Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.5.6.
   1// SPDX-License-Identifier: GPL-2.0-only
   2//
   3// Driver for Cadence QSPI Controller
   4//
   5// Copyright Altera Corporation (C) 2012-2014. All rights reserved.
   6// Copyright Intel Corporation (C) 2019-2020. All rights reserved.
   7// Copyright (C) 2020 Texas Instruments Incorporated - http://www.ti.com
   8
   9#include <linux/clk.h>
  10#include <linux/completion.h>
  11#include <linux/delay.h>
  12#include <linux/dma-mapping.h>
  13#include <linux/dmaengine.h>
  14#include <linux/err.h>
  15#include <linux/errno.h>
  16#include <linux/interrupt.h>
  17#include <linux/io.h>
  18#include <linux/iopoll.h>
  19#include <linux/jiffies.h>
  20#include <linux/kernel.h>
  21#include <linux/module.h>
  22#include <linux/of_device.h>
  23#include <linux/of.h>
  24#include <linux/platform_device.h>
  25#include <linux/pm_runtime.h>
  26#include <linux/reset.h>
  27#include <linux/sched.h>
  28#include <linux/spi/spi.h>
  29#include <linux/spi/spi-mem.h>
  30#include <linux/timer.h>
  31
  32#define CQSPI_NAME			"cadence-qspi"
  33#define CQSPI_MAX_CHIPSELECT		16
  34
  35/* Quirks */
  36#define CQSPI_NEEDS_WR_DELAY		BIT(0)
  37#define CQSPI_DISABLE_DAC_MODE		BIT(1)
  38
  39/* Capabilities */
  40#define CQSPI_SUPPORTS_OCTAL		BIT(0)
  41
  42struct cqspi_st;
  43
  44struct cqspi_flash_pdata {
  45	struct cqspi_st	*cqspi;
  46	u32		clk_rate;
  47	u32		read_delay;
  48	u32		tshsl_ns;
  49	u32		tsd2d_ns;
  50	u32		tchsh_ns;
  51	u32		tslch_ns;
  52	u8		inst_width;
  53	u8		addr_width;
  54	u8		data_width;
  55	u8		cs;
  56};
  57
  58struct cqspi_st {
  59	struct platform_device	*pdev;
  60
  61	struct clk		*clk;
  62	unsigned int		sclk;
  63
  64	void __iomem		*iobase;
  65	void __iomem		*ahb_base;
  66	resource_size_t		ahb_size;
  67	struct completion	transfer_complete;
  68
  69	struct dma_chan		*rx_chan;
  70	struct completion	rx_dma_complete;
  71	dma_addr_t		mmap_phys_base;
  72
  73	int			current_cs;
  74	unsigned long		master_ref_clk_hz;
  75	bool			is_decoded_cs;
  76	u32			fifo_depth;
  77	u32			fifo_width;
  78	bool			rclk_en;
  79	u32			trigger_address;
  80	u32			wr_delay;
  81	bool			use_direct_mode;
  82	struct cqspi_flash_pdata f_pdata[CQSPI_MAX_CHIPSELECT];
  83};
  84
  85struct cqspi_driver_platdata {
  86	u32 hwcaps_mask;
  87	u8 quirks;
  88};
  89
  90/* Operation timeout value */
  91#define CQSPI_TIMEOUT_MS			500
  92#define CQSPI_READ_TIMEOUT_MS			10
  93
  94/* Instruction type */
  95#define CQSPI_INST_TYPE_SINGLE			0
  96#define CQSPI_INST_TYPE_DUAL			1
  97#define CQSPI_INST_TYPE_QUAD			2
  98#define CQSPI_INST_TYPE_OCTAL			3
  99
 100#define CQSPI_DUMMY_CLKS_PER_BYTE		8
 101#define CQSPI_DUMMY_BYTES_MAX			4
 102#define CQSPI_DUMMY_CLKS_MAX			31
 103
 104#define CQSPI_STIG_DATA_LEN_MAX			8
 105
 106/* Register map */
 107#define CQSPI_REG_CONFIG			0x00
 108#define CQSPI_REG_CONFIG_ENABLE_MASK		BIT(0)
 109#define CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL	BIT(7)
 110#define CQSPI_REG_CONFIG_DECODE_MASK		BIT(9)
 111#define CQSPI_REG_CONFIG_CHIPSELECT_LSB		10
 112#define CQSPI_REG_CONFIG_DMA_MASK		BIT(15)
 113#define CQSPI_REG_CONFIG_BAUD_LSB		19
 114#define CQSPI_REG_CONFIG_IDLE_LSB		31
 115#define CQSPI_REG_CONFIG_CHIPSELECT_MASK	0xF
 116#define CQSPI_REG_CONFIG_BAUD_MASK		0xF
 117
 118#define CQSPI_REG_RD_INSTR			0x04
 119#define CQSPI_REG_RD_INSTR_OPCODE_LSB		0
 120#define CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB	8
 121#define CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB	12
 122#define CQSPI_REG_RD_INSTR_TYPE_DATA_LSB	16
 123#define CQSPI_REG_RD_INSTR_MODE_EN_LSB		20
 124#define CQSPI_REG_RD_INSTR_DUMMY_LSB		24
 125#define CQSPI_REG_RD_INSTR_TYPE_INSTR_MASK	0x3
 126#define CQSPI_REG_RD_INSTR_TYPE_ADDR_MASK	0x3
 127#define CQSPI_REG_RD_INSTR_TYPE_DATA_MASK	0x3
 128#define CQSPI_REG_RD_INSTR_DUMMY_MASK		0x1F
 129
 130#define CQSPI_REG_WR_INSTR			0x08
 131#define CQSPI_REG_WR_INSTR_OPCODE_LSB		0
 132#define CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB	12
 133#define CQSPI_REG_WR_INSTR_TYPE_DATA_LSB	16
 134
 135#define CQSPI_REG_DELAY				0x0C
 136#define CQSPI_REG_DELAY_TSLCH_LSB		0
 137#define CQSPI_REG_DELAY_TCHSH_LSB		8
 138#define CQSPI_REG_DELAY_TSD2D_LSB		16
 139#define CQSPI_REG_DELAY_TSHSL_LSB		24
 140#define CQSPI_REG_DELAY_TSLCH_MASK		0xFF
 141#define CQSPI_REG_DELAY_TCHSH_MASK		0xFF
 142#define CQSPI_REG_DELAY_TSD2D_MASK		0xFF
 143#define CQSPI_REG_DELAY_TSHSL_MASK		0xFF
 144
 145#define CQSPI_REG_READCAPTURE			0x10
 146#define CQSPI_REG_READCAPTURE_BYPASS_LSB	0
 147#define CQSPI_REG_READCAPTURE_DELAY_LSB		1
 148#define CQSPI_REG_READCAPTURE_DELAY_MASK	0xF
 149
 150#define CQSPI_REG_SIZE				0x14
 151#define CQSPI_REG_SIZE_ADDRESS_LSB		0
 152#define CQSPI_REG_SIZE_PAGE_LSB			4
 153#define CQSPI_REG_SIZE_BLOCK_LSB		16
 154#define CQSPI_REG_SIZE_ADDRESS_MASK		0xF
 155#define CQSPI_REG_SIZE_PAGE_MASK		0xFFF
 156#define CQSPI_REG_SIZE_BLOCK_MASK		0x3F
 157
 158#define CQSPI_REG_SRAMPARTITION			0x18
 159#define CQSPI_REG_INDIRECTTRIGGER		0x1C
 160
 161#define CQSPI_REG_DMA				0x20
 162#define CQSPI_REG_DMA_SINGLE_LSB		0
 163#define CQSPI_REG_DMA_BURST_LSB			8
 164#define CQSPI_REG_DMA_SINGLE_MASK		0xFF
 165#define CQSPI_REG_DMA_BURST_MASK		0xFF
 166
 167#define CQSPI_REG_REMAP				0x24
 168#define CQSPI_REG_MODE_BIT			0x28
 169
 170#define CQSPI_REG_SDRAMLEVEL			0x2C
 171#define CQSPI_REG_SDRAMLEVEL_RD_LSB		0
 172#define CQSPI_REG_SDRAMLEVEL_WR_LSB		16
 173#define CQSPI_REG_SDRAMLEVEL_RD_MASK		0xFFFF
 174#define CQSPI_REG_SDRAMLEVEL_WR_MASK		0xFFFF
 175
 176#define CQSPI_REG_IRQSTATUS			0x40
 177#define CQSPI_REG_IRQMASK			0x44
 178
 179#define CQSPI_REG_INDIRECTRD			0x60
 180#define CQSPI_REG_INDIRECTRD_START_MASK		BIT(0)
 181#define CQSPI_REG_INDIRECTRD_CANCEL_MASK	BIT(1)
 182#define CQSPI_REG_INDIRECTRD_DONE_MASK		BIT(5)
 183
 184#define CQSPI_REG_INDIRECTRDWATERMARK		0x64
 185#define CQSPI_REG_INDIRECTRDSTARTADDR		0x68
 186#define CQSPI_REG_INDIRECTRDBYTES		0x6C
 187
 188#define CQSPI_REG_CMDCTRL			0x90
 189#define CQSPI_REG_CMDCTRL_EXECUTE_MASK		BIT(0)
 190#define CQSPI_REG_CMDCTRL_INPROGRESS_MASK	BIT(1)
 191#define CQSPI_REG_CMDCTRL_WR_BYTES_LSB		12
 192#define CQSPI_REG_CMDCTRL_WR_EN_LSB		15
 193#define CQSPI_REG_CMDCTRL_ADD_BYTES_LSB		16
 194#define CQSPI_REG_CMDCTRL_ADDR_EN_LSB		19
 195#define CQSPI_REG_CMDCTRL_RD_BYTES_LSB		20
 196#define CQSPI_REG_CMDCTRL_RD_EN_LSB		23
 197#define CQSPI_REG_CMDCTRL_OPCODE_LSB		24
 198#define CQSPI_REG_CMDCTRL_WR_BYTES_MASK		0x7
 199#define CQSPI_REG_CMDCTRL_ADD_BYTES_MASK	0x3
 200#define CQSPI_REG_CMDCTRL_RD_BYTES_MASK		0x7
 201
 202#define CQSPI_REG_INDIRECTWR			0x70
 203#define CQSPI_REG_INDIRECTWR_START_MASK		BIT(0)
 204#define CQSPI_REG_INDIRECTWR_CANCEL_MASK	BIT(1)
 205#define CQSPI_REG_INDIRECTWR_DONE_MASK		BIT(5)
 206
 207#define CQSPI_REG_INDIRECTWRWATERMARK		0x74
 208#define CQSPI_REG_INDIRECTWRSTARTADDR		0x78
 209#define CQSPI_REG_INDIRECTWRBYTES		0x7C
 210
 211#define CQSPI_REG_CMDADDRESS			0x94
 212#define CQSPI_REG_CMDREADDATALOWER		0xA0
 213#define CQSPI_REG_CMDREADDATAUPPER		0xA4
 214#define CQSPI_REG_CMDWRITEDATALOWER		0xA8
 215#define CQSPI_REG_CMDWRITEDATAUPPER		0xAC
 216
 217/* Interrupt status bits */
 218#define CQSPI_REG_IRQ_MODE_ERR			BIT(0)
 219#define CQSPI_REG_IRQ_UNDERFLOW			BIT(1)
 220#define CQSPI_REG_IRQ_IND_COMP			BIT(2)
 221#define CQSPI_REG_IRQ_IND_RD_REJECT		BIT(3)
 222#define CQSPI_REG_IRQ_WR_PROTECTED_ERR		BIT(4)
 223#define CQSPI_REG_IRQ_ILLEGAL_AHB_ERR		BIT(5)
 224#define CQSPI_REG_IRQ_WATERMARK			BIT(6)
 225#define CQSPI_REG_IRQ_IND_SRAM_FULL		BIT(12)
 226
 227#define CQSPI_IRQ_MASK_RD		(CQSPI_REG_IRQ_WATERMARK	| \
 228					 CQSPI_REG_IRQ_IND_SRAM_FULL	| \
 229					 CQSPI_REG_IRQ_IND_COMP)
 230
 231#define CQSPI_IRQ_MASK_WR		(CQSPI_REG_IRQ_IND_COMP		| \
 232					 CQSPI_REG_IRQ_WATERMARK	| \
 233					 CQSPI_REG_IRQ_UNDERFLOW)
 234
 235#define CQSPI_IRQ_STATUS_MASK		0x1FFFF
 236
 237static int cqspi_wait_for_bit(void __iomem *reg, const u32 mask, bool clr)
 238{
 239	u32 val;
 240
 241	return readl_relaxed_poll_timeout(reg, val,
 242					  (((clr ? ~val : val) & mask) == mask),
 243					  10, CQSPI_TIMEOUT_MS * 1000);
 244}
 245
 246static bool cqspi_is_idle(struct cqspi_st *cqspi)
 247{
 248	u32 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
 249
 250	return reg & (1 << CQSPI_REG_CONFIG_IDLE_LSB);
 251}
 252
 253static u32 cqspi_get_rd_sram_level(struct cqspi_st *cqspi)
 254{
 255	u32 reg = readl(cqspi->iobase + CQSPI_REG_SDRAMLEVEL);
 256
 257	reg >>= CQSPI_REG_SDRAMLEVEL_RD_LSB;
 258	return reg & CQSPI_REG_SDRAMLEVEL_RD_MASK;
 259}
 260
 261static irqreturn_t cqspi_irq_handler(int this_irq, void *dev)
 262{
 263	struct cqspi_st *cqspi = dev;
 264	unsigned int irq_status;
 265
 266	/* Read interrupt status */
 267	irq_status = readl(cqspi->iobase + CQSPI_REG_IRQSTATUS);
 268
 269	/* Clear interrupt */
 270	writel(irq_status, cqspi->iobase + CQSPI_REG_IRQSTATUS);
 271
 272	irq_status &= CQSPI_IRQ_MASK_RD | CQSPI_IRQ_MASK_WR;
 273
 274	if (irq_status)
 275		complete(&cqspi->transfer_complete);
 276
 277	return IRQ_HANDLED;
 278}
 279
 280static unsigned int cqspi_calc_rdreg(struct cqspi_flash_pdata *f_pdata)
 281{
 282	u32 rdreg = 0;
 283
 284	rdreg |= f_pdata->inst_width << CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB;
 285	rdreg |= f_pdata->addr_width << CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB;
 286	rdreg |= f_pdata->data_width << CQSPI_REG_RD_INSTR_TYPE_DATA_LSB;
 287
 288	return rdreg;
 289}
 290
 291static int cqspi_wait_idle(struct cqspi_st *cqspi)
 292{
 293	const unsigned int poll_idle_retry = 3;
 294	unsigned int count = 0;
 295	unsigned long timeout;
 296
 297	timeout = jiffies + msecs_to_jiffies(CQSPI_TIMEOUT_MS);
 298	while (1) {
 299		/*
 300		 * Read few times in succession to ensure the controller
 301		 * is indeed idle, that is, the bit does not transition
 302		 * low again.
 303		 */
 304		if (cqspi_is_idle(cqspi))
 305			count++;
 306		else
 307			count = 0;
 308
 309		if (count >= poll_idle_retry)
 310			return 0;
 311
 312		if (time_after(jiffies, timeout)) {
 313			/* Timeout, in busy mode. */
 314			dev_err(&cqspi->pdev->dev,
 315				"QSPI is still busy after %dms timeout.\n",
 316				CQSPI_TIMEOUT_MS);
 317			return -ETIMEDOUT;
 318		}
 319
 320		cpu_relax();
 321	}
 322}
 323
 324static int cqspi_exec_flash_cmd(struct cqspi_st *cqspi, unsigned int reg)
 325{
 326	void __iomem *reg_base = cqspi->iobase;
 327	int ret;
 328
 329	/* Write the CMDCTRL without start execution. */
 330	writel(reg, reg_base + CQSPI_REG_CMDCTRL);
 331	/* Start execute */
 332	reg |= CQSPI_REG_CMDCTRL_EXECUTE_MASK;
 333	writel(reg, reg_base + CQSPI_REG_CMDCTRL);
 334
 335	/* Polling for completion. */
 336	ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_CMDCTRL,
 337				 CQSPI_REG_CMDCTRL_INPROGRESS_MASK, 1);
 338	if (ret) {
 339		dev_err(&cqspi->pdev->dev,
 340			"Flash command execution timed out.\n");
 341		return ret;
 342	}
 343
 344	/* Polling QSPI idle status. */
 345	return cqspi_wait_idle(cqspi);
 346}
 347
 348static int cqspi_command_read(struct cqspi_flash_pdata *f_pdata,
 349			      const struct spi_mem_op *op)
 350{
 351	struct cqspi_st *cqspi = f_pdata->cqspi;
 352	void __iomem *reg_base = cqspi->iobase;
 353	u8 *rxbuf = op->data.buf.in;
 354	u8 opcode = op->cmd.opcode;
 355	size_t n_rx = op->data.nbytes;
 356	unsigned int rdreg;
 357	unsigned int reg;
 358	size_t read_len;
 359	int status;
 360
 361	if (!n_rx || n_rx > CQSPI_STIG_DATA_LEN_MAX || !rxbuf) {
 362		dev_err(&cqspi->pdev->dev,
 363			"Invalid input argument, len %zu rxbuf 0x%p\n",
 364			n_rx, rxbuf);
 365		return -EINVAL;
 366	}
 367
 368	reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
 369
 370	rdreg = cqspi_calc_rdreg(f_pdata);
 371	writel(rdreg, reg_base + CQSPI_REG_RD_INSTR);
 372
 373	reg |= (0x1 << CQSPI_REG_CMDCTRL_RD_EN_LSB);
 374
 375	/* 0 means 1 byte. */
 376	reg |= (((n_rx - 1) & CQSPI_REG_CMDCTRL_RD_BYTES_MASK)
 377		<< CQSPI_REG_CMDCTRL_RD_BYTES_LSB);
 378	status = cqspi_exec_flash_cmd(cqspi, reg);
 379	if (status)
 380		return status;
 381
 382	reg = readl(reg_base + CQSPI_REG_CMDREADDATALOWER);
 383
 384	/* Put the read value into rx_buf */
 385	read_len = (n_rx > 4) ? 4 : n_rx;
 386	memcpy(rxbuf, &reg, read_len);
 387	rxbuf += read_len;
 388
 389	if (n_rx > 4) {
 390		reg = readl(reg_base + CQSPI_REG_CMDREADDATAUPPER);
 391
 392		read_len = n_rx - read_len;
 393		memcpy(rxbuf, &reg, read_len);
 394	}
 395
 396	return 0;
 397}
 398
 399static int cqspi_command_write(struct cqspi_flash_pdata *f_pdata,
 400			       const struct spi_mem_op *op)
 401{
 402	struct cqspi_st *cqspi = f_pdata->cqspi;
 403	void __iomem *reg_base = cqspi->iobase;
 404	const u8 opcode = op->cmd.opcode;
 405	const u8 *txbuf = op->data.buf.out;
 406	size_t n_tx = op->data.nbytes;
 407	unsigned int reg;
 408	unsigned int data;
 409	size_t write_len;
 410
 411	if (n_tx > CQSPI_STIG_DATA_LEN_MAX || (n_tx && !txbuf)) {
 412		dev_err(&cqspi->pdev->dev,
 413			"Invalid input argument, cmdlen %zu txbuf 0x%p\n",
 414			n_tx, txbuf);
 415		return -EINVAL;
 416	}
 417
 418	reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
 419
 420	if (op->addr.nbytes) {
 421		reg |= (0x1 << CQSPI_REG_CMDCTRL_ADDR_EN_LSB);
 422		reg |= ((op->addr.nbytes - 1) &
 423			CQSPI_REG_CMDCTRL_ADD_BYTES_MASK)
 424			<< CQSPI_REG_CMDCTRL_ADD_BYTES_LSB;
 425
 426		writel(op->addr.val, reg_base + CQSPI_REG_CMDADDRESS);
 427	}
 428
 429	if (n_tx) {
 430		reg |= (0x1 << CQSPI_REG_CMDCTRL_WR_EN_LSB);
 431		reg |= ((n_tx - 1) & CQSPI_REG_CMDCTRL_WR_BYTES_MASK)
 432			<< CQSPI_REG_CMDCTRL_WR_BYTES_LSB;
 433		data = 0;
 434		write_len = (n_tx > 4) ? 4 : n_tx;
 435		memcpy(&data, txbuf, write_len);
 436		txbuf += write_len;
 437		writel(data, reg_base + CQSPI_REG_CMDWRITEDATALOWER);
 438
 439		if (n_tx > 4) {
 440			data = 0;
 441			write_len = n_tx - 4;
 442			memcpy(&data, txbuf, write_len);
 443			writel(data, reg_base + CQSPI_REG_CMDWRITEDATAUPPER);
 444		}
 445	}
 446
 447	return cqspi_exec_flash_cmd(cqspi, reg);
 448}
 449
 450static int cqspi_read_setup(struct cqspi_flash_pdata *f_pdata,
 451			    const struct spi_mem_op *op)
 452{
 453	struct cqspi_st *cqspi = f_pdata->cqspi;
 454	void __iomem *reg_base = cqspi->iobase;
 455	unsigned int dummy_clk = 0;
 456	unsigned int reg;
 457
 458	reg = op->cmd.opcode << CQSPI_REG_RD_INSTR_OPCODE_LSB;
 459	reg |= cqspi_calc_rdreg(f_pdata);
 460
 461	/* Setup dummy clock cycles */
 462	dummy_clk = op->dummy.nbytes * 8;
 463	if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
 464		dummy_clk = CQSPI_DUMMY_CLKS_MAX;
 465
 466	if (dummy_clk)
 467		reg |= (dummy_clk & CQSPI_REG_RD_INSTR_DUMMY_MASK)
 468		       << CQSPI_REG_RD_INSTR_DUMMY_LSB;
 469
 470	writel(reg, reg_base + CQSPI_REG_RD_INSTR);
 471
 472	/* Set address width */
 473	reg = readl(reg_base + CQSPI_REG_SIZE);
 474	reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
 475	reg |= (op->addr.nbytes - 1);
 476	writel(reg, reg_base + CQSPI_REG_SIZE);
 477	return 0;
 478}
 479
 480static int cqspi_indirect_read_execute(struct cqspi_flash_pdata *f_pdata,
 481				       u8 *rxbuf, loff_t from_addr,
 482				       const size_t n_rx)
 483{
 484	struct cqspi_st *cqspi = f_pdata->cqspi;
 485	struct device *dev = &cqspi->pdev->dev;
 486	void __iomem *reg_base = cqspi->iobase;
 487	void __iomem *ahb_base = cqspi->ahb_base;
 488	unsigned int remaining = n_rx;
 489	unsigned int mod_bytes = n_rx % 4;
 490	unsigned int bytes_to_read = 0;
 491	u8 *rxbuf_end = rxbuf + n_rx;
 492	int ret = 0;
 493
 494	writel(from_addr, reg_base + CQSPI_REG_INDIRECTRDSTARTADDR);
 495	writel(remaining, reg_base + CQSPI_REG_INDIRECTRDBYTES);
 496
 497	/* Clear all interrupts. */
 498	writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
 499
 500	writel(CQSPI_IRQ_MASK_RD, reg_base + CQSPI_REG_IRQMASK);
 501
 502	reinit_completion(&cqspi->transfer_complete);
 503	writel(CQSPI_REG_INDIRECTRD_START_MASK,
 504	       reg_base + CQSPI_REG_INDIRECTRD);
 505
 506	while (remaining > 0) {
 507		if (!wait_for_completion_timeout(&cqspi->transfer_complete,
 508						 msecs_to_jiffies(CQSPI_READ_TIMEOUT_MS)))
 509			ret = -ETIMEDOUT;
 510
 511		bytes_to_read = cqspi_get_rd_sram_level(cqspi);
 512
 513		if (ret && bytes_to_read == 0) {
 514			dev_err(dev, "Indirect read timeout, no bytes\n");
 515			goto failrd;
 516		}
 517
 518		while (bytes_to_read != 0) {
 519			unsigned int word_remain = round_down(remaining, 4);
 520
 521			bytes_to_read *= cqspi->fifo_width;
 522			bytes_to_read = bytes_to_read > remaining ?
 523					remaining : bytes_to_read;
 524			bytes_to_read = round_down(bytes_to_read, 4);
 525			/* Read 4 byte word chunks then single bytes */
 526			if (bytes_to_read) {
 527				ioread32_rep(ahb_base, rxbuf,
 528					     (bytes_to_read / 4));
 529			} else if (!word_remain && mod_bytes) {
 530				unsigned int temp = ioread32(ahb_base);
 531
 532				bytes_to_read = mod_bytes;
 533				memcpy(rxbuf, &temp, min((unsigned int)
 534							 (rxbuf_end - rxbuf),
 535							 bytes_to_read));
 536			}
 537			rxbuf += bytes_to_read;
 538			remaining -= bytes_to_read;
 539			bytes_to_read = cqspi_get_rd_sram_level(cqspi);
 540		}
 541
 542		if (remaining > 0)
 543			reinit_completion(&cqspi->transfer_complete);
 544	}
 545
 546	/* Check indirect done status */
 547	ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTRD,
 548				 CQSPI_REG_INDIRECTRD_DONE_MASK, 0);
 549	if (ret) {
 550		dev_err(dev, "Indirect read completion error (%i)\n", ret);
 551		goto failrd;
 552	}
 553
 554	/* Disable interrupt */
 555	writel(0, reg_base + CQSPI_REG_IRQMASK);
 556
 557	/* Clear indirect completion status */
 558	writel(CQSPI_REG_INDIRECTRD_DONE_MASK, reg_base + CQSPI_REG_INDIRECTRD);
 559
 560	return 0;
 561
 562failrd:
 563	/* Disable interrupt */
 564	writel(0, reg_base + CQSPI_REG_IRQMASK);
 565
 566	/* Cancel the indirect read */
 567	writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
 568	       reg_base + CQSPI_REG_INDIRECTRD);
 569	return ret;
 570}
 571
 572static int cqspi_write_setup(struct cqspi_flash_pdata *f_pdata,
 573			     const struct spi_mem_op *op)
 574{
 575	unsigned int reg;
 576	struct cqspi_st *cqspi = f_pdata->cqspi;
 577	void __iomem *reg_base = cqspi->iobase;
 578
 579	/* Set opcode. */
 580	reg = op->cmd.opcode << CQSPI_REG_WR_INSTR_OPCODE_LSB;
 581	writel(reg, reg_base + CQSPI_REG_WR_INSTR);
 582	reg = cqspi_calc_rdreg(f_pdata);
 583	writel(reg, reg_base + CQSPI_REG_RD_INSTR);
 584
 585	reg = readl(reg_base + CQSPI_REG_SIZE);
 586	reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
 587	reg |= (op->addr.nbytes - 1);
 588	writel(reg, reg_base + CQSPI_REG_SIZE);
 589	return 0;
 590}
 591
 592static int cqspi_indirect_write_execute(struct cqspi_flash_pdata *f_pdata,
 593					loff_t to_addr, const u8 *txbuf,
 594					const size_t n_tx)
 595{
 596	struct cqspi_st *cqspi = f_pdata->cqspi;
 597	struct device *dev = &cqspi->pdev->dev;
 598	void __iomem *reg_base = cqspi->iobase;
 599	unsigned int remaining = n_tx;
 600	unsigned int write_bytes;
 601	int ret;
 602
 603	writel(to_addr, reg_base + CQSPI_REG_INDIRECTWRSTARTADDR);
 604	writel(remaining, reg_base + CQSPI_REG_INDIRECTWRBYTES);
 605
 606	/* Clear all interrupts. */
 607	writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
 608
 609	writel(CQSPI_IRQ_MASK_WR, reg_base + CQSPI_REG_IRQMASK);
 610
 611	reinit_completion(&cqspi->transfer_complete);
 612	writel(CQSPI_REG_INDIRECTWR_START_MASK,
 613	       reg_base + CQSPI_REG_INDIRECTWR);
 614	/*
 615	 * As per 66AK2G02 TRM SPRUHY8F section 11.15.5.3 Indirect Access
 616	 * Controller programming sequence, couple of cycles of
 617	 * QSPI_REF_CLK delay is required for the above bit to
 618	 * be internally synchronized by the QSPI module. Provide 5
 619	 * cycles of delay.
 620	 */
 621	if (cqspi->wr_delay)
 622		ndelay(cqspi->wr_delay);
 623
 624	while (remaining > 0) {
 625		size_t write_words, mod_bytes;
 626
 627		write_bytes = remaining;
 628		write_words = write_bytes / 4;
 629		mod_bytes = write_bytes % 4;
 630		/* Write 4 bytes at a time then single bytes. */
 631		if (write_words) {
 632			iowrite32_rep(cqspi->ahb_base, txbuf, write_words);
 633			txbuf += (write_words * 4);
 634		}
 635		if (mod_bytes) {
 636			unsigned int temp = 0xFFFFFFFF;
 637
 638			memcpy(&temp, txbuf, mod_bytes);
 639			iowrite32(temp, cqspi->ahb_base);
 640			txbuf += mod_bytes;
 641		}
 642
 643		if (!wait_for_completion_timeout(&cqspi->transfer_complete,
 644						 msecs_to_jiffies(CQSPI_TIMEOUT_MS))) {
 645			dev_err(dev, "Indirect write timeout\n");
 646			ret = -ETIMEDOUT;
 647			goto failwr;
 648		}
 649
 650		remaining -= write_bytes;
 651
 652		if (remaining > 0)
 653			reinit_completion(&cqspi->transfer_complete);
 654	}
 655
 656	/* Check indirect done status */
 657	ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTWR,
 658				 CQSPI_REG_INDIRECTWR_DONE_MASK, 0);
 659	if (ret) {
 660		dev_err(dev, "Indirect write completion error (%i)\n", ret);
 661		goto failwr;
 662	}
 663
 664	/* Disable interrupt. */
 665	writel(0, reg_base + CQSPI_REG_IRQMASK);
 666
 667	/* Clear indirect completion status */
 668	writel(CQSPI_REG_INDIRECTWR_DONE_MASK, reg_base + CQSPI_REG_INDIRECTWR);
 669
 670	cqspi_wait_idle(cqspi);
 671
 672	return 0;
 673
 674failwr:
 675	/* Disable interrupt. */
 676	writel(0, reg_base + CQSPI_REG_IRQMASK);
 677
 678	/* Cancel the indirect write */
 679	writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
 680	       reg_base + CQSPI_REG_INDIRECTWR);
 681	return ret;
 682}
 683
 684static void cqspi_chipselect(struct cqspi_flash_pdata *f_pdata)
 685{
 686	struct cqspi_st *cqspi = f_pdata->cqspi;
 687	void __iomem *reg_base = cqspi->iobase;
 688	unsigned int chip_select = f_pdata->cs;
 689	unsigned int reg;
 690
 691	reg = readl(reg_base + CQSPI_REG_CONFIG);
 692	if (cqspi->is_decoded_cs) {
 693		reg |= CQSPI_REG_CONFIG_DECODE_MASK;
 694	} else {
 695		reg &= ~CQSPI_REG_CONFIG_DECODE_MASK;
 696
 697		/* Convert CS if without decoder.
 698		 * CS0 to 4b'1110
 699		 * CS1 to 4b'1101
 700		 * CS2 to 4b'1011
 701		 * CS3 to 4b'0111
 702		 */
 703		chip_select = 0xF & ~(1 << chip_select);
 704	}
 705
 706	reg &= ~(CQSPI_REG_CONFIG_CHIPSELECT_MASK
 707		 << CQSPI_REG_CONFIG_CHIPSELECT_LSB);
 708	reg |= (chip_select & CQSPI_REG_CONFIG_CHIPSELECT_MASK)
 709	    << CQSPI_REG_CONFIG_CHIPSELECT_LSB;
 710	writel(reg, reg_base + CQSPI_REG_CONFIG);
 711}
 712
 713static unsigned int calculate_ticks_for_ns(const unsigned int ref_clk_hz,
 714					   const unsigned int ns_val)
 715{
 716	unsigned int ticks;
 717
 718	ticks = ref_clk_hz / 1000;	/* kHz */
 719	ticks = DIV_ROUND_UP(ticks * ns_val, 1000000);
 720
 721	return ticks;
 722}
 723
 724static void cqspi_delay(struct cqspi_flash_pdata *f_pdata)
 725{
 726	struct cqspi_st *cqspi = f_pdata->cqspi;
 727	void __iomem *iobase = cqspi->iobase;
 728	const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
 729	unsigned int tshsl, tchsh, tslch, tsd2d;
 730	unsigned int reg;
 731	unsigned int tsclk;
 732
 733	/* calculate the number of ref ticks for one sclk tick */
 734	tsclk = DIV_ROUND_UP(ref_clk_hz, cqspi->sclk);
 735
 736	tshsl = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tshsl_ns);
 737	/* this particular value must be at least one sclk */
 738	if (tshsl < tsclk)
 739		tshsl = tsclk;
 740
 741	tchsh = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tchsh_ns);
 742	tslch = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tslch_ns);
 743	tsd2d = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tsd2d_ns);
 744
 745	reg = (tshsl & CQSPI_REG_DELAY_TSHSL_MASK)
 746	       << CQSPI_REG_DELAY_TSHSL_LSB;
 747	reg |= (tchsh & CQSPI_REG_DELAY_TCHSH_MASK)
 748		<< CQSPI_REG_DELAY_TCHSH_LSB;
 749	reg |= (tslch & CQSPI_REG_DELAY_TSLCH_MASK)
 750		<< CQSPI_REG_DELAY_TSLCH_LSB;
 751	reg |= (tsd2d & CQSPI_REG_DELAY_TSD2D_MASK)
 752		<< CQSPI_REG_DELAY_TSD2D_LSB;
 753	writel(reg, iobase + CQSPI_REG_DELAY);
 754}
 755
 756static void cqspi_config_baudrate_div(struct cqspi_st *cqspi)
 757{
 758	const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
 759	void __iomem *reg_base = cqspi->iobase;
 760	u32 reg, div;
 761
 762	/* Recalculate the baudrate divisor based on QSPI specification. */
 763	div = DIV_ROUND_UP(ref_clk_hz, 2 * cqspi->sclk) - 1;
 764
 765	reg = readl(reg_base + CQSPI_REG_CONFIG);
 766	reg &= ~(CQSPI_REG_CONFIG_BAUD_MASK << CQSPI_REG_CONFIG_BAUD_LSB);
 767	reg |= (div & CQSPI_REG_CONFIG_BAUD_MASK) << CQSPI_REG_CONFIG_BAUD_LSB;
 768	writel(reg, reg_base + CQSPI_REG_CONFIG);
 769}
 770
 771static void cqspi_readdata_capture(struct cqspi_st *cqspi,
 772				   const bool bypass,
 773				   const unsigned int delay)
 774{
 775	void __iomem *reg_base = cqspi->iobase;
 776	unsigned int reg;
 777
 778	reg = readl(reg_base + CQSPI_REG_READCAPTURE);
 779
 780	if (bypass)
 781		reg |= (1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
 782	else
 783		reg &= ~(1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
 784
 785	reg &= ~(CQSPI_REG_READCAPTURE_DELAY_MASK
 786		 << CQSPI_REG_READCAPTURE_DELAY_LSB);
 787
 788	reg |= (delay & CQSPI_REG_READCAPTURE_DELAY_MASK)
 789		<< CQSPI_REG_READCAPTURE_DELAY_LSB;
 790
 791	writel(reg, reg_base + CQSPI_REG_READCAPTURE);
 792}
 793
 794static void cqspi_controller_enable(struct cqspi_st *cqspi, bool enable)
 795{
 796	void __iomem *reg_base = cqspi->iobase;
 797	unsigned int reg;
 798
 799	reg = readl(reg_base + CQSPI_REG_CONFIG);
 800
 801	if (enable)
 802		reg |= CQSPI_REG_CONFIG_ENABLE_MASK;
 803	else
 804		reg &= ~CQSPI_REG_CONFIG_ENABLE_MASK;
 805
 806	writel(reg, reg_base + CQSPI_REG_CONFIG);
 807}
 808
 809static void cqspi_configure(struct cqspi_flash_pdata *f_pdata,
 810			    unsigned long sclk)
 811{
 812	struct cqspi_st *cqspi = f_pdata->cqspi;
 813	int switch_cs = (cqspi->current_cs != f_pdata->cs);
 814	int switch_ck = (cqspi->sclk != sclk);
 815
 816	if (switch_cs || switch_ck)
 817		cqspi_controller_enable(cqspi, 0);
 818
 819	/* Switch chip select. */
 820	if (switch_cs) {
 821		cqspi->current_cs = f_pdata->cs;
 822		cqspi_chipselect(f_pdata);
 823	}
 824
 825	/* Setup baudrate divisor and delays */
 826	if (switch_ck) {
 827		cqspi->sclk = sclk;
 828		cqspi_config_baudrate_div(cqspi);
 829		cqspi_delay(f_pdata);
 830		cqspi_readdata_capture(cqspi, !cqspi->rclk_en,
 831				       f_pdata->read_delay);
 832	}
 833
 834	if (switch_cs || switch_ck)
 835		cqspi_controller_enable(cqspi, 1);
 836}
 837
 838static int cqspi_set_protocol(struct cqspi_flash_pdata *f_pdata,
 839			      const struct spi_mem_op *op)
 840{
 841	f_pdata->inst_width = CQSPI_INST_TYPE_SINGLE;
 842	f_pdata->addr_width = CQSPI_INST_TYPE_SINGLE;
 843	f_pdata->data_width = CQSPI_INST_TYPE_SINGLE;
 844
 845	if (op->data.dir == SPI_MEM_DATA_IN) {
 846		switch (op->data.buswidth) {
 847		case 1:
 848			f_pdata->data_width = CQSPI_INST_TYPE_SINGLE;
 849			break;
 850		case 2:
 851			f_pdata->data_width = CQSPI_INST_TYPE_DUAL;
 852			break;
 853		case 4:
 854			f_pdata->data_width = CQSPI_INST_TYPE_QUAD;
 855			break;
 856		case 8:
 857			f_pdata->data_width = CQSPI_INST_TYPE_OCTAL;
 858			break;
 859		default:
 860			return -EINVAL;
 861		}
 862	}
 863
 864	return 0;
 865}
 866
 867static ssize_t cqspi_write(struct cqspi_flash_pdata *f_pdata,
 868			   const struct spi_mem_op *op)
 869{
 870	struct cqspi_st *cqspi = f_pdata->cqspi;
 871	loff_t to = op->addr.val;
 872	size_t len = op->data.nbytes;
 873	const u_char *buf = op->data.buf.out;
 874	int ret;
 875
 876	ret = cqspi_set_protocol(f_pdata, op);
 877	if (ret)
 878		return ret;
 879
 880	ret = cqspi_write_setup(f_pdata, op);
 881	if (ret)
 882		return ret;
 883
 884	if (cqspi->use_direct_mode && ((to + len) <= cqspi->ahb_size)) {
 885		memcpy_toio(cqspi->ahb_base + to, buf, len);
 886		return cqspi_wait_idle(cqspi);
 887	}
 888
 889	return cqspi_indirect_write_execute(f_pdata, to, buf, len);
 890}
 891
 892static void cqspi_rx_dma_callback(void *param)
 893{
 894	struct cqspi_st *cqspi = param;
 895
 896	complete(&cqspi->rx_dma_complete);
 897}
 898
 899static int cqspi_direct_read_execute(struct cqspi_flash_pdata *f_pdata,
 900				     u_char *buf, loff_t from, size_t len)
 901{
 902	struct cqspi_st *cqspi = f_pdata->cqspi;
 903	struct device *dev = &cqspi->pdev->dev;
 904	enum dma_ctrl_flags flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
 905	dma_addr_t dma_src = (dma_addr_t)cqspi->mmap_phys_base + from;
 906	int ret = 0;
 907	struct dma_async_tx_descriptor *tx;
 908	dma_cookie_t cookie;
 909	dma_addr_t dma_dst;
 910	struct device *ddev;
 911
 912	if (!cqspi->rx_chan || !virt_addr_valid(buf)) {
 913		memcpy_fromio(buf, cqspi->ahb_base + from, len);
 914		return 0;
 915	}
 916
 917	ddev = cqspi->rx_chan->device->dev;
 918	dma_dst = dma_map_single(ddev, buf, len, DMA_FROM_DEVICE);
 919	if (dma_mapping_error(ddev, dma_dst)) {
 920		dev_err(dev, "dma mapping failed\n");
 921		return -ENOMEM;
 922	}
 923	tx = dmaengine_prep_dma_memcpy(cqspi->rx_chan, dma_dst, dma_src,
 924				       len, flags);
 925	if (!tx) {
 926		dev_err(dev, "device_prep_dma_memcpy error\n");
 927		ret = -EIO;
 928		goto err_unmap;
 929	}
 930
 931	tx->callback = cqspi_rx_dma_callback;
 932	tx->callback_param = cqspi;
 933	cookie = tx->tx_submit(tx);
 934	reinit_completion(&cqspi->rx_dma_complete);
 935
 936	ret = dma_submit_error(cookie);
 937	if (ret) {
 938		dev_err(dev, "dma_submit_error %d\n", cookie);
 939		ret = -EIO;
 940		goto err_unmap;
 941	}
 942
 943	dma_async_issue_pending(cqspi->rx_chan);
 944	if (!wait_for_completion_timeout(&cqspi->rx_dma_complete,
 945					 msecs_to_jiffies(len))) {
 946		dmaengine_terminate_sync(cqspi->rx_chan);
 947		dev_err(dev, "DMA wait_for_completion_timeout\n");
 948		ret = -ETIMEDOUT;
 949		goto err_unmap;
 950	}
 951
 952err_unmap:
 953	dma_unmap_single(ddev, dma_dst, len, DMA_FROM_DEVICE);
 954
 955	return ret;
 956}
 957
 958static ssize_t cqspi_read(struct cqspi_flash_pdata *f_pdata,
 959			  const struct spi_mem_op *op)
 960{
 961	struct cqspi_st *cqspi = f_pdata->cqspi;
 962	loff_t from = op->addr.val;
 963	size_t len = op->data.nbytes;
 964	u_char *buf = op->data.buf.in;
 965	int ret;
 966
 967	ret = cqspi_set_protocol(f_pdata, op);
 968	if (ret)
 969		return ret;
 970
 971	ret = cqspi_read_setup(f_pdata, op);
 972	if (ret)
 973		return ret;
 974
 975	if (cqspi->use_direct_mode && ((from + len) <= cqspi->ahb_size))
 976		return cqspi_direct_read_execute(f_pdata, buf, from, len);
 977
 978	return cqspi_indirect_read_execute(f_pdata, buf, from, len);
 979}
 980
 981static int cqspi_mem_process(struct spi_mem *mem, const struct spi_mem_op *op)
 982{
 983	struct cqspi_st *cqspi = spi_master_get_devdata(mem->spi->master);
 984	struct cqspi_flash_pdata *f_pdata;
 985
 986	f_pdata = &cqspi->f_pdata[mem->spi->chip_select];
 987	cqspi_configure(f_pdata, mem->spi->max_speed_hz);
 988
 989	if (op->data.dir == SPI_MEM_DATA_IN && op->data.buf.in) {
 990		if (!op->addr.nbytes)
 991			return cqspi_command_read(f_pdata, op);
 992
 993		return cqspi_read(f_pdata, op);
 994	}
 995
 996	if (!op->addr.nbytes || !op->data.buf.out)
 997		return cqspi_command_write(f_pdata, op);
 998
 999	return cqspi_write(f_pdata, op);
1000}
1001
1002static int cqspi_exec_mem_op(struct spi_mem *mem, const struct spi_mem_op *op)
1003{
1004	int ret;
1005
1006	ret = cqspi_mem_process(mem, op);
1007	if (ret)
1008		dev_err(&mem->spi->dev, "operation failed with %d\n", ret);
1009
1010	return ret;
1011}
1012
1013static int cqspi_of_get_flash_pdata(struct platform_device *pdev,
1014				    struct cqspi_flash_pdata *f_pdata,
1015				    struct device_node *np)
1016{
1017	if (of_property_read_u32(np, "cdns,read-delay", &f_pdata->read_delay)) {
1018		dev_err(&pdev->dev, "couldn't determine read-delay\n");
1019		return -ENXIO;
1020	}
1021
1022	if (of_property_read_u32(np, "cdns,tshsl-ns", &f_pdata->tshsl_ns)) {
1023		dev_err(&pdev->dev, "couldn't determine tshsl-ns\n");
1024		return -ENXIO;
1025	}
1026
1027	if (of_property_read_u32(np, "cdns,tsd2d-ns", &f_pdata->tsd2d_ns)) {
1028		dev_err(&pdev->dev, "couldn't determine tsd2d-ns\n");
1029		return -ENXIO;
1030	}
1031
1032	if (of_property_read_u32(np, "cdns,tchsh-ns", &f_pdata->tchsh_ns)) {
1033		dev_err(&pdev->dev, "couldn't determine tchsh-ns\n");
1034		return -ENXIO;
1035	}
1036
1037	if (of_property_read_u32(np, "cdns,tslch-ns", &f_pdata->tslch_ns)) {
1038		dev_err(&pdev->dev, "couldn't determine tslch-ns\n");
1039		return -ENXIO;
1040	}
1041
1042	if (of_property_read_u32(np, "spi-max-frequency", &f_pdata->clk_rate)) {
1043		dev_err(&pdev->dev, "couldn't determine spi-max-frequency\n");
1044		return -ENXIO;
1045	}
1046
1047	return 0;
1048}
1049
1050static int cqspi_of_get_pdata(struct cqspi_st *cqspi)
1051{
1052	struct device *dev = &cqspi->pdev->dev;
1053	struct device_node *np = dev->of_node;
1054
1055	cqspi->is_decoded_cs = of_property_read_bool(np, "cdns,is-decoded-cs");
1056
1057	if (of_property_read_u32(np, "cdns,fifo-depth", &cqspi->fifo_depth)) {
1058		dev_err(dev, "couldn't determine fifo-depth\n");
1059		return -ENXIO;
1060	}
1061
1062	if (of_property_read_u32(np, "cdns,fifo-width", &cqspi->fifo_width)) {
1063		dev_err(dev, "couldn't determine fifo-width\n");
1064		return -ENXIO;
1065	}
1066
1067	if (of_property_read_u32(np, "cdns,trigger-address",
1068				 &cqspi->trigger_address)) {
1069		dev_err(dev, "couldn't determine trigger-address\n");
1070		return -ENXIO;
1071	}
1072
1073	cqspi->rclk_en = of_property_read_bool(np, "cdns,rclk-en");
1074
1075	return 0;
1076}
1077
1078static void cqspi_controller_init(struct cqspi_st *cqspi)
1079{
1080	u32 reg;
1081
1082	cqspi_controller_enable(cqspi, 0);
1083
1084	/* Configure the remap address register, no remap */
1085	writel(0, cqspi->iobase + CQSPI_REG_REMAP);
1086
1087	/* Disable all interrupts. */
1088	writel(0, cqspi->iobase + CQSPI_REG_IRQMASK);
1089
1090	/* Configure the SRAM split to 1:1 . */
1091	writel(cqspi->fifo_depth / 2, cqspi->iobase + CQSPI_REG_SRAMPARTITION);
1092
1093	/* Load indirect trigger address. */
1094	writel(cqspi->trigger_address,
1095	       cqspi->iobase + CQSPI_REG_INDIRECTTRIGGER);
1096
1097	/* Program read watermark -- 1/2 of the FIFO. */
1098	writel(cqspi->fifo_depth * cqspi->fifo_width / 2,
1099	       cqspi->iobase + CQSPI_REG_INDIRECTRDWATERMARK);
1100	/* Program write watermark -- 1/8 of the FIFO. */
1101	writel(cqspi->fifo_depth * cqspi->fifo_width / 8,
1102	       cqspi->iobase + CQSPI_REG_INDIRECTWRWATERMARK);
1103
1104	/* Enable Direct Access Controller */
1105	reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
1106	reg |= CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL;
1107	writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
1108
1109	cqspi_controller_enable(cqspi, 1);
1110}
1111
1112static int cqspi_request_mmap_dma(struct cqspi_st *cqspi)
1113{
1114	dma_cap_mask_t mask;
1115
1116	dma_cap_zero(mask);
1117	dma_cap_set(DMA_MEMCPY, mask);
1118
1119	cqspi->rx_chan = dma_request_chan_by_mask(&mask);
1120	if (IS_ERR(cqspi->rx_chan)) {
1121		int ret = PTR_ERR(cqspi->rx_chan);
1122
1123		if (ret != -EPROBE_DEFER)
1124			dev_err(&cqspi->pdev->dev, "No Rx DMA available\n");
1125		cqspi->rx_chan = NULL;
1126		return ret;
1127	}
1128	init_completion(&cqspi->rx_dma_complete);
1129
1130	return 0;
1131}
1132
1133static const char *cqspi_get_name(struct spi_mem *mem)
1134{
1135	struct cqspi_st *cqspi = spi_master_get_devdata(mem->spi->master);
1136	struct device *dev = &cqspi->pdev->dev;
1137
1138	return devm_kasprintf(dev, GFP_KERNEL, "%s.%d", dev_name(dev), mem->spi->chip_select);
1139}
1140
1141static const struct spi_controller_mem_ops cqspi_mem_ops = {
1142	.exec_op = cqspi_exec_mem_op,
1143	.get_name = cqspi_get_name,
1144};
1145
1146static int cqspi_setup_flash(struct cqspi_st *cqspi)
1147{
1148	struct platform_device *pdev = cqspi->pdev;
1149	struct device *dev = &pdev->dev;
1150	struct device_node *np = dev->of_node;
1151	struct cqspi_flash_pdata *f_pdata;
1152	unsigned int cs;
1153	int ret;
1154
1155	/* Get flash device data */
1156	for_each_available_child_of_node(dev->of_node, np) {
1157		ret = of_property_read_u32(np, "reg", &cs);
1158		if (ret) {
1159			dev_err(dev, "Couldn't determine chip select.\n");
1160			return ret;
1161		}
1162
1163		if (cs >= CQSPI_MAX_CHIPSELECT) {
1164			dev_err(dev, "Chip select %d out of range.\n", cs);
1165			return -EINVAL;
1166		}
1167
1168		f_pdata = &cqspi->f_pdata[cs];
1169		f_pdata->cqspi = cqspi;
1170		f_pdata->cs = cs;
1171
1172		ret = cqspi_of_get_flash_pdata(pdev, f_pdata, np);
1173		if (ret)
1174			return ret;
1175	}
1176
1177	return 0;
1178}
1179
1180static int cqspi_probe(struct platform_device *pdev)
1181{
1182	const struct cqspi_driver_platdata *ddata;
1183	struct reset_control *rstc, *rstc_ocp;
1184	struct device *dev = &pdev->dev;
1185	struct spi_master *master;
1186	struct resource *res_ahb;
1187	struct cqspi_st *cqspi;
1188	struct resource *res;
1189	int ret;
1190	int irq;
1191
1192	master = spi_alloc_master(&pdev->dev, sizeof(*cqspi));
1193	if (!master) {
1194		dev_err(&pdev->dev, "spi_alloc_master failed\n");
1195		return -ENOMEM;
1196	}
1197	master->mode_bits = SPI_RX_QUAD | SPI_RX_DUAL;
1198	master->mem_ops = &cqspi_mem_ops;
1199	master->dev.of_node = pdev->dev.of_node;
1200
1201	cqspi = spi_master_get_devdata(master);
1202
1203	cqspi->pdev = pdev;
1204
1205	/* Obtain configuration from OF. */
1206	ret = cqspi_of_get_pdata(cqspi);
1207	if (ret) {
1208		dev_err(dev, "Cannot get mandatory OF data.\n");
1209		ret = -ENODEV;
1210		goto probe_master_put;
1211	}
1212
1213	/* Obtain QSPI clock. */
1214	cqspi->clk = devm_clk_get(dev, NULL);
1215	if (IS_ERR(cqspi->clk)) {
1216		dev_err(dev, "Cannot claim QSPI clock.\n");
1217		ret = PTR_ERR(cqspi->clk);
1218		goto probe_master_put;
1219	}
1220
1221	/* Obtain and remap controller address. */
1222	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1223	cqspi->iobase = devm_ioremap_resource(dev, res);
1224	if (IS_ERR(cqspi->iobase)) {
1225		dev_err(dev, "Cannot remap controller address.\n");
1226		ret = PTR_ERR(cqspi->iobase);
1227		goto probe_master_put;
1228	}
1229
1230	/* Obtain and remap AHB address. */
1231	res_ahb = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1232	cqspi->ahb_base = devm_ioremap_resource(dev, res_ahb);
1233	if (IS_ERR(cqspi->ahb_base)) {
1234		dev_err(dev, "Cannot remap AHB address.\n");
1235		ret = PTR_ERR(cqspi->ahb_base);
1236		goto probe_master_put;
1237	}
1238	cqspi->mmap_phys_base = (dma_addr_t)res_ahb->start;
1239	cqspi->ahb_size = resource_size(res_ahb);
1240
1241	init_completion(&cqspi->transfer_complete);
1242
1243	/* Obtain IRQ line. */
1244	irq = platform_get_irq(pdev, 0);
1245	if (irq < 0) {
1246		ret = -ENXIO;
1247		goto probe_master_put;
1248	}
1249
1250	pm_runtime_enable(dev);
1251	ret = pm_runtime_get_sync(dev);
1252	if (ret < 0) {
1253		pm_runtime_put_noidle(dev);
1254		goto probe_master_put;
1255	}
1256
1257	ret = clk_prepare_enable(cqspi->clk);
1258	if (ret) {
1259		dev_err(dev, "Cannot enable QSPI clock.\n");
1260		goto probe_clk_failed;
1261	}
1262
1263	/* Obtain QSPI reset control */
1264	rstc = devm_reset_control_get_optional_exclusive(dev, "qspi");
1265	if (IS_ERR(rstc)) {
1266		dev_err(dev, "Cannot get QSPI reset.\n");
1267		goto probe_reset_failed;
1268	}
1269
1270	rstc_ocp = devm_reset_control_get_optional_exclusive(dev, "qspi-ocp");
1271	if (IS_ERR(rstc_ocp)) {
1272		dev_err(dev, "Cannot get QSPI OCP reset.\n");
1273		goto probe_reset_failed;
1274	}
1275
1276	reset_control_assert(rstc);
1277	reset_control_deassert(rstc);
1278
1279	reset_control_assert(rstc_ocp);
1280	reset_control_deassert(rstc_ocp);
1281
1282	cqspi->master_ref_clk_hz = clk_get_rate(cqspi->clk);
1283	ddata  = of_device_get_match_data(dev);
1284	if (ddata) {
1285		if (ddata->quirks & CQSPI_NEEDS_WR_DELAY)
1286			cqspi->wr_delay = 5 * DIV_ROUND_UP(NSEC_PER_SEC,
1287						cqspi->master_ref_clk_hz);
1288		if (ddata->hwcaps_mask & CQSPI_SUPPORTS_OCTAL)
1289			master->mode_bits |= SPI_RX_OCTAL;
1290		if (!(ddata->quirks & CQSPI_DISABLE_DAC_MODE))
1291			cqspi->use_direct_mode = true;
1292	}
1293
1294	ret = devm_request_irq(dev, irq, cqspi_irq_handler, 0,
1295			       pdev->name, cqspi);
1296	if (ret) {
1297		dev_err(dev, "Cannot request IRQ.\n");
1298		goto probe_reset_failed;
1299	}
1300
1301	cqspi_wait_idle(cqspi);
1302	cqspi_controller_init(cqspi);
1303	cqspi->current_cs = -1;
1304	cqspi->sclk = 0;
1305
1306	ret = cqspi_setup_flash(cqspi);
1307	if (ret) {
1308		dev_err(dev, "failed to setup flash parameters %d\n", ret);
1309		goto probe_setup_failed;
1310	}
1311
1312	if (cqspi->use_direct_mode) {
1313		ret = cqspi_request_mmap_dma(cqspi);
1314		if (ret == -EPROBE_DEFER)
1315			goto probe_setup_failed;
1316	}
1317
1318	ret = devm_spi_register_master(dev, master);
1319	if (ret) {
1320		dev_err(&pdev->dev, "failed to register SPI ctlr %d\n", ret);
1321		goto probe_setup_failed;
1322	}
1323
1324	return 0;
1325probe_setup_failed:
1326	cqspi_controller_enable(cqspi, 0);
1327probe_reset_failed:
1328	clk_disable_unprepare(cqspi->clk);
1329probe_clk_failed:
1330	pm_runtime_put_sync(dev);
1331	pm_runtime_disable(dev);
1332probe_master_put:
1333	spi_master_put(master);
1334	return ret;
1335}
1336
1337static int cqspi_remove(struct platform_device *pdev)
1338{
1339	struct cqspi_st *cqspi = platform_get_drvdata(pdev);
1340
1341	cqspi_controller_enable(cqspi, 0);
1342
1343	if (cqspi->rx_chan)
1344		dma_release_channel(cqspi->rx_chan);
1345
1346	clk_disable_unprepare(cqspi->clk);
1347
1348	pm_runtime_put_sync(&pdev->dev);
1349	pm_runtime_disable(&pdev->dev);
1350
1351	return 0;
1352}
1353
1354#ifdef CONFIG_PM_SLEEP
1355static int cqspi_suspend(struct device *dev)
1356{
1357	struct cqspi_st *cqspi = dev_get_drvdata(dev);
1358
1359	cqspi_controller_enable(cqspi, 0);
1360	return 0;
1361}
1362
1363static int cqspi_resume(struct device *dev)
1364{
1365	struct cqspi_st *cqspi = dev_get_drvdata(dev);
1366
1367	cqspi_controller_enable(cqspi, 1);
1368	return 0;
1369}
1370
1371static const struct dev_pm_ops cqspi__dev_pm_ops = {
1372	.suspend = cqspi_suspend,
1373	.resume = cqspi_resume,
1374};
1375
1376#define CQSPI_DEV_PM_OPS	(&cqspi__dev_pm_ops)
1377#else
1378#define CQSPI_DEV_PM_OPS	NULL
1379#endif
1380
1381static const struct cqspi_driver_platdata cdns_qspi = {
1382	.quirks = CQSPI_DISABLE_DAC_MODE,
1383};
1384
1385static const struct cqspi_driver_platdata k2g_qspi = {
1386	.quirks = CQSPI_NEEDS_WR_DELAY,
1387};
1388
1389static const struct cqspi_driver_platdata am654_ospi = {
1390	.hwcaps_mask = CQSPI_SUPPORTS_OCTAL,
1391	.quirks = CQSPI_NEEDS_WR_DELAY,
1392};
1393
1394static const struct of_device_id cqspi_dt_ids[] = {
1395	{
1396		.compatible = "cdns,qspi-nor",
1397		.data = &cdns_qspi,
1398	},
1399	{
1400		.compatible = "ti,k2g-qspi",
1401		.data = &k2g_qspi,
1402	},
1403	{
1404		.compatible = "ti,am654-ospi",
1405		.data = &am654_ospi,
1406	},
1407	{ /* end of table */ }
1408};
1409
1410MODULE_DEVICE_TABLE(of, cqspi_dt_ids);
1411
1412static struct platform_driver cqspi_platform_driver = {
1413	.probe = cqspi_probe,
1414	.remove = cqspi_remove,
1415	.driver = {
1416		.name = CQSPI_NAME,
1417		.pm = CQSPI_DEV_PM_OPS,
1418		.of_match_table = cqspi_dt_ids,
1419	},
1420};
1421
1422module_platform_driver(cqspi_platform_driver);
1423
1424MODULE_DESCRIPTION("Cadence QSPI Controller Driver");
1425MODULE_LICENSE("GPL v2");
1426MODULE_ALIAS("platform:" CQSPI_NAME);
1427MODULE_AUTHOR("Ley Foon Tan <lftan@altera.com>");
1428MODULE_AUTHOR("Graham Moore <grmoore@opensource.altera.com>");
1429MODULE_AUTHOR("Vadivel Murugan R <vadivel.muruganx.ramuthevar@intel.com>");
1430MODULE_AUTHOR("Vignesh Raghavendra <vigneshr@ti.com>");