Linux Audio

Check our new training course

Loading...
v3.5.6
 
  1/*
  2 * This program is free software; you can redistribute it and/or
  3 * modify it under the terms of the GNU General Public License
  4 * as published by the Free Software Foundation; either version 2
  5 * of the License, or (at your option) any later version.
  6 *
  7 * This program is distributed in the hope that it will be useful,
  8 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 10 * GNU General Public License for more details.
 11 *
 12 * You should have received a copy of the GNU General Public License
 13 * along with this program; if not, write to the Free Software
 14 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
 15 *
 16 * Copyright (C) 2000, 2001 Kanoj Sarcar
 17 * Copyright (C) 2000, 2001 Ralf Baechle
 18 * Copyright (C) 2000, 2001 Silicon Graphics, Inc.
 19 * Copyright (C) 2000, 2001, 2003 Broadcom Corporation
 20 */
 21#include <linux/cache.h>
 22#include <linux/delay.h>
 23#include <linux/init.h>
 24#include <linux/interrupt.h>
 25#include <linux/smp.h>
 26#include <linux/spinlock.h>
 27#include <linux/threads.h>
 28#include <linux/module.h>
 29#include <linux/time.h>
 30#include <linux/timex.h>
 31#include <linux/sched.h>
 32#include <linux/cpumask.h>
 33#include <linux/cpu.h>
 34#include <linux/err.h>
 35#include <linux/ftrace.h>
 
 
 
 36
 37#include <linux/atomic.h>
 38#include <asm/cpu.h>
 
 39#include <asm/processor.h>
 
 40#include <asm/r4k-timer.h>
 
 41#include <asm/mmu_context.h>
 42#include <asm/time.h>
 43#include <asm/setup.h>
 
 44
 45#ifdef CONFIG_MIPS_MT_SMTC
 46#include <asm/mipsmtregs.h>
 47#endif /* CONFIG_MIPS_MT_SMTC */
 48
 49volatile cpumask_t cpu_callin_map;	/* Bitmask of started secondaries */
 50
 51int __cpu_number_map[NR_CPUS];		/* Map physical to logical */
 52EXPORT_SYMBOL(__cpu_number_map);
 53
 54int __cpu_logical_map[NR_CPUS];		/* Map logical to physical */
 55EXPORT_SYMBOL(__cpu_logical_map);
 56
 57/* Number of TCs (or siblings in Intel speak) per CPU core */
 58int smp_num_siblings = 1;
 59EXPORT_SYMBOL(smp_num_siblings);
 60
 61/* representing the TCs (or siblings in Intel speak) of each logical CPU */
 62cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly;
 63EXPORT_SYMBOL(cpu_sibling_map);
 64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 65/* representing cpus for which sibling maps can be computed */
 66static cpumask_t cpu_sibling_setup_map;
 67
 
 
 
 
 
 
 
 
 
 
 68static inline void set_cpu_sibling_map(int cpu)
 69{
 70	int i;
 71
 72	cpu_set(cpu, cpu_sibling_setup_map);
 73
 74	if (smp_num_siblings > 1) {
 75		for_each_cpu_mask(i, cpu_sibling_setup_map) {
 76			if (cpu_data[cpu].core == cpu_data[i].core) {
 77				cpu_set(i, cpu_sibling_map[cpu]);
 78				cpu_set(cpu, cpu_sibling_map[i]);
 79			}
 80		}
 81	} else
 82		cpu_set(cpu, cpu_sibling_map[cpu]);
 83}
 84
 85struct plat_smp_ops *mp_ops;
 
 
 
 
 86
 87__cpuinit void register_smp_ops(struct plat_smp_ops *ops)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 88{
 89	if (mp_ops)
 90		printk(KERN_WARNING "Overriding previously set SMP ops\n");
 91
 92	mp_ops = ops;
 93}
 94
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 95/*
 96 * First C code run on the secondary CPUs after being started up by
 97 * the master.
 98 */
 99asmlinkage __cpuinit void start_secondary(void)
100{
101	unsigned int cpu;
102
103#ifdef CONFIG_MIPS_MT_SMTC
104	/* Only do cpu_probe for first TC of CPU */
105	if ((read_c0_tcbind() & TCBIND_CURTC) == 0)
106#endif /* CONFIG_MIPS_MT_SMTC */
107	cpu_probe();
108	cpu_report();
109	per_cpu_trap_init(false);
110	mips_clockevent_init();
111	mp_ops->init_secondary();
 
 
112
113	/*
114	 * XXX parity protection should be folded in here when it's converted
115	 * to an option instead of something based on .cputype
116	 */
117
118	calibrate_delay();
119	preempt_disable();
120	cpu = smp_processor_id();
121	cpu_data[cpu].udelay_val = loops_per_jiffy;
122
 
 
 
 
123	notify_cpu_starting(cpu);
124
125	set_cpu_online(cpu, true);
 
126
127	set_cpu_sibling_map(cpu);
 
 
 
128
129	cpu_set(cpu, cpu_callin_map);
130
131	synchronise_count_slave();
 
 
 
 
132
133	/*
134	 * irq will be enabled in ->smp_finish(), enabling it too early
135	 * is dangerous.
136	 */
137	WARN_ON_ONCE(!irqs_disabled());
138	mp_ops->smp_finish();
139
140	cpu_idle();
141}
142
143/*
144 * Call into both interrupt handlers, as we share the IPI for them
145 */
146void __irq_entry smp_call_function_interrupt(void)
147{
148	irq_enter();
149	generic_smp_call_function_single_interrupt();
150	generic_smp_call_function_interrupt();
151	irq_exit();
152}
153
154static void stop_this_cpu(void *dummy)
155{
156	/*
157	 * Remove this CPU:
158	 */
 
159	set_cpu_online(smp_processor_id(), false);
160	for (;;) {
161		if (cpu_wait)
162			(*cpu_wait)();		/* Wait if available. */
163	}
164}
165
166void smp_send_stop(void)
167{
168	smp_call_function(stop_this_cpu, NULL, 0);
169}
170
171void __init smp_cpus_done(unsigned int max_cpus)
172{
173	mp_ops->cpus_done();
174	synchronise_count_master();
175}
176
177/* called from main before smp_init() */
178void __init smp_prepare_cpus(unsigned int max_cpus)
179{
180	init_new_context(current, &init_mm);
181	current_thread_info()->cpu = 0;
182	mp_ops->prepare_cpus(max_cpus);
183	set_cpu_sibling_map(0);
 
 
184#ifndef CONFIG_HOTPLUG_CPU
185	init_cpu_present(cpu_possible_mask);
186#endif
 
187}
188
189/* preload SMP state for boot cpu */
190void __devinit smp_prepare_boot_cpu(void)
191{
 
 
192	set_cpu_possible(0, true);
193	set_cpu_online(0, true);
194	cpu_set(0, cpu_callin_map);
195}
196
197int __cpuinit __cpu_up(unsigned int cpu, struct task_struct *tidle)
198{
199	mp_ops->boot_secondary(cpu, tidle);
200
201	/*
202	 * Trust is futile.  We should really have timeouts ...
203	 */
204	while (!cpu_isset(cpu, cpu_callin_map))
205		udelay(100);
 
 
 
 
 
 
 
206
 
 
207	return 0;
208}
209
210/* Not really SMP stuff ... */
211int setup_profiling_timer(unsigned int multiplier)
212{
213	return 0;
214}
215
216static void flush_tlb_all_ipi(void *info)
217{
218	local_flush_tlb_all();
219}
220
221void flush_tlb_all(void)
222{
 
 
 
 
 
 
 
 
 
223	on_each_cpu(flush_tlb_all_ipi, NULL, 1);
224}
225
226static void flush_tlb_mm_ipi(void *mm)
227{
228	local_flush_tlb_mm((struct mm_struct *)mm);
229}
230
231/*
232 * Special Variant of smp_call_function for use by TLB functions:
233 *
234 *  o No return value
235 *  o collapses to normal function call on UP kernels
236 *  o collapses to normal function call on systems with a single shared
237 *    primary cache.
238 *  o CONFIG_MIPS_MT_SMTC currently implies there is only one physical core.
239 */
240static inline void smp_on_other_tlbs(void (*func) (void *info), void *info)
241{
242#ifndef CONFIG_MIPS_MT_SMTC
243	smp_call_function(func, info, 1);
244#endif
245}
246
247static inline void smp_on_each_tlb(void (*func) (void *info), void *info)
248{
249	preempt_disable();
250
251	smp_on_other_tlbs(func, info);
252	func(info);
253
254	preempt_enable();
255}
256
257/*
258 * The following tlb flush calls are invoked when old translations are
259 * being torn down, or pte attributes are changing. For single threaded
260 * address spaces, a new context is obtained on the current cpu, and tlb
261 * context on other cpus are invalidated to force a new context allocation
262 * at switch_mm time, should the mm ever be used on other cpus. For
263 * multithreaded address spaces, intercpu interrupts have to be sent.
264 * Another case where intercpu interrupts are required is when the target
265 * mm might be active on another cpu (eg debuggers doing the flushes on
266 * behalf of debugees, kswapd stealing pages from another process etc).
267 * Kanoj 07/00.
268 */
269
270void flush_tlb_mm(struct mm_struct *mm)
271{
 
 
 
 
 
 
272	preempt_disable();
273
274	if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
 
 
 
 
 
275		smp_on_other_tlbs(flush_tlb_mm_ipi, mm);
276	} else {
277		unsigned int cpu;
278
279		for_each_online_cpu(cpu) {
280			if (cpu != smp_processor_id() && cpu_context(cpu, mm))
281				cpu_context(cpu, mm) = 0;
282		}
283	}
284	local_flush_tlb_mm(mm);
285
286	preempt_enable();
287}
288
289struct flush_tlb_data {
290	struct vm_area_struct *vma;
291	unsigned long addr1;
292	unsigned long addr2;
293};
294
295static void flush_tlb_range_ipi(void *info)
296{
297	struct flush_tlb_data *fd = info;
298
299	local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2);
300}
301
302void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
303{
304	struct mm_struct *mm = vma->vm_mm;
 
 
305
306	preempt_disable();
307	if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
308		struct flush_tlb_data fd = {
309			.vma = vma,
310			.addr1 = start,
311			.addr2 = end,
312		};
313
314		smp_on_other_tlbs(flush_tlb_range_ipi, &fd);
 
315	} else {
316		unsigned int cpu;
 
317
318		for_each_online_cpu(cpu) {
 
 
 
 
 
 
319			if (cpu != smp_processor_id() && cpu_context(cpu, mm))
320				cpu_context(cpu, mm) = 0;
321		}
 
322	}
323	local_flush_tlb_range(vma, start, end);
324	preempt_enable();
325}
326
327static void flush_tlb_kernel_range_ipi(void *info)
328{
329	struct flush_tlb_data *fd = info;
330
331	local_flush_tlb_kernel_range(fd->addr1, fd->addr2);
332}
333
334void flush_tlb_kernel_range(unsigned long start, unsigned long end)
335{
336	struct flush_tlb_data fd = {
337		.addr1 = start,
338		.addr2 = end,
339	};
340
341	on_each_cpu(flush_tlb_kernel_range_ipi, &fd, 1);
342}
343
344static void flush_tlb_page_ipi(void *info)
345{
346	struct flush_tlb_data *fd = info;
347
348	local_flush_tlb_page(fd->vma, fd->addr1);
349}
350
351void flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
352{
 
 
353	preempt_disable();
354	if ((atomic_read(&vma->vm_mm->mm_users) != 1) || (current->mm != vma->vm_mm)) {
 
 
 
 
 
 
 
 
 
 
 
355		struct flush_tlb_data fd = {
356			.vma = vma,
357			.addr1 = page,
358		};
359
360		smp_on_other_tlbs(flush_tlb_page_ipi, &fd);
 
361	} else {
362		unsigned int cpu;
363
364		for_each_online_cpu(cpu) {
 
 
 
 
 
 
365			if (cpu != smp_processor_id() && cpu_context(cpu, vma->vm_mm))
366				cpu_context(cpu, vma->vm_mm) = 0;
367		}
 
368	}
369	local_flush_tlb_page(vma, page);
370	preempt_enable();
371}
372
373static void flush_tlb_one_ipi(void *info)
374{
375	unsigned long vaddr = (unsigned long) info;
376
377	local_flush_tlb_one(vaddr);
378}
379
380void flush_tlb_one(unsigned long vaddr)
381{
382	smp_on_each_tlb(flush_tlb_one_ipi, (void *) vaddr);
383}
384
385EXPORT_SYMBOL(flush_tlb_page);
386EXPORT_SYMBOL(flush_tlb_one);
v6.2
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
 
 
 
 
 
 
 
 
 
 
 
 
 
  3 *
  4 * Copyright (C) 2000, 2001 Kanoj Sarcar
  5 * Copyright (C) 2000, 2001 Ralf Baechle
  6 * Copyright (C) 2000, 2001 Silicon Graphics, Inc.
  7 * Copyright (C) 2000, 2001, 2003 Broadcom Corporation
  8 */
  9#include <linux/cache.h>
 10#include <linux/delay.h>
 11#include <linux/init.h>
 12#include <linux/interrupt.h>
 13#include <linux/smp.h>
 14#include <linux/spinlock.h>
 15#include <linux/threads.h>
 16#include <linux/export.h>
 17#include <linux/time.h>
 18#include <linux/timex.h>
 19#include <linux/sched/mm.h>
 20#include <linux/cpumask.h>
 21#include <linux/cpu.h>
 22#include <linux/err.h>
 23#include <linux/ftrace.h>
 24#include <linux/irqdomain.h>
 25#include <linux/of.h>
 26#include <linux/of_irq.h>
 27
 28#include <linux/atomic.h>
 29#include <asm/cpu.h>
 30#include <asm/ginvt.h>
 31#include <asm/processor.h>
 32#include <asm/idle.h>
 33#include <asm/r4k-timer.h>
 34#include <asm/mips-cps.h>
 35#include <asm/mmu_context.h>
 36#include <asm/time.h>
 37#include <asm/setup.h>
 38#include <asm/maar.h>
 39
 40int __cpu_number_map[CONFIG_MIPS_NR_CPU_NR_MAP];   /* Map physical to logical */
 
 
 
 
 
 
 41EXPORT_SYMBOL(__cpu_number_map);
 42
 43int __cpu_logical_map[NR_CPUS];		/* Map logical to physical */
 44EXPORT_SYMBOL(__cpu_logical_map);
 45
 46/* Number of TCs (or siblings in Intel speak) per CPU core */
 47int smp_num_siblings = 1;
 48EXPORT_SYMBOL(smp_num_siblings);
 49
 50/* representing the TCs (or siblings in Intel speak) of each logical CPU */
 51cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly;
 52EXPORT_SYMBOL(cpu_sibling_map);
 53
 54/* representing the core map of multi-core chips of each logical CPU */
 55cpumask_t cpu_core_map[NR_CPUS] __read_mostly;
 56EXPORT_SYMBOL(cpu_core_map);
 57
 58static DECLARE_COMPLETION(cpu_starting);
 59static DECLARE_COMPLETION(cpu_running);
 60
 61/*
 62 * A logical cpu mask containing only one VPE per core to
 63 * reduce the number of IPIs on large MT systems.
 64 */
 65cpumask_t cpu_foreign_map[NR_CPUS] __read_mostly;
 66EXPORT_SYMBOL(cpu_foreign_map);
 67
 68/* representing cpus for which sibling maps can be computed */
 69static cpumask_t cpu_sibling_setup_map;
 70
 71/* representing cpus for which core maps can be computed */
 72static cpumask_t cpu_core_setup_map;
 73
 74cpumask_t cpu_coherent_mask;
 75
 76#ifdef CONFIG_GENERIC_IRQ_IPI
 77static struct irq_desc *call_desc;
 78static struct irq_desc *sched_desc;
 79#endif
 80
 81static inline void set_cpu_sibling_map(int cpu)
 82{
 83	int i;
 84
 85	cpumask_set_cpu(cpu, &cpu_sibling_setup_map);
 86
 87	if (smp_num_siblings > 1) {
 88		for_each_cpu(i, &cpu_sibling_setup_map) {
 89			if (cpus_are_siblings(cpu, i)) {
 90				cpumask_set_cpu(i, &cpu_sibling_map[cpu]);
 91				cpumask_set_cpu(cpu, &cpu_sibling_map[i]);
 92			}
 93		}
 94	} else
 95		cpumask_set_cpu(cpu, &cpu_sibling_map[cpu]);
 96}
 97
 98static inline void set_cpu_core_map(int cpu)
 99{
100	int i;
101
102	cpumask_set_cpu(cpu, &cpu_core_setup_map);
103
104	for_each_cpu(i, &cpu_core_setup_map) {
105		if (cpu_data[cpu].package == cpu_data[i].package) {
106			cpumask_set_cpu(i, &cpu_core_map[cpu]);
107			cpumask_set_cpu(cpu, &cpu_core_map[i]);
108		}
109	}
110}
111
112/*
113 * Calculate a new cpu_foreign_map mask whenever a
114 * new cpu appears or disappears.
115 */
116void calculate_cpu_foreign_map(void)
117{
118	int i, k, core_present;
119	cpumask_t temp_foreign_map;
120
121	/* Re-calculate the mask */
122	cpumask_clear(&temp_foreign_map);
123	for_each_online_cpu(i) {
124		core_present = 0;
125		for_each_cpu(k, &temp_foreign_map)
126			if (cpus_are_siblings(i, k))
127				core_present = 1;
128		if (!core_present)
129			cpumask_set_cpu(i, &temp_foreign_map);
130	}
131
132	for_each_online_cpu(i)
133		cpumask_andnot(&cpu_foreign_map[i],
134			       &temp_foreign_map, &cpu_sibling_map[i]);
135}
136
137const struct plat_smp_ops *mp_ops;
138EXPORT_SYMBOL(mp_ops);
139
140void register_smp_ops(const struct plat_smp_ops *ops)
141{
142	if (mp_ops)
143		printk(KERN_WARNING "Overriding previously set SMP ops\n");
144
145	mp_ops = ops;
146}
147
148#ifdef CONFIG_GENERIC_IRQ_IPI
149void mips_smp_send_ipi_single(int cpu, unsigned int action)
150{
151	mips_smp_send_ipi_mask(cpumask_of(cpu), action);
152}
153
154void mips_smp_send_ipi_mask(const struct cpumask *mask, unsigned int action)
155{
156	unsigned long flags;
157	unsigned int core;
158	int cpu;
159
160	local_irq_save(flags);
161
162	switch (action) {
163	case SMP_CALL_FUNCTION:
164		__ipi_send_mask(call_desc, mask);
165		break;
166
167	case SMP_RESCHEDULE_YOURSELF:
168		__ipi_send_mask(sched_desc, mask);
169		break;
170
171	default:
172		BUG();
173	}
174
175	if (mips_cpc_present()) {
176		for_each_cpu(cpu, mask) {
177			if (cpus_are_siblings(cpu, smp_processor_id()))
178				continue;
179
180			core = cpu_core(&cpu_data[cpu]);
181
182			while (!cpumask_test_cpu(cpu, &cpu_coherent_mask)) {
183				mips_cm_lock_other_cpu(cpu, CM_GCR_Cx_OTHER_BLOCK_LOCAL);
184				mips_cpc_lock_other(core);
185				write_cpc_co_cmd(CPC_Cx_CMD_PWRUP);
186				mips_cpc_unlock_other();
187				mips_cm_unlock_other();
188			}
189		}
190	}
191
192	local_irq_restore(flags);
193}
194
195
196static irqreturn_t ipi_resched_interrupt(int irq, void *dev_id)
197{
198	scheduler_ipi();
199
200	return IRQ_HANDLED;
201}
202
203static irqreturn_t ipi_call_interrupt(int irq, void *dev_id)
204{
205	generic_smp_call_function_interrupt();
206
207	return IRQ_HANDLED;
208}
209
210static void smp_ipi_init_one(unsigned int virq, const char *name,
211			     irq_handler_t handler)
212{
213	int ret;
214
215	irq_set_handler(virq, handle_percpu_irq);
216	ret = request_irq(virq, handler, IRQF_PERCPU, name, NULL);
217	BUG_ON(ret);
218}
219
220static unsigned int call_virq, sched_virq;
221
222int mips_smp_ipi_allocate(const struct cpumask *mask)
223{
224	int virq;
225	struct irq_domain *ipidomain;
226	struct device_node *node;
227
228	node = of_irq_find_parent(of_root);
229	ipidomain = irq_find_matching_host(node, DOMAIN_BUS_IPI);
230
231	/*
232	 * Some platforms have half DT setup. So if we found irq node but
233	 * didn't find an ipidomain, try to search for one that is not in the
234	 * DT.
235	 */
236	if (node && !ipidomain)
237		ipidomain = irq_find_matching_host(NULL, DOMAIN_BUS_IPI);
238
239	/*
240	 * There are systems which use IPI IRQ domains, but only have one
241	 * registered when some runtime condition is met. For example a Malta
242	 * kernel may include support for GIC & CPU interrupt controller IPI
243	 * IRQ domains, but if run on a system with no GIC & no MT ASE then
244	 * neither will be supported or registered.
245	 *
246	 * We only have a problem if we're actually using multiple CPUs so fail
247	 * loudly if that is the case. Otherwise simply return, skipping IPI
248	 * setup, if we're running with only a single CPU.
249	 */
250	if (!ipidomain) {
251		BUG_ON(num_present_cpus() > 1);
252		return 0;
253	}
254
255	virq = irq_reserve_ipi(ipidomain, mask);
256	BUG_ON(!virq);
257	if (!call_virq)
258		call_virq = virq;
259
260	virq = irq_reserve_ipi(ipidomain, mask);
261	BUG_ON(!virq);
262	if (!sched_virq)
263		sched_virq = virq;
264
265	if (irq_domain_is_ipi_per_cpu(ipidomain)) {
266		int cpu;
267
268		for_each_cpu(cpu, mask) {
269			smp_ipi_init_one(call_virq + cpu, "IPI call",
270					 ipi_call_interrupt);
271			smp_ipi_init_one(sched_virq + cpu, "IPI resched",
272					 ipi_resched_interrupt);
273		}
274	} else {
275		smp_ipi_init_one(call_virq, "IPI call", ipi_call_interrupt);
276		smp_ipi_init_one(sched_virq, "IPI resched",
277				 ipi_resched_interrupt);
278	}
279
280	return 0;
281}
282
283int mips_smp_ipi_free(const struct cpumask *mask)
284{
285	struct irq_domain *ipidomain;
286	struct device_node *node;
287
288	node = of_irq_find_parent(of_root);
289	ipidomain = irq_find_matching_host(node, DOMAIN_BUS_IPI);
290
291	/*
292	 * Some platforms have half DT setup. So if we found irq node but
293	 * didn't find an ipidomain, try to search for one that is not in the
294	 * DT.
295	 */
296	if (node && !ipidomain)
297		ipidomain = irq_find_matching_host(NULL, DOMAIN_BUS_IPI);
298
299	BUG_ON(!ipidomain);
300
301	if (irq_domain_is_ipi_per_cpu(ipidomain)) {
302		int cpu;
303
304		for_each_cpu(cpu, mask) {
305			free_irq(call_virq + cpu, NULL);
306			free_irq(sched_virq + cpu, NULL);
307		}
308	}
309	irq_destroy_ipi(call_virq, mask);
310	irq_destroy_ipi(sched_virq, mask);
311	return 0;
312}
313
314
315static int __init mips_smp_ipi_init(void)
316{
317	if (num_possible_cpus() == 1)
318		return 0;
319
320	mips_smp_ipi_allocate(cpu_possible_mask);
321
322	call_desc = irq_to_desc(call_virq);
323	sched_desc = irq_to_desc(sched_virq);
324
325	return 0;
326}
327early_initcall(mips_smp_ipi_init);
328#endif
329
330/*
331 * First C code run on the secondary CPUs after being started up by
332 * the master.
333 */
334asmlinkage void start_secondary(void)
335{
336	unsigned int cpu;
337
 
 
 
 
338	cpu_probe();
 
339	per_cpu_trap_init(false);
340	mips_clockevent_init();
341	mp_ops->init_secondary();
342	cpu_report();
343	maar_init();
344
345	/*
346	 * XXX parity protection should be folded in here when it's converted
347	 * to an option instead of something based on .cputype
348	 */
349
350	calibrate_delay();
 
351	cpu = smp_processor_id();
352	cpu_data[cpu].udelay_val = loops_per_jiffy;
353
354	set_cpu_sibling_map(cpu);
355	set_cpu_core_map(cpu);
356
357	cpumask_set_cpu(cpu, &cpu_coherent_mask);
358	notify_cpu_starting(cpu);
359
360	/* Notify boot CPU that we're starting & ready to sync counters */
361	complete(&cpu_starting);
362
363	synchronise_count_slave(cpu);
364
365	/* The CPU is running and counters synchronised, now mark it online */
366	set_cpu_online(cpu, true);
367
368	calculate_cpu_foreign_map();
369
370	/*
371	 * Notify boot CPU that we're up & online and it can safely return
372	 * from __cpu_up
373	 */
374	complete(&cpu_running);
375
376	/*
377	 * irq will be enabled in ->smp_finish(), enabling it too early
378	 * is dangerous.
379	 */
380	WARN_ON_ONCE(!irqs_disabled());
381	mp_ops->smp_finish();
382
383	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
 
 
 
 
 
 
 
 
 
 
 
384}
385
386static void stop_this_cpu(void *dummy)
387{
388	/*
389	 * Remove this CPU:
390	 */
391
392	set_cpu_online(smp_processor_id(), false);
393	calculate_cpu_foreign_map();
394	local_irq_disable();
395	while (1);
 
396}
397
398void smp_send_stop(void)
399{
400	smp_call_function(stop_this_cpu, NULL, 0);
401}
402
403void __init smp_cpus_done(unsigned int max_cpus)
404{
 
 
405}
406
407/* called from main before smp_init() */
408void __init smp_prepare_cpus(unsigned int max_cpus)
409{
410	init_new_context(current, &init_mm);
411	current_thread_info()->cpu = 0;
412	mp_ops->prepare_cpus(max_cpus);
413	set_cpu_sibling_map(0);
414	set_cpu_core_map(0);
415	calculate_cpu_foreign_map();
416#ifndef CONFIG_HOTPLUG_CPU
417	init_cpu_present(cpu_possible_mask);
418#endif
419	cpumask_copy(&cpu_coherent_mask, cpu_possible_mask);
420}
421
422/* preload SMP state for boot cpu */
423void smp_prepare_boot_cpu(void)
424{
425	if (mp_ops->prepare_boot_cpu)
426		mp_ops->prepare_boot_cpu();
427	set_cpu_possible(0, true);
428	set_cpu_online(0, true);
 
429}
430
431int __cpu_up(unsigned int cpu, struct task_struct *tidle)
432{
433	int err;
434
435	err = mp_ops->boot_secondary(cpu, tidle);
436	if (err)
437		return err;
438
439	/* Wait for CPU to start and be ready to sync counters */
440	if (!wait_for_completion_timeout(&cpu_starting,
441					 msecs_to_jiffies(1000))) {
442		pr_crit("CPU%u: failed to start\n", cpu);
443		return -EIO;
444	}
445
446	synchronise_count_master(cpu);
447
448	/* Wait for CPU to finish startup & mark itself online before return */
449	wait_for_completion(&cpu_running);
450	return 0;
451}
452
453/* Not really SMP stuff ... */
454int setup_profiling_timer(unsigned int multiplier)
455{
456	return 0;
457}
458
459static void flush_tlb_all_ipi(void *info)
460{
461	local_flush_tlb_all();
462}
463
464void flush_tlb_all(void)
465{
466	if (cpu_has_mmid) {
467		htw_stop();
468		ginvt_full();
469		sync_ginv();
470		instruction_hazard();
471		htw_start();
472		return;
473	}
474
475	on_each_cpu(flush_tlb_all_ipi, NULL, 1);
476}
477
478static void flush_tlb_mm_ipi(void *mm)
479{
480	drop_mmu_context((struct mm_struct *)mm);
481}
482
483/*
484 * Special Variant of smp_call_function for use by TLB functions:
485 *
486 *  o No return value
487 *  o collapses to normal function call on UP kernels
488 *  o collapses to normal function call on systems with a single shared
489 *    primary cache.
 
490 */
491static inline void smp_on_other_tlbs(void (*func) (void *info), void *info)
492{
 
493	smp_call_function(func, info, 1);
 
494}
495
496static inline void smp_on_each_tlb(void (*func) (void *info), void *info)
497{
498	preempt_disable();
499
500	smp_on_other_tlbs(func, info);
501	func(info);
502
503	preempt_enable();
504}
505
506/*
507 * The following tlb flush calls are invoked when old translations are
508 * being torn down, or pte attributes are changing. For single threaded
509 * address spaces, a new context is obtained on the current cpu, and tlb
510 * context on other cpus are invalidated to force a new context allocation
511 * at switch_mm time, should the mm ever be used on other cpus. For
512 * multithreaded address spaces, inter-CPU interrupts have to be sent.
513 * Another case where inter-CPU interrupts are required is when the target
514 * mm might be active on another cpu (eg debuggers doing the flushes on
515 * behalf of debugees, kswapd stealing pages from another process etc).
516 * Kanoj 07/00.
517 */
518
519void flush_tlb_mm(struct mm_struct *mm)
520{
521	if (!mm)
522		return;
523
524	if (atomic_read(&mm->mm_users) == 0)
525		return;		/* happens as a result of exit_mmap() */
526
527	preempt_disable();
528
529	if (cpu_has_mmid) {
530		/*
531		 * No need to worry about other CPUs - the ginvt in
532		 * drop_mmu_context() will be globalized.
533		 */
534	} else if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
535		smp_on_other_tlbs(flush_tlb_mm_ipi, mm);
536	} else {
537		unsigned int cpu;
538
539		for_each_online_cpu(cpu) {
540			if (cpu != smp_processor_id() && cpu_context(cpu, mm))
541				set_cpu_context(cpu, mm, 0);
542		}
543	}
544	drop_mmu_context(mm);
545
546	preempt_enable();
547}
548
549struct flush_tlb_data {
550	struct vm_area_struct *vma;
551	unsigned long addr1;
552	unsigned long addr2;
553};
554
555static void flush_tlb_range_ipi(void *info)
556{
557	struct flush_tlb_data *fd = info;
558
559	local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2);
560}
561
562void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
563{
564	struct mm_struct *mm = vma->vm_mm;
565	unsigned long addr;
566	u32 old_mmid;
567
568	preempt_disable();
569	if (cpu_has_mmid) {
570		htw_stop();
571		old_mmid = read_c0_memorymapid();
572		write_c0_memorymapid(cpu_asid(0, mm));
573		mtc0_tlbw_hazard();
574		addr = round_down(start, PAGE_SIZE * 2);
575		end = round_up(end, PAGE_SIZE * 2);
576		do {
577			ginvt_va_mmid(addr);
578			sync_ginv();
579			addr += PAGE_SIZE * 2;
580		} while (addr < end);
581		write_c0_memorymapid(old_mmid);
582		instruction_hazard();
583		htw_start();
584	} else if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
585		struct flush_tlb_data fd = {
586			.vma = vma,
587			.addr1 = start,
588			.addr2 = end,
589		};
590
591		smp_on_other_tlbs(flush_tlb_range_ipi, &fd);
592		local_flush_tlb_range(vma, start, end);
593	} else {
594		unsigned int cpu;
595		int exec = vma->vm_flags & VM_EXEC;
596
597		for_each_online_cpu(cpu) {
598			/*
599			 * flush_cache_range() will only fully flush icache if
600			 * the VMA is executable, otherwise we must invalidate
601			 * ASID without it appearing to has_valid_asid() as if
602			 * mm has been completely unused by that CPU.
603			 */
604			if (cpu != smp_processor_id() && cpu_context(cpu, mm))
605				set_cpu_context(cpu, mm, !exec);
606		}
607		local_flush_tlb_range(vma, start, end);
608	}
 
609	preempt_enable();
610}
611
612static void flush_tlb_kernel_range_ipi(void *info)
613{
614	struct flush_tlb_data *fd = info;
615
616	local_flush_tlb_kernel_range(fd->addr1, fd->addr2);
617}
618
619void flush_tlb_kernel_range(unsigned long start, unsigned long end)
620{
621	struct flush_tlb_data fd = {
622		.addr1 = start,
623		.addr2 = end,
624	};
625
626	on_each_cpu(flush_tlb_kernel_range_ipi, &fd, 1);
627}
628
629static void flush_tlb_page_ipi(void *info)
630{
631	struct flush_tlb_data *fd = info;
632
633	local_flush_tlb_page(fd->vma, fd->addr1);
634}
635
636void flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
637{
638	u32 old_mmid;
639
640	preempt_disable();
641	if (cpu_has_mmid) {
642		htw_stop();
643		old_mmid = read_c0_memorymapid();
644		write_c0_memorymapid(cpu_asid(0, vma->vm_mm));
645		mtc0_tlbw_hazard();
646		ginvt_va_mmid(page);
647		sync_ginv();
648		write_c0_memorymapid(old_mmid);
649		instruction_hazard();
650		htw_start();
651	} else if ((atomic_read(&vma->vm_mm->mm_users) != 1) ||
652		   (current->mm != vma->vm_mm)) {
653		struct flush_tlb_data fd = {
654			.vma = vma,
655			.addr1 = page,
656		};
657
658		smp_on_other_tlbs(flush_tlb_page_ipi, &fd);
659		local_flush_tlb_page(vma, page);
660	} else {
661		unsigned int cpu;
662
663		for_each_online_cpu(cpu) {
664			/*
665			 * flush_cache_page() only does partial flushes, so
666			 * invalidate ASID without it appearing to
667			 * has_valid_asid() as if mm has been completely unused
668			 * by that CPU.
669			 */
670			if (cpu != smp_processor_id() && cpu_context(cpu, vma->vm_mm))
671				set_cpu_context(cpu, vma->vm_mm, 1);
672		}
673		local_flush_tlb_page(vma, page);
674	}
 
675	preempt_enable();
676}
677
678static void flush_tlb_one_ipi(void *info)
679{
680	unsigned long vaddr = (unsigned long) info;
681
682	local_flush_tlb_one(vaddr);
683}
684
685void flush_tlb_one(unsigned long vaddr)
686{
687	smp_on_each_tlb(flush_tlb_one_ipi, (void *) vaddr);
688}
689
690EXPORT_SYMBOL(flush_tlb_page);
691EXPORT_SYMBOL(flush_tlb_one);
692
693#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
694
695static void tick_broadcast_callee(void *info)
696{
697	tick_receive_broadcast();
698}
699
700static DEFINE_PER_CPU(call_single_data_t, tick_broadcast_csd) =
701	CSD_INIT(tick_broadcast_callee, NULL);
702
703void tick_broadcast(const struct cpumask *mask)
704{
705	call_single_data_t *csd;
706	int cpu;
707
708	for_each_cpu(cpu, mask) {
709		csd = &per_cpu(tick_broadcast_csd, cpu);
710		smp_call_function_single_async(cpu, csd);
711	}
712}
713
714#endif /* CONFIG_GENERIC_CLOCKEVENTS_BROADCAST */