Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.5.6.
   1/* SPDX-License-Identifier: GPL-2.0 */
   2/*
   3 *  linux/arch/x86_64/entry.S
   4 *
   5 *  Copyright (C) 1991, 1992  Linus Torvalds
   6 *  Copyright (C) 2000, 2001, 2002  Andi Kleen SuSE Labs
   7 *  Copyright (C) 2000  Pavel Machek <pavel@suse.cz>
   8 *
   9 * entry.S contains the system-call and fault low-level handling routines.
  10 *
  11 * Some of this is documented in Documentation/x86/entry_64.rst
  12 *
  13 * A note on terminology:
  14 * - iret frame:	Architecture defined interrupt frame from SS to RIP
  15 *			at the top of the kernel process stack.
  16 *
  17 * Some macro usage:
  18 * - SYM_FUNC_START/END:Define functions in the symbol table.
  19 * - idtentry:		Define exception entry points.
  20 */
  21#include <linux/linkage.h>
  22#include <asm/segment.h>
  23#include <asm/cache.h>
  24#include <asm/errno.h>
  25#include <asm/asm-offsets.h>
  26#include <asm/msr.h>
  27#include <asm/unistd.h>
  28#include <asm/thread_info.h>
  29#include <asm/hw_irq.h>
  30#include <asm/page_types.h>
  31#include <asm/irqflags.h>
  32#include <asm/paravirt.h>
  33#include <asm/percpu.h>
  34#include <asm/asm.h>
  35#include <asm/smap.h>
  36#include <asm/pgtable_types.h>
  37#include <asm/export.h>
  38#include <asm/frame.h>
  39#include <asm/trapnr.h>
  40#include <asm/nospec-branch.h>
  41#include <asm/fsgsbase.h>
  42#include <linux/err.h>
  43
  44#include "calling.h"
  45
  46.code64
  47.section .entry.text, "ax"
  48
  49/*
  50 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers.
  51 *
  52 * This is the only entry point used for 64-bit system calls.  The
  53 * hardware interface is reasonably well designed and the register to
  54 * argument mapping Linux uses fits well with the registers that are
  55 * available when SYSCALL is used.
  56 *
  57 * SYSCALL instructions can be found inlined in libc implementations as
  58 * well as some other programs and libraries.  There are also a handful
  59 * of SYSCALL instructions in the vDSO used, for example, as a
  60 * clock_gettimeofday fallback.
  61 *
  62 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11,
  63 * then loads new ss, cs, and rip from previously programmed MSRs.
  64 * rflags gets masked by a value from another MSR (so CLD and CLAC
  65 * are not needed). SYSCALL does not save anything on the stack
  66 * and does not change rsp.
  67 *
  68 * Registers on entry:
  69 * rax  system call number
  70 * rcx  return address
  71 * r11  saved rflags (note: r11 is callee-clobbered register in C ABI)
  72 * rdi  arg0
  73 * rsi  arg1
  74 * rdx  arg2
  75 * r10  arg3 (needs to be moved to rcx to conform to C ABI)
  76 * r8   arg4
  77 * r9   arg5
  78 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI)
  79 *
  80 * Only called from user space.
  81 *
  82 * When user can change pt_regs->foo always force IRET. That is because
  83 * it deals with uncanonical addresses better. SYSRET has trouble
  84 * with them due to bugs in both AMD and Intel CPUs.
  85 */
  86
  87SYM_CODE_START(entry_SYSCALL_64)
  88	UNWIND_HINT_ENTRY
  89	ENDBR
  90
  91	swapgs
  92	/* tss.sp2 is scratch space. */
  93	movq	%rsp, PER_CPU_VAR(cpu_tss_rw + TSS_sp2)
  94	SWITCH_TO_KERNEL_CR3 scratch_reg=%rsp
  95	movq	PER_CPU_VAR(pcpu_hot + X86_top_of_stack), %rsp
  96
  97SYM_INNER_LABEL(entry_SYSCALL_64_safe_stack, SYM_L_GLOBAL)
  98	ANNOTATE_NOENDBR
  99
 100	/* Construct struct pt_regs on stack */
 101	pushq	$__USER_DS				/* pt_regs->ss */
 102	pushq	PER_CPU_VAR(cpu_tss_rw + TSS_sp2)	/* pt_regs->sp */
 103	pushq	%r11					/* pt_regs->flags */
 104	pushq	$__USER_CS				/* pt_regs->cs */
 105	pushq	%rcx					/* pt_regs->ip */
 106SYM_INNER_LABEL(entry_SYSCALL_64_after_hwframe, SYM_L_GLOBAL)
 107	pushq	%rax					/* pt_regs->orig_ax */
 108
 109	PUSH_AND_CLEAR_REGS rax=$-ENOSYS
 110
 111	/* IRQs are off. */
 112	movq	%rsp, %rdi
 113	/* Sign extend the lower 32bit as syscall numbers are treated as int */
 114	movslq	%eax, %rsi
 115
 116	/* clobbers %rax, make sure it is after saving the syscall nr */
 117	IBRS_ENTER
 118	UNTRAIN_RET
 119
 120	call	do_syscall_64		/* returns with IRQs disabled */
 121
 122	/*
 123	 * Try to use SYSRET instead of IRET if we're returning to
 124	 * a completely clean 64-bit userspace context.  If we're not,
 125	 * go to the slow exit path.
 126	 * In the Xen PV case we must use iret anyway.
 127	 */
 128
 129	ALTERNATIVE "", "jmp	swapgs_restore_regs_and_return_to_usermode", \
 130		X86_FEATURE_XENPV
 131
 132	movq	RCX(%rsp), %rcx
 133	movq	RIP(%rsp), %r11
 134
 135	cmpq	%rcx, %r11	/* SYSRET requires RCX == RIP */
 136	jne	swapgs_restore_regs_and_return_to_usermode
 137
 138	/*
 139	 * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP
 140	 * in kernel space.  This essentially lets the user take over
 141	 * the kernel, since userspace controls RSP.
 142	 *
 143	 * If width of "canonical tail" ever becomes variable, this will need
 144	 * to be updated to remain correct on both old and new CPUs.
 145	 *
 146	 * Change top bits to match most significant bit (47th or 56th bit
 147	 * depending on paging mode) in the address.
 148	 */
 149#ifdef CONFIG_X86_5LEVEL
 150	ALTERNATIVE "shl $(64 - 48), %rcx; sar $(64 - 48), %rcx", \
 151		"shl $(64 - 57), %rcx; sar $(64 - 57), %rcx", X86_FEATURE_LA57
 152#else
 153	shl	$(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
 154	sar	$(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
 155#endif
 156
 157	/* If this changed %rcx, it was not canonical */
 158	cmpq	%rcx, %r11
 159	jne	swapgs_restore_regs_and_return_to_usermode
 160
 161	cmpq	$__USER_CS, CS(%rsp)		/* CS must match SYSRET */
 162	jne	swapgs_restore_regs_and_return_to_usermode
 163
 164	movq	R11(%rsp), %r11
 165	cmpq	%r11, EFLAGS(%rsp)		/* R11 == RFLAGS */
 166	jne	swapgs_restore_regs_and_return_to_usermode
 167
 168	/*
 169	 * SYSCALL clears RF when it saves RFLAGS in R11 and SYSRET cannot
 170	 * restore RF properly. If the slowpath sets it for whatever reason, we
 171	 * need to restore it correctly.
 172	 *
 173	 * SYSRET can restore TF, but unlike IRET, restoring TF results in a
 174	 * trap from userspace immediately after SYSRET.  This would cause an
 175	 * infinite loop whenever #DB happens with register state that satisfies
 176	 * the opportunistic SYSRET conditions.  For example, single-stepping
 177	 * this user code:
 178	 *
 179	 *           movq	$stuck_here, %rcx
 180	 *           pushfq
 181	 *           popq %r11
 182	 *   stuck_here:
 183	 *
 184	 * would never get past 'stuck_here'.
 185	 */
 186	testq	$(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11
 187	jnz	swapgs_restore_regs_and_return_to_usermode
 188
 189	/* nothing to check for RSP */
 190
 191	cmpq	$__USER_DS, SS(%rsp)		/* SS must match SYSRET */
 192	jne	swapgs_restore_regs_and_return_to_usermode
 193
 194	/*
 195	 * We win! This label is here just for ease of understanding
 196	 * perf profiles. Nothing jumps here.
 197	 */
 198syscall_return_via_sysret:
 199	IBRS_EXIT
 200	POP_REGS pop_rdi=0
 201
 202	/*
 203	 * Now all regs are restored except RSP and RDI.
 204	 * Save old stack pointer and switch to trampoline stack.
 205	 */
 206	movq	%rsp, %rdi
 207	movq	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
 208	UNWIND_HINT_EMPTY
 209
 210	pushq	RSP-RDI(%rdi)	/* RSP */
 211	pushq	(%rdi)		/* RDI */
 212
 213	/*
 214	 * We are on the trampoline stack.  All regs except RDI are live.
 215	 * We can do future final exit work right here.
 216	 */
 217	STACKLEAK_ERASE_NOCLOBBER
 218
 219	SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
 220
 221	popq	%rdi
 222	popq	%rsp
 223SYM_INNER_LABEL(entry_SYSRETQ_unsafe_stack, SYM_L_GLOBAL)
 224	ANNOTATE_NOENDBR
 225	swapgs
 226	sysretq
 227SYM_INNER_LABEL(entry_SYSRETQ_end, SYM_L_GLOBAL)
 228	ANNOTATE_NOENDBR
 229	int3
 230SYM_CODE_END(entry_SYSCALL_64)
 231
 232/*
 233 * %rdi: prev task
 234 * %rsi: next task
 235 */
 236.pushsection .text, "ax"
 237SYM_FUNC_START(__switch_to_asm)
 238	/*
 239	 * Save callee-saved registers
 240	 * This must match the order in inactive_task_frame
 241	 */
 242	pushq	%rbp
 243	pushq	%rbx
 244	pushq	%r12
 245	pushq	%r13
 246	pushq	%r14
 247	pushq	%r15
 248
 249	/* switch stack */
 250	movq	%rsp, TASK_threadsp(%rdi)
 251	movq	TASK_threadsp(%rsi), %rsp
 252
 253#ifdef CONFIG_STACKPROTECTOR
 254	movq	TASK_stack_canary(%rsi), %rbx
 255	movq	%rbx, PER_CPU_VAR(fixed_percpu_data) + FIXED_stack_canary
 256#endif
 257
 258	/*
 259	 * When switching from a shallower to a deeper call stack
 260	 * the RSB may either underflow or use entries populated
 261	 * with userspace addresses. On CPUs where those concerns
 262	 * exist, overwrite the RSB with entries which capture
 263	 * speculative execution to prevent attack.
 264	 */
 265	FILL_RETURN_BUFFER %r12, RSB_CLEAR_LOOPS, X86_FEATURE_RSB_CTXSW
 266
 267	/* restore callee-saved registers */
 268	popq	%r15
 269	popq	%r14
 270	popq	%r13
 271	popq	%r12
 272	popq	%rbx
 273	popq	%rbp
 274
 275	jmp	__switch_to
 276SYM_FUNC_END(__switch_to_asm)
 277.popsection
 278
 279/*
 280 * A newly forked process directly context switches into this address.
 281 *
 282 * rax: prev task we switched from
 283 * rbx: kernel thread func (NULL for user thread)
 284 * r12: kernel thread arg
 285 */
 286.pushsection .text, "ax"
 287	__FUNC_ALIGN
 288SYM_CODE_START_NOALIGN(ret_from_fork)
 289	UNWIND_HINT_EMPTY
 290	ANNOTATE_NOENDBR // copy_thread
 291	CALL_DEPTH_ACCOUNT
 292	movq	%rax, %rdi
 293	call	schedule_tail			/* rdi: 'prev' task parameter */
 294
 295	testq	%rbx, %rbx			/* from kernel_thread? */
 296	jnz	1f				/* kernel threads are uncommon */
 297
 2982:
 299	UNWIND_HINT_REGS
 300	movq	%rsp, %rdi
 301	call	syscall_exit_to_user_mode	/* returns with IRQs disabled */
 302	jmp	swapgs_restore_regs_and_return_to_usermode
 303
 3041:
 305	/* kernel thread */
 306	UNWIND_HINT_EMPTY
 307	movq	%r12, %rdi
 308	CALL_NOSPEC rbx
 309	/*
 310	 * A kernel thread is allowed to return here after successfully
 311	 * calling kernel_execve().  Exit to userspace to complete the execve()
 312	 * syscall.
 313	 */
 314	movq	$0, RAX(%rsp)
 315	jmp	2b
 316SYM_CODE_END(ret_from_fork)
 317.popsection
 318
 319.macro DEBUG_ENTRY_ASSERT_IRQS_OFF
 320#ifdef CONFIG_DEBUG_ENTRY
 321	pushq %rax
 322	SAVE_FLAGS
 323	testl $X86_EFLAGS_IF, %eax
 324	jz .Lokay_\@
 325	ud2
 326.Lokay_\@:
 327	popq %rax
 328#endif
 329.endm
 330
 331SYM_CODE_START(xen_error_entry)
 332	ANNOTATE_NOENDBR
 333	UNWIND_HINT_FUNC
 334	PUSH_AND_CLEAR_REGS save_ret=1
 335	ENCODE_FRAME_POINTER 8
 336	UNTRAIN_RET_FROM_CALL
 337	RET
 338SYM_CODE_END(xen_error_entry)
 339
 340/**
 341 * idtentry_body - Macro to emit code calling the C function
 342 * @cfunc:		C function to be called
 343 * @has_error_code:	Hardware pushed error code on stack
 344 */
 345.macro idtentry_body cfunc has_error_code:req
 346
 347	/*
 348	 * Call error_entry() and switch to the task stack if from userspace.
 349	 *
 350	 * When in XENPV, it is already in the task stack, and it can't fault
 351	 * for native_iret() nor native_load_gs_index() since XENPV uses its
 352	 * own pvops for IRET and load_gs_index().  And it doesn't need to
 353	 * switch the CR3.  So it can skip invoking error_entry().
 354	 */
 355	ALTERNATIVE "call error_entry; movq %rax, %rsp", \
 356		    "call xen_error_entry", X86_FEATURE_XENPV
 357
 358	ENCODE_FRAME_POINTER
 359	UNWIND_HINT_REGS
 360
 361	movq	%rsp, %rdi			/* pt_regs pointer into 1st argument*/
 362
 363	.if \has_error_code == 1
 364		movq	ORIG_RAX(%rsp), %rsi	/* get error code into 2nd argument*/
 365		movq	$-1, ORIG_RAX(%rsp)	/* no syscall to restart */
 366	.endif
 367
 368	call	\cfunc
 369
 370	/* For some configurations \cfunc ends up being a noreturn. */
 371	REACHABLE
 372
 373	jmp	error_return
 374.endm
 375
 376/**
 377 * idtentry - Macro to generate entry stubs for simple IDT entries
 378 * @vector:		Vector number
 379 * @asmsym:		ASM symbol for the entry point
 380 * @cfunc:		C function to be called
 381 * @has_error_code:	Hardware pushed error code on stack
 382 *
 383 * The macro emits code to set up the kernel context for straight forward
 384 * and simple IDT entries. No IST stack, no paranoid entry checks.
 385 */
 386.macro idtentry vector asmsym cfunc has_error_code:req
 387SYM_CODE_START(\asmsym)
 388	UNWIND_HINT_IRET_REGS offset=\has_error_code*8
 389	ENDBR
 390	ASM_CLAC
 391	cld
 392
 393	.if \has_error_code == 0
 394		pushq	$-1			/* ORIG_RAX: no syscall to restart */
 395	.endif
 396
 397	.if \vector == X86_TRAP_BP
 398		/*
 399		 * If coming from kernel space, create a 6-word gap to allow the
 400		 * int3 handler to emulate a call instruction.
 401		 */
 402		testb	$3, CS-ORIG_RAX(%rsp)
 403		jnz	.Lfrom_usermode_no_gap_\@
 404		.rept	6
 405		pushq	5*8(%rsp)
 406		.endr
 407		UNWIND_HINT_IRET_REGS offset=8
 408.Lfrom_usermode_no_gap_\@:
 409	.endif
 410
 411	idtentry_body \cfunc \has_error_code
 412
 413_ASM_NOKPROBE(\asmsym)
 414SYM_CODE_END(\asmsym)
 415.endm
 416
 417/*
 418 * Interrupt entry/exit.
 419 *
 420 + The interrupt stubs push (vector) onto the stack, which is the error_code
 421 * position of idtentry exceptions, and jump to one of the two idtentry points
 422 * (common/spurious).
 423 *
 424 * common_interrupt is a hotpath, align it to a cache line
 425 */
 426.macro idtentry_irq vector cfunc
 427	.p2align CONFIG_X86_L1_CACHE_SHIFT
 428	idtentry \vector asm_\cfunc \cfunc has_error_code=1
 429.endm
 430
 431/*
 432 * System vectors which invoke their handlers directly and are not
 433 * going through the regular common device interrupt handling code.
 434 */
 435.macro idtentry_sysvec vector cfunc
 436	idtentry \vector asm_\cfunc \cfunc has_error_code=0
 437.endm
 438
 439/**
 440 * idtentry_mce_db - Macro to generate entry stubs for #MC and #DB
 441 * @vector:		Vector number
 442 * @asmsym:		ASM symbol for the entry point
 443 * @cfunc:		C function to be called
 444 *
 445 * The macro emits code to set up the kernel context for #MC and #DB
 446 *
 447 * If the entry comes from user space it uses the normal entry path
 448 * including the return to user space work and preemption checks on
 449 * exit.
 450 *
 451 * If hits in kernel mode then it needs to go through the paranoid
 452 * entry as the exception can hit any random state. No preemption
 453 * check on exit to keep the paranoid path simple.
 454 */
 455.macro idtentry_mce_db vector asmsym cfunc
 456SYM_CODE_START(\asmsym)
 457	UNWIND_HINT_IRET_REGS
 458	ENDBR
 459	ASM_CLAC
 460	cld
 461
 462	pushq	$-1			/* ORIG_RAX: no syscall to restart */
 463
 464	/*
 465	 * If the entry is from userspace, switch stacks and treat it as
 466	 * a normal entry.
 467	 */
 468	testb	$3, CS-ORIG_RAX(%rsp)
 469	jnz	.Lfrom_usermode_switch_stack_\@
 470
 471	/* paranoid_entry returns GS information for paranoid_exit in EBX. */
 472	call	paranoid_entry
 473
 474	UNWIND_HINT_REGS
 475
 476	movq	%rsp, %rdi		/* pt_regs pointer */
 477
 478	call	\cfunc
 479
 480	jmp	paranoid_exit
 481
 482	/* Switch to the regular task stack and use the noist entry point */
 483.Lfrom_usermode_switch_stack_\@:
 484	idtentry_body noist_\cfunc, has_error_code=0
 485
 486_ASM_NOKPROBE(\asmsym)
 487SYM_CODE_END(\asmsym)
 488.endm
 489
 490#ifdef CONFIG_AMD_MEM_ENCRYPT
 491/**
 492 * idtentry_vc - Macro to generate entry stub for #VC
 493 * @vector:		Vector number
 494 * @asmsym:		ASM symbol for the entry point
 495 * @cfunc:		C function to be called
 496 *
 497 * The macro emits code to set up the kernel context for #VC. The #VC handler
 498 * runs on an IST stack and needs to be able to cause nested #VC exceptions.
 499 *
 500 * To make this work the #VC entry code tries its best to pretend it doesn't use
 501 * an IST stack by switching to the task stack if coming from user-space (which
 502 * includes early SYSCALL entry path) or back to the stack in the IRET frame if
 503 * entered from kernel-mode.
 504 *
 505 * If entered from kernel-mode the return stack is validated first, and if it is
 506 * not safe to use (e.g. because it points to the entry stack) the #VC handler
 507 * will switch to a fall-back stack (VC2) and call a special handler function.
 508 *
 509 * The macro is only used for one vector, but it is planned to be extended in
 510 * the future for the #HV exception.
 511 */
 512.macro idtentry_vc vector asmsym cfunc
 513SYM_CODE_START(\asmsym)
 514	UNWIND_HINT_IRET_REGS
 515	ENDBR
 516	ASM_CLAC
 517	cld
 518
 519	/*
 520	 * If the entry is from userspace, switch stacks and treat it as
 521	 * a normal entry.
 522	 */
 523	testb	$3, CS-ORIG_RAX(%rsp)
 524	jnz	.Lfrom_usermode_switch_stack_\@
 525
 526	/*
 527	 * paranoid_entry returns SWAPGS flag for paranoid_exit in EBX.
 528	 * EBX == 0 -> SWAPGS, EBX == 1 -> no SWAPGS
 529	 */
 530	call	paranoid_entry
 531
 532	UNWIND_HINT_REGS
 533
 534	/*
 535	 * Switch off the IST stack to make it free for nested exceptions. The
 536	 * vc_switch_off_ist() function will switch back to the interrupted
 537	 * stack if it is safe to do so. If not it switches to the VC fall-back
 538	 * stack.
 539	 */
 540	movq	%rsp, %rdi		/* pt_regs pointer */
 541	call	vc_switch_off_ist
 542	movq	%rax, %rsp		/* Switch to new stack */
 543
 544	ENCODE_FRAME_POINTER
 545	UNWIND_HINT_REGS
 546
 547	/* Update pt_regs */
 548	movq	ORIG_RAX(%rsp), %rsi	/* get error code into 2nd argument*/
 549	movq	$-1, ORIG_RAX(%rsp)	/* no syscall to restart */
 550
 551	movq	%rsp, %rdi		/* pt_regs pointer */
 552
 553	call	kernel_\cfunc
 554
 555	/*
 556	 * No need to switch back to the IST stack. The current stack is either
 557	 * identical to the stack in the IRET frame or the VC fall-back stack,
 558	 * so it is definitely mapped even with PTI enabled.
 559	 */
 560	jmp	paranoid_exit
 561
 562	/* Switch to the regular task stack */
 563.Lfrom_usermode_switch_stack_\@:
 564	idtentry_body user_\cfunc, has_error_code=1
 565
 566_ASM_NOKPROBE(\asmsym)
 567SYM_CODE_END(\asmsym)
 568.endm
 569#endif
 570
 571/*
 572 * Double fault entry. Straight paranoid. No checks from which context
 573 * this comes because for the espfix induced #DF this would do the wrong
 574 * thing.
 575 */
 576.macro idtentry_df vector asmsym cfunc
 577SYM_CODE_START(\asmsym)
 578	UNWIND_HINT_IRET_REGS offset=8
 579	ENDBR
 580	ASM_CLAC
 581	cld
 582
 583	/* paranoid_entry returns GS information for paranoid_exit in EBX. */
 584	call	paranoid_entry
 585	UNWIND_HINT_REGS
 586
 587	movq	%rsp, %rdi		/* pt_regs pointer into first argument */
 588	movq	ORIG_RAX(%rsp), %rsi	/* get error code into 2nd argument*/
 589	movq	$-1, ORIG_RAX(%rsp)	/* no syscall to restart */
 590	call	\cfunc
 591
 592	/* For some configurations \cfunc ends up being a noreturn. */
 593	REACHABLE
 594
 595	jmp	paranoid_exit
 596
 597_ASM_NOKPROBE(\asmsym)
 598SYM_CODE_END(\asmsym)
 599.endm
 600
 601/*
 602 * Include the defines which emit the idt entries which are shared
 603 * shared between 32 and 64 bit and emit the __irqentry_text_* markers
 604 * so the stacktrace boundary checks work.
 605 */
 606	__ALIGN
 607	.globl __irqentry_text_start
 608__irqentry_text_start:
 609
 610#include <asm/idtentry.h>
 611
 612	__ALIGN
 613	.globl __irqentry_text_end
 614__irqentry_text_end:
 615	ANNOTATE_NOENDBR
 616
 617SYM_CODE_START_LOCAL(common_interrupt_return)
 618SYM_INNER_LABEL(swapgs_restore_regs_and_return_to_usermode, SYM_L_GLOBAL)
 619	IBRS_EXIT
 620#ifdef CONFIG_DEBUG_ENTRY
 621	/* Assert that pt_regs indicates user mode. */
 622	testb	$3, CS(%rsp)
 623	jnz	1f
 624	ud2
 6251:
 626#endif
 627#ifdef CONFIG_XEN_PV
 628	ALTERNATIVE "", "jmp xenpv_restore_regs_and_return_to_usermode", X86_FEATURE_XENPV
 629#endif
 630
 631	POP_REGS pop_rdi=0
 632
 633	/*
 634	 * The stack is now user RDI, orig_ax, RIP, CS, EFLAGS, RSP, SS.
 635	 * Save old stack pointer and switch to trampoline stack.
 636	 */
 637	movq	%rsp, %rdi
 638	movq	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
 639	UNWIND_HINT_EMPTY
 640
 641	/* Copy the IRET frame to the trampoline stack. */
 642	pushq	6*8(%rdi)	/* SS */
 643	pushq	5*8(%rdi)	/* RSP */
 644	pushq	4*8(%rdi)	/* EFLAGS */
 645	pushq	3*8(%rdi)	/* CS */
 646	pushq	2*8(%rdi)	/* RIP */
 647
 648	/* Push user RDI on the trampoline stack. */
 649	pushq	(%rdi)
 650
 651	/*
 652	 * We are on the trampoline stack.  All regs except RDI are live.
 653	 * We can do future final exit work right here.
 654	 */
 655	STACKLEAK_ERASE_NOCLOBBER
 656
 657	SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
 658
 659	/* Restore RDI. */
 660	popq	%rdi
 661	swapgs
 662	jmp	.Lnative_iret
 663
 664
 665SYM_INNER_LABEL(restore_regs_and_return_to_kernel, SYM_L_GLOBAL)
 666#ifdef CONFIG_DEBUG_ENTRY
 667	/* Assert that pt_regs indicates kernel mode. */
 668	testb	$3, CS(%rsp)
 669	jz	1f
 670	ud2
 6711:
 672#endif
 673	POP_REGS
 674	addq	$8, %rsp	/* skip regs->orig_ax */
 675	/*
 676	 * ARCH_HAS_MEMBARRIER_SYNC_CORE rely on IRET core serialization
 677	 * when returning from IPI handler.
 678	 */
 679#ifdef CONFIG_XEN_PV
 680SYM_INNER_LABEL(early_xen_iret_patch, SYM_L_GLOBAL)
 681	ANNOTATE_NOENDBR
 682	.byte 0xe9
 683	.long .Lnative_iret - (. + 4)
 684#endif
 685
 686.Lnative_iret:
 687	UNWIND_HINT_IRET_REGS
 688	/*
 689	 * Are we returning to a stack segment from the LDT?  Note: in
 690	 * 64-bit mode SS:RSP on the exception stack is always valid.
 691	 */
 692#ifdef CONFIG_X86_ESPFIX64
 693	testb	$4, (SS-RIP)(%rsp)
 694	jnz	native_irq_return_ldt
 695#endif
 696
 697SYM_INNER_LABEL(native_irq_return_iret, SYM_L_GLOBAL)
 698	ANNOTATE_NOENDBR // exc_double_fault
 699	/*
 700	 * This may fault.  Non-paranoid faults on return to userspace are
 701	 * handled by fixup_bad_iret.  These include #SS, #GP, and #NP.
 702	 * Double-faults due to espfix64 are handled in exc_double_fault.
 703	 * Other faults here are fatal.
 704	 */
 705	iretq
 706
 707#ifdef CONFIG_X86_ESPFIX64
 708native_irq_return_ldt:
 709	/*
 710	 * We are running with user GSBASE.  All GPRs contain their user
 711	 * values.  We have a percpu ESPFIX stack that is eight slots
 712	 * long (see ESPFIX_STACK_SIZE).  espfix_waddr points to the bottom
 713	 * of the ESPFIX stack.
 714	 *
 715	 * We clobber RAX and RDI in this code.  We stash RDI on the
 716	 * normal stack and RAX on the ESPFIX stack.
 717	 *
 718	 * The ESPFIX stack layout we set up looks like this:
 719	 *
 720	 * --- top of ESPFIX stack ---
 721	 * SS
 722	 * RSP
 723	 * RFLAGS
 724	 * CS
 725	 * RIP  <-- RSP points here when we're done
 726	 * RAX  <-- espfix_waddr points here
 727	 * --- bottom of ESPFIX stack ---
 728	 */
 729
 730	pushq	%rdi				/* Stash user RDI */
 731	swapgs					/* to kernel GS */
 732	SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi	/* to kernel CR3 */
 733
 734	movq	PER_CPU_VAR(espfix_waddr), %rdi
 735	movq	%rax, (0*8)(%rdi)		/* user RAX */
 736	movq	(1*8)(%rsp), %rax		/* user RIP */
 737	movq	%rax, (1*8)(%rdi)
 738	movq	(2*8)(%rsp), %rax		/* user CS */
 739	movq	%rax, (2*8)(%rdi)
 740	movq	(3*8)(%rsp), %rax		/* user RFLAGS */
 741	movq	%rax, (3*8)(%rdi)
 742	movq	(5*8)(%rsp), %rax		/* user SS */
 743	movq	%rax, (5*8)(%rdi)
 744	movq	(4*8)(%rsp), %rax		/* user RSP */
 745	movq	%rax, (4*8)(%rdi)
 746	/* Now RAX == RSP. */
 747
 748	andl	$0xffff0000, %eax		/* RAX = (RSP & 0xffff0000) */
 749
 750	/*
 751	 * espfix_stack[31:16] == 0.  The page tables are set up such that
 752	 * (espfix_stack | (X & 0xffff0000)) points to a read-only alias of
 753	 * espfix_waddr for any X.  That is, there are 65536 RO aliases of
 754	 * the same page.  Set up RSP so that RSP[31:16] contains the
 755	 * respective 16 bits of the /userspace/ RSP and RSP nonetheless
 756	 * still points to an RO alias of the ESPFIX stack.
 757	 */
 758	orq	PER_CPU_VAR(espfix_stack), %rax
 759
 760	SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
 761	swapgs					/* to user GS */
 762	popq	%rdi				/* Restore user RDI */
 763
 764	movq	%rax, %rsp
 765	UNWIND_HINT_IRET_REGS offset=8
 766
 767	/*
 768	 * At this point, we cannot write to the stack any more, but we can
 769	 * still read.
 770	 */
 771	popq	%rax				/* Restore user RAX */
 772
 773	/*
 774	 * RSP now points to an ordinary IRET frame, except that the page
 775	 * is read-only and RSP[31:16] are preloaded with the userspace
 776	 * values.  We can now IRET back to userspace.
 777	 */
 778	jmp	native_irq_return_iret
 779#endif
 780SYM_CODE_END(common_interrupt_return)
 781_ASM_NOKPROBE(common_interrupt_return)
 782
 783/*
 784 * Reload gs selector with exception handling
 785 * edi:  new selector
 786 *
 787 * Is in entry.text as it shouldn't be instrumented.
 788 */
 789SYM_FUNC_START(asm_load_gs_index)
 790	FRAME_BEGIN
 791	swapgs
 792.Lgs_change:
 793	ANNOTATE_NOENDBR // error_entry
 794	movl	%edi, %gs
 7952:	ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE
 796	swapgs
 797	FRAME_END
 798	RET
 799
 800	/* running with kernelgs */
 801.Lbad_gs:
 802	swapgs					/* switch back to user gs */
 803.macro ZAP_GS
 804	/* This can't be a string because the preprocessor needs to see it. */
 805	movl $__USER_DS, %eax
 806	movl %eax, %gs
 807.endm
 808	ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG
 809	xorl	%eax, %eax
 810	movl	%eax, %gs
 811	jmp	2b
 812
 813	_ASM_EXTABLE(.Lgs_change, .Lbad_gs)
 814
 815SYM_FUNC_END(asm_load_gs_index)
 816EXPORT_SYMBOL(asm_load_gs_index)
 817
 818#ifdef CONFIG_XEN_PV
 819/*
 820 * A note on the "critical region" in our callback handler.
 821 * We want to avoid stacking callback handlers due to events occurring
 822 * during handling of the last event. To do this, we keep events disabled
 823 * until we've done all processing. HOWEVER, we must enable events before
 824 * popping the stack frame (can't be done atomically) and so it would still
 825 * be possible to get enough handler activations to overflow the stack.
 826 * Although unlikely, bugs of that kind are hard to track down, so we'd
 827 * like to avoid the possibility.
 828 * So, on entry to the handler we detect whether we interrupted an
 829 * existing activation in its critical region -- if so, we pop the current
 830 * activation and restart the handler using the previous one.
 831 *
 832 * C calling convention: exc_xen_hypervisor_callback(struct *pt_regs)
 833 */
 834	__FUNC_ALIGN
 835SYM_CODE_START_LOCAL_NOALIGN(exc_xen_hypervisor_callback)
 836
 837/*
 838 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
 839 * see the correct pointer to the pt_regs
 840 */
 841	UNWIND_HINT_FUNC
 842	movq	%rdi, %rsp			/* we don't return, adjust the stack frame */
 843	UNWIND_HINT_REGS
 844
 845	call	xen_pv_evtchn_do_upcall
 846
 847	jmp	error_return
 848SYM_CODE_END(exc_xen_hypervisor_callback)
 849
 850/*
 851 * Hypervisor uses this for application faults while it executes.
 852 * We get here for two reasons:
 853 *  1. Fault while reloading DS, ES, FS or GS
 854 *  2. Fault while executing IRET
 855 * Category 1 we do not need to fix up as Xen has already reloaded all segment
 856 * registers that could be reloaded and zeroed the others.
 857 * Category 2 we fix up by killing the current process. We cannot use the
 858 * normal Linux return path in this case because if we use the IRET hypercall
 859 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
 860 * We distinguish between categories by comparing each saved segment register
 861 * with its current contents: any discrepancy means we in category 1.
 862 */
 863	__FUNC_ALIGN
 864SYM_CODE_START_NOALIGN(xen_failsafe_callback)
 865	UNWIND_HINT_EMPTY
 866	ENDBR
 867	movl	%ds, %ecx
 868	cmpw	%cx, 0x10(%rsp)
 869	jne	1f
 870	movl	%es, %ecx
 871	cmpw	%cx, 0x18(%rsp)
 872	jne	1f
 873	movl	%fs, %ecx
 874	cmpw	%cx, 0x20(%rsp)
 875	jne	1f
 876	movl	%gs, %ecx
 877	cmpw	%cx, 0x28(%rsp)
 878	jne	1f
 879	/* All segments match their saved values => Category 2 (Bad IRET). */
 880	movq	(%rsp), %rcx
 881	movq	8(%rsp), %r11
 882	addq	$0x30, %rsp
 883	pushq	$0				/* RIP */
 884	UNWIND_HINT_IRET_REGS offset=8
 885	jmp	asm_exc_general_protection
 8861:	/* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
 887	movq	(%rsp), %rcx
 888	movq	8(%rsp), %r11
 889	addq	$0x30, %rsp
 890	UNWIND_HINT_IRET_REGS
 891	pushq	$-1 /* orig_ax = -1 => not a system call */
 892	PUSH_AND_CLEAR_REGS
 893	ENCODE_FRAME_POINTER
 894	jmp	error_return
 895SYM_CODE_END(xen_failsafe_callback)
 896#endif /* CONFIG_XEN_PV */
 897
 898/*
 899 * Save all registers in pt_regs. Return GSBASE related information
 900 * in EBX depending on the availability of the FSGSBASE instructions:
 901 *
 902 * FSGSBASE	R/EBX
 903 *     N        0 -> SWAPGS on exit
 904 *              1 -> no SWAPGS on exit
 905 *
 906 *     Y        GSBASE value at entry, must be restored in paranoid_exit
 907 *
 908 * R14 - old CR3
 909 * R15 - old SPEC_CTRL
 910 */
 911SYM_CODE_START(paranoid_entry)
 912	ANNOTATE_NOENDBR
 913	UNWIND_HINT_FUNC
 914	PUSH_AND_CLEAR_REGS save_ret=1
 915	ENCODE_FRAME_POINTER 8
 916
 917	/*
 918	 * Always stash CR3 in %r14.  This value will be restored,
 919	 * verbatim, at exit.  Needed if paranoid_entry interrupted
 920	 * another entry that already switched to the user CR3 value
 921	 * but has not yet returned to userspace.
 922	 *
 923	 * This is also why CS (stashed in the "iret frame" by the
 924	 * hardware at entry) can not be used: this may be a return
 925	 * to kernel code, but with a user CR3 value.
 926	 *
 927	 * Switching CR3 does not depend on kernel GSBASE so it can
 928	 * be done before switching to the kernel GSBASE. This is
 929	 * required for FSGSBASE because the kernel GSBASE has to
 930	 * be retrieved from a kernel internal table.
 931	 */
 932	SAVE_AND_SWITCH_TO_KERNEL_CR3 scratch_reg=%rax save_reg=%r14
 933
 934	/*
 935	 * Handling GSBASE depends on the availability of FSGSBASE.
 936	 *
 937	 * Without FSGSBASE the kernel enforces that negative GSBASE
 938	 * values indicate kernel GSBASE. With FSGSBASE no assumptions
 939	 * can be made about the GSBASE value when entering from user
 940	 * space.
 941	 */
 942	ALTERNATIVE "jmp .Lparanoid_entry_checkgs", "", X86_FEATURE_FSGSBASE
 943
 944	/*
 945	 * Read the current GSBASE and store it in %rbx unconditionally,
 946	 * retrieve and set the current CPUs kernel GSBASE. The stored value
 947	 * has to be restored in paranoid_exit unconditionally.
 948	 *
 949	 * The unconditional write to GS base below ensures that no subsequent
 950	 * loads based on a mispredicted GS base can happen, therefore no LFENCE
 951	 * is needed here.
 952	 */
 953	SAVE_AND_SET_GSBASE scratch_reg=%rax save_reg=%rbx
 954	jmp .Lparanoid_gsbase_done
 955
 956.Lparanoid_entry_checkgs:
 957	/* EBX = 1 -> kernel GSBASE active, no restore required */
 958	movl	$1, %ebx
 959
 960	/*
 961	 * The kernel-enforced convention is a negative GSBASE indicates
 962	 * a kernel value. No SWAPGS needed on entry and exit.
 963	 */
 964	movl	$MSR_GS_BASE, %ecx
 965	rdmsr
 966	testl	%edx, %edx
 967	js	.Lparanoid_kernel_gsbase
 968
 969	/* EBX = 0 -> SWAPGS required on exit */
 970	xorl	%ebx, %ebx
 971	swapgs
 972.Lparanoid_kernel_gsbase:
 973	FENCE_SWAPGS_KERNEL_ENTRY
 974.Lparanoid_gsbase_done:
 975
 976	/*
 977	 * Once we have CR3 and %GS setup save and set SPEC_CTRL. Just like
 978	 * CR3 above, keep the old value in a callee saved register.
 979	 */
 980	IBRS_ENTER save_reg=%r15
 981	UNTRAIN_RET_FROM_CALL
 982
 983	RET
 984SYM_CODE_END(paranoid_entry)
 985
 986/*
 987 * "Paranoid" exit path from exception stack.  This is invoked
 988 * only on return from non-NMI IST interrupts that came
 989 * from kernel space.
 990 *
 991 * We may be returning to very strange contexts (e.g. very early
 992 * in syscall entry), so checking for preemption here would
 993 * be complicated.  Fortunately, there's no good reason to try
 994 * to handle preemption here.
 995 *
 996 * R/EBX contains the GSBASE related information depending on the
 997 * availability of the FSGSBASE instructions:
 998 *
 999 * FSGSBASE	R/EBX
1000 *     N        0 -> SWAPGS on exit
1001 *              1 -> no SWAPGS on exit
1002 *
1003 *     Y        User space GSBASE, must be restored unconditionally
1004 *
1005 * R14 - old CR3
1006 * R15 - old SPEC_CTRL
1007 */
1008SYM_CODE_START_LOCAL(paranoid_exit)
1009	UNWIND_HINT_REGS
1010
1011	/*
1012	 * Must restore IBRS state before both CR3 and %GS since we need access
1013	 * to the per-CPU x86_spec_ctrl_shadow variable.
1014	 */
1015	IBRS_EXIT save_reg=%r15
1016
1017	/*
1018	 * The order of operations is important. RESTORE_CR3 requires
1019	 * kernel GSBASE.
1020	 *
1021	 * NB to anyone to try to optimize this code: this code does
1022	 * not execute at all for exceptions from user mode. Those
1023	 * exceptions go through error_exit instead.
1024	 */
1025	RESTORE_CR3	scratch_reg=%rax save_reg=%r14
1026
1027	/* Handle the three GSBASE cases */
1028	ALTERNATIVE "jmp .Lparanoid_exit_checkgs", "", X86_FEATURE_FSGSBASE
1029
1030	/* With FSGSBASE enabled, unconditionally restore GSBASE */
1031	wrgsbase	%rbx
1032	jmp		restore_regs_and_return_to_kernel
1033
1034.Lparanoid_exit_checkgs:
1035	/* On non-FSGSBASE systems, conditionally do SWAPGS */
1036	testl		%ebx, %ebx
1037	jnz		restore_regs_and_return_to_kernel
1038
1039	/* We are returning to a context with user GSBASE */
1040	swapgs
1041	jmp		restore_regs_and_return_to_kernel
1042SYM_CODE_END(paranoid_exit)
1043
1044/*
1045 * Switch GS and CR3 if needed.
1046 */
1047SYM_CODE_START(error_entry)
1048	ANNOTATE_NOENDBR
1049	UNWIND_HINT_FUNC
1050
1051	PUSH_AND_CLEAR_REGS save_ret=1
1052	ENCODE_FRAME_POINTER 8
1053
1054	testb	$3, CS+8(%rsp)
1055	jz	.Lerror_kernelspace
1056
1057	/*
1058	 * We entered from user mode or we're pretending to have entered
1059	 * from user mode due to an IRET fault.
1060	 */
1061	swapgs
1062	FENCE_SWAPGS_USER_ENTRY
1063	/* We have user CR3.  Change to kernel CR3. */
1064	SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1065	IBRS_ENTER
1066	UNTRAIN_RET_FROM_CALL
1067
1068	leaq	8(%rsp), %rdi			/* arg0 = pt_regs pointer */
1069	/* Put us onto the real thread stack. */
1070	jmp	sync_regs
1071
1072	/*
1073	 * There are two places in the kernel that can potentially fault with
1074	 * usergs. Handle them here.  B stepping K8s sometimes report a
1075	 * truncated RIP for IRET exceptions returning to compat mode. Check
1076	 * for these here too.
1077	 */
1078.Lerror_kernelspace:
1079	leaq	native_irq_return_iret(%rip), %rcx
1080	cmpq	%rcx, RIP+8(%rsp)
1081	je	.Lerror_bad_iret
1082	movl	%ecx, %eax			/* zero extend */
1083	cmpq	%rax, RIP+8(%rsp)
1084	je	.Lbstep_iret
1085	cmpq	$.Lgs_change, RIP+8(%rsp)
1086	jne	.Lerror_entry_done_lfence
1087
1088	/*
1089	 * hack: .Lgs_change can fail with user gsbase.  If this happens, fix up
1090	 * gsbase and proceed.  We'll fix up the exception and land in
1091	 * .Lgs_change's error handler with kernel gsbase.
1092	 */
1093	swapgs
1094
1095	/*
1096	 * Issue an LFENCE to prevent GS speculation, regardless of whether it is a
1097	 * kernel or user gsbase.
1098	 */
1099.Lerror_entry_done_lfence:
1100	FENCE_SWAPGS_KERNEL_ENTRY
1101	CALL_DEPTH_ACCOUNT
1102	leaq	8(%rsp), %rax			/* return pt_regs pointer */
1103	ANNOTATE_UNRET_END
1104	RET
1105
1106.Lbstep_iret:
1107	/* Fix truncated RIP */
1108	movq	%rcx, RIP+8(%rsp)
1109	/* fall through */
1110
1111.Lerror_bad_iret:
1112	/*
1113	 * We came from an IRET to user mode, so we have user
1114	 * gsbase and CR3.  Switch to kernel gsbase and CR3:
1115	 */
1116	swapgs
1117	FENCE_SWAPGS_USER_ENTRY
1118	SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1119	IBRS_ENTER
1120	UNTRAIN_RET_FROM_CALL
1121
1122	/*
1123	 * Pretend that the exception came from user mode: set up pt_regs
1124	 * as if we faulted immediately after IRET.
1125	 */
1126	leaq	8(%rsp), %rdi			/* arg0 = pt_regs pointer */
1127	call	fixup_bad_iret
1128	mov	%rax, %rdi
1129	jmp	sync_regs
1130SYM_CODE_END(error_entry)
1131
1132SYM_CODE_START_LOCAL(error_return)
1133	UNWIND_HINT_REGS
1134	DEBUG_ENTRY_ASSERT_IRQS_OFF
1135	testb	$3, CS(%rsp)
1136	jz	restore_regs_and_return_to_kernel
1137	jmp	swapgs_restore_regs_and_return_to_usermode
1138SYM_CODE_END(error_return)
1139
1140/*
1141 * Runs on exception stack.  Xen PV does not go through this path at all,
1142 * so we can use real assembly here.
1143 *
1144 * Registers:
1145 *	%r14: Used to save/restore the CR3 of the interrupted context
1146 *	      when PAGE_TABLE_ISOLATION is in use.  Do not clobber.
1147 */
1148SYM_CODE_START(asm_exc_nmi)
1149	UNWIND_HINT_IRET_REGS
1150	ENDBR
1151
1152	/*
1153	 * We allow breakpoints in NMIs. If a breakpoint occurs, then
1154	 * the iretq it performs will take us out of NMI context.
1155	 * This means that we can have nested NMIs where the next
1156	 * NMI is using the top of the stack of the previous NMI. We
1157	 * can't let it execute because the nested NMI will corrupt the
1158	 * stack of the previous NMI. NMI handlers are not re-entrant
1159	 * anyway.
1160	 *
1161	 * To handle this case we do the following:
1162	 *  Check the a special location on the stack that contains
1163	 *  a variable that is set when NMIs are executing.
1164	 *  The interrupted task's stack is also checked to see if it
1165	 *  is an NMI stack.
1166	 *  If the variable is not set and the stack is not the NMI
1167	 *  stack then:
1168	 *    o Set the special variable on the stack
1169	 *    o Copy the interrupt frame into an "outermost" location on the
1170	 *      stack
1171	 *    o Copy the interrupt frame into an "iret" location on the stack
1172	 *    o Continue processing the NMI
1173	 *  If the variable is set or the previous stack is the NMI stack:
1174	 *    o Modify the "iret" location to jump to the repeat_nmi
1175	 *    o return back to the first NMI
1176	 *
1177	 * Now on exit of the first NMI, we first clear the stack variable
1178	 * The NMI stack will tell any nested NMIs at that point that it is
1179	 * nested. Then we pop the stack normally with iret, and if there was
1180	 * a nested NMI that updated the copy interrupt stack frame, a
1181	 * jump will be made to the repeat_nmi code that will handle the second
1182	 * NMI.
1183	 *
1184	 * However, espfix prevents us from directly returning to userspace
1185	 * with a single IRET instruction.  Similarly, IRET to user mode
1186	 * can fault.  We therefore handle NMIs from user space like
1187	 * other IST entries.
1188	 */
1189
1190	ASM_CLAC
1191	cld
1192
1193	/* Use %rdx as our temp variable throughout */
1194	pushq	%rdx
1195
1196	testb	$3, CS-RIP+8(%rsp)
1197	jz	.Lnmi_from_kernel
1198
1199	/*
1200	 * NMI from user mode.  We need to run on the thread stack, but we
1201	 * can't go through the normal entry paths: NMIs are masked, and
1202	 * we don't want to enable interrupts, because then we'll end
1203	 * up in an awkward situation in which IRQs are on but NMIs
1204	 * are off.
1205	 *
1206	 * We also must not push anything to the stack before switching
1207	 * stacks lest we corrupt the "NMI executing" variable.
1208	 */
1209
1210	swapgs
1211	FENCE_SWAPGS_USER_ENTRY
1212	SWITCH_TO_KERNEL_CR3 scratch_reg=%rdx
1213	movq	%rsp, %rdx
1214	movq	PER_CPU_VAR(pcpu_hot + X86_top_of_stack), %rsp
1215	UNWIND_HINT_IRET_REGS base=%rdx offset=8
1216	pushq	5*8(%rdx)	/* pt_regs->ss */
1217	pushq	4*8(%rdx)	/* pt_regs->rsp */
1218	pushq	3*8(%rdx)	/* pt_regs->flags */
1219	pushq	2*8(%rdx)	/* pt_regs->cs */
1220	pushq	1*8(%rdx)	/* pt_regs->rip */
1221	UNWIND_HINT_IRET_REGS
1222	pushq   $-1		/* pt_regs->orig_ax */
1223	PUSH_AND_CLEAR_REGS rdx=(%rdx)
1224	ENCODE_FRAME_POINTER
1225
1226	IBRS_ENTER
1227	UNTRAIN_RET
1228
1229	/*
1230	 * At this point we no longer need to worry about stack damage
1231	 * due to nesting -- we're on the normal thread stack and we're
1232	 * done with the NMI stack.
1233	 */
1234
1235	movq	%rsp, %rdi
1236	movq	$-1, %rsi
1237	call	exc_nmi
1238
1239	/*
1240	 * Return back to user mode.  We must *not* do the normal exit
1241	 * work, because we don't want to enable interrupts.
1242	 */
1243	jmp	swapgs_restore_regs_and_return_to_usermode
1244
1245.Lnmi_from_kernel:
1246	/*
1247	 * Here's what our stack frame will look like:
1248	 * +---------------------------------------------------------+
1249	 * | original SS                                             |
1250	 * | original Return RSP                                     |
1251	 * | original RFLAGS                                         |
1252	 * | original CS                                             |
1253	 * | original RIP                                            |
1254	 * +---------------------------------------------------------+
1255	 * | temp storage for rdx                                    |
1256	 * +---------------------------------------------------------+
1257	 * | "NMI executing" variable                                |
1258	 * +---------------------------------------------------------+
1259	 * | iret SS          } Copied from "outermost" frame        |
1260	 * | iret Return RSP  } on each loop iteration; overwritten  |
1261	 * | iret RFLAGS      } by a nested NMI to force another     |
1262	 * | iret CS          } iteration if needed.                 |
1263	 * | iret RIP         }                                      |
1264	 * +---------------------------------------------------------+
1265	 * | outermost SS          } initialized in first_nmi;       |
1266	 * | outermost Return RSP  } will not be changed before      |
1267	 * | outermost RFLAGS      } NMI processing is done.         |
1268	 * | outermost CS          } Copied to "iret" frame on each  |
1269	 * | outermost RIP         } iteration.                      |
1270	 * +---------------------------------------------------------+
1271	 * | pt_regs                                                 |
1272	 * +---------------------------------------------------------+
1273	 *
1274	 * The "original" frame is used by hardware.  Before re-enabling
1275	 * NMIs, we need to be done with it, and we need to leave enough
1276	 * space for the asm code here.
1277	 *
1278	 * We return by executing IRET while RSP points to the "iret" frame.
1279	 * That will either return for real or it will loop back into NMI
1280	 * processing.
1281	 *
1282	 * The "outermost" frame is copied to the "iret" frame on each
1283	 * iteration of the loop, so each iteration starts with the "iret"
1284	 * frame pointing to the final return target.
1285	 */
1286
1287	/*
1288	 * Determine whether we're a nested NMI.
1289	 *
1290	 * If we interrupted kernel code between repeat_nmi and
1291	 * end_repeat_nmi, then we are a nested NMI.  We must not
1292	 * modify the "iret" frame because it's being written by
1293	 * the outer NMI.  That's okay; the outer NMI handler is
1294	 * about to about to call exc_nmi() anyway, so we can just
1295	 * resume the outer NMI.
1296	 */
1297
1298	movq	$repeat_nmi, %rdx
1299	cmpq	8(%rsp), %rdx
1300	ja	1f
1301	movq	$end_repeat_nmi, %rdx
1302	cmpq	8(%rsp), %rdx
1303	ja	nested_nmi_out
13041:
1305
1306	/*
1307	 * Now check "NMI executing".  If it's set, then we're nested.
1308	 * This will not detect if we interrupted an outer NMI just
1309	 * before IRET.
1310	 */
1311	cmpl	$1, -8(%rsp)
1312	je	nested_nmi
1313
1314	/*
1315	 * Now test if the previous stack was an NMI stack.  This covers
1316	 * the case where we interrupt an outer NMI after it clears
1317	 * "NMI executing" but before IRET.  We need to be careful, though:
1318	 * there is one case in which RSP could point to the NMI stack
1319	 * despite there being no NMI active: naughty userspace controls
1320	 * RSP at the very beginning of the SYSCALL targets.  We can
1321	 * pull a fast one on naughty userspace, though: we program
1322	 * SYSCALL to mask DF, so userspace cannot cause DF to be set
1323	 * if it controls the kernel's RSP.  We set DF before we clear
1324	 * "NMI executing".
1325	 */
1326	lea	6*8(%rsp), %rdx
1327	/* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
1328	cmpq	%rdx, 4*8(%rsp)
1329	/* If the stack pointer is above the NMI stack, this is a normal NMI */
1330	ja	first_nmi
1331
1332	subq	$EXCEPTION_STKSZ, %rdx
1333	cmpq	%rdx, 4*8(%rsp)
1334	/* If it is below the NMI stack, it is a normal NMI */
1335	jb	first_nmi
1336
1337	/* Ah, it is within the NMI stack. */
1338
1339	testb	$(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
1340	jz	first_nmi	/* RSP was user controlled. */
1341
1342	/* This is a nested NMI. */
1343
1344nested_nmi:
1345	/*
1346	 * Modify the "iret" frame to point to repeat_nmi, forcing another
1347	 * iteration of NMI handling.
1348	 */
1349	subq	$8, %rsp
1350	leaq	-10*8(%rsp), %rdx
1351	pushq	$__KERNEL_DS
1352	pushq	%rdx
1353	pushfq
1354	pushq	$__KERNEL_CS
1355	pushq	$repeat_nmi
1356
1357	/* Put stack back */
1358	addq	$(6*8), %rsp
1359
1360nested_nmi_out:
1361	popq	%rdx
1362
1363	/* We are returning to kernel mode, so this cannot result in a fault. */
1364	iretq
1365
1366first_nmi:
1367	/* Restore rdx. */
1368	movq	(%rsp), %rdx
1369
1370	/* Make room for "NMI executing". */
1371	pushq	$0
1372
1373	/* Leave room for the "iret" frame */
1374	subq	$(5*8), %rsp
1375
1376	/* Copy the "original" frame to the "outermost" frame */
1377	.rept 5
1378	pushq	11*8(%rsp)
1379	.endr
1380	UNWIND_HINT_IRET_REGS
1381
1382	/* Everything up to here is safe from nested NMIs */
1383
1384#ifdef CONFIG_DEBUG_ENTRY
1385	/*
1386	 * For ease of testing, unmask NMIs right away.  Disabled by
1387	 * default because IRET is very expensive.
1388	 */
1389	pushq	$0		/* SS */
1390	pushq	%rsp		/* RSP (minus 8 because of the previous push) */
1391	addq	$8, (%rsp)	/* Fix up RSP */
1392	pushfq			/* RFLAGS */
1393	pushq	$__KERNEL_CS	/* CS */
1394	pushq	$1f		/* RIP */
1395	iretq			/* continues at repeat_nmi below */
1396	UNWIND_HINT_IRET_REGS
13971:
1398#endif
1399
1400repeat_nmi:
1401	ANNOTATE_NOENDBR // this code
1402	/*
1403	 * If there was a nested NMI, the first NMI's iret will return
1404	 * here. But NMIs are still enabled and we can take another
1405	 * nested NMI. The nested NMI checks the interrupted RIP to see
1406	 * if it is between repeat_nmi and end_repeat_nmi, and if so
1407	 * it will just return, as we are about to repeat an NMI anyway.
1408	 * This makes it safe to copy to the stack frame that a nested
1409	 * NMI will update.
1410	 *
1411	 * RSP is pointing to "outermost RIP".  gsbase is unknown, but, if
1412	 * we're repeating an NMI, gsbase has the same value that it had on
1413	 * the first iteration.  paranoid_entry will load the kernel
1414	 * gsbase if needed before we call exc_nmi().  "NMI executing"
1415	 * is zero.
1416	 */
1417	movq	$1, 10*8(%rsp)		/* Set "NMI executing". */
1418
1419	/*
1420	 * Copy the "outermost" frame to the "iret" frame.  NMIs that nest
1421	 * here must not modify the "iret" frame while we're writing to
1422	 * it or it will end up containing garbage.
1423	 */
1424	addq	$(10*8), %rsp
1425	.rept 5
1426	pushq	-6*8(%rsp)
1427	.endr
1428	subq	$(5*8), %rsp
1429end_repeat_nmi:
1430	ANNOTATE_NOENDBR // this code
1431
1432	/*
1433	 * Everything below this point can be preempted by a nested NMI.
1434	 * If this happens, then the inner NMI will change the "iret"
1435	 * frame to point back to repeat_nmi.
1436	 */
1437	pushq	$-1				/* ORIG_RAX: no syscall to restart */
1438
1439	/*
1440	 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit
1441	 * as we should not be calling schedule in NMI context.
1442	 * Even with normal interrupts enabled. An NMI should not be
1443	 * setting NEED_RESCHED or anything that normal interrupts and
1444	 * exceptions might do.
1445	 */
1446	call	paranoid_entry
1447	UNWIND_HINT_REGS
1448
1449	movq	%rsp, %rdi
1450	movq	$-1, %rsi
1451	call	exc_nmi
1452
1453	/* Always restore stashed SPEC_CTRL value (see paranoid_entry) */
1454	IBRS_EXIT save_reg=%r15
1455
1456	/* Always restore stashed CR3 value (see paranoid_entry) */
1457	RESTORE_CR3 scratch_reg=%r15 save_reg=%r14
1458
1459	/*
1460	 * The above invocation of paranoid_entry stored the GSBASE
1461	 * related information in R/EBX depending on the availability
1462	 * of FSGSBASE.
1463	 *
1464	 * If FSGSBASE is enabled, restore the saved GSBASE value
1465	 * unconditionally, otherwise take the conditional SWAPGS path.
1466	 */
1467	ALTERNATIVE "jmp nmi_no_fsgsbase", "", X86_FEATURE_FSGSBASE
1468
1469	wrgsbase	%rbx
1470	jmp	nmi_restore
1471
1472nmi_no_fsgsbase:
1473	/* EBX == 0 -> invoke SWAPGS */
1474	testl	%ebx, %ebx
1475	jnz	nmi_restore
1476
1477nmi_swapgs:
1478	swapgs
1479
1480nmi_restore:
1481	POP_REGS
1482
1483	/*
1484	 * Skip orig_ax and the "outermost" frame to point RSP at the "iret"
1485	 * at the "iret" frame.
1486	 */
1487	addq	$6*8, %rsp
1488
1489	/*
1490	 * Clear "NMI executing".  Set DF first so that we can easily
1491	 * distinguish the remaining code between here and IRET from
1492	 * the SYSCALL entry and exit paths.
1493	 *
1494	 * We arguably should just inspect RIP instead, but I (Andy) wrote
1495	 * this code when I had the misapprehension that Xen PV supported
1496	 * NMIs, and Xen PV would break that approach.
1497	 */
1498	std
1499	movq	$0, 5*8(%rsp)		/* clear "NMI executing" */
1500
1501	/*
1502	 * iretq reads the "iret" frame and exits the NMI stack in a
1503	 * single instruction.  We are returning to kernel mode, so this
1504	 * cannot result in a fault.  Similarly, we don't need to worry
1505	 * about espfix64 on the way back to kernel mode.
1506	 */
1507	iretq
1508SYM_CODE_END(asm_exc_nmi)
1509
1510#ifndef CONFIG_IA32_EMULATION
1511/*
1512 * This handles SYSCALL from 32-bit code.  There is no way to program
1513 * MSRs to fully disable 32-bit SYSCALL.
1514 */
1515SYM_CODE_START(ignore_sysret)
1516	UNWIND_HINT_EMPTY
1517	ENDBR
1518	mov	$-ENOSYS, %eax
1519	sysretl
1520SYM_CODE_END(ignore_sysret)
1521#endif
1522
1523.pushsection .text, "ax"
1524	__FUNC_ALIGN
1525SYM_CODE_START_NOALIGN(rewind_stack_and_make_dead)
1526	UNWIND_HINT_FUNC
1527	/* Prevent any naive code from trying to unwind to our caller. */
1528	xorl	%ebp, %ebp
1529
1530	movq	PER_CPU_VAR(pcpu_hot + X86_top_of_stack), %rax
1531	leaq	-PTREGS_SIZE(%rax), %rsp
1532	UNWIND_HINT_REGS
1533
1534	call	make_task_dead
1535SYM_CODE_END(rewind_stack_and_make_dead)
1536.popsection