Loading...
Note: File does not exist in v3.5.6.
1// SPDX-License-Identifier: GPL-2.0-only
2//
3// Driver for Cadence QSPI Controller
4//
5// Copyright Altera Corporation (C) 2012-2014. All rights reserved.
6// Copyright Intel Corporation (C) 2019-2020. All rights reserved.
7// Copyright (C) 2020 Texas Instruments Incorporated - http://www.ti.com
8
9#include <linux/clk.h>
10#include <linux/completion.h>
11#include <linux/delay.h>
12#include <linux/dma-mapping.h>
13#include <linux/dmaengine.h>
14#include <linux/err.h>
15#include <linux/errno.h>
16#include <linux/interrupt.h>
17#include <linux/io.h>
18#include <linux/iopoll.h>
19#include <linux/jiffies.h>
20#include <linux/kernel.h>
21#include <linux/module.h>
22#include <linux/of_device.h>
23#include <linux/of.h>
24#include <linux/platform_device.h>
25#include <linux/pm_runtime.h>
26#include <linux/reset.h>
27#include <linux/sched.h>
28#include <linux/spi/spi.h>
29#include <linux/spi/spi-mem.h>
30#include <linux/timer.h>
31
32#define CQSPI_NAME "cadence-qspi"
33#define CQSPI_MAX_CHIPSELECT 16
34
35/* Quirks */
36#define CQSPI_NEEDS_WR_DELAY BIT(0)
37#define CQSPI_DISABLE_DAC_MODE BIT(1)
38
39/* Capabilities */
40#define CQSPI_SUPPORTS_OCTAL BIT(0)
41
42struct cqspi_st;
43
44struct cqspi_flash_pdata {
45 struct cqspi_st *cqspi;
46 u32 clk_rate;
47 u32 read_delay;
48 u32 tshsl_ns;
49 u32 tsd2d_ns;
50 u32 tchsh_ns;
51 u32 tslch_ns;
52 u8 inst_width;
53 u8 addr_width;
54 u8 data_width;
55 u8 cs;
56};
57
58struct cqspi_st {
59 struct platform_device *pdev;
60
61 struct clk *clk;
62 unsigned int sclk;
63
64 void __iomem *iobase;
65 void __iomem *ahb_base;
66 resource_size_t ahb_size;
67 struct completion transfer_complete;
68
69 struct dma_chan *rx_chan;
70 struct completion rx_dma_complete;
71 dma_addr_t mmap_phys_base;
72
73 int current_cs;
74 unsigned long master_ref_clk_hz;
75 bool is_decoded_cs;
76 u32 fifo_depth;
77 u32 fifo_width;
78 bool rclk_en;
79 u32 trigger_address;
80 u32 wr_delay;
81 bool use_direct_mode;
82 struct cqspi_flash_pdata f_pdata[CQSPI_MAX_CHIPSELECT];
83};
84
85struct cqspi_driver_platdata {
86 u32 hwcaps_mask;
87 u8 quirks;
88};
89
90/* Operation timeout value */
91#define CQSPI_TIMEOUT_MS 500
92#define CQSPI_READ_TIMEOUT_MS 10
93
94/* Instruction type */
95#define CQSPI_INST_TYPE_SINGLE 0
96#define CQSPI_INST_TYPE_DUAL 1
97#define CQSPI_INST_TYPE_QUAD 2
98#define CQSPI_INST_TYPE_OCTAL 3
99
100#define CQSPI_DUMMY_CLKS_PER_BYTE 8
101#define CQSPI_DUMMY_BYTES_MAX 4
102#define CQSPI_DUMMY_CLKS_MAX 31
103
104#define CQSPI_STIG_DATA_LEN_MAX 8
105
106/* Register map */
107#define CQSPI_REG_CONFIG 0x00
108#define CQSPI_REG_CONFIG_ENABLE_MASK BIT(0)
109#define CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL BIT(7)
110#define CQSPI_REG_CONFIG_DECODE_MASK BIT(9)
111#define CQSPI_REG_CONFIG_CHIPSELECT_LSB 10
112#define CQSPI_REG_CONFIG_DMA_MASK BIT(15)
113#define CQSPI_REG_CONFIG_BAUD_LSB 19
114#define CQSPI_REG_CONFIG_IDLE_LSB 31
115#define CQSPI_REG_CONFIG_CHIPSELECT_MASK 0xF
116#define CQSPI_REG_CONFIG_BAUD_MASK 0xF
117
118#define CQSPI_REG_RD_INSTR 0x04
119#define CQSPI_REG_RD_INSTR_OPCODE_LSB 0
120#define CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB 8
121#define CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB 12
122#define CQSPI_REG_RD_INSTR_TYPE_DATA_LSB 16
123#define CQSPI_REG_RD_INSTR_MODE_EN_LSB 20
124#define CQSPI_REG_RD_INSTR_DUMMY_LSB 24
125#define CQSPI_REG_RD_INSTR_TYPE_INSTR_MASK 0x3
126#define CQSPI_REG_RD_INSTR_TYPE_ADDR_MASK 0x3
127#define CQSPI_REG_RD_INSTR_TYPE_DATA_MASK 0x3
128#define CQSPI_REG_RD_INSTR_DUMMY_MASK 0x1F
129
130#define CQSPI_REG_WR_INSTR 0x08
131#define CQSPI_REG_WR_INSTR_OPCODE_LSB 0
132#define CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB 12
133#define CQSPI_REG_WR_INSTR_TYPE_DATA_LSB 16
134
135#define CQSPI_REG_DELAY 0x0C
136#define CQSPI_REG_DELAY_TSLCH_LSB 0
137#define CQSPI_REG_DELAY_TCHSH_LSB 8
138#define CQSPI_REG_DELAY_TSD2D_LSB 16
139#define CQSPI_REG_DELAY_TSHSL_LSB 24
140#define CQSPI_REG_DELAY_TSLCH_MASK 0xFF
141#define CQSPI_REG_DELAY_TCHSH_MASK 0xFF
142#define CQSPI_REG_DELAY_TSD2D_MASK 0xFF
143#define CQSPI_REG_DELAY_TSHSL_MASK 0xFF
144
145#define CQSPI_REG_READCAPTURE 0x10
146#define CQSPI_REG_READCAPTURE_BYPASS_LSB 0
147#define CQSPI_REG_READCAPTURE_DELAY_LSB 1
148#define CQSPI_REG_READCAPTURE_DELAY_MASK 0xF
149
150#define CQSPI_REG_SIZE 0x14
151#define CQSPI_REG_SIZE_ADDRESS_LSB 0
152#define CQSPI_REG_SIZE_PAGE_LSB 4
153#define CQSPI_REG_SIZE_BLOCK_LSB 16
154#define CQSPI_REG_SIZE_ADDRESS_MASK 0xF
155#define CQSPI_REG_SIZE_PAGE_MASK 0xFFF
156#define CQSPI_REG_SIZE_BLOCK_MASK 0x3F
157
158#define CQSPI_REG_SRAMPARTITION 0x18
159#define CQSPI_REG_INDIRECTTRIGGER 0x1C
160
161#define CQSPI_REG_DMA 0x20
162#define CQSPI_REG_DMA_SINGLE_LSB 0
163#define CQSPI_REG_DMA_BURST_LSB 8
164#define CQSPI_REG_DMA_SINGLE_MASK 0xFF
165#define CQSPI_REG_DMA_BURST_MASK 0xFF
166
167#define CQSPI_REG_REMAP 0x24
168#define CQSPI_REG_MODE_BIT 0x28
169
170#define CQSPI_REG_SDRAMLEVEL 0x2C
171#define CQSPI_REG_SDRAMLEVEL_RD_LSB 0
172#define CQSPI_REG_SDRAMLEVEL_WR_LSB 16
173#define CQSPI_REG_SDRAMLEVEL_RD_MASK 0xFFFF
174#define CQSPI_REG_SDRAMLEVEL_WR_MASK 0xFFFF
175
176#define CQSPI_REG_IRQSTATUS 0x40
177#define CQSPI_REG_IRQMASK 0x44
178
179#define CQSPI_REG_INDIRECTRD 0x60
180#define CQSPI_REG_INDIRECTRD_START_MASK BIT(0)
181#define CQSPI_REG_INDIRECTRD_CANCEL_MASK BIT(1)
182#define CQSPI_REG_INDIRECTRD_DONE_MASK BIT(5)
183
184#define CQSPI_REG_INDIRECTRDWATERMARK 0x64
185#define CQSPI_REG_INDIRECTRDSTARTADDR 0x68
186#define CQSPI_REG_INDIRECTRDBYTES 0x6C
187
188#define CQSPI_REG_CMDCTRL 0x90
189#define CQSPI_REG_CMDCTRL_EXECUTE_MASK BIT(0)
190#define CQSPI_REG_CMDCTRL_INPROGRESS_MASK BIT(1)
191#define CQSPI_REG_CMDCTRL_WR_BYTES_LSB 12
192#define CQSPI_REG_CMDCTRL_WR_EN_LSB 15
193#define CQSPI_REG_CMDCTRL_ADD_BYTES_LSB 16
194#define CQSPI_REG_CMDCTRL_ADDR_EN_LSB 19
195#define CQSPI_REG_CMDCTRL_RD_BYTES_LSB 20
196#define CQSPI_REG_CMDCTRL_RD_EN_LSB 23
197#define CQSPI_REG_CMDCTRL_OPCODE_LSB 24
198#define CQSPI_REG_CMDCTRL_WR_BYTES_MASK 0x7
199#define CQSPI_REG_CMDCTRL_ADD_BYTES_MASK 0x3
200#define CQSPI_REG_CMDCTRL_RD_BYTES_MASK 0x7
201
202#define CQSPI_REG_INDIRECTWR 0x70
203#define CQSPI_REG_INDIRECTWR_START_MASK BIT(0)
204#define CQSPI_REG_INDIRECTWR_CANCEL_MASK BIT(1)
205#define CQSPI_REG_INDIRECTWR_DONE_MASK BIT(5)
206
207#define CQSPI_REG_INDIRECTWRWATERMARK 0x74
208#define CQSPI_REG_INDIRECTWRSTARTADDR 0x78
209#define CQSPI_REG_INDIRECTWRBYTES 0x7C
210
211#define CQSPI_REG_CMDADDRESS 0x94
212#define CQSPI_REG_CMDREADDATALOWER 0xA0
213#define CQSPI_REG_CMDREADDATAUPPER 0xA4
214#define CQSPI_REG_CMDWRITEDATALOWER 0xA8
215#define CQSPI_REG_CMDWRITEDATAUPPER 0xAC
216
217/* Interrupt status bits */
218#define CQSPI_REG_IRQ_MODE_ERR BIT(0)
219#define CQSPI_REG_IRQ_UNDERFLOW BIT(1)
220#define CQSPI_REG_IRQ_IND_COMP BIT(2)
221#define CQSPI_REG_IRQ_IND_RD_REJECT BIT(3)
222#define CQSPI_REG_IRQ_WR_PROTECTED_ERR BIT(4)
223#define CQSPI_REG_IRQ_ILLEGAL_AHB_ERR BIT(5)
224#define CQSPI_REG_IRQ_WATERMARK BIT(6)
225#define CQSPI_REG_IRQ_IND_SRAM_FULL BIT(12)
226
227#define CQSPI_IRQ_MASK_RD (CQSPI_REG_IRQ_WATERMARK | \
228 CQSPI_REG_IRQ_IND_SRAM_FULL | \
229 CQSPI_REG_IRQ_IND_COMP)
230
231#define CQSPI_IRQ_MASK_WR (CQSPI_REG_IRQ_IND_COMP | \
232 CQSPI_REG_IRQ_WATERMARK | \
233 CQSPI_REG_IRQ_UNDERFLOW)
234
235#define CQSPI_IRQ_STATUS_MASK 0x1FFFF
236
237static int cqspi_wait_for_bit(void __iomem *reg, const u32 mask, bool clr)
238{
239 u32 val;
240
241 return readl_relaxed_poll_timeout(reg, val,
242 (((clr ? ~val : val) & mask) == mask),
243 10, CQSPI_TIMEOUT_MS * 1000);
244}
245
246static bool cqspi_is_idle(struct cqspi_st *cqspi)
247{
248 u32 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
249
250 return reg & (1 << CQSPI_REG_CONFIG_IDLE_LSB);
251}
252
253static u32 cqspi_get_rd_sram_level(struct cqspi_st *cqspi)
254{
255 u32 reg = readl(cqspi->iobase + CQSPI_REG_SDRAMLEVEL);
256
257 reg >>= CQSPI_REG_SDRAMLEVEL_RD_LSB;
258 return reg & CQSPI_REG_SDRAMLEVEL_RD_MASK;
259}
260
261static irqreturn_t cqspi_irq_handler(int this_irq, void *dev)
262{
263 struct cqspi_st *cqspi = dev;
264 unsigned int irq_status;
265
266 /* Read interrupt status */
267 irq_status = readl(cqspi->iobase + CQSPI_REG_IRQSTATUS);
268
269 /* Clear interrupt */
270 writel(irq_status, cqspi->iobase + CQSPI_REG_IRQSTATUS);
271
272 irq_status &= CQSPI_IRQ_MASK_RD | CQSPI_IRQ_MASK_WR;
273
274 if (irq_status)
275 complete(&cqspi->transfer_complete);
276
277 return IRQ_HANDLED;
278}
279
280static unsigned int cqspi_calc_rdreg(struct cqspi_flash_pdata *f_pdata)
281{
282 u32 rdreg = 0;
283
284 rdreg |= f_pdata->inst_width << CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB;
285 rdreg |= f_pdata->addr_width << CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB;
286 rdreg |= f_pdata->data_width << CQSPI_REG_RD_INSTR_TYPE_DATA_LSB;
287
288 return rdreg;
289}
290
291static int cqspi_wait_idle(struct cqspi_st *cqspi)
292{
293 const unsigned int poll_idle_retry = 3;
294 unsigned int count = 0;
295 unsigned long timeout;
296
297 timeout = jiffies + msecs_to_jiffies(CQSPI_TIMEOUT_MS);
298 while (1) {
299 /*
300 * Read few times in succession to ensure the controller
301 * is indeed idle, that is, the bit does not transition
302 * low again.
303 */
304 if (cqspi_is_idle(cqspi))
305 count++;
306 else
307 count = 0;
308
309 if (count >= poll_idle_retry)
310 return 0;
311
312 if (time_after(jiffies, timeout)) {
313 /* Timeout, in busy mode. */
314 dev_err(&cqspi->pdev->dev,
315 "QSPI is still busy after %dms timeout.\n",
316 CQSPI_TIMEOUT_MS);
317 return -ETIMEDOUT;
318 }
319
320 cpu_relax();
321 }
322}
323
324static int cqspi_exec_flash_cmd(struct cqspi_st *cqspi, unsigned int reg)
325{
326 void __iomem *reg_base = cqspi->iobase;
327 int ret;
328
329 /* Write the CMDCTRL without start execution. */
330 writel(reg, reg_base + CQSPI_REG_CMDCTRL);
331 /* Start execute */
332 reg |= CQSPI_REG_CMDCTRL_EXECUTE_MASK;
333 writel(reg, reg_base + CQSPI_REG_CMDCTRL);
334
335 /* Polling for completion. */
336 ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_CMDCTRL,
337 CQSPI_REG_CMDCTRL_INPROGRESS_MASK, 1);
338 if (ret) {
339 dev_err(&cqspi->pdev->dev,
340 "Flash command execution timed out.\n");
341 return ret;
342 }
343
344 /* Polling QSPI idle status. */
345 return cqspi_wait_idle(cqspi);
346}
347
348static int cqspi_command_read(struct cqspi_flash_pdata *f_pdata,
349 const struct spi_mem_op *op)
350{
351 struct cqspi_st *cqspi = f_pdata->cqspi;
352 void __iomem *reg_base = cqspi->iobase;
353 u8 *rxbuf = op->data.buf.in;
354 u8 opcode = op->cmd.opcode;
355 size_t n_rx = op->data.nbytes;
356 unsigned int rdreg;
357 unsigned int reg;
358 size_t read_len;
359 int status;
360
361 if (!n_rx || n_rx > CQSPI_STIG_DATA_LEN_MAX || !rxbuf) {
362 dev_err(&cqspi->pdev->dev,
363 "Invalid input argument, len %zu rxbuf 0x%p\n",
364 n_rx, rxbuf);
365 return -EINVAL;
366 }
367
368 reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
369
370 rdreg = cqspi_calc_rdreg(f_pdata);
371 writel(rdreg, reg_base + CQSPI_REG_RD_INSTR);
372
373 reg |= (0x1 << CQSPI_REG_CMDCTRL_RD_EN_LSB);
374
375 /* 0 means 1 byte. */
376 reg |= (((n_rx - 1) & CQSPI_REG_CMDCTRL_RD_BYTES_MASK)
377 << CQSPI_REG_CMDCTRL_RD_BYTES_LSB);
378 status = cqspi_exec_flash_cmd(cqspi, reg);
379 if (status)
380 return status;
381
382 reg = readl(reg_base + CQSPI_REG_CMDREADDATALOWER);
383
384 /* Put the read value into rx_buf */
385 read_len = (n_rx > 4) ? 4 : n_rx;
386 memcpy(rxbuf, ®, read_len);
387 rxbuf += read_len;
388
389 if (n_rx > 4) {
390 reg = readl(reg_base + CQSPI_REG_CMDREADDATAUPPER);
391
392 read_len = n_rx - read_len;
393 memcpy(rxbuf, ®, read_len);
394 }
395
396 return 0;
397}
398
399static int cqspi_command_write(struct cqspi_flash_pdata *f_pdata,
400 const struct spi_mem_op *op)
401{
402 struct cqspi_st *cqspi = f_pdata->cqspi;
403 void __iomem *reg_base = cqspi->iobase;
404 const u8 opcode = op->cmd.opcode;
405 const u8 *txbuf = op->data.buf.out;
406 size_t n_tx = op->data.nbytes;
407 unsigned int reg;
408 unsigned int data;
409 size_t write_len;
410
411 if (n_tx > CQSPI_STIG_DATA_LEN_MAX || (n_tx && !txbuf)) {
412 dev_err(&cqspi->pdev->dev,
413 "Invalid input argument, cmdlen %zu txbuf 0x%p\n",
414 n_tx, txbuf);
415 return -EINVAL;
416 }
417
418 reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
419
420 if (op->addr.nbytes) {
421 reg |= (0x1 << CQSPI_REG_CMDCTRL_ADDR_EN_LSB);
422 reg |= ((op->addr.nbytes - 1) &
423 CQSPI_REG_CMDCTRL_ADD_BYTES_MASK)
424 << CQSPI_REG_CMDCTRL_ADD_BYTES_LSB;
425
426 writel(op->addr.val, reg_base + CQSPI_REG_CMDADDRESS);
427 }
428
429 if (n_tx) {
430 reg |= (0x1 << CQSPI_REG_CMDCTRL_WR_EN_LSB);
431 reg |= ((n_tx - 1) & CQSPI_REG_CMDCTRL_WR_BYTES_MASK)
432 << CQSPI_REG_CMDCTRL_WR_BYTES_LSB;
433 data = 0;
434 write_len = (n_tx > 4) ? 4 : n_tx;
435 memcpy(&data, txbuf, write_len);
436 txbuf += write_len;
437 writel(data, reg_base + CQSPI_REG_CMDWRITEDATALOWER);
438
439 if (n_tx > 4) {
440 data = 0;
441 write_len = n_tx - 4;
442 memcpy(&data, txbuf, write_len);
443 writel(data, reg_base + CQSPI_REG_CMDWRITEDATAUPPER);
444 }
445 }
446
447 return cqspi_exec_flash_cmd(cqspi, reg);
448}
449
450static int cqspi_read_setup(struct cqspi_flash_pdata *f_pdata,
451 const struct spi_mem_op *op)
452{
453 struct cqspi_st *cqspi = f_pdata->cqspi;
454 void __iomem *reg_base = cqspi->iobase;
455 unsigned int dummy_clk = 0;
456 unsigned int reg;
457
458 reg = op->cmd.opcode << CQSPI_REG_RD_INSTR_OPCODE_LSB;
459 reg |= cqspi_calc_rdreg(f_pdata);
460
461 /* Setup dummy clock cycles */
462 dummy_clk = op->dummy.nbytes * 8;
463 if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
464 dummy_clk = CQSPI_DUMMY_CLKS_MAX;
465
466 if (dummy_clk)
467 reg |= (dummy_clk & CQSPI_REG_RD_INSTR_DUMMY_MASK)
468 << CQSPI_REG_RD_INSTR_DUMMY_LSB;
469
470 writel(reg, reg_base + CQSPI_REG_RD_INSTR);
471
472 /* Set address width */
473 reg = readl(reg_base + CQSPI_REG_SIZE);
474 reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
475 reg |= (op->addr.nbytes - 1);
476 writel(reg, reg_base + CQSPI_REG_SIZE);
477 return 0;
478}
479
480static int cqspi_indirect_read_execute(struct cqspi_flash_pdata *f_pdata,
481 u8 *rxbuf, loff_t from_addr,
482 const size_t n_rx)
483{
484 struct cqspi_st *cqspi = f_pdata->cqspi;
485 struct device *dev = &cqspi->pdev->dev;
486 void __iomem *reg_base = cqspi->iobase;
487 void __iomem *ahb_base = cqspi->ahb_base;
488 unsigned int remaining = n_rx;
489 unsigned int mod_bytes = n_rx % 4;
490 unsigned int bytes_to_read = 0;
491 u8 *rxbuf_end = rxbuf + n_rx;
492 int ret = 0;
493
494 writel(from_addr, reg_base + CQSPI_REG_INDIRECTRDSTARTADDR);
495 writel(remaining, reg_base + CQSPI_REG_INDIRECTRDBYTES);
496
497 /* Clear all interrupts. */
498 writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
499
500 writel(CQSPI_IRQ_MASK_RD, reg_base + CQSPI_REG_IRQMASK);
501
502 reinit_completion(&cqspi->transfer_complete);
503 writel(CQSPI_REG_INDIRECTRD_START_MASK,
504 reg_base + CQSPI_REG_INDIRECTRD);
505
506 while (remaining > 0) {
507 if (!wait_for_completion_timeout(&cqspi->transfer_complete,
508 msecs_to_jiffies(CQSPI_READ_TIMEOUT_MS)))
509 ret = -ETIMEDOUT;
510
511 bytes_to_read = cqspi_get_rd_sram_level(cqspi);
512
513 if (ret && bytes_to_read == 0) {
514 dev_err(dev, "Indirect read timeout, no bytes\n");
515 goto failrd;
516 }
517
518 while (bytes_to_read != 0) {
519 unsigned int word_remain = round_down(remaining, 4);
520
521 bytes_to_read *= cqspi->fifo_width;
522 bytes_to_read = bytes_to_read > remaining ?
523 remaining : bytes_to_read;
524 bytes_to_read = round_down(bytes_to_read, 4);
525 /* Read 4 byte word chunks then single bytes */
526 if (bytes_to_read) {
527 ioread32_rep(ahb_base, rxbuf,
528 (bytes_to_read / 4));
529 } else if (!word_remain && mod_bytes) {
530 unsigned int temp = ioread32(ahb_base);
531
532 bytes_to_read = mod_bytes;
533 memcpy(rxbuf, &temp, min((unsigned int)
534 (rxbuf_end - rxbuf),
535 bytes_to_read));
536 }
537 rxbuf += bytes_to_read;
538 remaining -= bytes_to_read;
539 bytes_to_read = cqspi_get_rd_sram_level(cqspi);
540 }
541
542 if (remaining > 0)
543 reinit_completion(&cqspi->transfer_complete);
544 }
545
546 /* Check indirect done status */
547 ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTRD,
548 CQSPI_REG_INDIRECTRD_DONE_MASK, 0);
549 if (ret) {
550 dev_err(dev, "Indirect read completion error (%i)\n", ret);
551 goto failrd;
552 }
553
554 /* Disable interrupt */
555 writel(0, reg_base + CQSPI_REG_IRQMASK);
556
557 /* Clear indirect completion status */
558 writel(CQSPI_REG_INDIRECTRD_DONE_MASK, reg_base + CQSPI_REG_INDIRECTRD);
559
560 return 0;
561
562failrd:
563 /* Disable interrupt */
564 writel(0, reg_base + CQSPI_REG_IRQMASK);
565
566 /* Cancel the indirect read */
567 writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
568 reg_base + CQSPI_REG_INDIRECTRD);
569 return ret;
570}
571
572static int cqspi_write_setup(struct cqspi_flash_pdata *f_pdata,
573 const struct spi_mem_op *op)
574{
575 unsigned int reg;
576 struct cqspi_st *cqspi = f_pdata->cqspi;
577 void __iomem *reg_base = cqspi->iobase;
578
579 /* Set opcode. */
580 reg = op->cmd.opcode << CQSPI_REG_WR_INSTR_OPCODE_LSB;
581 writel(reg, reg_base + CQSPI_REG_WR_INSTR);
582 reg = cqspi_calc_rdreg(f_pdata);
583 writel(reg, reg_base + CQSPI_REG_RD_INSTR);
584
585 reg = readl(reg_base + CQSPI_REG_SIZE);
586 reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
587 reg |= (op->addr.nbytes - 1);
588 writel(reg, reg_base + CQSPI_REG_SIZE);
589 return 0;
590}
591
592static int cqspi_indirect_write_execute(struct cqspi_flash_pdata *f_pdata,
593 loff_t to_addr, const u8 *txbuf,
594 const size_t n_tx)
595{
596 struct cqspi_st *cqspi = f_pdata->cqspi;
597 struct device *dev = &cqspi->pdev->dev;
598 void __iomem *reg_base = cqspi->iobase;
599 unsigned int remaining = n_tx;
600 unsigned int write_bytes;
601 int ret;
602
603 writel(to_addr, reg_base + CQSPI_REG_INDIRECTWRSTARTADDR);
604 writel(remaining, reg_base + CQSPI_REG_INDIRECTWRBYTES);
605
606 /* Clear all interrupts. */
607 writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
608
609 writel(CQSPI_IRQ_MASK_WR, reg_base + CQSPI_REG_IRQMASK);
610
611 reinit_completion(&cqspi->transfer_complete);
612 writel(CQSPI_REG_INDIRECTWR_START_MASK,
613 reg_base + CQSPI_REG_INDIRECTWR);
614 /*
615 * As per 66AK2G02 TRM SPRUHY8F section 11.15.5.3 Indirect Access
616 * Controller programming sequence, couple of cycles of
617 * QSPI_REF_CLK delay is required for the above bit to
618 * be internally synchronized by the QSPI module. Provide 5
619 * cycles of delay.
620 */
621 if (cqspi->wr_delay)
622 ndelay(cqspi->wr_delay);
623
624 while (remaining > 0) {
625 size_t write_words, mod_bytes;
626
627 write_bytes = remaining;
628 write_words = write_bytes / 4;
629 mod_bytes = write_bytes % 4;
630 /* Write 4 bytes at a time then single bytes. */
631 if (write_words) {
632 iowrite32_rep(cqspi->ahb_base, txbuf, write_words);
633 txbuf += (write_words * 4);
634 }
635 if (mod_bytes) {
636 unsigned int temp = 0xFFFFFFFF;
637
638 memcpy(&temp, txbuf, mod_bytes);
639 iowrite32(temp, cqspi->ahb_base);
640 txbuf += mod_bytes;
641 }
642
643 if (!wait_for_completion_timeout(&cqspi->transfer_complete,
644 msecs_to_jiffies(CQSPI_TIMEOUT_MS))) {
645 dev_err(dev, "Indirect write timeout\n");
646 ret = -ETIMEDOUT;
647 goto failwr;
648 }
649
650 remaining -= write_bytes;
651
652 if (remaining > 0)
653 reinit_completion(&cqspi->transfer_complete);
654 }
655
656 /* Check indirect done status */
657 ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTWR,
658 CQSPI_REG_INDIRECTWR_DONE_MASK, 0);
659 if (ret) {
660 dev_err(dev, "Indirect write completion error (%i)\n", ret);
661 goto failwr;
662 }
663
664 /* Disable interrupt. */
665 writel(0, reg_base + CQSPI_REG_IRQMASK);
666
667 /* Clear indirect completion status */
668 writel(CQSPI_REG_INDIRECTWR_DONE_MASK, reg_base + CQSPI_REG_INDIRECTWR);
669
670 cqspi_wait_idle(cqspi);
671
672 return 0;
673
674failwr:
675 /* Disable interrupt. */
676 writel(0, reg_base + CQSPI_REG_IRQMASK);
677
678 /* Cancel the indirect write */
679 writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
680 reg_base + CQSPI_REG_INDIRECTWR);
681 return ret;
682}
683
684static void cqspi_chipselect(struct cqspi_flash_pdata *f_pdata)
685{
686 struct cqspi_st *cqspi = f_pdata->cqspi;
687 void __iomem *reg_base = cqspi->iobase;
688 unsigned int chip_select = f_pdata->cs;
689 unsigned int reg;
690
691 reg = readl(reg_base + CQSPI_REG_CONFIG);
692 if (cqspi->is_decoded_cs) {
693 reg |= CQSPI_REG_CONFIG_DECODE_MASK;
694 } else {
695 reg &= ~CQSPI_REG_CONFIG_DECODE_MASK;
696
697 /* Convert CS if without decoder.
698 * CS0 to 4b'1110
699 * CS1 to 4b'1101
700 * CS2 to 4b'1011
701 * CS3 to 4b'0111
702 */
703 chip_select = 0xF & ~(1 << chip_select);
704 }
705
706 reg &= ~(CQSPI_REG_CONFIG_CHIPSELECT_MASK
707 << CQSPI_REG_CONFIG_CHIPSELECT_LSB);
708 reg |= (chip_select & CQSPI_REG_CONFIG_CHIPSELECT_MASK)
709 << CQSPI_REG_CONFIG_CHIPSELECT_LSB;
710 writel(reg, reg_base + CQSPI_REG_CONFIG);
711}
712
713static unsigned int calculate_ticks_for_ns(const unsigned int ref_clk_hz,
714 const unsigned int ns_val)
715{
716 unsigned int ticks;
717
718 ticks = ref_clk_hz / 1000; /* kHz */
719 ticks = DIV_ROUND_UP(ticks * ns_val, 1000000);
720
721 return ticks;
722}
723
724static void cqspi_delay(struct cqspi_flash_pdata *f_pdata)
725{
726 struct cqspi_st *cqspi = f_pdata->cqspi;
727 void __iomem *iobase = cqspi->iobase;
728 const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
729 unsigned int tshsl, tchsh, tslch, tsd2d;
730 unsigned int reg;
731 unsigned int tsclk;
732
733 /* calculate the number of ref ticks for one sclk tick */
734 tsclk = DIV_ROUND_UP(ref_clk_hz, cqspi->sclk);
735
736 tshsl = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tshsl_ns);
737 /* this particular value must be at least one sclk */
738 if (tshsl < tsclk)
739 tshsl = tsclk;
740
741 tchsh = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tchsh_ns);
742 tslch = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tslch_ns);
743 tsd2d = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tsd2d_ns);
744
745 reg = (tshsl & CQSPI_REG_DELAY_TSHSL_MASK)
746 << CQSPI_REG_DELAY_TSHSL_LSB;
747 reg |= (tchsh & CQSPI_REG_DELAY_TCHSH_MASK)
748 << CQSPI_REG_DELAY_TCHSH_LSB;
749 reg |= (tslch & CQSPI_REG_DELAY_TSLCH_MASK)
750 << CQSPI_REG_DELAY_TSLCH_LSB;
751 reg |= (tsd2d & CQSPI_REG_DELAY_TSD2D_MASK)
752 << CQSPI_REG_DELAY_TSD2D_LSB;
753 writel(reg, iobase + CQSPI_REG_DELAY);
754}
755
756static void cqspi_config_baudrate_div(struct cqspi_st *cqspi)
757{
758 const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
759 void __iomem *reg_base = cqspi->iobase;
760 u32 reg, div;
761
762 /* Recalculate the baudrate divisor based on QSPI specification. */
763 div = DIV_ROUND_UP(ref_clk_hz, 2 * cqspi->sclk) - 1;
764
765 reg = readl(reg_base + CQSPI_REG_CONFIG);
766 reg &= ~(CQSPI_REG_CONFIG_BAUD_MASK << CQSPI_REG_CONFIG_BAUD_LSB);
767 reg |= (div & CQSPI_REG_CONFIG_BAUD_MASK) << CQSPI_REG_CONFIG_BAUD_LSB;
768 writel(reg, reg_base + CQSPI_REG_CONFIG);
769}
770
771static void cqspi_readdata_capture(struct cqspi_st *cqspi,
772 const bool bypass,
773 const unsigned int delay)
774{
775 void __iomem *reg_base = cqspi->iobase;
776 unsigned int reg;
777
778 reg = readl(reg_base + CQSPI_REG_READCAPTURE);
779
780 if (bypass)
781 reg |= (1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
782 else
783 reg &= ~(1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
784
785 reg &= ~(CQSPI_REG_READCAPTURE_DELAY_MASK
786 << CQSPI_REG_READCAPTURE_DELAY_LSB);
787
788 reg |= (delay & CQSPI_REG_READCAPTURE_DELAY_MASK)
789 << CQSPI_REG_READCAPTURE_DELAY_LSB;
790
791 writel(reg, reg_base + CQSPI_REG_READCAPTURE);
792}
793
794static void cqspi_controller_enable(struct cqspi_st *cqspi, bool enable)
795{
796 void __iomem *reg_base = cqspi->iobase;
797 unsigned int reg;
798
799 reg = readl(reg_base + CQSPI_REG_CONFIG);
800
801 if (enable)
802 reg |= CQSPI_REG_CONFIG_ENABLE_MASK;
803 else
804 reg &= ~CQSPI_REG_CONFIG_ENABLE_MASK;
805
806 writel(reg, reg_base + CQSPI_REG_CONFIG);
807}
808
809static void cqspi_configure(struct cqspi_flash_pdata *f_pdata,
810 unsigned long sclk)
811{
812 struct cqspi_st *cqspi = f_pdata->cqspi;
813 int switch_cs = (cqspi->current_cs != f_pdata->cs);
814 int switch_ck = (cqspi->sclk != sclk);
815
816 if (switch_cs || switch_ck)
817 cqspi_controller_enable(cqspi, 0);
818
819 /* Switch chip select. */
820 if (switch_cs) {
821 cqspi->current_cs = f_pdata->cs;
822 cqspi_chipselect(f_pdata);
823 }
824
825 /* Setup baudrate divisor and delays */
826 if (switch_ck) {
827 cqspi->sclk = sclk;
828 cqspi_config_baudrate_div(cqspi);
829 cqspi_delay(f_pdata);
830 cqspi_readdata_capture(cqspi, !cqspi->rclk_en,
831 f_pdata->read_delay);
832 }
833
834 if (switch_cs || switch_ck)
835 cqspi_controller_enable(cqspi, 1);
836}
837
838static int cqspi_set_protocol(struct cqspi_flash_pdata *f_pdata,
839 const struct spi_mem_op *op)
840{
841 f_pdata->inst_width = CQSPI_INST_TYPE_SINGLE;
842 f_pdata->addr_width = CQSPI_INST_TYPE_SINGLE;
843 f_pdata->data_width = CQSPI_INST_TYPE_SINGLE;
844
845 if (op->data.dir == SPI_MEM_DATA_IN) {
846 switch (op->data.buswidth) {
847 case 1:
848 f_pdata->data_width = CQSPI_INST_TYPE_SINGLE;
849 break;
850 case 2:
851 f_pdata->data_width = CQSPI_INST_TYPE_DUAL;
852 break;
853 case 4:
854 f_pdata->data_width = CQSPI_INST_TYPE_QUAD;
855 break;
856 case 8:
857 f_pdata->data_width = CQSPI_INST_TYPE_OCTAL;
858 break;
859 default:
860 return -EINVAL;
861 }
862 }
863
864 return 0;
865}
866
867static ssize_t cqspi_write(struct cqspi_flash_pdata *f_pdata,
868 const struct spi_mem_op *op)
869{
870 struct cqspi_st *cqspi = f_pdata->cqspi;
871 loff_t to = op->addr.val;
872 size_t len = op->data.nbytes;
873 const u_char *buf = op->data.buf.out;
874 int ret;
875
876 ret = cqspi_set_protocol(f_pdata, op);
877 if (ret)
878 return ret;
879
880 ret = cqspi_write_setup(f_pdata, op);
881 if (ret)
882 return ret;
883
884 if (cqspi->use_direct_mode && ((to + len) <= cqspi->ahb_size)) {
885 memcpy_toio(cqspi->ahb_base + to, buf, len);
886 return cqspi_wait_idle(cqspi);
887 }
888
889 return cqspi_indirect_write_execute(f_pdata, to, buf, len);
890}
891
892static void cqspi_rx_dma_callback(void *param)
893{
894 struct cqspi_st *cqspi = param;
895
896 complete(&cqspi->rx_dma_complete);
897}
898
899static int cqspi_direct_read_execute(struct cqspi_flash_pdata *f_pdata,
900 u_char *buf, loff_t from, size_t len)
901{
902 struct cqspi_st *cqspi = f_pdata->cqspi;
903 struct device *dev = &cqspi->pdev->dev;
904 enum dma_ctrl_flags flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
905 dma_addr_t dma_src = (dma_addr_t)cqspi->mmap_phys_base + from;
906 int ret = 0;
907 struct dma_async_tx_descriptor *tx;
908 dma_cookie_t cookie;
909 dma_addr_t dma_dst;
910 struct device *ddev;
911
912 if (!cqspi->rx_chan || !virt_addr_valid(buf)) {
913 memcpy_fromio(buf, cqspi->ahb_base + from, len);
914 return 0;
915 }
916
917 ddev = cqspi->rx_chan->device->dev;
918 dma_dst = dma_map_single(ddev, buf, len, DMA_FROM_DEVICE);
919 if (dma_mapping_error(ddev, dma_dst)) {
920 dev_err(dev, "dma mapping failed\n");
921 return -ENOMEM;
922 }
923 tx = dmaengine_prep_dma_memcpy(cqspi->rx_chan, dma_dst, dma_src,
924 len, flags);
925 if (!tx) {
926 dev_err(dev, "device_prep_dma_memcpy error\n");
927 ret = -EIO;
928 goto err_unmap;
929 }
930
931 tx->callback = cqspi_rx_dma_callback;
932 tx->callback_param = cqspi;
933 cookie = tx->tx_submit(tx);
934 reinit_completion(&cqspi->rx_dma_complete);
935
936 ret = dma_submit_error(cookie);
937 if (ret) {
938 dev_err(dev, "dma_submit_error %d\n", cookie);
939 ret = -EIO;
940 goto err_unmap;
941 }
942
943 dma_async_issue_pending(cqspi->rx_chan);
944 if (!wait_for_completion_timeout(&cqspi->rx_dma_complete,
945 msecs_to_jiffies(len))) {
946 dmaengine_terminate_sync(cqspi->rx_chan);
947 dev_err(dev, "DMA wait_for_completion_timeout\n");
948 ret = -ETIMEDOUT;
949 goto err_unmap;
950 }
951
952err_unmap:
953 dma_unmap_single(ddev, dma_dst, len, DMA_FROM_DEVICE);
954
955 return ret;
956}
957
958static ssize_t cqspi_read(struct cqspi_flash_pdata *f_pdata,
959 const struct spi_mem_op *op)
960{
961 struct cqspi_st *cqspi = f_pdata->cqspi;
962 loff_t from = op->addr.val;
963 size_t len = op->data.nbytes;
964 u_char *buf = op->data.buf.in;
965 int ret;
966
967 ret = cqspi_set_protocol(f_pdata, op);
968 if (ret)
969 return ret;
970
971 ret = cqspi_read_setup(f_pdata, op);
972 if (ret)
973 return ret;
974
975 if (cqspi->use_direct_mode && ((from + len) <= cqspi->ahb_size))
976 return cqspi_direct_read_execute(f_pdata, buf, from, len);
977
978 return cqspi_indirect_read_execute(f_pdata, buf, from, len);
979}
980
981static int cqspi_mem_process(struct spi_mem *mem, const struct spi_mem_op *op)
982{
983 struct cqspi_st *cqspi = spi_master_get_devdata(mem->spi->master);
984 struct cqspi_flash_pdata *f_pdata;
985
986 f_pdata = &cqspi->f_pdata[mem->spi->chip_select];
987 cqspi_configure(f_pdata, mem->spi->max_speed_hz);
988
989 if (op->data.dir == SPI_MEM_DATA_IN && op->data.buf.in) {
990 if (!op->addr.nbytes)
991 return cqspi_command_read(f_pdata, op);
992
993 return cqspi_read(f_pdata, op);
994 }
995
996 if (!op->addr.nbytes || !op->data.buf.out)
997 return cqspi_command_write(f_pdata, op);
998
999 return cqspi_write(f_pdata, op);
1000}
1001
1002static int cqspi_exec_mem_op(struct spi_mem *mem, const struct spi_mem_op *op)
1003{
1004 int ret;
1005
1006 ret = cqspi_mem_process(mem, op);
1007 if (ret)
1008 dev_err(&mem->spi->dev, "operation failed with %d\n", ret);
1009
1010 return ret;
1011}
1012
1013static int cqspi_of_get_flash_pdata(struct platform_device *pdev,
1014 struct cqspi_flash_pdata *f_pdata,
1015 struct device_node *np)
1016{
1017 if (of_property_read_u32(np, "cdns,read-delay", &f_pdata->read_delay)) {
1018 dev_err(&pdev->dev, "couldn't determine read-delay\n");
1019 return -ENXIO;
1020 }
1021
1022 if (of_property_read_u32(np, "cdns,tshsl-ns", &f_pdata->tshsl_ns)) {
1023 dev_err(&pdev->dev, "couldn't determine tshsl-ns\n");
1024 return -ENXIO;
1025 }
1026
1027 if (of_property_read_u32(np, "cdns,tsd2d-ns", &f_pdata->tsd2d_ns)) {
1028 dev_err(&pdev->dev, "couldn't determine tsd2d-ns\n");
1029 return -ENXIO;
1030 }
1031
1032 if (of_property_read_u32(np, "cdns,tchsh-ns", &f_pdata->tchsh_ns)) {
1033 dev_err(&pdev->dev, "couldn't determine tchsh-ns\n");
1034 return -ENXIO;
1035 }
1036
1037 if (of_property_read_u32(np, "cdns,tslch-ns", &f_pdata->tslch_ns)) {
1038 dev_err(&pdev->dev, "couldn't determine tslch-ns\n");
1039 return -ENXIO;
1040 }
1041
1042 if (of_property_read_u32(np, "spi-max-frequency", &f_pdata->clk_rate)) {
1043 dev_err(&pdev->dev, "couldn't determine spi-max-frequency\n");
1044 return -ENXIO;
1045 }
1046
1047 return 0;
1048}
1049
1050static int cqspi_of_get_pdata(struct cqspi_st *cqspi)
1051{
1052 struct device *dev = &cqspi->pdev->dev;
1053 struct device_node *np = dev->of_node;
1054
1055 cqspi->is_decoded_cs = of_property_read_bool(np, "cdns,is-decoded-cs");
1056
1057 if (of_property_read_u32(np, "cdns,fifo-depth", &cqspi->fifo_depth)) {
1058 dev_err(dev, "couldn't determine fifo-depth\n");
1059 return -ENXIO;
1060 }
1061
1062 if (of_property_read_u32(np, "cdns,fifo-width", &cqspi->fifo_width)) {
1063 dev_err(dev, "couldn't determine fifo-width\n");
1064 return -ENXIO;
1065 }
1066
1067 if (of_property_read_u32(np, "cdns,trigger-address",
1068 &cqspi->trigger_address)) {
1069 dev_err(dev, "couldn't determine trigger-address\n");
1070 return -ENXIO;
1071 }
1072
1073 cqspi->rclk_en = of_property_read_bool(np, "cdns,rclk-en");
1074
1075 return 0;
1076}
1077
1078static void cqspi_controller_init(struct cqspi_st *cqspi)
1079{
1080 u32 reg;
1081
1082 cqspi_controller_enable(cqspi, 0);
1083
1084 /* Configure the remap address register, no remap */
1085 writel(0, cqspi->iobase + CQSPI_REG_REMAP);
1086
1087 /* Disable all interrupts. */
1088 writel(0, cqspi->iobase + CQSPI_REG_IRQMASK);
1089
1090 /* Configure the SRAM split to 1:1 . */
1091 writel(cqspi->fifo_depth / 2, cqspi->iobase + CQSPI_REG_SRAMPARTITION);
1092
1093 /* Load indirect trigger address. */
1094 writel(cqspi->trigger_address,
1095 cqspi->iobase + CQSPI_REG_INDIRECTTRIGGER);
1096
1097 /* Program read watermark -- 1/2 of the FIFO. */
1098 writel(cqspi->fifo_depth * cqspi->fifo_width / 2,
1099 cqspi->iobase + CQSPI_REG_INDIRECTRDWATERMARK);
1100 /* Program write watermark -- 1/8 of the FIFO. */
1101 writel(cqspi->fifo_depth * cqspi->fifo_width / 8,
1102 cqspi->iobase + CQSPI_REG_INDIRECTWRWATERMARK);
1103
1104 /* Enable Direct Access Controller */
1105 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
1106 reg |= CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL;
1107 writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
1108
1109 cqspi_controller_enable(cqspi, 1);
1110}
1111
1112static int cqspi_request_mmap_dma(struct cqspi_st *cqspi)
1113{
1114 dma_cap_mask_t mask;
1115
1116 dma_cap_zero(mask);
1117 dma_cap_set(DMA_MEMCPY, mask);
1118
1119 cqspi->rx_chan = dma_request_chan_by_mask(&mask);
1120 if (IS_ERR(cqspi->rx_chan)) {
1121 int ret = PTR_ERR(cqspi->rx_chan);
1122
1123 if (ret != -EPROBE_DEFER)
1124 dev_err(&cqspi->pdev->dev, "No Rx DMA available\n");
1125 cqspi->rx_chan = NULL;
1126 return ret;
1127 }
1128 init_completion(&cqspi->rx_dma_complete);
1129
1130 return 0;
1131}
1132
1133static const char *cqspi_get_name(struct spi_mem *mem)
1134{
1135 struct cqspi_st *cqspi = spi_master_get_devdata(mem->spi->master);
1136 struct device *dev = &cqspi->pdev->dev;
1137
1138 return devm_kasprintf(dev, GFP_KERNEL, "%s.%d", dev_name(dev), mem->spi->chip_select);
1139}
1140
1141static const struct spi_controller_mem_ops cqspi_mem_ops = {
1142 .exec_op = cqspi_exec_mem_op,
1143 .get_name = cqspi_get_name,
1144};
1145
1146static int cqspi_setup_flash(struct cqspi_st *cqspi)
1147{
1148 struct platform_device *pdev = cqspi->pdev;
1149 struct device *dev = &pdev->dev;
1150 struct device_node *np = dev->of_node;
1151 struct cqspi_flash_pdata *f_pdata;
1152 unsigned int cs;
1153 int ret;
1154
1155 /* Get flash device data */
1156 for_each_available_child_of_node(dev->of_node, np) {
1157 ret = of_property_read_u32(np, "reg", &cs);
1158 if (ret) {
1159 dev_err(dev, "Couldn't determine chip select.\n");
1160 return ret;
1161 }
1162
1163 if (cs >= CQSPI_MAX_CHIPSELECT) {
1164 dev_err(dev, "Chip select %d out of range.\n", cs);
1165 return -EINVAL;
1166 }
1167
1168 f_pdata = &cqspi->f_pdata[cs];
1169 f_pdata->cqspi = cqspi;
1170 f_pdata->cs = cs;
1171
1172 ret = cqspi_of_get_flash_pdata(pdev, f_pdata, np);
1173 if (ret)
1174 return ret;
1175 }
1176
1177 return 0;
1178}
1179
1180static int cqspi_probe(struct platform_device *pdev)
1181{
1182 const struct cqspi_driver_platdata *ddata;
1183 struct reset_control *rstc, *rstc_ocp;
1184 struct device *dev = &pdev->dev;
1185 struct spi_master *master;
1186 struct resource *res_ahb;
1187 struct cqspi_st *cqspi;
1188 struct resource *res;
1189 int ret;
1190 int irq;
1191
1192 master = spi_alloc_master(&pdev->dev, sizeof(*cqspi));
1193 if (!master) {
1194 dev_err(&pdev->dev, "spi_alloc_master failed\n");
1195 return -ENOMEM;
1196 }
1197 master->mode_bits = SPI_RX_QUAD | SPI_RX_DUAL;
1198 master->mem_ops = &cqspi_mem_ops;
1199 master->dev.of_node = pdev->dev.of_node;
1200
1201 cqspi = spi_master_get_devdata(master);
1202
1203 cqspi->pdev = pdev;
1204
1205 /* Obtain configuration from OF. */
1206 ret = cqspi_of_get_pdata(cqspi);
1207 if (ret) {
1208 dev_err(dev, "Cannot get mandatory OF data.\n");
1209 ret = -ENODEV;
1210 goto probe_master_put;
1211 }
1212
1213 /* Obtain QSPI clock. */
1214 cqspi->clk = devm_clk_get(dev, NULL);
1215 if (IS_ERR(cqspi->clk)) {
1216 dev_err(dev, "Cannot claim QSPI clock.\n");
1217 ret = PTR_ERR(cqspi->clk);
1218 goto probe_master_put;
1219 }
1220
1221 /* Obtain and remap controller address. */
1222 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1223 cqspi->iobase = devm_ioremap_resource(dev, res);
1224 if (IS_ERR(cqspi->iobase)) {
1225 dev_err(dev, "Cannot remap controller address.\n");
1226 ret = PTR_ERR(cqspi->iobase);
1227 goto probe_master_put;
1228 }
1229
1230 /* Obtain and remap AHB address. */
1231 res_ahb = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1232 cqspi->ahb_base = devm_ioremap_resource(dev, res_ahb);
1233 if (IS_ERR(cqspi->ahb_base)) {
1234 dev_err(dev, "Cannot remap AHB address.\n");
1235 ret = PTR_ERR(cqspi->ahb_base);
1236 goto probe_master_put;
1237 }
1238 cqspi->mmap_phys_base = (dma_addr_t)res_ahb->start;
1239 cqspi->ahb_size = resource_size(res_ahb);
1240
1241 init_completion(&cqspi->transfer_complete);
1242
1243 /* Obtain IRQ line. */
1244 irq = platform_get_irq(pdev, 0);
1245 if (irq < 0) {
1246 ret = -ENXIO;
1247 goto probe_master_put;
1248 }
1249
1250 pm_runtime_enable(dev);
1251 ret = pm_runtime_get_sync(dev);
1252 if (ret < 0) {
1253 pm_runtime_put_noidle(dev);
1254 goto probe_master_put;
1255 }
1256
1257 ret = clk_prepare_enable(cqspi->clk);
1258 if (ret) {
1259 dev_err(dev, "Cannot enable QSPI clock.\n");
1260 goto probe_clk_failed;
1261 }
1262
1263 /* Obtain QSPI reset control */
1264 rstc = devm_reset_control_get_optional_exclusive(dev, "qspi");
1265 if (IS_ERR(rstc)) {
1266 dev_err(dev, "Cannot get QSPI reset.\n");
1267 goto probe_reset_failed;
1268 }
1269
1270 rstc_ocp = devm_reset_control_get_optional_exclusive(dev, "qspi-ocp");
1271 if (IS_ERR(rstc_ocp)) {
1272 dev_err(dev, "Cannot get QSPI OCP reset.\n");
1273 goto probe_reset_failed;
1274 }
1275
1276 reset_control_assert(rstc);
1277 reset_control_deassert(rstc);
1278
1279 reset_control_assert(rstc_ocp);
1280 reset_control_deassert(rstc_ocp);
1281
1282 cqspi->master_ref_clk_hz = clk_get_rate(cqspi->clk);
1283 ddata = of_device_get_match_data(dev);
1284 if (ddata) {
1285 if (ddata->quirks & CQSPI_NEEDS_WR_DELAY)
1286 cqspi->wr_delay = 5 * DIV_ROUND_UP(NSEC_PER_SEC,
1287 cqspi->master_ref_clk_hz);
1288 if (ddata->hwcaps_mask & CQSPI_SUPPORTS_OCTAL)
1289 master->mode_bits |= SPI_RX_OCTAL;
1290 if (!(ddata->quirks & CQSPI_DISABLE_DAC_MODE))
1291 cqspi->use_direct_mode = true;
1292 }
1293
1294 ret = devm_request_irq(dev, irq, cqspi_irq_handler, 0,
1295 pdev->name, cqspi);
1296 if (ret) {
1297 dev_err(dev, "Cannot request IRQ.\n");
1298 goto probe_reset_failed;
1299 }
1300
1301 cqspi_wait_idle(cqspi);
1302 cqspi_controller_init(cqspi);
1303 cqspi->current_cs = -1;
1304 cqspi->sclk = 0;
1305
1306 ret = cqspi_setup_flash(cqspi);
1307 if (ret) {
1308 dev_err(dev, "failed to setup flash parameters %d\n", ret);
1309 goto probe_setup_failed;
1310 }
1311
1312 if (cqspi->use_direct_mode) {
1313 ret = cqspi_request_mmap_dma(cqspi);
1314 if (ret == -EPROBE_DEFER)
1315 goto probe_setup_failed;
1316 }
1317
1318 ret = devm_spi_register_master(dev, master);
1319 if (ret) {
1320 dev_err(&pdev->dev, "failed to register SPI ctlr %d\n", ret);
1321 goto probe_setup_failed;
1322 }
1323
1324 return 0;
1325probe_setup_failed:
1326 cqspi_controller_enable(cqspi, 0);
1327probe_reset_failed:
1328 clk_disable_unprepare(cqspi->clk);
1329probe_clk_failed:
1330 pm_runtime_put_sync(dev);
1331 pm_runtime_disable(dev);
1332probe_master_put:
1333 spi_master_put(master);
1334 return ret;
1335}
1336
1337static int cqspi_remove(struct platform_device *pdev)
1338{
1339 struct cqspi_st *cqspi = platform_get_drvdata(pdev);
1340
1341 cqspi_controller_enable(cqspi, 0);
1342
1343 if (cqspi->rx_chan)
1344 dma_release_channel(cqspi->rx_chan);
1345
1346 clk_disable_unprepare(cqspi->clk);
1347
1348 pm_runtime_put_sync(&pdev->dev);
1349 pm_runtime_disable(&pdev->dev);
1350
1351 return 0;
1352}
1353
1354#ifdef CONFIG_PM_SLEEP
1355static int cqspi_suspend(struct device *dev)
1356{
1357 struct cqspi_st *cqspi = dev_get_drvdata(dev);
1358
1359 cqspi_controller_enable(cqspi, 0);
1360 return 0;
1361}
1362
1363static int cqspi_resume(struct device *dev)
1364{
1365 struct cqspi_st *cqspi = dev_get_drvdata(dev);
1366
1367 cqspi_controller_enable(cqspi, 1);
1368 return 0;
1369}
1370
1371static const struct dev_pm_ops cqspi__dev_pm_ops = {
1372 .suspend = cqspi_suspend,
1373 .resume = cqspi_resume,
1374};
1375
1376#define CQSPI_DEV_PM_OPS (&cqspi__dev_pm_ops)
1377#else
1378#define CQSPI_DEV_PM_OPS NULL
1379#endif
1380
1381static const struct cqspi_driver_platdata cdns_qspi = {
1382 .quirks = CQSPI_DISABLE_DAC_MODE,
1383};
1384
1385static const struct cqspi_driver_platdata k2g_qspi = {
1386 .quirks = CQSPI_NEEDS_WR_DELAY,
1387};
1388
1389static const struct cqspi_driver_platdata am654_ospi = {
1390 .hwcaps_mask = CQSPI_SUPPORTS_OCTAL,
1391 .quirks = CQSPI_NEEDS_WR_DELAY,
1392};
1393
1394static const struct of_device_id cqspi_dt_ids[] = {
1395 {
1396 .compatible = "cdns,qspi-nor",
1397 .data = &cdns_qspi,
1398 },
1399 {
1400 .compatible = "ti,k2g-qspi",
1401 .data = &k2g_qspi,
1402 },
1403 {
1404 .compatible = "ti,am654-ospi",
1405 .data = &am654_ospi,
1406 },
1407 { /* end of table */ }
1408};
1409
1410MODULE_DEVICE_TABLE(of, cqspi_dt_ids);
1411
1412static struct platform_driver cqspi_platform_driver = {
1413 .probe = cqspi_probe,
1414 .remove = cqspi_remove,
1415 .driver = {
1416 .name = CQSPI_NAME,
1417 .pm = CQSPI_DEV_PM_OPS,
1418 .of_match_table = cqspi_dt_ids,
1419 },
1420};
1421
1422module_platform_driver(cqspi_platform_driver);
1423
1424MODULE_DESCRIPTION("Cadence QSPI Controller Driver");
1425MODULE_LICENSE("GPL v2");
1426MODULE_ALIAS("platform:" CQSPI_NAME);
1427MODULE_AUTHOR("Ley Foon Tan <lftan@altera.com>");
1428MODULE_AUTHOR("Graham Moore <grmoore@opensource.altera.com>");
1429MODULE_AUTHOR("Vadivel Murugan R <vadivel.muruganx.ramuthevar@intel.com>");
1430MODULE_AUTHOR("Vignesh Raghavendra <vigneshr@ti.com>");