Linux Audio

Check our new training course

Loading...
v3.5.6
 
  1/* smp.c: Sparc SMP support.
  2 *
  3 * Copyright (C) 1996 David S. Miller (davem@caip.rutgers.edu)
  4 * Copyright (C) 1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
  5 * Copyright (C) 2004 Keith M Wesolowski (wesolows@foobazco.org)
  6 */
  7
  8#include <asm/head.h>
  9
 10#include <linux/kernel.h>
 11#include <linux/sched.h>
 12#include <linux/threads.h>
 13#include <linux/smp.h>
 14#include <linux/interrupt.h>
 15#include <linux/kernel_stat.h>
 16#include <linux/init.h>
 17#include <linux/spinlock.h>
 18#include <linux/mm.h>
 19#include <linux/fs.h>
 20#include <linux/seq_file.h>
 21#include <linux/cache.h>
 22#include <linux/delay.h>
 
 
 23
 24#include <asm/ptrace.h>
 25#include <linux/atomic.h>
 26
 27#include <asm/irq.h>
 28#include <asm/page.h>
 29#include <asm/pgalloc.h>
 30#include <asm/pgtable.h>
 31#include <asm/oplib.h>
 32#include <asm/cacheflush.h>
 33#include <asm/tlbflush.h>
 34#include <asm/cpudata.h>
 
 35#include <asm/leon.h>
 36
 
 37#include "irq.h"
 38
 39volatile unsigned long cpu_callin_map[NR_CPUS] __cpuinitdata = {0,};
 40
 41cpumask_t smp_commenced_mask = CPU_MASK_NONE;
 42
 43const struct sparc32_ipi_ops *sparc32_ipi_ops;
 44
 45/* The only guaranteed locking primitive available on all Sparc
 46 * processors is 'ldstub [%reg + immediate], %dest_reg' which atomically
 47 * places the current byte at the effective address into dest_reg and
 48 * places 0xff there afterwards.  Pretty lame locking primitive
 49 * compared to the Alpha and the Intel no?  Most Sparcs have 'swap'
 50 * instruction which is much better...
 51 */
 52
 53void __cpuinit smp_store_cpu_info(int id)
 54{
 55	int cpu_node;
 56	int mid;
 57
 58	cpu_data(id).udelay_val = loops_per_jiffy;
 59
 60	cpu_find_by_mid(id, &cpu_node);
 61	cpu_data(id).clock_tick = prom_getintdefault(cpu_node,
 62						     "clock-frequency", 0);
 63	cpu_data(id).prom_node = cpu_node;
 64	mid = cpu_get_hwmid(cpu_node);
 65
 66	if (mid < 0) {
 67		printk(KERN_NOTICE "No MID found for CPU%d at node 0x%08d", id, cpu_node);
 68		mid = 0;
 69	}
 70	cpu_data(id).mid = mid;
 71}
 72
 73void __init smp_cpus_done(unsigned int max_cpus)
 74{
 75	extern void smp4m_smp_done(void);
 76	extern void smp4d_smp_done(void);
 77	unsigned long bogosum = 0;
 78	int cpu, num = 0;
 79
 80	for_each_online_cpu(cpu) {
 81		num++;
 82		bogosum += cpu_data(cpu).udelay_val;
 83	}
 84
 85	printk("Total of %d processors activated (%lu.%02lu BogoMIPS).\n",
 86		num, bogosum/(500000/HZ),
 87		(bogosum/(5000/HZ))%100);
 88
 89	switch(sparc_cpu_model) {
 90	case sun4m:
 91		smp4m_smp_done();
 92		break;
 93	case sun4d:
 94		smp4d_smp_done();
 95		break;
 96	case sparc_leon:
 97		leon_smp_done();
 98		break;
 99	case sun4e:
100		printk("SUN4E\n");
101		BUG();
102		break;
103	case sun4u:
104		printk("SUN4U\n");
105		BUG();
106		break;
107	default:
108		printk("UNKNOWN!\n");
109		BUG();
110		break;
111	}
112}
113
114void cpu_panic(void)
115{
116	printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
117	panic("SMP bolixed\n");
118}
119
120struct linux_prom_registers smp_penguin_ctable __cpuinitdata = { 0 };
121
122void smp_send_reschedule(int cpu)
123{
124	/*
125	 * CPU model dependent way of implementing IPI generation targeting
126	 * a single CPU. The trap handler needs only to do trap entry/return
127	 * to call schedule.
128	 */
129	sparc32_ipi_ops->resched(cpu);
130}
131
132void smp_send_stop(void)
133{
134}
135
136void arch_send_call_function_single_ipi(int cpu)
137{
138	/* trigger one IPI single call on one CPU */
139	sparc32_ipi_ops->single(cpu);
140}
141
142void arch_send_call_function_ipi_mask(const struct cpumask *mask)
143{
144	int cpu;
145
146	/* trigger IPI mask call on each CPU */
147	for_each_cpu(cpu, mask)
148		sparc32_ipi_ops->mask_one(cpu);
149}
150
151void smp_resched_interrupt(void)
152{
153	irq_enter();
154	scheduler_ipi();
155	local_cpu_data().irq_resched_count++;
156	irq_exit();
157	/* re-schedule routine called by interrupt return code. */
158}
159
160void smp_call_function_single_interrupt(void)
161{
162	irq_enter();
163	generic_smp_call_function_single_interrupt();
164	local_cpu_data().irq_call_count++;
165	irq_exit();
166}
167
168void smp_call_function_interrupt(void)
169{
170	irq_enter();
171	generic_smp_call_function_interrupt();
172	local_cpu_data().irq_call_count++;
173	irq_exit();
174}
175
176int setup_profiling_timer(unsigned int multiplier)
177{
178	return -EINVAL;
179}
180
181void __init smp_prepare_cpus(unsigned int max_cpus)
182{
183	extern void __init smp4m_boot_cpus(void);
184	extern void __init smp4d_boot_cpus(void);
185	int i, cpuid, extra;
186
187	printk("Entering SMP Mode...\n");
188
189	extra = 0;
190	for (i = 0; !cpu_find_by_instance(i, NULL, &cpuid); i++) {
191		if (cpuid >= NR_CPUS)
192			extra++;
193	}
194	/* i = number of cpus */
195	if (extra && max_cpus > i - extra)
196		printk("Warning: NR_CPUS is too low to start all cpus\n");
197
198	smp_store_cpu_info(boot_cpu_id);
199
200	switch(sparc_cpu_model) {
201	case sun4m:
202		smp4m_boot_cpus();
203		break;
204	case sun4d:
205		smp4d_boot_cpus();
206		break;
207	case sparc_leon:
208		leon_boot_cpus();
209		break;
210	case sun4e:
211		printk("SUN4E\n");
212		BUG();
213		break;
214	case sun4u:
215		printk("SUN4U\n");
216		BUG();
217		break;
218	default:
219		printk("UNKNOWN!\n");
220		BUG();
221		break;
222	}
223}
224
225/* Set this up early so that things like the scheduler can init
226 * properly.  We use the same cpu mask for both the present and
227 * possible cpu map.
228 */
229void __init smp_setup_cpu_possible_map(void)
230{
231	int instance, mid;
232
233	instance = 0;
234	while (!cpu_find_by_instance(instance, NULL, &mid)) {
235		if (mid < NR_CPUS) {
236			set_cpu_possible(mid, true);
237			set_cpu_present(mid, true);
238		}
239		instance++;
240	}
241}
242
243void __init smp_prepare_boot_cpu(void)
244{
245	int cpuid = hard_smp_processor_id();
246
247	if (cpuid >= NR_CPUS) {
248		prom_printf("Serious problem, boot cpu id >= NR_CPUS\n");
249		prom_halt();
250	}
251	if (cpuid != 0)
252		printk("boot cpu id != 0, this could work but is untested\n");
253
254	current_thread_info()->cpu = cpuid;
255	set_cpu_online(cpuid, true);
256	set_cpu_possible(cpuid, true);
257}
258
259int __cpuinit __cpu_up(unsigned int cpu, struct task_struct *tidle)
260{
261	extern int __cpuinit smp4m_boot_one_cpu(int, struct task_struct *);
262	extern int __cpuinit smp4d_boot_one_cpu(int, struct task_struct *);
263	int ret=0;
264
265	switch(sparc_cpu_model) {
266	case sun4m:
267		ret = smp4m_boot_one_cpu(cpu, tidle);
268		break;
269	case sun4d:
270		ret = smp4d_boot_one_cpu(cpu, tidle);
271		break;
272	case sparc_leon:
273		ret = leon_boot_one_cpu(cpu, tidle);
274		break;
275	case sun4e:
276		printk("SUN4E\n");
277		BUG();
278		break;
279	case sun4u:
280		printk("SUN4U\n");
281		BUG();
282		break;
283	default:
284		printk("UNKNOWN!\n");
285		BUG();
286		break;
287	}
288
289	if (!ret) {
290		cpumask_set_cpu(cpu, &smp_commenced_mask);
291		while (!cpu_online(cpu))
292			mb();
293	}
294	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
295}
296
297void smp_bogo(struct seq_file *m)
298{
299	int i;
300	
301	for_each_online_cpu(i) {
302		seq_printf(m,
303			   "Cpu%dBogo\t: %lu.%02lu\n",
304			   i,
305			   cpu_data(i).udelay_val/(500000/HZ),
306			   (cpu_data(i).udelay_val/(5000/HZ))%100);
307	}
308}
309
310void smp_info(struct seq_file *m)
311{
312	int i;
313
314	seq_printf(m, "State:\n");
315	for_each_online_cpu(i)
316		seq_printf(m, "CPU%d\t\t: online\n", i);
317}
v6.2
  1// SPDX-License-Identifier: GPL-2.0
  2/* smp.c: Sparc SMP support.
  3 *
  4 * Copyright (C) 1996 David S. Miller (davem@caip.rutgers.edu)
  5 * Copyright (C) 1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
  6 * Copyright (C) 2004 Keith M Wesolowski (wesolows@foobazco.org)
  7 */
  8
  9#include <asm/head.h>
 10
 11#include <linux/kernel.h>
 12#include <linux/sched.h>
 13#include <linux/threads.h>
 14#include <linux/smp.h>
 15#include <linux/interrupt.h>
 16#include <linux/kernel_stat.h>
 17#include <linux/init.h>
 18#include <linux/spinlock.h>
 19#include <linux/mm.h>
 20#include <linux/fs.h>
 21#include <linux/seq_file.h>
 22#include <linux/cache.h>
 23#include <linux/delay.h>
 24#include <linux/profile.h>
 25#include <linux/cpu.h>
 26
 27#include <asm/ptrace.h>
 28#include <linux/atomic.h>
 29
 30#include <asm/irq.h>
 31#include <asm/page.h>
 
 
 32#include <asm/oplib.h>
 33#include <asm/cacheflush.h>
 34#include <asm/tlbflush.h>
 35#include <asm/cpudata.h>
 36#include <asm/timer.h>
 37#include <asm/leon.h>
 38
 39#include "kernel.h"
 40#include "irq.h"
 41
 42volatile unsigned long cpu_callin_map[NR_CPUS] = {0,};
 43
 44cpumask_t smp_commenced_mask = CPU_MASK_NONE;
 45
 46const struct sparc32_ipi_ops *sparc32_ipi_ops;
 47
 48/* The only guaranteed locking primitive available on all Sparc
 49 * processors is 'ldstub [%reg + immediate], %dest_reg' which atomically
 50 * places the current byte at the effective address into dest_reg and
 51 * places 0xff there afterwards.  Pretty lame locking primitive
 52 * compared to the Alpha and the Intel no?  Most Sparcs have 'swap'
 53 * instruction which is much better...
 54 */
 55
 56void smp_store_cpu_info(int id)
 57{
 58	int cpu_node;
 59	int mid;
 60
 61	cpu_data(id).udelay_val = loops_per_jiffy;
 62
 63	cpu_find_by_mid(id, &cpu_node);
 64	cpu_data(id).clock_tick = prom_getintdefault(cpu_node,
 65						     "clock-frequency", 0);
 66	cpu_data(id).prom_node = cpu_node;
 67	mid = cpu_get_hwmid(cpu_node);
 68
 69	if (mid < 0) {
 70		printk(KERN_NOTICE "No MID found for CPU%d at node 0x%08x", id, cpu_node);
 71		mid = 0;
 72	}
 73	cpu_data(id).mid = mid;
 74}
 75
 76void __init smp_cpus_done(unsigned int max_cpus)
 77{
 
 
 78	unsigned long bogosum = 0;
 79	int cpu, num = 0;
 80
 81	for_each_online_cpu(cpu) {
 82		num++;
 83		bogosum += cpu_data(cpu).udelay_val;
 84	}
 85
 86	printk("Total of %d processors activated (%lu.%02lu BogoMIPS).\n",
 87		num, bogosum/(500000/HZ),
 88		(bogosum/(5000/HZ))%100);
 89
 90	switch(sparc_cpu_model) {
 91	case sun4m:
 92		smp4m_smp_done();
 93		break;
 94	case sun4d:
 95		smp4d_smp_done();
 96		break;
 97	case sparc_leon:
 98		leon_smp_done();
 99		break;
100	case sun4e:
101		printk("SUN4E\n");
102		BUG();
103		break;
104	case sun4u:
105		printk("SUN4U\n");
106		BUG();
107		break;
108	default:
109		printk("UNKNOWN!\n");
110		BUG();
111		break;
112	}
113}
114
115void cpu_panic(void)
116{
117	printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
118	panic("SMP bolixed\n");
119}
120
121struct linux_prom_registers smp_penguin_ctable = { 0 };
122
123void smp_send_reschedule(int cpu)
124{
125	/*
126	 * CPU model dependent way of implementing IPI generation targeting
127	 * a single CPU. The trap handler needs only to do trap entry/return
128	 * to call schedule.
129	 */
130	sparc32_ipi_ops->resched(cpu);
131}
132
133void smp_send_stop(void)
134{
135}
136
137void arch_send_call_function_single_ipi(int cpu)
138{
139	/* trigger one IPI single call on one CPU */
140	sparc32_ipi_ops->single(cpu);
141}
142
143void arch_send_call_function_ipi_mask(const struct cpumask *mask)
144{
145	int cpu;
146
147	/* trigger IPI mask call on each CPU */
148	for_each_cpu(cpu, mask)
149		sparc32_ipi_ops->mask_one(cpu);
150}
151
152void smp_resched_interrupt(void)
153{
154	irq_enter();
155	scheduler_ipi();
156	local_cpu_data().irq_resched_count++;
157	irq_exit();
158	/* re-schedule routine called by interrupt return code. */
159}
160
161void smp_call_function_single_interrupt(void)
162{
163	irq_enter();
164	generic_smp_call_function_single_interrupt();
165	local_cpu_data().irq_call_count++;
166	irq_exit();
167}
168
169void smp_call_function_interrupt(void)
170{
171	irq_enter();
172	generic_smp_call_function_interrupt();
173	local_cpu_data().irq_call_count++;
174	irq_exit();
175}
176
 
 
 
 
 
177void __init smp_prepare_cpus(unsigned int max_cpus)
178{
 
 
179	int i, cpuid, extra;
180
181	printk("Entering SMP Mode...\n");
182
183	extra = 0;
184	for (i = 0; !cpu_find_by_instance(i, NULL, &cpuid); i++) {
185		if (cpuid >= NR_CPUS)
186			extra++;
187	}
188	/* i = number of cpus */
189	if (extra && max_cpus > i - extra)
190		printk("Warning: NR_CPUS is too low to start all cpus\n");
191
192	smp_store_cpu_info(boot_cpu_id);
193
194	switch(sparc_cpu_model) {
195	case sun4m:
196		smp4m_boot_cpus();
197		break;
198	case sun4d:
199		smp4d_boot_cpus();
200		break;
201	case sparc_leon:
202		leon_boot_cpus();
203		break;
204	case sun4e:
205		printk("SUN4E\n");
206		BUG();
207		break;
208	case sun4u:
209		printk("SUN4U\n");
210		BUG();
211		break;
212	default:
213		printk("UNKNOWN!\n");
214		BUG();
215		break;
216	}
217}
218
219/* Set this up early so that things like the scheduler can init
220 * properly.  We use the same cpu mask for both the present and
221 * possible cpu map.
222 */
223void __init smp_setup_cpu_possible_map(void)
224{
225	int instance, mid;
226
227	instance = 0;
228	while (!cpu_find_by_instance(instance, NULL, &mid)) {
229		if (mid < NR_CPUS) {
230			set_cpu_possible(mid, true);
231			set_cpu_present(mid, true);
232		}
233		instance++;
234	}
235}
236
237void __init smp_prepare_boot_cpu(void)
238{
239	int cpuid = hard_smp_processor_id();
240
241	if (cpuid >= NR_CPUS) {
242		prom_printf("Serious problem, boot cpu id >= NR_CPUS\n");
243		prom_halt();
244	}
245	if (cpuid != 0)
246		printk("boot cpu id != 0, this could work but is untested\n");
247
248	current_thread_info()->cpu = cpuid;
249	set_cpu_online(cpuid, true);
250	set_cpu_possible(cpuid, true);
251}
252
253int __cpu_up(unsigned int cpu, struct task_struct *tidle)
254{
 
 
255	int ret=0;
256
257	switch(sparc_cpu_model) {
258	case sun4m:
259		ret = smp4m_boot_one_cpu(cpu, tidle);
260		break;
261	case sun4d:
262		ret = smp4d_boot_one_cpu(cpu, tidle);
263		break;
264	case sparc_leon:
265		ret = leon_boot_one_cpu(cpu, tidle);
266		break;
267	case sun4e:
268		printk("SUN4E\n");
269		BUG();
270		break;
271	case sun4u:
272		printk("SUN4U\n");
273		BUG();
274		break;
275	default:
276		printk("UNKNOWN!\n");
277		BUG();
278		break;
279	}
280
281	if (!ret) {
282		cpumask_set_cpu(cpu, &smp_commenced_mask);
283		while (!cpu_online(cpu))
284			mb();
285	}
286	return ret;
287}
288
289static void arch_cpu_pre_starting(void *arg)
290{
291	local_ops->cache_all();
292	local_ops->tlb_all();
293
294	switch(sparc_cpu_model) {
295	case sun4m:
296		sun4m_cpu_pre_starting(arg);
297		break;
298	case sun4d:
299		sun4d_cpu_pre_starting(arg);
300		break;
301	case sparc_leon:
302		leon_cpu_pre_starting(arg);
303		break;
304	default:
305		BUG();
306	}
307}
308
309static void arch_cpu_pre_online(void *arg)
310{
311	unsigned int cpuid = hard_smp_processor_id();
312
313	register_percpu_ce(cpuid);
314
315	calibrate_delay();
316	smp_store_cpu_info(cpuid);
317
318	local_ops->cache_all();
319	local_ops->tlb_all();
320
321	switch(sparc_cpu_model) {
322	case sun4m:
323		sun4m_cpu_pre_online(arg);
324		break;
325	case sun4d:
326		sun4d_cpu_pre_online(arg);
327		break;
328	case sparc_leon:
329		leon_cpu_pre_online(arg);
330		break;
331	default:
332		BUG();
333	}
334}
335
336static void sparc_start_secondary(void *arg)
337{
338	unsigned int cpu;
339
340	/*
341	 * SMP booting is extremely fragile in some architectures. So run
342	 * the cpu initialization code first before anything else.
343	 */
344	arch_cpu_pre_starting(arg);
345
346	cpu = smp_processor_id();
347
348	notify_cpu_starting(cpu);
349	arch_cpu_pre_online(arg);
350
351	/* Set the CPU in the cpu_online_mask */
352	set_cpu_online(cpu, true);
353
354	/* Enable local interrupts now */
355	local_irq_enable();
356
357	wmb();
358	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
359
360	/* We should never reach here! */
361	BUG();
362}
363
364void smp_callin(void)
365{
366	sparc_start_secondary(NULL);
367}
368
369void smp_bogo(struct seq_file *m)
370{
371	int i;
372	
373	for_each_online_cpu(i) {
374		seq_printf(m,
375			   "Cpu%dBogo\t: %lu.%02lu\n",
376			   i,
377			   cpu_data(i).udelay_val/(500000/HZ),
378			   (cpu_data(i).udelay_val/(5000/HZ))%100);
379	}
380}
381
382void smp_info(struct seq_file *m)
383{
384	int i;
385
386	seq_printf(m, "State:\n");
387	for_each_online_cpu(i)
388		seq_printf(m, "CPU%d\t\t: online\n", i);
389}