Linux Audio

Check our new training course

Loading...
v3.5.6
  1/* smp.c: Sparc SMP support.
  2 *
  3 * Copyright (C) 1996 David S. Miller (davem@caip.rutgers.edu)
  4 * Copyright (C) 1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
  5 * Copyright (C) 2004 Keith M Wesolowski (wesolows@foobazco.org)
  6 */
  7
  8#include <asm/head.h>
  9
 10#include <linux/kernel.h>
 11#include <linux/sched.h>
 12#include <linux/threads.h>
 13#include <linux/smp.h>
 14#include <linux/interrupt.h>
 15#include <linux/kernel_stat.h>
 16#include <linux/init.h>
 17#include <linux/spinlock.h>
 18#include <linux/mm.h>
 19#include <linux/fs.h>
 20#include <linux/seq_file.h>
 21#include <linux/cache.h>
 22#include <linux/delay.h>
 23
 24#include <asm/ptrace.h>
 25#include <linux/atomic.h>
 26
 27#include <asm/irq.h>
 28#include <asm/page.h>
 29#include <asm/pgalloc.h>
 30#include <asm/pgtable.h>
 31#include <asm/oplib.h>
 32#include <asm/cacheflush.h>
 33#include <asm/tlbflush.h>
 34#include <asm/cpudata.h>
 35#include <asm/leon.h>
 36
 37#include "irq.h"
 38
 39volatile unsigned long cpu_callin_map[NR_CPUS] __cpuinitdata = {0,};
 40
 41cpumask_t smp_commenced_mask = CPU_MASK_NONE;
 42
 43const struct sparc32_ipi_ops *sparc32_ipi_ops;
 44
 45/* The only guaranteed locking primitive available on all Sparc
 46 * processors is 'ldstub [%reg + immediate], %dest_reg' which atomically
 47 * places the current byte at the effective address into dest_reg and
 48 * places 0xff there afterwards.  Pretty lame locking primitive
 49 * compared to the Alpha and the Intel no?  Most Sparcs have 'swap'
 50 * instruction which is much better...
 51 */
 52
 53void __cpuinit smp_store_cpu_info(int id)
 54{
 55	int cpu_node;
 56	int mid;
 57
 58	cpu_data(id).udelay_val = loops_per_jiffy;
 59
 60	cpu_find_by_mid(id, &cpu_node);
 61	cpu_data(id).clock_tick = prom_getintdefault(cpu_node,
 62						     "clock-frequency", 0);
 63	cpu_data(id).prom_node = cpu_node;
 64	mid = cpu_get_hwmid(cpu_node);
 65
 66	if (mid < 0) {
 67		printk(KERN_NOTICE "No MID found for CPU%d at node 0x%08d", id, cpu_node);
 68		mid = 0;
 69	}
 70	cpu_data(id).mid = mid;
 71}
 72
 73void __init smp_cpus_done(unsigned int max_cpus)
 74{
 75	extern void smp4m_smp_done(void);
 76	extern void smp4d_smp_done(void);
 77	unsigned long bogosum = 0;
 78	int cpu, num = 0;
 79
 80	for_each_online_cpu(cpu) {
 81		num++;
 82		bogosum += cpu_data(cpu).udelay_val;
 83	}
 84
 85	printk("Total of %d processors activated (%lu.%02lu BogoMIPS).\n",
 86		num, bogosum/(500000/HZ),
 87		(bogosum/(5000/HZ))%100);
 88
 89	switch(sparc_cpu_model) {
 
 
 
 
 
 
 
 
 90	case sun4m:
 91		smp4m_smp_done();
 92		break;
 93	case sun4d:
 94		smp4d_smp_done();
 95		break;
 96	case sparc_leon:
 97		leon_smp_done();
 98		break;
 99	case sun4e:
100		printk("SUN4E\n");
101		BUG();
102		break;
103	case sun4u:
104		printk("SUN4U\n");
105		BUG();
106		break;
107	default:
108		printk("UNKNOWN!\n");
109		BUG();
110		break;
111	}
112}
113
114void cpu_panic(void)
115{
116	printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
117	panic("SMP bolixed\n");
118}
119
120struct linux_prom_registers smp_penguin_ctable __cpuinitdata = { 0 };
121
122void smp_send_reschedule(int cpu)
123{
124	/*
125	 * CPU model dependent way of implementing IPI generation targeting
126	 * a single CPU. The trap handler needs only to do trap entry/return
127	 * to call schedule.
128	 */
129	sparc32_ipi_ops->resched(cpu);
130}
131
132void smp_send_stop(void)
133{
134}
135
136void arch_send_call_function_single_ipi(int cpu)
137{
138	/* trigger one IPI single call on one CPU */
139	sparc32_ipi_ops->single(cpu);
140}
141
142void arch_send_call_function_ipi_mask(const struct cpumask *mask)
143{
144	int cpu;
145
146	/* trigger IPI mask call on each CPU */
147	for_each_cpu(cpu, mask)
148		sparc32_ipi_ops->mask_one(cpu);
149}
150
151void smp_resched_interrupt(void)
152{
153	irq_enter();
154	scheduler_ipi();
155	local_cpu_data().irq_resched_count++;
156	irq_exit();
157	/* re-schedule routine called by interrupt return code. */
158}
159
160void smp_call_function_single_interrupt(void)
161{
162	irq_enter();
163	generic_smp_call_function_single_interrupt();
164	local_cpu_data().irq_call_count++;
165	irq_exit();
166}
167
168void smp_call_function_interrupt(void)
169{
170	irq_enter();
171	generic_smp_call_function_interrupt();
172	local_cpu_data().irq_call_count++;
173	irq_exit();
174}
175
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
176int setup_profiling_timer(unsigned int multiplier)
177{
178	return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
179}
180
181void __init smp_prepare_cpus(unsigned int max_cpus)
182{
183	extern void __init smp4m_boot_cpus(void);
184	extern void __init smp4d_boot_cpus(void);
185	int i, cpuid, extra;
186
187	printk("Entering SMP Mode...\n");
188
189	extra = 0;
190	for (i = 0; !cpu_find_by_instance(i, NULL, &cpuid); i++) {
191		if (cpuid >= NR_CPUS)
192			extra++;
193	}
194	/* i = number of cpus */
195	if (extra && max_cpus > i - extra)
196		printk("Warning: NR_CPUS is too low to start all cpus\n");
197
198	smp_store_cpu_info(boot_cpu_id);
199
200	switch(sparc_cpu_model) {
 
 
 
 
 
 
 
 
201	case sun4m:
202		smp4m_boot_cpus();
203		break;
204	case sun4d:
205		smp4d_boot_cpus();
206		break;
207	case sparc_leon:
208		leon_boot_cpus();
209		break;
210	case sun4e:
211		printk("SUN4E\n");
212		BUG();
213		break;
214	case sun4u:
215		printk("SUN4U\n");
216		BUG();
217		break;
218	default:
219		printk("UNKNOWN!\n");
220		BUG();
221		break;
222	}
223}
224
225/* Set this up early so that things like the scheduler can init
226 * properly.  We use the same cpu mask for both the present and
227 * possible cpu map.
228 */
229void __init smp_setup_cpu_possible_map(void)
230{
231	int instance, mid;
232
233	instance = 0;
234	while (!cpu_find_by_instance(instance, NULL, &mid)) {
235		if (mid < NR_CPUS) {
236			set_cpu_possible(mid, true);
237			set_cpu_present(mid, true);
238		}
239		instance++;
240	}
241}
242
243void __init smp_prepare_boot_cpu(void)
244{
245	int cpuid = hard_smp_processor_id();
246
247	if (cpuid >= NR_CPUS) {
248		prom_printf("Serious problem, boot cpu id >= NR_CPUS\n");
249		prom_halt();
250	}
251	if (cpuid != 0)
252		printk("boot cpu id != 0, this could work but is untested\n");
253
254	current_thread_info()->cpu = cpuid;
255	set_cpu_online(cpuid, true);
256	set_cpu_possible(cpuid, true);
257}
258
259int __cpuinit __cpu_up(unsigned int cpu, struct task_struct *tidle)
260{
261	extern int __cpuinit smp4m_boot_one_cpu(int, struct task_struct *);
262	extern int __cpuinit smp4d_boot_one_cpu(int, struct task_struct *);
263	int ret=0;
264
265	switch(sparc_cpu_model) {
 
 
 
 
 
 
 
 
266	case sun4m:
267		ret = smp4m_boot_one_cpu(cpu, tidle);
268		break;
269	case sun4d:
270		ret = smp4d_boot_one_cpu(cpu, tidle);
271		break;
272	case sparc_leon:
273		ret = leon_boot_one_cpu(cpu, tidle);
274		break;
275	case sun4e:
276		printk("SUN4E\n");
277		BUG();
278		break;
279	case sun4u:
280		printk("SUN4U\n");
281		BUG();
282		break;
283	default:
284		printk("UNKNOWN!\n");
285		BUG();
286		break;
287	}
288
289	if (!ret) {
290		cpumask_set_cpu(cpu, &smp_commenced_mask);
291		while (!cpu_online(cpu))
292			mb();
293	}
294	return ret;
295}
296
297void smp_bogo(struct seq_file *m)
298{
299	int i;
300	
301	for_each_online_cpu(i) {
302		seq_printf(m,
303			   "Cpu%dBogo\t: %lu.%02lu\n",
304			   i,
305			   cpu_data(i).udelay_val/(500000/HZ),
306			   (cpu_data(i).udelay_val/(5000/HZ))%100);
307	}
308}
309
310void smp_info(struct seq_file *m)
311{
312	int i;
313
314	seq_printf(m, "State:\n");
315	for_each_online_cpu(i)
316		seq_printf(m, "CPU%d\t\t: online\n", i);
317}
v3.1
  1/* smp.c: Sparc SMP support.
  2 *
  3 * Copyright (C) 1996 David S. Miller (davem@caip.rutgers.edu)
  4 * Copyright (C) 1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
  5 * Copyright (C) 2004 Keith M Wesolowski (wesolows@foobazco.org)
  6 */
  7
  8#include <asm/head.h>
  9
 10#include <linux/kernel.h>
 11#include <linux/sched.h>
 12#include <linux/threads.h>
 13#include <linux/smp.h>
 14#include <linux/interrupt.h>
 15#include <linux/kernel_stat.h>
 16#include <linux/init.h>
 17#include <linux/spinlock.h>
 18#include <linux/mm.h>
 19#include <linux/fs.h>
 20#include <linux/seq_file.h>
 21#include <linux/cache.h>
 22#include <linux/delay.h>
 23
 24#include <asm/ptrace.h>
 25#include <linux/atomic.h>
 26
 27#include <asm/irq.h>
 28#include <asm/page.h>
 29#include <asm/pgalloc.h>
 30#include <asm/pgtable.h>
 31#include <asm/oplib.h>
 32#include <asm/cacheflush.h>
 33#include <asm/tlbflush.h>
 34#include <asm/cpudata.h>
 35#include <asm/leon.h>
 36
 37#include "irq.h"
 38
 39volatile unsigned long cpu_callin_map[NR_CPUS] __cpuinitdata = {0,};
 40
 41cpumask_t smp_commenced_mask = CPU_MASK_NONE;
 42
 
 
 43/* The only guaranteed locking primitive available on all Sparc
 44 * processors is 'ldstub [%reg + immediate], %dest_reg' which atomically
 45 * places the current byte at the effective address into dest_reg and
 46 * places 0xff there afterwards.  Pretty lame locking primitive
 47 * compared to the Alpha and the Intel no?  Most Sparcs have 'swap'
 48 * instruction which is much better...
 49 */
 50
 51void __cpuinit smp_store_cpu_info(int id)
 52{
 53	int cpu_node;
 54	int mid;
 55
 56	cpu_data(id).udelay_val = loops_per_jiffy;
 57
 58	cpu_find_by_mid(id, &cpu_node);
 59	cpu_data(id).clock_tick = prom_getintdefault(cpu_node,
 60						     "clock-frequency", 0);
 61	cpu_data(id).prom_node = cpu_node;
 62	mid = cpu_get_hwmid(cpu_node);
 63
 64	if (mid < 0) {
 65		printk(KERN_NOTICE "No MID found for CPU%d at node 0x%08d", id, cpu_node);
 66		mid = 0;
 67	}
 68	cpu_data(id).mid = mid;
 69}
 70
 71void __init smp_cpus_done(unsigned int max_cpus)
 72{
 73	extern void smp4m_smp_done(void);
 74	extern void smp4d_smp_done(void);
 75	unsigned long bogosum = 0;
 76	int cpu, num = 0;
 77
 78	for_each_online_cpu(cpu) {
 79		num++;
 80		bogosum += cpu_data(cpu).udelay_val;
 81	}
 82
 83	printk("Total of %d processors activated (%lu.%02lu BogoMIPS).\n",
 84		num, bogosum/(500000/HZ),
 85		(bogosum/(5000/HZ))%100);
 86
 87	switch(sparc_cpu_model) {
 88	case sun4:
 89		printk("SUN4\n");
 90		BUG();
 91		break;
 92	case sun4c:
 93		printk("SUN4C\n");
 94		BUG();
 95		break;
 96	case sun4m:
 97		smp4m_smp_done();
 98		break;
 99	case sun4d:
100		smp4d_smp_done();
101		break;
102	case sparc_leon:
103		leon_smp_done();
104		break;
105	case sun4e:
106		printk("SUN4E\n");
107		BUG();
108		break;
109	case sun4u:
110		printk("SUN4U\n");
111		BUG();
112		break;
113	default:
114		printk("UNKNOWN!\n");
115		BUG();
116		break;
117	}
118}
119
120void cpu_panic(void)
121{
122	printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
123	panic("SMP bolixed\n");
124}
125
126struct linux_prom_registers smp_penguin_ctable __cpuinitdata = { 0 };
127
128void smp_send_reschedule(int cpu)
129{
130	/*
131	 * CPU model dependent way of implementing IPI generation targeting
132	 * a single CPU. The trap handler needs only to do trap entry/return
133	 * to call schedule.
134	 */
135	BTFIXUP_CALL(smp_ipi_resched)(cpu);
136}
137
138void smp_send_stop(void)
139{
140}
141
142void arch_send_call_function_single_ipi(int cpu)
143{
144	/* trigger one IPI single call on one CPU */
145	BTFIXUP_CALL(smp_ipi_single)(cpu);
146}
147
148void arch_send_call_function_ipi_mask(const struct cpumask *mask)
149{
150	int cpu;
151
152	/* trigger IPI mask call on each CPU */
153	for_each_cpu(cpu, mask)
154		BTFIXUP_CALL(smp_ipi_mask_one)(cpu);
155}
156
157void smp_resched_interrupt(void)
158{
159	irq_enter();
160	scheduler_ipi();
161	local_cpu_data().irq_resched_count++;
162	irq_exit();
163	/* re-schedule routine called by interrupt return code. */
164}
165
166void smp_call_function_single_interrupt(void)
167{
168	irq_enter();
169	generic_smp_call_function_single_interrupt();
170	local_cpu_data().irq_call_count++;
171	irq_exit();
172}
173
174void smp_call_function_interrupt(void)
175{
176	irq_enter();
177	generic_smp_call_function_interrupt();
178	local_cpu_data().irq_call_count++;
179	irq_exit();
180}
181
182void smp_flush_cache_all(void)
183{
184	xc0((smpfunc_t) BTFIXUP_CALL(local_flush_cache_all));
185	local_flush_cache_all();
186}
187
188void smp_flush_tlb_all(void)
189{
190	xc0((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_all));
191	local_flush_tlb_all();
192}
193
194void smp_flush_cache_mm(struct mm_struct *mm)
195{
196	if(mm->context != NO_CONTEXT) {
197		cpumask_t cpu_mask;
198		cpumask_copy(&cpu_mask, mm_cpumask(mm));
199		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
200		if (!cpumask_empty(&cpu_mask))
201			xc1((smpfunc_t) BTFIXUP_CALL(local_flush_cache_mm), (unsigned long) mm);
202		local_flush_cache_mm(mm);
203	}
204}
205
206void smp_flush_tlb_mm(struct mm_struct *mm)
207{
208	if(mm->context != NO_CONTEXT) {
209		cpumask_t cpu_mask;
210		cpumask_copy(&cpu_mask, mm_cpumask(mm));
211		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
212		if (!cpumask_empty(&cpu_mask)) {
213			xc1((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_mm), (unsigned long) mm);
214			if(atomic_read(&mm->mm_users) == 1 && current->active_mm == mm)
215				cpumask_copy(mm_cpumask(mm),
216					     cpumask_of(smp_processor_id()));
217		}
218		local_flush_tlb_mm(mm);
219	}
220}
221
222void smp_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
223			   unsigned long end)
224{
225	struct mm_struct *mm = vma->vm_mm;
226
227	if (mm->context != NO_CONTEXT) {
228		cpumask_t cpu_mask;
229		cpumask_copy(&cpu_mask, mm_cpumask(mm));
230		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
231		if (!cpumask_empty(&cpu_mask))
232			xc3((smpfunc_t) BTFIXUP_CALL(local_flush_cache_range), (unsigned long) vma, start, end);
233		local_flush_cache_range(vma, start, end);
234	}
235}
236
237void smp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
238			 unsigned long end)
239{
240	struct mm_struct *mm = vma->vm_mm;
241
242	if (mm->context != NO_CONTEXT) {
243		cpumask_t cpu_mask;
244		cpumask_copy(&cpu_mask, mm_cpumask(mm));
245		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
246		if (!cpumask_empty(&cpu_mask))
247			xc3((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_range), (unsigned long) vma, start, end);
248		local_flush_tlb_range(vma, start, end);
249	}
250}
251
252void smp_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
253{
254	struct mm_struct *mm = vma->vm_mm;
255
256	if(mm->context != NO_CONTEXT) {
257		cpumask_t cpu_mask;
258		cpumask_copy(&cpu_mask, mm_cpumask(mm));
259		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
260		if (!cpumask_empty(&cpu_mask))
261			xc2((smpfunc_t) BTFIXUP_CALL(local_flush_cache_page), (unsigned long) vma, page);
262		local_flush_cache_page(vma, page);
263	}
264}
265
266void smp_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
267{
268	struct mm_struct *mm = vma->vm_mm;
269
270	if(mm->context != NO_CONTEXT) {
271		cpumask_t cpu_mask;
272		cpumask_copy(&cpu_mask, mm_cpumask(mm));
273		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
274		if (!cpumask_empty(&cpu_mask))
275			xc2((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_page), (unsigned long) vma, page);
276		local_flush_tlb_page(vma, page);
277	}
278}
279
280void smp_flush_page_to_ram(unsigned long page)
281{
282	/* Current theory is that those who call this are the one's
283	 * who have just dirtied their cache with the pages contents
284	 * in kernel space, therefore we only run this on local cpu.
285	 *
286	 * XXX This experiment failed, research further... -DaveM
287	 */
288#if 1
289	xc1((smpfunc_t) BTFIXUP_CALL(local_flush_page_to_ram), page);
290#endif
291	local_flush_page_to_ram(page);
292}
293
294void smp_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
295{
296	cpumask_t cpu_mask;
297	cpumask_copy(&cpu_mask, mm_cpumask(mm));
298	cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
299	if (!cpumask_empty(&cpu_mask))
300		xc2((smpfunc_t) BTFIXUP_CALL(local_flush_sig_insns), (unsigned long) mm, insn_addr);
301	local_flush_sig_insns(mm, insn_addr);
302}
303
304extern unsigned int lvl14_resolution;
305
306/* /proc/profile writes can call this, don't __init it please. */
307static DEFINE_SPINLOCK(prof_setup_lock);
308
309int setup_profiling_timer(unsigned int multiplier)
310{
311	int i;
312	unsigned long flags;
313
314	/* Prevent level14 ticker IRQ flooding. */
315	if((!multiplier) || (lvl14_resolution / multiplier) < 500)
316		return -EINVAL;
317
318	spin_lock_irqsave(&prof_setup_lock, flags);
319	for_each_possible_cpu(i) {
320		load_profile_irq(i, lvl14_resolution / multiplier);
321		prof_multiplier(i) = multiplier;
322	}
323	spin_unlock_irqrestore(&prof_setup_lock, flags);
324
325	return 0;
326}
327
328void __init smp_prepare_cpus(unsigned int max_cpus)
329{
330	extern void __init smp4m_boot_cpus(void);
331	extern void __init smp4d_boot_cpus(void);
332	int i, cpuid, extra;
333
334	printk("Entering SMP Mode...\n");
335
336	extra = 0;
337	for (i = 0; !cpu_find_by_instance(i, NULL, &cpuid); i++) {
338		if (cpuid >= NR_CPUS)
339			extra++;
340	}
341	/* i = number of cpus */
342	if (extra && max_cpus > i - extra)
343		printk("Warning: NR_CPUS is too low to start all cpus\n");
344
345	smp_store_cpu_info(boot_cpu_id);
346
347	switch(sparc_cpu_model) {
348	case sun4:
349		printk("SUN4\n");
350		BUG();
351		break;
352	case sun4c:
353		printk("SUN4C\n");
354		BUG();
355		break;
356	case sun4m:
357		smp4m_boot_cpus();
358		break;
359	case sun4d:
360		smp4d_boot_cpus();
361		break;
362	case sparc_leon:
363		leon_boot_cpus();
364		break;
365	case sun4e:
366		printk("SUN4E\n");
367		BUG();
368		break;
369	case sun4u:
370		printk("SUN4U\n");
371		BUG();
372		break;
373	default:
374		printk("UNKNOWN!\n");
375		BUG();
376		break;
377	}
378}
379
380/* Set this up early so that things like the scheduler can init
381 * properly.  We use the same cpu mask for both the present and
382 * possible cpu map.
383 */
384void __init smp_setup_cpu_possible_map(void)
385{
386	int instance, mid;
387
388	instance = 0;
389	while (!cpu_find_by_instance(instance, NULL, &mid)) {
390		if (mid < NR_CPUS) {
391			set_cpu_possible(mid, true);
392			set_cpu_present(mid, true);
393		}
394		instance++;
395	}
396}
397
398void __init smp_prepare_boot_cpu(void)
399{
400	int cpuid = hard_smp_processor_id();
401
402	if (cpuid >= NR_CPUS) {
403		prom_printf("Serious problem, boot cpu id >= NR_CPUS\n");
404		prom_halt();
405	}
406	if (cpuid != 0)
407		printk("boot cpu id != 0, this could work but is untested\n");
408
409	current_thread_info()->cpu = cpuid;
410	set_cpu_online(cpuid, true);
411	set_cpu_possible(cpuid, true);
412}
413
414int __cpuinit __cpu_up(unsigned int cpu)
415{
416	extern int __cpuinit smp4m_boot_one_cpu(int);
417	extern int __cpuinit smp4d_boot_one_cpu(int);
418	int ret=0;
419
420	switch(sparc_cpu_model) {
421	case sun4:
422		printk("SUN4\n");
423		BUG();
424		break;
425	case sun4c:
426		printk("SUN4C\n");
427		BUG();
428		break;
429	case sun4m:
430		ret = smp4m_boot_one_cpu(cpu);
431		break;
432	case sun4d:
433		ret = smp4d_boot_one_cpu(cpu);
434		break;
435	case sparc_leon:
436		ret = leon_boot_one_cpu(cpu);
437		break;
438	case sun4e:
439		printk("SUN4E\n");
440		BUG();
441		break;
442	case sun4u:
443		printk("SUN4U\n");
444		BUG();
445		break;
446	default:
447		printk("UNKNOWN!\n");
448		BUG();
449		break;
450	}
451
452	if (!ret) {
453		cpumask_set_cpu(cpu, &smp_commenced_mask);
454		while (!cpu_online(cpu))
455			mb();
456	}
457	return ret;
458}
459
460void smp_bogo(struct seq_file *m)
461{
462	int i;
463	
464	for_each_online_cpu(i) {
465		seq_printf(m,
466			   "Cpu%dBogo\t: %lu.%02lu\n",
467			   i,
468			   cpu_data(i).udelay_val/(500000/HZ),
469			   (cpu_data(i).udelay_val/(5000/HZ))%100);
470	}
471}
472
473void smp_info(struct seq_file *m)
474{
475	int i;
476
477	seq_printf(m, "State:\n");
478	for_each_online_cpu(i)
479		seq_printf(m, "CPU%d\t\t: online\n", i);
480}