 *offset = found_key.offset +
1159 btrfs_chunk_length(path->nodes[0], chunk);
1160 }
1161 }
1162 ret = 0;
1163error:
1164 btrfs_free_path(path);
1165 return ret;
1166}
1167
1168static noinline int find_next_devid(struct btrfs_root *root, u64 *objectid)
1169{
1170 int ret;
1171 struct btrfs_key key;
1172 struct btrfs_key found_key;
1173 struct btrfs_path *path;
1174
1175 root = root->fs_info->chunk_root;
1176
1177 path = btrfs_alloc_path();
1178 if (!path)
1179 return -ENOMEM;
1180
1181 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1182 key.type = BTRFS_DEV_ITEM_KEY;
1183 key.offset = (u64)-1;
1184
1185 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1186 if (ret < 0)
1187 goto error;
1188
1189 BUG_ON(ret == 0); /* Corruption */
1190
1191 ret = btrfs_previous_item(root, path, BTRFS_DEV_ITEMS_OBJECTID,
1192 BTRFS_DEV_ITEM_KEY);
1193 if (ret) {
1194 *objectid = 1;
1195 } else {
1196 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1197 path->slots[0]);
1198 *objectid = found_key.offset + 1;
1199 }
1200 ret = 0;
1201error:
1202 btrfs_free_path(path);
1203 return ret;
1204}
1205
1206/*
1207 * the device information is stored in the chunk root
1208 * the btrfs_device struct should be fully filled in
1209 */
1210int btrfs_add_device(struct btrfs_trans_handle *trans,
1211 struct btrfs_root *root,
1212 struct btrfs_device *device)
1213{
1214 int ret;
1215 struct btrfs_path *path;
1216 struct btrfs_dev_item *dev_item;
1217 struct extent_buffer *leaf;
1218 struct btrfs_key key;
1219 unsigned long ptr;
1220
1221 root = root->fs_info->chunk_root;
1222
1223 path = btrfs_alloc_path();
1224 if (!path)
1225 return -ENOMEM;
1226
1227 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1228 key.type = BTRFS_DEV_ITEM_KEY;
1229 key.offset = device->devid;
1230
1231 ret = btrfs_insert_empty_item(trans, root, path, &key,
1232 sizeof(*dev_item));
1233 if (ret)
1234 goto out;
1235
1236 leaf = path->nodes[0];
1237 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1238
1239 btrfs_set_device_id(leaf, dev_item, device->devid);
1240 btrfs_set_device_generation(leaf, dev_item, 0);
1241 btrfs_set_device_type(leaf, dev_item, device->type);
1242 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1243 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1244 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1245 btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
1246 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
1247 btrfs_set_device_group(leaf, dev_item, 0);
1248 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1249 btrfs_set_device_bandwidth(leaf, dev_item, 0);
1250 btrfs_set_device_start_offset(leaf, dev_item, 0);
1251
1252 ptr = (unsigned long)btrfs_device_uuid(dev_item);
1253 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1254 ptr = (unsigned long)btrfs_device_fsid(dev_item);
1255 write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
1256 btrfs_mark_buffer_dirty(leaf);
1257
1258 ret = 0;
1259out:
1260 btrfs_free_path(path);
1261 return ret;
1262}
1263
1264static int btrfs_rm_dev_item(struct btrfs_root *root,
1265 struct btrfs_device *device)
1266{
1267 int ret;
1268 struct btrfs_path *path;
1269 struct btrfs_key key;
1270 struct btrfs_trans_handle *trans;
1271
1272 root = root->fs_info->chunk_root;
1273
1274 path = btrfs_alloc_path();
1275 if (!path)
1276 return -ENOMEM;
1277
1278 trans = btrfs_start_transaction(root, 0);
1279 if (IS_ERR(trans)) {
1280 btrfs_free_path(path);
1281 return PTR_ERR(trans);
1282 }
1283 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1284 key.type = BTRFS_DEV_ITEM_KEY;
1285 key.offset = device->devid;
1286 lock_chunks(root);
1287
1288 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1289 if (ret < 0)
1290 goto out;
1291
1292 if (ret > 0) {
1293 ret = -ENOENT;
1294 goto out;
1295 }
1296
1297 ret = btrfs_del_item(trans, root, path);
1298 if (ret)
1299 goto out;
1300out:
1301 btrfs_free_path(path);
1302 unlock_chunks(root);
1303 btrfs_commit_transaction(trans, root);
1304 return ret;
1305}
1306
1307int btrfs_rm_device(struct btrfs_root *root, char *device_path)
1308{
1309 struct btrfs_device *device;
1310 struct btrfs_device *next_device;
1311 struct block_device *bdev;
1312 struct buffer_head *bh = NULL;
1313 struct btrfs_super_block *disk_super;
1314 struct btrfs_fs_devices *cur_devices;
1315 u64 all_avail;
1316 u64 devid;
1317 u64 num_devices;
1318 u8 *dev_uuid;
1319 int ret = 0;
1320 bool clear_super = false;
1321
1322 mutex_lock(&uuid_mutex);
1323
1324 all_avail = root->fs_info->avail_data_alloc_bits |
1325 root->fs_info->avail_system_alloc_bits |
1326 root->fs_info->avail_metadata_alloc_bits;
1327
1328 if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) &&
1329 root->fs_info->fs_devices->num_devices <= 4) {
1330 printk(KERN_ERR "btrfs: unable to go below four devices "
1331 "on raid10\n");
1332 ret = -EINVAL;
1333 goto out;
1334 }
1335
1336 if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) &&
1337 root->fs_info->fs_devices->num_devices <= 2) {
1338 printk(KERN_ERR "btrfs: unable to go below two "
1339 "devices on raid1\n");
1340 ret = -EINVAL;
1341 goto out;
1342 }
1343
1344 if (strcmp(device_path, "missing") == 0) {
1345 struct list_head *devices;
1346 struct btrfs_device *tmp;
1347
1348 device = NULL;
1349 devices = &root->fs_info->fs_devices->devices;
1350 /*
1351 * It is safe to read the devices since the volume_mutex
1352 * is held.
1353 */
1354 list_for_each_entry(tmp, devices, dev_list) {
1355 if (tmp->in_fs_metadata && !tmp->bdev) {
1356 device = tmp;
1357 break;
1358 }
1359 }
1360 bdev = NULL;
1361 bh = NULL;
1362 disk_super = NULL;
1363 if (!device) {
1364 printk(KERN_ERR "btrfs: no missing devices found to "
1365 "remove\n");
1366 goto out;
1367 }
1368 } else {
1369 bdev = blkdev_get_by_path(device_path, FMODE_READ | FMODE_EXCL,
1370 root->fs_info->bdev_holder);
1371 if (IS_ERR(bdev)) {
1372 ret = PTR_ERR(bdev);
1373 goto out;
1374 }
1375
1376 set_blocksize(bdev, 4096);
1377 invalidate_bdev(bdev);
1378 bh = btrfs_read_dev_super(bdev);
1379 if (!bh) {
1380 ret = -EINVAL;
1381 goto error_close;
1382 }
1383 disk_super = (struct btrfs_super_block *)bh->b_data;
1384 devid = btrfs_stack_device_id(&disk_super->dev_item);
1385 dev_uuid = disk_super->dev_item.uuid;
1386 device = btrfs_find_device(root, devid, dev_uuid,
1387 disk_super->fsid);
1388 if (!device) {
1389 ret = -ENOENT;
1390 goto error_brelse;
1391 }
1392 }
1393
1394 if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
1395 printk(KERN_ERR "btrfs: unable to remove the only writeable "
1396 "device\n");
1397 ret = -EINVAL;
1398 goto error_brelse;
1399 }
1400
1401 if (device->writeable) {
1402 lock_chunks(root);
1403 list_del_init(&device->dev_alloc_list);
1404 unlock_chunks(root);
1405 root->fs_info->fs_devices->rw_devices--;
1406 clear_super = true;
1407 }
1408
1409 ret = btrfs_shrink_device(device, 0);
1410 if (ret)
1411 goto error_undo;
1412
1413 ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1414 if (ret)
1415 goto error_undo;
1416
1417 spin_lock(&root->fs_info->free_chunk_lock);
1418 root->fs_info->free_chunk_space = device->total_bytes -
1419 device->bytes_used;
1420 spin_unlock(&root->fs_info->free_chunk_lock);
1421
1422 device->in_fs_metadata = 0;
1423 btrfs_scrub_cancel_dev(root, device);
1424
1425 /*
1426 * the device list mutex makes sure that we don't change
1427 * the device list while someone else is writing out all
1428 * the device supers.
1429 */
1430
1431 cur_devices = device->fs_devices;
1432 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1433 list_del_rcu(&device->dev_list);
1434
1435 device->fs_devices->num_devices--;
1436
1437 if (device->missing)
1438 root->fs_info->fs_devices->missing_devices--;
1439
1440 next_device = list_entry(root->fs_info->fs_devices->devices.next,
1441 struct btrfs_device, dev_list);
1442 if (device->bdev == root->fs_info->sb->s_bdev)
1443 root->fs_info->sb->s_bdev = next_device->bdev;
1444 if (device->bdev == root->fs_info->fs_devices->latest_bdev)
1445 root->fs_info->fs_devices->latest_bdev = next_device->bdev;
1446
1447 if (device->bdev)
1448 device->fs_devices->open_devices--;
1449
1450 call_rcu(&device->rcu, free_device);
1451 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1452
1453 num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
1454 btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices);
1455
1456 if (cur_devices->open_devices == 0) {
1457 struct btrfs_fs_devices *fs_devices;
1458 fs_devices = root->fs_info->fs_devices;
1459 while (fs_devices) {
1460 if (fs_devices->seed == cur_devices)
1461 break;
1462 fs_devices = fs_devices->seed;
1463 }
1464 fs_devices->seed = cur_devices->seed;
1465 cur_devices->seed = NULL;
1466 lock_chunks(root);
1467 __btrfs_close_devices(cur_devices);
1468 unlock_chunks(root);
1469 free_fs_devices(cur_devices);
1470 }
1471
1472 /*
1473 * at this point, the device is zero sized. We want to
1474 * remove it from the devices list and zero out the old super
1475 */
1476 if (clear_super) {
1477 /* make sure this device isn't detected as part of
1478 * the FS anymore
1479 */
1480 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
1481 set_buffer_dirty(bh);
1482 sync_dirty_buffer(bh);
1483 }
1484
1485 ret = 0;
1486
1487error_brelse:
1488 brelse(bh);
1489error_close:
1490 if (bdev)
1491 blkdev_put(bdev, FMODE_READ | FMODE_EXCL);
1492out:
1493 mutex_unlock(&uuid_mutex);
1494 return ret;
1495error_undo:
1496 if (device->writeable) {
1497 lock_chunks(root);
1498 list_add(&device->dev_alloc_list,
1499 &root->fs_info->fs_devices->alloc_list);
1500 unlock_chunks(root);
1501 root->fs_info->fs_devices->rw_devices++;
1502 }
1503 goto error_brelse;
1504}
1505
1506/*
1507 * does all the dirty work required for changing file system's UUID.
1508 */
1509static int btrfs_prepare_sprout(struct btrfs_root *root)
1510{
1511 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
1512 struct btrfs_fs_devices *old_devices;
1513 struct btrfs_fs_devices *seed_devices;
1514 struct btrfs_super_block *disk_super = root->fs_info->super_copy;
1515 struct btrfs_device *device;
1516 u64 super_flags;
1517
1518 BUG_ON(!mutex_is_locked(&uuid_mutex));
1519 if (!fs_devices->seeding)
1520 return -EINVAL;
1521
1522 seed_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
1523 if (!seed_devices)
1524 return -ENOMEM;
1525
1526 old_devices = clone_fs_devices(fs_devices);
1527 if (IS_ERR(old_devices)) {
1528 kfree(seed_devices);
1529 return PTR_ERR(old_devices);
1530 }
1531
1532 list_add(&old_devices->list, &fs_uuids);
1533
1534 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
1535 seed_devices->opened = 1;
1536 INIT_LIST_HEAD(&seed_devices->devices);
1537 INIT_LIST_HEAD(&seed_devices->alloc_list);
1538 mutex_init(&seed_devices->device_list_mutex);
1539
1540 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1541 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
1542 synchronize_rcu);
1543 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1544
1545 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
1546 list_for_each_entry(device, &seed_devices->devices, dev_list) {
1547 device->fs_devices = seed_devices;
1548 }
1549
1550 fs_devices->seeding = 0;
1551 fs_devices->num_devices = 0;
1552 fs_devices->open_devices = 0;
1553 fs_devices->seed = seed_devices;
1554
1555 generate_random_uuid(fs_devices->fsid);
1556 memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1557 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1558 super_flags = btrfs_super_flags(disk_super) &
1559 ~BTRFS_SUPER_FLAG_SEEDING;
1560 btrfs_set_super_flags(disk_super, super_flags);
1561
1562 return 0;
1563}
1564
1565/*
1566 * strore the expected generation for seed devices in device items.
1567 */
1568static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
1569 struct btrfs_root *root)
1570{
1571 struct btrfs_path *path;
1572 struct extent_buffer *leaf;
1573 struct btrfs_dev_item *dev_item;
1574 struct btrfs_device *device;
1575 struct btrfs_key key;
1576 u8 fs_uuid[BTRFS_UUID_SIZE];
1577 u8 dev_uuid[BTRFS_UUID_SIZE];
1578 u64 devid;
1579 int ret;
1580
1581 path = btrfs_alloc_path();
1582 if (!path)
1583 return -ENOMEM;
1584
1585 root = root->fs_info->chunk_root;
1586 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1587 key.offset = 0;
1588 key.type = BTRFS_DEV_ITEM_KEY;
1589
1590 while (1) {
1591 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1592 if (ret < 0)
1593 goto error;
1594
1595 leaf = path->nodes[0];
1596next_slot:
1597 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1598 ret = btrfs_next_leaf(root, path);
1599 if (ret > 0)
1600 break;
1601 if (ret < 0)
1602 goto error;
1603 leaf = path->nodes[0];
1604 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1605 btrfs_release_path(path);
1606 continue;
1607 }
1608
1609 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1610 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
1611 key.type != BTRFS_DEV_ITEM_KEY)
1612 break;
1613
1614 dev_item = btrfs_item_ptr(leaf, path->slots[0],
1615 struct btrfs_dev_item);
1616 devid = btrfs_device_id(leaf, dev_item);
1617 read_extent_buffer(leaf, dev_uuid,
1618 (unsigned long)btrfs_device_uuid(dev_item),
1619 BTRFS_UUID_SIZE);
1620 read_extent_buffer(leaf, fs_uuid,
1621 (unsigned long)btrfs_device_fsid(dev_item),
1622 BTRFS_UUID_SIZE);
1623 device = btrfs_find_device(root, devid, dev_uuid, fs_uuid);
1624 BUG_ON(!device); /* Logic error */
1625
1626 if (device->fs_devices->seeding) {
1627 btrfs_set_device_generation(leaf, dev_item,
1628 device->generation);
1629 btrfs_mark_buffer_dirty(leaf);
1630 }
1631
1632 path->slots[0]++;
1633 goto next_slot;
1634 }
1635 ret = 0;
1636error:
1637 btrfs_free_path(path);
1638 return ret;
1639}
1640
1641int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
1642{
1643 struct request_queue *q;
1644 struct btrfs_trans_handle *trans;
1645 struct btrfs_device *device;
1646 struct block_device *bdev;
1647 struct list_head *devices;
1648 struct super_block *sb = root->fs_info->sb;
1649 struct rcu_string *name;
1650 u64 total_bytes;
1651 int seeding_dev = 0;
1652 int ret = 0;
1653
1654 if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
1655 return -EROFS;
1656
1657 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
1658 root->fs_info->bdev_holder);
1659 if (IS_ERR(bdev))
1660 return PTR_ERR(bdev);
1661
1662 if (root->fs_info->fs_devices->seeding) {
1663 seeding_dev = 1;
1664 down_write(&sb->s_umount);
1665 mutex_lock(&uuid_mutex);
1666 }
1667
1668 filemap_write_and_wait(bdev->bd_inode->i_mapping);
1669
1670 devices = &root->fs_info->fs_devices->devices;
1671 /*
1672 * we have the volume lock, so we don't need the extra
1673 * device list mutex while reading the list here.
1674 */
1675 list_for_each_entry(device, devices, dev_list) {
1676 if (device->bdev == bdev) {
1677 ret = -EEXIST;
1678 goto error;
1679 }
1680 }
1681
1682 device = kzalloc(sizeof(*device), GFP_NOFS);
1683 if (!device) {
1684 /* we can safely leave the fs_devices entry around */
1685 ret = -ENOMEM;
1686 goto error;
1687 }
1688
1689 name = rcu_string_strdup(device_path, GFP_NOFS);
1690 if (!name) {
1691 kfree(device);
1692 ret = -ENOMEM;
1693 goto error;
1694 }
1695 rcu_assign_pointer(device->name, name);
1696
1697 ret = find_next_devid(root, &device->devid);
1698 if (ret) {
1699 rcu_string_free(device->name);
1700 kfree(device);
1701 goto error;
1702 }
1703
1704 trans = btrfs_start_transaction(root, 0);
1705 if (IS_ERR(trans)) {
1706 rcu_string_free(device->name);
1707 kfree(device);
1708 ret = PTR_ERR(trans);
1709 goto error;
1710 }
1711
1712 lock_chunks(root);
1713
1714 q = bdev_get_queue(bdev);
1715 if (blk_queue_discard(q))
1716 device->can_discard = 1;
1717 device->writeable = 1;
1718 device->work.func = pending_bios_fn;
1719 generate_random_uuid(device->uuid);
1720 spin_lock_init(&device->io_lock);
1721 device->generation = trans->transid;
1722 device->io_width = root->sectorsize;
1723 device->io_align = root->sectorsize;
1724 device->sector_size = root->sectorsize;
1725 device->total_bytes = i_size_read(bdev->bd_inode);
1726 device->disk_total_bytes = device->total_bytes;
1727 device->dev_root = root->fs_info->dev_root;
1728 device->bdev = bdev;
1729 device->in_fs_metadata = 1;
1730 device->mode = FMODE_EXCL;
1731 set_blocksize(device->bdev, 4096);
1732
1733 if (seeding_dev) {
1734 sb->s_flags &= ~MS_RDONLY;
1735 ret = btrfs_prepare_sprout(root);
1736 BUG_ON(ret); /* -ENOMEM */
1737 }
1738
1739 device->fs_devices = root->fs_info->fs_devices;
1740
1741 /*
1742 * we don't want write_supers to jump in here with our device
1743 * half setup
1744 */
1745 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1746 list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices);
1747 list_add(&device->dev_alloc_list,
1748 &root->fs_info->fs_devices->alloc_list);
1749 root->fs_info->fs_devices->num_devices++;
1750 root->fs_info->fs_devices->open_devices++;
1751 root->fs_info->fs_devices->rw_devices++;
1752 if (device->can_discard)
1753 root->fs_info->fs_devices->num_can_discard++;
1754 root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
1755
1756 spin_lock(&root->fs_info->free_chunk_lock);
1757 root->fs_info->free_chunk_space += device->total_bytes;
1758 spin_unlock(&root->fs_info->free_chunk_lock);
1759
1760 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
1761 root->fs_info->fs_devices->rotating = 1;
1762
1763 total_bytes = btrfs_super_total_bytes(root->fs_info->super_copy);
1764 btrfs_set_super_total_bytes(root->fs_info->super_copy,
1765 total_bytes + device->total_bytes);
1766
1767 total_bytes = btrfs_super_num_devices(root->fs_info->super_copy);
1768 btrfs_set_super_num_devices(root->fs_info->super_copy,
1769 total_bytes + 1);
1770 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1771
1772 if (seeding_dev) {
1773 ret = init_first_rw_device(trans, root, device);
1774 if (ret)
1775 goto error_trans;
1776 ret = btrfs_finish_sprout(trans, root);
1777 if (ret)
1778 goto error_trans;
1779 } else {
1780 ret = btrfs_add_device(trans, root, device);
1781 if (ret)
1782 goto error_trans;
1783 }
1784
1785 /*
1786 * we've got more storage, clear any full flags on the space
1787 * infos
1788 */
1789 btrfs_clear_space_info_full(root->fs_info);
1790
1791 unlock_chunks(root);
1792 ret = btrfs_commit_transaction(trans, root);
1793
1794 if (seeding_dev) {
1795 mutex_unlock(&uuid_mutex);
1796 up_write(&sb->s_umount);
1797
1798 if (ret) /* transaction commit */
1799 return ret;
1800
1801 ret = btrfs_relocate_sys_chunks(root);
1802 if (ret < 0)
1803 btrfs_error(root->fs_info, ret,
1804 "Failed to relocate sys chunks after "
1805 "device initialization. This can be fixed "
1806 "using the \"btrfs balance\" command.");
1807 }
1808
1809 return ret;
1810
1811error_trans:
1812 unlock_chunks(root);
1813 btrfs_abort_transaction(trans, root, ret);
1814 btrfs_end_transaction(trans, root);
1815 rcu_string_free(device->name);
1816 kfree(device);
1817error:
1818 blkdev_put(bdev, FMODE_EXCL);
1819 if (seeding_dev) {
1820 mutex_unlock(&uuid_mutex);
1821 up_write(&sb->s_umount);
1822 }
1823 return ret;
1824}
1825
1826static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
1827 struct btrfs_device *device)
1828{
1829 int ret;
1830 struct btrfs_path *path;
1831 struct btrfs_root *root;
1832 struct btrfs_dev_item *dev_item;
1833 struct extent_buffer *leaf;
1834 struct btrfs_key key;
1835
1836 root = device->dev_root->fs_info->chunk_root;
1837
1838 path = btrfs_alloc_path();
1839 if (!path)
1840 return -ENOMEM;
1841
1842 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1843 key.type = BTRFS_DEV_ITEM_KEY;
1844 key.offset = device->devid;
1845
1846 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1847 if (ret < 0)
1848 goto out;
1849
1850 if (ret > 0) {
1851 ret = -ENOENT;
1852 goto out;
1853 }
1854
1855 leaf = path->nodes[0];
1856 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1857
1858 btrfs_set_device_id(leaf, dev_item, device->devid);
1859 btrfs_set_device_type(leaf, dev_item, device->type);
1860 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1861 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1862 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1863 btrfs_set_device_total_bytes(leaf, dev_item, device->disk_total_bytes);
1864 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
1865 btrfs_mark_buffer_dirty(leaf);
1866
1867out:
1868 btrfs_free_path(path);
1869 return ret;
1870}
1871
1872static int __btrfs_grow_device(struct btrfs_trans_handle *trans,
1873 struct btrfs_device *device, u64 new_size)
1874{
1875 struct btrfs_super_block *super_copy =
1876 device->dev_root->fs_info->super_copy;
1877 u64 old_total = btrfs_super_total_bytes(super_copy);
1878 u64 diff = new_size - device->total_bytes;
1879
1880 if (!device->writeable)
1881 return -EACCES;
1882 if (new_size <= device->total_bytes)
1883 return -EINVAL;
1884
1885 btrfs_set_super_total_bytes(super_copy, old_total + diff);
1886 device->fs_devices->total_rw_bytes += diff;
1887
1888 device->total_bytes = new_size;
1889 device->disk_total_bytes = new_size;
1890 btrfs_clear_space_info_full(device->dev_root->fs_info);
1891
1892 return btrfs_update_device(trans, device);
1893}
1894
1895int btrfs_grow_device(struct btrfs_trans_handle *trans,
1896 struct btrfs_device *device, u64 new_size)
1897{
1898 int ret;
1899 lock_chunks(device->dev_root);
1900 ret = __btrfs_grow_device(trans, device, new_size);
1901 unlock_chunks(device->dev_root);
1902 return ret;
1903}
1904
1905static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
1906 struct btrfs_root *root,
1907 u64 chunk_tree, u64 chunk_objectid,
1908 u64 chunk_offset)
1909{
1910 int ret;
1911 struct btrfs_path *path;
1912 struct btrfs_key key;
1913
1914 root = root->fs_info->chunk_root;
1915 path = btrfs_alloc_path();
1916 if (!path)
1917 return -ENOMEM;
1918
1919 key.objectid = chunk_objectid;
1920 key.offset = chunk_offset;
1921 key.type = BTRFS_CHUNK_ITEM_KEY;
1922
1923 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1924 if (ret < 0)
1925 goto out;
1926 else if (ret > 0) { /* Logic error or corruption */
1927 btrfs_error(root->fs_info, -ENOENT,
1928 "Failed lookup while freeing chunk.");
1929 ret = -ENOENT;
1930 goto out;
1931 }
1932
1933 ret = btrfs_del_item(trans, root, path);
1934 if (ret < 0)
1935 btrfs_error(root->fs_info, ret,
1936 "Failed to delete chunk item.");
1937out:
1938 btrfs_free_path(path);
1939 return ret;
1940}
1941
1942static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
1943 chunk_offset)
1944{
1945 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
1946 struct btrfs_disk_key *disk_key;
1947 struct btrfs_chunk *chunk;
1948 u8 *ptr;
1949 int ret = 0;
1950 u32 num_stripes;
1951 u32 array_size;
1952 u32 len = 0;
1953 u32 cur;
1954 struct btrfs_key key;
1955
1956 array_size = btrfs_super_sys_array_size(super_copy);
1957
1958 ptr = super_copy->sys_chunk_array;
1959 cur = 0;
1960
1961 while (cur < array_size) {
1962 disk_key = (struct btrfs_disk_key *)ptr;
1963 btrfs_disk_key_to_cpu(&key, disk_key);
1964
1965 len = sizeof(*disk_key);
1966
1967 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
1968 chunk = (struct btrfs_chunk *)(ptr + len);
1969 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
1970 len += btrfs_chunk_item_size(num_stripes);
1971 } else {
1972 ret = -EIO;
1973 break;
1974 }
1975 if (key.objectid == chunk_objectid &&
1976 key.offset == chunk_offset) {
1977 memmove(ptr, ptr + len, array_size - (cur + len));
1978 array_size -= len;
1979 btrfs_set_super_sys_array_size(super_copy, array_size);
1980 } else {
1981 ptr += len;
1982 cur += len;
1983 }
1984 }
1985 return ret;
1986}
1987
1988static int btrfs_relocate_chunk(struct btrfs_root *root,
1989 u64 chunk_tree, u64 chunk_objectid,
1990 u64 chunk_offset)
1991{
1992 struct extent_map_tree *em_tree;
1993 struct btrfs_root *extent_root;
1994 struct btrfs_trans_handle *trans;
1995 struct extent_map *em;
1996 struct map_lookup *map;
1997 int ret;
1998 int i;
1999
2000 root = root->fs_info->chunk_root;
2001 extent_root = root->fs_info->extent_root;
2002 em_tree = &root->fs_info->mapping_tree.map_tree;
2003
2004 ret = btrfs_can_relocate(extent_root, chunk_offset);
2005 if (ret)
2006 return -ENOSPC;
2007
2008 /* step one, relocate all the extents inside this chunk */
2009 ret = btrfs_relocate_block_group(extent_root, chunk_offset);
2010 if (ret)
2011 return ret;
2012
2013 trans = btrfs_start_transaction(root, 0);
2014 BUG_ON(IS_ERR(trans));
2015
2016 lock_chunks(root);
2017
2018 /*
2019 * step two, delete the device extents and the
2020 * chunk tree entries
2021 */
2022 read_lock(&em_tree->lock);
2023 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
2024 read_unlock(&em_tree->lock);
2025
2026 BUG_ON(!em || em->start > chunk_offset ||
2027 em->start + em->len < chunk_offset);
2028 map = (struct map_lookup *)em->bdev;
2029
2030 for (i = 0; i < map->num_stripes; i++) {
2031 ret = btrfs_free_dev_extent(trans, map->stripes[i].dev,
2032 map->stripes[i].physical);
2033 BUG_ON(ret);
2034
2035 if (map->stripes[i].dev) {
2036 ret = btrfs_update_device(trans, map->stripes[i].dev);
2037 BUG_ON(ret);
2038 }
2039 }
2040 ret = btrfs_free_chunk(trans, root, chunk_tree, chunk_objectid,
2041 chunk_offset);
2042
2043 BUG_ON(ret);
2044
2045 trace_btrfs_chunk_free(root, map, chunk_offset, em->len);
2046
2047 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2048 ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
2049 BUG_ON(ret);
2050 }
2051
2052 ret = btrfs_remove_block_group(trans, extent_root, chunk_offset);
2053 BUG_ON(ret);
2054
2055 write_lock(&em_tree->lock);
2056 remove_extent_mapping(em_tree, em);
2057 write_unlock(&em_tree->lock);
2058
2059 kfree(map);
2060 em->bdev = NULL;
2061
2062 /* once for the tree */
2063 free_extent_map(em);
2064 /* once for us */
2065 free_extent_map(em);
2066
2067 unlock_chunks(root);
2068 btrfs_end_transaction(trans, root);
2069 return 0;
2070}
2071
2072static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
2073{
2074 struct btrfs_root *chunk_root = root->fs_info->chunk_root;
2075 struct btrfs_path *path;
2076 struct extent_buffer *leaf;
2077 struct btrfs_chunk *chunk;
2078 struct btrfs_key key;
2079 struct btrfs_key found_key;
2080 u64 chunk_tree = chunk_root->root_key.objectid;
2081 u64 chunk_type;
2082 bool retried = false;
2083 int failed = 0;
2084 int ret;
2085
2086 path = btrfs_alloc_path();
2087 if (!path)
2088 return -ENOMEM;
2089
2090again:
2091 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2092 key.offset = (u64)-1;
2093 key.type = BTRFS_CHUNK_ITEM_KEY;
2094
2095 while (1) {
2096 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2097 if (ret < 0)
2098 goto error;
2099 BUG_ON(ret == 0); /* Corruption */
2100
2101 ret = btrfs_previous_item(chunk_root, path, key.objectid,
2102 key.type);
2103 if (ret < 0)
2104 goto error;
2105 if (ret > 0)
2106 break;
2107
2108 leaf = path->nodes[0];
2109 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2110
2111 chunk = btrfs_item_ptr(leaf, path->slots[0],
2112 struct btrfs_chunk);
2113 chunk_type = btrfs_chunk_type(leaf, chunk);
2114 btrfs_release_path(path);
2115
2116 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
2117 ret = btrfs_relocate_chunk(chunk_root, chunk_tree,
2118 found_key.objectid,
2119 found_key.offset);
2120 if (ret == -ENOSPC)
2121 failed++;
2122 else if (ret)
2123 BUG();
2124 }
2125
2126 if (found_key.offset == 0)
2127 break;
2128 key.offset = found_key.offset - 1;
2129 }
2130 ret = 0;
2131 if (failed && !retried) {
2132 failed = 0;
2133 retried = true;
2134 goto again;
2135 } else if (failed && retried) {
2136 WARN_ON(1);
2137 ret = -ENOSPC;
2138 }
2139error:
2140 btrfs_free_path(path);
2141 return ret;
2142}
2143
2144static int insert_balance_item(struct btrfs_root *root,
2145 struct btrfs_balance_control *bctl)
2146{
2147 struct btrfs_trans_handle *trans;
2148 struct btrfs_balance_item *item;
2149 struct btrfs_disk_balance_args disk_bargs;
2150 struct btrfs_path *path;
2151 struct extent_buffer *leaf;
2152 struct btrfs_key key;
2153 int ret, err;
2154
2155 path = btrfs_alloc_path();
2156 if (!path)
2157 return -ENOMEM;
2158
2159 trans = btrfs_start_transaction(root, 0);
2160 if (IS_ERR(trans)) {
2161 btrfs_free_path(path);
2162 return PTR_ERR(trans);
2163 }
2164
2165 key.objectid = BTRFS_BALANCE_OBJECTID;
2166 key.type = BTRFS_BALANCE_ITEM_KEY;
2167 key.offset = 0;
2168
2169 ret = btrfs_insert_empty_item(trans, root, path, &key,
2170 sizeof(*item));
2171 if (ret)
2172 goto out;
2173
2174 leaf = path->nodes[0];
2175 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
2176
2177 memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
2178
2179 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
2180 btrfs_set_balance_data(leaf, item, &disk_bargs);
2181 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
2182 btrfs_set_balance_meta(leaf, item, &disk_bargs);
2183 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
2184 btrfs_set_balance_sys(leaf, item, &disk_bargs);
2185
2186 btrfs_set_balance_flags(leaf, item, bctl->flags);
2187
2188 btrfs_mark_buffer_dirty(leaf);
2189out:
2190 btrfs_free_path(path);
2191 err = btrfs_commit_transaction(trans, root);
2192 if (err && !ret)
2193 ret = err;
2194 return ret;
2195}
2196
2197static int del_balance_item(struct btrfs_root *root)
2198{
2199 struct btrfs_trans_handle *trans;
2200 struct btrfs_path *path;
2201 struct btrfs_key key;
2202 int ret, err;
2203
2204 path = btrfs_alloc_path();
2205 if (!path)
2206 return -ENOMEM;
2207
2208 trans = btrfs_start_transaction(root, 0);
2209 if (IS_ERR(trans)) {
2210 btrfs_free_path(path);
2211 return PTR_ERR(trans);
2212 }
2213
2214 key.objectid = BTRFS_BALANCE_OBJECTID;
2215 key.type = BTRFS_BALANCE_ITEM_KEY;
2216 key.offset = 0;
2217
2218 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2219 if (ret < 0)
2220 goto out;
2221 if (ret > 0) {
2222 ret = -ENOENT;
2223 goto out;
2224 }
2225
2226 ret = btrfs_del_item(trans, root, path);
2227out:
2228 btrfs_free_path(path);
2229 err = btrfs_commit_transaction(trans, root);
2230 if (err && !ret)
2231 ret = err;
2232 return ret;
2233}
2234
2235/*
2236 * This is a heuristic used to reduce the number of chunks balanced on
2237 * resume after balance was interrupted.
2238 */
2239static void update_balance_args(struct btrfs_balance_control *bctl)
2240{
2241 /*
2242 * Turn on soft mode for chunk types that were being converted.
2243 */
2244 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
2245 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
2246 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
2247 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
2248 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
2249 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
2250
2251 /*
2252 * Turn on usage filter if is not already used. The idea is
2253 * that chunks that we have already balanced should be
2254 * reasonably full. Don't do it for chunks that are being
2255 * converted - that will keep us from relocating unconverted
2256 * (albeit full) chunks.
2257 */
2258 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2259 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2260 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
2261 bctl->data.usage = 90;
2262 }
2263 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2264 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2265 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
2266 bctl->sys.usage = 90;
2267 }
2268 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2269 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2270 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
2271 bctl->meta.usage = 90;
2272 }
2273}
2274
2275/*
2276 * Should be called with both balance and volume mutexes held to
2277 * serialize other volume operations (add_dev/rm_dev/resize) with
2278 * restriper. Same goes for unset_balance_control.
2279 */
2280static void set_balance_control(struct btrfs_balance_control *bctl)
2281{
2282 struct btrfs_fs_info *fs_info = bctl->fs_info;
2283
2284 BUG_ON(fs_info->balance_ctl);
2285
2286 spin_lock(&fs_info->balance_lock);
2287 fs_info->balance_ctl = bctl;
2288 spin_unlock(&fs_info->balance_lock);
2289}
2290
2291static void unset_balance_control(struct btrfs_fs_info *fs_info)
2292{
2293 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
2294
2295 BUG_ON(!fs_info->balance_ctl);
2296
2297 spin_lock(&fs_info->balance_lock);
2298 fs_info->balance_ctl = NULL;
2299 spin_unlock(&fs_info->balance_lock);
2300
2301 kfree(bctl);
2302}
2303
2304/*
2305 * Balance filters. Return 1 if chunk should be filtered out
2306 * (should not be balanced).
2307 */
2308static int chunk_profiles_filter(u64 chunk_type,
2309 struct btrfs_balance_args *bargs)
2310{
2311 chunk_type = chunk_to_extended(chunk_type) &
2312 BTRFS_EXTENDED_PROFILE_MASK;
2313
2314 if (bargs->profiles & chunk_type)
2315 return 0;
2316
2317 return 1;
2318}
2319
2320static u64 div_factor_fine(u64 num, int factor)
2321{
2322 if (factor <= 0)
2323 return 0;
2324 if (factor >= 100)
2325 return num;
2326
2327 num *= factor;
2328 do_div(num, 100);
2329 return num;
2330}
2331
2332static int chunk_usage_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
2333 struct btrfs_balance_args *bargs)
2334{
2335 struct btrfs_block_group_cache *cache;
2336 u64 chunk_used, user_thresh;
2337 int ret = 1;
2338
2339 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2340 chunk_used = btrfs_block_group_used(&cache->item);
2341
2342 user_thresh = div_factor_fine(cache->key.offset, bargs->usage);
2343 if (chunk_used < user_thresh)
2344 ret = 0;
2345
2346 btrfs_put_block_group(cache);
2347 return ret;
2348}
2349
2350static int chunk_devid_filter(struct extent_buffer *leaf,
2351 struct btrfs_chunk *chunk,
2352 struct btrfs_balance_args *bargs)
2353{
2354 struct btrfs_stripe *stripe;
2355 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
2356 int i;
2357
2358 for (i = 0; i < num_stripes; i++) {
2359 stripe = btrfs_stripe_nr(chunk, i);
2360 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
2361 return 0;
2362 }
2363
2364 return 1;
2365}
2366
2367/* [pstart, pend) */
2368static int chunk_drange_filter(struct extent_buffer *leaf,
2369 struct btrfs_chunk *chunk,
2370 u64 chunk_offset,
2371 struct btrfs_balance_args *bargs)
2372{
2373 struct btrfs_stripe *stripe;
2374 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
2375 u64 stripe_offset;
2376 u64 stripe_length;
2377 int factor;
2378 int i;
2379
2380 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
2381 return 0;
2382
2383 if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
2384 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10))
2385 factor = 2;
2386 else
2387 factor = 1;
2388 factor = num_stripes / factor;
2389
2390 for (i = 0; i < num_stripes; i++) {
2391 stripe = btrfs_stripe_nr(chunk, i);
2392 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
2393 continue;
2394
2395 stripe_offset = btrfs_stripe_offset(leaf, stripe);
2396 stripe_length = btrfs_chunk_length(leaf, chunk);
2397 do_div(stripe_length, factor);
2398
2399 if (stripe_offset < bargs->pend &&
2400 stripe_offset + stripe_length > bargs->pstart)
2401 return 0;
2402 }
2403
2404 return 1;
2405}
2406
2407/* [vstart, vend) */
2408static int chunk_vrange_filter(struct extent_buffer *leaf,
2409 struct btrfs_chunk *chunk,
2410 u64 chunk_offset,
2411 struct btrfs_balance_args *bargs)
2412{
2413 if (chunk_offset < bargs->vend &&
2414 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
2415 /* at least part of the chunk is inside this vrange */
2416 return 0;
2417
2418 return 1;
2419}
2420
2421static int chunk_soft_convert_filter(u64 chunk_type,
2422 struct btrfs_balance_args *bargs)
2423{
2424 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
2425 return 0;
2426
2427 chunk_type = chunk_to_extended(chunk_type) &
2428 BTRFS_EXTENDED_PROFILE_MASK;
2429
2430 if (bargs->target == chunk_type)
2431 return 1;
2432
2433 return 0;
2434}
2435
2436static int should_balance_chunk(struct btrfs_root *root,
2437 struct extent_buffer *leaf,
2438 struct btrfs_chunk *chunk, u64 chunk_offset)
2439{
2440 struct btrfs_balance_control *bctl = root->fs_info->balance_ctl;
2441 struct btrfs_balance_args *bargs = NULL;
2442 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
2443
2444 /* type filter */
2445 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
2446 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
2447 return 0;
2448 }
2449
2450 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
2451 bargs = &bctl->data;
2452 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
2453 bargs = &bctl->sys;
2454 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
2455 bargs = &bctl->meta;
2456
2457 /* profiles filter */
2458 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
2459 chunk_profiles_filter(chunk_type, bargs)) {
2460 return 0;
2461 }
2462
2463 /* usage filter */
2464 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
2465 chunk_usage_filter(bctl->fs_info, chunk_offset, bargs)) {
2466 return 0;
2467 }
2468
2469 /* devid filter */
2470 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
2471 chunk_devid_filter(leaf, chunk, bargs)) {
2472 return 0;
2473 }
2474
2475 /* drange filter, makes sense only with devid filter */
2476 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
2477 chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) {
2478 return 0;
2479 }
2480
2481 /* vrange filter */
2482 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
2483 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
2484 return 0;
2485 }
2486
2487 /* soft profile changing mode */
2488 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
2489 chunk_soft_convert_filter(chunk_type, bargs)) {
2490 return 0;
2491 }
2492
2493 return 1;
2494}
2495
2496static u64 div_factor(u64 num, int factor)
2497{
2498 if (factor == 10)
2499 return num;
2500 num *= factor;
2501 do_div(num, 10);
2502 return num;
2503}
2504
2505static int __btrfs_balance(struct btrfs_fs_info *fs_info)
2506{
2507 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
2508 struct btrfs_root *chunk_root = fs_info->chunk_root;
2509 struct btrfs_root *dev_root = fs_info->dev_root;
2510 struct list_head *devices;
2511 struct btrfs_device *device;
2512 u64 old_size;
2513 u64 size_to_free;
2514 struct btrfs_chunk *chunk;
2515 struct btrfs_path *path;
2516 struct btrfs_key key;
2517 struct btrfs_key found_key;
2518 struct btrfs_trans_handle *trans;
2519 struct extent_buffer *leaf;
2520 int slot;
2521 int ret;
2522 int enospc_errors = 0;
2523 bool counting = true;
2524
2525 /* step one make some room on all the devices */
2526 devices = &fs_info->fs_devices->devices;
2527 list_for_each_entry(device, devices, dev_list) {
2528 old_size = device->total_bytes;
2529 size_to_free = div_factor(old_size, 1);
2530 size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
2531 if (!device->writeable ||
2532 device->total_bytes - device->bytes_used > size_to_free)
2533 continue;
2534
2535 ret = btrfs_shrink_device(device, old_size - size_to_free);
2536 if (ret == -ENOSPC)
2537 break;
2538 BUG_ON(ret);
2539
2540 trans = btrfs_start_transaction(dev_root, 0);
2541 BUG_ON(IS_ERR(trans));
2542
2543 ret = btrfs_grow_device(trans, device, old_size);
2544 BUG_ON(ret);
2545
2546 btrfs_end_transaction(trans, dev_root);
2547 }
2548
2549 /* step two, relocate all the chunks */
2550 path = btrfs_alloc_path();
2551 if (!path) {
2552 ret = -ENOMEM;
2553 goto error;
2554 }
2555
2556 /* zero out stat counters */
2557 spin_lock(&fs_info->balance_lock);
2558 memset(&bctl->stat, 0, sizeof(bctl->stat));
2559 spin_unlock(&fs_info->balance_lock);
2560again:
2561 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2562 key.offset = (u64)-1;
2563 key.type = BTRFS_CHUNK_ITEM_KEY;
2564
2565 while (1) {
2566 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
2567 atomic_read(&fs_info->balance_cancel_req)) {
2568 ret = -ECANCELED;
2569 goto error;
2570 }
2571
2572 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2573 if (ret < 0)
2574 goto error;
2575
2576 /*
2577 * this shouldn't happen, it means the last relocate
2578 * failed
2579 */
2580 if (ret == 0)
2581 BUG(); /* FIXME break ? */
2582
2583 ret = btrfs_previous_item(chunk_root, path, 0,
2584 BTRFS_CHUNK_ITEM_KEY);
2585 if (ret) {
2586 ret = 0;
2587 break;
2588 }
2589
2590 leaf = path->nodes[0];
2591 slot = path->slots[0];
2592 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2593
2594 if (found_key.objectid != key.objectid)
2595 break;
2596
2597 /* chunk zero is special */
2598 if (found_key.offset == 0)
2599 break;
2600
2601 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
2602
2603 if (!counting) {
2604 spin_lock(&fs_info->balance_lock);
2605 bctl->stat.considered++;
2606 spin_unlock(&fs_info->balance_lock);
2607 }
2608
2609 ret = should_balance_chunk(chunk_root, leaf, chunk,
2610 found_key.offset);
2611 btrfs_release_path(path);
2612 if (!ret)
2613 goto loop;
2614
2615 if (counting) {
2616 spin_lock(&fs_info->balance_lock);
2617 bctl->stat.expected++;
2618 spin_unlock(&fs_info->balance_lock);
2619 goto loop;
2620 }
2621
2622 ret = btrfs_relocate_chunk(chunk_root,
2623 chunk_root->root_key.objectid,
2624 found_key.objectid,
2625 found_key.offset);
2626 if (ret && ret != -ENOSPC)
2627 goto error;
2628 if (ret == -ENOSPC) {
2629 enospc_errors++;
2630 } else {
2631 spin_lock(&fs_info->balance_lock);
2632 bctl->stat.completed++;
2633 spin_unlock(&fs_info->balance_lock);
2634 }
2635loop:
2636 key.offset = found_key.offset - 1;
2637 }
2638
2639 if (counting) {
2640 btrfs_release_path(path);
2641 counting = false;
2642 goto again;
2643 }
2644error:
2645 btrfs_free_path(path);
2646 if (enospc_errors) {
2647 printk(KERN_INFO "btrfs: %d enospc errors during balance\n",
2648 enospc_errors);
2649 if (!ret)
2650 ret = -ENOSPC;
2651 }
2652
2653 return ret;
2654}
2655
2656/**
2657 * alloc_profile_is_valid - see if a given profile is valid and reduced
2658 * @flags: profile to validate
2659 * @extended: if true @flags is treated as an extended profile
2660 */
2661static int alloc_profile_is_valid(u64 flags, int extended)
2662{
2663 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
2664 BTRFS_BLOCK_GROUP_PROFILE_MASK);
2665
2666 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
2667
2668 /* 1) check that all other bits are zeroed */
2669 if (flags & ~mask)
2670 return 0;
2671
2672 /* 2) see if profile is reduced */
2673 if (flags == 0)
2674 return !extended; /* "0" is valid for usual profiles */
2675
2676 /* true if exactly one bit set */
2677 return (flags & (flags - 1)) == 0;
2678}
2679
2680static inline int balance_need_close(struct btrfs_fs_info *fs_info)
2681{
2682 /* cancel requested || normal exit path */
2683 return atomic_read(&fs_info->balance_cancel_req) ||
2684 (atomic_read(&fs_info->balance_pause_req) == 0 &&
2685 atomic_read(&fs_info->balance_cancel_req) == 0);
2686}
2687
2688static void __cancel_balance(struct btrfs_fs_info *fs_info)
2689{
2690 int ret;
2691
2692 unset_balance_control(fs_info);
2693 ret = del_balance_item(fs_info->tree_root);
2694 BUG_ON(ret);
2695}
2696
2697void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock,
2698 struct btrfs_ioctl_balance_args *bargs);
2699
2700/*
2701 * Should be called with both balance and volume mutexes held
2702 */
2703int btrfs_balance(struct btrfs_balance_control *bctl,
2704 struct btrfs_ioctl_balance_args *bargs)
2705{
2706 struct btrfs_fs_info *fs_info = bctl->fs_info;
2707 u64 allowed;
2708 int mixed = 0;
2709 int ret;
2710
2711 if (btrfs_fs_closing(fs_info) ||
2712 atomic_read(&fs_info->balance_pause_req) ||
2713 atomic_read(&fs_info->balance_cancel_req)) {
2714 ret = -EINVAL;
2715 goto out;
2716 }
2717
2718 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
2719 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
2720 mixed = 1;
2721
2722 /*
2723 * In case of mixed groups both data and meta should be picked,
2724 * and identical options should be given for both of them.
2725 */
2726 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
2727 if (mixed && (bctl->flags & allowed)) {
2728 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
2729 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
2730 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
2731 printk(KERN_ERR "btrfs: with mixed groups data and "
2732 "metadata balance options must be the same\n");
2733 ret = -EINVAL;
2734 goto out;
2735 }
2736 }
2737
2738 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
2739 if (fs_info->fs_devices->num_devices == 1)
2740 allowed |= BTRFS_BLOCK_GROUP_DUP;
2741 else if (fs_info->fs_devices->num_devices < 4)
2742 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
2743 else
2744 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1 |
2745 BTRFS_BLOCK_GROUP_RAID10);
2746
2747 if ((bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
2748 (!alloc_profile_is_valid(bctl->data.target, 1) ||
2749 (bctl->data.target & ~allowed))) {
2750 printk(KERN_ERR "btrfs: unable to start balance with target "
2751 "data profile %llu\n",
2752 (unsigned long long)bctl->data.target);
2753 ret = -EINVAL;
2754 goto out;
2755 }
2756 if ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
2757 (!alloc_profile_is_valid(bctl->meta.target, 1) ||
2758 (bctl->meta.target & ~allowed))) {
2759 printk(KERN_ERR "btrfs: unable to start balance with target "
2760 "metadata profile %llu\n",
2761 (unsigned long long)bctl->meta.target);
2762 ret = -EINVAL;
2763 goto out;
2764 }
2765 if ((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
2766 (!alloc_profile_is_valid(bctl->sys.target, 1) ||
2767 (bctl->sys.target & ~allowed))) {
2768 printk(KERN_ERR "btrfs: unable to start balance with target "
2769 "system profile %llu\n",
2770 (unsigned long long)bctl->sys.target);
2771 ret = -EINVAL;
2772 goto out;
2773 }
2774
2775 /* allow dup'ed data chunks only in mixed mode */
2776 if (!mixed && (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
2777 (bctl->data.target & BTRFS_BLOCK_GROUP_DUP)) {
2778 printk(KERN_ERR "btrfs: dup for data is not allowed\n");
2779 ret = -EINVAL;
2780 goto out;
2781 }
2782
2783 /* allow to reduce meta or sys integrity only if force set */
2784 allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
2785 BTRFS_BLOCK_GROUP_RAID10;
2786 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
2787 (fs_info->avail_system_alloc_bits & allowed) &&
2788 !(bctl->sys.target & allowed)) ||
2789 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
2790 (fs_info->avail_metadata_alloc_bits & allowed) &&
2791 !(bctl->meta.target & allowed))) {
2792 if (bctl->flags & BTRFS_BALANCE_FORCE) {
2793 printk(KERN_INFO "btrfs: force reducing metadata "
2794 "integrity\n");
2795 } else {
2796 printk(KERN_ERR "btrfs: balance will reduce metadata "
2797 "integrity, use force if you want this\n");
2798 ret = -EINVAL;
2799 goto out;
2800 }
2801 }
2802
2803 ret = insert_balance_item(fs_info->tree_root, bctl);
2804 if (ret && ret != -EEXIST)
2805 goto out;
2806
2807 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
2808 BUG_ON(ret == -EEXIST);
2809 set_balance_control(bctl);
2810 } else {
2811 BUG_ON(ret != -EEXIST);
2812 spin_lock(&fs_info->balance_lock);
2813 update_balance_args(bctl);
2814 spin_unlock(&fs_info->balance_lock);
2815 }
2816
2817 atomic_inc(&fs_info->balance_running);
2818 mutex_unlock(&fs_info->balance_mutex);
2819
2820 ret = __btrfs_balance(fs_info);
2821
2822 mutex_lock(&fs_info->balance_mutex);
2823 atomic_dec(&fs_info->balance_running);
2824
2825 if (bargs) {
2826 memset(bargs, 0, sizeof(*bargs));
2827 update_ioctl_balance_args(fs_info, 0, bargs);
2828 }
2829
2830 if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
2831 balance_need_close(fs_info)) {
2832 __cancel_balance(fs_info);
2833 }
2834
2835 wake_up(&fs_info->balance_wait_q);
2836
2837 return ret;
2838out:
2839 if (bctl->flags & BTRFS_BALANCE_RESUME)
2840 __cancel_balance(fs_info);
2841 else
2842 kfree(bctl);
2843 return ret;
2844}
2845
2846static int balance_kthread(void *data)
2847{
2848 struct btrfs_fs_info *fs_info = data;
2849 int ret = 0;
2850
2851 mutex_lock(&fs_info->volume_mutex);
2852 mutex_lock(&fs_info->balance_mutex);
2853
2854 if (fs_info->balance_ctl) {
2855 printk(KERN_INFO "btrfs: continuing balance\n");
2856 ret = btrfs_balance(fs_info->balance_ctl, NULL);
2857 }
2858
2859 mutex_unlock(&fs_info->balance_mutex);
2860 mutex_unlock(&fs_info->volume_mutex);
2861
2862 return ret;
2863}
2864
2865int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
2866{
2867 struct task_struct *tsk;
2868
2869 spin_lock(&fs_info->balance_lock);
2870 if (!fs_info->balance_ctl) {
2871 spin_unlock(&fs_info->balance_lock);
2872 return 0;
2873 }
2874 spin_unlock(&fs_info->balance_lock);
2875
2876 if (btrfs_test_opt(fs_info->tree_root, SKIP_BALANCE)) {
2877 printk(KERN_INFO "btrfs: force skipping balance\n");
2878 return 0;
2879 }
2880
2881 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
2882 if (IS_ERR(tsk))
2883 return PTR_ERR(tsk);
2884
2885 return 0;
2886}
2887
2888int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
2889{
2890 struct btrfs_balance_control *bctl;
2891 struct btrfs_balance_item *item;
2892 struct btrfs_disk_balance_args disk_bargs;
2893 struct btrfs_path *path;
2894 struct extent_buffer *leaf;
2895 struct btrfs_key key;
2896 int ret;
2897
2898 path = btrfs_alloc_path();
2899 if (!path)
2900 return -ENOMEM;
2901
2902 key.objectid = BTRFS_BALANCE_OBJECTID;
2903 key.type = BTRFS_BALANCE_ITEM_KEY;
2904 key.offset = 0;
2905
2906 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2907 if (ret < 0)
2908 goto out;
2909 if (ret > 0) { /* ret = -ENOENT; */
2910 ret = 0;
2911 goto out;
2912 }
2913
2914 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
2915 if (!bctl) {
2916 ret = -ENOMEM;
2917 goto out;
2918 }
2919
2920 leaf = path->nodes[0];
2921 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
2922
2923 bctl->fs_info = fs_info;
2924 bctl->flags = btrfs_balance_flags(leaf, item);
2925 bctl->flags |= BTRFS_BALANCE_RESUME;
2926
2927 btrfs_balance_data(leaf, item, &disk_bargs);
2928 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
2929 btrfs_balance_meta(leaf, item, &disk_bargs);
2930 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
2931 btrfs_balance_sys(leaf, item, &disk_bargs);
2932 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
2933
2934 mutex_lock(&fs_info->volume_mutex);
2935 mutex_lock(&fs_info->balance_mutex);
2936
2937 set_balance_control(bctl);
2938
2939 mutex_unlock(&fs_info->balance_mutex);
2940 mutex_unlock(&fs_info->volume_mutex);
2941out:
2942 btrfs_free_path(path);
2943 return ret;
2944}
2945
2946int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
2947{
2948 int ret = 0;
2949
2950 mutex_lock(&fs_info->balance_mutex);
2951 if (!fs_info->balance_ctl) {
2952 mutex_unlock(&fs_info->balance_mutex);
2953 return -ENOTCONN;
2954 }
2955
2956 if (atomic_read(&fs_info->balance_running)) {
2957 atomic_inc(&fs_info->balance_pause_req);
2958 mutex_unlock(&fs_info->balance_mutex);
2959
2960 wait_event(fs_info->balance_wait_q,
2961 atomic_read(&fs_info->balance_running) == 0);
2962
2963 mutex_lock(&fs_info->balance_mutex);
2964 /* we are good with balance_ctl ripped off from under us */
2965 BUG_ON(atomic_read(&fs_info->balance_running));
2966 atomic_dec(&fs_info->balance_pause_req);
2967 } else {
2968 ret = -ENOTCONN;
2969 }
2970
2971 mutex_unlock(&fs_info->balance_mutex);
2972 return ret;
2973}
2974
2975int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
2976{
2977 mutex_lock(&fs_info->balance_mutex);
2978 if (!fs_info->balance_ctl) {
2979 mutex_unlock(&fs_info->balance_mutex);
2980 return -ENOTCONN;
2981 }
2982
2983 atomic_inc(&fs_info->balance_cancel_req);
2984 /*
2985 * if we are running just wait and return, balance item is
2986 * deleted in btrfs_balance in this case
2987 */
2988 if (atomic_read(&fs_info->balance_running)) {
2989 mutex_unlock(&fs_info->balance_mutex);
2990 wait_event(fs_info->balance_wait_q,
2991 atomic_read(&fs_info->balance_running) == 0);
2992 mutex_lock(&fs_info->balance_mutex);
2993 } else {
2994 /* __cancel_balance needs volume_mutex */
2995 mutex_unlock(&fs_info->balance_mutex);
2996 mutex_lock(&fs_info->volume_mutex);
2997 mutex_lock(&fs_info->balance_mutex);
2998
2999 if (fs_info->balance_ctl)
3000 __cancel_balance(fs_info);
3001
3002 mutex_unlock(&fs_info->volume_mutex);
3003 }
3004
3005 BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
3006 atomic_dec(&fs_info->balance_cancel_req);
3007 mutex_unlock(&fs_info->balance_mutex);
3008 return 0;
3009}
3010
3011/*
3012 * shrinking a device means finding all of the device extents past
3013 * the new size, and then following the back refs to the chunks.
3014 * The chunk relocation code actually frees the device extent
3015 */
3016int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
3017{
3018 struct btrfs_trans_handle *trans;
3019 struct btrfs_root *root = device->dev_root;
3020 struct btrfs_dev_extent *dev_extent = NULL;
3021 struct btrfs_path *path;
3022 u64 length;
3023 u64 chunk_tree;
3024 u64 chunk_objectid;
3025 u64 chunk_offset;
3026 int ret;
3027 int slot;
3028 int failed = 0;
3029 bool retried = false;
3030 struct extent_buffer *l;
3031 struct btrfs_key key;
3032 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
3033 u64 old_total = btrfs_super_total_bytes(super_copy);
3034 u64 old_size = device->total_bytes;
3035 u64 diff = device->total_bytes - new_size;
3036
3037 if (new_size >= device->total_bytes)
3038 return -EINVAL;
3039
3040 path = btrfs_alloc_path();
3041 if (!path)
3042 return -ENOMEM;
3043
3044 path->reada = 2;
3045
3046 lock_chunks(root);
3047
3048 device->total_bytes = new_size;
3049 if (device->writeable) {
3050 device->fs_devices->total_rw_bytes -= diff;
3051 spin_lock(&root->fs_info->free_chunk_lock);
3052 root->fs_info->free_chunk_space -= diff;
3053 spin_unlock(&root->fs_info->free_chunk_lock);
3054 }
3055 unlock_chunks(root);
3056
3057again:
3058 key.objectid = device->devid;
3059 key.offset = (u64)-1;
3060 key.type = BTRFS_DEV_EXTENT_KEY;
3061
3062 do {
3063 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3064 if (ret < 0)
3065 goto done;
3066
3067 ret = btrfs_previous_item(root, path, 0, key.type);
3068 if (ret < 0)
3069 goto done;
3070 if (ret) {
3071 ret = 0;
3072 btrfs_release_path(path);
3073 break;
3074 }
3075
3076 l = path->nodes[0];
3077 slot = path->slots[0];
3078 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
3079
3080 if (key.objectid != device->devid) {
3081 btrfs_release_path(path);
3082 break;
3083 }
3084
3085 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3086 length = btrfs_dev_extent_length(l, dev_extent);
3087
3088 if (key.offset + length <= new_size) {
3089 btrfs_release_path(path);
3090 break;
3091 }
3092
3093 chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
3094 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
3095 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
3096 btrfs_release_path(path);
3097
3098 ret = btrfs_relocate_chunk(root, chunk_tree, chunk_objectid,
3099 chunk_offset);
3100 if (ret && ret != -ENOSPC)
3101 goto done;
3102 if (ret == -ENOSPC)
3103 failed++;
3104 } while (key.offset-- > 0);
3105
3106 if (failed && !retried) {
3107 failed = 0;
3108 retried = true;
3109 goto again;
3110 } else if (failed && retried) {
3111 ret = -ENOSPC;
3112 lock_chunks(root);
3113
3114 device->total_bytes = old_size;
3115 if (device->writeable)
3116 device->fs_devices->total_rw_bytes += diff;
3117 spin_lock(&root->fs_info->free_chunk_lock);
3118 root->fs_info->free_chunk_space += diff;
3119 spin_unlock(&root->fs_info->free_chunk_lock);
3120 unlock_chunks(root);
3121 goto done;
3122 }
3123
3124 /* Shrinking succeeded, else we would be at "done". */
3125 trans = btrfs_start_transaction(root, 0);
3126 if (IS_ERR(trans)) {
3127 ret = PTR_ERR(trans);
3128 goto done;
3129 }
3130
3131 lock_chunks(root);
3132
3133 device->disk_total_bytes = new_size;
3134 /* Now btrfs_update_device() will change the on-disk size. */
3135 ret = btrfs_update_device(trans, device);
3136 if (ret) {
3137 unlock_chunks(root);
3138 btrfs_end_transaction(trans, root);
3139 goto done;
3140 }
3141 WARN_ON(diff > old_total);
3142 btrfs_set_super_total_bytes(super_copy, old_total - diff);
3143 unlock_chunks(root);
3144 btrfs_end_transaction(trans, root);
3145done:
3146 btrfs_free_path(path);
3147 return ret;
3148}
3149
3150static int btrfs_add_system_chunk(struct btrfs_root *root,
3151 struct btrfs_key *key,
3152 struct btrfs_chunk *chunk, int item_size)
3153{
3154 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
3155 struct btrfs_disk_key disk_key;
3156 u32 array_size;
3157 u8 *ptr;
3158
3159 array_size = btrfs_super_sys_array_size(super_copy);
3160 if (array_size + item_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
3161 return -EFBIG;
3162
3163 ptr = super_copy->sys_chunk_array + array_size;
3164 btrfs_cpu_key_to_disk(&disk_key, key);
3165 memcpy(ptr, &disk_key, sizeof(disk_key));
3166 ptr += sizeof(disk_key);
3167 memcpy(ptr, chunk, item_size);
3168 item_size += sizeof(disk_key);
3169 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
3170 return 0;
3171}
3172
3173/*
3174 * sort the devices in descending order by max_avail, total_avail
3175 */
3176static int btrfs_cmp_device_info(const void *a, const void *b)
3177{
3178 const struct btrfs_device_info *di_a = a;
3179 const struct btrfs_device_info *di_b = b;
3180
3181 if (di_a->max_avail > di_b->max_avail)
3182 return -1;
3183 if (di_a->max_avail < di_b->max_avail)
3184 return 1;
3185 if (di_a->total_avail > di_b->total_avail)
3186 return -1;
3187 if (di_a->total_avail < di_b->total_avail)
3188 return 1;
3189 return 0;
3190}
3191
3192static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
3193 struct btrfs_root *extent_root,
3194 struct map_lookup **map_ret,
3195 u64 *num_bytes_out, u64 *stripe_size_out,
3196 u64 start, u64 type)
3197{
3198 struct btrfs_fs_info *info = extent_root->fs_info;
3199 struct btrfs_fs_devices *fs_devices = info->fs_devices;
3200 struct list_head *cur;
3201 struct map_lookup *map = NULL;
3202 struct extent_map_tree *em_tree;
3203 struct extent_map *em;
3204 struct btrfs_device_info *devices_info = NULL;
3205 u64 total_avail;
3206 int num_stripes; /* total number of stripes to allocate */
3207 int sub_stripes; /* sub_stripes info for map */
3208 int dev_stripes; /* stripes per dev */
3209 int devs_max; /* max devs to use */
3210 int devs_min; /* min devs needed */
3211 int devs_increment; /* ndevs has to be a multiple of this */
3212 int ncopies; /* how many copies to data has */
3213 int ret;
3214 u64 max_stripe_size;
3215 u64 max_chunk_size;
3216 u64 stripe_size;
3217 u64 num_bytes;
3218 int ndevs;
3219 int i;
3220 int j;
3221
3222 BUG_ON(!alloc_profile_is_valid(type, 0));
3223
3224 if (list_empty(&fs_devices->alloc_list))
3225 return -ENOSPC;
3226
3227 sub_stripes = 1;
3228 dev_stripes = 1;
3229 devs_increment = 1;
3230 ncopies = 1;
3231 devs_max = 0; /* 0 == as many as possible */
3232 devs_min = 1;
3233
3234 /*
3235 * define the properties of each RAID type.
3236 * FIXME: move this to a global table and use it in all RAID
3237 * calculation code
3238 */
3239 if (type & (BTRFS_BLOCK_GROUP_DUP)) {
3240 dev_stripes = 2;
3241 ncopies = 2;
3242 devs_max = 1;
3243 } else if (type & (BTRFS_BLOCK_GROUP_RAID0)) {
3244 devs_min = 2;
3245 } else if (type & (BTRFS_BLOCK_GROUP_RAID1)) {
3246 devs_increment = 2;
3247 ncopies = 2;
3248 devs_max = 2;
3249 devs_min = 2;
3250 } else if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
3251 sub_stripes = 2;
3252 devs_increment = 2;
3253 ncopies = 2;
3254 devs_min = 4;
3255 } else {
3256 devs_max = 1;
3257 }
3258
3259 if (type & BTRFS_BLOCK_GROUP_DATA) {
3260 max_stripe_size = 1024 * 1024 * 1024;
3261 max_chunk_size = 10 * max_stripe_size;
3262 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
3263 /* for larger filesystems, use larger metadata chunks */
3264 if (fs_devices->total_rw_bytes > 50ULL * 1024 * 1024 * 1024)
3265 max_stripe_size = 1024 * 1024 * 1024;
3266 else
3267 max_stripe_size = 256 * 1024 * 1024;
3268 max_chunk_size = max_stripe_size;
3269 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
3270 max_stripe_size = 32 * 1024 * 1024;
3271 max_chunk_size = 2 * max_stripe_size;
3272 } else {
3273 printk(KERN_ERR "btrfs: invalid chunk type 0x%llx requested\n",
3274 type);
3275 BUG_ON(1);
3276 }
3277
3278 /* we don't want a chunk larger than 10% of writeable space */
3279 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
3280 max_chunk_size);
3281
3282 devices_info = kzalloc(sizeof(*devices_info) * fs_devices->rw_devices,
3283 GFP_NOFS);
3284 if (!devices_info)
3285 return -ENOMEM;
3286
3287 cur = fs_devices->alloc_list.next;
3288
3289 /*
3290 * in the first pass through the devices list, we gather information
3291 * about the available holes on each device.
3292 */
3293 ndevs = 0;
3294 while (cur != &fs_devices->alloc_list) {
3295 struct btrfs_device *device;
3296 u64 max_avail;
3297 u64 dev_offset;
3298
3299 device = list_entry(cur, struct btrfs_device, dev_alloc_list);
3300
3301 cur = cur->next;
3302
3303 if (!device->writeable) {
3304 printk(KERN_ERR
3305 "btrfs: read-only device in alloc_list\n");
3306 WARN_ON(1);
3307 continue;
3308 }
3309
3310 if (!device->in_fs_metadata)
3311 continue;
3312
3313 if (device->total_bytes > device->bytes_used)
3314 total_avail = device->total_bytes - device->bytes_used;
3315 else
3316 total_avail = 0;
3317
3318 /* If there is no space on this device, skip it. */
3319 if (total_avail == 0)
3320 continue;
3321
3322 ret = find_free_dev_extent(device,
3323 max_stripe_size * dev_stripes,
3324 &dev_offset, &max_avail);
3325 if (ret && ret != -ENOSPC)
3326 goto error;
3327
3328 if (ret == 0)
3329 max_avail = max_stripe_size * dev_stripes;
3330
3331 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
3332 continue;
3333
3334 devices_info[ndevs].dev_offset = dev_offset;
3335 devices_info[ndevs].max_avail = max_avail;
3336 devices_info[ndevs].total_avail = total_avail;
3337 devices_info[ndevs].dev = device;
3338 ++ndevs;
3339 }
3340
3341 /*
3342 * now sort the devices by hole size / available space
3343 */
3344 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
3345 btrfs_cmp_device_info, NULL);
3346
3347 /* round down to number of usable stripes */
3348 ndevs -= ndevs % devs_increment;
3349
3350 if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
3351 ret = -ENOSPC;
3352 goto error;
3353 }
3354
3355 if (devs_max && ndevs > devs_max)
3356 ndevs = devs_max;
3357 /*
3358 * the primary goal is to maximize the number of stripes, so use as many
3359 * devices as possible, even if the stripes are not maximum sized.
3360 */
3361 stripe_size = devices_info[ndevs-1].max_avail;
3362 num_stripes = ndevs * dev_stripes;
3363
3364 if (stripe_size * ndevs > max_chunk_size * ncopies) {
3365 stripe_size = max_chunk_size * ncopies;
3366 do_div(stripe_size, ndevs);
3367 }
3368
3369 do_div(stripe_size, dev_stripes);
3370
3371 /* align to BTRFS_STRIPE_LEN */
3372 do_div(stripe_size, BTRFS_STRIPE_LEN);
3373 stripe_size *= BTRFS_STRIPE_LEN;
3374
3375 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
3376 if (!map) {
3377 ret = -ENOMEM;
3378 goto error;
3379 }
3380 map->num_stripes = num_stripes;
3381
3382 for (i = 0; i < ndevs; ++i) {
3383 for (j = 0; j < dev_stripes; ++j) {
3384 int s = i * dev_stripes + j;
3385 map->stripes[s].dev = devices_info[i].dev;
3386 map->stripes[s].physical = devices_info[i].dev_offset +
3387 j * stripe_size;
3388 }
3389 }
3390 map->sector_size = extent_root->sectorsize;
3391 map->stripe_len = BTRFS_STRIPE_LEN;
3392 map->io_align = BTRFS_STRIPE_LEN;
3393 map->io_width = BTRFS_STRIPE_LEN;
3394 map->type = type;
3395 map->sub_stripes = sub_stripes;
3396
3397 *map_ret = map;
3398 num_bytes = stripe_size * (num_stripes / ncopies);
3399
3400 *stripe_size_out = stripe_size;
3401 *num_bytes_out = num_bytes;
3402
3403 trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes);
3404
3405 em = alloc_extent_map();
3406 if (!em) {
3407 ret = -ENOMEM;
3408 goto error;
3409 }
3410 em->bdev = (struct block_device *)map;
3411 em->start = start;
3412 em->len = num_bytes;
3413 em->block_start = 0;
3414 em->block_len = em->len;
3415
3416 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
3417 write_lock(&em_tree->lock);
3418 ret = add_extent_mapping(em_tree, em);
3419 write_unlock(&em_tree->lock);
3420 free_extent_map(em);
3421 if (ret)
3422 goto error;
3423
3424 ret = btrfs_make_block_group(trans, extent_root, 0, type,
3425 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
3426 start, num_bytes);
3427 if (ret)
3428 goto error;
3429
3430 for (i = 0; i < map->num_stripes; ++i) {
3431 struct btrfs_device *device;
3432 u64 dev_offset;
3433
3434 device = map->stripes[i].dev;
3435 dev_offset = map->stripes[i].physical;
3436
3437 ret = btrfs_alloc_dev_extent(trans, device,
3438 info->chunk_root->root_key.objectid,
3439 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
3440 start, dev_offset, stripe_size);
3441 if (ret) {
3442 btrfs_abort_transaction(trans, extent_root, ret);
3443 goto error;
3444 }
3445 }
3446
3447 kfree(devices_info);
3448 return 0;
3449
3450error:
3451 kfree(map);
3452 kfree(devices_info);
3453 return ret;
3454}
3455
3456static int __finish_chunk_alloc(struct btrfs_trans_handle *trans,
3457 struct btrfs_root *extent_root,
3458 struct map_lookup *map, u64 chunk_offset,
3459 u64 chunk_size, u64 stripe_size)
3460{
3461 u64 dev_offset;
3462 struct btrfs_key key;
3463 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
3464 struct btrfs_device *device;
3465 struct btrfs_chunk *chunk;
3466 struct btrfs_stripe *stripe;
3467 size_t item_size = btrfs_chunk_item_size(map->num_stripes);
3468 int index = 0;
3469 int ret;
3470
3471 chunk = kzalloc(item_size, GFP_NOFS);
3472 if (!chunk)
3473 return -ENOMEM;
3474
3475 index = 0;
3476 while (index < map->num_stripes) {
3477 device = map->stripes[index].dev;
3478 device->bytes_used += stripe_size;
3479 ret = btrfs_update_device(trans, device);
3480 if (ret)
3481 goto out_free;
3482 index++;
3483 }
3484
3485 spin_lock(&extent_root->fs_info->free_chunk_lock);
3486 extent_root->fs_info->free_chunk_space -= (stripe_size *
3487 map->num_stripes);
3488 spin_unlock(&extent_root->fs_info->free_chunk_lock);
3489
3490 index = 0;
3491 stripe = &chunk->stripe;
3492 while (index < map->num_stripes) {
3493 device = map->stripes[index].dev;
3494 dev_offset = map->stripes[index].physical;
3495
3496 btrfs_set_stack_stripe_devid(stripe, device->devid);
3497 btrfs_set_stack_stripe_offset(stripe, dev_offset);
3498 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
3499 stripe++;
3500 index++;
3501 }
3502
3503 btrfs_set_stack_chunk_length(chunk, chunk_size);
3504 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
3505 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
3506 btrfs_set_stack_chunk_type(chunk, map->type);
3507 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
3508 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
3509 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
3510 btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
3511 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
3512
3513 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3514 key.type = BTRFS_CHUNK_ITEM_KEY;
3515 key.offset = chunk_offset;
3516
3517 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
3518
3519 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3520 /*
3521 * TODO: Cleanup of inserted chunk root in case of
3522 * failure.
3523 */
3524 ret = btrfs_add_system_chunk(chunk_root, &key, chunk,
3525 item_size);
3526 }
3527
3528out_free:
3529 kfree(chunk);
3530 return ret;
3531}
3532
3533/*
3534 * Chunk allocation falls into two parts. The first part does works
3535 * that make the new allocated chunk useable, but not do any operation
3536 * that modifies the chunk tree. The second part does the works that
3537 * require modifying the chunk tree. This division is important for the
3538 * bootstrap process of adding storage to a seed btrfs.
3539 */
3540int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
3541 struct btrfs_root *extent_root, u64 type)
3542{
3543 u64 chunk_offset;
3544 u64 chunk_size;
3545 u64 stripe_size;
3546 struct map_lookup *map;
3547 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
3548 int ret;
3549
3550 ret = find_next_chunk(chunk_root, BTRFS_FIRST_CHUNK_TREE_OBJECTID,
3551 &chunk_offset);
3552 if (ret)
3553 return ret;
3554
3555 ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size,
3556 &stripe_size, chunk_offset, type);
3557 if (ret)
3558 return ret;
3559
3560 ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset,
3561 chunk_size, stripe_size);
3562 if (ret)
3563 return ret;
3564 return 0;
3565}
3566
3567static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
3568 struct btrfs_root *root,
3569 struct btrfs_device *device)
3570{
3571 u64 chunk_offset;
3572 u64 sys_chunk_offset;
3573 u64 chunk_size;
3574 u64 sys_chunk_size;
3575 u64 stripe_size;
3576 u64 sys_stripe_size;
3577 u64 alloc_profile;
3578 struct map_lookup *map;
3579 struct map_lookup *sys_map;
3580 struct btrfs_fs_info *fs_info = root->fs_info;
3581 struct btrfs_root *extent_root = fs_info->extent_root;
3582 int ret;
3583
3584 ret = find_next_chunk(fs_info->chunk_root,
3585 BTRFS_FIRST_CHUNK_TREE_OBJECTID, &chunk_offset);
3586 if (ret)
3587 return ret;
3588
3589 alloc_profile = BTRFS_BLOCK_GROUP_METADATA |
3590 fs_info->avail_metadata_alloc_bits;
3591 alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile);
3592
3593 ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size,
3594 &stripe_size, chunk_offset, alloc_profile);
3595 if (ret)
3596 return ret;
3597
3598 sys_chunk_offset = chunk_offset + chunk_size;
3599
3600 alloc_profile = BTRFS_BLOCK_GROUP_SYSTEM |
3601 fs_info->avail_system_alloc_bits;
3602 alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile);
3603
3604 ret = __btrfs_alloc_chunk(trans, extent_root, &sys_map,
3605 &sys_chunk_size, &sys_stripe_size,
3606 sys_chunk_offset, alloc_profile);
3607 if (ret)
3608 goto abort;
3609
3610 ret = btrfs_add_device(trans, fs_info->chunk_root, device);
3611 if (ret)
3612 goto abort;
3613
3614 /*
3615 * Modifying chunk tree needs allocating new blocks from both
3616 * system block group and metadata block group. So we only can
3617 * do operations require modifying the chunk tree after both
3618 * block groups were created.
3619 */
3620 ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset,
3621 chunk_size, stripe_size);
3622 if (ret)
3623 goto abort;
3624
3625 ret = __finish_chunk_alloc(trans, extent_root, sys_map,
3626 sys_chunk_offset, sys_chunk_size,
3627 sys_stripe_size);
3628 if (ret)
3629 goto abort;
3630
3631 return 0;
3632
3633abort:
3634 btrfs_abort_transaction(trans, root, ret);
3635 return ret;
3636}
3637
3638int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
3639{
3640 struct extent_map *em;
3641 struct map_lookup *map;
3642 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
3643 int readonly = 0;
3644 int i;
3645
3646 read_lock(&map_tree->map_tree.lock);
3647 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
3648 read_unlock(&map_tree->map_tree.lock);
3649 if (!em)
3650 return 1;
3651
3652 if (btrfs_test_opt(root, DEGRADED)) {
3653 free_extent_map(em);
3654 return 0;
3655 }
3656
3657 map = (struct map_lookup *)em->bdev;
3658 for (i = 0; i < map->num_stripes; i++) {
3659 if (!map->stripes[i].dev->writeable) {
3660 readonly = 1;
3661 break;
3662 }
3663 }
3664 free_extent_map(em);
3665 return readonly;
3666}
3667
3668void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
3669{
3670 extent_map_tree_init(&tree->map_tree);
3671}
3672
3673void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
3674{
3675 struct extent_map *em;
3676
3677 while (1) {
3678 write_lock(&tree->map_tree.lock);
3679 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
3680 if (em)
3681 remove_extent_mapping(&tree->map_tree, em);
3682 write_unlock(&tree->map_tree.lock);
3683 if (!em)
3684 break;
3685 kfree(em->bdev);
3686 /* once for us */
3687 free_extent_map(em);
3688 /* once for the tree */
3689 free_extent_map(em);
3690 }
3691}
3692
3693int btrfs_num_copies(struct btrfs_mapping_tree *map_tree, u64 logical, u64 len)
3694{
3695 struct extent_map *em;
3696 struct map_lookup *map;
3697 struct extent_map_tree *em_tree = &map_tree->map_tree;
3698 int ret;
3699
3700 read_lock(&em_tree->lock);
3701 em = lookup_extent_mapping(em_tree, logical, len);
3702 read_unlock(&em_tree->lock);
3703 BUG_ON(!em);
3704
3705 BUG_ON(em->start > logical || em->start + em->len < logical);
3706 map = (struct map_lookup *)em->bdev;
3707 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
3708 ret = map->num_stripes;
3709 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
3710 ret = map->sub_stripes;
3711 else
3712 ret = 1;
3713 free_extent_map(em);
3714 return ret;
3715}
3716
3717static int find_live_mirror(struct map_lookup *map, int first, int num,
3718 int optimal)
3719{
3720 int i;
3721 if (map->stripes[optimal].dev->bdev)
3722 return optimal;
3723 for (i = first; i < first + num; i++) {
3724 if (map->stripes[i].dev->bdev)
3725 return i;
3726 }
3727 /* we couldn't find one that doesn't fail. Just return something
3728 * and the io error handling code will clean up eventually
3729 */
3730 return optimal;
3731}
3732
3733static int __btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
3734 u64 logical, u64 *length,
3735 struct btrfs_bio **bbio_ret,
3736 int mirror_num)
3737{
3738 struct extent_map *em;
3739 struct map_lookup *map;
3740 struct extent_map_tree *em_tree = &map_tree->map_tree;
3741 u64 offset;
3742 u64 stripe_offset;
3743 u64 stripe_end_offset;
3744 u64 stripe_nr;
3745 u64 stripe_nr_orig;
3746 u64 stripe_nr_end;
3747 int stripe_index;
3748 int i;
3749 int ret = 0;
3750 int num_stripes;
3751 int max_errors = 0;
3752 struct btrfs_bio *bbio = NULL;
3753
3754 read_lock(&em_tree->lock);
3755 em = lookup_extent_mapping(em_tree, logical, *length);
3756 read_unlock(&em_tree->lock);
3757
3758 if (!em) {
3759 printk(KERN_CRIT "unable to find logical %llu len %llu\n",
3760 (unsigned long long)logical,
3761 (unsigned long long)*length);
3762 BUG();
3763 }
3764
3765 BUG_ON(em->start > logical || em->start + em->len < logical);
3766 map = (struct map_lookup *)em->bdev;
3767 offset = logical - em->start;
3768
3769 if (mirror_num > map->num_stripes)
3770 mirror_num = 0;
3771
3772 stripe_nr = offset;
3773 /*
3774 * stripe_nr counts the total number of stripes we have to stride
3775 * to get to this block
3776 */
3777 do_div(stripe_nr, map->stripe_len);
3778
3779 stripe_offset = stripe_nr * map->stripe_len;
3780 BUG_ON(offset < stripe_offset);
3781
3782 /* stripe_offset is the offset of this block in its stripe*/
3783 stripe_offset = offset - stripe_offset;
3784
3785 if (rw & REQ_DISCARD)
3786 *length = min_t(u64, em->len - offset, *length);
3787 else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
3788 /* we limit the length of each bio to what fits in a stripe */
3789 *length = min_t(u64, em->len - offset,
3790 map->stripe_len - stripe_offset);
3791 } else {
3792 *length = em->len - offset;
3793 }
3794
3795 if (!bbio_ret)
3796 goto out;
3797
3798 num_stripes = 1;
3799 stripe_index = 0;
3800 stripe_nr_orig = stripe_nr;
3801 stripe_nr_end = (offset + *length + map->stripe_len - 1) &
3802 (~(map->stripe_len - 1));
3803 do_div(stripe_nr_end, map->stripe_len);
3804 stripe_end_offset = stripe_nr_end * map->stripe_len -
3805 (offset + *length);
3806 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
3807 if (rw & REQ_DISCARD)
3808 num_stripes = min_t(u64, map->num_stripes,
3809 stripe_nr_end - stripe_nr_orig);
3810 stripe_index = do_div(stripe_nr, map->num_stripes);
3811 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
3812 if (rw & (REQ_WRITE | REQ_DISCARD))
3813 num_stripes = map->num_stripes;
3814 else if (mirror_num)
3815 stripe_index = mirror_num - 1;
3816 else {
3817 stripe_index = find_live_mirror(map, 0,
3818 map->num_stripes,
3819 current->pid % map->num_stripes);
3820 mirror_num = stripe_index + 1;
3821 }
3822
3823 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
3824 if (rw & (REQ_WRITE | REQ_DISCARD)) {
3825 num_stripes = map->num_stripes;
3826 } else if (mirror_num) {
3827 stripe_index = mirror_num - 1;
3828 } else {
3829 mirror_num = 1;
3830 }
3831
3832 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3833 int factor = map->num_stripes / map->sub_stripes;
3834
3835 stripe_index = do_div(stripe_nr, factor);
3836 stripe_index *= map->sub_stripes;
3837
3838 if (rw & REQ_WRITE)
3839 num_stripes = map->sub_stripes;
3840 else if (rw & REQ_DISCARD)
3841 num_stripes = min_t(u64, map->sub_stripes *
3842 (stripe_nr_end - stripe_nr_orig),
3843 map->num_stripes);
3844 else if (mirror_num)
3845 stripe_index += mirror_num - 1;
3846 else {
3847 int old_stripe_index = stripe_index;
3848 stripe_index = find_live_mirror(map, stripe_index,
3849 map->sub_stripes, stripe_index +
3850 current->pid % map->sub_stripes);
3851 mirror_num = stripe_index - old_stripe_index + 1;
3852 }
3853 } else {
3854 /*
3855 * after this do_div call, stripe_nr is the number of stripes
3856 * on this device we have to walk to find the data, and
3857 * stripe_index is the number of our device in the stripe array
3858 */
3859 stripe_index = do_div(stripe_nr, map->num_stripes);
3860 mirror_num = stripe_index + 1;
3861 }
3862 BUG_ON(stripe_index >= map->num_stripes);
3863
3864 bbio = kzalloc(btrfs_bio_size(num_stripes), GFP_NOFS);
3865 if (!bbio) {
3866 ret = -ENOMEM;
3867 goto out;
3868 }
3869 atomic_set(&bbio->error, 0);
3870
3871 if (rw & REQ_DISCARD) {
3872 int factor = 0;
3873 int sub_stripes = 0;
3874 u64 stripes_per_dev = 0;
3875 u32 remaining_stripes = 0;
3876 u32 last_stripe = 0;
3877
3878 if (map->type &
3879 (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
3880 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
3881 sub_stripes = 1;
3882 else
3883 sub_stripes = map->sub_stripes;
3884
3885 factor = map->num_stripes / sub_stripes;
3886 stripes_per_dev = div_u64_rem(stripe_nr_end -
3887 stripe_nr_orig,
3888 factor,
3889 &remaining_stripes);
3890 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
3891 last_stripe *= sub_stripes;
3892 }
3893
3894 for (i = 0; i < num_stripes; i++) {
3895 bbio->stripes[i].physical =
3896 map->stripes[stripe_index].physical +
3897 stripe_offset + stripe_nr * map->stripe_len;
3898 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
3899
3900 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
3901 BTRFS_BLOCK_GROUP_RAID10)) {
3902 bbio->stripes[i].length = stripes_per_dev *
3903 map->stripe_len;
3904
3905 if (i / sub_stripes < remaining_stripes)
3906 bbio->stripes[i].length +=
3907 map->stripe_len;
3908
3909 /*
3910 * Special for the first stripe and
3911 * the last stripe:
3912 *
3913 * |-------|...|-------|
3914 * |----------|
3915 * off end_off
3916 */
3917 if (i < sub_stripes)
3918 bbio->stripes[i].length -=
3919 stripe_offset;
3920
3921 if (stripe_index >= last_stripe &&
3922 stripe_index <= (last_stripe +
3923 sub_stripes - 1))
3924 bbio->stripes[i].length -=
3925 stripe_end_offset;
3926
3927 if (i == sub_stripes - 1)
3928 stripe_offset = 0;
3929 } else
3930 bbio->stripes[i].length = *length;
3931
3932 stripe_index++;
3933 if (stripe_index == map->num_stripes) {
3934 /* This could only happen for RAID0/10 */
3935 stripe_index = 0;
3936 stripe_nr++;
3937 }
3938 }
3939 } else {
3940 for (i = 0; i < num_stripes; i++) {
3941 bbio->stripes[i].physical =
3942 map->stripes[stripe_index].physical +
3943 stripe_offset +
3944 stripe_nr * map->stripe_len;
3945 bbio->stripes[i].dev =
3946 map->stripes[stripe_index].dev;
3947 stripe_index++;
3948 }
3949 }
3950
3951 if (rw & REQ_WRITE) {
3952 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
3953 BTRFS_BLOCK_GROUP_RAID10 |
3954 BTRFS_BLOCK_GROUP_DUP)) {
3955 max_errors = 1;
3956 }
3957 }
3958
3959 *bbio_ret = bbio;
3960 bbio->num_stripes = num_stripes;
3961 bbio->max_errors = max_errors;
3962 bbio->mirror_num = mirror_num;
3963out:
3964 free_extent_map(em);
3965 return ret;
3966}
3967
3968int btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
3969 u64 logical, u64 *length,
3970 struct btrfs_bio **bbio_ret, int mirror_num)
3971{
3972 return __btrfs_map_block(map_tree, rw, logical, length, bbio_ret,
3973 mirror_num);
3974}
3975
3976int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
3977 u64 chunk_start, u64 physical, u64 devid,
3978 u64 **logical, int *naddrs, int *stripe_len)
3979{
3980 struct extent_map_tree *em_tree = &map_tree->map_tree;
3981 struct extent_map *em;
3982 struct map_lookup *map;
3983 u64 *buf;
3984 u64 bytenr;
3985 u64 length;
3986 u64 stripe_nr;
3987 int i, j, nr = 0;
3988
3989 read_lock(&em_tree->lock);
3990 em = lookup_extent_mapping(em_tree, chunk_start, 1);
3991 read_unlock(&em_tree->lock);
3992
3993 BUG_ON(!em || em->start != chunk_start);
3994 map = (struct map_lookup *)em->bdev;
3995
3996 length = em->len;
3997 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
3998 do_div(length, map->num_stripes / map->sub_stripes);
3999 else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
4000 do_div(length, map->num_stripes);
4001
4002 buf = kzalloc(sizeof(u64) * map->num_stripes, GFP_NOFS);
4003 BUG_ON(!buf); /* -ENOMEM */
4004
4005 for (i = 0; i < map->num_stripes; i++) {
4006 if (devid && map->stripes[i].dev->devid != devid)
4007 continue;
4008 if (map->stripes[i].physical > physical ||
4009 map->stripes[i].physical + length <= physical)
4010 continue;
4011
4012 stripe_nr = physical - map->stripes[i].physical;
4013 do_div(stripe_nr, map->stripe_len);
4014
4015 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
4016 stripe_nr = stripe_nr * map->num_stripes + i;
4017 do_div(stripe_nr, map->sub_stripes);
4018 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
4019 stripe_nr = stripe_nr * map->num_stripes + i;
4020 }
4021 bytenr = chunk_start + stripe_nr * map->stripe_len;
4022 WARN_ON(nr >= map->num_stripes);
4023 for (j = 0; j < nr; j++) {
4024 if (buf[j] == bytenr)
4025 break;
4026 }
4027 if (j == nr) {
4028 WARN_ON(nr >= map->num_stripes);
4029 buf[nr++] = bytenr;
4030 }
4031 }
4032
4033 *logical = buf;
4034 *naddrs = nr;
4035 *stripe_len = map->stripe_len;
4036
4037 free_extent_map(em);
4038 return 0;
4039}
4040
4041static void *merge_stripe_index_into_bio_private(void *bi_private,
4042 unsigned int stripe_index)
4043{
4044 /*
4045 * with single, dup, RAID0, RAID1 and RAID10, stripe_index is
4046 * at most 1.
4047 * The alternative solution (instead of stealing bits from the
4048 * pointer) would be to allocate an intermediate structure
4049 * that contains the old private pointer plus the stripe_index.
4050 */
4051 BUG_ON((((uintptr_t)bi_private) & 3) != 0);
4052 BUG_ON(stripe_index > 3);
4053 return (void *)(((uintptr_t)bi_private) | stripe_index);
4054}
4055
4056static struct btrfs_bio *extract_bbio_from_bio_private(void *bi_private)
4057{
4058 return (struct btrfs_bio *)(((uintptr_t)bi_private) & ~((uintptr_t)3));
4059}
4060
4061static unsigned int extract_stripe_index_from_bio_private(void *bi_private)
4062{
4063 return (unsigned int)((uintptr_t)bi_private) & 3;
4064}
4065
4066static void btrfs_end_bio(struct bio *bio, int err)
4067{
4068 struct btrfs_bio *bbio = extract_bbio_from_bio_private(bio->bi_private);
4069 int is_orig_bio = 0;
4070
4071 if (err) {
4072 atomic_inc(&bbio->error);
4073 if (err == -EIO || err == -EREMOTEIO) {
4074 unsigned int stripe_index =
4075 extract_stripe_index_from_bio_private(
4076 bio->bi_private);
4077 struct btrfs_device *dev;
4078
4079 BUG_ON(stripe_index >= bbio->num_stripes);
4080 dev = bbio->stripes[stripe_index].dev;
4081 if (dev->bdev) {
4082 if (bio->bi_rw & WRITE)
4083 btrfs_dev_stat_inc(dev,
4084 BTRFS_DEV_STAT_WRITE_ERRS);
4085 else
4086 btrfs_dev_stat_inc(dev,
4087 BTRFS_DEV_STAT_READ_ERRS);
4088 if ((bio->bi_rw & WRITE_FLUSH) == WRITE_FLUSH)
4089 btrfs_dev_stat_inc(dev,
4090 BTRFS_DEV_STAT_FLUSH_ERRS);
4091 btrfs_dev_stat_print_on_error(dev);
4092 }
4093 }
4094 }
4095
4096 if (bio == bbio->orig_bio)
4097 is_orig_bio = 1;
4098
4099 if (atomic_dec_and_test(&bbio->stripes_pending)) {
4100 if (!is_orig_bio) {
4101 bio_put(bio);
4102 bio = bbio->orig_bio;
4103 }
4104 bio->bi_private = bbio->private;
4105 bio->bi_end_io = bbio->end_io;
4106 bio->bi_bdev = (struct block_device *)
4107 (unsigned long)bbio->mirror_num;
4108 /* only send an error to the higher layers if it is
4109 * beyond the tolerance of the multi-bio
4110 */
4111 if (atomic_read(&bbio->error) > bbio->max_errors) {
4112 err = -EIO;
4113 } else {
4114 /*
4115 * this bio is actually up to date, we didn't
4116 * go over the max number of errors
4117 */
4118 set_bit(BIO_UPTODATE, &bio->bi_flags);
4119 err = 0;
4120 }
4121 kfree(bbio);
4122
4123 bio_endio(bio, err);
4124 } else if (!is_orig_bio) {
4125 bio_put(bio);
4126 }
4127}
4128
4129struct async_sched {
4130 struct bio *bio;
4131 int rw;
4132 struct btrfs_fs_info *info;
4133 struct btrfs_work work;
4134};
4135
4136/*
4137 * see run_scheduled_bios for a description of why bios are collected for
4138 * async submit.
4139 *
4140 * This will add one bio to the pending list for a device and make sure
4141 * the work struct is scheduled.
4142 */
4143static noinline void schedule_bio(struct btrfs_root *root,
4144 struct btrfs_device *device,
4145 int rw, struct bio *bio)
4146{
4147 int should_queue = 1;
4148 struct btrfs_pending_bios *pending_bios;
4149
4150 /* don't bother with additional async steps for reads, right now */
4151 if (!(rw & REQ_WRITE)) {
4152 bio_get(bio);
4153 btrfsic_submit_bio(rw, bio);
4154 bio_put(bio);
4155 return;
4156 }
4157
4158 /*
4159 * nr_async_bios allows us to reliably return congestion to the
4160 * higher layers. Otherwise, the async bio makes it appear we have
4161 * made progress against dirty pages when we've really just put it
4162 * on a queue for later
4163 */
4164 atomic_inc(&root->fs_info->nr_async_bios);
4165 WARN_ON(bio->bi_next);
4166 bio->bi_next = NULL;
4167 bio->bi_rw |= rw;
4168
4169 spin_lock(&device->io_lock);
4170 if (bio->bi_rw & REQ_SYNC)
4171 pending_bios = &device->pending_sync_bios;
4172 else
4173 pending_bios = &device->pending_bios;
4174
4175 if (pending_bios->tail)
4176 pending_bios->tail->bi_next = bio;
4177
4178 pending_bios->tail = bio;
4179 if (!pending_bios->head)
4180 pending_bios->head = bio;
4181 if (device->running_pending)
4182 should_queue = 0;
4183
4184 spin_unlock(&device->io_lock);
4185
4186 if (should_queue)
4187 btrfs_queue_worker(&root->fs_info->submit_workers,
4188 &device->work);
4189}
4190
4191int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
4192 int mirror_num, int async_submit)
4193{
4194 struct btrfs_mapping_tree *map_tree;
4195 struct btrfs_device *dev;
4196 struct bio *first_bio = bio;
4197 u64 logical = (u64)bio->bi_sector << 9;
4198 u64 length = 0;
4199 u64 map_length;
4200 int ret;
4201 int dev_nr = 0;
4202 int total_devs = 1;
4203 struct btrfs_bio *bbio = NULL;
4204
4205 length = bio->bi_size;
4206 map_tree = &root->fs_info->mapping_tree;
4207 map_length = length;
4208
4209 ret = btrfs_map_block(map_tree, rw, logical, &map_length, &bbio,
4210 mirror_num);
4211 if (ret) /* -ENOMEM */
4212 return ret;
4213
4214 total_devs = bbio->num_stripes;
4215 if (map_length < length) {
4216 printk(KERN_CRIT "mapping failed logical %llu bio len %llu "
4217 "len %llu\n", (unsigned long long)logical,
4218 (unsigned long long)length,
4219 (unsigned long long)map_length);
4220 BUG();
4221 }
4222
4223 bbio->orig_bio = first_bio;
4224 bbio->private = first_bio->bi_private;
4225 bbio->end_io = first_bio->bi_end_io;
4226 atomic_set(&bbio->stripes_pending, bbio->num_stripes);
4227
4228 while (dev_nr < total_devs) {
4229 if (dev_nr < total_devs - 1) {
4230 bio = bio_clone(first_bio, GFP_NOFS);
4231 BUG_ON(!bio); /* -ENOMEM */
4232 } else {
4233 bio = first_bio;
4234 }
4235 bio->bi_private = bbio;
4236 bio->bi_private = merge_stripe_index_into_bio_private(
4237 bio->bi_private, (unsigned int)dev_nr);
4238 bio->bi_end_io = btrfs_end_bio;
4239 bio->bi_sector = bbio->stripes[dev_nr].physical >> 9;
4240 dev = bbio->stripes[dev_nr].dev;
4241 if (dev && dev->bdev && (rw != WRITE || dev->writeable)) {
4242#ifdef DEBUG
4243 struct rcu_string *name;
4244
4245 rcu_read_lock();
4246 name = rcu_dereference(dev->name);
4247 pr_debug("btrfs_map_bio: rw %d, secor=%llu, dev=%lu "
4248 "(%s id %llu), size=%u\n", rw,
4249 (u64)bio->bi_sector, (u_long)dev->bdev->bd_dev,
4250 name->str, dev->devid, bio->bi_size);
4251 rcu_read_unlock();
4252#endif
4253 bio->bi_bdev = dev->bdev;
4254 if (async_submit)
4255 schedule_bio(root, dev, rw, bio);
4256 else
4257 btrfsic_submit_bio(rw, bio);
4258 } else {
4259 bio->bi_bdev = root->fs_info->fs_devices->latest_bdev;
4260 bio->bi_sector = logical >> 9;
4261 bio_endio(bio, -EIO);
4262 }
4263 dev_nr++;
4264 }
4265 return 0;
4266}
4267
4268struct btrfs_device *btrfs_find_device(struct btrfs_root *root, u64 devid,
4269 u8 *uuid, u8 *fsid)
4270{
4271 struct btrfs_device *device;
4272 struct btrfs_fs_devices *cur_devices;
4273
4274 cur_devices = root->fs_info->fs_devices;
4275 while (cur_devices) {
4276 if (!fsid ||
4277 !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
4278 device = __find_device(&cur_devices->devices,
4279 devid, uuid);
4280 if (device)
4281 return device;
4282 }
4283 cur_devices = cur_devices->seed;
4284 }
4285 return NULL;
4286}
4287
4288static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
4289 u64 devid, u8 *dev_uuid)
4290{
4291 struct btrfs_device *device;
4292 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
4293
4294 device = kzalloc(sizeof(*device), GFP_NOFS);
4295 if (!device)
4296 return NULL;
4297 list_add(&device->dev_list,
4298 &fs_devices->devices);
4299 device->dev_root = root->fs_info->dev_root;
4300 device->devid = devid;
4301 device->work.func = pending_bios_fn;
4302 device->fs_devices = fs_devices;
4303 device->missing = 1;
4304 fs_devices->num_devices++;
4305 fs_devices->missing_devices++;
4306 spin_lock_init(&device->io_lock);
4307 INIT_LIST_HEAD(&device->dev_alloc_list);
4308 memcpy(device->uuid, dev_uuid, BTRFS_UUID_SIZE);
4309 return device;
4310}
4311
4312static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
4313 struct extent_buffer *leaf,
4314 struct btrfs_chunk *chunk)
4315{
4316 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
4317 struct map_lookup *map;
4318 struct extent_map *em;
4319 u64 logical;
4320 u64 length;
4321 u64 devid;
4322 u8 uuid[BTRFS_UUID_SIZE];
4323 int num_stripes;
4324 int ret;
4325 int i;
4326
4327 logical = key->offset;
4328 length = btrfs_chunk_length(leaf, chunk);
4329
4330 read_lock(&map_tree->map_tree.lock);
4331 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
4332 read_unlock(&map_tree->map_tree.lock);
4333
4334 /* already mapped? */
4335 if (em && em->start <= logical && em->start + em->len > logical) {
4336 free_extent_map(em);
4337 return 0;
4338 } else if (em) {
4339 free_extent_map(em);
4340 }
4341
4342 em = alloc_extent_map();
4343 if (!em)
4344 return -ENOMEM;
4345 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
4346 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4347 if (!map) {
4348 free_extent_map(em);
4349 return -ENOMEM;
4350 }
4351
4352 em->bdev = (struct block_device *)map;
4353 em->start = logical;
4354 em->len = length;
4355 em->block_start = 0;
4356 em->block_len = em->len;
4357
4358 map->num_stripes = num_stripes;
4359 map->io_width = btrfs_chunk_io_width(leaf, chunk);
4360 map->io_align = btrfs_chunk_io_align(leaf, chunk);
4361 map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
4362 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
4363 map->type = btrfs_chunk_type(leaf, chunk);
4364 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
4365 for (i = 0; i < num_stripes; i++) {
4366 map->stripes[i].physical =
4367 btrfs_stripe_offset_nr(leaf, chunk, i);
4368 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
4369 read_extent_buffer(leaf, uuid, (unsigned long)
4370 btrfs_stripe_dev_uuid_nr(chunk, i),
4371 BTRFS_UUID_SIZE);
4372 map->stripes[i].dev = btrfs_find_device(root, devid, uuid,
4373 NULL);
4374 if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
4375 kfree(map);
4376 free_extent_map(em);
4377 return -EIO;
4378 }
4379 if (!map->stripes[i].dev) {
4380 map->stripes[i].dev =
4381 add_missing_dev(root, devid, uuid);
4382 if (!map->stripes[i].dev) {
4383 kfree(map);
4384 free_extent_map(em);
4385 return -EIO;
4386 }
4387 }
4388 map->stripes[i].dev->in_fs_metadata = 1;
4389 }
4390
4391 write_lock(&map_tree->map_tree.lock);
4392 ret = add_extent_mapping(&map_tree->map_tree, em);
4393 write_unlock(&map_tree->map_tree.lock);
4394 BUG_ON(ret); /* Tree corruption */
4395 free_extent_map(em);
4396
4397 return 0;
4398}
4399
4400static void fill_device_from_item(struct extent_buffer *leaf,
4401 struct btrfs_dev_item *dev_item,
4402 struct btrfs_device *device)
4403{
4404 unsigned long ptr;
4405
4406 device->devid = btrfs_device_id(leaf, dev_item);
4407 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
4408 device->total_bytes = device->disk_total_bytes;
4409 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
4410 device->type = btrfs_device_type(leaf, dev_item);
4411 device->io_align = btrfs_device_io_align(leaf, dev_item);
4412 device->io_width = btrfs_device_io_width(leaf, dev_item);
4413 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
4414
4415 ptr = (unsigned long)btrfs_device_uuid(dev_item);
4416 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
4417}
4418
4419static int open_seed_devices(struct btrfs_root *root, u8 *fsid)
4420{
4421 struct btrfs_fs_devices *fs_devices;
4422 int ret;
4423
4424 BUG_ON(!mutex_is_locked(&uuid_mutex));
4425
4426 fs_devices = root->fs_info->fs_devices->seed;
4427 while (fs_devices) {
4428 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
4429 ret = 0;
4430 goto out;
4431 }
4432 fs_devices = fs_devices->seed;
4433 }
4434
4435 fs_devices = find_fsid(fsid);
4436 if (!fs_devices) {
4437 ret = -ENOENT;
4438 goto out;
4439 }
4440
4441 fs_devices = clone_fs_devices(fs_devices);
4442 if (IS_ERR(fs_devices)) {
4443 ret = PTR_ERR(fs_devices);
4444 goto out;
4445 }
4446
4447 ret = __btrfs_open_devices(fs_devices, FMODE_READ,
4448 root->fs_info->bdev_holder);
4449 if (ret) {
4450 free_fs_devices(fs_devices);
4451 goto out;
4452 }
4453
4454 if (!fs_devices->seeding) {
4455 __btrfs_close_devices(fs_devices);
4456 free_fs_devices(fs_devices);
4457 ret = -EINVAL;
4458 goto out;
4459 }
4460
4461 fs_devices->seed = root->fs_info->fs_devices->seed;
4462 root->fs_info->fs_devices->seed = fs_devices;
4463out:
4464 return ret;
4465}
4466
4467static int read_one_dev(struct btrfs_root *root,
4468 struct extent_buffer *leaf,
4469 struct btrfs_dev_item *dev_item)
4470{
4471 struct btrfs_device *device;
4472 u64 devid;
4473 int ret;
4474 u8 fs_uuid[BTRFS_UUID_SIZE];
4475 u8 dev_uuid[BTRFS_UUID_SIZE];
4476
4477 devid = btrfs_device_id(leaf, dev_item);
4478 read_extent_buffer(leaf, dev_uuid,
4479 (unsigned long)btrfs_device_uuid(dev_item),
4480 BTRFS_UUID_SIZE);
4481 read_extent_buffer(leaf, fs_uuid,
4482 (unsigned long)btrfs_device_fsid(dev_item),
4483 BTRFS_UUID_SIZE);
4484
4485 if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
4486 ret = open_seed_devices(root, fs_uuid);
4487 if (ret && !btrfs_test_opt(root, DEGRADED))
4488 return ret;
4489 }
4490
4491 device = btrfs_find_device(root, devid, dev_uuid, fs_uuid);
4492 if (!device || !device->bdev) {
4493 if (!btrfs_test_opt(root, DEGRADED))
4494 return -EIO;
4495
4496 if (!device) {
4497 printk(KERN_WARNING "warning devid %llu missing\n",
4498 (unsigned long long)devid);
4499 device = add_missing_dev(root, devid, dev_uuid);
4500 if (!device)
4501 return -ENOMEM;
4502 } else if (!device->missing) {
4503 /*
4504 * this happens when a device that was properly setup
4505 * in the device info lists suddenly goes bad.
4506 * device->bdev is NULL, and so we have to set
4507 * device->missing to one here
4508 */
4509 root->fs_info->fs_devices->missing_devices++;
4510 device->missing = 1;
4511 }
4512 }
4513
4514 if (device->fs_devices != root->fs_info->fs_devices) {
4515 BUG_ON(device->writeable);
4516 if (device->generation !=
4517 btrfs_device_generation(leaf, dev_item))
4518 return -EINVAL;
4519 }
4520
4521 fill_device_from_item(leaf, dev_item, device);
4522 device->dev_root = root->fs_info->dev_root;
4523 device->in_fs_metadata = 1;
4524 if (device->writeable) {
4525 device->fs_devices->total_rw_bytes += device->total_bytes;
4526 spin_lock(&root->fs_info->free_chunk_lock);
4527 root->fs_info->free_chunk_space += device->total_bytes -
4528 device->bytes_used;
4529 spin_unlock(&root->fs_info->free_chunk_lock);
4530 }
4531 ret = 0;
4532 return ret;
4533}
4534
4535int btrfs_read_sys_array(struct btrfs_root *root)
4536{
4537 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
4538 struct extent_buffer *sb;
4539 struct btrfs_disk_key *disk_key;
4540 struct btrfs_chunk *chunk;
4541 u8 *ptr;
4542 unsigned long sb_ptr;
4543 int ret = 0;
4544 u32 num_stripes;
4545 u32 array_size;
4546 u32 len = 0;
4547 u32 cur;
4548 struct btrfs_key key;
4549
4550 sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET,
4551 BTRFS_SUPER_INFO_SIZE);
4552 if (!sb)
4553 return -ENOMEM;
4554 btrfs_set_buffer_uptodate(sb);
4555 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
4556 /*
4557 * The sb extent buffer is artifical and just used to read the system array.
4558 * btrfs_set_buffer_uptodate() call does not properly mark all it's
4559 * pages up-to-date when the page is larger: extent does not cover the
4560 * whole page and consequently check_page_uptodate does not find all
4561 * the page's extents up-to-date (the hole beyond sb),
4562 * write_extent_buffer then triggers a WARN_ON.
4563 *
4564 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
4565 * but sb spans only this function. Add an explicit SetPageUptodate call
4566 * to silence the warning eg. on PowerPC 64.
4567 */
4568 if (PAGE_CACHE_SIZE > BTRFS_SUPER_INFO_SIZE)
4569 SetPageUptodate(sb->pages[0]);
4570
4571 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
4572 array_size = btrfs_super_sys_array_size(super_copy);
4573
4574 ptr = super_copy->sys_chunk_array;
4575 sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array);
4576 cur = 0;
4577
4578 while (cur < array_size) {
4579 disk_key = (struct btrfs_disk_key *)ptr;
4580 btrfs_disk_key_to_cpu(&key, disk_key);
4581
4582 len = sizeof(*disk_key); ptr += len;
4583 sb_ptr += len;
4584 cur += len;
4585
4586 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
4587 chunk = (struct btrfs_chunk *)sb_ptr;
4588 ret = read_one_chunk(root, &key, sb, chunk);
4589 if (ret)
4590 break;
4591 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
4592 len = btrfs_chunk_item_size(num_stripes);
4593 } else {
4594 ret = -EIO;
4595 break;
4596 }
4597 ptr += len;
4598 sb_ptr += len;
4599 cur += len;
4600 }
4601 free_extent_buffer(sb);
4602 return ret;
4603}
4604
4605int btrfs_read_chunk_tree(struct btrfs_root *root)
4606{
4607 struct btrfs_path *path;
4608 struct extent_buffer *leaf;
4609 struct btrfs_key key;
4610 struct btrfs_key found_key;
4611 int ret;
4612 int slot;
4613
4614 root = root->fs_info->chunk_root;
4615
4616 path = btrfs_alloc_path();
4617 if (!path)
4618 return -ENOMEM;
4619
4620 mutex_lock(&uuid_mutex);
4621 lock_chunks(root);
4622
4623 /* first we search for all of the device items, and then we
4624 * read in all of the chunk items. This way we can create chunk
4625 * mappings that reference all of the devices that are afound
4626 */
4627 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
4628 key.offset = 0;
4629 key.type = 0;
4630again:
4631 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4632 if (ret < 0)
4633 goto error;
4634 while (1) {
4635 leaf = path->nodes[0];
4636 slot = path->slots[0];
4637 if (slot >= btrfs_header_nritems(leaf)) {
4638 ret = btrfs_next_leaf(root, path);
4639 if (ret == 0)
4640 continue;
4641 if (ret < 0)
4642 goto error;
4643 break;
4644 }
4645 btrfs_item_key_to_cpu(leaf, &found_key, slot);
4646 if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
4647 if (found_key.objectid != BTRFS_DEV_ITEMS_OBJECTID)
4648 break;
4649 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
4650 struct btrfs_dev_item *dev_item;
4651 dev_item = btrfs_item_ptr(leaf, slot,
4652 struct btrfs_dev_item);
4653 ret = read_one_dev(root, leaf, dev_item);
4654 if (ret)
4655 goto error;
4656 }
4657 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
4658 struct btrfs_chunk *chunk;
4659 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
4660 ret = read_one_chunk(root, &found_key, leaf, chunk);
4661 if (ret)
4662 goto error;
4663 }
4664 path->slots[0]++;
4665 }
4666 if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
4667 key.objectid = 0;
4668 btrfs_release_path(path);
4669 goto again;
4670 }
4671 ret = 0;
4672error:
4673 unlock_chunks(root);
4674 mutex_unlock(&uuid_mutex);
4675
4676 btrfs_free_path(path);
4677 return ret;
4678}
4679
4680static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
4681{
4682 int i;
4683
4684 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
4685 btrfs_dev_stat_reset(dev, i);
4686}
4687
4688int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
4689{
4690 struct btrfs_key key;
4691 struct btrfs_key found_key;
4692 struct btrfs_root *dev_root = fs_info->dev_root;
4693 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
4694 struct extent_buffer *eb;
4695 int slot;
4696 int ret = 0;
4697 struct btrfs_device *device;
4698 struct btrfs_path *path = NULL;
4699 int i;
4700
4701 path = btrfs_alloc_path();
4702 if (!path) {
4703 ret = -ENOMEM;
4704 goto out;
4705 }
4706
4707 mutex_lock(&fs_devices->device_list_mutex);
4708 list_for_each_entry(device, &fs_devices->devices, dev_list) {
4709 int item_size;
4710 struct btrfs_dev_stats_item *ptr;
4711
4712 key.objectid = 0;
4713 key.type = BTRFS_DEV_STATS_KEY;
4714 key.offset = device->devid;
4715 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
4716 if (ret) {
4717 printk_in_rcu(KERN_WARNING "btrfs: no dev_stats entry found for device %s (devid %llu) (OK on first mount after mkfs)\n",
4718 rcu_str_deref(device->name),
4719 (unsigned long long)device->devid);
4720 __btrfs_reset_dev_stats(device);
4721 device->dev_stats_valid = 1;
4722 btrfs_release_path(path);
4723 continue;
4724 }
4725 slot = path->slots[0];
4726 eb = path->nodes[0];
4727 btrfs_item_key_to_cpu(eb, &found_key, slot);
4728 item_size = btrfs_item_size_nr(eb, slot);
4729
4730 ptr = btrfs_item_ptr(eb, slot,
4731 struct btrfs_dev_stats_item);
4732
4733 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
4734 if (item_size >= (1 + i) * sizeof(__le64))
4735 btrfs_dev_stat_set(device, i,
4736 btrfs_dev_stats_value(eb, ptr, i));
4737 else
4738 btrfs_dev_stat_reset(device, i);
4739 }
4740
4741 device->dev_stats_valid = 1;
4742 btrfs_dev_stat_print_on_load(device);
4743 btrfs_release_path(path);
4744 }
4745 mutex_unlock(&fs_devices->device_list_mutex);
4746
4747out:
4748 btrfs_free_path(path);
4749 return ret < 0 ? ret : 0;
4750}
4751
4752static int update_dev_stat_item(struct btrfs_trans_handle *trans,
4753 struct btrfs_root *dev_root,
4754 struct btrfs_device *device)
4755{
4756 struct btrfs_path *path;
4757 struct btrfs_key key;
4758 struct extent_buffer *eb;
4759 struct btrfs_dev_stats_item *ptr;
4760 int ret;
4761 int i;
4762
4763 key.objectid = 0;
4764 key.type = BTRFS_DEV_STATS_KEY;
4765 key.offset = device->devid;
4766
4767 path = btrfs_alloc_path();
4768 BUG_ON(!path);
4769 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
4770 if (ret < 0) {
4771 printk_in_rcu(KERN_WARNING "btrfs: error %d while searching for dev_stats item for device %s!\n",
4772 ret, rcu_str_deref(device->name));
4773 goto out;
4774 }
4775
4776 if (ret == 0 &&
4777 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
4778 /* need to delete old one and insert a new one */
4779 ret = btrfs_del_item(trans, dev_root, path);
4780 if (ret != 0) {
4781 printk_in_rcu(KERN_WARNING "btrfs: delete too small dev_stats item for device %s failed %d!\n",
4782 rcu_str_deref(device->name), ret);
4783 goto out;
4784 }
4785 ret = 1;
4786 }
4787
4788 if (ret == 1) {
4789 /* need to insert a new item */
4790 btrfs_release_path(path);
4791 ret = btrfs_insert_empty_item(trans, dev_root, path,
4792 &key, sizeof(*ptr));
4793 if (ret < 0) {
4794 printk_in_rcu(KERN_WARNING "btrfs: insert dev_stats item for device %s failed %d!\n",
4795 rcu_str_deref(device->name), ret);
4796 goto out;
4797 }
4798 }
4799
4800 eb = path->nodes[0];
4801 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
4802 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
4803 btrfs_set_dev_stats_value(eb, ptr, i,
4804 btrfs_dev_stat_read(device, i));
4805 btrfs_mark_buffer_dirty(eb);
4806
4807out:
4808 btrfs_free_path(path);
4809 return ret;
4810}
4811
4812/*
4813 * called from commit_transaction. Writes all changed device stats to disk.
4814 */
4815int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
4816 struct btrfs_fs_info *fs_info)
4817{
4818 struct btrfs_root *dev_root = fs_info->dev_root;
4819 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
4820 struct btrfs_device *device;
4821 int ret = 0;
4822
4823 mutex_lock(&fs_devices->device_list_mutex);
4824 list_for_each_entry(device, &fs_devices->devices, dev_list) {
4825 if (!device->dev_stats_valid || !device->dev_stats_dirty)
4826 continue;
4827
4828 ret = update_dev_stat_item(trans, dev_root, device);
4829 if (!ret)
4830 device->dev_stats_dirty = 0;
4831 }
4832 mutex_unlock(&fs_devices->device_list_mutex);
4833
4834 return ret;
4835}
4836
4837void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
4838{
4839 btrfs_dev_stat_inc(dev, index);
4840 btrfs_dev_stat_print_on_error(dev);
4841}
4842
4843void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
4844{
4845 if (!dev->dev_stats_valid)
4846 return;
4847 printk_ratelimited_in_rcu(KERN_ERR
4848 "btrfs: bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
4849 rcu_str_deref(dev->name),
4850 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
4851 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
4852 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
4853 btrfs_dev_stat_read(dev,
4854 BTRFS_DEV_STAT_CORRUPTION_ERRS),
4855 btrfs_dev_stat_read(dev,
4856 BTRFS_DEV_STAT_GENERATION_ERRS));
4857}
4858
4859static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
4860{
4861 printk_in_rcu(KERN_INFO "btrfs: bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
4862 rcu_str_deref(dev->name),
4863 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
4864 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
4865 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
4866 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
4867 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
4868}
4869
4870int btrfs_get_dev_stats(struct btrfs_root *root,
4871 struct btrfs_ioctl_get_dev_stats *stats,
4872 int reset_after_read)
4873{
4874 struct btrfs_device *dev;
4875 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
4876 int i;
4877
4878 mutex_lock(&fs_devices->device_list_mutex);
4879 dev = btrfs_find_device(root, stats->devid, NULL, NULL);
4880 mutex_unlock(&fs_devices->device_list_mutex);
4881
4882 if (!dev) {
4883 printk(KERN_WARNING
4884 "btrfs: get dev_stats failed, device not found\n");
4885 return -ENODEV;
4886 } else if (!dev->dev_stats_valid) {
4887 printk(KERN_WARNING
4888 "btrfs: get dev_stats failed, not yet valid\n");
4889 return -ENODEV;
4890 } else if (reset_after_read) {
4891 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
4892 if (stats->nr_items > i)
4893 stats->values[i] =
4894 btrfs_dev_stat_read_and_reset(dev, i);
4895 else
4896 btrfs_dev_stat_reset(dev, i);
4897 }
4898 } else {
4899 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
4900 if (stats->nr_items > i)
4901 stats->values[i] = btrfs_dev_stat_read(dev, i);
4902 }
4903 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
4904 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
4905 return 0;
4906}
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18#include <linux/sched.h>
19#include <linux/bio.h>
20#include <linux/slab.h>
21#include <linux/buffer_head.h>
22#include <linux/blkdev.h>
23#include <linux/random.h>
24#include <linux/iocontext.h>
25#include <linux/capability.h>
26#include <linux/ratelimit.h>
27#include <linux/kthread.h>
28#include <linux/raid/pq.h>
29#include <linux/semaphore.h>
30#include <asm/div64.h>
31#include "ctree.h"
32#include "extent_map.h"
33#include "disk-io.h"
34#include "transaction.h"
35#include "print-tree.h"
36#include "volumes.h"
37#include "raid56.h"
38#include "async-thread.h"
39#include "check-integrity.h"
40#include "rcu-string.h"
41#include "math.h"
42#include "dev-replace.h"
43
44static int init_first_rw_device(struct btrfs_trans_handle *trans,
45 struct btrfs_root *root,
46 struct btrfs_device *device);
47static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
48static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
49static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
50static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
51
52static DEFINE_MUTEX(uuid_mutex);
53static LIST_HEAD(fs_uuids);
54
55static void lock_chunks(struct btrfs_root *root)
56{
57 mutex_lock(&root->fs_info->chunk_mutex);
58}
59
60static void unlock_chunks(struct btrfs_root *root)
61{
62 mutex_unlock(&root->fs_info->chunk_mutex);
63}
64
65static struct btrfs_fs_devices *__alloc_fs_devices(void)
66{
67 struct btrfs_fs_devices *fs_devs;
68
69 fs_devs = kzalloc(sizeof(*fs_devs), GFP_NOFS);
70 if (!fs_devs)
71 return ERR_PTR(-ENOMEM);
72
73 mutex_init(&fs_devs->device_list_mutex);
74
75 INIT_LIST_HEAD(&fs_devs->devices);
76 INIT_LIST_HEAD(&fs_devs->alloc_list);
77 INIT_LIST_HEAD(&fs_devs->list);
78
79 return fs_devs;
80}
81
82/**
83 * alloc_fs_devices - allocate struct btrfs_fs_devices
84 * @fsid: a pointer to UUID for this FS. If NULL a new UUID is
85 * generated.
86 *
87 * Return: a pointer to a new &struct btrfs_fs_devices on success;
88 * ERR_PTR() on error. Returned struct is not linked onto any lists and
89 * can be destroyed with kfree() right away.
90 */
91static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
92{
93 struct btrfs_fs_devices *fs_devs;
94
95 fs_devs = __alloc_fs_devices();
96 if (IS_ERR(fs_devs))
97 return fs_devs;
98
99 if (fsid)
100 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
101 else
102 generate_random_uuid(fs_devs->fsid);
103
104 return fs_devs;
105}
106
107static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
108{
109 struct btrfs_device *device;
110 WARN_ON(fs_devices->opened);
111 while (!list_empty(&fs_devices->devices)) {
112 device = list_entry(fs_devices->devices.next,
113 struct btrfs_device, dev_list);
114 list_del(&device->dev_list);
115 rcu_string_free(device->name);
116 kfree(device);
117 }
118 kfree(fs_devices);
119}
120
121static void btrfs_kobject_uevent(struct block_device *bdev,
122 enum kobject_action action)
123{
124 int ret;
125
126 ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
127 if (ret)
128 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
129 action,
130 kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
131 &disk_to_dev(bdev->bd_disk)->kobj);
132}
133
134void btrfs_cleanup_fs_uuids(void)
135{
136 struct btrfs_fs_devices *fs_devices;
137
138 while (!list_empty(&fs_uuids)) {
139 fs_devices = list_entry(fs_uuids.next,
140 struct btrfs_fs_devices, list);
141 list_del(&fs_devices->list);
142 free_fs_devices(fs_devices);
143 }
144}
145
146static struct btrfs_device *__alloc_device(void)
147{
148 struct btrfs_device *dev;
149
150 dev = kzalloc(sizeof(*dev), GFP_NOFS);
151 if (!dev)
152 return ERR_PTR(-ENOMEM);
153
154 INIT_LIST_HEAD(&dev->dev_list);
155 INIT_LIST_HEAD(&dev->dev_alloc_list);
156
157 spin_lock_init(&dev->io_lock);
158
159 spin_lock_init(&dev->reada_lock);
160 atomic_set(&dev->reada_in_flight, 0);
161 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_WAIT);
162 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_WAIT);
163
164 return dev;
165}
166
167static noinline struct btrfs_device *__find_device(struct list_head *head,
168 u64 devid, u8 *uuid)
169{
170 struct btrfs_device *dev;
171
172 list_for_each_entry(dev, head, dev_list) {
173 if (dev->devid == devid &&
174 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
175 return dev;
176 }
177 }
178 return NULL;
179}
180
181static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
182{
183 struct btrfs_fs_devices *fs_devices;
184
185 list_for_each_entry(fs_devices, &fs_uuids, list) {
186 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
187 return fs_devices;
188 }
189 return NULL;
190}
191
192static int
193btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
194 int flush, struct block_device **bdev,
195 struct buffer_head **bh)
196{
197 int ret;
198
199 *bdev = blkdev_get_by_path(device_path, flags, holder);
200
201 if (IS_ERR(*bdev)) {
202 ret = PTR_ERR(*bdev);
203 printk(KERN_INFO "BTRFS: open %s failed\n", device_path);
204 goto error;
205 }
206
207 if (flush)
208 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
209 ret = set_blocksize(*bdev, 4096);
210 if (ret) {
211 blkdev_put(*bdev, flags);
212 goto error;
213 }
214 invalidate_bdev(*bdev);
215 *bh = btrfs_read_dev_super(*bdev);
216 if (!*bh) {
217 ret = -EINVAL;
218 blkdev_put(*bdev, flags);
219 goto error;
220 }
221
222 return 0;
223
224error:
225 *bdev = NULL;
226 *bh = NULL;
227 return ret;
228}
229
230static void requeue_list(struct btrfs_pending_bios *pending_bios,
231 struct bio *head, struct bio *tail)
232{
233
234 struct bio *old_head;
235
236 old_head = pending_bios->head;
237 pending_bios->head = head;
238 if (pending_bios->tail)
239 tail->bi_next = old_head;
240 else
241 pending_bios->tail = tail;
242}
243
244/*
245 * we try to collect pending bios for a device so we don't get a large
246 * number of procs sending bios down to the same device. This greatly
247 * improves the schedulers ability to collect and merge the bios.
248 *
249 * But, it also turns into a long list of bios to process and that is sure
250 * to eventually make the worker thread block. The solution here is to
251 * make some progress and then put this work struct back at the end of
252 * the list if the block device is congested. This way, multiple devices
253 * can make progress from a single worker thread.
254 */
255static noinline void run_scheduled_bios(struct btrfs_device *device)
256{
257 struct bio *pending;
258 struct backing_dev_info *bdi;
259 struct btrfs_fs_info *fs_info;
260 struct btrfs_pending_bios *pending_bios;
261 struct bio *tail;
262 struct bio *cur;
263 int again = 0;
264 unsigned long num_run;
265 unsigned long batch_run = 0;
266 unsigned long limit;
267 unsigned long last_waited = 0;
268 int force_reg = 0;
269 int sync_pending = 0;
270 struct blk_plug plug;
271
272 /*
273 * this function runs all the bios we've collected for
274 * a particular device. We don't want to wander off to
275 * another device without first sending all of these down.
276 * So, setup a plug here and finish it off before we return
277 */
278 blk_start_plug(&plug);
279
280 bdi = blk_get_backing_dev_info(device->bdev);
281 fs_info = device->dev_root->fs_info;
282 limit = btrfs_async_submit_limit(fs_info);
283 limit = limit * 2 / 3;
284
285loop:
286 spin_lock(&device->io_lock);
287
288loop_lock:
289 num_run = 0;
290
291 /* take all the bios off the list at once and process them
292 * later on (without the lock held). But, remember the
293 * tail and other pointers so the bios can be properly reinserted
294 * into the list if we hit congestion
295 */
296 if (!force_reg && device->pending_sync_bios.head) {
297 pending_bios = &device->pending_sync_bios;
298 force_reg = 1;
299 } else {
300 pending_bios = &device->pending_bios;
301 force_reg = 0;
302 }
303
304 pending = pending_bios->head;
305 tail = pending_bios->tail;
306 WARN_ON(pending && !tail);
307
308 /*
309 * if pending was null this time around, no bios need processing
310 * at all and we can stop. Otherwise it'll loop back up again
311 * and do an additional check so no bios are missed.
312 *
313 * device->running_pending is used to synchronize with the
314 * schedule_bio code.
315 */
316 if (device->pending_sync_bios.head == NULL &&
317 device->pending_bios.head == NULL) {
318 again = 0;
319 device->running_pending = 0;
320 } else {
321 again = 1;
322 device->running_pending = 1;
323 }
324
325 pending_bios->head = NULL;
326 pending_bios->tail = NULL;
327
328 spin_unlock(&device->io_lock);
329
330 while (pending) {
331
332 rmb();
333 /* we want to work on both lists, but do more bios on the
334 * sync list than the regular list
335 */
336 if ((num_run > 32 &&
337 pending_bios != &device->pending_sync_bios &&
338 device->pending_sync_bios.head) ||
339 (num_run > 64 && pending_bios == &device->pending_sync_bios &&
340 device->pending_bios.head)) {
341 spin_lock(&device->io_lock);
342 requeue_list(pending_bios, pending, tail);
343 goto loop_lock;
344 }
345
346 cur = pending;
347 pending = pending->bi_next;
348 cur->bi_next = NULL;
349
350 if (atomic_dec_return(&fs_info->nr_async_bios) < limit &&
351 waitqueue_active(&fs_info->async_submit_wait))
352 wake_up(&fs_info->async_submit_wait);
353
354 BUG_ON(atomic_read(&cur->bi_cnt) == 0);
355
356 /*
357 * if we're doing the sync list, record that our
358 * plug has some sync requests on it
359 *
360 * If we're doing the regular list and there are
361 * sync requests sitting around, unplug before
362 * we add more
363 */
364 if (pending_bios == &device->pending_sync_bios) {
365 sync_pending = 1;
366 } else if (sync_pending) {
367 blk_finish_plug(&plug);
368 blk_start_plug(&plug);
369 sync_pending = 0;
370 }
371
372 btrfsic_submit_bio(cur->bi_rw, cur);
373 num_run++;
374 batch_run++;
375 if (need_resched())
376 cond_resched();
377
378 /*
379 * we made progress, there is more work to do and the bdi
380 * is now congested. Back off and let other work structs
381 * run instead
382 */
383 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
384 fs_info->fs_devices->open_devices > 1) {
385 struct io_context *ioc;
386
387 ioc = current->io_context;
388
389 /*
390 * the main goal here is that we don't want to
391 * block if we're going to be able to submit
392 * more requests without blocking.
393 *
394 * This code does two great things, it pokes into
395 * the elevator code from a filesystem _and_
396 * it makes assumptions about how batching works.
397 */
398 if (ioc && ioc->nr_batch_requests > 0 &&
399 time_before(jiffies, ioc->last_waited + HZ/50UL) &&
400 (last_waited == 0 ||
401 ioc->last_waited == last_waited)) {
402 /*
403 * we want to go through our batch of
404 * requests and stop. So, we copy out
405 * the ioc->last_waited time and test
406 * against it before looping
407 */
408 last_waited = ioc->last_waited;
409 if (need_resched())
410 cond_resched();
411 continue;
412 }
413 spin_lock(&device->io_lock);
414 requeue_list(pending_bios, pending, tail);
415 device->running_pending = 1;
416
417 spin_unlock(&device->io_lock);
418 btrfs_queue_work(fs_info->submit_workers,
419 &device->work);
420 goto done;
421 }
422 /* unplug every 64 requests just for good measure */
423 if (batch_run % 64 == 0) {
424 blk_finish_plug(&plug);
425 blk_start_plug(&plug);
426 sync_pending = 0;
427 }
428 }
429
430 cond_resched();
431 if (again)
432 goto loop;
433
434 spin_lock(&device->io_lock);
435 if (device->pending_bios.head || device->pending_sync_bios.head)
436 goto loop_lock;
437 spin_unlock(&device->io_lock);
438
439done:
440 blk_finish_plug(&plug);
441}
442
443static void pending_bios_fn(struct btrfs_work *work)
444{
445 struct btrfs_device *device;
446
447 device = container_of(work, struct btrfs_device, work);
448 run_scheduled_bios(device);
449}
450
451/*
452 * Add new device to list of registered devices
453 *
454 * Returns:
455 * 1 - first time device is seen
456 * 0 - device already known
457 * < 0 - error
458 */
459static noinline int device_list_add(const char *path,
460 struct btrfs_super_block *disk_super,
461 u64 devid, struct btrfs_fs_devices **fs_devices_ret)
462{
463 struct btrfs_device *device;
464 struct btrfs_fs_devices *fs_devices;
465 struct rcu_string *name;
466 int ret = 0;
467 u64 found_transid = btrfs_super_generation(disk_super);
468
469 fs_devices = find_fsid(disk_super->fsid);
470 if (!fs_devices) {
471 fs_devices = alloc_fs_devices(disk_super->fsid);
472 if (IS_ERR(fs_devices))
473 return PTR_ERR(fs_devices);
474
475 list_add(&fs_devices->list, &fs_uuids);
476 fs_devices->latest_devid = devid;
477 fs_devices->latest_trans = found_transid;
478
479 device = NULL;
480 } else {
481 device = __find_device(&fs_devices->devices, devid,
482 disk_super->dev_item.uuid);
483 }
484 if (!device) {
485 if (fs_devices->opened)
486 return -EBUSY;
487
488 device = btrfs_alloc_device(NULL, &devid,
489 disk_super->dev_item.uuid);
490 if (IS_ERR(device)) {
491 /* we can safely leave the fs_devices entry around */
492 return PTR_ERR(device);
493 }
494
495 name = rcu_string_strdup(path, GFP_NOFS);
496 if (!name) {
497 kfree(device);
498 return -ENOMEM;
499 }
500 rcu_assign_pointer(device->name, name);
501
502 mutex_lock(&fs_devices->device_list_mutex);
503 list_add_rcu(&device->dev_list, &fs_devices->devices);
504 fs_devices->num_devices++;
505 mutex_unlock(&fs_devices->device_list_mutex);
506
507 ret = 1;
508 device->fs_devices = fs_devices;
509 } else if (!device->name || strcmp(device->name->str, path)) {
510 name = rcu_string_strdup(path, GFP_NOFS);
511 if (!name)
512 return -ENOMEM;
513 rcu_string_free(device->name);
514 rcu_assign_pointer(device->name, name);
515 if (device->missing) {
516 fs_devices->missing_devices--;
517 device->missing = 0;
518 }
519 }
520
521 if (found_transid > fs_devices->latest_trans) {
522 fs_devices->latest_devid = devid;
523 fs_devices->latest_trans = found_transid;
524 }
525 *fs_devices_ret = fs_devices;
526
527 return ret;
528}
529
530static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
531{
532 struct btrfs_fs_devices *fs_devices;
533 struct btrfs_device *device;
534 struct btrfs_device *orig_dev;
535
536 fs_devices = alloc_fs_devices(orig->fsid);
537 if (IS_ERR(fs_devices))
538 return fs_devices;
539
540 fs_devices->latest_devid = orig->latest_devid;
541 fs_devices->latest_trans = orig->latest_trans;
542 fs_devices->total_devices = orig->total_devices;
543
544 /* We have held the volume lock, it is safe to get the devices. */
545 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
546 struct rcu_string *name;
547
548 device = btrfs_alloc_device(NULL, &orig_dev->devid,
549 orig_dev->uuid);
550 if (IS_ERR(device))
551 goto error;
552
553 /*
554 * This is ok to do without rcu read locked because we hold the
555 * uuid mutex so nothing we touch in here is going to disappear.
556 */
557 name = rcu_string_strdup(orig_dev->name->str, GFP_NOFS);
558 if (!name) {
559 kfree(device);
560 goto error;
561 }
562 rcu_assign_pointer(device->name, name);
563
564 list_add(&device->dev_list, &fs_devices->devices);
565 device->fs_devices = fs_devices;
566 fs_devices->num_devices++;
567 }
568 return fs_devices;
569error:
570 free_fs_devices(fs_devices);
571 return ERR_PTR(-ENOMEM);
572}
573
574void btrfs_close_extra_devices(struct btrfs_fs_info *fs_info,
575 struct btrfs_fs_devices *fs_devices, int step)
576{
577 struct btrfs_device *device, *next;
578
579 struct block_device *latest_bdev = NULL;
580 u64 latest_devid = 0;
581 u64 latest_transid = 0;
582
583 mutex_lock(&uuid_mutex);
584again:
585 /* This is the initialized path, it is safe to release the devices. */
586 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
587 if (device->in_fs_metadata) {
588 if (!device->is_tgtdev_for_dev_replace &&
589 (!latest_transid ||
590 device->generation > latest_transid)) {
591 latest_devid = device->devid;
592 latest_transid = device->generation;
593 latest_bdev = device->bdev;
594 }
595 continue;
596 }
597
598 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
599 /*
600 * In the first step, keep the device which has
601 * the correct fsid and the devid that is used
602 * for the dev_replace procedure.
603 * In the second step, the dev_replace state is
604 * read from the device tree and it is known
605 * whether the procedure is really active or
606 * not, which means whether this device is
607 * used or whether it should be removed.
608 */
609 if (step == 0 || device->is_tgtdev_for_dev_replace) {
610 continue;
611 }
612 }
613 if (device->bdev) {
614 blkdev_put(device->bdev, device->mode);
615 device->bdev = NULL;
616 fs_devices->open_devices--;
617 }
618 if (device->writeable) {
619 list_del_init(&device->dev_alloc_list);
620 device->writeable = 0;
621 if (!device->is_tgtdev_for_dev_replace)
622 fs_devices->rw_devices--;
623 }
624 list_del_init(&device->dev_list);
625 fs_devices->num_devices--;
626 rcu_string_free(device->name);
627 kfree(device);
628 }
629
630 if (fs_devices->seed) {
631 fs_devices = fs_devices->seed;
632 goto again;
633 }
634
635 fs_devices->latest_bdev = latest_bdev;
636 fs_devices->latest_devid = latest_devid;
637 fs_devices->latest_trans = latest_transid;
638
639 mutex_unlock(&uuid_mutex);
640}
641
642static void __free_device(struct work_struct *work)
643{
644 struct btrfs_device *device;
645
646 device = container_of(work, struct btrfs_device, rcu_work);
647
648 if (device->bdev)
649 blkdev_put(device->bdev, device->mode);
650
651 rcu_string_free(device->name);
652 kfree(device);
653}
654
655static void free_device(struct rcu_head *head)
656{
657 struct btrfs_device *device;
658
659 device = container_of(head, struct btrfs_device, rcu);
660
661 INIT_WORK(&device->rcu_work, __free_device);
662 schedule_work(&device->rcu_work);
663}
664
665static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
666{
667 struct btrfs_device *device;
668
669 if (--fs_devices->opened > 0)
670 return 0;
671
672 mutex_lock(&fs_devices->device_list_mutex);
673 list_for_each_entry(device, &fs_devices->devices, dev_list) {
674 struct btrfs_device *new_device;
675 struct rcu_string *name;
676
677 if (device->bdev)
678 fs_devices->open_devices--;
679
680 if (device->writeable &&
681 device->devid != BTRFS_DEV_REPLACE_DEVID) {
682 list_del_init(&device->dev_alloc_list);
683 fs_devices->rw_devices--;
684 }
685
686 if (device->can_discard)
687 fs_devices->num_can_discard--;
688 if (device->missing)
689 fs_devices->missing_devices--;
690
691 new_device = btrfs_alloc_device(NULL, &device->devid,
692 device->uuid);
693 BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
694
695 /* Safe because we are under uuid_mutex */
696 if (device->name) {
697 name = rcu_string_strdup(device->name->str, GFP_NOFS);
698 BUG_ON(!name); /* -ENOMEM */
699 rcu_assign_pointer(new_device->name, name);
700 }
701
702 list_replace_rcu(&device->dev_list, &new_device->dev_list);
703 new_device->fs_devices = device->fs_devices;
704
705 call_rcu(&device->rcu, free_device);
706 }
707 mutex_unlock(&fs_devices->device_list_mutex);
708
709 WARN_ON(fs_devices->open_devices);
710 WARN_ON(fs_devices->rw_devices);
711 fs_devices->opened = 0;
712 fs_devices->seeding = 0;
713
714 return 0;
715}
716
717int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
718{
719 struct btrfs_fs_devices *seed_devices = NULL;
720 int ret;
721
722 mutex_lock(&uuid_mutex);
723 ret = __btrfs_close_devices(fs_devices);
724 if (!fs_devices->opened) {
725 seed_devices = fs_devices->seed;
726 fs_devices->seed = NULL;
727 }
728 mutex_unlock(&uuid_mutex);
729
730 while (seed_devices) {
731 fs_devices = seed_devices;
732 seed_devices = fs_devices->seed;
733 __btrfs_close_devices(fs_devices);
734 free_fs_devices(fs_devices);
735 }
736 /*
737 * Wait for rcu kworkers under __btrfs_close_devices
738 * to finish all blkdev_puts so device is really
739 * free when umount is done.
740 */
741 rcu_barrier();
742 return ret;
743}
744
745static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
746 fmode_t flags, void *holder)
747{
748 struct request_queue *q;
749 struct block_device *bdev;
750 struct list_head *head = &fs_devices->devices;
751 struct btrfs_device *device;
752 struct block_device *latest_bdev = NULL;
753 struct buffer_head *bh;
754 struct btrfs_super_block *disk_super;
755 u64 latest_devid = 0;
756 u64 latest_transid = 0;
757 u64 devid;
758 int seeding = 1;
759 int ret = 0;
760
761 flags |= FMODE_EXCL;
762
763 list_for_each_entry(device, head, dev_list) {
764 if (device->bdev)
765 continue;
766 if (!device->name)
767 continue;
768
769 /* Just open everything we can; ignore failures here */
770 if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
771 &bdev, &bh))
772 continue;
773
774 disk_super = (struct btrfs_super_block *)bh->b_data;
775 devid = btrfs_stack_device_id(&disk_super->dev_item);
776 if (devid != device->devid)
777 goto error_brelse;
778
779 if (memcmp(device->uuid, disk_super->dev_item.uuid,
780 BTRFS_UUID_SIZE))
781 goto error_brelse;
782
783 device->generation = btrfs_super_generation(disk_super);
784 if (!latest_transid || device->generation > latest_transid) {
785 latest_devid = devid;
786 latest_transid = device->generation;
787 latest_bdev = bdev;
788 }
789
790 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
791 device->writeable = 0;
792 } else {
793 device->writeable = !bdev_read_only(bdev);
794 seeding = 0;
795 }
796
797 q = bdev_get_queue(bdev);
798 if (blk_queue_discard(q)) {
799 device->can_discard = 1;
800 fs_devices->num_can_discard++;
801 }
802
803 device->bdev = bdev;
804 device->in_fs_metadata = 0;
805 device->mode = flags;
806
807 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
808 fs_devices->rotating = 1;
809
810 fs_devices->open_devices++;
811 if (device->writeable &&
812 device->devid != BTRFS_DEV_REPLACE_DEVID) {
813 fs_devices->rw_devices++;
814 list_add(&device->dev_alloc_list,
815 &fs_devices->alloc_list);
816 }
817 brelse(bh);
818 continue;
819
820error_brelse:
821 brelse(bh);
822 blkdev_put(bdev, flags);
823 continue;
824 }
825 if (fs_devices->open_devices == 0) {
826 ret = -EINVAL;
827 goto out;
828 }
829 fs_devices->seeding = seeding;
830 fs_devices->opened = 1;
831 fs_devices->latest_bdev = latest_bdev;
832 fs_devices->latest_devid = latest_devid;
833 fs_devices->latest_trans = latest_transid;
834 fs_devices->total_rw_bytes = 0;
835out:
836 return ret;
837}
838
839int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
840 fmode_t flags, void *holder)
841{
842 int ret;
843
844 mutex_lock(&uuid_mutex);
845 if (fs_devices->opened) {
846 fs_devices->opened++;
847 ret = 0;
848 } else {
849 ret = __btrfs_open_devices(fs_devices, flags, holder);
850 }
851 mutex_unlock(&uuid_mutex);
852 return ret;
853}
854
855/*
856 * Look for a btrfs signature on a device. This may be called out of the mount path
857 * and we are not allowed to call set_blocksize during the scan. The superblock
858 * is read via pagecache
859 */
860int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
861 struct btrfs_fs_devices **fs_devices_ret)
862{
863 struct btrfs_super_block *disk_super;
864 struct block_device *bdev;
865 struct page *page;
866 void *p;
867 int ret = -EINVAL;
868 u64 devid;
869 u64 transid;
870 u64 total_devices;
871 u64 bytenr;
872 pgoff_t index;
873
874 /*
875 * we would like to check all the supers, but that would make
876 * a btrfs mount succeed after a mkfs from a different FS.
877 * So, we need to add a special mount option to scan for
878 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
879 */
880 bytenr = btrfs_sb_offset(0);
881 flags |= FMODE_EXCL;
882 mutex_lock(&uuid_mutex);
883
884 bdev = blkdev_get_by_path(path, flags, holder);
885
886 if (IS_ERR(bdev)) {
887 ret = PTR_ERR(bdev);
888 goto error;
889 }
890
891 /* make sure our super fits in the device */
892 if (bytenr + PAGE_CACHE_SIZE >= i_size_read(bdev->bd_inode))
893 goto error_bdev_put;
894
895 /* make sure our super fits in the page */
896 if (sizeof(*disk_super) > PAGE_CACHE_SIZE)
897 goto error_bdev_put;
898
899 /* make sure our super doesn't straddle pages on disk */
900 index = bytenr >> PAGE_CACHE_SHIFT;
901 if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_CACHE_SHIFT != index)
902 goto error_bdev_put;
903
904 /* pull in the page with our super */
905 page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
906 index, GFP_NOFS);
907
908 if (IS_ERR_OR_NULL(page))
909 goto error_bdev_put;
910
911 p = kmap(page);
912
913 /* align our pointer to the offset of the super block */
914 disk_super = p + (bytenr & ~PAGE_CACHE_MASK);
915
916 if (btrfs_super_bytenr(disk_super) != bytenr ||
917 btrfs_super_magic(disk_super) != BTRFS_MAGIC)
918 goto error_unmap;
919
920 devid = btrfs_stack_device_id(&disk_super->dev_item);
921 transid = btrfs_super_generation(disk_super);
922 total_devices = btrfs_super_num_devices(disk_super);
923
924 ret = device_list_add(path, disk_super, devid, fs_devices_ret);
925 if (ret > 0) {
926 if (disk_super->label[0]) {
927 if (disk_super->label[BTRFS_LABEL_SIZE - 1])
928 disk_super->label[BTRFS_LABEL_SIZE - 1] = '\0';
929 printk(KERN_INFO "BTRFS: device label %s ", disk_super->label);
930 } else {
931 printk(KERN_INFO "BTRFS: device fsid %pU ", disk_super->fsid);
932 }
933
934 printk(KERN_CONT "devid %llu transid %llu %s\n", devid, transid, path);
935 ret = 0;
936 }
937 if (!ret && fs_devices_ret)
938 (*fs_devices_ret)->total_devices = total_devices;
939
940error_unmap:
941 kunmap(page);
942 page_cache_release(page);
943
944error_bdev_put:
945 blkdev_put(bdev, flags);
946error:
947 mutex_unlock(&uuid_mutex);
948 return ret;
949}
950
951/* helper to account the used device space in the range */
952int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
953 u64 end, u64 *length)
954{
955 struct btrfs_key key;
956 struct btrfs_root *root = device->dev_root;
957 struct btrfs_dev_extent *dev_extent;
958 struct btrfs_path *path;
959 u64 extent_end;
960 int ret;
961 int slot;
962 struct extent_buffer *l;
963
964 *length = 0;
965
966 if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace)
967 return 0;
968
969 path = btrfs_alloc_path();
970 if (!path)
971 return -ENOMEM;
972 path->reada = 2;
973
974 key.objectid = device->devid;
975 key.offset = start;
976 key.type = BTRFS_DEV_EXTENT_KEY;
977
978 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
979 if (ret < 0)
980 goto out;
981 if (ret > 0) {
982 ret = btrfs_previous_item(root, path, key.objectid, key.type);
983 if (ret < 0)
984 goto out;
985 }
986
987 while (1) {
988 l = path->nodes[0];
989 slot = path->slots[0];
990 if (slot >= btrfs_header_nritems(l)) {
991 ret = btrfs_next_leaf(root, path);
992 if (ret == 0)
993 continue;
994 if (ret < 0)
995 goto out;
996
997 break;
998 }
999 btrfs_item_key_to_cpu(l, &key, slot);
1000
1001 if (key.objectid < device->devid)
1002 goto next;
1003
1004 if (key.objectid > device->devid)
1005 break;
1006
1007 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
1008 goto next;
1009
1010 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1011 extent_end = key.offset + btrfs_dev_extent_length(l,
1012 dev_extent);
1013 if (key.offset <= start && extent_end > end) {
1014 *length = end - start + 1;
1015 break;
1016 } else if (key.offset <= start && extent_end > start)
1017 *length += extent_end - start;
1018 else if (key.offset > start && extent_end <= end)
1019 *length += extent_end - key.offset;
1020 else if (key.offset > start && key.offset <= end) {
1021 *length += end - key.offset + 1;
1022 break;
1023 } else if (key.offset > end)
1024 break;
1025
1026next:
1027 path->slots[0]++;
1028 }
1029 ret = 0;
1030out:
1031 btrfs_free_path(path);
1032 return ret;
1033}
1034
1035static int contains_pending_extent(struct btrfs_trans_handle *trans,
1036 struct btrfs_device *device,
1037 u64 *start, u64 len)
1038{
1039 struct extent_map *em;
1040 int ret = 0;
1041
1042 list_for_each_entry(em, &trans->transaction->pending_chunks, list) {
1043 struct map_lookup *map;
1044 int i;
1045
1046 map = (struct map_lookup *)em->bdev;
1047 for (i = 0; i < map->num_stripes; i++) {
1048 if (map->stripes[i].dev != device)
1049 continue;
1050 if (map->stripes[i].physical >= *start + len ||
1051 map->stripes[i].physical + em->orig_block_len <=
1052 *start)
1053 continue;
1054 *start = map->stripes[i].physical +
1055 em->orig_block_len;
1056 ret = 1;
1057 }
1058 }
1059
1060 return ret;
1061}
1062
1063
1064/*
1065 * find_free_dev_extent - find free space in the specified device
1066 * @device: the device which we search the free space in
1067 * @num_bytes: the size of the free space that we need
1068 * @start: store the start of the free space.
1069 * @len: the size of the free space. that we find, or the size of the max
1070 * free space if we don't find suitable free space
1071 *
1072 * this uses a pretty simple search, the expectation is that it is
1073 * called very infrequently and that a given device has a small number
1074 * of extents
1075 *
1076 * @start is used to store the start of the free space if we find. But if we
1077 * don't find suitable free space, it will be used to store the start position
1078 * of the max free space.
1079 *
1080 * @len is used to store the size of the free space that we find.
1081 * But if we don't find suitable free space, it is used to store the size of
1082 * the max free space.
1083 */
1084int find_free_dev_extent(struct btrfs_trans_handle *trans,
1085 struct btrfs_device *device, u64 num_bytes,
1086 u64 *start, u64 *len)
1087{
1088 struct btrfs_key key;
1089 struct btrfs_root *root = device->dev_root;
1090 struct btrfs_dev_extent *dev_extent;
1091 struct btrfs_path *path;
1092 u64 hole_size;
1093 u64 max_hole_start;
1094 u64 max_hole_size;
1095 u64 extent_end;
1096 u64 search_start;
1097 u64 search_end = device->total_bytes;
1098 int ret;
1099 int slot;
1100 struct extent_buffer *l;
1101
1102 /* FIXME use last free of some kind */
1103
1104 /* we don't want to overwrite the superblock on the drive,
1105 * so we make sure to start at an offset of at least 1MB
1106 */
1107 search_start = max(root->fs_info->alloc_start, 1024ull * 1024);
1108
1109 path = btrfs_alloc_path();
1110 if (!path)
1111 return -ENOMEM;
1112again:
1113 max_hole_start = search_start;
1114 max_hole_size = 0;
1115 hole_size = 0;
1116
1117 if (search_start >= search_end || device->is_tgtdev_for_dev_replace) {
1118 ret = -ENOSPC;
1119 goto out;
1120 }
1121
1122 path->reada = 2;
1123 path->search_commit_root = 1;
1124 path->skip_locking = 1;
1125
1126 key.objectid = device->devid;
1127 key.offset = search_start;
1128 key.type = BTRFS_DEV_EXTENT_KEY;
1129
1130 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1131 if (ret < 0)
1132 goto out;
1133 if (ret > 0) {
1134 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1135 if (ret < 0)
1136 goto out;
1137 }
1138
1139 while (1) {
1140 l = path->nodes[0];
1141 slot = path->slots[0];
1142 if (slot >= btrfs_header_nritems(l)) {
1143 ret = btrfs_next_leaf(root, path);
1144 if (ret == 0)
1145 continue;
1146 if (ret < 0)
1147 goto out;
1148
1149 break;
1150 }
1151 btrfs_item_key_to_cpu(l, &key, slot);
1152
1153 if (key.objectid < device->devid)
1154 goto next;
1155
1156 if (key.objectid > device->devid)
1157 break;
1158
1159 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
1160 goto next;
1161
1162 if (key.offset > search_start) {
1163 hole_size = key.offset - search_start;
1164
1165 /*
1166 * Have to check before we set max_hole_start, otherwise
1167 * we could end up sending back this offset anyway.
1168 */
1169 if (contains_pending_extent(trans, device,
1170 &search_start,
1171 hole_size))
1172 hole_size = 0;
1173
1174 if (hole_size > max_hole_size) {
1175 max_hole_start = search_start;
1176 max_hole_size = hole_size;
1177 }
1178
1179 /*
1180 * If this free space is greater than which we need,
1181 * it must be the max free space that we have found
1182 * until now, so max_hole_start must point to the start
1183 * of this free space and the length of this free space
1184 * is stored in max_hole_size. Thus, we return
1185 * max_hole_start and max_hole_size and go back to the
1186 * caller.
1187 */
1188 if (hole_size >= num_bytes) {
1189 ret = 0;
1190 goto out;
1191 }
1192 }
1193
1194 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1195 extent_end = key.offset + btrfs_dev_extent_length(l,
1196 dev_extent);
1197 if (extent_end > search_start)
1198 search_start = extent_end;
1199next:
1200 path->slots[0]++;
1201 cond_resched();
1202 }
1203
1204 /*
1205 * At this point, search_start should be the end of
1206 * allocated dev extents, and when shrinking the device,
1207 * search_end may be smaller than search_start.
1208 */
1209 if (search_end > search_start)
1210 hole_size = search_end - search_start;
1211
1212 if (hole_size > max_hole_size) {
1213 max_hole_start = search_start;
1214 max_hole_size = hole_size;
1215 }
1216
1217 if (contains_pending_extent(trans, device, &search_start, hole_size)) {
1218 btrfs_release_path(path);
1219 goto again;
1220 }
1221
1222 /* See above. */
1223 if (hole_size < num_bytes)
1224 ret = -ENOSPC;
1225 else
1226 ret = 0;
1227
1228out:
1229 btrfs_free_path(path);
1230 *start = max_hole_start;
1231 if (len)
1232 *len = max_hole_size;
1233 return ret;
1234}
1235
1236static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1237 struct btrfs_device *device,
1238 u64 start)
1239{
1240 int ret;
1241 struct btrfs_path *path;
1242 struct btrfs_root *root = device->dev_root;
1243 struct btrfs_key key;
1244 struct btrfs_key found_key;
1245 struct extent_buffer *leaf = NULL;
1246 struct btrfs_dev_extent *extent = NULL;
1247
1248 path = btrfs_alloc_path();
1249 if (!path)
1250 return -ENOMEM;
1251
1252 key.objectid = device->devid;
1253 key.offset = start;
1254 key.type = BTRFS_DEV_EXTENT_KEY;
1255again:
1256 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1257 if (ret > 0) {
1258 ret = btrfs_previous_item(root, path, key.objectid,
1259 BTRFS_DEV_EXTENT_KEY);
1260 if (ret)
1261 goto out;
1262 leaf = path->nodes[0];
1263 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1264 extent = btrfs_item_ptr(leaf, path->slots[0],
1265 struct btrfs_dev_extent);
1266 BUG_ON(found_key.offset > start || found_key.offset +
1267 btrfs_dev_extent_length(leaf, extent) < start);
1268 key = found_key;
1269 btrfs_release_path(path);
1270 goto again;
1271 } else if (ret == 0) {
1272 leaf = path->nodes[0];
1273 extent = btrfs_item_ptr(leaf, path->slots[0],
1274 struct btrfs_dev_extent);
1275 } else {
1276 btrfs_error(root->fs_info, ret, "Slot search failed");
1277 goto out;
1278 }
1279
1280 if (device->bytes_used > 0) {
1281 u64 len = btrfs_dev_extent_length(leaf, extent);
1282 device->bytes_used -= len;
1283 spin_lock(&root->fs_info->free_chunk_lock);
1284 root->fs_info->free_chunk_space += len;
1285 spin_unlock(&root->fs_info->free_chunk_lock);
1286 }
1287 ret = btrfs_del_item(trans, root, path);
1288 if (ret) {
1289 btrfs_error(root->fs_info, ret,
1290 "Failed to remove dev extent item");
1291 }
1292out:
1293 btrfs_free_path(path);
1294 return ret;
1295}
1296
1297static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1298 struct btrfs_device *device,
1299 u64 chunk_tree, u64 chunk_objectid,
1300 u64 chunk_offset, u64 start, u64 num_bytes)
1301{
1302 int ret;
1303 struct btrfs_path *path;
1304 struct btrfs_root *root = device->dev_root;
1305 struct btrfs_dev_extent *extent;
1306 struct extent_buffer *leaf;
1307 struct btrfs_key key;
1308
1309 WARN_ON(!device->in_fs_metadata);
1310 WARN_ON(device->is_tgtdev_for_dev_replace);
1311 path = btrfs_alloc_path();
1312 if (!path)
1313 return -ENOMEM;
1314
1315 key.objectid = device->devid;
1316 key.offset = start;
1317 key.type = BTRFS_DEV_EXTENT_KEY;
1318 ret = btrfs_insert_empty_item(trans, root, path, &key,
1319 sizeof(*extent));
1320 if (ret)
1321 goto out;
1322
1323 leaf = path->nodes[0];
1324 extent = btrfs_item_ptr(leaf, path->slots[0],
1325 struct btrfs_dev_extent);
1326 btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1327 btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1328 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1329
1330 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
1331 btrfs_dev_extent_chunk_tree_uuid(extent), BTRFS_UUID_SIZE);
1332
1333 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1334 btrfs_mark_buffer_dirty(leaf);
1335out:
1336 btrfs_free_path(path);
1337 return ret;
1338}
1339
1340static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1341{
1342 struct extent_map_tree *em_tree;
1343 struct extent_map *em;
1344 struct rb_node *n;
1345 u64 ret = 0;
1346
1347 em_tree = &fs_info->mapping_tree.map_tree;
1348 read_lock(&em_tree->lock);
1349 n = rb_last(&em_tree->map);
1350 if (n) {
1351 em = rb_entry(n, struct extent_map, rb_node);
1352 ret = em->start + em->len;
1353 }
1354 read_unlock(&em_tree->lock);
1355
1356 return ret;
1357}
1358
1359static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1360 u64 *devid_ret)
1361{
1362 int ret;
1363 struct btrfs_key key;
1364 struct btrfs_key found_key;
1365 struct btrfs_path *path;
1366
1367 path = btrfs_alloc_path();
1368 if (!path)
1369 return -ENOMEM;
1370
1371 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1372 key.type = BTRFS_DEV_ITEM_KEY;
1373 key.offset = (u64)-1;
1374
1375 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1376 if (ret < 0)
1377 goto error;
1378
1379 BUG_ON(ret == 0); /* Corruption */
1380
1381 ret = btrfs_previous_item(fs_info->chunk_root, path,
1382 BTRFS_DEV_ITEMS_OBJECTID,
1383 BTRFS_DEV_ITEM_KEY);
1384 if (ret) {
1385 *devid_ret = 1;
1386 } else {
1387 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1388 path->slots[0]);
1389 *devid_ret = found_key.offset + 1;
1390 }
1391 ret = 0;
1392error:
1393 btrfs_free_path(path);
1394 return ret;
1395}
1396
1397/*
1398 * the device information is stored in the chunk root
1399 * the btrfs_device struct should be fully filled in
1400 */
1401static int btrfs_add_device(struct btrfs_trans_handle *trans,
1402 struct btrfs_root *root,
1403 struct btrfs_device *device)
1404{
1405 int ret;
1406 struct btrfs_path *path;
1407 struct btrfs_dev_item *dev_item;
1408 struct extent_buffer *leaf;
1409 struct btrfs_key key;
1410 unsigned long ptr;
1411
1412 root = root->fs_info->chunk_root;
1413
1414 path = btrfs_alloc_path();
1415 if (!path)
1416 return -ENOMEM;
1417
1418 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1419 key.type = BTRFS_DEV_ITEM_KEY;
1420 key.offset = device->devid;
1421
1422 ret = btrfs_insert_empty_item(trans, root, path, &key,
1423 sizeof(*dev_item));
1424 if (ret)
1425 goto out;
1426
1427 leaf = path->nodes[0];
1428 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1429
1430 btrfs_set_device_id(leaf, dev_item, device->devid);
1431 btrfs_set_device_generation(leaf, dev_item, 0);
1432 btrfs_set_device_type(leaf, dev_item, device->type);
1433 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1434 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1435 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1436 btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
1437 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
1438 btrfs_set_device_group(leaf, dev_item, 0);
1439 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1440 btrfs_set_device_bandwidth(leaf, dev_item, 0);
1441 btrfs_set_device_start_offset(leaf, dev_item, 0);
1442
1443 ptr = btrfs_device_uuid(dev_item);
1444 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1445 ptr = btrfs_device_fsid(dev_item);
1446 write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
1447 btrfs_mark_buffer_dirty(leaf);
1448
1449 ret = 0;
1450out:
1451 btrfs_free_path(path);
1452 return ret;
1453}
1454
1455static int btrfs_rm_dev_item(struct btrfs_root *root,
1456 struct btrfs_device *device)
1457{
1458 int ret;
1459 struct btrfs_path *path;
1460 struct btrfs_key key;
1461 struct btrfs_trans_handle *trans;
1462
1463 root = root->fs_info->chunk_root;
1464
1465 path = btrfs_alloc_path();
1466 if (!path)
1467 return -ENOMEM;
1468
1469 trans = btrfs_start_transaction(root, 0);
1470 if (IS_ERR(trans)) {
1471 btrfs_free_path(path);
1472 return PTR_ERR(trans);
1473 }
1474 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1475 key.type = BTRFS_DEV_ITEM_KEY;
1476 key.offset = device->devid;
1477 lock_chunks(root);
1478
1479 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1480 if (ret < 0)
1481 goto out;
1482
1483 if (ret > 0) {
1484 ret = -ENOENT;
1485 goto out;
1486 }
1487
1488 ret = btrfs_del_item(trans, root, path);
1489 if (ret)
1490 goto out;
1491out:
1492 btrfs_free_path(path);
1493 unlock_chunks(root);
1494 btrfs_commit_transaction(trans, root);
1495 return ret;
1496}
1497
1498int btrfs_rm_device(struct btrfs_root *root, char *device_path)
1499{
1500 struct btrfs_device *device;
1501 struct btrfs_device *next_device;
1502 struct block_device *bdev;
1503 struct buffer_head *bh = NULL;
1504 struct btrfs_super_block *disk_super;
1505 struct btrfs_fs_devices *cur_devices;
1506 u64 all_avail;
1507 u64 devid;
1508 u64 num_devices;
1509 u8 *dev_uuid;
1510 unsigned seq;
1511 int ret = 0;
1512 bool clear_super = false;
1513
1514 mutex_lock(&uuid_mutex);
1515
1516 do {
1517 seq = read_seqbegin(&root->fs_info->profiles_lock);
1518
1519 all_avail = root->fs_info->avail_data_alloc_bits |
1520 root->fs_info->avail_system_alloc_bits |
1521 root->fs_info->avail_metadata_alloc_bits;
1522 } while (read_seqretry(&root->fs_info->profiles_lock, seq));
1523
1524 num_devices = root->fs_info->fs_devices->num_devices;
1525 btrfs_dev_replace_lock(&root->fs_info->dev_replace);
1526 if (btrfs_dev_replace_is_ongoing(&root->fs_info->dev_replace)) {
1527 WARN_ON(num_devices < 1);
1528 num_devices--;
1529 }
1530 btrfs_dev_replace_unlock(&root->fs_info->dev_replace);
1531
1532 if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) && num_devices <= 4) {
1533 ret = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET;
1534 goto out;
1535 }
1536
1537 if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) && num_devices <= 2) {
1538 ret = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET;
1539 goto out;
1540 }
1541
1542 if ((all_avail & BTRFS_BLOCK_GROUP_RAID5) &&
1543 root->fs_info->fs_devices->rw_devices <= 2) {
1544 ret = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET;
1545 goto out;
1546 }
1547 if ((all_avail & BTRFS_BLOCK_GROUP_RAID6) &&
1548 root->fs_info->fs_devices->rw_devices <= 3) {
1549 ret = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET;
1550 goto out;
1551 }
1552
1553 if (strcmp(device_path, "missing") == 0) {
1554 struct list_head *devices;
1555 struct btrfs_device *tmp;
1556
1557 device = NULL;
1558 devices = &root->fs_info->fs_devices->devices;
1559 /*
1560 * It is safe to read the devices since the volume_mutex
1561 * is held.
1562 */
1563 list_for_each_entry(tmp, devices, dev_list) {
1564 if (tmp->in_fs_metadata &&
1565 !tmp->is_tgtdev_for_dev_replace &&
1566 !tmp->bdev) {
1567 device = tmp;
1568 break;
1569 }
1570 }
1571 bdev = NULL;
1572 bh = NULL;
1573 disk_super = NULL;
1574 if (!device) {
1575 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
1576 goto out;
1577 }
1578 } else {
1579 ret = btrfs_get_bdev_and_sb(device_path,
1580 FMODE_WRITE | FMODE_EXCL,
1581 root->fs_info->bdev_holder, 0,
1582 &bdev, &bh);
1583 if (ret)
1584 goto out;
1585 disk_super = (struct btrfs_super_block *)bh->b_data;
1586 devid = btrfs_stack_device_id(&disk_super->dev_item);
1587 dev_uuid = disk_super->dev_item.uuid;
1588 device = btrfs_find_device(root->fs_info, devid, dev_uuid,
1589 disk_super->fsid);
1590 if (!device) {
1591 ret = -ENOENT;
1592 goto error_brelse;
1593 }
1594 }
1595
1596 if (device->is_tgtdev_for_dev_replace) {
1597 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
1598 goto error_brelse;
1599 }
1600
1601 if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
1602 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
1603 goto error_brelse;
1604 }
1605
1606 if (device->writeable) {
1607 lock_chunks(root);
1608 list_del_init(&device->dev_alloc_list);
1609 unlock_chunks(root);
1610 root->fs_info->fs_devices->rw_devices--;
1611 clear_super = true;
1612 }
1613
1614 mutex_unlock(&uuid_mutex);
1615 ret = btrfs_shrink_device(device, 0);
1616 mutex_lock(&uuid_mutex);
1617 if (ret)
1618 goto error_undo;
1619
1620 /*
1621 * TODO: the superblock still includes this device in its num_devices
1622 * counter although write_all_supers() is not locked out. This
1623 * could give a filesystem state which requires a degraded mount.
1624 */
1625 ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1626 if (ret)
1627 goto error_undo;
1628
1629 spin_lock(&root->fs_info->free_chunk_lock);
1630 root->fs_info->free_chunk_space = device->total_bytes -
1631 device->bytes_used;
1632 spin_unlock(&root->fs_info->free_chunk_lock);
1633
1634 device->in_fs_metadata = 0;
1635 btrfs_scrub_cancel_dev(root->fs_info, device);
1636
1637 /*
1638 * the device list mutex makes sure that we don't change
1639 * the device list while someone else is writing out all
1640 * the device supers. Whoever is writing all supers, should
1641 * lock the device list mutex before getting the number of
1642 * devices in the super block (super_copy). Conversely,
1643 * whoever updates the number of devices in the super block
1644 * (super_copy) should hold the device list mutex.
1645 */
1646
1647 cur_devices = device->fs_devices;
1648 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1649 list_del_rcu(&device->dev_list);
1650
1651 device->fs_devices->num_devices--;
1652 device->fs_devices->total_devices--;
1653
1654 if (device->missing)
1655 root->fs_info->fs_devices->missing_devices--;
1656
1657 next_device = list_entry(root->fs_info->fs_devices->devices.next,
1658 struct btrfs_device, dev_list);
1659 if (device->bdev == root->fs_info->sb->s_bdev)
1660 root->fs_info->sb->s_bdev = next_device->bdev;
1661 if (device->bdev == root->fs_info->fs_devices->latest_bdev)
1662 root->fs_info->fs_devices->latest_bdev = next_device->bdev;
1663
1664 if (device->bdev)
1665 device->fs_devices->open_devices--;
1666
1667 call_rcu(&device->rcu, free_device);
1668
1669 num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
1670 btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices);
1671 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1672
1673 if (cur_devices->open_devices == 0) {
1674 struct btrfs_fs_devices *fs_devices;
1675 fs_devices = root->fs_info->fs_devices;
1676 while (fs_devices) {
1677 if (fs_devices->seed == cur_devices)
1678 break;
1679 fs_devices = fs_devices->seed;
1680 }
1681 fs_devices->seed = cur_devices->seed;
1682 cur_devices->seed = NULL;
1683 lock_chunks(root);
1684 __btrfs_close_devices(cur_devices);
1685 unlock_chunks(root);
1686 free_fs_devices(cur_devices);
1687 }
1688
1689 root->fs_info->num_tolerated_disk_barrier_failures =
1690 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
1691
1692 /*
1693 * at this point, the device is zero sized. We want to
1694 * remove it from the devices list and zero out the old super
1695 */
1696 if (clear_super && disk_super) {
1697 /* make sure this device isn't detected as part of
1698 * the FS anymore
1699 */
1700 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
1701 set_buffer_dirty(bh);
1702 sync_dirty_buffer(bh);
1703 }
1704
1705 ret = 0;
1706
1707 /* Notify udev that device has changed */
1708 if (bdev)
1709 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
1710
1711error_brelse:
1712 brelse(bh);
1713 if (bdev)
1714 blkdev_put(bdev, FMODE_READ | FMODE_EXCL);
1715out:
1716 mutex_unlock(&uuid_mutex);
1717 return ret;
1718error_undo:
1719 if (device->writeable) {
1720 lock_chunks(root);
1721 list_add(&device->dev_alloc_list,
1722 &root->fs_info->fs_devices->alloc_list);
1723 unlock_chunks(root);
1724 root->fs_info->fs_devices->rw_devices++;
1725 }
1726 goto error_brelse;
1727}
1728
1729void btrfs_rm_dev_replace_srcdev(struct btrfs_fs_info *fs_info,
1730 struct btrfs_device *srcdev)
1731{
1732 WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
1733
1734 list_del_rcu(&srcdev->dev_list);
1735 list_del_rcu(&srcdev->dev_alloc_list);
1736 fs_info->fs_devices->num_devices--;
1737 if (srcdev->missing) {
1738 fs_info->fs_devices->missing_devices--;
1739 fs_info->fs_devices->rw_devices++;
1740 }
1741 if (srcdev->can_discard)
1742 fs_info->fs_devices->num_can_discard--;
1743 if (srcdev->bdev) {
1744 fs_info->fs_devices->open_devices--;
1745
1746 /* zero out the old super */
1747 btrfs_scratch_superblock(srcdev);
1748 }
1749
1750 call_rcu(&srcdev->rcu, free_device);
1751}
1752
1753void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
1754 struct btrfs_device *tgtdev)
1755{
1756 struct btrfs_device *next_device;
1757
1758 WARN_ON(!tgtdev);
1759 mutex_lock(&fs_info->fs_devices->device_list_mutex);
1760 if (tgtdev->bdev) {
1761 btrfs_scratch_superblock(tgtdev);
1762 fs_info->fs_devices->open_devices--;
1763 }
1764 fs_info->fs_devices->num_devices--;
1765 if (tgtdev->can_discard)
1766 fs_info->fs_devices->num_can_discard++;
1767
1768 next_device = list_entry(fs_info->fs_devices->devices.next,
1769 struct btrfs_device, dev_list);
1770 if (tgtdev->bdev == fs_info->sb->s_bdev)
1771 fs_info->sb->s_bdev = next_device->bdev;
1772 if (tgtdev->bdev == fs_info->fs_devices->latest_bdev)
1773 fs_info->fs_devices->latest_bdev = next_device->bdev;
1774 list_del_rcu(&tgtdev->dev_list);
1775
1776 call_rcu(&tgtdev->rcu, free_device);
1777
1778 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1779}
1780
1781static int btrfs_find_device_by_path(struct btrfs_root *root, char *device_path,
1782 struct btrfs_device **device)
1783{
1784 int ret = 0;
1785 struct btrfs_super_block *disk_super;
1786 u64 devid;
1787 u8 *dev_uuid;
1788 struct block_device *bdev;
1789 struct buffer_head *bh;
1790
1791 *device = NULL;
1792 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
1793 root->fs_info->bdev_holder, 0, &bdev, &bh);
1794 if (ret)
1795 return ret;
1796 disk_super = (struct btrfs_super_block *)bh->b_data;
1797 devid = btrfs_stack_device_id(&disk_super->dev_item);
1798 dev_uuid = disk_super->dev_item.uuid;
1799 *device = btrfs_find_device(root->fs_info, devid, dev_uuid,
1800 disk_super->fsid);
1801 brelse(bh);
1802 if (!*device)
1803 ret = -ENOENT;
1804 blkdev_put(bdev, FMODE_READ);
1805 return ret;
1806}
1807
1808int btrfs_find_device_missing_or_by_path(struct btrfs_root *root,
1809 char *device_path,
1810 struct btrfs_device **device)
1811{
1812 *device = NULL;
1813 if (strcmp(device_path, "missing") == 0) {
1814 struct list_head *devices;
1815 struct btrfs_device *tmp;
1816
1817 devices = &root->fs_info->fs_devices->devices;
1818 /*
1819 * It is safe to read the devices since the volume_mutex
1820 * is held by the caller.
1821 */
1822 list_for_each_entry(tmp, devices, dev_list) {
1823 if (tmp->in_fs_metadata && !tmp->bdev) {
1824 *device = tmp;
1825 break;
1826 }
1827 }
1828
1829 if (!*device) {
1830 btrfs_err(root->fs_info, "no missing device found");
1831 return -ENOENT;
1832 }
1833
1834 return 0;
1835 } else {
1836 return btrfs_find_device_by_path(root, device_path, device);
1837 }
1838}
1839
1840/*
1841 * does all the dirty work required for changing file system's UUID.
1842 */
1843static int btrfs_prepare_sprout(struct btrfs_root *root)
1844{
1845 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
1846 struct btrfs_fs_devices *old_devices;
1847 struct btrfs_fs_devices *seed_devices;
1848 struct btrfs_super_block *disk_super = root->fs_info->super_copy;
1849 struct btrfs_device *device;
1850 u64 super_flags;
1851
1852 BUG_ON(!mutex_is_locked(&uuid_mutex));
1853 if (!fs_devices->seeding)
1854 return -EINVAL;
1855
1856 seed_devices = __alloc_fs_devices();
1857 if (IS_ERR(seed_devices))
1858 return PTR_ERR(seed_devices);
1859
1860 old_devices = clone_fs_devices(fs_devices);
1861 if (IS_ERR(old_devices)) {
1862 kfree(seed_devices);
1863 return PTR_ERR(old_devices);
1864 }
1865
1866 list_add(&old_devices->list, &fs_uuids);
1867
1868 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
1869 seed_devices->opened = 1;
1870 INIT_LIST_HEAD(&seed_devices->devices);
1871 INIT_LIST_HEAD(&seed_devices->alloc_list);
1872 mutex_init(&seed_devices->device_list_mutex);
1873
1874 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1875 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
1876 synchronize_rcu);
1877
1878 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
1879 list_for_each_entry(device, &seed_devices->devices, dev_list) {
1880 device->fs_devices = seed_devices;
1881 }
1882
1883 fs_devices->seeding = 0;
1884 fs_devices->num_devices = 0;
1885 fs_devices->open_devices = 0;
1886 fs_devices->total_devices = 0;
1887 fs_devices->seed = seed_devices;
1888
1889 generate_random_uuid(fs_devices->fsid);
1890 memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1891 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1892 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1893
1894 super_flags = btrfs_super_flags(disk_super) &
1895 ~BTRFS_SUPER_FLAG_SEEDING;
1896 btrfs_set_super_flags(disk_super, super_flags);
1897
1898 return 0;
1899}
1900
1901/*
1902 * strore the expected generation for seed devices in device items.
1903 */
1904static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
1905 struct btrfs_root *root)
1906{
1907 struct btrfs_path *path;
1908 struct extent_buffer *leaf;
1909 struct btrfs_dev_item *dev_item;
1910 struct btrfs_device *device;
1911 struct btrfs_key key;
1912 u8 fs_uuid[BTRFS_UUID_SIZE];
1913 u8 dev_uuid[BTRFS_UUID_SIZE];
1914 u64 devid;
1915 int ret;
1916
1917 path = btrfs_alloc_path();
1918 if (!path)
1919 return -ENOMEM;
1920
1921 root = root->fs_info->chunk_root;
1922 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1923 key.offset = 0;
1924 key.type = BTRFS_DEV_ITEM_KEY;
1925
1926 while (1) {
1927 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1928 if (ret < 0)
1929 goto error;
1930
1931 leaf = path->nodes[0];
1932next_slot:
1933 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1934 ret = btrfs_next_leaf(root, path);
1935 if (ret > 0)
1936 break;
1937 if (ret < 0)
1938 goto error;
1939 leaf = path->nodes[0];
1940 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1941 btrfs_release_path(path);
1942 continue;
1943 }
1944
1945 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1946 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
1947 key.type != BTRFS_DEV_ITEM_KEY)
1948 break;
1949
1950 dev_item = btrfs_item_ptr(leaf, path->slots[0],
1951 struct btrfs_dev_item);
1952 devid = btrfs_device_id(leaf, dev_item);
1953 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
1954 BTRFS_UUID_SIZE);
1955 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
1956 BTRFS_UUID_SIZE);
1957 device = btrfs_find_device(root->fs_info, devid, dev_uuid,
1958 fs_uuid);
1959 BUG_ON(!device); /* Logic error */
1960
1961 if (device->fs_devices->seeding) {
1962 btrfs_set_device_generation(leaf, dev_item,
1963 device->generation);
1964 btrfs_mark_buffer_dirty(leaf);
1965 }
1966
1967 path->slots[0]++;
1968 goto next_slot;
1969 }
1970 ret = 0;
1971error:
1972 btrfs_free_path(path);
1973 return ret;
1974}
1975
1976int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
1977{
1978 struct request_queue *q;
1979 struct btrfs_trans_handle *trans;
1980 struct btrfs_device *device;
1981 struct block_device *bdev;
1982 struct list_head *devices;
1983 struct super_block *sb = root->fs_info->sb;
1984 struct rcu_string *name;
1985 u64 total_bytes;
1986 int seeding_dev = 0;
1987 int ret = 0;
1988
1989 if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
1990 return -EROFS;
1991
1992 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
1993 root->fs_info->bdev_holder);
1994 if (IS_ERR(bdev))
1995 return PTR_ERR(bdev);
1996
1997 if (root->fs_info->fs_devices->seeding) {
1998 seeding_dev = 1;
1999 down_write(&sb->s_umount);
2000 mutex_lock(&uuid_mutex);
2001 }
2002
2003 filemap_write_and_wait(bdev->bd_inode->i_mapping);
2004
2005 devices = &root->fs_info->fs_devices->devices;
2006
2007 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2008 list_for_each_entry(device, devices, dev_list) {
2009 if (device->bdev == bdev) {
2010 ret = -EEXIST;
2011 mutex_unlock(
2012 &root->fs_info->fs_devices->device_list_mutex);
2013 goto error;
2014 }
2015 }
2016 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2017
2018 device = btrfs_alloc_device(root->fs_info, NULL, NULL);
2019 if (IS_ERR(device)) {
2020 /* we can safely leave the fs_devices entry around */
2021 ret = PTR_ERR(device);
2022 goto error;
2023 }
2024
2025 name = rcu_string_strdup(device_path, GFP_NOFS);
2026 if (!name) {
2027 kfree(device);
2028 ret = -ENOMEM;
2029 goto error;
2030 }
2031 rcu_assign_pointer(device->name, name);
2032
2033 trans = btrfs_start_transaction(root, 0);
2034 if (IS_ERR(trans)) {
2035 rcu_string_free(device->name);
2036 kfree(device);
2037 ret = PTR_ERR(trans);
2038 goto error;
2039 }
2040
2041 lock_chunks(root);
2042
2043 q = bdev_get_queue(bdev);
2044 if (blk_queue_discard(q))
2045 device->can_discard = 1;
2046 device->writeable = 1;
2047 device->generation = trans->transid;
2048 device->io_width = root->sectorsize;
2049 device->io_align = root->sectorsize;
2050 device->sector_size = root->sectorsize;
2051 device->total_bytes = i_size_read(bdev->bd_inode);
2052 device->disk_total_bytes = device->total_bytes;
2053 device->dev_root = root->fs_info->dev_root;
2054 device->bdev = bdev;
2055 device->in_fs_metadata = 1;
2056 device->is_tgtdev_for_dev_replace = 0;
2057 device->mode = FMODE_EXCL;
2058 device->dev_stats_valid = 1;
2059 set_blocksize(device->bdev, 4096);
2060
2061 if (seeding_dev) {
2062 sb->s_flags &= ~MS_RDONLY;
2063 ret = btrfs_prepare_sprout(root);
2064 BUG_ON(ret); /* -ENOMEM */
2065 }
2066
2067 device->fs_devices = root->fs_info->fs_devices;
2068
2069 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2070 list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices);
2071 list_add(&device->dev_alloc_list,
2072 &root->fs_info->fs_devices->alloc_list);
2073 root->fs_info->fs_devices->num_devices++;
2074 root->fs_info->fs_devices->open_devices++;
2075 root->fs_info->fs_devices->rw_devices++;
2076 root->fs_info->fs_devices->total_devices++;
2077 if (device->can_discard)
2078 root->fs_info->fs_devices->num_can_discard++;
2079 root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
2080
2081 spin_lock(&root->fs_info->free_chunk_lock);
2082 root->fs_info->free_chunk_space += device->total_bytes;
2083 spin_unlock(&root->fs_info->free_chunk_lock);
2084
2085 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
2086 root->fs_info->fs_devices->rotating = 1;
2087
2088 total_bytes = btrfs_super_total_bytes(root->fs_info->super_copy);
2089 btrfs_set_super_total_bytes(root->fs_info->super_copy,
2090 total_bytes + device->total_bytes);
2091
2092 total_bytes = btrfs_super_num_devices(root->fs_info->super_copy);
2093 btrfs_set_super_num_devices(root->fs_info->super_copy,
2094 total_bytes + 1);
2095 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2096
2097 if (seeding_dev) {
2098 ret = init_first_rw_device(trans, root, device);
2099 if (ret) {
2100 btrfs_abort_transaction(trans, root, ret);
2101 goto error_trans;
2102 }
2103 ret = btrfs_finish_sprout(trans, root);
2104 if (ret) {
2105 btrfs_abort_transaction(trans, root, ret);
2106 goto error_trans;
2107 }
2108 } else {
2109 ret = btrfs_add_device(trans, root, device);
2110 if (ret) {
2111 btrfs_abort_transaction(trans, root, ret);
2112 goto error_trans;
2113 }
2114 }
2115
2116 /*
2117 * we've got more storage, clear any full flags on the space
2118 * infos
2119 */
2120 btrfs_clear_space_info_full(root->fs_info);
2121
2122 unlock_chunks(root);
2123 root->fs_info->num_tolerated_disk_barrier_failures =
2124 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
2125 ret = btrfs_commit_transaction(trans, root);
2126
2127 if (seeding_dev) {
2128 mutex_unlock(&uuid_mutex);
2129 up_write(&sb->s_umount);
2130
2131 if (ret) /* transaction commit */
2132 return ret;
2133
2134 ret = btrfs_relocate_sys_chunks(root);
2135 if (ret < 0)
2136 btrfs_error(root->fs_info, ret,
2137 "Failed to relocate sys chunks after "
2138 "device initialization. This can be fixed "
2139 "using the \"btrfs balance\" command.");
2140 trans = btrfs_attach_transaction(root);
2141 if (IS_ERR(trans)) {
2142 if (PTR_ERR(trans) == -ENOENT)
2143 return 0;
2144 return PTR_ERR(trans);
2145 }
2146 ret = btrfs_commit_transaction(trans, root);
2147 }
2148
2149 return ret;
2150
2151error_trans:
2152 unlock_chunks(root);
2153 btrfs_end_transaction(trans, root);
2154 rcu_string_free(device->name);
2155 kfree(device);
2156error:
2157 blkdev_put(bdev, FMODE_EXCL);
2158 if (seeding_dev) {
2159 mutex_unlock(&uuid_mutex);
2160 up_write(&sb->s_umount);
2161 }
2162 return ret;
2163}
2164
2165int btrfs_init_dev_replace_tgtdev(struct btrfs_root *root, char *device_path,
2166 struct btrfs_device **device_out)
2167{
2168 struct request_queue *q;
2169 struct btrfs_device *device;
2170 struct block_device *bdev;
2171 struct btrfs_fs_info *fs_info = root->fs_info;
2172 struct list_head *devices;
2173 struct rcu_string *name;
2174 u64 devid = BTRFS_DEV_REPLACE_DEVID;
2175 int ret = 0;
2176
2177 *device_out = NULL;
2178 if (fs_info->fs_devices->seeding)
2179 return -EINVAL;
2180
2181 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2182 fs_info->bdev_holder);
2183 if (IS_ERR(bdev))
2184 return PTR_ERR(bdev);
2185
2186 filemap_write_and_wait(bdev->bd_inode->i_mapping);
2187
2188 devices = &fs_info->fs_devices->devices;
2189 list_for_each_entry(device, devices, dev_list) {
2190 if (device->bdev == bdev) {
2191 ret = -EEXIST;
2192 goto error;
2193 }
2194 }
2195
2196 device = btrfs_alloc_device(NULL, &devid, NULL);
2197 if (IS_ERR(device)) {
2198 ret = PTR_ERR(device);
2199 goto error;
2200 }
2201
2202 name = rcu_string_strdup(device_path, GFP_NOFS);
2203 if (!name) {
2204 kfree(device);
2205 ret = -ENOMEM;
2206 goto error;
2207 }
2208 rcu_assign_pointer(device->name, name);
2209
2210 q = bdev_get_queue(bdev);
2211 if (blk_queue_discard(q))
2212 device->can_discard = 1;
2213 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2214 device->writeable = 1;
2215 device->generation = 0;
2216 device->io_width = root->sectorsize;
2217 device->io_align = root->sectorsize;
2218 device->sector_size = root->sectorsize;
2219 device->total_bytes = i_size_read(bdev->bd_inode);
2220 device->disk_total_bytes = device->total_bytes;
2221 device->dev_root = fs_info->dev_root;
2222 device->bdev = bdev;
2223 device->in_fs_metadata = 1;
2224 device->is_tgtdev_for_dev_replace = 1;
2225 device->mode = FMODE_EXCL;
2226 device->dev_stats_valid = 1;
2227 set_blocksize(device->bdev, 4096);
2228 device->fs_devices = fs_info->fs_devices;
2229 list_add(&device->dev_list, &fs_info->fs_devices->devices);
2230 fs_info->fs_devices->num_devices++;
2231 fs_info->fs_devices->open_devices++;
2232 if (device->can_discard)
2233 fs_info->fs_devices->num_can_discard++;
2234 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2235
2236 *device_out = device;
2237 return ret;
2238
2239error:
2240 blkdev_put(bdev, FMODE_EXCL);
2241 return ret;
2242}
2243
2244void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
2245 struct btrfs_device *tgtdev)
2246{
2247 WARN_ON(fs_info->fs_devices->rw_devices == 0);
2248 tgtdev->io_width = fs_info->dev_root->sectorsize;
2249 tgtdev->io_align = fs_info->dev_root->sectorsize;
2250 tgtdev->sector_size = fs_info->dev_root->sectorsize;
2251 tgtdev->dev_root = fs_info->dev_root;
2252 tgtdev->in_fs_metadata = 1;
2253}
2254
2255static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2256 struct btrfs_device *device)
2257{
2258 int ret;
2259 struct btrfs_path *path;
2260 struct btrfs_root *root;
2261 struct btrfs_dev_item *dev_item;
2262 struct extent_buffer *leaf;
2263 struct btrfs_key key;
2264
2265 root = device->dev_root->fs_info->chunk_root;
2266
2267 path = btrfs_alloc_path();
2268 if (!path)
2269 return -ENOMEM;
2270
2271 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2272 key.type = BTRFS_DEV_ITEM_KEY;
2273 key.offset = device->devid;
2274
2275 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2276 if (ret < 0)
2277 goto out;
2278
2279 if (ret > 0) {
2280 ret = -ENOENT;
2281 goto out;
2282 }
2283
2284 leaf = path->nodes[0];
2285 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2286
2287 btrfs_set_device_id(leaf, dev_item, device->devid);
2288 btrfs_set_device_type(leaf, dev_item, device->type);
2289 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2290 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2291 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2292 btrfs_set_device_total_bytes(leaf, dev_item, device->disk_total_bytes);
2293 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
2294 btrfs_mark_buffer_dirty(leaf);
2295
2296out:
2297 btrfs_free_path(path);
2298 return ret;
2299}
2300
2301static int __btrfs_grow_device(struct btrfs_trans_handle *trans,
2302 struct btrfs_device *device, u64 new_size)
2303{
2304 struct btrfs_super_block *super_copy =
2305 device->dev_root->fs_info->super_copy;
2306 u64 old_total = btrfs_super_total_bytes(super_copy);
2307 u64 diff = new_size - device->total_bytes;
2308
2309 if (!device->writeable)
2310 return -EACCES;
2311 if (new_size <= device->total_bytes ||
2312 device->is_tgtdev_for_dev_replace)
2313 return -EINVAL;
2314
2315 btrfs_set_super_total_bytes(super_copy, old_total + diff);
2316 device->fs_devices->total_rw_bytes += diff;
2317
2318 device->total_bytes = new_size;
2319 device->disk_total_bytes = new_size;
2320 btrfs_clear_space_info_full(device->dev_root->fs_info);
2321
2322 return btrfs_update_device(trans, device);
2323}
2324
2325int btrfs_grow_device(struct btrfs_trans_handle *trans,
2326 struct btrfs_device *device, u64 new_size)
2327{
2328 int ret;
2329 lock_chunks(device->dev_root);
2330 ret = __btrfs_grow_device(trans, device, new_size);
2331 unlock_chunks(device->dev_root);
2332 return ret;
2333}
2334
2335static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
2336 struct btrfs_root *root,
2337 u64 chunk_tree, u64 chunk_objectid,
2338 u64 chunk_offset)
2339{
2340 int ret;
2341 struct btrfs_path *path;
2342 struct btrfs_key key;
2343
2344 root = root->fs_info->chunk_root;
2345 path = btrfs_alloc_path();
2346 if (!path)
2347 return -ENOMEM;
2348
2349 key.objectid = chunk_objectid;
2350 key.offset = chunk_offset;
2351 key.type = BTRFS_CHUNK_ITEM_KEY;
2352
2353 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2354 if (ret < 0)
2355 goto out;
2356 else if (ret > 0) { /* Logic error or corruption */
2357 btrfs_error(root->fs_info, -ENOENT,
2358 "Failed lookup while freeing chunk.");
2359 ret = -ENOENT;
2360 goto out;
2361 }
2362
2363 ret = btrfs_del_item(trans, root, path);
2364 if (ret < 0)
2365 btrfs_error(root->fs_info, ret,
2366 "Failed to delete chunk item.");
2367out:
2368 btrfs_free_path(path);
2369 return ret;
2370}
2371
2372static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
2373 chunk_offset)
2374{
2375 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
2376 struct btrfs_disk_key *disk_key;
2377 struct btrfs_chunk *chunk;
2378 u8 *ptr;
2379 int ret = 0;
2380 u32 num_stripes;
2381 u32 array_size;
2382 u32 len = 0;
2383 u32 cur;
2384 struct btrfs_key key;
2385
2386 array_size = btrfs_super_sys_array_size(super_copy);
2387
2388 ptr = super_copy->sys_chunk_array;
2389 cur = 0;
2390
2391 while (cur < array_size) {
2392 disk_key = (struct btrfs_disk_key *)ptr;
2393 btrfs_disk_key_to_cpu(&key, disk_key);
2394
2395 len = sizeof(*disk_key);
2396
2397 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2398 chunk = (struct btrfs_chunk *)(ptr + len);
2399 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2400 len += btrfs_chunk_item_size(num_stripes);
2401 } else {
2402 ret = -EIO;
2403 break;
2404 }
2405 if (key.objectid == chunk_objectid &&
2406 key.offset == chunk_offset) {
2407 memmove(ptr, ptr + len, array_size - (cur + len));
2408 array_size -= len;
2409 btrfs_set_super_sys_array_size(super_copy, array_size);
2410 } else {
2411 ptr += len;
2412 cur += len;
2413 }
2414 }
2415 return ret;
2416}
2417
2418static int btrfs_relocate_chunk(struct btrfs_root *root,
2419 u64 chunk_tree, u64 chunk_objectid,
2420 u64 chunk_offset)
2421{
2422 struct extent_map_tree *em_tree;
2423 struct btrfs_root *extent_root;
2424 struct btrfs_trans_handle *trans;
2425 struct extent_map *em;
2426 struct map_lookup *map;
2427 int ret;
2428 int i;
2429
2430 root = root->fs_info->chunk_root;
2431 extent_root = root->fs_info->extent_root;
2432 em_tree = &root->fs_info->mapping_tree.map_tree;
2433
2434 ret = btrfs_can_relocate(extent_root, chunk_offset);
2435 if (ret)
2436 return -ENOSPC;
2437
2438 /* step one, relocate all the extents inside this chunk */
2439 ret = btrfs_relocate_block_group(extent_root, chunk_offset);
2440 if (ret)
2441 return ret;
2442
2443 trans = btrfs_start_transaction(root, 0);
2444 if (IS_ERR(trans)) {
2445 ret = PTR_ERR(trans);
2446 btrfs_std_error(root->fs_info, ret);
2447 return ret;
2448 }
2449
2450 lock_chunks(root);
2451
2452 /*
2453 * step two, delete the device extents and the
2454 * chunk tree entries
2455 */
2456 read_lock(&em_tree->lock);
2457 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
2458 read_unlock(&em_tree->lock);
2459
2460 BUG_ON(!em || em->start > chunk_offset ||
2461 em->start + em->len < chunk_offset);
2462 map = (struct map_lookup *)em->bdev;
2463
2464 for (i = 0; i < map->num_stripes; i++) {
2465 ret = btrfs_free_dev_extent(trans, map->stripes[i].dev,
2466 map->stripes[i].physical);
2467 BUG_ON(ret);
2468
2469 if (map->stripes[i].dev) {
2470 ret = btrfs_update_device(trans, map->stripes[i].dev);
2471 BUG_ON(ret);
2472 }
2473 }
2474 ret = btrfs_free_chunk(trans, root, chunk_tree, chunk_objectid,
2475 chunk_offset);
2476
2477 BUG_ON(ret);
2478
2479 trace_btrfs_chunk_free(root, map, chunk_offset, em->len);
2480
2481 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2482 ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
2483 BUG_ON(ret);
2484 }
2485
2486 ret = btrfs_remove_block_group(trans, extent_root, chunk_offset);
2487 BUG_ON(ret);
2488
2489 write_lock(&em_tree->lock);
2490 remove_extent_mapping(em_tree, em);
2491 write_unlock(&em_tree->lock);
2492
2493 kfree(map);
2494 em->bdev = NULL;
2495
2496 /* once for the tree */
2497 free_extent_map(em);
2498 /* once for us */
2499 free_extent_map(em);
2500
2501 unlock_chunks(root);
2502 btrfs_end_transaction(trans, root);
2503 return 0;
2504}
2505
2506static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
2507{
2508 struct btrfs_root *chunk_root = root->fs_info->chunk_root;
2509 struct btrfs_path *path;
2510 struct extent_buffer *leaf;
2511 struct btrfs_chunk *chunk;
2512 struct btrfs_key key;
2513 struct btrfs_key found_key;
2514 u64 chunk_tree = chunk_root->root_key.objectid;
2515 u64 chunk_type;
2516 bool retried = false;
2517 int failed = 0;
2518 int ret;
2519
2520 path = btrfs_alloc_path();
2521 if (!path)
2522 return -ENOMEM;
2523
2524again:
2525 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2526 key.offset = (u64)-1;
2527 key.type = BTRFS_CHUNK_ITEM_KEY;
2528
2529 while (1) {
2530 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2531 if (ret < 0)
2532 goto error;
2533 BUG_ON(ret == 0); /* Corruption */
2534
2535 ret = btrfs_previous_item(chunk_root, path, key.objectid,
2536 key.type);
2537 if (ret < 0)
2538 goto error;
2539 if (ret > 0)
2540 break;
2541
2542 leaf = path->nodes[0];
2543 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2544
2545 chunk = btrfs_item_ptr(leaf, path->slots[0],
2546 struct btrfs_chunk);
2547 chunk_type = btrfs_chunk_type(leaf, chunk);
2548 btrfs_release_path(path);
2549
2550 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
2551 ret = btrfs_relocate_chunk(chunk_root, chunk_tree,
2552 found_key.objectid,
2553 found_key.offset);
2554 if (ret == -ENOSPC)
2555 failed++;
2556 else if (ret)
2557 BUG();
2558 }
2559
2560 if (found_key.offset == 0)
2561 break;
2562 key.offset = found_key.offset - 1;
2563 }
2564 ret = 0;
2565 if (failed && !retried) {
2566 failed = 0;
2567 retried = true;
2568 goto again;
2569 } else if (WARN_ON(failed && retried)) {
2570 ret = -ENOSPC;
2571 }
2572error:
2573 btrfs_free_path(path);
2574 return ret;
2575}
2576
2577static int insert_balance_item(struct btrfs_root *root,
2578 struct btrfs_balance_control *bctl)
2579{
2580 struct btrfs_trans_handle *trans;
2581 struct btrfs_balance_item *item;
2582 struct btrfs_disk_balance_args disk_bargs;
2583 struct btrfs_path *path;
2584 struct extent_buffer *leaf;
2585 struct btrfs_key key;
2586 int ret, err;
2587
2588 path = btrfs_alloc_path();
2589 if (!path)
2590 return -ENOMEM;
2591
2592 trans = btrfs_start_transaction(root, 0);
2593 if (IS_ERR(trans)) {
2594 btrfs_free_path(path);
2595 return PTR_ERR(trans);
2596 }
2597
2598 key.objectid = BTRFS_BALANCE_OBJECTID;
2599 key.type = BTRFS_BALANCE_ITEM_KEY;
2600 key.offset = 0;
2601
2602 ret = btrfs_insert_empty_item(trans, root, path, &key,
2603 sizeof(*item));
2604 if (ret)
2605 goto out;
2606
2607 leaf = path->nodes[0];
2608 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
2609
2610 memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
2611
2612 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
2613 btrfs_set_balance_data(leaf, item, &disk_bargs);
2614 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
2615 btrfs_set_balance_meta(leaf, item, &disk_bargs);
2616 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
2617 btrfs_set_balance_sys(leaf, item, &disk_bargs);
2618
2619 btrfs_set_balance_flags(leaf, item, bctl->flags);
2620
2621 btrfs_mark_buffer_dirty(leaf);
2622out:
2623 btrfs_free_path(path);
2624 err = btrfs_commit_transaction(trans, root);
2625 if (err && !ret)
2626 ret = err;
2627 return ret;
2628}
2629
2630static int del_balance_item(struct btrfs_root *root)
2631{
2632 struct btrfs_trans_handle *trans;
2633 struct btrfs_path *path;
2634 struct btrfs_key key;
2635 int ret, err;
2636
2637 path = btrfs_alloc_path();
2638 if (!path)
2639 return -ENOMEM;
2640
2641 trans = btrfs_start_transaction(root, 0);
2642 if (IS_ERR(trans)) {
2643 btrfs_free_path(path);
2644 return PTR_ERR(trans);
2645 }
2646
2647 key.objectid = BTRFS_BALANCE_OBJECTID;
2648 key.type = BTRFS_BALANCE_ITEM_KEY;
2649 key.offset = 0;
2650
2651 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2652 if (ret < 0)
2653 goto out;
2654 if (ret > 0) {
2655 ret = -ENOENT;
2656 goto out;
2657 }
2658
2659 ret = btrfs_del_item(trans, root, path);
2660out:
2661 btrfs_free_path(path);
2662 err = btrfs_commit_transaction(trans, root);
2663 if (err && !ret)
2664 ret = err;
2665 return ret;
2666}
2667
2668/*
2669 * This is a heuristic used to reduce the number of chunks balanced on
2670 * resume after balance was interrupted.
2671 */
2672static void update_balance_args(struct btrfs_balance_control *bctl)
2673{
2674 /*
2675 * Turn on soft mode for chunk types that were being converted.
2676 */
2677 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
2678 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
2679 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
2680 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
2681 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
2682 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
2683
2684 /*
2685 * Turn on usage filter if is not already used. The idea is
2686 * that chunks that we have already balanced should be
2687 * reasonably full. Don't do it for chunks that are being
2688 * converted - that will keep us from relocating unconverted
2689 * (albeit full) chunks.
2690 */
2691 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2692 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2693 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
2694 bctl->data.usage = 90;
2695 }
2696 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2697 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2698 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
2699 bctl->sys.usage = 90;
2700 }
2701 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2702 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2703 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
2704 bctl->meta.usage = 90;
2705 }
2706}
2707
2708/*
2709 * Should be called with both balance and volume mutexes held to
2710 * serialize other volume operations (add_dev/rm_dev/resize) with
2711 * restriper. Same goes for unset_balance_control.
2712 */
2713static void set_balance_control(struct btrfs_balance_control *bctl)
2714{
2715 struct btrfs_fs_info *fs_info = bctl->fs_info;
2716
2717 BUG_ON(fs_info->balance_ctl);
2718
2719 spin_lock(&fs_info->balance_lock);
2720 fs_info->balance_ctl = bctl;
2721 spin_unlock(&fs_info->balance_lock);
2722}
2723
2724static void unset_balance_control(struct btrfs_fs_info *fs_info)
2725{
2726 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
2727
2728 BUG_ON(!fs_info->balance_ctl);
2729
2730 spin_lock(&fs_info->balance_lock);
2731 fs_info->balance_ctl = NULL;
2732 spin_unlock(&fs_info->balance_lock);
2733
2734 kfree(bctl);
2735}
2736
2737/*
2738 * Balance filters. Return 1 if chunk should be filtered out
2739 * (should not be balanced).
2740 */
2741static int chunk_profiles_filter(u64 chunk_type,
2742 struct btrfs_balance_args *bargs)
2743{
2744 chunk_type = chunk_to_extended(chunk_type) &
2745 BTRFS_EXTENDED_PROFILE_MASK;
2746
2747 if (bargs->profiles & chunk_type)
2748 return 0;
2749
2750 return 1;
2751}
2752
2753static int chunk_usage_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
2754 struct btrfs_balance_args *bargs)
2755{
2756 struct btrfs_block_group_cache *cache;
2757 u64 chunk_used, user_thresh;
2758 int ret = 1;
2759
2760 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2761 chunk_used = btrfs_block_group_used(&cache->item);
2762
2763 if (bargs->usage == 0)
2764 user_thresh = 1;
2765 else if (bargs->usage > 100)
2766 user_thresh = cache->key.offset;
2767 else
2768 user_thresh = div_factor_fine(cache->key.offset,
2769 bargs->usage);
2770
2771 if (chunk_used < user_thresh)
2772 ret = 0;
2773
2774 btrfs_put_block_group(cache);
2775 return ret;
2776}
2777
2778static int chunk_devid_filter(struct extent_buffer *leaf,
2779 struct btrfs_chunk *chunk,
2780 struct btrfs_balance_args *bargs)
2781{
2782 struct btrfs_stripe *stripe;
2783 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
2784 int i;
2785
2786 for (i = 0; i < num_stripes; i++) {
2787 stripe = btrfs_stripe_nr(chunk, i);
2788 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
2789 return 0;
2790 }
2791
2792 return 1;
2793}
2794
2795/* [pstart, pend) */
2796static int chunk_drange_filter(struct extent_buffer *leaf,
2797 struct btrfs_chunk *chunk,
2798 u64 chunk_offset,
2799 struct btrfs_balance_args *bargs)
2800{
2801 struct btrfs_stripe *stripe;
2802 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
2803 u64 stripe_offset;
2804 u64 stripe_length;
2805 int factor;
2806 int i;
2807
2808 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
2809 return 0;
2810
2811 if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
2812 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
2813 factor = num_stripes / 2;
2814 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
2815 factor = num_stripes - 1;
2816 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
2817 factor = num_stripes - 2;
2818 } else {
2819 factor = num_stripes;
2820 }
2821
2822 for (i = 0; i < num_stripes; i++) {
2823 stripe = btrfs_stripe_nr(chunk, i);
2824 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
2825 continue;
2826
2827 stripe_offset = btrfs_stripe_offset(leaf, stripe);
2828 stripe_length = btrfs_chunk_length(leaf, chunk);
2829 do_div(stripe_length, factor);
2830
2831 if (stripe_offset < bargs->pend &&
2832 stripe_offset + stripe_length > bargs->pstart)
2833 return 0;
2834 }
2835
2836 return 1;
2837}
2838
2839/* [vstart, vend) */
2840static int chunk_vrange_filter(struct extent_buffer *leaf,
2841 struct btrfs_chunk *chunk,
2842 u64 chunk_offset,
2843 struct btrfs_balance_args *bargs)
2844{
2845 if (chunk_offset < bargs->vend &&
2846 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
2847 /* at least part of the chunk is inside this vrange */
2848 return 0;
2849
2850 return 1;
2851}
2852
2853static int chunk_soft_convert_filter(u64 chunk_type,
2854 struct btrfs_balance_args *bargs)
2855{
2856 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
2857 return 0;
2858
2859 chunk_type = chunk_to_extended(chunk_type) &
2860 BTRFS_EXTENDED_PROFILE_MASK;
2861
2862 if (bargs->target == chunk_type)
2863 return 1;
2864
2865 return 0;
2866}
2867
2868static int should_balance_chunk(struct btrfs_root *root,
2869 struct extent_buffer *leaf,
2870 struct btrfs_chunk *chunk, u64 chunk_offset)
2871{
2872 struct btrfs_balance_control *bctl = root->fs_info->balance_ctl;
2873 struct btrfs_balance_args *bargs = NULL;
2874 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
2875
2876 /* type filter */
2877 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
2878 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
2879 return 0;
2880 }
2881
2882 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
2883 bargs = &bctl->data;
2884 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
2885 bargs = &bctl->sys;
2886 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
2887 bargs = &bctl->meta;
2888
2889 /* profiles filter */
2890 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
2891 chunk_profiles_filter(chunk_type, bargs)) {
2892 return 0;
2893 }
2894
2895 /* usage filter */
2896 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
2897 chunk_usage_filter(bctl->fs_info, chunk_offset, bargs)) {
2898 return 0;
2899 }
2900
2901 /* devid filter */
2902 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
2903 chunk_devid_filter(leaf, chunk, bargs)) {
2904 return 0;
2905 }
2906
2907 /* drange filter, makes sense only with devid filter */
2908 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
2909 chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) {
2910 return 0;
2911 }
2912
2913 /* vrange filter */
2914 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
2915 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
2916 return 0;
2917 }
2918
2919 /* soft profile changing mode */
2920 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
2921 chunk_soft_convert_filter(chunk_type, bargs)) {
2922 return 0;
2923 }
2924
2925 return 1;
2926}
2927
2928static int __btrfs_balance(struct btrfs_fs_info *fs_info)
2929{
2930 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
2931 struct btrfs_root *chunk_root = fs_info->chunk_root;
2932 struct btrfs_root *dev_root = fs_info->dev_root;
2933 struct list_head *devices;
2934 struct btrfs_device *device;
2935 u64 old_size;
2936 u64 size_to_free;
2937 struct btrfs_chunk *chunk;
2938 struct btrfs_path *path;
2939 struct btrfs_key key;
2940 struct btrfs_key found_key;
2941 struct btrfs_trans_handle *trans;
2942 struct extent_buffer *leaf;
2943 int slot;
2944 int ret;
2945 int enospc_errors = 0;
2946 bool counting = true;
2947
2948 /* step one make some room on all the devices */
2949 devices = &fs_info->fs_devices->devices;
2950 list_for_each_entry(device, devices, dev_list) {
2951 old_size = device->total_bytes;
2952 size_to_free = div_factor(old_size, 1);
2953 size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
2954 if (!device->writeable ||
2955 device->total_bytes - device->bytes_used > size_to_free ||
2956 device->is_tgtdev_for_dev_replace)
2957 continue;
2958
2959 ret = btrfs_shrink_device(device, old_size - size_to_free);
2960 if (ret == -ENOSPC)
2961 break;
2962 BUG_ON(ret);
2963
2964 trans = btrfs_start_transaction(dev_root, 0);
2965 BUG_ON(IS_ERR(trans));
2966
2967 ret = btrfs_grow_device(trans, device, old_size);
2968 BUG_ON(ret);
2969
2970 btrfs_end_transaction(trans, dev_root);
2971 }
2972
2973 /* step two, relocate all the chunks */
2974 path = btrfs_alloc_path();
2975 if (!path) {
2976 ret = -ENOMEM;
2977 goto error;
2978 }
2979
2980 /* zero out stat counters */
2981 spin_lock(&fs_info->balance_lock);
2982 memset(&bctl->stat, 0, sizeof(bctl->stat));
2983 spin_unlock(&fs_info->balance_lock);
2984again:
2985 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2986 key.offset = (u64)-1;
2987 key.type = BTRFS_CHUNK_ITEM_KEY;
2988
2989 while (1) {
2990 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
2991 atomic_read(&fs_info->balance_cancel_req)) {
2992 ret = -ECANCELED;
2993 goto error;
2994 }
2995
2996 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2997 if (ret < 0)
2998 goto error;
2999
3000 /*
3001 * this shouldn't happen, it means the last relocate
3002 * failed
3003 */
3004 if (ret == 0)
3005 BUG(); /* FIXME break ? */
3006
3007 ret = btrfs_previous_item(chunk_root, path, 0,
3008 BTRFS_CHUNK_ITEM_KEY);
3009 if (ret) {
3010 ret = 0;
3011 break;
3012 }
3013
3014 leaf = path->nodes[0];
3015 slot = path->slots[0];
3016 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3017
3018 if (found_key.objectid != key.objectid)
3019 break;
3020
3021 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3022
3023 if (!counting) {
3024 spin_lock(&fs_info->balance_lock);
3025 bctl->stat.considered++;
3026 spin_unlock(&fs_info->balance_lock);
3027 }
3028
3029 ret = should_balance_chunk(chunk_root, leaf, chunk,
3030 found_key.offset);
3031 btrfs_release_path(path);
3032 if (!ret)
3033 goto loop;
3034
3035 if (counting) {
3036 spin_lock(&fs_info->balance_lock);
3037 bctl->stat.expected++;
3038 spin_unlock(&fs_info->balance_lock);
3039 goto loop;
3040 }
3041
3042 ret = btrfs_relocate_chunk(chunk_root,
3043 chunk_root->root_key.objectid,
3044 found_key.objectid,
3045 found_key.offset);
3046 if (ret && ret != -ENOSPC)
3047 goto error;
3048 if (ret == -ENOSPC) {
3049 enospc_errors++;
3050 } else {
3051 spin_lock(&fs_info->balance_lock);
3052 bctl->stat.completed++;
3053 spin_unlock(&fs_info->balance_lock);
3054 }
3055loop:
3056 if (found_key.offset == 0)
3057 break;
3058 key.offset = found_key.offset - 1;
3059 }
3060
3061 if (counting) {
3062 btrfs_release_path(path);
3063 counting = false;
3064 goto again;
3065 }
3066error:
3067 btrfs_free_path(path);
3068 if (enospc_errors) {
3069 btrfs_info(fs_info, "%d enospc errors during balance",
3070 enospc_errors);
3071 if (!ret)
3072 ret = -ENOSPC;
3073 }
3074
3075 return ret;
3076}
3077
3078/**
3079 * alloc_profile_is_valid - see if a given profile is valid and reduced
3080 * @flags: profile to validate
3081 * @extended: if true @flags is treated as an extended profile
3082 */
3083static int alloc_profile_is_valid(u64 flags, int extended)
3084{
3085 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3086 BTRFS_BLOCK_GROUP_PROFILE_MASK);
3087
3088 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3089
3090 /* 1) check that all other bits are zeroed */
3091 if (flags & ~mask)
3092 return 0;
3093
3094 /* 2) see if profile is reduced */
3095 if (flags == 0)
3096 return !extended; /* "0" is valid for usual profiles */
3097
3098 /* true if exactly one bit set */
3099 return (flags & (flags - 1)) == 0;
3100}
3101
3102static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3103{
3104 /* cancel requested || normal exit path */
3105 return atomic_read(&fs_info->balance_cancel_req) ||
3106 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3107 atomic_read(&fs_info->balance_cancel_req) == 0);
3108}
3109
3110static void __cancel_balance(struct btrfs_fs_info *fs_info)
3111{
3112 int ret;
3113
3114 unset_balance_control(fs_info);
3115 ret = del_balance_item(fs_info->tree_root);
3116 if (ret)
3117 btrfs_std_error(fs_info, ret);
3118
3119 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3120}
3121
3122/*
3123 * Should be called with both balance and volume mutexes held
3124 */
3125int btrfs_balance(struct btrfs_balance_control *bctl,
3126 struct btrfs_ioctl_balance_args *bargs)
3127{
3128 struct btrfs_fs_info *fs_info = bctl->fs_info;
3129 u64 allowed;
3130 int mixed = 0;
3131 int ret;
3132 u64 num_devices;
3133 unsigned seq;
3134
3135 if (btrfs_fs_closing(fs_info) ||
3136 atomic_read(&fs_info->balance_pause_req) ||
3137 atomic_read(&fs_info->balance_cancel_req)) {
3138 ret = -EINVAL;
3139 goto out;
3140 }
3141
3142 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3143 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3144 mixed = 1;
3145
3146 /*
3147 * In case of mixed groups both data and meta should be picked,
3148 * and identical options should be given for both of them.
3149 */
3150 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3151 if (mixed && (bctl->flags & allowed)) {
3152 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3153 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3154 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
3155 btrfs_err(fs_info, "with mixed groups data and "
3156 "metadata balance options must be the same");
3157 ret = -EINVAL;
3158 goto out;
3159 }
3160 }
3161
3162 num_devices = fs_info->fs_devices->num_devices;
3163 btrfs_dev_replace_lock(&fs_info->dev_replace);
3164 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3165 BUG_ON(num_devices < 1);
3166 num_devices--;
3167 }
3168 btrfs_dev_replace_unlock(&fs_info->dev_replace);
3169 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
3170 if (num_devices == 1)
3171 allowed |= BTRFS_BLOCK_GROUP_DUP;
3172 else if (num_devices > 1)
3173 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
3174 if (num_devices > 2)
3175 allowed |= BTRFS_BLOCK_GROUP_RAID5;
3176 if (num_devices > 3)
3177 allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3178 BTRFS_BLOCK_GROUP_RAID6);
3179 if ((bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3180 (!alloc_profile_is_valid(bctl->data.target, 1) ||
3181 (bctl->data.target & ~allowed))) {
3182 btrfs_err(fs_info, "unable to start balance with target "
3183 "data profile %llu",
3184 bctl->data.target);
3185 ret = -EINVAL;
3186 goto out;
3187 }
3188 if ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3189 (!alloc_profile_is_valid(bctl->meta.target, 1) ||
3190 (bctl->meta.target & ~allowed))) {
3191 btrfs_err(fs_info,
3192 "unable to start balance with target metadata profile %llu",
3193 bctl->meta.target);
3194 ret = -EINVAL;
3195 goto out;
3196 }
3197 if ((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3198 (!alloc_profile_is_valid(bctl->sys.target, 1) ||
3199 (bctl->sys.target & ~allowed))) {
3200 btrfs_err(fs_info,
3201 "unable to start balance with target system profile %llu",
3202 bctl->sys.target);
3203 ret = -EINVAL;
3204 goto out;
3205 }
3206
3207 /* allow dup'ed data chunks only in mixed mode */
3208 if (!mixed && (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3209 (bctl->data.target & BTRFS_BLOCK_GROUP_DUP)) {
3210 btrfs_err(fs_info, "dup for data is not allowed");
3211 ret = -EINVAL;
3212 goto out;
3213 }
3214
3215 /* allow to reduce meta or sys integrity only if force set */
3216 allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3217 BTRFS_BLOCK_GROUP_RAID10 |
3218 BTRFS_BLOCK_GROUP_RAID5 |
3219 BTRFS_BLOCK_GROUP_RAID6;
3220 do {
3221 seq = read_seqbegin(&fs_info->profiles_lock);
3222
3223 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3224 (fs_info->avail_system_alloc_bits & allowed) &&
3225 !(bctl->sys.target & allowed)) ||
3226 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3227 (fs_info->avail_metadata_alloc_bits & allowed) &&
3228 !(bctl->meta.target & allowed))) {
3229 if (bctl->flags & BTRFS_BALANCE_FORCE) {
3230 btrfs_info(fs_info, "force reducing metadata integrity");
3231 } else {
3232 btrfs_err(fs_info, "balance will reduce metadata "
3233 "integrity, use force if you want this");
3234 ret = -EINVAL;
3235 goto out;
3236 }
3237 }
3238 } while (read_seqretry(&fs_info->profiles_lock, seq));
3239
3240 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3241 int num_tolerated_disk_barrier_failures;
3242 u64 target = bctl->sys.target;
3243
3244 num_tolerated_disk_barrier_failures =
3245 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3246 if (num_tolerated_disk_barrier_failures > 0 &&
3247 (target &
3248 (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
3249 BTRFS_AVAIL_ALLOC_BIT_SINGLE)))
3250 num_tolerated_disk_barrier_failures = 0;
3251 else if (num_tolerated_disk_barrier_failures > 1 &&
3252 (target &
3253 (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)))
3254 num_tolerated_disk_barrier_failures = 1;
3255
3256 fs_info->num_tolerated_disk_barrier_failures =
3257 num_tolerated_disk_barrier_failures;
3258 }
3259
3260 ret = insert_balance_item(fs_info->tree_root, bctl);
3261 if (ret && ret != -EEXIST)
3262 goto out;
3263
3264 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3265 BUG_ON(ret == -EEXIST);
3266 set_balance_control(bctl);
3267 } else {
3268 BUG_ON(ret != -EEXIST);
3269 spin_lock(&fs_info->balance_lock);
3270 update_balance_args(bctl);
3271 spin_unlock(&fs_info->balance_lock);
3272 }
3273
3274 atomic_inc(&fs_info->balance_running);
3275 mutex_unlock(&fs_info->balance_mutex);
3276
3277 ret = __btrfs_balance(fs_info);
3278
3279 mutex_lock(&fs_info->balance_mutex);
3280 atomic_dec(&fs_info->balance_running);
3281
3282 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3283 fs_info->num_tolerated_disk_barrier_failures =
3284 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3285 }
3286
3287 if (bargs) {
3288 memset(bargs, 0, sizeof(*bargs));
3289 update_ioctl_balance_args(fs_info, 0, bargs);
3290 }
3291
3292 if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3293 balance_need_close(fs_info)) {
3294 __cancel_balance(fs_info);
3295 }
3296
3297 wake_up(&fs_info->balance_wait_q);
3298
3299 return ret;
3300out:
3301 if (bctl->flags & BTRFS_BALANCE_RESUME)
3302 __cancel_balance(fs_info);
3303 else {
3304 kfree(bctl);
3305 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3306 }
3307 return ret;
3308}
3309
3310static int balance_kthread(void *data)
3311{
3312 struct btrfs_fs_info *fs_info = data;
3313 int ret = 0;
3314
3315 mutex_lock(&fs_info->volume_mutex);
3316 mutex_lock(&fs_info->balance_mutex);
3317
3318 if (fs_info->balance_ctl) {
3319 btrfs_info(fs_info, "continuing balance");
3320 ret = btrfs_balance(fs_info->balance_ctl, NULL);
3321 }
3322
3323 mutex_unlock(&fs_info->balance_mutex);
3324 mutex_unlock(&fs_info->volume_mutex);
3325
3326 return ret;
3327}
3328
3329int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3330{
3331 struct task_struct *tsk;
3332
3333 spin_lock(&fs_info->balance_lock);
3334 if (!fs_info->balance_ctl) {
3335 spin_unlock(&fs_info->balance_lock);
3336 return 0;
3337 }
3338 spin_unlock(&fs_info->balance_lock);
3339
3340 if (btrfs_test_opt(fs_info->tree_root, SKIP_BALANCE)) {
3341 btrfs_info(fs_info, "force skipping balance");
3342 return 0;
3343 }
3344
3345 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
3346 return PTR_ERR_OR_ZERO(tsk);
3347}
3348
3349int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
3350{
3351 struct btrfs_balance_control *bctl;
3352 struct btrfs_balance_item *item;
3353 struct btrfs_disk_balance_args disk_bargs;
3354 struct btrfs_path *path;
3355 struct extent_buffer *leaf;
3356 struct btrfs_key key;
3357 int ret;
3358
3359 path = btrfs_alloc_path();
3360 if (!path)
3361 return -ENOMEM;
3362
3363 key.objectid = BTRFS_BALANCE_OBJECTID;
3364 key.type = BTRFS_BALANCE_ITEM_KEY;
3365 key.offset = 0;
3366
3367 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
3368 if (ret < 0)
3369 goto out;
3370 if (ret > 0) { /* ret = -ENOENT; */
3371 ret = 0;
3372 goto out;
3373 }
3374
3375 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3376 if (!bctl) {
3377 ret = -ENOMEM;
3378 goto out;
3379 }
3380
3381 leaf = path->nodes[0];
3382 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3383
3384 bctl->fs_info = fs_info;
3385 bctl->flags = btrfs_balance_flags(leaf, item);
3386 bctl->flags |= BTRFS_BALANCE_RESUME;
3387
3388 btrfs_balance_data(leaf, item, &disk_bargs);
3389 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
3390 btrfs_balance_meta(leaf, item, &disk_bargs);
3391 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
3392 btrfs_balance_sys(leaf, item, &disk_bargs);
3393 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
3394
3395 WARN_ON(atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1));
3396
3397 mutex_lock(&fs_info->volume_mutex);
3398 mutex_lock(&fs_info->balance_mutex);
3399
3400 set_balance_control(bctl);
3401
3402 mutex_unlock(&fs_info->balance_mutex);
3403 mutex_unlock(&fs_info->volume_mutex);
3404out:
3405 btrfs_free_path(path);
3406 return ret;
3407}
3408
3409int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
3410{
3411 int ret = 0;
3412
3413 mutex_lock(&fs_info->balance_mutex);
3414 if (!fs_info->balance_ctl) {
3415 mutex_unlock(&fs_info->balance_mutex);
3416 return -ENOTCONN;
3417 }
3418
3419 if (atomic_read(&fs_info->balance_running)) {
3420 atomic_inc(&fs_info->balance_pause_req);
3421 mutex_unlock(&fs_info->balance_mutex);
3422
3423 wait_event(fs_info->balance_wait_q,
3424 atomic_read(&fs_info->balance_running) == 0);
3425
3426 mutex_lock(&fs_info->balance_mutex);
3427 /* we are good with balance_ctl ripped off from under us */
3428 BUG_ON(atomic_read(&fs_info->balance_running));
3429 atomic_dec(&fs_info->balance_pause_req);
3430 } else {
3431 ret = -ENOTCONN;
3432 }
3433
3434 mutex_unlock(&fs_info->balance_mutex);
3435 return ret;
3436}
3437
3438int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
3439{
3440 if (fs_info->sb->s_flags & MS_RDONLY)
3441 return -EROFS;
3442
3443 mutex_lock(&fs_info->balance_mutex);
3444 if (!fs_info->balance_ctl) {
3445 mutex_unlock(&fs_info->balance_mutex);
3446 return -ENOTCONN;
3447 }
3448
3449 atomic_inc(&fs_info->balance_cancel_req);
3450 /*
3451 * if we are running just wait and return, balance item is
3452 * deleted in btrfs_balance in this case
3453 */
3454 if (atomic_read(&fs_info->balance_running)) {
3455 mutex_unlock(&fs_info->balance_mutex);
3456 wait_event(fs_info->balance_wait_q,
3457 atomic_read(&fs_info->balance_running) == 0);
3458 mutex_lock(&fs_info->balance_mutex);
3459 } else {
3460 /* __cancel_balance needs volume_mutex */
3461 mutex_unlock(&fs_info->balance_mutex);
3462 mutex_lock(&fs_info->volume_mutex);
3463 mutex_lock(&fs_info->balance_mutex);
3464
3465 if (fs_info->balance_ctl)
3466 __cancel_balance(fs_info);
3467
3468 mutex_unlock(&fs_info->volume_mutex);
3469 }
3470
3471 BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
3472 atomic_dec(&fs_info->balance_cancel_req);
3473 mutex_unlock(&fs_info->balance_mutex);
3474 return 0;
3475}
3476
3477static int btrfs_uuid_scan_kthread(void *data)
3478{
3479 struct btrfs_fs_info *fs_info = data;
3480 struct btrfs_root *root = fs_info->tree_root;
3481 struct btrfs_key key;
3482 struct btrfs_key max_key;
3483 struct btrfs_path *path = NULL;
3484 int ret = 0;
3485 struct extent_buffer *eb;
3486 int slot;
3487 struct btrfs_root_item root_item;
3488 u32 item_size;
3489 struct btrfs_trans_handle *trans = NULL;
3490
3491 path = btrfs_alloc_path();
3492 if (!path) {
3493 ret = -ENOMEM;
3494 goto out;
3495 }
3496
3497 key.objectid = 0;
3498 key.type = BTRFS_ROOT_ITEM_KEY;
3499 key.offset = 0;
3500
3501 max_key.objectid = (u64)-1;
3502 max_key.type = BTRFS_ROOT_ITEM_KEY;
3503 max_key.offset = (u64)-1;
3504
3505 path->keep_locks = 1;
3506
3507 while (1) {
3508 ret = btrfs_search_forward(root, &key, path, 0);
3509 if (ret) {
3510 if (ret > 0)
3511 ret = 0;
3512 break;
3513 }
3514
3515 if (key.type != BTRFS_ROOT_ITEM_KEY ||
3516 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
3517 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
3518 key.objectid > BTRFS_LAST_FREE_OBJECTID)
3519 goto skip;
3520
3521 eb = path->nodes[0];
3522 slot = path->slots[0];
3523 item_size = btrfs_item_size_nr(eb, slot);
3524 if (item_size < sizeof(root_item))
3525 goto skip;
3526
3527 read_extent_buffer(eb, &root_item,
3528 btrfs_item_ptr_offset(eb, slot),
3529 (int)sizeof(root_item));
3530 if (btrfs_root_refs(&root_item) == 0)
3531 goto skip;
3532
3533 if (!btrfs_is_empty_uuid(root_item.uuid) ||
3534 !btrfs_is_empty_uuid(root_item.received_uuid)) {
3535 if (trans)
3536 goto update_tree;
3537
3538 btrfs_release_path(path);
3539 /*
3540 * 1 - subvol uuid item
3541 * 1 - received_subvol uuid item
3542 */
3543 trans = btrfs_start_transaction(fs_info->uuid_root, 2);
3544 if (IS_ERR(trans)) {
3545 ret = PTR_ERR(trans);
3546 break;
3547 }
3548 continue;
3549 } else {
3550 goto skip;
3551 }
3552update_tree:
3553 if (!btrfs_is_empty_uuid(root_item.uuid)) {
3554 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
3555 root_item.uuid,
3556 BTRFS_UUID_KEY_SUBVOL,
3557 key.objectid);
3558 if (ret < 0) {
3559 btrfs_warn(fs_info, "uuid_tree_add failed %d",
3560 ret);
3561 break;
3562 }
3563 }
3564
3565 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
3566 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
3567 root_item.received_uuid,
3568 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
3569 key.objectid);
3570 if (ret < 0) {
3571 btrfs_warn(fs_info, "uuid_tree_add failed %d",
3572 ret);
3573 break;
3574 }
3575 }
3576
3577skip:
3578 if (trans) {
3579 ret = btrfs_end_transaction(trans, fs_info->uuid_root);
3580 trans = NULL;
3581 if (ret)
3582 break;
3583 }
3584
3585 btrfs_release_path(path);
3586 if (key.offset < (u64)-1) {
3587 key.offset++;
3588 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
3589 key.offset = 0;
3590 key.type = BTRFS_ROOT_ITEM_KEY;
3591 } else if (key.objectid < (u64)-1) {
3592 key.offset = 0;
3593 key.type = BTRFS_ROOT_ITEM_KEY;
3594 key.objectid++;
3595 } else {
3596 break;
3597 }
3598 cond_resched();
3599 }
3600
3601out:
3602 btrfs_free_path(path);
3603 if (trans && !IS_ERR(trans))
3604 btrfs_end_transaction(trans, fs_info->uuid_root);
3605 if (ret)
3606 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
3607 else
3608 fs_info->update_uuid_tree_gen = 1;
3609 up(&fs_info->uuid_tree_rescan_sem);
3610 return 0;
3611}
3612
3613/*
3614 * Callback for btrfs_uuid_tree_iterate().
3615 * returns:
3616 * 0 check succeeded, the entry is not outdated.
3617 * < 0 if an error occured.
3618 * > 0 if the check failed, which means the caller shall remove the entry.
3619 */
3620static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
3621 u8 *uuid, u8 type, u64 subid)
3622{
3623 struct btrfs_key key;
3624 int ret = 0;
3625 struct btrfs_root *subvol_root;
3626
3627 if (type != BTRFS_UUID_KEY_SUBVOL &&
3628 type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
3629 goto out;
3630
3631 key.objectid = subid;
3632 key.type = BTRFS_ROOT_ITEM_KEY;
3633 key.offset = (u64)-1;
3634 subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
3635 if (IS_ERR(subvol_root)) {
3636 ret = PTR_ERR(subvol_root);
3637 if (ret == -ENOENT)
3638 ret = 1;
3639 goto out;
3640 }
3641
3642 switch (type) {
3643 case BTRFS_UUID_KEY_SUBVOL:
3644 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
3645 ret = 1;
3646 break;
3647 case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
3648 if (memcmp(uuid, subvol_root->root_item.received_uuid,
3649 BTRFS_UUID_SIZE))
3650 ret = 1;
3651 break;
3652 }
3653
3654out:
3655 return ret;
3656}
3657
3658static int btrfs_uuid_rescan_kthread(void *data)
3659{
3660 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
3661 int ret;
3662
3663 /*
3664 * 1st step is to iterate through the existing UUID tree and
3665 * to delete all entries that contain outdated data.
3666 * 2nd step is to add all missing entries to the UUID tree.
3667 */
3668 ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
3669 if (ret < 0) {
3670 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
3671 up(&fs_info->uuid_tree_rescan_sem);
3672 return ret;
3673 }
3674 return btrfs_uuid_scan_kthread(data);
3675}
3676
3677int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
3678{
3679 struct btrfs_trans_handle *trans;
3680 struct btrfs_root *tree_root = fs_info->tree_root;
3681 struct btrfs_root *uuid_root;
3682 struct task_struct *task;
3683 int ret;
3684
3685 /*
3686 * 1 - root node
3687 * 1 - root item
3688 */
3689 trans = btrfs_start_transaction(tree_root, 2);
3690 if (IS_ERR(trans))
3691 return PTR_ERR(trans);
3692
3693 uuid_root = btrfs_create_tree(trans, fs_info,
3694 BTRFS_UUID_TREE_OBJECTID);
3695 if (IS_ERR(uuid_root)) {
3696 btrfs_abort_transaction(trans, tree_root,
3697 PTR_ERR(uuid_root));
3698 return PTR_ERR(uuid_root);
3699 }
3700
3701 fs_info->uuid_root = uuid_root;
3702
3703 ret = btrfs_commit_transaction(trans, tree_root);
3704 if (ret)
3705 return ret;
3706
3707 down(&fs_info->uuid_tree_rescan_sem);
3708 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
3709 if (IS_ERR(task)) {
3710 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
3711 btrfs_warn(fs_info, "failed to start uuid_scan task");
3712 up(&fs_info->uuid_tree_rescan_sem);
3713 return PTR_ERR(task);
3714 }
3715
3716 return 0;
3717}
3718
3719int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
3720{
3721 struct task_struct *task;
3722
3723 down(&fs_info->uuid_tree_rescan_sem);
3724 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
3725 if (IS_ERR(task)) {
3726 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
3727 btrfs_warn(fs_info, "failed to start uuid_rescan task");
3728 up(&fs_info->uuid_tree_rescan_sem);
3729 return PTR_ERR(task);
3730 }
3731
3732 return 0;
3733}
3734
3735/*
3736 * shrinking a device means finding all of the device extents past
3737 * the new size, and then following the back refs to the chunks.
3738 * The chunk relocation code actually frees the device extent
3739 */
3740int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
3741{
3742 struct btrfs_trans_handle *trans;
3743 struct btrfs_root *root = device->dev_root;
3744 struct btrfs_dev_extent *dev_extent = NULL;
3745 struct btrfs_path *path;
3746 u64 length;
3747 u64 chunk_tree;
3748 u64 chunk_objectid;
3749 u64 chunk_offset;
3750 int ret;
3751 int slot;
3752 int failed = 0;
3753 bool retried = false;
3754 struct extent_buffer *l;
3755 struct btrfs_key key;
3756 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
3757 u64 old_total = btrfs_super_total_bytes(super_copy);
3758 u64 old_size = device->total_bytes;
3759 u64 diff = device->total_bytes - new_size;
3760
3761 if (device->is_tgtdev_for_dev_replace)
3762 return -EINVAL;
3763
3764 path = btrfs_alloc_path();
3765 if (!path)
3766 return -ENOMEM;
3767
3768 path->reada = 2;
3769
3770 lock_chunks(root);
3771
3772 device->total_bytes = new_size;
3773 if (device->writeable) {
3774 device->fs_devices->total_rw_bytes -= diff;
3775 spin_lock(&root->fs_info->free_chunk_lock);
3776 root->fs_info->free_chunk_space -= diff;
3777 spin_unlock(&root->fs_info->free_chunk_lock);
3778 }
3779 unlock_chunks(root);
3780
3781again:
3782 key.objectid = device->devid;
3783 key.offset = (u64)-1;
3784 key.type = BTRFS_DEV_EXTENT_KEY;
3785
3786 do {
3787 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3788 if (ret < 0)
3789 goto done;
3790
3791 ret = btrfs_previous_item(root, path, 0, key.type);
3792 if (ret < 0)
3793 goto done;
3794 if (ret) {
3795 ret = 0;
3796 btrfs_release_path(path);
3797 break;
3798 }
3799
3800 l = path->nodes[0];
3801 slot = path->slots[0];
3802 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
3803
3804 if (key.objectid != device->devid) {
3805 btrfs_release_path(path);
3806 break;
3807 }
3808
3809 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3810 length = btrfs_dev_extent_length(l, dev_extent);
3811
3812 if (key.offset + length <= new_size) {
3813 btrfs_release_path(path);
3814 break;
3815 }
3816
3817 chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
3818 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
3819 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
3820 btrfs_release_path(path);
3821
3822 ret = btrfs_relocate_chunk(root, chunk_tree, chunk_objectid,
3823 chunk_offset);
3824 if (ret && ret != -ENOSPC)
3825 goto done;
3826 if (ret == -ENOSPC)
3827 failed++;
3828 } while (key.offset-- > 0);
3829
3830 if (failed && !retried) {
3831 failed = 0;
3832 retried = true;
3833 goto again;
3834 } else if (failed && retried) {
3835 ret = -ENOSPC;
3836 lock_chunks(root);
3837
3838 device->total_bytes = old_size;
3839 if (device->writeable)
3840 device->fs_devices->total_rw_bytes += diff;
3841 spin_lock(&root->fs_info->free_chunk_lock);
3842 root->fs_info->free_chunk_space += diff;
3843 spin_unlock(&root->fs_info->free_chunk_lock);
3844 unlock_chunks(root);
3845 goto done;
3846 }
3847
3848 /* Shrinking succeeded, else we would be at "done". */
3849 trans = btrfs_start_transaction(root, 0);
3850 if (IS_ERR(trans)) {
3851 ret = PTR_ERR(trans);
3852 goto done;
3853 }
3854
3855 lock_chunks(root);
3856
3857 device->disk_total_bytes = new_size;
3858 /* Now btrfs_update_device() will change the on-disk size. */
3859 ret = btrfs_update_device(trans, device);
3860 if (ret) {
3861 unlock_chunks(root);
3862 btrfs_end_transaction(trans, root);
3863 goto done;
3864 }
3865 WARN_ON(diff > old_total);
3866 btrfs_set_super_total_bytes(super_copy, old_total - diff);
3867 unlock_chunks(root);
3868 btrfs_end_transaction(trans, root);
3869done:
3870 btrfs_free_path(path);
3871 return ret;
3872}
3873
3874static int btrfs_add_system_chunk(struct btrfs_root *root,
3875 struct btrfs_key *key,
3876 struct btrfs_chunk *chunk, int item_size)
3877{
3878 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
3879 struct btrfs_disk_key disk_key;
3880 u32 array_size;
3881 u8 *ptr;
3882
3883 array_size = btrfs_super_sys_array_size(super_copy);
3884 if (array_size + item_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
3885 return -EFBIG;
3886
3887 ptr = super_copy->sys_chunk_array + array_size;
3888 btrfs_cpu_key_to_disk(&disk_key, key);
3889 memcpy(ptr, &disk_key, sizeof(disk_key));
3890 ptr += sizeof(disk_key);
3891 memcpy(ptr, chunk, item_size);
3892 item_size += sizeof(disk_key);
3893 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
3894 return 0;
3895}
3896
3897/*
3898 * sort the devices in descending order by max_avail, total_avail
3899 */
3900static int btrfs_cmp_device_info(const void *a, const void *b)
3901{
3902 const struct btrfs_device_info *di_a = a;
3903 const struct btrfs_device_info *di_b = b;
3904
3905 if (di_a->max_avail > di_b->max_avail)
3906 return -1;
3907 if (di_a->max_avail < di_b->max_avail)
3908 return 1;
3909 if (di_a->total_avail > di_b->total_avail)
3910 return -1;
3911 if (di_a->total_avail < di_b->total_avail)
3912 return 1;
3913 return 0;
3914}
3915
3916static struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
3917 [BTRFS_RAID_RAID10] = {
3918 .sub_stripes = 2,
3919 .dev_stripes = 1,
3920 .devs_max = 0, /* 0 == as many as possible */
3921 .devs_min = 4,
3922 .devs_increment = 2,
3923 .ncopies = 2,
3924 },
3925 [BTRFS_RAID_RAID1] = {
3926 .sub_stripes = 1,
3927 .dev_stripes = 1,
3928 .devs_max = 2,
3929 .devs_min = 2,
3930 .devs_increment = 2,
3931 .ncopies = 2,
3932 },
3933 [BTRFS_RAID_DUP] = {
3934 .sub_stripes = 1,
3935 .dev_stripes = 2,
3936 .devs_max = 1,
3937 .devs_min = 1,
3938 .devs_increment = 1,
3939 .ncopies = 2,
3940 },
3941 [BTRFS_RAID_RAID0] = {
3942 .sub_stripes = 1,
3943 .dev_stripes = 1,
3944 .devs_max = 0,
3945 .devs_min = 2,
3946 .devs_increment = 1,
3947 .ncopies = 1,
3948 },
3949 [BTRFS_RAID_SINGLE] = {
3950 .sub_stripes = 1,
3951 .dev_stripes = 1,
3952 .devs_max = 1,
3953 .devs_min = 1,
3954 .devs_increment = 1,
3955 .ncopies = 1,
3956 },
3957 [BTRFS_RAID_RAID5] = {
3958 .sub_stripes = 1,
3959 .dev_stripes = 1,
3960 .devs_max = 0,
3961 .devs_min = 2,
3962 .devs_increment = 1,
3963 .ncopies = 2,
3964 },
3965 [BTRFS_RAID_RAID6] = {
3966 .sub_stripes = 1,
3967 .dev_stripes = 1,
3968 .devs_max = 0,
3969 .devs_min = 3,
3970 .devs_increment = 1,
3971 .ncopies = 3,
3972 },
3973};
3974
3975static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target)
3976{
3977 /* TODO allow them to set a preferred stripe size */
3978 return 64 * 1024;
3979}
3980
3981static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
3982{
3983 if (!(type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)))
3984 return;
3985
3986 btrfs_set_fs_incompat(info, RAID56);
3987}
3988
3989static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
3990 struct btrfs_root *extent_root, u64 start,
3991 u64 type)
3992{
3993 struct btrfs_fs_info *info = extent_root->fs_info;
3994 struct btrfs_fs_devices *fs_devices = info->fs_devices;
3995 struct list_head *cur;
3996 struct map_lookup *map = NULL;
3997 struct extent_map_tree *em_tree;
3998 struct extent_map *em;
3999 struct btrfs_device_info *devices_info = NULL;
4000 u64 total_avail;
4001 int num_stripes; /* total number of stripes to allocate */
4002 int data_stripes; /* number of stripes that count for
4003 block group size */
4004 int sub_stripes; /* sub_stripes info for map */
4005 int dev_stripes; /* stripes per dev */
4006 int devs_max; /* max devs to use */
4007 int devs_min; /* min devs needed */
4008 int devs_increment; /* ndevs has to be a multiple of this */
4009 int ncopies; /* how many copies to data has */
4010 int ret;
4011 u64 max_stripe_size;
4012 u64 max_chunk_size;
4013 u64 stripe_size;
4014 u64 num_bytes;
4015 u64 raid_stripe_len = BTRFS_STRIPE_LEN;
4016 int ndevs;
4017 int i;
4018 int j;
4019 int index;
4020
4021 BUG_ON(!alloc_profile_is_valid(type, 0));
4022
4023 if (list_empty(&fs_devices->alloc_list))
4024 return -ENOSPC;
4025
4026 index = __get_raid_index(type);
4027
4028 sub_stripes = btrfs_raid_array[index].sub_stripes;
4029 dev_stripes = btrfs_raid_array[index].dev_stripes;
4030 devs_max = btrfs_raid_array[index].devs_max;
4031 devs_min = btrfs_raid_array[index].devs_min;
4032 devs_increment = btrfs_raid_array[index].devs_increment;
4033 ncopies = btrfs_raid_array[index].ncopies;
4034
4035 if (type & BTRFS_BLOCK_GROUP_DATA) {
4036 max_stripe_size = 1024 * 1024 * 1024;
4037 max_chunk_size = 10 * max_stripe_size;
4038 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4039 /* for larger filesystems, use larger metadata chunks */
4040 if (fs_devices->total_rw_bytes > 50ULL * 1024 * 1024 * 1024)
4041 max_stripe_size = 1024 * 1024 * 1024;
4042 else
4043 max_stripe_size = 256 * 1024 * 1024;
4044 max_chunk_size = max_stripe_size;
4045 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4046 max_stripe_size = 32 * 1024 * 1024;
4047 max_chunk_size = 2 * max_stripe_size;
4048 } else {
4049 btrfs_err(info, "invalid chunk type 0x%llx requested\n",
4050 type);
4051 BUG_ON(1);
4052 }
4053
4054 /* we don't want a chunk larger than 10% of writeable space */
4055 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4056 max_chunk_size);
4057
4058 devices_info = kzalloc(sizeof(*devices_info) * fs_devices->rw_devices,
4059 GFP_NOFS);
4060 if (!devices_info)
4061 return -ENOMEM;
4062
4063 cur = fs_devices->alloc_list.next;
4064
4065 /*
4066 * in the first pass through the devices list, we gather information
4067 * about the available holes on each device.
4068 */
4069 ndevs = 0;
4070 while (cur != &fs_devices->alloc_list) {
4071 struct btrfs_device *device;
4072 u64 max_avail;
4073 u64 dev_offset;
4074
4075 device = list_entry(cur, struct btrfs_device, dev_alloc_list);
4076
4077 cur = cur->next;
4078
4079 if (!device->writeable) {
4080 WARN(1, KERN_ERR
4081 "BTRFS: read-only device in alloc_list\n");
4082 continue;
4083 }
4084
4085 if (!device->in_fs_metadata ||
4086 device->is_tgtdev_for_dev_replace)
4087 continue;
4088
4089 if (device->total_bytes > device->bytes_used)
4090 total_avail = device->total_bytes - device->bytes_used;
4091 else
4092 total_avail = 0;
4093
4094 /* If there is no space on this device, skip it. */
4095 if (total_avail == 0)
4096 continue;
4097
4098 ret = find_free_dev_extent(trans, device,
4099 max_stripe_size * dev_stripes,
4100 &dev_offset, &max_avail);
4101 if (ret && ret != -ENOSPC)
4102 goto error;
4103
4104 if (ret == 0)
4105 max_avail = max_stripe_size * dev_stripes;
4106
4107 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
4108 continue;
4109
4110 if (ndevs == fs_devices->rw_devices) {
4111 WARN(1, "%s: found more than %llu devices\n",
4112 __func__, fs_devices->rw_devices);
4113 break;
4114 }
4115 devices_info[ndevs].dev_offset = dev_offset;
4116 devices_info[ndevs].max_avail = max_avail;
4117 devices_info[ndevs].total_avail = total_avail;
4118 devices_info[ndevs].dev = device;
4119 ++ndevs;
4120 }
4121
4122 /*
4123 * now sort the devices by hole size / available space
4124 */
4125 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4126 btrfs_cmp_device_info, NULL);
4127
4128 /* round down to number of usable stripes */
4129 ndevs -= ndevs % devs_increment;
4130
4131 if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
4132 ret = -ENOSPC;
4133 goto error;
4134 }
4135
4136 if (devs_max && ndevs > devs_max)
4137 ndevs = devs_max;
4138 /*
4139 * the primary goal is to maximize the number of stripes, so use as many
4140 * devices as possible, even if the stripes are not maximum sized.
4141 */
4142 stripe_size = devices_info[ndevs-1].max_avail;
4143 num_stripes = ndevs * dev_stripes;
4144
4145 /*
4146 * this will have to be fixed for RAID1 and RAID10 over
4147 * more drives
4148 */
4149 data_stripes = num_stripes / ncopies;
4150
4151 if (type & BTRFS_BLOCK_GROUP_RAID5) {
4152 raid_stripe_len = find_raid56_stripe_len(ndevs - 1,
4153 btrfs_super_stripesize(info->super_copy));
4154 data_stripes = num_stripes - 1;
4155 }
4156 if (type & BTRFS_BLOCK_GROUP_RAID6) {
4157 raid_stripe_len = find_raid56_stripe_len(ndevs - 2,
4158 btrfs_super_stripesize(info->super_copy));
4159 data_stripes = num_stripes - 2;
4160 }
4161
4162 /*
4163 * Use the number of data stripes to figure out how big this chunk
4164 * is really going to be in terms of logical address space,
4165 * and compare that answer with the max chunk size
4166 */
4167 if (stripe_size * data_stripes > max_chunk_size) {
4168 u64 mask = (1ULL << 24) - 1;
4169 stripe_size = max_chunk_size;
4170 do_div(stripe_size, data_stripes);
4171
4172 /* bump the answer up to a 16MB boundary */
4173 stripe_size = (stripe_size + mask) & ~mask;
4174
4175 /* but don't go higher than the limits we found
4176 * while searching for free extents
4177 */
4178 if (stripe_size > devices_info[ndevs-1].max_avail)
4179 stripe_size = devices_info[ndevs-1].max_avail;
4180 }
4181
4182 do_div(stripe_size, dev_stripes);
4183
4184 /* align to BTRFS_STRIPE_LEN */
4185 do_div(stripe_size, raid_stripe_len);
4186 stripe_size *= raid_stripe_len;
4187
4188 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4189 if (!map) {
4190 ret = -ENOMEM;
4191 goto error;
4192 }
4193 map->num_stripes = num_stripes;
4194
4195 for (i = 0; i < ndevs; ++i) {
4196 for (j = 0; j < dev_stripes; ++j) {
4197 int s = i * dev_stripes + j;
4198 map->stripes[s].dev = devices_info[i].dev;
4199 map->stripes[s].physical = devices_info[i].dev_offset +
4200 j * stripe_size;
4201 }
4202 }
4203 map->sector_size = extent_root->sectorsize;
4204 map->stripe_len = raid_stripe_len;
4205 map->io_align = raid_stripe_len;
4206 map->io_width = raid_stripe_len;
4207 map->type = type;
4208 map->sub_stripes = sub_stripes;
4209
4210 num_bytes = stripe_size * data_stripes;
4211
4212 trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes);
4213
4214 em = alloc_extent_map();
4215 if (!em) {
4216 ret = -ENOMEM;
4217 goto error;
4218 }
4219 em->bdev = (struct block_device *)map;
4220 em->start = start;
4221 em->len = num_bytes;
4222 em->block_start = 0;
4223 em->block_len = em->len;
4224 em->orig_block_len = stripe_size;
4225
4226 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4227 write_lock(&em_tree->lock);
4228 ret = add_extent_mapping(em_tree, em, 0);
4229 if (!ret) {
4230 list_add_tail(&em->list, &trans->transaction->pending_chunks);
4231 atomic_inc(&em->refs);
4232 }
4233 write_unlock(&em_tree->lock);
4234 if (ret) {
4235 free_extent_map(em);
4236 goto error;
4237 }
4238
4239 ret = btrfs_make_block_group(trans, extent_root, 0, type,
4240 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4241 start, num_bytes);
4242 if (ret)
4243 goto error_del_extent;
4244
4245 free_extent_map(em);
4246 check_raid56_incompat_flag(extent_root->fs_info, type);
4247
4248 kfree(devices_info);
4249 return 0;
4250
4251error_del_extent:
4252 write_lock(&em_tree->lock);
4253 remove_extent_mapping(em_tree, em);
4254 write_unlock(&em_tree->lock);
4255
4256 /* One for our allocation */
4257 free_extent_map(em);
4258 /* One for the tree reference */
4259 free_extent_map(em);
4260error:
4261 kfree(map);
4262 kfree(devices_info);
4263 return ret;
4264}
4265
4266int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
4267 struct btrfs_root *extent_root,
4268 u64 chunk_offset, u64 chunk_size)
4269{
4270 struct btrfs_key key;
4271 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
4272 struct btrfs_device *device;
4273 struct btrfs_chunk *chunk;
4274 struct btrfs_stripe *stripe;
4275 struct extent_map_tree *em_tree;
4276 struct extent_map *em;
4277 struct map_lookup *map;
4278 size_t item_size;
4279 u64 dev_offset;
4280 u64 stripe_size;
4281 int i = 0;
4282 int ret;
4283
4284 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4285 read_lock(&em_tree->lock);
4286 em = lookup_extent_mapping(em_tree, chunk_offset, chunk_size);
4287 read_unlock(&em_tree->lock);
4288
4289 if (!em) {
4290 btrfs_crit(extent_root->fs_info, "unable to find logical "
4291 "%Lu len %Lu", chunk_offset, chunk_size);
4292 return -EINVAL;
4293 }
4294
4295 if (em->start != chunk_offset || em->len != chunk_size) {
4296 btrfs_crit(extent_root->fs_info, "found a bad mapping, wanted"
4297 " %Lu-%Lu, found %Lu-%Lu\n", chunk_offset,
4298 chunk_size, em->start, em->len);
4299 free_extent_map(em);
4300 return -EINVAL;
4301 }
4302
4303 map = (struct map_lookup *)em->bdev;
4304 item_size = btrfs_chunk_item_size(map->num_stripes);
4305 stripe_size = em->orig_block_len;
4306
4307 chunk = kzalloc(item_size, GFP_NOFS);
4308 if (!chunk) {
4309 ret = -ENOMEM;
4310 goto out;
4311 }
4312
4313 for (i = 0; i < map->num_stripes; i++) {
4314 device = map->stripes[i].dev;
4315 dev_offset = map->stripes[i].physical;
4316
4317 device->bytes_used += stripe_size;
4318 ret = btrfs_update_device(trans, device);
4319 if (ret)
4320 goto out;
4321 ret = btrfs_alloc_dev_extent(trans, device,
4322 chunk_root->root_key.objectid,
4323 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4324 chunk_offset, dev_offset,
4325 stripe_size);
4326 if (ret)
4327 goto out;
4328 }
4329
4330 spin_lock(&extent_root->fs_info->free_chunk_lock);
4331 extent_root->fs_info->free_chunk_space -= (stripe_size *
4332 map->num_stripes);
4333 spin_unlock(&extent_root->fs_info->free_chunk_lock);
4334
4335 stripe = &chunk->stripe;
4336 for (i = 0; i < map->num_stripes; i++) {
4337 device = map->stripes[i].dev;
4338 dev_offset = map->stripes[i].physical;
4339
4340 btrfs_set_stack_stripe_devid(stripe, device->devid);
4341 btrfs_set_stack_stripe_offset(stripe, dev_offset);
4342 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
4343 stripe++;
4344 }
4345
4346 btrfs_set_stack_chunk_length(chunk, chunk_size);
4347 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
4348 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
4349 btrfs_set_stack_chunk_type(chunk, map->type);
4350 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
4351 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
4352 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
4353 btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
4354 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
4355
4356 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4357 key.type = BTRFS_CHUNK_ITEM_KEY;
4358 key.offset = chunk_offset;
4359
4360 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4361 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
4362 /*
4363 * TODO: Cleanup of inserted chunk root in case of
4364 * failure.
4365 */
4366 ret = btrfs_add_system_chunk(chunk_root, &key, chunk,
4367 item_size);
4368 }
4369
4370out:
4371 kfree(chunk);
4372 free_extent_map(em);
4373 return ret;
4374}
4375
4376/*
4377 * Chunk allocation falls into two parts. The first part does works
4378 * that make the new allocated chunk useable, but not do any operation
4379 * that modifies the chunk tree. The second part does the works that
4380 * require modifying the chunk tree. This division is important for the
4381 * bootstrap process of adding storage to a seed btrfs.
4382 */
4383int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4384 struct btrfs_root *extent_root, u64 type)
4385{
4386 u64 chunk_offset;
4387
4388 chunk_offset = find_next_chunk(extent_root->fs_info);
4389 return __btrfs_alloc_chunk(trans, extent_root, chunk_offset, type);
4390}
4391
4392static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
4393 struct btrfs_root *root,
4394 struct btrfs_device *device)
4395{
4396 u64 chunk_offset;
4397 u64 sys_chunk_offset;
4398 u64 alloc_profile;
4399 struct btrfs_fs_info *fs_info = root->fs_info;
4400 struct btrfs_root *extent_root = fs_info->extent_root;
4401 int ret;
4402
4403 chunk_offset = find_next_chunk(fs_info);
4404 alloc_profile = btrfs_get_alloc_profile(extent_root, 0);
4405 ret = __btrfs_alloc_chunk(trans, extent_root, chunk_offset,
4406 alloc_profile);
4407 if (ret)
4408 return ret;
4409
4410 sys_chunk_offset = find_next_chunk(root->fs_info);
4411 alloc_profile = btrfs_get_alloc_profile(fs_info->chunk_root, 0);
4412 ret = __btrfs_alloc_chunk(trans, extent_root, sys_chunk_offset,
4413 alloc_profile);
4414 if (ret) {
4415 btrfs_abort_transaction(trans, root, ret);
4416 goto out;
4417 }
4418
4419 ret = btrfs_add_device(trans, fs_info->chunk_root, device);
4420 if (ret)
4421 btrfs_abort_transaction(trans, root, ret);
4422out:
4423 return ret;
4424}
4425
4426int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
4427{
4428 struct extent_map *em;
4429 struct map_lookup *map;
4430 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
4431 int readonly = 0;
4432 int i;
4433
4434 read_lock(&map_tree->map_tree.lock);
4435 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
4436 read_unlock(&map_tree->map_tree.lock);
4437 if (!em)
4438 return 1;
4439
4440 if (btrfs_test_opt(root, DEGRADED)) {
4441 free_extent_map(em);
4442 return 0;
4443 }
4444
4445 map = (struct map_lookup *)em->bdev;
4446 for (i = 0; i < map->num_stripes; i++) {
4447 if (!map->stripes[i].dev->writeable) {
4448 readonly = 1;
4449 break;
4450 }
4451 }
4452 free_extent_map(em);
4453 return readonly;
4454}
4455
4456void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
4457{
4458 extent_map_tree_init(&tree->map_tree);
4459}
4460
4461void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
4462{
4463 struct extent_map *em;
4464
4465 while (1) {
4466 write_lock(&tree->map_tree.lock);
4467 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
4468 if (em)
4469 remove_extent_mapping(&tree->map_tree, em);
4470 write_unlock(&tree->map_tree.lock);
4471 if (!em)
4472 break;
4473 kfree(em->bdev);
4474 /* once for us */
4475 free_extent_map(em);
4476 /* once for the tree */
4477 free_extent_map(em);
4478 }
4479}
4480
4481int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
4482{
4483 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
4484 struct extent_map *em;
4485 struct map_lookup *map;
4486 struct extent_map_tree *em_tree = &map_tree->map_tree;
4487 int ret;
4488
4489 read_lock(&em_tree->lock);
4490 em = lookup_extent_mapping(em_tree, logical, len);
4491 read_unlock(&em_tree->lock);
4492
4493 /*
4494 * We could return errors for these cases, but that could get ugly and
4495 * we'd probably do the same thing which is just not do anything else
4496 * and exit, so return 1 so the callers don't try to use other copies.
4497 */
4498 if (!em) {
4499 btrfs_crit(fs_info, "No mapping for %Lu-%Lu\n", logical,
4500 logical+len);
4501 return 1;
4502 }
4503
4504 if (em->start > logical || em->start + em->len < logical) {
4505 btrfs_crit(fs_info, "Invalid mapping for %Lu-%Lu, got "
4506 "%Lu-%Lu\n", logical, logical+len, em->start,
4507 em->start + em->len);
4508 free_extent_map(em);
4509 return 1;
4510 }
4511
4512 map = (struct map_lookup *)em->bdev;
4513 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
4514 ret = map->num_stripes;
4515 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
4516 ret = map->sub_stripes;
4517 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
4518 ret = 2;
4519 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
4520 ret = 3;
4521 else
4522 ret = 1;
4523 free_extent_map(em);
4524
4525 btrfs_dev_replace_lock(&fs_info->dev_replace);
4526 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))
4527 ret++;
4528 btrfs_dev_replace_unlock(&fs_info->dev_replace);
4529
4530 return ret;
4531}
4532
4533unsigned long btrfs_full_stripe_len(struct btrfs_root *root,
4534 struct btrfs_mapping_tree *map_tree,
4535 u64 logical)
4536{
4537 struct extent_map *em;
4538 struct map_lookup *map;
4539 struct extent_map_tree *em_tree = &map_tree->map_tree;
4540 unsigned long len = root->sectorsize;
4541
4542 read_lock(&em_tree->lock);
4543 em = lookup_extent_mapping(em_tree, logical, len);
4544 read_unlock(&em_tree->lock);
4545 BUG_ON(!em);
4546
4547 BUG_ON(em->start > logical || em->start + em->len < logical);
4548 map = (struct map_lookup *)em->bdev;
4549 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
4550 BTRFS_BLOCK_GROUP_RAID6)) {
4551 len = map->stripe_len * nr_data_stripes(map);
4552 }
4553 free_extent_map(em);
4554 return len;
4555}
4556
4557int btrfs_is_parity_mirror(struct btrfs_mapping_tree *map_tree,
4558 u64 logical, u64 len, int mirror_num)
4559{
4560 struct extent_map *em;
4561 struct map_lookup *map;
4562 struct extent_map_tree *em_tree = &map_tree->map_tree;
4563 int ret = 0;
4564
4565 read_lock(&em_tree->lock);
4566 em = lookup_extent_mapping(em_tree, logical, len);
4567 read_unlock(&em_tree->lock);
4568 BUG_ON(!em);
4569
4570 BUG_ON(em->start > logical || em->start + em->len < logical);
4571 map = (struct map_lookup *)em->bdev;
4572 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
4573 BTRFS_BLOCK_GROUP_RAID6))
4574 ret = 1;
4575 free_extent_map(em);
4576 return ret;
4577}
4578
4579static int find_live_mirror(struct btrfs_fs_info *fs_info,
4580 struct map_lookup *map, int first, int num,
4581 int optimal, int dev_replace_is_ongoing)
4582{
4583 int i;
4584 int tolerance;
4585 struct btrfs_device *srcdev;
4586
4587 if (dev_replace_is_ongoing &&
4588 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
4589 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
4590 srcdev = fs_info->dev_replace.srcdev;
4591 else
4592 srcdev = NULL;
4593
4594 /*
4595 * try to avoid the drive that is the source drive for a
4596 * dev-replace procedure, only choose it if no other non-missing
4597 * mirror is available
4598 */
4599 for (tolerance = 0; tolerance < 2; tolerance++) {
4600 if (map->stripes[optimal].dev->bdev &&
4601 (tolerance || map->stripes[optimal].dev != srcdev))
4602 return optimal;
4603 for (i = first; i < first + num; i++) {
4604 if (map->stripes[i].dev->bdev &&
4605 (tolerance || map->stripes[i].dev != srcdev))
4606 return i;
4607 }
4608 }
4609
4610 /* we couldn't find one that doesn't fail. Just return something
4611 * and the io error handling code will clean up eventually
4612 */
4613 return optimal;
4614}
4615
4616static inline int parity_smaller(u64 a, u64 b)
4617{
4618 return a > b;
4619}
4620
4621/* Bubble-sort the stripe set to put the parity/syndrome stripes last */
4622static void sort_parity_stripes(struct btrfs_bio *bbio, u64 *raid_map)
4623{
4624 struct btrfs_bio_stripe s;
4625 int i;
4626 u64 l;
4627 int again = 1;
4628
4629 while (again) {
4630 again = 0;
4631 for (i = 0; i < bbio->num_stripes - 1; i++) {
4632 if (parity_smaller(raid_map[i], raid_map[i+1])) {
4633 s = bbio->stripes[i];
4634 l = raid_map[i];
4635 bbio->stripes[i] = bbio->stripes[i+1];
4636 raid_map[i] = raid_map[i+1];
4637 bbio->stripes[i+1] = s;
4638 raid_map[i+1] = l;
4639 again = 1;
4640 }
4641 }
4642 }
4643}
4644
4645static int __btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
4646 u64 logical, u64 *length,
4647 struct btrfs_bio **bbio_ret,
4648 int mirror_num, u64 **raid_map_ret)
4649{
4650 struct extent_map *em;
4651 struct map_lookup *map;
4652 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
4653 struct extent_map_tree *em_tree = &map_tree->map_tree;
4654 u64 offset;
4655 u64 stripe_offset;
4656 u64 stripe_end_offset;
4657 u64 stripe_nr;
4658 u64 stripe_nr_orig;
4659 u64 stripe_nr_end;
4660 u64 stripe_len;
4661 u64 *raid_map = NULL;
4662 int stripe_index;
4663 int i;
4664 int ret = 0;
4665 int num_stripes;
4666 int max_errors = 0;
4667 struct btrfs_bio *bbio = NULL;
4668 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
4669 int dev_replace_is_ongoing = 0;
4670 int num_alloc_stripes;
4671 int patch_the_first_stripe_for_dev_replace = 0;
4672 u64 physical_to_patch_in_first_stripe = 0;
4673 u64 raid56_full_stripe_start = (u64)-1;
4674
4675 read_lock(&em_tree->lock);
4676 em = lookup_extent_mapping(em_tree, logical, *length);
4677 read_unlock(&em_tree->lock);
4678
4679 if (!em) {
4680 btrfs_crit(fs_info, "unable to find logical %llu len %llu",
4681 logical, *length);
4682 return -EINVAL;
4683 }
4684
4685 if (em->start > logical || em->start + em->len < logical) {
4686 btrfs_crit(fs_info, "found a bad mapping, wanted %Lu, "
4687 "found %Lu-%Lu\n", logical, em->start,
4688 em->start + em->len);
4689 free_extent_map(em);
4690 return -EINVAL;
4691 }
4692
4693 map = (struct map_lookup *)em->bdev;
4694 offset = logical - em->start;
4695
4696 stripe_len = map->stripe_len;
4697 stripe_nr = offset;
4698 /*
4699 * stripe_nr counts the total number of stripes we have to stride
4700 * to get to this block
4701 */
4702 do_div(stripe_nr, stripe_len);
4703
4704 stripe_offset = stripe_nr * stripe_len;
4705 BUG_ON(offset < stripe_offset);
4706
4707 /* stripe_offset is the offset of this block in its stripe*/
4708 stripe_offset = offset - stripe_offset;
4709
4710 /* if we're here for raid56, we need to know the stripe aligned start */
4711 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)) {
4712 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
4713 raid56_full_stripe_start = offset;
4714
4715 /* allow a write of a full stripe, but make sure we don't
4716 * allow straddling of stripes
4717 */
4718 do_div(raid56_full_stripe_start, full_stripe_len);
4719 raid56_full_stripe_start *= full_stripe_len;
4720 }
4721
4722 if (rw & REQ_DISCARD) {
4723 /* we don't discard raid56 yet */
4724 if (map->type &
4725 (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)) {
4726 ret = -EOPNOTSUPP;
4727 goto out;
4728 }
4729 *length = min_t(u64, em->len - offset, *length);
4730 } else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
4731 u64 max_len;
4732 /* For writes to RAID[56], allow a full stripeset across all disks.
4733 For other RAID types and for RAID[56] reads, just allow a single
4734 stripe (on a single disk). */
4735 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6) &&
4736 (rw & REQ_WRITE)) {
4737 max_len = stripe_len * nr_data_stripes(map) -
4738 (offset - raid56_full_stripe_start);
4739 } else {
4740 /* we limit the length of each bio to what fits in a stripe */
4741 max_len = stripe_len - stripe_offset;
4742 }
4743 *length = min_t(u64, em->len - offset, max_len);
4744 } else {
4745 *length = em->len - offset;
4746 }
4747
4748 /* This is for when we're called from btrfs_merge_bio_hook() and all
4749 it cares about is the length */
4750 if (!bbio_ret)
4751 goto out;
4752
4753 btrfs_dev_replace_lock(dev_replace);
4754 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
4755 if (!dev_replace_is_ongoing)
4756 btrfs_dev_replace_unlock(dev_replace);
4757
4758 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
4759 !(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) &&
4760 dev_replace->tgtdev != NULL) {
4761 /*
4762 * in dev-replace case, for repair case (that's the only
4763 * case where the mirror is selected explicitly when
4764 * calling btrfs_map_block), blocks left of the left cursor
4765 * can also be read from the target drive.
4766 * For REQ_GET_READ_MIRRORS, the target drive is added as
4767 * the last one to the array of stripes. For READ, it also
4768 * needs to be supported using the same mirror number.
4769 * If the requested block is not left of the left cursor,
4770 * EIO is returned. This can happen because btrfs_num_copies()
4771 * returns one more in the dev-replace case.
4772 */
4773 u64 tmp_length = *length;
4774 struct btrfs_bio *tmp_bbio = NULL;
4775 int tmp_num_stripes;
4776 u64 srcdev_devid = dev_replace->srcdev->devid;
4777 int index_srcdev = 0;
4778 int found = 0;
4779 u64 physical_of_found = 0;
4780
4781 ret = __btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS,
4782 logical, &tmp_length, &tmp_bbio, 0, NULL);
4783 if (ret) {
4784 WARN_ON(tmp_bbio != NULL);
4785 goto out;
4786 }
4787
4788 tmp_num_stripes = tmp_bbio->num_stripes;
4789 if (mirror_num > tmp_num_stripes) {
4790 /*
4791 * REQ_GET_READ_MIRRORS does not contain this
4792 * mirror, that means that the requested area
4793 * is not left of the left cursor
4794 */
4795 ret = -EIO;
4796 kfree(tmp_bbio);
4797 goto out;
4798 }
4799
4800 /*
4801 * process the rest of the function using the mirror_num
4802 * of the source drive. Therefore look it up first.
4803 * At the end, patch the device pointer to the one of the
4804 * target drive.
4805 */
4806 for (i = 0; i < tmp_num_stripes; i++) {
4807 if (tmp_bbio->stripes[i].dev->devid == srcdev_devid) {
4808 /*
4809 * In case of DUP, in order to keep it
4810 * simple, only add the mirror with the
4811 * lowest physical address
4812 */
4813 if (found &&
4814 physical_of_found <=
4815 tmp_bbio->stripes[i].physical)
4816 continue;
4817 index_srcdev = i;
4818 found = 1;
4819 physical_of_found =
4820 tmp_bbio->stripes[i].physical;
4821 }
4822 }
4823
4824 if (found) {
4825 mirror_num = index_srcdev + 1;
4826 patch_the_first_stripe_for_dev_replace = 1;
4827 physical_to_patch_in_first_stripe = physical_of_found;
4828 } else {
4829 WARN_ON(1);
4830 ret = -EIO;
4831 kfree(tmp_bbio);
4832 goto out;
4833 }
4834
4835 kfree(tmp_bbio);
4836 } else if (mirror_num > map->num_stripes) {
4837 mirror_num = 0;
4838 }
4839
4840 num_stripes = 1;
4841 stripe_index = 0;
4842 stripe_nr_orig = stripe_nr;
4843 stripe_nr_end = ALIGN(offset + *length, map->stripe_len);
4844 do_div(stripe_nr_end, map->stripe_len);
4845 stripe_end_offset = stripe_nr_end * map->stripe_len -
4846 (offset + *length);
4847
4848 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
4849 if (rw & REQ_DISCARD)
4850 num_stripes = min_t(u64, map->num_stripes,
4851 stripe_nr_end - stripe_nr_orig);
4852 stripe_index = do_div(stripe_nr, map->num_stripes);
4853 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
4854 if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS))
4855 num_stripes = map->num_stripes;
4856 else if (mirror_num)
4857 stripe_index = mirror_num - 1;
4858 else {
4859 stripe_index = find_live_mirror(fs_info, map, 0,
4860 map->num_stripes,
4861 current->pid % map->num_stripes,
4862 dev_replace_is_ongoing);
4863 mirror_num = stripe_index + 1;
4864 }
4865
4866 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
4867 if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) {
4868 num_stripes = map->num_stripes;
4869 } else if (mirror_num) {
4870 stripe_index = mirror_num - 1;
4871 } else {
4872 mirror_num = 1;
4873 }
4874
4875 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
4876 int factor = map->num_stripes / map->sub_stripes;
4877
4878 stripe_index = do_div(stripe_nr, factor);
4879 stripe_index *= map->sub_stripes;
4880
4881 if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS))
4882 num_stripes = map->sub_stripes;
4883 else if (rw & REQ_DISCARD)
4884 num_stripes = min_t(u64, map->sub_stripes *
4885 (stripe_nr_end - stripe_nr_orig),
4886 map->num_stripes);
4887 else if (mirror_num)
4888 stripe_index += mirror_num - 1;
4889 else {
4890 int old_stripe_index = stripe_index;
4891 stripe_index = find_live_mirror(fs_info, map,
4892 stripe_index,
4893 map->sub_stripes, stripe_index +
4894 current->pid % map->sub_stripes,
4895 dev_replace_is_ongoing);
4896 mirror_num = stripe_index - old_stripe_index + 1;
4897 }
4898
4899 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
4900 BTRFS_BLOCK_GROUP_RAID6)) {
4901 u64 tmp;
4902
4903 if (bbio_ret && ((rw & REQ_WRITE) || mirror_num > 1)
4904 && raid_map_ret) {
4905 int i, rot;
4906
4907 /* push stripe_nr back to the start of the full stripe */
4908 stripe_nr = raid56_full_stripe_start;
4909 do_div(stripe_nr, stripe_len);
4910
4911 stripe_index = do_div(stripe_nr, nr_data_stripes(map));
4912
4913 /* RAID[56] write or recovery. Return all stripes */
4914 num_stripes = map->num_stripes;
4915 max_errors = nr_parity_stripes(map);
4916
4917 raid_map = kmalloc_array(num_stripes, sizeof(u64),
4918 GFP_NOFS);
4919 if (!raid_map) {
4920 ret = -ENOMEM;
4921 goto out;
4922 }
4923
4924 /* Work out the disk rotation on this stripe-set */
4925 tmp = stripe_nr;
4926 rot = do_div(tmp, num_stripes);
4927
4928 /* Fill in the logical address of each stripe */
4929 tmp = stripe_nr * nr_data_stripes(map);
4930 for (i = 0; i < nr_data_stripes(map); i++)
4931 raid_map[(i+rot) % num_stripes] =
4932 em->start + (tmp + i) * map->stripe_len;
4933
4934 raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
4935 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
4936 raid_map[(i+rot+1) % num_stripes] =
4937 RAID6_Q_STRIPE;
4938
4939 *length = map->stripe_len;
4940 stripe_index = 0;
4941 stripe_offset = 0;
4942 } else {
4943 /*
4944 * Mirror #0 or #1 means the original data block.
4945 * Mirror #2 is RAID5 parity block.
4946 * Mirror #3 is RAID6 Q block.
4947 */
4948 stripe_index = do_div(stripe_nr, nr_data_stripes(map));
4949 if (mirror_num > 1)
4950 stripe_index = nr_data_stripes(map) +
4951 mirror_num - 2;
4952
4953 /* We distribute the parity blocks across stripes */
4954 tmp = stripe_nr + stripe_index;
4955 stripe_index = do_div(tmp, map->num_stripes);
4956 }
4957 } else {
4958 /*
4959 * after this do_div call, stripe_nr is the number of stripes
4960 * on this device we have to walk to find the data, and
4961 * stripe_index is the number of our device in the stripe array
4962 */
4963 stripe_index = do_div(stripe_nr, map->num_stripes);
4964 mirror_num = stripe_index + 1;
4965 }
4966 BUG_ON(stripe_index >= map->num_stripes);
4967
4968 num_alloc_stripes = num_stripes;
4969 if (dev_replace_is_ongoing) {
4970 if (rw & (REQ_WRITE | REQ_DISCARD))
4971 num_alloc_stripes <<= 1;
4972 if (rw & REQ_GET_READ_MIRRORS)
4973 num_alloc_stripes++;
4974 }
4975 bbio = kzalloc(btrfs_bio_size(num_alloc_stripes), GFP_NOFS);
4976 if (!bbio) {
4977 kfree(raid_map);
4978 ret = -ENOMEM;
4979 goto out;
4980 }
4981 atomic_set(&bbio->error, 0);
4982
4983 if (rw & REQ_DISCARD) {
4984 int factor = 0;
4985 int sub_stripes = 0;
4986 u64 stripes_per_dev = 0;
4987 u32 remaining_stripes = 0;
4988 u32 last_stripe = 0;
4989
4990 if (map->type &
4991 (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
4992 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
4993 sub_stripes = 1;
4994 else
4995 sub_stripes = map->sub_stripes;
4996
4997 factor = map->num_stripes / sub_stripes;
4998 stripes_per_dev = div_u64_rem(stripe_nr_end -
4999 stripe_nr_orig,
5000 factor,
5001 &remaining_stripes);
5002 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5003 last_stripe *= sub_stripes;
5004 }
5005
5006 for (i = 0; i < num_stripes; i++) {
5007 bbio->stripes[i].physical =
5008 map->stripes[stripe_index].physical +
5009 stripe_offset + stripe_nr * map->stripe_len;
5010 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5011
5012 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5013 BTRFS_BLOCK_GROUP_RAID10)) {
5014 bbio->stripes[i].length = stripes_per_dev *
5015 map->stripe_len;
5016
5017 if (i / sub_stripes < remaining_stripes)
5018 bbio->stripes[i].length +=
5019 map->stripe_len;
5020
5021 /*
5022 * Special for the first stripe and
5023 * the last stripe:
5024 *
5025 * |-------|...|-------|
5026 * |----------|
5027 * off end_off
5028 */
5029 if (i < sub_stripes)
5030 bbio->stripes[i].length -=
5031 stripe_offset;
5032
5033 if (stripe_index >= last_stripe &&
5034 stripe_index <= (last_stripe +
5035 sub_stripes - 1))
5036 bbio->stripes[i].length -=
5037 stripe_end_offset;
5038
5039 if (i == sub_stripes - 1)
5040 stripe_offset = 0;
5041 } else
5042 bbio->stripes[i].length = *length;
5043
5044 stripe_index++;
5045 if (stripe_index == map->num_stripes) {
5046 /* This could only happen for RAID0/10 */
5047 stripe_index = 0;
5048 stripe_nr++;
5049 }
5050 }
5051 } else {
5052 for (i = 0; i < num_stripes; i++) {
5053 bbio->stripes[i].physical =
5054 map->stripes[stripe_index].physical +
5055 stripe_offset +
5056 stripe_nr * map->stripe_len;
5057 bbio->stripes[i].dev =
5058 map->stripes[stripe_index].dev;
5059 stripe_index++;
5060 }
5061 }
5062
5063 if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) {
5064 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5065 BTRFS_BLOCK_GROUP_RAID10 |
5066 BTRFS_BLOCK_GROUP_RAID5 |
5067 BTRFS_BLOCK_GROUP_DUP)) {
5068 max_errors = 1;
5069 } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
5070 max_errors = 2;
5071 }
5072 }
5073
5074 if (dev_replace_is_ongoing && (rw & (REQ_WRITE | REQ_DISCARD)) &&
5075 dev_replace->tgtdev != NULL) {
5076 int index_where_to_add;
5077 u64 srcdev_devid = dev_replace->srcdev->devid;
5078
5079 /*
5080 * duplicate the write operations while the dev replace
5081 * procedure is running. Since the copying of the old disk
5082 * to the new disk takes place at run time while the
5083 * filesystem is mounted writable, the regular write
5084 * operations to the old disk have to be duplicated to go
5085 * to the new disk as well.
5086 * Note that device->missing is handled by the caller, and
5087 * that the write to the old disk is already set up in the
5088 * stripes array.
5089 */
5090 index_where_to_add = num_stripes;
5091 for (i = 0; i < num_stripes; i++) {
5092 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5093 /* write to new disk, too */
5094 struct btrfs_bio_stripe *new =
5095 bbio->stripes + index_where_to_add;
5096 struct btrfs_bio_stripe *old =
5097 bbio->stripes + i;
5098
5099 new->physical = old->physical;
5100 new->length = old->length;
5101 new->dev = dev_replace->tgtdev;
5102 index_where_to_add++;
5103 max_errors++;
5104 }
5105 }
5106 num_stripes = index_where_to_add;
5107 } else if (dev_replace_is_ongoing && (rw & REQ_GET_READ_MIRRORS) &&
5108 dev_replace->tgtdev != NULL) {
5109 u64 srcdev_devid = dev_replace->srcdev->devid;
5110 int index_srcdev = 0;
5111 int found = 0;
5112 u64 physical_of_found = 0;
5113
5114 /*
5115 * During the dev-replace procedure, the target drive can
5116 * also be used to read data in case it is needed to repair
5117 * a corrupt block elsewhere. This is possible if the
5118 * requested area is left of the left cursor. In this area,
5119 * the target drive is a full copy of the source drive.
5120 */
5121 for (i = 0; i < num_stripes; i++) {
5122 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5123 /*
5124 * In case of DUP, in order to keep it
5125 * simple, only add the mirror with the
5126 * lowest physical address
5127 */
5128 if (found &&
5129 physical_of_found <=
5130 bbio->stripes[i].physical)
5131 continue;
5132 index_srcdev = i;
5133 found = 1;
5134 physical_of_found = bbio->stripes[i].physical;
5135 }
5136 }
5137 if (found) {
5138 u64 length = map->stripe_len;
5139
5140 if (physical_of_found + length <=
5141 dev_replace->cursor_left) {
5142 struct btrfs_bio_stripe *tgtdev_stripe =
5143 bbio->stripes + num_stripes;
5144
5145 tgtdev_stripe->physical = physical_of_found;
5146 tgtdev_stripe->length =
5147 bbio->stripes[index_srcdev].length;
5148 tgtdev_stripe->dev = dev_replace->tgtdev;
5149
5150 num_stripes++;
5151 }
5152 }
5153 }
5154
5155 *bbio_ret = bbio;
5156 bbio->num_stripes = num_stripes;
5157 bbio->max_errors = max_errors;
5158 bbio->mirror_num = mirror_num;
5159
5160 /*
5161 * this is the case that REQ_READ && dev_replace_is_ongoing &&
5162 * mirror_num == num_stripes + 1 && dev_replace target drive is
5163 * available as a mirror
5164 */
5165 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5166 WARN_ON(num_stripes > 1);
5167 bbio->stripes[0].dev = dev_replace->tgtdev;
5168 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5169 bbio->mirror_num = map->num_stripes + 1;
5170 }
5171 if (raid_map) {
5172 sort_parity_stripes(bbio, raid_map);
5173 *raid_map_ret = raid_map;
5174 }
5175out:
5176 if (dev_replace_is_ongoing)
5177 btrfs_dev_replace_unlock(dev_replace);
5178 free_extent_map(em);
5179 return ret;
5180}
5181
5182int btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
5183 u64 logical, u64 *length,
5184 struct btrfs_bio **bbio_ret, int mirror_num)
5185{
5186 return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret,
5187 mirror_num, NULL);
5188}
5189
5190int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
5191 u64 chunk_start, u64 physical, u64 devid,
5192 u64 **logical, int *naddrs, int *stripe_len)
5193{
5194 struct extent_map_tree *em_tree = &map_tree->map_tree;
5195 struct extent_map *em;
5196 struct map_lookup *map;
5197 u64 *buf;
5198 u64 bytenr;
5199 u64 length;
5200 u64 stripe_nr;
5201 u64 rmap_len;
5202 int i, j, nr = 0;
5203
5204 read_lock(&em_tree->lock);
5205 em = lookup_extent_mapping(em_tree, chunk_start, 1);
5206 read_unlock(&em_tree->lock);
5207
5208 if (!em) {
5209 printk(KERN_ERR "BTRFS: couldn't find em for chunk %Lu\n",
5210 chunk_start);
5211 return -EIO;
5212 }
5213
5214 if (em->start != chunk_start) {
5215 printk(KERN_ERR "BTRFS: bad chunk start, em=%Lu, wanted=%Lu\n",
5216 em->start, chunk_start);
5217 free_extent_map(em);
5218 return -EIO;
5219 }
5220 map = (struct map_lookup *)em->bdev;
5221
5222 length = em->len;
5223 rmap_len = map->stripe_len;
5224
5225 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5226 do_div(length, map->num_stripes / map->sub_stripes);
5227 else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5228 do_div(length, map->num_stripes);
5229 else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
5230 BTRFS_BLOCK_GROUP_RAID6)) {
5231 do_div(length, nr_data_stripes(map));
5232 rmap_len = map->stripe_len * nr_data_stripes(map);
5233 }
5234
5235 buf = kzalloc(sizeof(u64) * map->num_stripes, GFP_NOFS);
5236 BUG_ON(!buf); /* -ENOMEM */
5237
5238 for (i = 0; i < map->num_stripes; i++) {
5239 if (devid && map->stripes[i].dev->devid != devid)
5240 continue;
5241 if (map->stripes[i].physical > physical ||
5242 map->stripes[i].physical + length <= physical)
5243 continue;
5244
5245 stripe_nr = physical - map->stripes[i].physical;
5246 do_div(stripe_nr, map->stripe_len);
5247
5248 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5249 stripe_nr = stripe_nr * map->num_stripes + i;
5250 do_div(stripe_nr, map->sub_stripes);
5251 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5252 stripe_nr = stripe_nr * map->num_stripes + i;
5253 } /* else if RAID[56], multiply by nr_data_stripes().
5254 * Alternatively, just use rmap_len below instead of
5255 * map->stripe_len */
5256
5257 bytenr = chunk_start + stripe_nr * rmap_len;
5258 WARN_ON(nr >= map->num_stripes);
5259 for (j = 0; j < nr; j++) {
5260 if (buf[j] == bytenr)
5261 break;
5262 }
5263 if (j == nr) {
5264 WARN_ON(nr >= map->num_stripes);
5265 buf[nr++] = bytenr;
5266 }
5267 }
5268
5269 *logical = buf;
5270 *naddrs = nr;
5271 *stripe_len = rmap_len;
5272
5273 free_extent_map(em);
5274 return 0;
5275}
5276
5277static void btrfs_end_bio(struct bio *bio, int err)
5278{
5279 struct btrfs_bio *bbio = bio->bi_private;
5280 struct btrfs_device *dev = bbio->stripes[0].dev;
5281 int is_orig_bio = 0;
5282
5283 if (err) {
5284 atomic_inc(&bbio->error);
5285 if (err == -EIO || err == -EREMOTEIO) {
5286 unsigned int stripe_index =
5287 btrfs_io_bio(bio)->stripe_index;
5288
5289 BUG_ON(stripe_index >= bbio->num_stripes);
5290 dev = bbio->stripes[stripe_index].dev;
5291 if (dev->bdev) {
5292 if (bio->bi_rw & WRITE)
5293 btrfs_dev_stat_inc(dev,
5294 BTRFS_DEV_STAT_WRITE_ERRS);
5295 else
5296 btrfs_dev_stat_inc(dev,
5297 BTRFS_DEV_STAT_READ_ERRS);
5298 if ((bio->bi_rw & WRITE_FLUSH) == WRITE_FLUSH)
5299 btrfs_dev_stat_inc(dev,
5300 BTRFS_DEV_STAT_FLUSH_ERRS);
5301 btrfs_dev_stat_print_on_error(dev);
5302 }
5303 }
5304 }
5305
5306 if (bio == bbio->orig_bio)
5307 is_orig_bio = 1;
5308
5309 btrfs_bio_counter_dec(bbio->fs_info);
5310
5311 if (atomic_dec_and_test(&bbio->stripes_pending)) {
5312 if (!is_orig_bio) {
5313 bio_put(bio);
5314 bio = bbio->orig_bio;
5315 }
5316
5317 /*
5318 * We have original bio now. So increment bi_remaining to
5319 * account for it in endio
5320 */
5321 atomic_inc(&bio->bi_remaining);
5322
5323 bio->bi_private = bbio->private;
5324 bio->bi_end_io = bbio->end_io;
5325 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
5326 /* only send an error to the higher layers if it is
5327 * beyond the tolerance of the btrfs bio
5328 */
5329 if (atomic_read(&bbio->error) > bbio->max_errors) {
5330 err = -EIO;
5331 } else {
5332 /*
5333 * this bio is actually up to date, we didn't
5334 * go over the max number of errors
5335 */
5336 set_bit(BIO_UPTODATE, &bio->bi_flags);
5337 err = 0;
5338 }
5339 kfree(bbio);
5340
5341 bio_endio(bio, err);
5342 } else if (!is_orig_bio) {
5343 bio_put(bio);
5344 }
5345}
5346
5347/*
5348 * see run_scheduled_bios for a description of why bios are collected for
5349 * async submit.
5350 *
5351 * This will add one bio to the pending list for a device and make sure
5352 * the work struct is scheduled.
5353 */
5354static noinline void btrfs_schedule_bio(struct btrfs_root *root,
5355 struct btrfs_device *device,
5356 int rw, struct bio *bio)
5357{
5358 int should_queue = 1;
5359 struct btrfs_pending_bios *pending_bios;
5360
5361 if (device->missing || !device->bdev) {
5362 bio_endio(bio, -EIO);
5363 return;
5364 }
5365
5366 /* don't bother with additional async steps for reads, right now */
5367 if (!(rw & REQ_WRITE)) {
5368 bio_get(bio);
5369 btrfsic_submit_bio(rw, bio);
5370 bio_put(bio);
5371 return;
5372 }
5373
5374 /*
5375 * nr_async_bios allows us to reliably return congestion to the
5376 * higher layers. Otherwise, the async bio makes it appear we have
5377 * made progress against dirty pages when we've really just put it
5378 * on a queue for later
5379 */
5380 atomic_inc(&root->fs_info->nr_async_bios);
5381 WARN_ON(bio->bi_next);
5382 bio->bi_next = NULL;
5383 bio->bi_rw |= rw;
5384
5385 spin_lock(&device->io_lock);
5386 if (bio->bi_rw & REQ_SYNC)
5387 pending_bios = &device->pending_sync_bios;
5388 else
5389 pending_bios = &device->pending_bios;
5390
5391 if (pending_bios->tail)
5392 pending_bios->tail->bi_next = bio;
5393
5394 pending_bios->tail = bio;
5395 if (!pending_bios->head)
5396 pending_bios->head = bio;
5397 if (device->running_pending)
5398 should_queue = 0;
5399
5400 spin_unlock(&device->io_lock);
5401
5402 if (should_queue)
5403 btrfs_queue_work(root->fs_info->submit_workers,
5404 &device->work);
5405}
5406
5407static int bio_size_ok(struct block_device *bdev, struct bio *bio,
5408 sector_t sector)
5409{
5410 struct bio_vec *prev;
5411 struct request_queue *q = bdev_get_queue(bdev);
5412 unsigned int max_sectors = queue_max_sectors(q);
5413 struct bvec_merge_data bvm = {
5414 .bi_bdev = bdev,
5415 .bi_sector = sector,
5416 .bi_rw = bio->bi_rw,
5417 };
5418
5419 if (WARN_ON(bio->bi_vcnt == 0))
5420 return 1;
5421
5422 prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
5423 if (bio_sectors(bio) > max_sectors)
5424 return 0;
5425
5426 if (!q->merge_bvec_fn)
5427 return 1;
5428
5429 bvm.bi_size = bio->bi_iter.bi_size - prev->bv_len;
5430 if (q->merge_bvec_fn(q, &bvm, prev) < prev->bv_len)
5431 return 0;
5432 return 1;
5433}
5434
5435static void submit_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
5436 struct bio *bio, u64 physical, int dev_nr,
5437 int rw, int async)
5438{
5439 struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
5440
5441 bio->bi_private = bbio;
5442 btrfs_io_bio(bio)->stripe_index = dev_nr;
5443 bio->bi_end_io = btrfs_end_bio;
5444 bio->bi_iter.bi_sector = physical >> 9;
5445#ifdef DEBUG
5446 {
5447 struct rcu_string *name;
5448
5449 rcu_read_lock();
5450 name = rcu_dereference(dev->name);
5451 pr_debug("btrfs_map_bio: rw %d, sector=%llu, dev=%lu "
5452 "(%s id %llu), size=%u\n", rw,
5453 (u64)bio->bi_sector, (u_long)dev->bdev->bd_dev,
5454 name->str, dev->devid, bio->bi_size);
5455 rcu_read_unlock();
5456 }
5457#endif
5458 bio->bi_bdev = dev->bdev;
5459
5460 btrfs_bio_counter_inc_noblocked(root->fs_info);
5461
5462 if (async)
5463 btrfs_schedule_bio(root, dev, rw, bio);
5464 else
5465 btrfsic_submit_bio(rw, bio);
5466}
5467
5468static int breakup_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
5469 struct bio *first_bio, struct btrfs_device *dev,
5470 int dev_nr, int rw, int async)
5471{
5472 struct bio_vec *bvec = first_bio->bi_io_vec;
5473 struct bio *bio;
5474 int nr_vecs = bio_get_nr_vecs(dev->bdev);
5475 u64 physical = bbio->stripes[dev_nr].physical;
5476
5477again:
5478 bio = btrfs_bio_alloc(dev->bdev, physical >> 9, nr_vecs, GFP_NOFS);
5479 if (!bio)
5480 return -ENOMEM;
5481
5482 while (bvec <= (first_bio->bi_io_vec + first_bio->bi_vcnt - 1)) {
5483 if (bio_add_page(bio, bvec->bv_page, bvec->bv_len,
5484 bvec->bv_offset) < bvec->bv_len) {
5485 u64 len = bio->bi_iter.bi_size;
5486
5487 atomic_inc(&bbio->stripes_pending);
5488 submit_stripe_bio(root, bbio, bio, physical, dev_nr,
5489 rw, async);
5490 physical += len;
5491 goto again;
5492 }
5493 bvec++;
5494 }
5495
5496 submit_stripe_bio(root, bbio, bio, physical, dev_nr, rw, async);
5497 return 0;
5498}
5499
5500static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
5501{
5502 atomic_inc(&bbio->error);
5503 if (atomic_dec_and_test(&bbio->stripes_pending)) {
5504 bio->bi_private = bbio->private;
5505 bio->bi_end_io = bbio->end_io;
5506 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
5507 bio->bi_iter.bi_sector = logical >> 9;
5508 kfree(bbio);
5509 bio_endio(bio, -EIO);
5510 }
5511}
5512
5513int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
5514 int mirror_num, int async_submit)
5515{
5516 struct btrfs_device *dev;
5517 struct bio *first_bio = bio;
5518 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
5519 u64 length = 0;
5520 u64 map_length;
5521 u64 *raid_map = NULL;
5522 int ret;
5523 int dev_nr = 0;
5524 int total_devs = 1;
5525 struct btrfs_bio *bbio = NULL;
5526
5527 length = bio->bi_iter.bi_size;
5528 map_length = length;
5529
5530 btrfs_bio_counter_inc_blocked(root->fs_info);
5531 ret = __btrfs_map_block(root->fs_info, rw, logical, &map_length, &bbio,
5532 mirror_num, &raid_map);
5533 if (ret) {
5534 btrfs_bio_counter_dec(root->fs_info);
5535 return ret;
5536 }
5537
5538 total_devs = bbio->num_stripes;
5539 bbio->orig_bio = first_bio;
5540 bbio->private = first_bio->bi_private;
5541 bbio->end_io = first_bio->bi_end_io;
5542 bbio->fs_info = root->fs_info;
5543 atomic_set(&bbio->stripes_pending, bbio->num_stripes);
5544
5545 if (raid_map) {
5546 /* In this case, map_length has been set to the length of
5547 a single stripe; not the whole write */
5548 if (rw & WRITE) {
5549 ret = raid56_parity_write(root, bio, bbio,
5550 raid_map, map_length);
5551 } else {
5552 ret = raid56_parity_recover(root, bio, bbio,
5553 raid_map, map_length,
5554 mirror_num);
5555 }
5556 /*
5557 * FIXME, replace dosen't support raid56 yet, please fix
5558 * it in the future.
5559 */
5560 btrfs_bio_counter_dec(root->fs_info);
5561 return ret;
5562 }
5563
5564 if (map_length < length) {
5565 btrfs_crit(root->fs_info, "mapping failed logical %llu bio len %llu len %llu",
5566 logical, length, map_length);
5567 BUG();
5568 }
5569
5570 while (dev_nr < total_devs) {
5571 dev = bbio->stripes[dev_nr].dev;
5572 if (!dev || !dev->bdev || (rw & WRITE && !dev->writeable)) {
5573 bbio_error(bbio, first_bio, logical);
5574 dev_nr++;
5575 continue;
5576 }
5577
5578 /*
5579 * Check and see if we're ok with this bio based on it's size
5580 * and offset with the given device.
5581 */
5582 if (!bio_size_ok(dev->bdev, first_bio,
5583 bbio->stripes[dev_nr].physical >> 9)) {
5584 ret = breakup_stripe_bio(root, bbio, first_bio, dev,
5585 dev_nr, rw, async_submit);
5586 BUG_ON(ret);
5587 dev_nr++;
5588 continue;
5589 }
5590
5591 if (dev_nr < total_devs - 1) {
5592 bio = btrfs_bio_clone(first_bio, GFP_NOFS);
5593 BUG_ON(!bio); /* -ENOMEM */
5594 } else {
5595 bio = first_bio;
5596 }
5597
5598 submit_stripe_bio(root, bbio, bio,
5599 bbio->stripes[dev_nr].physical, dev_nr, rw,
5600 async_submit);
5601 dev_nr++;
5602 }
5603 btrfs_bio_counter_dec(root->fs_info);
5604 return 0;
5605}
5606
5607struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
5608 u8 *uuid, u8 *fsid)
5609{
5610 struct btrfs_device *device;
5611 struct btrfs_fs_devices *cur_devices;
5612
5613 cur_devices = fs_info->fs_devices;
5614 while (cur_devices) {
5615 if (!fsid ||
5616 !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
5617 device = __find_device(&cur_devices->devices,
5618 devid, uuid);
5619 if (device)
5620 return device;
5621 }
5622 cur_devices = cur_devices->seed;
5623 }
5624 return NULL;
5625}
5626
5627static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
5628 u64 devid, u8 *dev_uuid)
5629{
5630 struct btrfs_device *device;
5631 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
5632
5633 device = btrfs_alloc_device(NULL, &devid, dev_uuid);
5634 if (IS_ERR(device))
5635 return NULL;
5636
5637 list_add(&device->dev_list, &fs_devices->devices);
5638 device->fs_devices = fs_devices;
5639 fs_devices->num_devices++;
5640
5641 device->missing = 1;
5642 fs_devices->missing_devices++;
5643
5644 return device;
5645}
5646
5647/**
5648 * btrfs_alloc_device - allocate struct btrfs_device
5649 * @fs_info: used only for generating a new devid, can be NULL if
5650 * devid is provided (i.e. @devid != NULL).
5651 * @devid: a pointer to devid for this device. If NULL a new devid
5652 * is generated.
5653 * @uuid: a pointer to UUID for this device. If NULL a new UUID
5654 * is generated.
5655 *
5656 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
5657 * on error. Returned struct is not linked onto any lists and can be
5658 * destroyed with kfree() right away.
5659 */
5660struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
5661 const u64 *devid,
5662 const u8 *uuid)
5663{
5664 struct btrfs_device *dev;
5665 u64 tmp;
5666
5667 if (WARN_ON(!devid && !fs_info))
5668 return ERR_PTR(-EINVAL);
5669
5670 dev = __alloc_device();
5671 if (IS_ERR(dev))
5672 return dev;
5673
5674 if (devid)
5675 tmp = *devid;
5676 else {
5677 int ret;
5678
5679 ret = find_next_devid(fs_info, &tmp);
5680 if (ret) {
5681 kfree(dev);
5682 return ERR_PTR(ret);
5683 }
5684 }
5685 dev->devid = tmp;
5686
5687 if (uuid)
5688 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
5689 else
5690 generate_random_uuid(dev->uuid);
5691
5692 btrfs_init_work(&dev->work, pending_bios_fn, NULL, NULL);
5693
5694 return dev;
5695}
5696
5697static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
5698 struct extent_buffer *leaf,
5699 struct btrfs_chunk *chunk)
5700{
5701 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
5702 struct map_lookup *map;
5703 struct extent_map *em;
5704 u64 logical;
5705 u64 length;
5706 u64 devid;
5707 u8 uuid[BTRFS_UUID_SIZE];
5708 int num_stripes;
5709 int ret;
5710 int i;
5711
5712 logical = key->offset;
5713 length = btrfs_chunk_length(leaf, chunk);
5714
5715 read_lock(&map_tree->map_tree.lock);
5716 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
5717 read_unlock(&map_tree->map_tree.lock);
5718
5719 /* already mapped? */
5720 if (em && em->start <= logical && em->start + em->len > logical) {
5721 free_extent_map(em);
5722 return 0;
5723 } else if (em) {
5724 free_extent_map(em);
5725 }
5726
5727 em = alloc_extent_map();
5728 if (!em)
5729 return -ENOMEM;
5730 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
5731 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
5732 if (!map) {
5733 free_extent_map(em);
5734 return -ENOMEM;
5735 }
5736
5737 em->bdev = (struct block_device *)map;
5738 em->start = logical;
5739 em->len = length;
5740 em->orig_start = 0;
5741 em->block_start = 0;
5742 em->block_len = em->len;
5743
5744 map->num_stripes = num_stripes;
5745 map->io_width = btrfs_chunk_io_width(leaf, chunk);
5746 map->io_align = btrfs_chunk_io_align(leaf, chunk);
5747 map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
5748 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
5749 map->type = btrfs_chunk_type(leaf, chunk);
5750 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
5751 for (i = 0; i < num_stripes; i++) {
5752 map->stripes[i].physical =
5753 btrfs_stripe_offset_nr(leaf, chunk, i);
5754 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
5755 read_extent_buffer(leaf, uuid, (unsigned long)
5756 btrfs_stripe_dev_uuid_nr(chunk, i),
5757 BTRFS_UUID_SIZE);
5758 map->stripes[i].dev = btrfs_find_device(root->fs_info, devid,
5759 uuid, NULL);
5760 if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
5761 kfree(map);
5762 free_extent_map(em);
5763 return -EIO;
5764 }
5765 if (!map->stripes[i].dev) {
5766 map->stripes[i].dev =
5767 add_missing_dev(root, devid, uuid);
5768 if (!map->stripes[i].dev) {
5769 kfree(map);
5770 free_extent_map(em);
5771 return -EIO;
5772 }
5773 }
5774 map->stripes[i].dev->in_fs_metadata = 1;
5775 }
5776
5777 write_lock(&map_tree->map_tree.lock);
5778 ret = add_extent_mapping(&map_tree->map_tree, em, 0);
5779 write_unlock(&map_tree->map_tree.lock);
5780 BUG_ON(ret); /* Tree corruption */
5781 free_extent_map(em);
5782
5783 return 0;
5784}
5785
5786static void fill_device_from_item(struct extent_buffer *leaf,
5787 struct btrfs_dev_item *dev_item,
5788 struct btrfs_device *device)
5789{
5790 unsigned long ptr;
5791
5792 device->devid = btrfs_device_id(leaf, dev_item);
5793 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
5794 device->total_bytes = device->disk_total_bytes;
5795 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
5796 device->type = btrfs_device_type(leaf, dev_item);
5797 device->io_align = btrfs_device_io_align(leaf, dev_item);
5798 device->io_width = btrfs_device_io_width(leaf, dev_item);
5799 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
5800 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
5801 device->is_tgtdev_for_dev_replace = 0;
5802
5803 ptr = btrfs_device_uuid(dev_item);
5804 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
5805}
5806
5807static int open_seed_devices(struct btrfs_root *root, u8 *fsid)
5808{
5809 struct btrfs_fs_devices *fs_devices;
5810 int ret;
5811
5812 BUG_ON(!mutex_is_locked(&uuid_mutex));
5813
5814 fs_devices = root->fs_info->fs_devices->seed;
5815 while (fs_devices) {
5816 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
5817 ret = 0;
5818 goto out;
5819 }
5820 fs_devices = fs_devices->seed;
5821 }
5822
5823 fs_devices = find_fsid(fsid);
5824 if (!fs_devices) {
5825 ret = -ENOENT;
5826 goto out;
5827 }
5828
5829 fs_devices = clone_fs_devices(fs_devices);
5830 if (IS_ERR(fs_devices)) {
5831 ret = PTR_ERR(fs_devices);
5832 goto out;
5833 }
5834
5835 ret = __btrfs_open_devices(fs_devices, FMODE_READ,
5836 root->fs_info->bdev_holder);
5837 if (ret) {
5838 free_fs_devices(fs_devices);
5839 goto out;
5840 }
5841
5842 if (!fs_devices->seeding) {
5843 __btrfs_close_devices(fs_devices);
5844 free_fs_devices(fs_devices);
5845 ret = -EINVAL;
5846 goto out;
5847 }
5848
5849 fs_devices->seed = root->fs_info->fs_devices->seed;
5850 root->fs_info->fs_devices->seed = fs_devices;
5851out:
5852 return ret;
5853}
5854
5855static int read_one_dev(struct btrfs_root *root,
5856 struct extent_buffer *leaf,
5857 struct btrfs_dev_item *dev_item)
5858{
5859 struct btrfs_device *device;
5860 u64 devid;
5861 int ret;
5862 u8 fs_uuid[BTRFS_UUID_SIZE];
5863 u8 dev_uuid[BTRFS_UUID_SIZE];
5864
5865 devid = btrfs_device_id(leaf, dev_item);
5866 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
5867 BTRFS_UUID_SIZE);
5868 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
5869 BTRFS_UUID_SIZE);
5870
5871 if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
5872 ret = open_seed_devices(root, fs_uuid);
5873 if (ret && !btrfs_test_opt(root, DEGRADED))
5874 return ret;
5875 }
5876
5877 device = btrfs_find_device(root->fs_info, devid, dev_uuid, fs_uuid);
5878 if (!device || !device->bdev) {
5879 if (!btrfs_test_opt(root, DEGRADED))
5880 return -EIO;
5881
5882 if (!device) {
5883 btrfs_warn(root->fs_info, "devid %llu missing", devid);
5884 device = add_missing_dev(root, devid, dev_uuid);
5885 if (!device)
5886 return -ENOMEM;
5887 } else if (!device->missing) {
5888 /*
5889 * this happens when a device that was properly setup
5890 * in the device info lists suddenly goes bad.
5891 * device->bdev is NULL, and so we have to set
5892 * device->missing to one here
5893 */
5894 root->fs_info->fs_devices->missing_devices++;
5895 device->missing = 1;
5896 }
5897 }
5898
5899 if (device->fs_devices != root->fs_info->fs_devices) {
5900 BUG_ON(device->writeable);
5901 if (device->generation !=
5902 btrfs_device_generation(leaf, dev_item))
5903 return -EINVAL;
5904 }
5905
5906 fill_device_from_item(leaf, dev_item, device);
5907 device->in_fs_metadata = 1;
5908 if (device->writeable && !device->is_tgtdev_for_dev_replace) {
5909 device->fs_devices->total_rw_bytes += device->total_bytes;
5910 spin_lock(&root->fs_info->free_chunk_lock);
5911 root->fs_info->free_chunk_space += device->total_bytes -
5912 device->bytes_used;
5913 spin_unlock(&root->fs_info->free_chunk_lock);
5914 }
5915 ret = 0;
5916 return ret;
5917}
5918
5919int btrfs_read_sys_array(struct btrfs_root *root)
5920{
5921 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
5922 struct extent_buffer *sb;
5923 struct btrfs_disk_key *disk_key;
5924 struct btrfs_chunk *chunk;
5925 u8 *ptr;
5926 unsigned long sb_ptr;
5927 int ret = 0;
5928 u32 num_stripes;
5929 u32 array_size;
5930 u32 len = 0;
5931 u32 cur;
5932 struct btrfs_key key;
5933
5934 sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET,
5935 BTRFS_SUPER_INFO_SIZE);
5936 if (!sb)
5937 return -ENOMEM;
5938 btrfs_set_buffer_uptodate(sb);
5939 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
5940 /*
5941 * The sb extent buffer is artifical and just used to read the system array.
5942 * btrfs_set_buffer_uptodate() call does not properly mark all it's
5943 * pages up-to-date when the page is larger: extent does not cover the
5944 * whole page and consequently check_page_uptodate does not find all
5945 * the page's extents up-to-date (the hole beyond sb),
5946 * write_extent_buffer then triggers a WARN_ON.
5947 *
5948 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
5949 * but sb spans only this function. Add an explicit SetPageUptodate call
5950 * to silence the warning eg. on PowerPC 64.
5951 */
5952 if (PAGE_CACHE_SIZE > BTRFS_SUPER_INFO_SIZE)
5953 SetPageUptodate(sb->pages[0]);
5954
5955 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
5956 array_size = btrfs_super_sys_array_size(super_copy);
5957
5958 ptr = super_copy->sys_chunk_array;
5959 sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array);
5960 cur = 0;
5961
5962 while (cur < array_size) {
5963 disk_key = (struct btrfs_disk_key *)ptr;
5964 btrfs_disk_key_to_cpu(&key, disk_key);
5965
5966 len = sizeof(*disk_key); ptr += len;
5967 sb_ptr += len;
5968 cur += len;
5969
5970 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
5971 chunk = (struct btrfs_chunk *)sb_ptr;
5972 ret = read_one_chunk(root, &key, sb, chunk);
5973 if (ret)
5974 break;
5975 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
5976 len = btrfs_chunk_item_size(num_stripes);
5977 } else {
5978 ret = -EIO;
5979 break;
5980 }
5981 ptr += len;
5982 sb_ptr += len;
5983 cur += len;
5984 }
5985 free_extent_buffer(sb);
5986 return ret;
5987}
5988
5989int btrfs_read_chunk_tree(struct btrfs_root *root)
5990{
5991 struct btrfs_path *path;
5992 struct extent_buffer *leaf;
5993 struct btrfs_key key;
5994 struct btrfs_key found_key;
5995 int ret;
5996 int slot;
5997
5998 root = root->fs_info->chunk_root;
5999
6000 path = btrfs_alloc_path();
6001 if (!path)
6002 return -ENOMEM;
6003
6004 mutex_lock(&uuid_mutex);
6005 lock_chunks(root);
6006
6007 /*
6008 * Read all device items, and then all the chunk items. All
6009 * device items are found before any chunk item (their object id
6010 * is smaller than the lowest possible object id for a chunk
6011 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
6012 */
6013 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6014 key.offset = 0;
6015 key.type = 0;
6016 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6017 if (ret < 0)
6018 goto error;
6019 while (1) {
6020 leaf = path->nodes[0];
6021 slot = path->slots[0];
6022 if (slot >= btrfs_header_nritems(leaf)) {
6023 ret = btrfs_next_leaf(root, path);
6024 if (ret == 0)
6025 continue;
6026 if (ret < 0)
6027 goto error;
6028 break;
6029 }
6030 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6031 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6032 struct btrfs_dev_item *dev_item;
6033 dev_item = btrfs_item_ptr(leaf, slot,
6034 struct btrfs_dev_item);
6035 ret = read_one_dev(root, leaf, dev_item);
6036 if (ret)
6037 goto error;
6038 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6039 struct btrfs_chunk *chunk;
6040 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
6041 ret = read_one_chunk(root, &found_key, leaf, chunk);
6042 if (ret)
6043 goto error;
6044 }
6045 path->slots[0]++;
6046 }
6047 ret = 0;
6048error:
6049 unlock_chunks(root);
6050 mutex_unlock(&uuid_mutex);
6051
6052 btrfs_free_path(path);
6053 return ret;
6054}
6055
6056void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
6057{
6058 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6059 struct btrfs_device *device;
6060
6061 mutex_lock(&fs_devices->device_list_mutex);
6062 list_for_each_entry(device, &fs_devices->devices, dev_list)
6063 device->dev_root = fs_info->dev_root;
6064 mutex_unlock(&fs_devices->device_list_mutex);
6065}
6066
6067static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
6068{
6069 int i;
6070
6071 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6072 btrfs_dev_stat_reset(dev, i);
6073}
6074
6075int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
6076{
6077 struct btrfs_key key;
6078 struct btrfs_key found_key;
6079 struct btrfs_root *dev_root = fs_info->dev_root;
6080 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6081 struct extent_buffer *eb;
6082 int slot;
6083 int ret = 0;
6084 struct btrfs_device *device;
6085 struct btrfs_path *path = NULL;
6086 int i;
6087
6088 path = btrfs_alloc_path();
6089 if (!path) {
6090 ret = -ENOMEM;
6091 goto out;
6092 }
6093
6094 mutex_lock(&fs_devices->device_list_mutex);
6095 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6096 int item_size;
6097 struct btrfs_dev_stats_item *ptr;
6098
6099 key.objectid = 0;
6100 key.type = BTRFS_DEV_STATS_KEY;
6101 key.offset = device->devid;
6102 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
6103 if (ret) {
6104 __btrfs_reset_dev_stats(device);
6105 device->dev_stats_valid = 1;
6106 btrfs_release_path(path);
6107 continue;
6108 }
6109 slot = path->slots[0];
6110 eb = path->nodes[0];
6111 btrfs_item_key_to_cpu(eb, &found_key, slot);
6112 item_size = btrfs_item_size_nr(eb, slot);
6113
6114 ptr = btrfs_item_ptr(eb, slot,
6115 struct btrfs_dev_stats_item);
6116
6117 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6118 if (item_size >= (1 + i) * sizeof(__le64))
6119 btrfs_dev_stat_set(device, i,
6120 btrfs_dev_stats_value(eb, ptr, i));
6121 else
6122 btrfs_dev_stat_reset(device, i);
6123 }
6124
6125 device->dev_stats_valid = 1;
6126 btrfs_dev_stat_print_on_load(device);
6127 btrfs_release_path(path);
6128 }
6129 mutex_unlock(&fs_devices->device_list_mutex);
6130
6131out:
6132 btrfs_free_path(path);
6133 return ret < 0 ? ret : 0;
6134}
6135
6136static int update_dev_stat_item(struct btrfs_trans_handle *trans,
6137 struct btrfs_root *dev_root,
6138 struct btrfs_device *device)
6139{
6140 struct btrfs_path *path;
6141 struct btrfs_key key;
6142 struct extent_buffer *eb;
6143 struct btrfs_dev_stats_item *ptr;
6144 int ret;
6145 int i;
6146
6147 key.objectid = 0;
6148 key.type = BTRFS_DEV_STATS_KEY;
6149 key.offset = device->devid;
6150
6151 path = btrfs_alloc_path();
6152 BUG_ON(!path);
6153 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
6154 if (ret < 0) {
6155 printk_in_rcu(KERN_WARNING "BTRFS: "
6156 "error %d while searching for dev_stats item for device %s!\n",
6157 ret, rcu_str_deref(device->name));
6158 goto out;
6159 }
6160
6161 if (ret == 0 &&
6162 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
6163 /* need to delete old one and insert a new one */
6164 ret = btrfs_del_item(trans, dev_root, path);
6165 if (ret != 0) {
6166 printk_in_rcu(KERN_WARNING "BTRFS: "
6167 "delete too small dev_stats item for device %s failed %d!\n",
6168 rcu_str_deref(device->name), ret);
6169 goto out;
6170 }
6171 ret = 1;
6172 }
6173
6174 if (ret == 1) {
6175 /* need to insert a new item */
6176 btrfs_release_path(path);
6177 ret = btrfs_insert_empty_item(trans, dev_root, path,
6178 &key, sizeof(*ptr));
6179 if (ret < 0) {
6180 printk_in_rcu(KERN_WARNING "BTRFS: "
6181 "insert dev_stats item for device %s failed %d!\n",
6182 rcu_str_deref(device->name), ret);
6183 goto out;
6184 }
6185 }
6186
6187 eb = path->nodes[0];
6188 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
6189 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6190 btrfs_set_dev_stats_value(eb, ptr, i,
6191 btrfs_dev_stat_read(device, i));
6192 btrfs_mark_buffer_dirty(eb);
6193
6194out:
6195 btrfs_free_path(path);
6196 return ret;
6197}
6198
6199/*
6200 * called from commit_transaction. Writes all changed device stats to disk.
6201 */
6202int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
6203 struct btrfs_fs_info *fs_info)
6204{
6205 struct btrfs_root *dev_root = fs_info->dev_root;
6206 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6207 struct btrfs_device *device;
6208 int ret = 0;
6209
6210 mutex_lock(&fs_devices->device_list_mutex);
6211 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6212 if (!device->dev_stats_valid || !device->dev_stats_dirty)
6213 continue;
6214
6215 ret = update_dev_stat_item(trans, dev_root, device);
6216 if (!ret)
6217 device->dev_stats_dirty = 0;
6218 }
6219 mutex_unlock(&fs_devices->device_list_mutex);
6220
6221 return ret;
6222}
6223
6224void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
6225{
6226 btrfs_dev_stat_inc(dev, index);
6227 btrfs_dev_stat_print_on_error(dev);
6228}
6229
6230static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
6231{
6232 if (!dev->dev_stats_valid)
6233 return;
6234 printk_ratelimited_in_rcu(KERN_ERR "BTRFS: "
6235 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
6236 rcu_str_deref(dev->name),
6237 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6238 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6239 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
6240 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
6241 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
6242}
6243
6244static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
6245{
6246 int i;
6247
6248 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6249 if (btrfs_dev_stat_read(dev, i) != 0)
6250 break;
6251 if (i == BTRFS_DEV_STAT_VALUES_MAX)
6252 return; /* all values == 0, suppress message */
6253
6254 printk_in_rcu(KERN_INFO "BTRFS: "
6255 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
6256 rcu_str_deref(dev->name),
6257 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6258 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6259 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
6260 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
6261 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
6262}
6263
6264int btrfs_get_dev_stats(struct btrfs_root *root,
6265 struct btrfs_ioctl_get_dev_stats *stats)
6266{
6267 struct btrfs_device *dev;
6268 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
6269 int i;
6270
6271 mutex_lock(&fs_devices->device_list_mutex);
6272 dev = btrfs_find_device(root->fs_info, stats->devid, NULL, NULL);
6273 mutex_unlock(&fs_devices->device_list_mutex);
6274
6275 if (!dev) {
6276 btrfs_warn(root->fs_info, "get dev_stats failed, device not found");
6277 return -ENODEV;
6278 } else if (!dev->dev_stats_valid) {
6279 btrfs_warn(root->fs_info, "get dev_stats failed, not yet valid");
6280 return -ENODEV;
6281 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
6282 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6283 if (stats->nr_items > i)
6284 stats->values[i] =
6285 btrfs_dev_stat_read_and_reset(dev, i);
6286 else
6287 btrfs_dev_stat_reset(dev, i);
6288 }
6289 } else {
6290 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6291 if (stats->nr_items > i)
6292 stats->values[i] = btrfs_dev_stat_read(dev, i);
6293 }
6294 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
6295 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
6296 return 0;
6297}
6298
6299int btrfs_scratch_superblock(struct btrfs_device *device)
6300{
6301 struct buffer_head *bh;
6302 struct btrfs_super_block *disk_super;
6303
6304 bh = btrfs_read_dev_super(device->bdev);
6305 if (!bh)
6306 return -EINVAL;
6307 disk_super = (struct btrfs_super_block *)bh->b_data;
6308
6309 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
6310 set_buffer_dirty(bh);
6311 sync_dirty_buffer(bh);
6312 brelse(bh);
6313
6314 return 0;
6315}