Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.5.6.
   1// SPDX-License-Identifier: GPL-2.0-only
   2//
   3// Driver for Cadence QSPI Controller
   4//
   5// Copyright Altera Corporation (C) 2012-2014. All rights reserved.
   6// Copyright Intel Corporation (C) 2019-2020. All rights reserved.
   7// Copyright (C) 2020 Texas Instruments Incorporated - http://www.ti.com
   8
   9#include <linux/clk.h>
  10#include <linux/completion.h>
  11#include <linux/delay.h>
  12#include <linux/dma-mapping.h>
  13#include <linux/dmaengine.h>
  14#include <linux/err.h>
  15#include <linux/errno.h>
  16#include <linux/firmware/xlnx-zynqmp.h>
  17#include <linux/interrupt.h>
  18#include <linux/io.h>
  19#include <linux/iopoll.h>
  20#include <linux/jiffies.h>
  21#include <linux/kernel.h>
  22#include <linux/log2.h>
  23#include <linux/module.h>
  24#include <linux/of_device.h>
  25#include <linux/of.h>
  26#include <linux/platform_device.h>
  27#include <linux/pm_runtime.h>
  28#include <linux/reset.h>
  29#include <linux/sched.h>
  30#include <linux/spi/spi.h>
  31#include <linux/spi/spi-mem.h>
  32#include <linux/timer.h>
  33
  34#define CQSPI_NAME			"cadence-qspi"
  35#define CQSPI_MAX_CHIPSELECT		16
  36
  37/* Quirks */
  38#define CQSPI_NEEDS_WR_DELAY		BIT(0)
  39#define CQSPI_DISABLE_DAC_MODE		BIT(1)
  40#define CQSPI_SUPPORT_EXTERNAL_DMA	BIT(2)
  41#define CQSPI_NO_SUPPORT_WR_COMPLETION	BIT(3)
  42#define CQSPI_SLOW_SRAM		BIT(4)
  43
  44/* Capabilities */
  45#define CQSPI_SUPPORTS_OCTAL		BIT(0)
  46
  47#define CQSPI_OP_WIDTH(part) ((part).nbytes ? ilog2((part).buswidth) : 0)
  48
  49struct cqspi_st;
  50
  51struct cqspi_flash_pdata {
  52	struct cqspi_st	*cqspi;
  53	u32		clk_rate;
  54	u32		read_delay;
  55	u32		tshsl_ns;
  56	u32		tsd2d_ns;
  57	u32		tchsh_ns;
  58	u32		tslch_ns;
  59	u8		cs;
  60};
  61
  62struct cqspi_st {
  63	struct platform_device	*pdev;
  64	struct spi_master	*master;
  65	struct clk		*clk;
  66	unsigned int		sclk;
  67
  68	void __iomem		*iobase;
  69	void __iomem		*ahb_base;
  70	resource_size_t		ahb_size;
  71	struct completion	transfer_complete;
  72
  73	struct dma_chan		*rx_chan;
  74	struct completion	rx_dma_complete;
  75	dma_addr_t		mmap_phys_base;
  76
  77	int			current_cs;
  78	unsigned long		master_ref_clk_hz;
  79	bool			is_decoded_cs;
  80	u32			fifo_depth;
  81	u32			fifo_width;
  82	u32			num_chipselect;
  83	bool			rclk_en;
  84	u32			trigger_address;
  85	u32			wr_delay;
  86	bool			use_direct_mode;
  87	struct cqspi_flash_pdata f_pdata[CQSPI_MAX_CHIPSELECT];
  88	bool			use_dma_read;
  89	u32			pd_dev_id;
  90	bool			wr_completion;
  91	bool			slow_sram;
  92};
  93
  94struct cqspi_driver_platdata {
  95	u32 hwcaps_mask;
  96	u8 quirks;
  97	int (*indirect_read_dma)(struct cqspi_flash_pdata *f_pdata,
  98				 u_char *rxbuf, loff_t from_addr, size_t n_rx);
  99	u32 (*get_dma_status)(struct cqspi_st *cqspi);
 100};
 101
 102/* Operation timeout value */
 103#define CQSPI_TIMEOUT_MS			500
 104#define CQSPI_READ_TIMEOUT_MS			10
 105
 106#define CQSPI_DUMMY_CLKS_PER_BYTE		8
 107#define CQSPI_DUMMY_BYTES_MAX			4
 108#define CQSPI_DUMMY_CLKS_MAX			31
 109
 110#define CQSPI_STIG_DATA_LEN_MAX			8
 111
 112/* Register map */
 113#define CQSPI_REG_CONFIG			0x00
 114#define CQSPI_REG_CONFIG_ENABLE_MASK		BIT(0)
 115#define CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL	BIT(7)
 116#define CQSPI_REG_CONFIG_DECODE_MASK		BIT(9)
 117#define CQSPI_REG_CONFIG_CHIPSELECT_LSB		10
 118#define CQSPI_REG_CONFIG_DMA_MASK		BIT(15)
 119#define CQSPI_REG_CONFIG_BAUD_LSB		19
 120#define CQSPI_REG_CONFIG_DTR_PROTO		BIT(24)
 121#define CQSPI_REG_CONFIG_DUAL_OPCODE		BIT(30)
 122#define CQSPI_REG_CONFIG_IDLE_LSB		31
 123#define CQSPI_REG_CONFIG_CHIPSELECT_MASK	0xF
 124#define CQSPI_REG_CONFIG_BAUD_MASK		0xF
 125
 126#define CQSPI_REG_RD_INSTR			0x04
 127#define CQSPI_REG_RD_INSTR_OPCODE_LSB		0
 128#define CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB	8
 129#define CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB	12
 130#define CQSPI_REG_RD_INSTR_TYPE_DATA_LSB	16
 131#define CQSPI_REG_RD_INSTR_MODE_EN_LSB		20
 132#define CQSPI_REG_RD_INSTR_DUMMY_LSB		24
 133#define CQSPI_REG_RD_INSTR_TYPE_INSTR_MASK	0x3
 134#define CQSPI_REG_RD_INSTR_TYPE_ADDR_MASK	0x3
 135#define CQSPI_REG_RD_INSTR_TYPE_DATA_MASK	0x3
 136#define CQSPI_REG_RD_INSTR_DUMMY_MASK		0x1F
 137
 138#define CQSPI_REG_WR_INSTR			0x08
 139#define CQSPI_REG_WR_INSTR_OPCODE_LSB		0
 140#define CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB	12
 141#define CQSPI_REG_WR_INSTR_TYPE_DATA_LSB	16
 142
 143#define CQSPI_REG_DELAY				0x0C
 144#define CQSPI_REG_DELAY_TSLCH_LSB		0
 145#define CQSPI_REG_DELAY_TCHSH_LSB		8
 146#define CQSPI_REG_DELAY_TSD2D_LSB		16
 147#define CQSPI_REG_DELAY_TSHSL_LSB		24
 148#define CQSPI_REG_DELAY_TSLCH_MASK		0xFF
 149#define CQSPI_REG_DELAY_TCHSH_MASK		0xFF
 150#define CQSPI_REG_DELAY_TSD2D_MASK		0xFF
 151#define CQSPI_REG_DELAY_TSHSL_MASK		0xFF
 152
 153#define CQSPI_REG_READCAPTURE			0x10
 154#define CQSPI_REG_READCAPTURE_BYPASS_LSB	0
 155#define CQSPI_REG_READCAPTURE_DELAY_LSB		1
 156#define CQSPI_REG_READCAPTURE_DELAY_MASK	0xF
 157
 158#define CQSPI_REG_SIZE				0x14
 159#define CQSPI_REG_SIZE_ADDRESS_LSB		0
 160#define CQSPI_REG_SIZE_PAGE_LSB			4
 161#define CQSPI_REG_SIZE_BLOCK_LSB		16
 162#define CQSPI_REG_SIZE_ADDRESS_MASK		0xF
 163#define CQSPI_REG_SIZE_PAGE_MASK		0xFFF
 164#define CQSPI_REG_SIZE_BLOCK_MASK		0x3F
 165
 166#define CQSPI_REG_SRAMPARTITION			0x18
 167#define CQSPI_REG_INDIRECTTRIGGER		0x1C
 168
 169#define CQSPI_REG_DMA				0x20
 170#define CQSPI_REG_DMA_SINGLE_LSB		0
 171#define CQSPI_REG_DMA_BURST_LSB			8
 172#define CQSPI_REG_DMA_SINGLE_MASK		0xFF
 173#define CQSPI_REG_DMA_BURST_MASK		0xFF
 174
 175#define CQSPI_REG_REMAP				0x24
 176#define CQSPI_REG_MODE_BIT			0x28
 177
 178#define CQSPI_REG_SDRAMLEVEL			0x2C
 179#define CQSPI_REG_SDRAMLEVEL_RD_LSB		0
 180#define CQSPI_REG_SDRAMLEVEL_WR_LSB		16
 181#define CQSPI_REG_SDRAMLEVEL_RD_MASK		0xFFFF
 182#define CQSPI_REG_SDRAMLEVEL_WR_MASK		0xFFFF
 183
 184#define CQSPI_REG_WR_COMPLETION_CTRL		0x38
 185#define CQSPI_REG_WR_DISABLE_AUTO_POLL		BIT(14)
 186
 187#define CQSPI_REG_IRQSTATUS			0x40
 188#define CQSPI_REG_IRQMASK			0x44
 189
 190#define CQSPI_REG_INDIRECTRD			0x60
 191#define CQSPI_REG_INDIRECTRD_START_MASK		BIT(0)
 192#define CQSPI_REG_INDIRECTRD_CANCEL_MASK	BIT(1)
 193#define CQSPI_REG_INDIRECTRD_DONE_MASK		BIT(5)
 194
 195#define CQSPI_REG_INDIRECTRDWATERMARK		0x64
 196#define CQSPI_REG_INDIRECTRDSTARTADDR		0x68
 197#define CQSPI_REG_INDIRECTRDBYTES		0x6C
 198
 199#define CQSPI_REG_CMDCTRL			0x90
 200#define CQSPI_REG_CMDCTRL_EXECUTE_MASK		BIT(0)
 201#define CQSPI_REG_CMDCTRL_INPROGRESS_MASK	BIT(1)
 202#define CQSPI_REG_CMDCTRL_DUMMY_LSB		7
 203#define CQSPI_REG_CMDCTRL_WR_BYTES_LSB		12
 204#define CQSPI_REG_CMDCTRL_WR_EN_LSB		15
 205#define CQSPI_REG_CMDCTRL_ADD_BYTES_LSB		16
 206#define CQSPI_REG_CMDCTRL_ADDR_EN_LSB		19
 207#define CQSPI_REG_CMDCTRL_RD_BYTES_LSB		20
 208#define CQSPI_REG_CMDCTRL_RD_EN_LSB		23
 209#define CQSPI_REG_CMDCTRL_OPCODE_LSB		24
 210#define CQSPI_REG_CMDCTRL_WR_BYTES_MASK		0x7
 211#define CQSPI_REG_CMDCTRL_ADD_BYTES_MASK	0x3
 212#define CQSPI_REG_CMDCTRL_RD_BYTES_MASK		0x7
 213#define CQSPI_REG_CMDCTRL_DUMMY_MASK		0x1F
 214
 215#define CQSPI_REG_INDIRECTWR			0x70
 216#define CQSPI_REG_INDIRECTWR_START_MASK		BIT(0)
 217#define CQSPI_REG_INDIRECTWR_CANCEL_MASK	BIT(1)
 218#define CQSPI_REG_INDIRECTWR_DONE_MASK		BIT(5)
 219
 220#define CQSPI_REG_INDIRECTWRWATERMARK		0x74
 221#define CQSPI_REG_INDIRECTWRSTARTADDR		0x78
 222#define CQSPI_REG_INDIRECTWRBYTES		0x7C
 223
 224#define CQSPI_REG_INDTRIG_ADDRRANGE		0x80
 225
 226#define CQSPI_REG_CMDADDRESS			0x94
 227#define CQSPI_REG_CMDREADDATALOWER		0xA0
 228#define CQSPI_REG_CMDREADDATAUPPER		0xA4
 229#define CQSPI_REG_CMDWRITEDATALOWER		0xA8
 230#define CQSPI_REG_CMDWRITEDATAUPPER		0xAC
 231
 232#define CQSPI_REG_POLLING_STATUS		0xB0
 233#define CQSPI_REG_POLLING_STATUS_DUMMY_LSB	16
 234
 235#define CQSPI_REG_OP_EXT_LOWER			0xE0
 236#define CQSPI_REG_OP_EXT_READ_LSB		24
 237#define CQSPI_REG_OP_EXT_WRITE_LSB		16
 238#define CQSPI_REG_OP_EXT_STIG_LSB		0
 239
 240#define CQSPI_REG_VERSAL_DMA_SRC_ADDR		0x1000
 241
 242#define CQSPI_REG_VERSAL_DMA_DST_ADDR		0x1800
 243#define CQSPI_REG_VERSAL_DMA_DST_SIZE		0x1804
 244
 245#define CQSPI_REG_VERSAL_DMA_DST_CTRL		0x180C
 246
 247#define CQSPI_REG_VERSAL_DMA_DST_I_STS		0x1814
 248#define CQSPI_REG_VERSAL_DMA_DST_I_EN		0x1818
 249#define CQSPI_REG_VERSAL_DMA_DST_I_DIS		0x181C
 250#define CQSPI_REG_VERSAL_DMA_DST_DONE_MASK	BIT(1)
 251
 252#define CQSPI_REG_VERSAL_DMA_DST_ADDR_MSB	0x1828
 253
 254#define CQSPI_REG_VERSAL_DMA_DST_CTRL_VAL	0xF43FFA00
 255#define CQSPI_REG_VERSAL_ADDRRANGE_WIDTH_VAL	0x6
 256
 257/* Interrupt status bits */
 258#define CQSPI_REG_IRQ_MODE_ERR			BIT(0)
 259#define CQSPI_REG_IRQ_UNDERFLOW			BIT(1)
 260#define CQSPI_REG_IRQ_IND_COMP			BIT(2)
 261#define CQSPI_REG_IRQ_IND_RD_REJECT		BIT(3)
 262#define CQSPI_REG_IRQ_WR_PROTECTED_ERR		BIT(4)
 263#define CQSPI_REG_IRQ_ILLEGAL_AHB_ERR		BIT(5)
 264#define CQSPI_REG_IRQ_WATERMARK			BIT(6)
 265#define CQSPI_REG_IRQ_IND_SRAM_FULL		BIT(12)
 266
 267#define CQSPI_IRQ_MASK_RD		(CQSPI_REG_IRQ_WATERMARK	| \
 268					 CQSPI_REG_IRQ_IND_SRAM_FULL	| \
 269					 CQSPI_REG_IRQ_IND_COMP)
 270
 271#define CQSPI_IRQ_MASK_WR		(CQSPI_REG_IRQ_IND_COMP		| \
 272					 CQSPI_REG_IRQ_WATERMARK	| \
 273					 CQSPI_REG_IRQ_UNDERFLOW)
 274
 275#define CQSPI_IRQ_STATUS_MASK		0x1FFFF
 276#define CQSPI_DMA_UNALIGN		0x3
 277
 278#define CQSPI_REG_VERSAL_DMA_VAL		0x602
 279
 280static int cqspi_wait_for_bit(void __iomem *reg, const u32 mask, bool clr)
 281{
 282	u32 val;
 283
 284	return readl_relaxed_poll_timeout(reg, val,
 285					  (((clr ? ~val : val) & mask) == mask),
 286					  10, CQSPI_TIMEOUT_MS * 1000);
 287}
 288
 289static bool cqspi_is_idle(struct cqspi_st *cqspi)
 290{
 291	u32 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
 292
 293	return reg & (1UL << CQSPI_REG_CONFIG_IDLE_LSB);
 294}
 295
 296static u32 cqspi_get_rd_sram_level(struct cqspi_st *cqspi)
 297{
 298	u32 reg = readl(cqspi->iobase + CQSPI_REG_SDRAMLEVEL);
 299
 300	reg >>= CQSPI_REG_SDRAMLEVEL_RD_LSB;
 301	return reg & CQSPI_REG_SDRAMLEVEL_RD_MASK;
 302}
 303
 304static u32 cqspi_get_versal_dma_status(struct cqspi_st *cqspi)
 305{
 306	u32 dma_status;
 307
 308	dma_status = readl(cqspi->iobase +
 309					   CQSPI_REG_VERSAL_DMA_DST_I_STS);
 310	writel(dma_status, cqspi->iobase +
 311		   CQSPI_REG_VERSAL_DMA_DST_I_STS);
 312
 313	return dma_status & CQSPI_REG_VERSAL_DMA_DST_DONE_MASK;
 314}
 315
 316static irqreturn_t cqspi_irq_handler(int this_irq, void *dev)
 317{
 318	struct cqspi_st *cqspi = dev;
 319	unsigned int irq_status;
 320	struct device *device = &cqspi->pdev->dev;
 321	const struct cqspi_driver_platdata *ddata;
 322
 323	ddata = of_device_get_match_data(device);
 324
 325	/* Read interrupt status */
 326	irq_status = readl(cqspi->iobase + CQSPI_REG_IRQSTATUS);
 327
 328	/* Clear interrupt */
 329	writel(irq_status, cqspi->iobase + CQSPI_REG_IRQSTATUS);
 330
 331	if (cqspi->use_dma_read && ddata && ddata->get_dma_status) {
 332		if (ddata->get_dma_status(cqspi)) {
 333			complete(&cqspi->transfer_complete);
 334			return IRQ_HANDLED;
 335		}
 336	}
 337
 338	else if (!cqspi->slow_sram)
 339		irq_status &= CQSPI_IRQ_MASK_RD | CQSPI_IRQ_MASK_WR;
 340	else
 341		irq_status &= CQSPI_REG_IRQ_WATERMARK | CQSPI_IRQ_MASK_WR;
 342
 343	if (irq_status)
 344		complete(&cqspi->transfer_complete);
 345
 346	return IRQ_HANDLED;
 347}
 348
 349static unsigned int cqspi_calc_rdreg(const struct spi_mem_op *op)
 350{
 351	u32 rdreg = 0;
 352
 353	rdreg |= CQSPI_OP_WIDTH(op->cmd) << CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB;
 354	rdreg |= CQSPI_OP_WIDTH(op->addr) << CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB;
 355	rdreg |= CQSPI_OP_WIDTH(op->data) << CQSPI_REG_RD_INSTR_TYPE_DATA_LSB;
 356
 357	return rdreg;
 358}
 359
 360static unsigned int cqspi_calc_dummy(const struct spi_mem_op *op)
 361{
 362	unsigned int dummy_clk;
 363
 364	if (!op->dummy.nbytes)
 365		return 0;
 366
 367	dummy_clk = op->dummy.nbytes * (8 / op->dummy.buswidth);
 368	if (op->cmd.dtr)
 369		dummy_clk /= 2;
 370
 371	return dummy_clk;
 372}
 373
 374static int cqspi_wait_idle(struct cqspi_st *cqspi)
 375{
 376	const unsigned int poll_idle_retry = 3;
 377	unsigned int count = 0;
 378	unsigned long timeout;
 379
 380	timeout = jiffies + msecs_to_jiffies(CQSPI_TIMEOUT_MS);
 381	while (1) {
 382		/*
 383		 * Read few times in succession to ensure the controller
 384		 * is indeed idle, that is, the bit does not transition
 385		 * low again.
 386		 */
 387		if (cqspi_is_idle(cqspi))
 388			count++;
 389		else
 390			count = 0;
 391
 392		if (count >= poll_idle_retry)
 393			return 0;
 394
 395		if (time_after(jiffies, timeout)) {
 396			/* Timeout, in busy mode. */
 397			dev_err(&cqspi->pdev->dev,
 398				"QSPI is still busy after %dms timeout.\n",
 399				CQSPI_TIMEOUT_MS);
 400			return -ETIMEDOUT;
 401		}
 402
 403		cpu_relax();
 404	}
 405}
 406
 407static int cqspi_exec_flash_cmd(struct cqspi_st *cqspi, unsigned int reg)
 408{
 409	void __iomem *reg_base = cqspi->iobase;
 410	int ret;
 411
 412	/* Write the CMDCTRL without start execution. */
 413	writel(reg, reg_base + CQSPI_REG_CMDCTRL);
 414	/* Start execute */
 415	reg |= CQSPI_REG_CMDCTRL_EXECUTE_MASK;
 416	writel(reg, reg_base + CQSPI_REG_CMDCTRL);
 417
 418	/* Polling for completion. */
 419	ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_CMDCTRL,
 420				 CQSPI_REG_CMDCTRL_INPROGRESS_MASK, 1);
 421	if (ret) {
 422		dev_err(&cqspi->pdev->dev,
 423			"Flash command execution timed out.\n");
 424		return ret;
 425	}
 426
 427	/* Polling QSPI idle status. */
 428	return cqspi_wait_idle(cqspi);
 429}
 430
 431static int cqspi_setup_opcode_ext(struct cqspi_flash_pdata *f_pdata,
 432				  const struct spi_mem_op *op,
 433				  unsigned int shift)
 434{
 435	struct cqspi_st *cqspi = f_pdata->cqspi;
 436	void __iomem *reg_base = cqspi->iobase;
 437	unsigned int reg;
 438	u8 ext;
 439
 440	if (op->cmd.nbytes != 2)
 441		return -EINVAL;
 442
 443	/* Opcode extension is the LSB. */
 444	ext = op->cmd.opcode & 0xff;
 445
 446	reg = readl(reg_base + CQSPI_REG_OP_EXT_LOWER);
 447	reg &= ~(0xff << shift);
 448	reg |= ext << shift;
 449	writel(reg, reg_base + CQSPI_REG_OP_EXT_LOWER);
 450
 451	return 0;
 452}
 453
 454static int cqspi_enable_dtr(struct cqspi_flash_pdata *f_pdata,
 455			    const struct spi_mem_op *op, unsigned int shift)
 456{
 457	struct cqspi_st *cqspi = f_pdata->cqspi;
 458	void __iomem *reg_base = cqspi->iobase;
 459	unsigned int reg;
 460	int ret;
 461
 462	reg = readl(reg_base + CQSPI_REG_CONFIG);
 463
 464	/*
 465	 * We enable dual byte opcode here. The callers have to set up the
 466	 * extension opcode based on which type of operation it is.
 467	 */
 468	if (op->cmd.dtr) {
 469		reg |= CQSPI_REG_CONFIG_DTR_PROTO;
 470		reg |= CQSPI_REG_CONFIG_DUAL_OPCODE;
 471
 472		/* Set up command opcode extension. */
 473		ret = cqspi_setup_opcode_ext(f_pdata, op, shift);
 474		if (ret)
 475			return ret;
 476	} else {
 477		reg &= ~CQSPI_REG_CONFIG_DTR_PROTO;
 478		reg &= ~CQSPI_REG_CONFIG_DUAL_OPCODE;
 479	}
 480
 481	writel(reg, reg_base + CQSPI_REG_CONFIG);
 482
 483	return cqspi_wait_idle(cqspi);
 484}
 485
 486static int cqspi_command_read(struct cqspi_flash_pdata *f_pdata,
 487			      const struct spi_mem_op *op)
 488{
 489	struct cqspi_st *cqspi = f_pdata->cqspi;
 490	void __iomem *reg_base = cqspi->iobase;
 491	u8 *rxbuf = op->data.buf.in;
 492	u8 opcode;
 493	size_t n_rx = op->data.nbytes;
 494	unsigned int rdreg;
 495	unsigned int reg;
 496	unsigned int dummy_clk;
 497	size_t read_len;
 498	int status;
 499
 500	status = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_STIG_LSB);
 501	if (status)
 502		return status;
 503
 504	if (!n_rx || n_rx > CQSPI_STIG_DATA_LEN_MAX || !rxbuf) {
 505		dev_err(&cqspi->pdev->dev,
 506			"Invalid input argument, len %zu rxbuf 0x%p\n",
 507			n_rx, rxbuf);
 508		return -EINVAL;
 509	}
 510
 511	if (op->cmd.dtr)
 512		opcode = op->cmd.opcode >> 8;
 513	else
 514		opcode = op->cmd.opcode;
 515
 516	reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
 517
 518	rdreg = cqspi_calc_rdreg(op);
 519	writel(rdreg, reg_base + CQSPI_REG_RD_INSTR);
 520
 521	dummy_clk = cqspi_calc_dummy(op);
 522	if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
 523		return -EOPNOTSUPP;
 524
 525	if (dummy_clk)
 526		reg |= (dummy_clk & CQSPI_REG_CMDCTRL_DUMMY_MASK)
 527		     << CQSPI_REG_CMDCTRL_DUMMY_LSB;
 528
 529	reg |= (0x1 << CQSPI_REG_CMDCTRL_RD_EN_LSB);
 530
 531	/* 0 means 1 byte. */
 532	reg |= (((n_rx - 1) & CQSPI_REG_CMDCTRL_RD_BYTES_MASK)
 533		<< CQSPI_REG_CMDCTRL_RD_BYTES_LSB);
 534	status = cqspi_exec_flash_cmd(cqspi, reg);
 535	if (status)
 536		return status;
 537
 538	reg = readl(reg_base + CQSPI_REG_CMDREADDATALOWER);
 539
 540	/* Put the read value into rx_buf */
 541	read_len = (n_rx > 4) ? 4 : n_rx;
 542	memcpy(rxbuf, &reg, read_len);
 543	rxbuf += read_len;
 544
 545	if (n_rx > 4) {
 546		reg = readl(reg_base + CQSPI_REG_CMDREADDATAUPPER);
 547
 548		read_len = n_rx - read_len;
 549		memcpy(rxbuf, &reg, read_len);
 550	}
 551
 552	return 0;
 553}
 554
 555static int cqspi_command_write(struct cqspi_flash_pdata *f_pdata,
 556			       const struct spi_mem_op *op)
 557{
 558	struct cqspi_st *cqspi = f_pdata->cqspi;
 559	void __iomem *reg_base = cqspi->iobase;
 560	u8 opcode;
 561	const u8 *txbuf = op->data.buf.out;
 562	size_t n_tx = op->data.nbytes;
 563	unsigned int reg;
 564	unsigned int data;
 565	size_t write_len;
 566	int ret;
 567
 568	ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_STIG_LSB);
 569	if (ret)
 570		return ret;
 571
 572	if (n_tx > CQSPI_STIG_DATA_LEN_MAX || (n_tx && !txbuf)) {
 573		dev_err(&cqspi->pdev->dev,
 574			"Invalid input argument, cmdlen %zu txbuf 0x%p\n",
 575			n_tx, txbuf);
 576		return -EINVAL;
 577	}
 578
 579	reg = cqspi_calc_rdreg(op);
 580	writel(reg, reg_base + CQSPI_REG_RD_INSTR);
 581
 582	if (op->cmd.dtr)
 583		opcode = op->cmd.opcode >> 8;
 584	else
 585		opcode = op->cmd.opcode;
 586
 587	reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
 588
 589	if (op->addr.nbytes) {
 590		reg |= (0x1 << CQSPI_REG_CMDCTRL_ADDR_EN_LSB);
 591		reg |= ((op->addr.nbytes - 1) &
 592			CQSPI_REG_CMDCTRL_ADD_BYTES_MASK)
 593			<< CQSPI_REG_CMDCTRL_ADD_BYTES_LSB;
 594
 595		writel(op->addr.val, reg_base + CQSPI_REG_CMDADDRESS);
 596	}
 597
 598	if (n_tx) {
 599		reg |= (0x1 << CQSPI_REG_CMDCTRL_WR_EN_LSB);
 600		reg |= ((n_tx - 1) & CQSPI_REG_CMDCTRL_WR_BYTES_MASK)
 601			<< CQSPI_REG_CMDCTRL_WR_BYTES_LSB;
 602		data = 0;
 603		write_len = (n_tx > 4) ? 4 : n_tx;
 604		memcpy(&data, txbuf, write_len);
 605		txbuf += write_len;
 606		writel(data, reg_base + CQSPI_REG_CMDWRITEDATALOWER);
 607
 608		if (n_tx > 4) {
 609			data = 0;
 610			write_len = n_tx - 4;
 611			memcpy(&data, txbuf, write_len);
 612			writel(data, reg_base + CQSPI_REG_CMDWRITEDATAUPPER);
 613		}
 614	}
 615
 616	return cqspi_exec_flash_cmd(cqspi, reg);
 617}
 618
 619static int cqspi_read_setup(struct cqspi_flash_pdata *f_pdata,
 620			    const struct spi_mem_op *op)
 621{
 622	struct cqspi_st *cqspi = f_pdata->cqspi;
 623	void __iomem *reg_base = cqspi->iobase;
 624	unsigned int dummy_clk = 0;
 625	unsigned int reg;
 626	int ret;
 627	u8 opcode;
 628
 629	ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_READ_LSB);
 630	if (ret)
 631		return ret;
 632
 633	if (op->cmd.dtr)
 634		opcode = op->cmd.opcode >> 8;
 635	else
 636		opcode = op->cmd.opcode;
 637
 638	reg = opcode << CQSPI_REG_RD_INSTR_OPCODE_LSB;
 639	reg |= cqspi_calc_rdreg(op);
 640
 641	/* Setup dummy clock cycles */
 642	dummy_clk = cqspi_calc_dummy(op);
 643
 644	if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
 645		return -EOPNOTSUPP;
 646
 647	if (dummy_clk)
 648		reg |= (dummy_clk & CQSPI_REG_RD_INSTR_DUMMY_MASK)
 649		       << CQSPI_REG_RD_INSTR_DUMMY_LSB;
 650
 651	writel(reg, reg_base + CQSPI_REG_RD_INSTR);
 652
 653	/* Set address width */
 654	reg = readl(reg_base + CQSPI_REG_SIZE);
 655	reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
 656	reg |= (op->addr.nbytes - 1);
 657	writel(reg, reg_base + CQSPI_REG_SIZE);
 658	return 0;
 659}
 660
 661static int cqspi_indirect_read_execute(struct cqspi_flash_pdata *f_pdata,
 662				       u8 *rxbuf, loff_t from_addr,
 663				       const size_t n_rx)
 664{
 665	struct cqspi_st *cqspi = f_pdata->cqspi;
 666	struct device *dev = &cqspi->pdev->dev;
 667	void __iomem *reg_base = cqspi->iobase;
 668	void __iomem *ahb_base = cqspi->ahb_base;
 669	unsigned int remaining = n_rx;
 670	unsigned int mod_bytes = n_rx % 4;
 671	unsigned int bytes_to_read = 0;
 672	u8 *rxbuf_end = rxbuf + n_rx;
 673	int ret = 0;
 674
 675	writel(from_addr, reg_base + CQSPI_REG_INDIRECTRDSTARTADDR);
 676	writel(remaining, reg_base + CQSPI_REG_INDIRECTRDBYTES);
 677
 678	/* Clear all interrupts. */
 679	writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
 680
 681	/*
 682	 * On SoCFPGA platform reading the SRAM is slow due to
 683	 * hardware limitation and causing read interrupt storm to CPU,
 684	 * so enabling only watermark interrupt to disable all read
 685	 * interrupts later as we want to run "bytes to read" loop with
 686	 * all the read interrupts disabled for max performance.
 687	 */
 688
 689	if (!cqspi->slow_sram)
 690		writel(CQSPI_IRQ_MASK_RD, reg_base + CQSPI_REG_IRQMASK);
 691	else
 692		writel(CQSPI_REG_IRQ_WATERMARK, reg_base + CQSPI_REG_IRQMASK);
 693
 694	reinit_completion(&cqspi->transfer_complete);
 695	writel(CQSPI_REG_INDIRECTRD_START_MASK,
 696	       reg_base + CQSPI_REG_INDIRECTRD);
 697
 698	while (remaining > 0) {
 699		if (!wait_for_completion_timeout(&cqspi->transfer_complete,
 700						 msecs_to_jiffies(CQSPI_READ_TIMEOUT_MS)))
 701			ret = -ETIMEDOUT;
 702
 703		/*
 704		 * Disable all read interrupts until
 705		 * we are out of "bytes to read"
 706		 */
 707		if (cqspi->slow_sram)
 708			writel(0x0, reg_base + CQSPI_REG_IRQMASK);
 709
 710		bytes_to_read = cqspi_get_rd_sram_level(cqspi);
 711
 712		if (ret && bytes_to_read == 0) {
 713			dev_err(dev, "Indirect read timeout, no bytes\n");
 714			goto failrd;
 715		}
 716
 717		while (bytes_to_read != 0) {
 718			unsigned int word_remain = round_down(remaining, 4);
 719
 720			bytes_to_read *= cqspi->fifo_width;
 721			bytes_to_read = bytes_to_read > remaining ?
 722					remaining : bytes_to_read;
 723			bytes_to_read = round_down(bytes_to_read, 4);
 724			/* Read 4 byte word chunks then single bytes */
 725			if (bytes_to_read) {
 726				ioread32_rep(ahb_base, rxbuf,
 727					     (bytes_to_read / 4));
 728			} else if (!word_remain && mod_bytes) {
 729				unsigned int temp = ioread32(ahb_base);
 730
 731				bytes_to_read = mod_bytes;
 732				memcpy(rxbuf, &temp, min((unsigned int)
 733							 (rxbuf_end - rxbuf),
 734							 bytes_to_read));
 735			}
 736			rxbuf += bytes_to_read;
 737			remaining -= bytes_to_read;
 738			bytes_to_read = cqspi_get_rd_sram_level(cqspi);
 739		}
 740
 741		if (remaining > 0) {
 742			reinit_completion(&cqspi->transfer_complete);
 743			if (cqspi->slow_sram)
 744				writel(CQSPI_REG_IRQ_WATERMARK, reg_base + CQSPI_REG_IRQMASK);
 745		}
 746	}
 747
 748	/* Check indirect done status */
 749	ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTRD,
 750				 CQSPI_REG_INDIRECTRD_DONE_MASK, 0);
 751	if (ret) {
 752		dev_err(dev, "Indirect read completion error (%i)\n", ret);
 753		goto failrd;
 754	}
 755
 756	/* Disable interrupt */
 757	writel(0, reg_base + CQSPI_REG_IRQMASK);
 758
 759	/* Clear indirect completion status */
 760	writel(CQSPI_REG_INDIRECTRD_DONE_MASK, reg_base + CQSPI_REG_INDIRECTRD);
 761
 762	return 0;
 763
 764failrd:
 765	/* Disable interrupt */
 766	writel(0, reg_base + CQSPI_REG_IRQMASK);
 767
 768	/* Cancel the indirect read */
 769	writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
 770	       reg_base + CQSPI_REG_INDIRECTRD);
 771	return ret;
 772}
 773
 774static int cqspi_versal_indirect_read_dma(struct cqspi_flash_pdata *f_pdata,
 775					  u_char *rxbuf, loff_t from_addr,
 776					  size_t n_rx)
 777{
 778	struct cqspi_st *cqspi = f_pdata->cqspi;
 779	struct device *dev = &cqspi->pdev->dev;
 780	void __iomem *reg_base = cqspi->iobase;
 781	u32 reg, bytes_to_dma;
 782	loff_t addr = from_addr;
 783	void *buf = rxbuf;
 784	dma_addr_t dma_addr;
 785	u8 bytes_rem;
 786	int ret = 0;
 787
 788	bytes_rem = n_rx % 4;
 789	bytes_to_dma = (n_rx - bytes_rem);
 790
 791	if (!bytes_to_dma)
 792		goto nondmard;
 793
 794	ret = zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id, PM_OSPI_MUX_SEL_DMA);
 795	if (ret)
 796		return ret;
 797
 798	reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
 799	reg |= CQSPI_REG_CONFIG_DMA_MASK;
 800	writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
 801
 802	dma_addr = dma_map_single(dev, rxbuf, bytes_to_dma, DMA_FROM_DEVICE);
 803	if (dma_mapping_error(dev, dma_addr)) {
 804		dev_err(dev, "dma mapping failed\n");
 805		return -ENOMEM;
 806	}
 807
 808	writel(from_addr, reg_base + CQSPI_REG_INDIRECTRDSTARTADDR);
 809	writel(bytes_to_dma, reg_base + CQSPI_REG_INDIRECTRDBYTES);
 810	writel(CQSPI_REG_VERSAL_ADDRRANGE_WIDTH_VAL,
 811	       reg_base + CQSPI_REG_INDTRIG_ADDRRANGE);
 812
 813	/* Clear all interrupts. */
 814	writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
 815
 816	/* Enable DMA done interrupt */
 817	writel(CQSPI_REG_VERSAL_DMA_DST_DONE_MASK,
 818	       reg_base + CQSPI_REG_VERSAL_DMA_DST_I_EN);
 819
 820	/* Default DMA periph configuration */
 821	writel(CQSPI_REG_VERSAL_DMA_VAL, reg_base + CQSPI_REG_DMA);
 822
 823	/* Configure DMA Dst address */
 824	writel(lower_32_bits(dma_addr),
 825	       reg_base + CQSPI_REG_VERSAL_DMA_DST_ADDR);
 826	writel(upper_32_bits(dma_addr),
 827	       reg_base + CQSPI_REG_VERSAL_DMA_DST_ADDR_MSB);
 828
 829	/* Configure DMA Src address */
 830	writel(cqspi->trigger_address, reg_base +
 831	       CQSPI_REG_VERSAL_DMA_SRC_ADDR);
 832
 833	/* Set DMA destination size */
 834	writel(bytes_to_dma, reg_base + CQSPI_REG_VERSAL_DMA_DST_SIZE);
 835
 836	/* Set DMA destination control */
 837	writel(CQSPI_REG_VERSAL_DMA_DST_CTRL_VAL,
 838	       reg_base + CQSPI_REG_VERSAL_DMA_DST_CTRL);
 839
 840	writel(CQSPI_REG_INDIRECTRD_START_MASK,
 841	       reg_base + CQSPI_REG_INDIRECTRD);
 842
 843	reinit_completion(&cqspi->transfer_complete);
 844
 845	if (!wait_for_completion_timeout(&cqspi->transfer_complete,
 846					 msecs_to_jiffies(CQSPI_READ_TIMEOUT_MS))) {
 847		ret = -ETIMEDOUT;
 848		goto failrd;
 849	}
 850
 851	/* Disable DMA interrupt */
 852	writel(0x0, cqspi->iobase + CQSPI_REG_VERSAL_DMA_DST_I_DIS);
 853
 854	/* Clear indirect completion status */
 855	writel(CQSPI_REG_INDIRECTRD_DONE_MASK,
 856	       cqspi->iobase + CQSPI_REG_INDIRECTRD);
 857	dma_unmap_single(dev, dma_addr, bytes_to_dma, DMA_FROM_DEVICE);
 858
 859	reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
 860	reg &= ~CQSPI_REG_CONFIG_DMA_MASK;
 861	writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
 862
 863	ret = zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id,
 864					PM_OSPI_MUX_SEL_LINEAR);
 865	if (ret)
 866		return ret;
 867
 868nondmard:
 869	if (bytes_rem) {
 870		addr += bytes_to_dma;
 871		buf += bytes_to_dma;
 872		ret = cqspi_indirect_read_execute(f_pdata, buf, addr,
 873						  bytes_rem);
 874		if (ret)
 875			return ret;
 876	}
 877
 878	return 0;
 879
 880failrd:
 881	/* Disable DMA interrupt */
 882	writel(0x0, reg_base + CQSPI_REG_VERSAL_DMA_DST_I_DIS);
 883
 884	/* Cancel the indirect read */
 885	writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
 886	       reg_base + CQSPI_REG_INDIRECTRD);
 887
 888	dma_unmap_single(dev, dma_addr, bytes_to_dma, DMA_FROM_DEVICE);
 889
 890	reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
 891	reg &= ~CQSPI_REG_CONFIG_DMA_MASK;
 892	writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
 893
 894	zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id, PM_OSPI_MUX_SEL_LINEAR);
 895
 896	return ret;
 897}
 898
 899static int cqspi_write_setup(struct cqspi_flash_pdata *f_pdata,
 900			     const struct spi_mem_op *op)
 901{
 902	unsigned int reg;
 903	int ret;
 904	struct cqspi_st *cqspi = f_pdata->cqspi;
 905	void __iomem *reg_base = cqspi->iobase;
 906	u8 opcode;
 907
 908	ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_WRITE_LSB);
 909	if (ret)
 910		return ret;
 911
 912	if (op->cmd.dtr)
 913		opcode = op->cmd.opcode >> 8;
 914	else
 915		opcode = op->cmd.opcode;
 916
 917	/* Set opcode. */
 918	reg = opcode << CQSPI_REG_WR_INSTR_OPCODE_LSB;
 919	reg |= CQSPI_OP_WIDTH(op->data) << CQSPI_REG_WR_INSTR_TYPE_DATA_LSB;
 920	reg |= CQSPI_OP_WIDTH(op->addr) << CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB;
 921	writel(reg, reg_base + CQSPI_REG_WR_INSTR);
 922	reg = cqspi_calc_rdreg(op);
 923	writel(reg, reg_base + CQSPI_REG_RD_INSTR);
 924
 925	/*
 926	 * SPI NAND flashes require the address of the status register to be
 927	 * passed in the Read SR command. Also, some SPI NOR flashes like the
 928	 * cypress Semper flash expect a 4-byte dummy address in the Read SR
 929	 * command in DTR mode.
 930	 *
 931	 * But this controller does not support address phase in the Read SR
 932	 * command when doing auto-HW polling. So, disable write completion
 933	 * polling on the controller's side. spinand and spi-nor will take
 934	 * care of polling the status register.
 935	 */
 936	if (cqspi->wr_completion) {
 937		reg = readl(reg_base + CQSPI_REG_WR_COMPLETION_CTRL);
 938		reg |= CQSPI_REG_WR_DISABLE_AUTO_POLL;
 939		writel(reg, reg_base + CQSPI_REG_WR_COMPLETION_CTRL);
 940	}
 941
 942	reg = readl(reg_base + CQSPI_REG_SIZE);
 943	reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
 944	reg |= (op->addr.nbytes - 1);
 945	writel(reg, reg_base + CQSPI_REG_SIZE);
 946	return 0;
 947}
 948
 949static int cqspi_indirect_write_execute(struct cqspi_flash_pdata *f_pdata,
 950					loff_t to_addr, const u8 *txbuf,
 951					const size_t n_tx)
 952{
 953	struct cqspi_st *cqspi = f_pdata->cqspi;
 954	struct device *dev = &cqspi->pdev->dev;
 955	void __iomem *reg_base = cqspi->iobase;
 956	unsigned int remaining = n_tx;
 957	unsigned int write_bytes;
 958	int ret;
 959
 960	writel(to_addr, reg_base + CQSPI_REG_INDIRECTWRSTARTADDR);
 961	writel(remaining, reg_base + CQSPI_REG_INDIRECTWRBYTES);
 962
 963	/* Clear all interrupts. */
 964	writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
 965
 966	writel(CQSPI_IRQ_MASK_WR, reg_base + CQSPI_REG_IRQMASK);
 967
 968	reinit_completion(&cqspi->transfer_complete);
 969	writel(CQSPI_REG_INDIRECTWR_START_MASK,
 970	       reg_base + CQSPI_REG_INDIRECTWR);
 971	/*
 972	 * As per 66AK2G02 TRM SPRUHY8F section 11.15.5.3 Indirect Access
 973	 * Controller programming sequence, couple of cycles of
 974	 * QSPI_REF_CLK delay is required for the above bit to
 975	 * be internally synchronized by the QSPI module. Provide 5
 976	 * cycles of delay.
 977	 */
 978	if (cqspi->wr_delay)
 979		ndelay(cqspi->wr_delay);
 980
 981	while (remaining > 0) {
 982		size_t write_words, mod_bytes;
 983
 984		write_bytes = remaining;
 985		write_words = write_bytes / 4;
 986		mod_bytes = write_bytes % 4;
 987		/* Write 4 bytes at a time then single bytes. */
 988		if (write_words) {
 989			iowrite32_rep(cqspi->ahb_base, txbuf, write_words);
 990			txbuf += (write_words * 4);
 991		}
 992		if (mod_bytes) {
 993			unsigned int temp = 0xFFFFFFFF;
 994
 995			memcpy(&temp, txbuf, mod_bytes);
 996			iowrite32(temp, cqspi->ahb_base);
 997			txbuf += mod_bytes;
 998		}
 999
1000		if (!wait_for_completion_timeout(&cqspi->transfer_complete,
1001						 msecs_to_jiffies(CQSPI_TIMEOUT_MS))) {
1002			dev_err(dev, "Indirect write timeout\n");
1003			ret = -ETIMEDOUT;
1004			goto failwr;
1005		}
1006
1007		remaining -= write_bytes;
1008
1009		if (remaining > 0)
1010			reinit_completion(&cqspi->transfer_complete);
1011	}
1012
1013	/* Check indirect done status */
1014	ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTWR,
1015				 CQSPI_REG_INDIRECTWR_DONE_MASK, 0);
1016	if (ret) {
1017		dev_err(dev, "Indirect write completion error (%i)\n", ret);
1018		goto failwr;
1019	}
1020
1021	/* Disable interrupt. */
1022	writel(0, reg_base + CQSPI_REG_IRQMASK);
1023
1024	/* Clear indirect completion status */
1025	writel(CQSPI_REG_INDIRECTWR_DONE_MASK, reg_base + CQSPI_REG_INDIRECTWR);
1026
1027	cqspi_wait_idle(cqspi);
1028
1029	return 0;
1030
1031failwr:
1032	/* Disable interrupt. */
1033	writel(0, reg_base + CQSPI_REG_IRQMASK);
1034
1035	/* Cancel the indirect write */
1036	writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
1037	       reg_base + CQSPI_REG_INDIRECTWR);
1038	return ret;
1039}
1040
1041static void cqspi_chipselect(struct cqspi_flash_pdata *f_pdata)
1042{
1043	struct cqspi_st *cqspi = f_pdata->cqspi;
1044	void __iomem *reg_base = cqspi->iobase;
1045	unsigned int chip_select = f_pdata->cs;
1046	unsigned int reg;
1047
1048	reg = readl(reg_base + CQSPI_REG_CONFIG);
1049	if (cqspi->is_decoded_cs) {
1050		reg |= CQSPI_REG_CONFIG_DECODE_MASK;
1051	} else {
1052		reg &= ~CQSPI_REG_CONFIG_DECODE_MASK;
1053
1054		/* Convert CS if without decoder.
1055		 * CS0 to 4b'1110
1056		 * CS1 to 4b'1101
1057		 * CS2 to 4b'1011
1058		 * CS3 to 4b'0111
1059		 */
1060		chip_select = 0xF & ~(1 << chip_select);
1061	}
1062
1063	reg &= ~(CQSPI_REG_CONFIG_CHIPSELECT_MASK
1064		 << CQSPI_REG_CONFIG_CHIPSELECT_LSB);
1065	reg |= (chip_select & CQSPI_REG_CONFIG_CHIPSELECT_MASK)
1066	    << CQSPI_REG_CONFIG_CHIPSELECT_LSB;
1067	writel(reg, reg_base + CQSPI_REG_CONFIG);
1068}
1069
1070static unsigned int calculate_ticks_for_ns(const unsigned int ref_clk_hz,
1071					   const unsigned int ns_val)
1072{
1073	unsigned int ticks;
1074
1075	ticks = ref_clk_hz / 1000;	/* kHz */
1076	ticks = DIV_ROUND_UP(ticks * ns_val, 1000000);
1077
1078	return ticks;
1079}
1080
1081static void cqspi_delay(struct cqspi_flash_pdata *f_pdata)
1082{
1083	struct cqspi_st *cqspi = f_pdata->cqspi;
1084	void __iomem *iobase = cqspi->iobase;
1085	const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
1086	unsigned int tshsl, tchsh, tslch, tsd2d;
1087	unsigned int reg;
1088	unsigned int tsclk;
1089
1090	/* calculate the number of ref ticks for one sclk tick */
1091	tsclk = DIV_ROUND_UP(ref_clk_hz, cqspi->sclk);
1092
1093	tshsl = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tshsl_ns);
1094	/* this particular value must be at least one sclk */
1095	if (tshsl < tsclk)
1096		tshsl = tsclk;
1097
1098	tchsh = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tchsh_ns);
1099	tslch = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tslch_ns);
1100	tsd2d = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tsd2d_ns);
1101
1102	reg = (tshsl & CQSPI_REG_DELAY_TSHSL_MASK)
1103	       << CQSPI_REG_DELAY_TSHSL_LSB;
1104	reg |= (tchsh & CQSPI_REG_DELAY_TCHSH_MASK)
1105		<< CQSPI_REG_DELAY_TCHSH_LSB;
1106	reg |= (tslch & CQSPI_REG_DELAY_TSLCH_MASK)
1107		<< CQSPI_REG_DELAY_TSLCH_LSB;
1108	reg |= (tsd2d & CQSPI_REG_DELAY_TSD2D_MASK)
1109		<< CQSPI_REG_DELAY_TSD2D_LSB;
1110	writel(reg, iobase + CQSPI_REG_DELAY);
1111}
1112
1113static void cqspi_config_baudrate_div(struct cqspi_st *cqspi)
1114{
1115	const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
1116	void __iomem *reg_base = cqspi->iobase;
1117	u32 reg, div;
1118
1119	/* Recalculate the baudrate divisor based on QSPI specification. */
1120	div = DIV_ROUND_UP(ref_clk_hz, 2 * cqspi->sclk) - 1;
1121
1122	/* Maximum baud divisor */
1123	if (div > CQSPI_REG_CONFIG_BAUD_MASK) {
1124		div = CQSPI_REG_CONFIG_BAUD_MASK;
1125		dev_warn(&cqspi->pdev->dev,
1126			"Unable to adjust clock <= %d hz. Reduced to %d hz\n",
1127			cqspi->sclk, ref_clk_hz/((div+1)*2));
1128	}
1129
1130	reg = readl(reg_base + CQSPI_REG_CONFIG);
1131	reg &= ~(CQSPI_REG_CONFIG_BAUD_MASK << CQSPI_REG_CONFIG_BAUD_LSB);
1132	reg |= (div & CQSPI_REG_CONFIG_BAUD_MASK) << CQSPI_REG_CONFIG_BAUD_LSB;
1133	writel(reg, reg_base + CQSPI_REG_CONFIG);
1134}
1135
1136static void cqspi_readdata_capture(struct cqspi_st *cqspi,
1137				   const bool bypass,
1138				   const unsigned int delay)
1139{
1140	void __iomem *reg_base = cqspi->iobase;
1141	unsigned int reg;
1142
1143	reg = readl(reg_base + CQSPI_REG_READCAPTURE);
1144
1145	if (bypass)
1146		reg |= (1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
1147	else
1148		reg &= ~(1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
1149
1150	reg &= ~(CQSPI_REG_READCAPTURE_DELAY_MASK
1151		 << CQSPI_REG_READCAPTURE_DELAY_LSB);
1152
1153	reg |= (delay & CQSPI_REG_READCAPTURE_DELAY_MASK)
1154		<< CQSPI_REG_READCAPTURE_DELAY_LSB;
1155
1156	writel(reg, reg_base + CQSPI_REG_READCAPTURE);
1157}
1158
1159static void cqspi_controller_enable(struct cqspi_st *cqspi, bool enable)
1160{
1161	void __iomem *reg_base = cqspi->iobase;
1162	unsigned int reg;
1163
1164	reg = readl(reg_base + CQSPI_REG_CONFIG);
1165
1166	if (enable)
1167		reg |= CQSPI_REG_CONFIG_ENABLE_MASK;
1168	else
1169		reg &= ~CQSPI_REG_CONFIG_ENABLE_MASK;
1170
1171	writel(reg, reg_base + CQSPI_REG_CONFIG);
1172}
1173
1174static void cqspi_configure(struct cqspi_flash_pdata *f_pdata,
1175			    unsigned long sclk)
1176{
1177	struct cqspi_st *cqspi = f_pdata->cqspi;
1178	int switch_cs = (cqspi->current_cs != f_pdata->cs);
1179	int switch_ck = (cqspi->sclk != sclk);
1180
1181	if (switch_cs || switch_ck)
1182		cqspi_controller_enable(cqspi, 0);
1183
1184	/* Switch chip select. */
1185	if (switch_cs) {
1186		cqspi->current_cs = f_pdata->cs;
1187		cqspi_chipselect(f_pdata);
1188	}
1189
1190	/* Setup baudrate divisor and delays */
1191	if (switch_ck) {
1192		cqspi->sclk = sclk;
1193		cqspi_config_baudrate_div(cqspi);
1194		cqspi_delay(f_pdata);
1195		cqspi_readdata_capture(cqspi, !cqspi->rclk_en,
1196				       f_pdata->read_delay);
1197	}
1198
1199	if (switch_cs || switch_ck)
1200		cqspi_controller_enable(cqspi, 1);
1201}
1202
1203static ssize_t cqspi_write(struct cqspi_flash_pdata *f_pdata,
1204			   const struct spi_mem_op *op)
1205{
1206	struct cqspi_st *cqspi = f_pdata->cqspi;
1207	loff_t to = op->addr.val;
1208	size_t len = op->data.nbytes;
1209	const u_char *buf = op->data.buf.out;
1210	int ret;
1211
1212	ret = cqspi_write_setup(f_pdata, op);
1213	if (ret)
1214		return ret;
1215
1216	/*
1217	 * Some flashes like the Cypress Semper flash expect a dummy 4-byte
1218	 * address (all 0s) with the read status register command in DTR mode.
1219	 * But this controller does not support sending dummy address bytes to
1220	 * the flash when it is polling the write completion register in DTR
1221	 * mode. So, we can not use direct mode when in DTR mode for writing
1222	 * data.
1223	 */
1224	if (!op->cmd.dtr && cqspi->use_direct_mode &&
1225	    ((to + len) <= cqspi->ahb_size)) {
1226		memcpy_toio(cqspi->ahb_base + to, buf, len);
1227		return cqspi_wait_idle(cqspi);
1228	}
1229
1230	return cqspi_indirect_write_execute(f_pdata, to, buf, len);
1231}
1232
1233static void cqspi_rx_dma_callback(void *param)
1234{
1235	struct cqspi_st *cqspi = param;
1236
1237	complete(&cqspi->rx_dma_complete);
1238}
1239
1240static int cqspi_direct_read_execute(struct cqspi_flash_pdata *f_pdata,
1241				     u_char *buf, loff_t from, size_t len)
1242{
1243	struct cqspi_st *cqspi = f_pdata->cqspi;
1244	struct device *dev = &cqspi->pdev->dev;
1245	enum dma_ctrl_flags flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
1246	dma_addr_t dma_src = (dma_addr_t)cqspi->mmap_phys_base + from;
1247	int ret = 0;
1248	struct dma_async_tx_descriptor *tx;
1249	dma_cookie_t cookie;
1250	dma_addr_t dma_dst;
1251	struct device *ddev;
1252
1253	if (!cqspi->rx_chan || !virt_addr_valid(buf)) {
1254		memcpy_fromio(buf, cqspi->ahb_base + from, len);
1255		return 0;
1256	}
1257
1258	ddev = cqspi->rx_chan->device->dev;
1259	dma_dst = dma_map_single(ddev, buf, len, DMA_FROM_DEVICE);
1260	if (dma_mapping_error(ddev, dma_dst)) {
1261		dev_err(dev, "dma mapping failed\n");
1262		return -ENOMEM;
1263	}
1264	tx = dmaengine_prep_dma_memcpy(cqspi->rx_chan, dma_dst, dma_src,
1265				       len, flags);
1266	if (!tx) {
1267		dev_err(dev, "device_prep_dma_memcpy error\n");
1268		ret = -EIO;
1269		goto err_unmap;
1270	}
1271
1272	tx->callback = cqspi_rx_dma_callback;
1273	tx->callback_param = cqspi;
1274	cookie = tx->tx_submit(tx);
1275	reinit_completion(&cqspi->rx_dma_complete);
1276
1277	ret = dma_submit_error(cookie);
1278	if (ret) {
1279		dev_err(dev, "dma_submit_error %d\n", cookie);
1280		ret = -EIO;
1281		goto err_unmap;
1282	}
1283
1284	dma_async_issue_pending(cqspi->rx_chan);
1285	if (!wait_for_completion_timeout(&cqspi->rx_dma_complete,
1286					 msecs_to_jiffies(max_t(size_t, len, 500)))) {
1287		dmaengine_terminate_sync(cqspi->rx_chan);
1288		dev_err(dev, "DMA wait_for_completion_timeout\n");
1289		ret = -ETIMEDOUT;
1290		goto err_unmap;
1291	}
1292
1293err_unmap:
1294	dma_unmap_single(ddev, dma_dst, len, DMA_FROM_DEVICE);
1295
1296	return ret;
1297}
1298
1299static ssize_t cqspi_read(struct cqspi_flash_pdata *f_pdata,
1300			  const struct spi_mem_op *op)
1301{
1302	struct cqspi_st *cqspi = f_pdata->cqspi;
1303	struct device *dev = &cqspi->pdev->dev;
1304	const struct cqspi_driver_platdata *ddata;
1305	loff_t from = op->addr.val;
1306	size_t len = op->data.nbytes;
1307	u_char *buf = op->data.buf.in;
1308	u64 dma_align = (u64)(uintptr_t)buf;
1309	int ret;
1310
1311	ddata = of_device_get_match_data(dev);
1312
1313	ret = cqspi_read_setup(f_pdata, op);
1314	if (ret)
1315		return ret;
1316
1317	if (cqspi->use_direct_mode && ((from + len) <= cqspi->ahb_size))
1318		return cqspi_direct_read_execute(f_pdata, buf, from, len);
1319
1320	if (cqspi->use_dma_read && ddata && ddata->indirect_read_dma &&
1321	    virt_addr_valid(buf) && ((dma_align & CQSPI_DMA_UNALIGN) == 0))
1322		return ddata->indirect_read_dma(f_pdata, buf, from, len);
1323
1324	return cqspi_indirect_read_execute(f_pdata, buf, from, len);
1325}
1326
1327static int cqspi_mem_process(struct spi_mem *mem, const struct spi_mem_op *op)
1328{
1329	struct cqspi_st *cqspi = spi_master_get_devdata(mem->spi->master);
1330	struct cqspi_flash_pdata *f_pdata;
1331
1332	f_pdata = &cqspi->f_pdata[mem->spi->chip_select];
1333	cqspi_configure(f_pdata, mem->spi->max_speed_hz);
1334
1335	if (op->data.dir == SPI_MEM_DATA_IN && op->data.buf.in) {
1336		if (!op->addr.nbytes)
1337			return cqspi_command_read(f_pdata, op);
1338
1339		return cqspi_read(f_pdata, op);
1340	}
1341
1342	if (!op->addr.nbytes || !op->data.buf.out)
1343		return cqspi_command_write(f_pdata, op);
1344
1345	return cqspi_write(f_pdata, op);
1346}
1347
1348static int cqspi_exec_mem_op(struct spi_mem *mem, const struct spi_mem_op *op)
1349{
1350	int ret;
1351
1352	ret = cqspi_mem_process(mem, op);
1353	if (ret)
1354		dev_err(&mem->spi->dev, "operation failed with %d\n", ret);
1355
1356	return ret;
1357}
1358
1359static bool cqspi_supports_mem_op(struct spi_mem *mem,
1360				  const struct spi_mem_op *op)
1361{
1362	bool all_true, all_false;
1363
1364	/*
1365	 * op->dummy.dtr is required for converting nbytes into ncycles.
1366	 * Also, don't check the dtr field of the op phase having zero nbytes.
1367	 */
1368	all_true = op->cmd.dtr &&
1369		   (!op->addr.nbytes || op->addr.dtr) &&
1370		   (!op->dummy.nbytes || op->dummy.dtr) &&
1371		   (!op->data.nbytes || op->data.dtr);
1372
1373	all_false = !op->cmd.dtr && !op->addr.dtr && !op->dummy.dtr &&
1374		    !op->data.dtr;
1375
1376	if (all_true) {
1377		/* Right now we only support 8-8-8 DTR mode. */
1378		if (op->cmd.nbytes && op->cmd.buswidth != 8)
1379			return false;
1380		if (op->addr.nbytes && op->addr.buswidth != 8)
1381			return false;
1382		if (op->data.nbytes && op->data.buswidth != 8)
1383			return false;
1384	} else if (!all_false) {
1385		/* Mixed DTR modes are not supported. */
1386		return false;
1387	}
1388
1389	return spi_mem_default_supports_op(mem, op);
1390}
1391
1392static int cqspi_of_get_flash_pdata(struct platform_device *pdev,
1393				    struct cqspi_flash_pdata *f_pdata,
1394				    struct device_node *np)
1395{
1396	if (of_property_read_u32(np, "cdns,read-delay", &f_pdata->read_delay)) {
1397		dev_err(&pdev->dev, "couldn't determine read-delay\n");
1398		return -ENXIO;
1399	}
1400
1401	if (of_property_read_u32(np, "cdns,tshsl-ns", &f_pdata->tshsl_ns)) {
1402		dev_err(&pdev->dev, "couldn't determine tshsl-ns\n");
1403		return -ENXIO;
1404	}
1405
1406	if (of_property_read_u32(np, "cdns,tsd2d-ns", &f_pdata->tsd2d_ns)) {
1407		dev_err(&pdev->dev, "couldn't determine tsd2d-ns\n");
1408		return -ENXIO;
1409	}
1410
1411	if (of_property_read_u32(np, "cdns,tchsh-ns", &f_pdata->tchsh_ns)) {
1412		dev_err(&pdev->dev, "couldn't determine tchsh-ns\n");
1413		return -ENXIO;
1414	}
1415
1416	if (of_property_read_u32(np, "cdns,tslch-ns", &f_pdata->tslch_ns)) {
1417		dev_err(&pdev->dev, "couldn't determine tslch-ns\n");
1418		return -ENXIO;
1419	}
1420
1421	if (of_property_read_u32(np, "spi-max-frequency", &f_pdata->clk_rate)) {
1422		dev_err(&pdev->dev, "couldn't determine spi-max-frequency\n");
1423		return -ENXIO;
1424	}
1425
1426	return 0;
1427}
1428
1429static int cqspi_of_get_pdata(struct cqspi_st *cqspi)
1430{
1431	struct device *dev = &cqspi->pdev->dev;
1432	struct device_node *np = dev->of_node;
1433	u32 id[2];
1434
1435	cqspi->is_decoded_cs = of_property_read_bool(np, "cdns,is-decoded-cs");
1436
1437	if (of_property_read_u32(np, "cdns,fifo-depth", &cqspi->fifo_depth)) {
1438		dev_err(dev, "couldn't determine fifo-depth\n");
1439		return -ENXIO;
1440	}
1441
1442	if (of_property_read_u32(np, "cdns,fifo-width", &cqspi->fifo_width)) {
1443		dev_err(dev, "couldn't determine fifo-width\n");
1444		return -ENXIO;
1445	}
1446
1447	if (of_property_read_u32(np, "cdns,trigger-address",
1448				 &cqspi->trigger_address)) {
1449		dev_err(dev, "couldn't determine trigger-address\n");
1450		return -ENXIO;
1451	}
1452
1453	if (of_property_read_u32(np, "num-cs", &cqspi->num_chipselect))
1454		cqspi->num_chipselect = CQSPI_MAX_CHIPSELECT;
1455
1456	cqspi->rclk_en = of_property_read_bool(np, "cdns,rclk-en");
1457
1458	if (!of_property_read_u32_array(np, "power-domains", id,
1459					ARRAY_SIZE(id)))
1460		cqspi->pd_dev_id = id[1];
1461
1462	return 0;
1463}
1464
1465static void cqspi_controller_init(struct cqspi_st *cqspi)
1466{
1467	u32 reg;
1468
1469	cqspi_controller_enable(cqspi, 0);
1470
1471	/* Configure the remap address register, no remap */
1472	writel(0, cqspi->iobase + CQSPI_REG_REMAP);
1473
1474	/* Disable all interrupts. */
1475	writel(0, cqspi->iobase + CQSPI_REG_IRQMASK);
1476
1477	/* Configure the SRAM split to 1:1 . */
1478	writel(cqspi->fifo_depth / 2, cqspi->iobase + CQSPI_REG_SRAMPARTITION);
1479
1480	/* Load indirect trigger address. */
1481	writel(cqspi->trigger_address,
1482	       cqspi->iobase + CQSPI_REG_INDIRECTTRIGGER);
1483
1484	/* Program read watermark -- 1/2 of the FIFO. */
1485	writel(cqspi->fifo_depth * cqspi->fifo_width / 2,
1486	       cqspi->iobase + CQSPI_REG_INDIRECTRDWATERMARK);
1487	/* Program write watermark -- 1/8 of the FIFO. */
1488	writel(cqspi->fifo_depth * cqspi->fifo_width / 8,
1489	       cqspi->iobase + CQSPI_REG_INDIRECTWRWATERMARK);
1490
1491	/* Disable direct access controller */
1492	if (!cqspi->use_direct_mode) {
1493		reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
1494		reg &= ~CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL;
1495		writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
1496	}
1497
1498	/* Enable DMA interface */
1499	if (cqspi->use_dma_read) {
1500		reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
1501		reg |= CQSPI_REG_CONFIG_DMA_MASK;
1502		writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
1503	}
1504
1505	cqspi_controller_enable(cqspi, 1);
1506}
1507
1508static int cqspi_request_mmap_dma(struct cqspi_st *cqspi)
1509{
1510	dma_cap_mask_t mask;
1511
1512	dma_cap_zero(mask);
1513	dma_cap_set(DMA_MEMCPY, mask);
1514
1515	cqspi->rx_chan = dma_request_chan_by_mask(&mask);
1516	if (IS_ERR(cqspi->rx_chan)) {
1517		int ret = PTR_ERR(cqspi->rx_chan);
1518
1519		cqspi->rx_chan = NULL;
1520		return dev_err_probe(&cqspi->pdev->dev, ret, "No Rx DMA available\n");
1521	}
1522	init_completion(&cqspi->rx_dma_complete);
1523
1524	return 0;
1525}
1526
1527static const char *cqspi_get_name(struct spi_mem *mem)
1528{
1529	struct cqspi_st *cqspi = spi_master_get_devdata(mem->spi->master);
1530	struct device *dev = &cqspi->pdev->dev;
1531
1532	return devm_kasprintf(dev, GFP_KERNEL, "%s.%d", dev_name(dev), mem->spi->chip_select);
1533}
1534
1535static const struct spi_controller_mem_ops cqspi_mem_ops = {
1536	.exec_op = cqspi_exec_mem_op,
1537	.get_name = cqspi_get_name,
1538	.supports_op = cqspi_supports_mem_op,
1539};
1540
1541static const struct spi_controller_mem_caps cqspi_mem_caps = {
1542	.dtr = true,
1543};
1544
1545static int cqspi_setup_flash(struct cqspi_st *cqspi)
1546{
1547	struct platform_device *pdev = cqspi->pdev;
1548	struct device *dev = &pdev->dev;
1549	struct device_node *np = dev->of_node;
1550	struct cqspi_flash_pdata *f_pdata;
1551	unsigned int cs;
1552	int ret;
1553
1554	/* Get flash device data */
1555	for_each_available_child_of_node(dev->of_node, np) {
1556		ret = of_property_read_u32(np, "reg", &cs);
1557		if (ret) {
1558			dev_err(dev, "Couldn't determine chip select.\n");
1559			of_node_put(np);
1560			return ret;
1561		}
1562
1563		if (cs >= CQSPI_MAX_CHIPSELECT) {
1564			dev_err(dev, "Chip select %d out of range.\n", cs);
1565			of_node_put(np);
1566			return -EINVAL;
1567		}
1568
1569		f_pdata = &cqspi->f_pdata[cs];
1570		f_pdata->cqspi = cqspi;
1571		f_pdata->cs = cs;
1572
1573		ret = cqspi_of_get_flash_pdata(pdev, f_pdata, np);
1574		if (ret) {
1575			of_node_put(np);
1576			return ret;
1577		}
1578	}
1579
1580	return 0;
1581}
1582
1583static int cqspi_probe(struct platform_device *pdev)
1584{
1585	const struct cqspi_driver_platdata *ddata;
1586	struct reset_control *rstc, *rstc_ocp;
1587	struct device *dev = &pdev->dev;
1588	struct spi_master *master;
1589	struct resource *res_ahb;
1590	struct cqspi_st *cqspi;
1591	int ret;
1592	int irq;
1593
1594	master = devm_spi_alloc_master(&pdev->dev, sizeof(*cqspi));
1595	if (!master) {
1596		dev_err(&pdev->dev, "spi_alloc_master failed\n");
1597		return -ENOMEM;
1598	}
1599	master->mode_bits = SPI_RX_QUAD | SPI_RX_DUAL;
1600	master->mem_ops = &cqspi_mem_ops;
1601	master->mem_caps = &cqspi_mem_caps;
1602	master->dev.of_node = pdev->dev.of_node;
1603
1604	cqspi = spi_master_get_devdata(master);
1605
1606	cqspi->pdev = pdev;
1607	cqspi->master = master;
1608	platform_set_drvdata(pdev, cqspi);
1609
1610	/* Obtain configuration from OF. */
1611	ret = cqspi_of_get_pdata(cqspi);
1612	if (ret) {
1613		dev_err(dev, "Cannot get mandatory OF data.\n");
1614		return -ENODEV;
1615	}
1616
1617	/* Obtain QSPI clock. */
1618	cqspi->clk = devm_clk_get(dev, NULL);
1619	if (IS_ERR(cqspi->clk)) {
1620		dev_err(dev, "Cannot claim QSPI clock.\n");
1621		ret = PTR_ERR(cqspi->clk);
1622		return ret;
1623	}
1624
1625	/* Obtain and remap controller address. */
1626	cqspi->iobase = devm_platform_ioremap_resource(pdev, 0);
1627	if (IS_ERR(cqspi->iobase)) {
1628		dev_err(dev, "Cannot remap controller address.\n");
1629		ret = PTR_ERR(cqspi->iobase);
1630		return ret;
1631	}
1632
1633	/* Obtain and remap AHB address. */
1634	cqspi->ahb_base = devm_platform_get_and_ioremap_resource(pdev, 1, &res_ahb);
1635	if (IS_ERR(cqspi->ahb_base)) {
1636		dev_err(dev, "Cannot remap AHB address.\n");
1637		ret = PTR_ERR(cqspi->ahb_base);
1638		return ret;
1639	}
1640	cqspi->mmap_phys_base = (dma_addr_t)res_ahb->start;
1641	cqspi->ahb_size = resource_size(res_ahb);
1642
1643	init_completion(&cqspi->transfer_complete);
1644
1645	/* Obtain IRQ line. */
1646	irq = platform_get_irq(pdev, 0);
1647	if (irq < 0)
1648		return -ENXIO;
1649
1650	pm_runtime_enable(dev);
1651	ret = pm_runtime_resume_and_get(dev);
1652	if (ret < 0)
1653		goto probe_pm_failed;
1654
1655	ret = clk_prepare_enable(cqspi->clk);
1656	if (ret) {
1657		dev_err(dev, "Cannot enable QSPI clock.\n");
1658		goto probe_clk_failed;
1659	}
1660
1661	/* Obtain QSPI reset control */
1662	rstc = devm_reset_control_get_optional_exclusive(dev, "qspi");
1663	if (IS_ERR(rstc)) {
1664		ret = PTR_ERR(rstc);
1665		dev_err(dev, "Cannot get QSPI reset.\n");
1666		goto probe_reset_failed;
1667	}
1668
1669	rstc_ocp = devm_reset_control_get_optional_exclusive(dev, "qspi-ocp");
1670	if (IS_ERR(rstc_ocp)) {
1671		ret = PTR_ERR(rstc_ocp);
1672		dev_err(dev, "Cannot get QSPI OCP reset.\n");
1673		goto probe_reset_failed;
1674	}
1675
1676	reset_control_assert(rstc);
1677	reset_control_deassert(rstc);
1678
1679	reset_control_assert(rstc_ocp);
1680	reset_control_deassert(rstc_ocp);
1681
1682	cqspi->master_ref_clk_hz = clk_get_rate(cqspi->clk);
1683	master->max_speed_hz = cqspi->master_ref_clk_hz;
1684
1685	/* write completion is supported by default */
1686	cqspi->wr_completion = true;
1687
1688	ddata  = of_device_get_match_data(dev);
1689	if (ddata) {
1690		if (ddata->quirks & CQSPI_NEEDS_WR_DELAY)
1691			cqspi->wr_delay = 50 * DIV_ROUND_UP(NSEC_PER_SEC,
1692						cqspi->master_ref_clk_hz);
1693		if (ddata->hwcaps_mask & CQSPI_SUPPORTS_OCTAL)
1694			master->mode_bits |= SPI_RX_OCTAL | SPI_TX_OCTAL;
1695		if (!(ddata->quirks & CQSPI_DISABLE_DAC_MODE))
1696			cqspi->use_direct_mode = true;
1697		if (ddata->quirks & CQSPI_SUPPORT_EXTERNAL_DMA)
1698			cqspi->use_dma_read = true;
1699		if (ddata->quirks & CQSPI_NO_SUPPORT_WR_COMPLETION)
1700			cqspi->wr_completion = false;
1701		if (ddata->quirks & CQSPI_SLOW_SRAM)
1702			cqspi->slow_sram = true;
1703
1704		if (of_device_is_compatible(pdev->dev.of_node,
1705					    "xlnx,versal-ospi-1.0"))
1706			dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1707	}
1708
1709	ret = devm_request_irq(dev, irq, cqspi_irq_handler, 0,
1710			       pdev->name, cqspi);
1711	if (ret) {
1712		dev_err(dev, "Cannot request IRQ.\n");
1713		goto probe_reset_failed;
1714	}
1715
1716	cqspi_wait_idle(cqspi);
1717	cqspi_controller_init(cqspi);
1718	cqspi->current_cs = -1;
1719	cqspi->sclk = 0;
1720
1721	master->num_chipselect = cqspi->num_chipselect;
1722
1723	ret = cqspi_setup_flash(cqspi);
1724	if (ret) {
1725		dev_err(dev, "failed to setup flash parameters %d\n", ret);
1726		goto probe_setup_failed;
1727	}
1728
1729	if (cqspi->use_direct_mode) {
1730		ret = cqspi_request_mmap_dma(cqspi);
1731		if (ret == -EPROBE_DEFER)
1732			goto probe_setup_failed;
1733	}
1734
1735	ret = spi_register_master(master);
1736	if (ret) {
1737		dev_err(&pdev->dev, "failed to register SPI ctlr %d\n", ret);
1738		goto probe_setup_failed;
1739	}
1740
1741	return 0;
1742probe_setup_failed:
1743	cqspi_controller_enable(cqspi, 0);
1744probe_reset_failed:
1745	clk_disable_unprepare(cqspi->clk);
1746probe_clk_failed:
1747	pm_runtime_put_sync(dev);
1748probe_pm_failed:
1749	pm_runtime_disable(dev);
1750	return ret;
1751}
1752
1753static int cqspi_remove(struct platform_device *pdev)
1754{
1755	struct cqspi_st *cqspi = platform_get_drvdata(pdev);
1756
1757	spi_unregister_master(cqspi->master);
1758	cqspi_controller_enable(cqspi, 0);
1759
1760	if (cqspi->rx_chan)
1761		dma_release_channel(cqspi->rx_chan);
1762
1763	clk_disable_unprepare(cqspi->clk);
1764
1765	pm_runtime_put_sync(&pdev->dev);
1766	pm_runtime_disable(&pdev->dev);
1767
1768	return 0;
1769}
1770
1771#ifdef CONFIG_PM_SLEEP
1772static int cqspi_suspend(struct device *dev)
1773{
1774	struct cqspi_st *cqspi = dev_get_drvdata(dev);
1775
1776	cqspi_controller_enable(cqspi, 0);
1777	return 0;
1778}
1779
1780static int cqspi_resume(struct device *dev)
1781{
1782	struct cqspi_st *cqspi = dev_get_drvdata(dev);
1783
1784	cqspi_controller_enable(cqspi, 1);
1785	return 0;
1786}
1787
1788static const struct dev_pm_ops cqspi__dev_pm_ops = {
1789	.suspend = cqspi_suspend,
1790	.resume = cqspi_resume,
1791};
1792
1793#define CQSPI_DEV_PM_OPS	(&cqspi__dev_pm_ops)
1794#else
1795#define CQSPI_DEV_PM_OPS	NULL
1796#endif
1797
1798static const struct cqspi_driver_platdata cdns_qspi = {
1799	.quirks = CQSPI_DISABLE_DAC_MODE,
1800};
1801
1802static const struct cqspi_driver_platdata k2g_qspi = {
1803	.quirks = CQSPI_NEEDS_WR_DELAY,
1804};
1805
1806static const struct cqspi_driver_platdata am654_ospi = {
1807	.hwcaps_mask = CQSPI_SUPPORTS_OCTAL,
1808	.quirks = CQSPI_NEEDS_WR_DELAY,
1809};
1810
1811static const struct cqspi_driver_platdata intel_lgm_qspi = {
1812	.quirks = CQSPI_DISABLE_DAC_MODE,
1813};
1814
1815static const struct cqspi_driver_platdata socfpga_qspi = {
1816	.quirks = CQSPI_DISABLE_DAC_MODE
1817			| CQSPI_NO_SUPPORT_WR_COMPLETION
1818			| CQSPI_SLOW_SRAM,
1819};
1820
1821static const struct cqspi_driver_platdata versal_ospi = {
1822	.hwcaps_mask = CQSPI_SUPPORTS_OCTAL,
1823	.quirks = CQSPI_DISABLE_DAC_MODE | CQSPI_SUPPORT_EXTERNAL_DMA,
1824	.indirect_read_dma = cqspi_versal_indirect_read_dma,
1825	.get_dma_status = cqspi_get_versal_dma_status,
1826};
1827
1828static const struct of_device_id cqspi_dt_ids[] = {
1829	{
1830		.compatible = "cdns,qspi-nor",
1831		.data = &cdns_qspi,
1832	},
1833	{
1834		.compatible = "ti,k2g-qspi",
1835		.data = &k2g_qspi,
1836	},
1837	{
1838		.compatible = "ti,am654-ospi",
1839		.data = &am654_ospi,
1840	},
1841	{
1842		.compatible = "intel,lgm-qspi",
1843		.data = &intel_lgm_qspi,
1844	},
1845	{
1846		.compatible = "xlnx,versal-ospi-1.0",
1847		.data = &versal_ospi,
1848	},
1849	{
1850		.compatible = "intel,socfpga-qspi",
1851		.data = &socfpga_qspi,
1852	},
1853	{ /* end of table */ }
1854};
1855
1856MODULE_DEVICE_TABLE(of, cqspi_dt_ids);
1857
1858static struct platform_driver cqspi_platform_driver = {
1859	.probe = cqspi_probe,
1860	.remove = cqspi_remove,
1861	.driver = {
1862		.name = CQSPI_NAME,
1863		.pm = CQSPI_DEV_PM_OPS,
1864		.of_match_table = cqspi_dt_ids,
1865	},
1866};
1867
1868module_platform_driver(cqspi_platform_driver);
1869
1870MODULE_DESCRIPTION("Cadence QSPI Controller Driver");
1871MODULE_LICENSE("GPL v2");
1872MODULE_ALIAS("platform:" CQSPI_NAME);
1873MODULE_AUTHOR("Ley Foon Tan <lftan@altera.com>");
1874MODULE_AUTHOR("Graham Moore <grmoore@opensource.altera.com>");
1875MODULE_AUTHOR("Vadivel Murugan R <vadivel.muruganx.ramuthevar@intel.com>");
1876MODULE_AUTHOR("Vignesh Raghavendra <vigneshr@ti.com>");
1877MODULE_AUTHOR("Pratyush Yadav <p.yadav@ti.com>");