Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.5.6.
   1/* SPDX-License-Identifier: GPL-2.0 */
   2/*
   3 *  linux/arch/x86_64/entry.S
   4 *
   5 *  Copyright (C) 1991, 1992  Linus Torvalds
   6 *  Copyright (C) 2000, 2001, 2002  Andi Kleen SuSE Labs
   7 *  Copyright (C) 2000  Pavel Machek <pavel@suse.cz>
   8 *
   9 * entry.S contains the system-call and fault low-level handling routines.
  10 *
  11 * Some of this is documented in Documentation/arch/x86/entry_64.rst
  12 *
  13 * A note on terminology:
  14 * - iret frame:	Architecture defined interrupt frame from SS to RIP
  15 *			at the top of the kernel process stack.
  16 *
  17 * Some macro usage:
  18 * - SYM_FUNC_START/END:Define functions in the symbol table.
  19 * - idtentry:		Define exception entry points.
  20 */
  21#include <linux/export.h>
  22#include <linux/linkage.h>
  23#include <asm/segment.h>
  24#include <asm/cache.h>
  25#include <asm/errno.h>
  26#include <asm/asm-offsets.h>
  27#include <asm/msr.h>
  28#include <asm/unistd.h>
  29#include <asm/thread_info.h>
  30#include <asm/hw_irq.h>
  31#include <asm/page_types.h>
  32#include <asm/irqflags.h>
  33#include <asm/paravirt.h>
  34#include <asm/percpu.h>
  35#include <asm/asm.h>
  36#include <asm/smap.h>
  37#include <asm/pgtable_types.h>
  38#include <asm/frame.h>
  39#include <asm/trapnr.h>
  40#include <asm/nospec-branch.h>
  41#include <asm/fsgsbase.h>
  42#include <linux/err.h>
  43
  44#include "calling.h"
  45
  46.code64
  47.section .entry.text, "ax"
  48
  49/*
  50 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers.
  51 *
  52 * This is the only entry point used for 64-bit system calls.  The
  53 * hardware interface is reasonably well designed and the register to
  54 * argument mapping Linux uses fits well with the registers that are
  55 * available when SYSCALL is used.
  56 *
  57 * SYSCALL instructions can be found inlined in libc implementations as
  58 * well as some other programs and libraries.  There are also a handful
  59 * of SYSCALL instructions in the vDSO used, for example, as a
  60 * clock_gettimeofday fallback.
  61 *
  62 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11,
  63 * then loads new ss, cs, and rip from previously programmed MSRs.
  64 * rflags gets masked by a value from another MSR (so CLD and CLAC
  65 * are not needed). SYSCALL does not save anything on the stack
  66 * and does not change rsp.
  67 *
  68 * Registers on entry:
  69 * rax  system call number
  70 * rcx  return address
  71 * r11  saved rflags (note: r11 is callee-clobbered register in C ABI)
  72 * rdi  arg0
  73 * rsi  arg1
  74 * rdx  arg2
  75 * r10  arg3 (needs to be moved to rcx to conform to C ABI)
  76 * r8   arg4
  77 * r9   arg5
  78 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI)
  79 *
  80 * Only called from user space.
  81 *
  82 * When user can change pt_regs->foo always force IRET. That is because
  83 * it deals with uncanonical addresses better. SYSRET has trouble
  84 * with them due to bugs in both AMD and Intel CPUs.
  85 */
  86
  87SYM_CODE_START(entry_SYSCALL_64)
  88	UNWIND_HINT_ENTRY
  89	ENDBR
  90
  91	swapgs
  92	/* tss.sp2 is scratch space. */
  93	movq	%rsp, PER_CPU_VAR(cpu_tss_rw + TSS_sp2)
  94	SWITCH_TO_KERNEL_CR3 scratch_reg=%rsp
  95	movq	PER_CPU_VAR(pcpu_hot + X86_top_of_stack), %rsp
  96
  97SYM_INNER_LABEL(entry_SYSCALL_64_safe_stack, SYM_L_GLOBAL)
  98	ANNOTATE_NOENDBR
  99
 100	/* Construct struct pt_regs on stack */
 101	pushq	$__USER_DS				/* pt_regs->ss */
 102	pushq	PER_CPU_VAR(cpu_tss_rw + TSS_sp2)	/* pt_regs->sp */
 103	pushq	%r11					/* pt_regs->flags */
 104	pushq	$__USER_CS				/* pt_regs->cs */
 105	pushq	%rcx					/* pt_regs->ip */
 106SYM_INNER_LABEL(entry_SYSCALL_64_after_hwframe, SYM_L_GLOBAL)
 107	pushq	%rax					/* pt_regs->orig_ax */
 108
 109	PUSH_AND_CLEAR_REGS rax=$-ENOSYS
 110
 111	/* IRQs are off. */
 112	movq	%rsp, %rdi
 113	/* Sign extend the lower 32bit as syscall numbers are treated as int */
 114	movslq	%eax, %rsi
 115
 116	/* clobbers %rax, make sure it is after saving the syscall nr */
 117	IBRS_ENTER
 118	UNTRAIN_RET
 119	CLEAR_BRANCH_HISTORY
 120
 121	call	do_syscall_64		/* returns with IRQs disabled */
 122
 123	/*
 124	 * Try to use SYSRET instead of IRET if we're returning to
 125	 * a completely clean 64-bit userspace context.  If we're not,
 126	 * go to the slow exit path.
 127	 * In the Xen PV case we must use iret anyway.
 128	 */
 129
 130	ALTERNATIVE "testb %al, %al; jz swapgs_restore_regs_and_return_to_usermode", \
 131		"jmp swapgs_restore_regs_and_return_to_usermode", X86_FEATURE_XENPV
 132
 133	/*
 134	 * We win! This label is here just for ease of understanding
 135	 * perf profiles. Nothing jumps here.
 136	 */
 137syscall_return_via_sysret:
 138	IBRS_EXIT
 139	POP_REGS pop_rdi=0
 140
 141	/*
 142	 * Now all regs are restored except RSP and RDI.
 143	 * Save old stack pointer and switch to trampoline stack.
 144	 */
 145	movq	%rsp, %rdi
 146	movq	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
 147	UNWIND_HINT_END_OF_STACK
 148
 149	pushq	RSP-RDI(%rdi)	/* RSP */
 150	pushq	(%rdi)		/* RDI */
 151
 152	/*
 153	 * We are on the trampoline stack.  All regs except RDI are live.
 154	 * We can do future final exit work right here.
 155	 */
 156	STACKLEAK_ERASE_NOCLOBBER
 157
 158	SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
 159
 160	popq	%rdi
 161	popq	%rsp
 162SYM_INNER_LABEL(entry_SYSRETQ_unsafe_stack, SYM_L_GLOBAL)
 163	ANNOTATE_NOENDBR
 164	swapgs
 165	CLEAR_CPU_BUFFERS
 166	sysretq
 167SYM_INNER_LABEL(entry_SYSRETQ_end, SYM_L_GLOBAL)
 168	ANNOTATE_NOENDBR
 169	int3
 170SYM_CODE_END(entry_SYSCALL_64)
 171
 172/*
 173 * %rdi: prev task
 174 * %rsi: next task
 175 */
 176.pushsection .text, "ax"
 177SYM_FUNC_START(__switch_to_asm)
 178	/*
 179	 * Save callee-saved registers
 180	 * This must match the order in inactive_task_frame
 181	 */
 182	pushq	%rbp
 183	pushq	%rbx
 184	pushq	%r12
 185	pushq	%r13
 186	pushq	%r14
 187	pushq	%r15
 188
 189	/* switch stack */
 190	movq	%rsp, TASK_threadsp(%rdi)
 191	movq	TASK_threadsp(%rsi), %rsp
 192
 193#ifdef CONFIG_STACKPROTECTOR
 194	movq	TASK_stack_canary(%rsi), %rbx
 195	movq	%rbx, PER_CPU_VAR(fixed_percpu_data + FIXED_stack_canary)
 196#endif
 197
 198	/*
 199	 * When switching from a shallower to a deeper call stack
 200	 * the RSB may either underflow or use entries populated
 201	 * with userspace addresses. On CPUs where those concerns
 202	 * exist, overwrite the RSB with entries which capture
 203	 * speculative execution to prevent attack.
 204	 */
 205	FILL_RETURN_BUFFER %r12, RSB_CLEAR_LOOPS, X86_FEATURE_RSB_CTXSW
 206
 207	/* restore callee-saved registers */
 208	popq	%r15
 209	popq	%r14
 210	popq	%r13
 211	popq	%r12
 212	popq	%rbx
 213	popq	%rbp
 214
 215	jmp	__switch_to
 216SYM_FUNC_END(__switch_to_asm)
 217.popsection
 218
 219/*
 220 * A newly forked process directly context switches into this address.
 221 *
 222 * rax: prev task we switched from
 223 * rbx: kernel thread func (NULL for user thread)
 224 * r12: kernel thread arg
 225 */
 226.pushsection .text, "ax"
 227SYM_CODE_START(ret_from_fork_asm)
 228	/*
 229	 * This is the start of the kernel stack; even through there's a
 230	 * register set at the top, the regset isn't necessarily coherent
 231	 * (consider kthreads) and one cannot unwind further.
 232	 *
 233	 * This ensures stack unwinds of kernel threads terminate in a known
 234	 * good state.
 235	 */
 236	UNWIND_HINT_END_OF_STACK
 237	ANNOTATE_NOENDBR // copy_thread
 238	CALL_DEPTH_ACCOUNT
 239
 240	movq	%rax, %rdi		/* prev */
 241	movq	%rsp, %rsi		/* regs */
 242	movq	%rbx, %rdx		/* fn */
 243	movq	%r12, %rcx		/* fn_arg */
 244	call	ret_from_fork
 245
 246	/*
 247	 * Set the stack state to what is expected for the target function
 248	 * -- at this point the register set should be a valid user set
 249	 * and unwind should work normally.
 250	 */
 251	UNWIND_HINT_REGS
 252
 253#ifdef CONFIG_X86_FRED
 254	ALTERNATIVE "jmp swapgs_restore_regs_and_return_to_usermode", \
 255		    "jmp asm_fred_exit_user", X86_FEATURE_FRED
 256#else
 257	jmp	swapgs_restore_regs_and_return_to_usermode
 258#endif
 259SYM_CODE_END(ret_from_fork_asm)
 260.popsection
 261
 262.macro DEBUG_ENTRY_ASSERT_IRQS_OFF
 263#ifdef CONFIG_DEBUG_ENTRY
 264	pushq %rax
 265	SAVE_FLAGS
 266	testl $X86_EFLAGS_IF, %eax
 267	jz .Lokay_\@
 268	ud2
 269.Lokay_\@:
 270	popq %rax
 271#endif
 272.endm
 273
 274SYM_CODE_START(xen_error_entry)
 275	ANNOTATE_NOENDBR
 276	UNWIND_HINT_FUNC
 277	PUSH_AND_CLEAR_REGS save_ret=1
 278	ENCODE_FRAME_POINTER 8
 279	UNTRAIN_RET_FROM_CALL
 280	RET
 281SYM_CODE_END(xen_error_entry)
 282
 283/**
 284 * idtentry_body - Macro to emit code calling the C function
 285 * @cfunc:		C function to be called
 286 * @has_error_code:	Hardware pushed error code on stack
 287 */
 288.macro idtentry_body cfunc has_error_code:req
 289
 290	/*
 291	 * Call error_entry() and switch to the task stack if from userspace.
 292	 *
 293	 * When in XENPV, it is already in the task stack, and it can't fault
 294	 * for native_iret() nor native_load_gs_index() since XENPV uses its
 295	 * own pvops for IRET and load_gs_index().  And it doesn't need to
 296	 * switch the CR3.  So it can skip invoking error_entry().
 297	 */
 298	ALTERNATIVE "call error_entry; movq %rax, %rsp", \
 299		    "call xen_error_entry", X86_FEATURE_XENPV
 300
 301	ENCODE_FRAME_POINTER
 302	UNWIND_HINT_REGS
 303
 304	movq	%rsp, %rdi			/* pt_regs pointer into 1st argument*/
 305
 306	.if \has_error_code == 1
 307		movq	ORIG_RAX(%rsp), %rsi	/* get error code into 2nd argument*/
 308		movq	$-1, ORIG_RAX(%rsp)	/* no syscall to restart */
 309	.endif
 310
 311	call	\cfunc
 312
 313	/* For some configurations \cfunc ends up being a noreturn. */
 314	REACHABLE
 315
 316	jmp	error_return
 317.endm
 318
 319/**
 320 * idtentry - Macro to generate entry stubs for simple IDT entries
 321 * @vector:		Vector number
 322 * @asmsym:		ASM symbol for the entry point
 323 * @cfunc:		C function to be called
 324 * @has_error_code:	Hardware pushed error code on stack
 325 *
 326 * The macro emits code to set up the kernel context for straight forward
 327 * and simple IDT entries. No IST stack, no paranoid entry checks.
 328 */
 329.macro idtentry vector asmsym cfunc has_error_code:req
 330SYM_CODE_START(\asmsym)
 331
 332	.if \vector == X86_TRAP_BP
 333		/* #BP advances %rip to the next instruction */
 334		UNWIND_HINT_IRET_ENTRY offset=\has_error_code*8 signal=0
 335	.else
 336		UNWIND_HINT_IRET_ENTRY offset=\has_error_code*8
 337	.endif
 338
 339	ENDBR
 340	ASM_CLAC
 341	cld
 342
 343	.if \has_error_code == 0
 344		pushq	$-1			/* ORIG_RAX: no syscall to restart */
 345	.endif
 346
 347	.if \vector == X86_TRAP_BP
 348		/*
 349		 * If coming from kernel space, create a 6-word gap to allow the
 350		 * int3 handler to emulate a call instruction.
 351		 */
 352		testb	$3, CS-ORIG_RAX(%rsp)
 353		jnz	.Lfrom_usermode_no_gap_\@
 354		.rept	6
 355		pushq	5*8(%rsp)
 356		.endr
 357		UNWIND_HINT_IRET_REGS offset=8
 358.Lfrom_usermode_no_gap_\@:
 359	.endif
 360
 361	idtentry_body \cfunc \has_error_code
 362
 363_ASM_NOKPROBE(\asmsym)
 364SYM_CODE_END(\asmsym)
 365.endm
 366
 367/*
 368 * Interrupt entry/exit.
 369 *
 370 + The interrupt stubs push (vector) onto the stack, which is the error_code
 371 * position of idtentry exceptions, and jump to one of the two idtentry points
 372 * (common/spurious).
 373 *
 374 * common_interrupt is a hotpath, align it to a cache line
 375 */
 376.macro idtentry_irq vector cfunc
 377	.p2align CONFIG_X86_L1_CACHE_SHIFT
 378	idtentry \vector asm_\cfunc \cfunc has_error_code=1
 379.endm
 380
 381/**
 382 * idtentry_mce_db - Macro to generate entry stubs for #MC and #DB
 383 * @vector:		Vector number
 384 * @asmsym:		ASM symbol for the entry point
 385 * @cfunc:		C function to be called
 386 *
 387 * The macro emits code to set up the kernel context for #MC and #DB
 388 *
 389 * If the entry comes from user space it uses the normal entry path
 390 * including the return to user space work and preemption checks on
 391 * exit.
 392 *
 393 * If hits in kernel mode then it needs to go through the paranoid
 394 * entry as the exception can hit any random state. No preemption
 395 * check on exit to keep the paranoid path simple.
 396 */
 397.macro idtentry_mce_db vector asmsym cfunc
 398SYM_CODE_START(\asmsym)
 399	UNWIND_HINT_IRET_ENTRY
 400	ENDBR
 401	ASM_CLAC
 402	cld
 403
 404	pushq	$-1			/* ORIG_RAX: no syscall to restart */
 405
 406	/*
 407	 * If the entry is from userspace, switch stacks and treat it as
 408	 * a normal entry.
 409	 */
 410	testb	$3, CS-ORIG_RAX(%rsp)
 411	jnz	.Lfrom_usermode_switch_stack_\@
 412
 413	/* paranoid_entry returns GS information for paranoid_exit in EBX. */
 414	call	paranoid_entry
 415
 416	UNWIND_HINT_REGS
 417
 418	movq	%rsp, %rdi		/* pt_regs pointer */
 419
 420	call	\cfunc
 421
 422	jmp	paranoid_exit
 423
 424	/* Switch to the regular task stack and use the noist entry point */
 425.Lfrom_usermode_switch_stack_\@:
 426	idtentry_body noist_\cfunc, has_error_code=0
 427
 428_ASM_NOKPROBE(\asmsym)
 429SYM_CODE_END(\asmsym)
 430.endm
 431
 432#ifdef CONFIG_AMD_MEM_ENCRYPT
 433/**
 434 * idtentry_vc - Macro to generate entry stub for #VC
 435 * @vector:		Vector number
 436 * @asmsym:		ASM symbol for the entry point
 437 * @cfunc:		C function to be called
 438 *
 439 * The macro emits code to set up the kernel context for #VC. The #VC handler
 440 * runs on an IST stack and needs to be able to cause nested #VC exceptions.
 441 *
 442 * To make this work the #VC entry code tries its best to pretend it doesn't use
 443 * an IST stack by switching to the task stack if coming from user-space (which
 444 * includes early SYSCALL entry path) or back to the stack in the IRET frame if
 445 * entered from kernel-mode.
 446 *
 447 * If entered from kernel-mode the return stack is validated first, and if it is
 448 * not safe to use (e.g. because it points to the entry stack) the #VC handler
 449 * will switch to a fall-back stack (VC2) and call a special handler function.
 450 *
 451 * The macro is only used for one vector, but it is planned to be extended in
 452 * the future for the #HV exception.
 453 */
 454.macro idtentry_vc vector asmsym cfunc
 455SYM_CODE_START(\asmsym)
 456	UNWIND_HINT_IRET_ENTRY
 457	ENDBR
 458	ASM_CLAC
 459	cld
 460
 461	/*
 462	 * If the entry is from userspace, switch stacks and treat it as
 463	 * a normal entry.
 464	 */
 465	testb	$3, CS-ORIG_RAX(%rsp)
 466	jnz	.Lfrom_usermode_switch_stack_\@
 467
 468	/*
 469	 * paranoid_entry returns SWAPGS flag for paranoid_exit in EBX.
 470	 * EBX == 0 -> SWAPGS, EBX == 1 -> no SWAPGS
 471	 */
 472	call	paranoid_entry
 473
 474	UNWIND_HINT_REGS
 475
 476	/*
 477	 * Switch off the IST stack to make it free for nested exceptions. The
 478	 * vc_switch_off_ist() function will switch back to the interrupted
 479	 * stack if it is safe to do so. If not it switches to the VC fall-back
 480	 * stack.
 481	 */
 482	movq	%rsp, %rdi		/* pt_regs pointer */
 483	call	vc_switch_off_ist
 484	movq	%rax, %rsp		/* Switch to new stack */
 485
 486	ENCODE_FRAME_POINTER
 487	UNWIND_HINT_REGS
 488
 489	/* Update pt_regs */
 490	movq	ORIG_RAX(%rsp), %rsi	/* get error code into 2nd argument*/
 491	movq	$-1, ORIG_RAX(%rsp)	/* no syscall to restart */
 492
 493	movq	%rsp, %rdi		/* pt_regs pointer */
 494
 495	call	kernel_\cfunc
 496
 497	/*
 498	 * No need to switch back to the IST stack. The current stack is either
 499	 * identical to the stack in the IRET frame or the VC fall-back stack,
 500	 * so it is definitely mapped even with PTI enabled.
 501	 */
 502	jmp	paranoid_exit
 503
 504	/* Switch to the regular task stack */
 505.Lfrom_usermode_switch_stack_\@:
 506	idtentry_body user_\cfunc, has_error_code=1
 507
 508_ASM_NOKPROBE(\asmsym)
 509SYM_CODE_END(\asmsym)
 510.endm
 511#endif
 512
 513/*
 514 * Double fault entry. Straight paranoid. No checks from which context
 515 * this comes because for the espfix induced #DF this would do the wrong
 516 * thing.
 517 */
 518.macro idtentry_df vector asmsym cfunc
 519SYM_CODE_START(\asmsym)
 520	UNWIND_HINT_IRET_ENTRY offset=8
 521	ENDBR
 522	ASM_CLAC
 523	cld
 524
 525	/* paranoid_entry returns GS information for paranoid_exit in EBX. */
 526	call	paranoid_entry
 527	UNWIND_HINT_REGS
 528
 529	movq	%rsp, %rdi		/* pt_regs pointer into first argument */
 530	movq	ORIG_RAX(%rsp), %rsi	/* get error code into 2nd argument*/
 531	movq	$-1, ORIG_RAX(%rsp)	/* no syscall to restart */
 532	call	\cfunc
 533
 534	/* For some configurations \cfunc ends up being a noreturn. */
 535	REACHABLE
 536
 537	jmp	paranoid_exit
 538
 539_ASM_NOKPROBE(\asmsym)
 540SYM_CODE_END(\asmsym)
 541.endm
 542
 543/*
 544 * Include the defines which emit the idt entries which are shared
 545 * shared between 32 and 64 bit and emit the __irqentry_text_* markers
 546 * so the stacktrace boundary checks work.
 547 */
 548	__ALIGN
 549	.globl __irqentry_text_start
 550__irqentry_text_start:
 551
 552#include <asm/idtentry.h>
 553
 554	__ALIGN
 555	.globl __irqentry_text_end
 556__irqentry_text_end:
 557	ANNOTATE_NOENDBR
 558
 559SYM_CODE_START_LOCAL(common_interrupt_return)
 560SYM_INNER_LABEL(swapgs_restore_regs_and_return_to_usermode, SYM_L_GLOBAL)
 561	IBRS_EXIT
 562#ifdef CONFIG_XEN_PV
 563	ALTERNATIVE "", "jmp xenpv_restore_regs_and_return_to_usermode", X86_FEATURE_XENPV
 564#endif
 565#ifdef CONFIG_MITIGATION_PAGE_TABLE_ISOLATION
 566	ALTERNATIVE "", "jmp .Lpti_restore_regs_and_return_to_usermode", X86_FEATURE_PTI
 567#endif
 568
 569	STACKLEAK_ERASE
 570	POP_REGS
 571	add	$8, %rsp	/* orig_ax */
 572	UNWIND_HINT_IRET_REGS
 573
 574.Lswapgs_and_iret:
 575	swapgs
 576	CLEAR_CPU_BUFFERS
 577	/* Assert that the IRET frame indicates user mode. */
 578	testb	$3, 8(%rsp)
 579	jnz	.Lnative_iret
 580	ud2
 581
 582#ifdef CONFIG_MITIGATION_PAGE_TABLE_ISOLATION
 583.Lpti_restore_regs_and_return_to_usermode:
 584	POP_REGS pop_rdi=0
 585
 586	/*
 587	 * The stack is now user RDI, orig_ax, RIP, CS, EFLAGS, RSP, SS.
 588	 * Save old stack pointer and switch to trampoline stack.
 589	 */
 590	movq	%rsp, %rdi
 591	movq	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
 592	UNWIND_HINT_END_OF_STACK
 593
 594	/* Copy the IRET frame to the trampoline stack. */
 595	pushq	6*8(%rdi)	/* SS */
 596	pushq	5*8(%rdi)	/* RSP */
 597	pushq	4*8(%rdi)	/* EFLAGS */
 598	pushq	3*8(%rdi)	/* CS */
 599	pushq	2*8(%rdi)	/* RIP */
 600
 601	/* Push user RDI on the trampoline stack. */
 602	pushq	(%rdi)
 603
 604	/*
 605	 * We are on the trampoline stack.  All regs except RDI are live.
 606	 * We can do future final exit work right here.
 607	 */
 608	STACKLEAK_ERASE_NOCLOBBER
 609
 610	push	%rax
 611	SWITCH_TO_USER_CR3 scratch_reg=%rdi scratch_reg2=%rax
 612	pop	%rax
 613
 614	/* Restore RDI. */
 615	popq	%rdi
 616	jmp	.Lswapgs_and_iret
 617#endif
 618
 619SYM_INNER_LABEL(restore_regs_and_return_to_kernel, SYM_L_GLOBAL)
 620#ifdef CONFIG_DEBUG_ENTRY
 621	/* Assert that pt_regs indicates kernel mode. */
 622	testb	$3, CS(%rsp)
 623	jz	1f
 624	ud2
 6251:
 626#endif
 627	POP_REGS
 628	addq	$8, %rsp	/* skip regs->orig_ax */
 629	/*
 630	 * ARCH_HAS_MEMBARRIER_SYNC_CORE rely on IRET core serialization
 631	 * when returning from IPI handler.
 632	 */
 633#ifdef CONFIG_XEN_PV
 634SYM_INNER_LABEL(early_xen_iret_patch, SYM_L_GLOBAL)
 635	ANNOTATE_NOENDBR
 636	.byte 0xe9
 637	.long .Lnative_iret - (. + 4)
 638#endif
 639
 640.Lnative_iret:
 641	UNWIND_HINT_IRET_REGS
 642	/*
 643	 * Are we returning to a stack segment from the LDT?  Note: in
 644	 * 64-bit mode SS:RSP on the exception stack is always valid.
 645	 */
 646#ifdef CONFIG_X86_ESPFIX64
 647	testb	$4, (SS-RIP)(%rsp)
 648	jnz	native_irq_return_ldt
 649#endif
 650
 651SYM_INNER_LABEL(native_irq_return_iret, SYM_L_GLOBAL)
 652	ANNOTATE_NOENDBR // exc_double_fault
 653	/*
 654	 * This may fault.  Non-paranoid faults on return to userspace are
 655	 * handled by fixup_bad_iret.  These include #SS, #GP, and #NP.
 656	 * Double-faults due to espfix64 are handled in exc_double_fault.
 657	 * Other faults here are fatal.
 658	 */
 659	iretq
 660
 661#ifdef CONFIG_X86_ESPFIX64
 662native_irq_return_ldt:
 663	/*
 664	 * We are running with user GSBASE.  All GPRs contain their user
 665	 * values.  We have a percpu ESPFIX stack that is eight slots
 666	 * long (see ESPFIX_STACK_SIZE).  espfix_waddr points to the bottom
 667	 * of the ESPFIX stack.
 668	 *
 669	 * We clobber RAX and RDI in this code.  We stash RDI on the
 670	 * normal stack and RAX on the ESPFIX stack.
 671	 *
 672	 * The ESPFIX stack layout we set up looks like this:
 673	 *
 674	 * --- top of ESPFIX stack ---
 675	 * SS
 676	 * RSP
 677	 * RFLAGS
 678	 * CS
 679	 * RIP  <-- RSP points here when we're done
 680	 * RAX  <-- espfix_waddr points here
 681	 * --- bottom of ESPFIX stack ---
 682	 */
 683
 684	pushq	%rdi				/* Stash user RDI */
 685	swapgs					/* to kernel GS */
 686	SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi	/* to kernel CR3 */
 687
 688	movq	PER_CPU_VAR(espfix_waddr), %rdi
 689	movq	%rax, (0*8)(%rdi)		/* user RAX */
 690	movq	(1*8)(%rsp), %rax		/* user RIP */
 691	movq	%rax, (1*8)(%rdi)
 692	movq	(2*8)(%rsp), %rax		/* user CS */
 693	movq	%rax, (2*8)(%rdi)
 694	movq	(3*8)(%rsp), %rax		/* user RFLAGS */
 695	movq	%rax, (3*8)(%rdi)
 696	movq	(5*8)(%rsp), %rax		/* user SS */
 697	movq	%rax, (5*8)(%rdi)
 698	movq	(4*8)(%rsp), %rax		/* user RSP */
 699	movq	%rax, (4*8)(%rdi)
 700	/* Now RAX == RSP. */
 701
 702	andl	$0xffff0000, %eax		/* RAX = (RSP & 0xffff0000) */
 703
 704	/*
 705	 * espfix_stack[31:16] == 0.  The page tables are set up such that
 706	 * (espfix_stack | (X & 0xffff0000)) points to a read-only alias of
 707	 * espfix_waddr for any X.  That is, there are 65536 RO aliases of
 708	 * the same page.  Set up RSP so that RSP[31:16] contains the
 709	 * respective 16 bits of the /userspace/ RSP and RSP nonetheless
 710	 * still points to an RO alias of the ESPFIX stack.
 711	 */
 712	orq	PER_CPU_VAR(espfix_stack), %rax
 713
 714	SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
 715	swapgs					/* to user GS */
 716	popq	%rdi				/* Restore user RDI */
 717
 718	movq	%rax, %rsp
 719	UNWIND_HINT_IRET_REGS offset=8
 720
 721	/*
 722	 * At this point, we cannot write to the stack any more, but we can
 723	 * still read.
 724	 */
 725	popq	%rax				/* Restore user RAX */
 726
 727	CLEAR_CPU_BUFFERS
 728
 729	/*
 730	 * RSP now points to an ordinary IRET frame, except that the page
 731	 * is read-only and RSP[31:16] are preloaded with the userspace
 732	 * values.  We can now IRET back to userspace.
 733	 */
 734	jmp	native_irq_return_iret
 735#endif
 736SYM_CODE_END(common_interrupt_return)
 737_ASM_NOKPROBE(common_interrupt_return)
 738
 739/*
 740 * Reload gs selector with exception handling
 741 *  di:  new selector
 742 *
 743 * Is in entry.text as it shouldn't be instrumented.
 744 */
 745SYM_FUNC_START(asm_load_gs_index)
 746	FRAME_BEGIN
 747	swapgs
 748.Lgs_change:
 749	ANNOTATE_NOENDBR // error_entry
 750	movl	%edi, %gs
 7512:	ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE
 752	swapgs
 753	FRAME_END
 754	RET
 755
 756	/* running with kernelgs */
 757.Lbad_gs:
 758	swapgs					/* switch back to user gs */
 759.macro ZAP_GS
 760	/* This can't be a string because the preprocessor needs to see it. */
 761	movl $__USER_DS, %eax
 762	movl %eax, %gs
 763.endm
 764	ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG
 765	xorl	%eax, %eax
 766	movl	%eax, %gs
 767	jmp	2b
 768
 769	_ASM_EXTABLE(.Lgs_change, .Lbad_gs)
 770
 771SYM_FUNC_END(asm_load_gs_index)
 772EXPORT_SYMBOL(asm_load_gs_index)
 773
 774#ifdef CONFIG_XEN_PV
 775/*
 776 * A note on the "critical region" in our callback handler.
 777 * We want to avoid stacking callback handlers due to events occurring
 778 * during handling of the last event. To do this, we keep events disabled
 779 * until we've done all processing. HOWEVER, we must enable events before
 780 * popping the stack frame (can't be done atomically) and so it would still
 781 * be possible to get enough handler activations to overflow the stack.
 782 * Although unlikely, bugs of that kind are hard to track down, so we'd
 783 * like to avoid the possibility.
 784 * So, on entry to the handler we detect whether we interrupted an
 785 * existing activation in its critical region -- if so, we pop the current
 786 * activation and restart the handler using the previous one.
 787 *
 788 * C calling convention: exc_xen_hypervisor_callback(struct *pt_regs)
 789 */
 790	__FUNC_ALIGN
 791SYM_CODE_START_LOCAL_NOALIGN(exc_xen_hypervisor_callback)
 792
 793/*
 794 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
 795 * see the correct pointer to the pt_regs
 796 */
 797	UNWIND_HINT_FUNC
 798	movq	%rdi, %rsp			/* we don't return, adjust the stack frame */
 799	UNWIND_HINT_REGS
 800
 801	call	xen_pv_evtchn_do_upcall
 802
 803	jmp	error_return
 804SYM_CODE_END(exc_xen_hypervisor_callback)
 805
 806/*
 807 * Hypervisor uses this for application faults while it executes.
 808 * We get here for two reasons:
 809 *  1. Fault while reloading DS, ES, FS or GS
 810 *  2. Fault while executing IRET
 811 * Category 1 we do not need to fix up as Xen has already reloaded all segment
 812 * registers that could be reloaded and zeroed the others.
 813 * Category 2 we fix up by killing the current process. We cannot use the
 814 * normal Linux return path in this case because if we use the IRET hypercall
 815 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
 816 * We distinguish between categories by comparing each saved segment register
 817 * with its current contents: any discrepancy means we in category 1.
 818 */
 819	__FUNC_ALIGN
 820SYM_CODE_START_NOALIGN(xen_failsafe_callback)
 821	UNWIND_HINT_UNDEFINED
 822	ENDBR
 823	movl	%ds, %ecx
 824	cmpw	%cx, 0x10(%rsp)
 825	jne	1f
 826	movl	%es, %ecx
 827	cmpw	%cx, 0x18(%rsp)
 828	jne	1f
 829	movl	%fs, %ecx
 830	cmpw	%cx, 0x20(%rsp)
 831	jne	1f
 832	movl	%gs, %ecx
 833	cmpw	%cx, 0x28(%rsp)
 834	jne	1f
 835	/* All segments match their saved values => Category 2 (Bad IRET). */
 836	movq	(%rsp), %rcx
 837	movq	8(%rsp), %r11
 838	addq	$0x30, %rsp
 839	pushq	$0				/* RIP */
 840	UNWIND_HINT_IRET_REGS offset=8
 841	jmp	asm_exc_general_protection
 8421:	/* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
 843	movq	(%rsp), %rcx
 844	movq	8(%rsp), %r11
 845	addq	$0x30, %rsp
 846	UNWIND_HINT_IRET_REGS
 847	pushq	$-1 /* orig_ax = -1 => not a system call */
 848	PUSH_AND_CLEAR_REGS
 849	ENCODE_FRAME_POINTER
 850	jmp	error_return
 851SYM_CODE_END(xen_failsafe_callback)
 852#endif /* CONFIG_XEN_PV */
 853
 854/*
 855 * Save all registers in pt_regs. Return GSBASE related information
 856 * in EBX depending on the availability of the FSGSBASE instructions:
 857 *
 858 * FSGSBASE	R/EBX
 859 *     N        0 -> SWAPGS on exit
 860 *              1 -> no SWAPGS on exit
 861 *
 862 *     Y        GSBASE value at entry, must be restored in paranoid_exit
 863 *
 864 * R14 - old CR3
 865 * R15 - old SPEC_CTRL
 866 */
 867SYM_CODE_START(paranoid_entry)
 868	ANNOTATE_NOENDBR
 869	UNWIND_HINT_FUNC
 870	PUSH_AND_CLEAR_REGS save_ret=1
 871	ENCODE_FRAME_POINTER 8
 872
 873	/*
 874	 * Always stash CR3 in %r14.  This value will be restored,
 875	 * verbatim, at exit.  Needed if paranoid_entry interrupted
 876	 * another entry that already switched to the user CR3 value
 877	 * but has not yet returned to userspace.
 878	 *
 879	 * This is also why CS (stashed in the "iret frame" by the
 880	 * hardware at entry) can not be used: this may be a return
 881	 * to kernel code, but with a user CR3 value.
 882	 *
 883	 * Switching CR3 does not depend on kernel GSBASE so it can
 884	 * be done before switching to the kernel GSBASE. This is
 885	 * required for FSGSBASE because the kernel GSBASE has to
 886	 * be retrieved from a kernel internal table.
 887	 */
 888	SAVE_AND_SWITCH_TO_KERNEL_CR3 scratch_reg=%rax save_reg=%r14
 889
 890	/*
 891	 * Handling GSBASE depends on the availability of FSGSBASE.
 892	 *
 893	 * Without FSGSBASE the kernel enforces that negative GSBASE
 894	 * values indicate kernel GSBASE. With FSGSBASE no assumptions
 895	 * can be made about the GSBASE value when entering from user
 896	 * space.
 897	 */
 898	ALTERNATIVE "jmp .Lparanoid_entry_checkgs", "", X86_FEATURE_FSGSBASE
 899
 900	/*
 901	 * Read the current GSBASE and store it in %rbx unconditionally,
 902	 * retrieve and set the current CPUs kernel GSBASE. The stored value
 903	 * has to be restored in paranoid_exit unconditionally.
 904	 *
 905	 * The unconditional write to GS base below ensures that no subsequent
 906	 * loads based on a mispredicted GS base can happen, therefore no LFENCE
 907	 * is needed here.
 908	 */
 909	SAVE_AND_SET_GSBASE scratch_reg=%rax save_reg=%rbx
 910	jmp .Lparanoid_gsbase_done
 911
 912.Lparanoid_entry_checkgs:
 913	/* EBX = 1 -> kernel GSBASE active, no restore required */
 914	movl	$1, %ebx
 915
 916	/*
 917	 * The kernel-enforced convention is a negative GSBASE indicates
 918	 * a kernel value. No SWAPGS needed on entry and exit.
 919	 */
 920	movl	$MSR_GS_BASE, %ecx
 921	rdmsr
 922	testl	%edx, %edx
 923	js	.Lparanoid_kernel_gsbase
 924
 925	/* EBX = 0 -> SWAPGS required on exit */
 926	xorl	%ebx, %ebx
 927	swapgs
 928.Lparanoid_kernel_gsbase:
 929	FENCE_SWAPGS_KERNEL_ENTRY
 930.Lparanoid_gsbase_done:
 931
 932	/*
 933	 * Once we have CR3 and %GS setup save and set SPEC_CTRL. Just like
 934	 * CR3 above, keep the old value in a callee saved register.
 935	 */
 936	IBRS_ENTER save_reg=%r15
 937	UNTRAIN_RET_FROM_CALL
 938
 939	RET
 940SYM_CODE_END(paranoid_entry)
 941
 942/*
 943 * "Paranoid" exit path from exception stack.  This is invoked
 944 * only on return from non-NMI IST interrupts that came
 945 * from kernel space.
 946 *
 947 * We may be returning to very strange contexts (e.g. very early
 948 * in syscall entry), so checking for preemption here would
 949 * be complicated.  Fortunately, there's no good reason to try
 950 * to handle preemption here.
 951 *
 952 * R/EBX contains the GSBASE related information depending on the
 953 * availability of the FSGSBASE instructions:
 954 *
 955 * FSGSBASE	R/EBX
 956 *     N        0 -> SWAPGS on exit
 957 *              1 -> no SWAPGS on exit
 958 *
 959 *     Y        User space GSBASE, must be restored unconditionally
 960 *
 961 * R14 - old CR3
 962 * R15 - old SPEC_CTRL
 963 */
 964SYM_CODE_START_LOCAL(paranoid_exit)
 965	UNWIND_HINT_REGS
 966
 967	/*
 968	 * Must restore IBRS state before both CR3 and %GS since we need access
 969	 * to the per-CPU x86_spec_ctrl_shadow variable.
 970	 */
 971	IBRS_EXIT save_reg=%r15
 972
 973	/*
 974	 * The order of operations is important. PARANOID_RESTORE_CR3 requires
 975	 * kernel GSBASE.
 976	 *
 977	 * NB to anyone to try to optimize this code: this code does
 978	 * not execute at all for exceptions from user mode. Those
 979	 * exceptions go through error_return instead.
 980	 */
 981	PARANOID_RESTORE_CR3 scratch_reg=%rax save_reg=%r14
 982
 983	/* Handle the three GSBASE cases */
 984	ALTERNATIVE "jmp .Lparanoid_exit_checkgs", "", X86_FEATURE_FSGSBASE
 985
 986	/* With FSGSBASE enabled, unconditionally restore GSBASE */
 987	wrgsbase	%rbx
 988	jmp		restore_regs_and_return_to_kernel
 989
 990.Lparanoid_exit_checkgs:
 991	/* On non-FSGSBASE systems, conditionally do SWAPGS */
 992	testl		%ebx, %ebx
 993	jnz		restore_regs_and_return_to_kernel
 994
 995	/* We are returning to a context with user GSBASE */
 996	swapgs
 997	jmp		restore_regs_and_return_to_kernel
 998SYM_CODE_END(paranoid_exit)
 999
1000/*
1001 * Switch GS and CR3 if needed.
1002 */
1003SYM_CODE_START(error_entry)
1004	ANNOTATE_NOENDBR
1005	UNWIND_HINT_FUNC
1006
1007	PUSH_AND_CLEAR_REGS save_ret=1
1008	ENCODE_FRAME_POINTER 8
1009
1010	testb	$3, CS+8(%rsp)
1011	jz	.Lerror_kernelspace
1012
1013	/*
1014	 * We entered from user mode or we're pretending to have entered
1015	 * from user mode due to an IRET fault.
1016	 */
1017	swapgs
1018	FENCE_SWAPGS_USER_ENTRY
1019	/* We have user CR3.  Change to kernel CR3. */
1020	SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1021	IBRS_ENTER
1022	UNTRAIN_RET_FROM_CALL
1023
1024	leaq	8(%rsp), %rdi			/* arg0 = pt_regs pointer */
1025	/* Put us onto the real thread stack. */
1026	jmp	sync_regs
1027
1028	/*
1029	 * There are two places in the kernel that can potentially fault with
1030	 * usergs. Handle them here.  B stepping K8s sometimes report a
1031	 * truncated RIP for IRET exceptions returning to compat mode. Check
1032	 * for these here too.
1033	 */
1034.Lerror_kernelspace:
1035	leaq	native_irq_return_iret(%rip), %rcx
1036	cmpq	%rcx, RIP+8(%rsp)
1037	je	.Lerror_bad_iret
1038	movl	%ecx, %eax			/* zero extend */
1039	cmpq	%rax, RIP+8(%rsp)
1040	je	.Lbstep_iret
1041	cmpq	$.Lgs_change, RIP+8(%rsp)
1042	jne	.Lerror_entry_done_lfence
1043
1044	/*
1045	 * hack: .Lgs_change can fail with user gsbase.  If this happens, fix up
1046	 * gsbase and proceed.  We'll fix up the exception and land in
1047	 * .Lgs_change's error handler with kernel gsbase.
1048	 */
1049	swapgs
1050
1051	/*
1052	 * Issue an LFENCE to prevent GS speculation, regardless of whether it is a
1053	 * kernel or user gsbase.
1054	 */
1055.Lerror_entry_done_lfence:
1056	FENCE_SWAPGS_KERNEL_ENTRY
1057	CALL_DEPTH_ACCOUNT
1058	leaq	8(%rsp), %rax			/* return pt_regs pointer */
1059	VALIDATE_UNRET_END
1060	RET
1061
1062.Lbstep_iret:
1063	/* Fix truncated RIP */
1064	movq	%rcx, RIP+8(%rsp)
1065	/* fall through */
1066
1067.Lerror_bad_iret:
1068	/*
1069	 * We came from an IRET to user mode, so we have user
1070	 * gsbase and CR3.  Switch to kernel gsbase and CR3:
1071	 */
1072	swapgs
1073	FENCE_SWAPGS_USER_ENTRY
1074	SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1075	IBRS_ENTER
1076	UNTRAIN_RET_FROM_CALL
1077
1078	/*
1079	 * Pretend that the exception came from user mode: set up pt_regs
1080	 * as if we faulted immediately after IRET.
1081	 */
1082	leaq	8(%rsp), %rdi			/* arg0 = pt_regs pointer */
1083	call	fixup_bad_iret
1084	mov	%rax, %rdi
1085	jmp	sync_regs
1086SYM_CODE_END(error_entry)
1087
1088SYM_CODE_START_LOCAL(error_return)
1089	UNWIND_HINT_REGS
1090	DEBUG_ENTRY_ASSERT_IRQS_OFF
1091	testb	$3, CS(%rsp)
1092	jz	restore_regs_and_return_to_kernel
1093	jmp	swapgs_restore_regs_and_return_to_usermode
1094SYM_CODE_END(error_return)
1095
1096/*
1097 * Runs on exception stack.  Xen PV does not go through this path at all,
1098 * so we can use real assembly here.
1099 *
1100 * Registers:
1101 *	%r14: Used to save/restore the CR3 of the interrupted context
1102 *	      when MITIGATION_PAGE_TABLE_ISOLATION is in use.  Do not clobber.
1103 */
1104SYM_CODE_START(asm_exc_nmi)
1105	UNWIND_HINT_IRET_ENTRY
1106	ENDBR
1107
1108	/*
1109	 * We allow breakpoints in NMIs. If a breakpoint occurs, then
1110	 * the iretq it performs will take us out of NMI context.
1111	 * This means that we can have nested NMIs where the next
1112	 * NMI is using the top of the stack of the previous NMI. We
1113	 * can't let it execute because the nested NMI will corrupt the
1114	 * stack of the previous NMI. NMI handlers are not re-entrant
1115	 * anyway.
1116	 *
1117	 * To handle this case we do the following:
1118	 *  Check a special location on the stack that contains a
1119	 *  variable that is set when NMIs are executing.
1120	 *  The interrupted task's stack is also checked to see if it
1121	 *  is an NMI stack.
1122	 *  If the variable is not set and the stack is not the NMI
1123	 *  stack then:
1124	 *    o Set the special variable on the stack
1125	 *    o Copy the interrupt frame into an "outermost" location on the
1126	 *      stack
1127	 *    o Copy the interrupt frame into an "iret" location on the stack
1128	 *    o Continue processing the NMI
1129	 *  If the variable is set or the previous stack is the NMI stack:
1130	 *    o Modify the "iret" location to jump to the repeat_nmi
1131	 *    o return back to the first NMI
1132	 *
1133	 * Now on exit of the first NMI, we first clear the stack variable
1134	 * The NMI stack will tell any nested NMIs at that point that it is
1135	 * nested. Then we pop the stack normally with iret, and if there was
1136	 * a nested NMI that updated the copy interrupt stack frame, a
1137	 * jump will be made to the repeat_nmi code that will handle the second
1138	 * NMI.
1139	 *
1140	 * However, espfix prevents us from directly returning to userspace
1141	 * with a single IRET instruction.  Similarly, IRET to user mode
1142	 * can fault.  We therefore handle NMIs from user space like
1143	 * other IST entries.
1144	 */
1145
1146	ASM_CLAC
1147	cld
1148
1149	/* Use %rdx as our temp variable throughout */
1150	pushq	%rdx
1151
1152	testb	$3, CS-RIP+8(%rsp)
1153	jz	.Lnmi_from_kernel
1154
1155	/*
1156	 * NMI from user mode.  We need to run on the thread stack, but we
1157	 * can't go through the normal entry paths: NMIs are masked, and
1158	 * we don't want to enable interrupts, because then we'll end
1159	 * up in an awkward situation in which IRQs are on but NMIs
1160	 * are off.
1161	 *
1162	 * We also must not push anything to the stack before switching
1163	 * stacks lest we corrupt the "NMI executing" variable.
1164	 */
1165
1166	swapgs
1167	FENCE_SWAPGS_USER_ENTRY
1168	SWITCH_TO_KERNEL_CR3 scratch_reg=%rdx
1169	movq	%rsp, %rdx
1170	movq	PER_CPU_VAR(pcpu_hot + X86_top_of_stack), %rsp
1171	UNWIND_HINT_IRET_REGS base=%rdx offset=8
1172	pushq	5*8(%rdx)	/* pt_regs->ss */
1173	pushq	4*8(%rdx)	/* pt_regs->rsp */
1174	pushq	3*8(%rdx)	/* pt_regs->flags */
1175	pushq	2*8(%rdx)	/* pt_regs->cs */
1176	pushq	1*8(%rdx)	/* pt_regs->rip */
1177	UNWIND_HINT_IRET_REGS
1178	pushq   $-1		/* pt_regs->orig_ax */
1179	PUSH_AND_CLEAR_REGS rdx=(%rdx)
1180	ENCODE_FRAME_POINTER
1181
1182	IBRS_ENTER
1183	UNTRAIN_RET
1184
1185	/*
1186	 * At this point we no longer need to worry about stack damage
1187	 * due to nesting -- we're on the normal thread stack and we're
1188	 * done with the NMI stack.
1189	 */
1190
1191	movq	%rsp, %rdi
1192	call	exc_nmi
1193
1194	/*
1195	 * Return back to user mode.  We must *not* do the normal exit
1196	 * work, because we don't want to enable interrupts.
1197	 */
1198	jmp	swapgs_restore_regs_and_return_to_usermode
1199
1200.Lnmi_from_kernel:
1201	/*
1202	 * Here's what our stack frame will look like:
1203	 * +---------------------------------------------------------+
1204	 * | original SS                                             |
1205	 * | original Return RSP                                     |
1206	 * | original RFLAGS                                         |
1207	 * | original CS                                             |
1208	 * | original RIP                                            |
1209	 * +---------------------------------------------------------+
1210	 * | temp storage for rdx                                    |
1211	 * +---------------------------------------------------------+
1212	 * | "NMI executing" variable                                |
1213	 * +---------------------------------------------------------+
1214	 * | iret SS          } Copied from "outermost" frame        |
1215	 * | iret Return RSP  } on each loop iteration; overwritten  |
1216	 * | iret RFLAGS      } by a nested NMI to force another     |
1217	 * | iret CS          } iteration if needed.                 |
1218	 * | iret RIP         }                                      |
1219	 * +---------------------------------------------------------+
1220	 * | outermost SS          } initialized in first_nmi;       |
1221	 * | outermost Return RSP  } will not be changed before      |
1222	 * | outermost RFLAGS      } NMI processing is done.         |
1223	 * | outermost CS          } Copied to "iret" frame on each  |
1224	 * | outermost RIP         } iteration.                      |
1225	 * +---------------------------------------------------------+
1226	 * | pt_regs                                                 |
1227	 * +---------------------------------------------------------+
1228	 *
1229	 * The "original" frame is used by hardware.  Before re-enabling
1230	 * NMIs, we need to be done with it, and we need to leave enough
1231	 * space for the asm code here.
1232	 *
1233	 * We return by executing IRET while RSP points to the "iret" frame.
1234	 * That will either return for real or it will loop back into NMI
1235	 * processing.
1236	 *
1237	 * The "outermost" frame is copied to the "iret" frame on each
1238	 * iteration of the loop, so each iteration starts with the "iret"
1239	 * frame pointing to the final return target.
1240	 */
1241
1242	/*
1243	 * Determine whether we're a nested NMI.
1244	 *
1245	 * If we interrupted kernel code between repeat_nmi and
1246	 * end_repeat_nmi, then we are a nested NMI.  We must not
1247	 * modify the "iret" frame because it's being written by
1248	 * the outer NMI.  That's okay; the outer NMI handler is
1249	 * about to call exc_nmi() anyway, so we can just resume
1250	 * the outer NMI.
1251	 */
1252
1253	movq	$repeat_nmi, %rdx
1254	cmpq	8(%rsp), %rdx
1255	ja	1f
1256	movq	$end_repeat_nmi, %rdx
1257	cmpq	8(%rsp), %rdx
1258	ja	nested_nmi_out
12591:
1260
1261	/*
1262	 * Now check "NMI executing".  If it's set, then we're nested.
1263	 * This will not detect if we interrupted an outer NMI just
1264	 * before IRET.
1265	 */
1266	cmpl	$1, -8(%rsp)
1267	je	nested_nmi
1268
1269	/*
1270	 * Now test if the previous stack was an NMI stack.  This covers
1271	 * the case where we interrupt an outer NMI after it clears
1272	 * "NMI executing" but before IRET.  We need to be careful, though:
1273	 * there is one case in which RSP could point to the NMI stack
1274	 * despite there being no NMI active: naughty userspace controls
1275	 * RSP at the very beginning of the SYSCALL targets.  We can
1276	 * pull a fast one on naughty userspace, though: we program
1277	 * SYSCALL to mask DF, so userspace cannot cause DF to be set
1278	 * if it controls the kernel's RSP.  We set DF before we clear
1279	 * "NMI executing".
1280	 */
1281	lea	6*8(%rsp), %rdx
1282	/* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
1283	cmpq	%rdx, 4*8(%rsp)
1284	/* If the stack pointer is above the NMI stack, this is a normal NMI */
1285	ja	first_nmi
1286
1287	subq	$EXCEPTION_STKSZ, %rdx
1288	cmpq	%rdx, 4*8(%rsp)
1289	/* If it is below the NMI stack, it is a normal NMI */
1290	jb	first_nmi
1291
1292	/* Ah, it is within the NMI stack. */
1293
1294	testb	$(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
1295	jz	first_nmi	/* RSP was user controlled. */
1296
1297	/* This is a nested NMI. */
1298
1299nested_nmi:
1300	/*
1301	 * Modify the "iret" frame to point to repeat_nmi, forcing another
1302	 * iteration of NMI handling.
1303	 */
1304	subq	$8, %rsp
1305	leaq	-10*8(%rsp), %rdx
1306	pushq	$__KERNEL_DS
1307	pushq	%rdx
1308	pushfq
1309	pushq	$__KERNEL_CS
1310	pushq	$repeat_nmi
1311
1312	/* Put stack back */
1313	addq	$(6*8), %rsp
1314
1315nested_nmi_out:
1316	popq	%rdx
1317
1318	/* We are returning to kernel mode, so this cannot result in a fault. */
1319	iretq
1320
1321first_nmi:
1322	/* Restore rdx. */
1323	movq	(%rsp), %rdx
1324
1325	/* Make room for "NMI executing". */
1326	pushq	$0
1327
1328	/* Leave room for the "iret" frame */
1329	subq	$(5*8), %rsp
1330
1331	/* Copy the "original" frame to the "outermost" frame */
1332	.rept 5
1333	pushq	11*8(%rsp)
1334	.endr
1335	UNWIND_HINT_IRET_REGS
1336
1337	/* Everything up to here is safe from nested NMIs */
1338
1339#ifdef CONFIG_DEBUG_ENTRY
1340	/*
1341	 * For ease of testing, unmask NMIs right away.  Disabled by
1342	 * default because IRET is very expensive.
1343	 */
1344	pushq	$0		/* SS */
1345	pushq	%rsp		/* RSP (minus 8 because of the previous push) */
1346	addq	$8, (%rsp)	/* Fix up RSP */
1347	pushfq			/* RFLAGS */
1348	pushq	$__KERNEL_CS	/* CS */
1349	pushq	$1f		/* RIP */
1350	iretq			/* continues at repeat_nmi below */
1351	UNWIND_HINT_IRET_REGS
13521:
1353#endif
1354
1355repeat_nmi:
1356	ANNOTATE_NOENDBR // this code
1357	/*
1358	 * If there was a nested NMI, the first NMI's iret will return
1359	 * here. But NMIs are still enabled and we can take another
1360	 * nested NMI. The nested NMI checks the interrupted RIP to see
1361	 * if it is between repeat_nmi and end_repeat_nmi, and if so
1362	 * it will just return, as we are about to repeat an NMI anyway.
1363	 * This makes it safe to copy to the stack frame that a nested
1364	 * NMI will update.
1365	 *
1366	 * RSP is pointing to "outermost RIP".  gsbase is unknown, but, if
1367	 * we're repeating an NMI, gsbase has the same value that it had on
1368	 * the first iteration.  paranoid_entry will load the kernel
1369	 * gsbase if needed before we call exc_nmi().  "NMI executing"
1370	 * is zero.
1371	 */
1372	movq	$1, 10*8(%rsp)		/* Set "NMI executing". */
1373
1374	/*
1375	 * Copy the "outermost" frame to the "iret" frame.  NMIs that nest
1376	 * here must not modify the "iret" frame while we're writing to
1377	 * it or it will end up containing garbage.
1378	 */
1379	addq	$(10*8), %rsp
1380	.rept 5
1381	pushq	-6*8(%rsp)
1382	.endr
1383	subq	$(5*8), %rsp
1384end_repeat_nmi:
1385	ANNOTATE_NOENDBR // this code
1386
1387	/*
1388	 * Everything below this point can be preempted by a nested NMI.
1389	 * If this happens, then the inner NMI will change the "iret"
1390	 * frame to point back to repeat_nmi.
1391	 */
1392	pushq	$-1				/* ORIG_RAX: no syscall to restart */
1393
1394	/*
1395	 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit
1396	 * as we should not be calling schedule in NMI context.
1397	 * Even with normal interrupts enabled. An NMI should not be
1398	 * setting NEED_RESCHED or anything that normal interrupts and
1399	 * exceptions might do.
1400	 */
1401	call	paranoid_entry
1402	UNWIND_HINT_REGS
1403
1404	movq	%rsp, %rdi
1405	call	exc_nmi
1406
1407	/* Always restore stashed SPEC_CTRL value (see paranoid_entry) */
1408	IBRS_EXIT save_reg=%r15
1409
1410	PARANOID_RESTORE_CR3 scratch_reg=%r15 save_reg=%r14
1411
1412	/*
1413	 * The above invocation of paranoid_entry stored the GSBASE
1414	 * related information in R/EBX depending on the availability
1415	 * of FSGSBASE.
1416	 *
1417	 * If FSGSBASE is enabled, restore the saved GSBASE value
1418	 * unconditionally, otherwise take the conditional SWAPGS path.
1419	 */
1420	ALTERNATIVE "jmp nmi_no_fsgsbase", "", X86_FEATURE_FSGSBASE
1421
1422	wrgsbase	%rbx
1423	jmp	nmi_restore
1424
1425nmi_no_fsgsbase:
1426	/* EBX == 0 -> invoke SWAPGS */
1427	testl	%ebx, %ebx
1428	jnz	nmi_restore
1429
1430nmi_swapgs:
1431	swapgs
1432
1433nmi_restore:
1434	POP_REGS
1435
1436	/*
1437	 * Skip orig_ax and the "outermost" frame to point RSP at the "iret"
1438	 * at the "iret" frame.
1439	 */
1440	addq	$6*8, %rsp
1441
1442	/*
1443	 * Clear "NMI executing".  Set DF first so that we can easily
1444	 * distinguish the remaining code between here and IRET from
1445	 * the SYSCALL entry and exit paths.
1446	 *
1447	 * We arguably should just inspect RIP instead, but I (Andy) wrote
1448	 * this code when I had the misapprehension that Xen PV supported
1449	 * NMIs, and Xen PV would break that approach.
1450	 */
1451	std
1452	movq	$0, 5*8(%rsp)		/* clear "NMI executing" */
1453
1454	/*
1455	 * Skip CLEAR_CPU_BUFFERS here, since it only helps in rare cases like
1456	 * NMI in kernel after user state is restored. For an unprivileged user
1457	 * these conditions are hard to meet.
1458	 */
1459
1460	/*
1461	 * iretq reads the "iret" frame and exits the NMI stack in a
1462	 * single instruction.  We are returning to kernel mode, so this
1463	 * cannot result in a fault.  Similarly, we don't need to worry
1464	 * about espfix64 on the way back to kernel mode.
1465	 */
1466	iretq
1467SYM_CODE_END(asm_exc_nmi)
1468
1469/*
1470 * This handles SYSCALL from 32-bit code.  There is no way to program
1471 * MSRs to fully disable 32-bit SYSCALL.
1472 */
1473SYM_CODE_START(entry_SYSCALL32_ignore)
1474	UNWIND_HINT_END_OF_STACK
1475	ENDBR
1476	mov	$-ENOSYS, %eax
1477	CLEAR_CPU_BUFFERS
1478	sysretl
1479SYM_CODE_END(entry_SYSCALL32_ignore)
1480
1481.pushsection .text, "ax"
1482	__FUNC_ALIGN
1483SYM_CODE_START_NOALIGN(rewind_stack_and_make_dead)
1484	UNWIND_HINT_FUNC
1485	/* Prevent any naive code from trying to unwind to our caller. */
1486	xorl	%ebp, %ebp
1487
1488	movq	PER_CPU_VAR(pcpu_hot + X86_top_of_stack), %rax
1489	leaq	-PTREGS_SIZE(%rax), %rsp
1490	UNWIND_HINT_REGS
1491
1492	call	make_task_dead
1493SYM_CODE_END(rewind_stack_and_make_dead)
1494.popsection
1495
1496/*
1497 * This sequence executes branches in order to remove user branch information
1498 * from the branch history tracker in the Branch Predictor, therefore removing
1499 * user influence on subsequent BTB lookups.
1500 *
1501 * It should be used on parts prior to Alder Lake. Newer parts should use the
1502 * BHI_DIS_S hardware control instead. If a pre-Alder Lake part is being
1503 * virtualized on newer hardware the VMM should protect against BHI attacks by
1504 * setting BHI_DIS_S for the guests.
1505 *
1506 * CALLs/RETs are necessary to prevent Loop Stream Detector(LSD) from engaging
1507 * and not clearing the branch history. The call tree looks like:
1508 *
1509 * call 1
1510 *    call 2
1511 *      call 2
1512 *        call 2
1513 *          call 2
1514 * 	      call 2
1515 * 	      ret
1516 * 	    ret
1517 *        ret
1518 *      ret
1519 *    ret
1520 * ret
1521 *
1522 * This means that the stack is non-constant and ORC can't unwind it with %rsp
1523 * alone.  Therefore we unconditionally set up the frame pointer, which allows
1524 * ORC to unwind properly.
1525 *
1526 * The alignment is for performance and not for safety, and may be safely
1527 * refactored in the future if needed.
1528 */
1529SYM_FUNC_START(clear_bhb_loop)
1530	push	%rbp
1531	mov	%rsp, %rbp
1532	movl	$5, %ecx
1533	ANNOTATE_INTRA_FUNCTION_CALL
1534	call	1f
1535	jmp	5f
1536	.align 64, 0xcc
1537	ANNOTATE_INTRA_FUNCTION_CALL
15381:	call	2f
1539	RET
1540	.align 64, 0xcc
15412:	movl	$5, %eax
15423:	jmp	4f
1543	nop
15444:	sub	$1, %eax
1545	jnz	3b
1546	sub	$1, %ecx
1547	jnz	1b
1548	RET
15495:	lfence
1550	pop	%rbp
1551	RET
1552SYM_FUNC_END(clear_bhb_loop)
1553EXPORT_SYMBOL_GPL(clear_bhb_loop)
1554STACK_FRAME_NON_STANDARD(clear_bhb_loop)