Linux Audio

Check our new training course

Loading...
v3.5.6
  1/*
  2 * This program is free software; you can redistribute it and/or
  3 * modify it under the terms of the GNU General Public License
  4 * as published by the Free Software Foundation; either version 2
  5 * of the License, or (at your option) any later version.
  6 *
  7 * This program is distributed in the hope that it will be useful,
  8 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 10 * GNU General Public License for more details.
 11 *
 12 * You should have received a copy of the GNU General Public License
 13 * along with this program; if not, write to the Free Software
 14 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
 15 *
 16 * Copyright (C) 2000, 2001 Kanoj Sarcar
 17 * Copyright (C) 2000, 2001 Ralf Baechle
 18 * Copyright (C) 2000, 2001 Silicon Graphics, Inc.
 19 * Copyright (C) 2000, 2001, 2003 Broadcom Corporation
 20 */
 21#include <linux/cache.h>
 22#include <linux/delay.h>
 23#include <linux/init.h>
 24#include <linux/interrupt.h>
 25#include <linux/smp.h>
 26#include <linux/spinlock.h>
 27#include <linux/threads.h>
 28#include <linux/module.h>
 29#include <linux/time.h>
 30#include <linux/timex.h>
 31#include <linux/sched.h>
 32#include <linux/cpumask.h>
 33#include <linux/cpu.h>
 34#include <linux/err.h>
 35#include <linux/ftrace.h>
 
 
 
 36
 37#include <linux/atomic.h>
 38#include <asm/cpu.h>
 39#include <asm/processor.h>
 
 40#include <asm/r4k-timer.h>
 
 41#include <asm/mmu_context.h>
 42#include <asm/time.h>
 43#include <asm/setup.h>
 
 44
 45#ifdef CONFIG_MIPS_MT_SMTC
 46#include <asm/mipsmtregs.h>
 47#endif /* CONFIG_MIPS_MT_SMTC */
 48
 49volatile cpumask_t cpu_callin_map;	/* Bitmask of started secondaries */
 50
 51int __cpu_number_map[NR_CPUS];		/* Map physical to logical */
 52EXPORT_SYMBOL(__cpu_number_map);
 53
 54int __cpu_logical_map[NR_CPUS];		/* Map logical to physical */
 55EXPORT_SYMBOL(__cpu_logical_map);
 56
 57/* Number of TCs (or siblings in Intel speak) per CPU core */
 58int smp_num_siblings = 1;
 59EXPORT_SYMBOL(smp_num_siblings);
 60
 61/* representing the TCs (or siblings in Intel speak) of each logical CPU */
 62cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly;
 63EXPORT_SYMBOL(cpu_sibling_map);
 64
 
 
 
 
 
 
 
 
 
 
 
 65/* representing cpus for which sibling maps can be computed */
 66static cpumask_t cpu_sibling_setup_map;
 67
 
 
 
 
 
 
 
 
 
 
 68static inline void set_cpu_sibling_map(int cpu)
 69{
 70	int i;
 71
 72	cpu_set(cpu, cpu_sibling_setup_map);
 73
 74	if (smp_num_siblings > 1) {
 75		for_each_cpu_mask(i, cpu_sibling_setup_map) {
 76			if (cpu_data[cpu].core == cpu_data[i].core) {
 77				cpu_set(i, cpu_sibling_map[cpu]);
 78				cpu_set(cpu, cpu_sibling_map[i]);
 
 79			}
 80		}
 81	} else
 82		cpu_set(cpu, cpu_sibling_map[cpu]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 83}
 84
 85struct plat_smp_ops *mp_ops;
 
 86
 87__cpuinit void register_smp_ops(struct plat_smp_ops *ops)
 88{
 89	if (mp_ops)
 90		printk(KERN_WARNING "Overriding previously set SMP ops\n");
 91
 92	mp_ops = ops;
 93}
 94
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 95/*
 96 * First C code run on the secondary CPUs after being started up by
 97 * the master.
 98 */
 99asmlinkage __cpuinit void start_secondary(void)
100{
101	unsigned int cpu;
102
103#ifdef CONFIG_MIPS_MT_SMTC
104	/* Only do cpu_probe for first TC of CPU */
105	if ((read_c0_tcbind() & TCBIND_CURTC) == 0)
106#endif /* CONFIG_MIPS_MT_SMTC */
107	cpu_probe();
108	cpu_report();
109	per_cpu_trap_init(false);
110	mips_clockevent_init();
111	mp_ops->init_secondary();
 
 
112
113	/*
114	 * XXX parity protection should be folded in here when it's converted
115	 * to an option instead of something based on .cputype
116	 */
117
118	calibrate_delay();
119	preempt_disable();
120	cpu = smp_processor_id();
121	cpu_data[cpu].udelay_val = loops_per_jiffy;
122
 
123	notify_cpu_starting(cpu);
124
125	set_cpu_online(cpu, true);
126
127	set_cpu_sibling_map(cpu);
 
128
129	cpu_set(cpu, cpu_callin_map);
130
131	synchronise_count_slave();
 
 
132
133	/*
134	 * irq will be enabled in ->smp_finish(), enabling it too early
135	 * is dangerous.
136	 */
137	WARN_ON_ONCE(!irqs_disabled());
138	mp_ops->smp_finish();
139
140	cpu_idle();
141}
142
143/*
144 * Call into both interrupt handlers, as we share the IPI for them
145 */
146void __irq_entry smp_call_function_interrupt(void)
147{
148	irq_enter();
149	generic_smp_call_function_single_interrupt();
150	generic_smp_call_function_interrupt();
151	irq_exit();
152}
153
154static void stop_this_cpu(void *dummy)
155{
156	/*
157	 * Remove this CPU:
 
 
158	 */
 
 
 
 
 
 
159	set_cpu_online(smp_processor_id(), false);
160	for (;;) {
161		if (cpu_wait)
162			(*cpu_wait)();		/* Wait if available. */
163	}
164}
165
166void smp_send_stop(void)
167{
168	smp_call_function(stop_this_cpu, NULL, 0);
169}
170
171void __init smp_cpus_done(unsigned int max_cpus)
172{
173	mp_ops->cpus_done();
174	synchronise_count_master();
175}
176
177/* called from main before smp_init() */
178void __init smp_prepare_cpus(unsigned int max_cpus)
179{
180	init_new_context(current, &init_mm);
181	current_thread_info()->cpu = 0;
182	mp_ops->prepare_cpus(max_cpus);
183	set_cpu_sibling_map(0);
 
 
184#ifndef CONFIG_HOTPLUG_CPU
185	init_cpu_present(cpu_possible_mask);
186#endif
 
187}
188
189/* preload SMP state for boot cpu */
190void __devinit smp_prepare_boot_cpu(void)
191{
192	set_cpu_possible(0, true);
193	set_cpu_online(0, true);
194	cpu_set(0, cpu_callin_map);
195}
196
197int __cpuinit __cpu_up(unsigned int cpu, struct task_struct *tidle)
198{
199	mp_ops->boot_secondary(cpu, tidle);
200
201	/*
202	 * Trust is futile.  We should really have timeouts ...
203	 */
204	while (!cpu_isset(cpu, cpu_callin_map))
205		udelay(100);
 
 
206
 
207	return 0;
208}
209
210/* Not really SMP stuff ... */
211int setup_profiling_timer(unsigned int multiplier)
212{
213	return 0;
214}
215
216static void flush_tlb_all_ipi(void *info)
217{
218	local_flush_tlb_all();
219}
220
221void flush_tlb_all(void)
222{
223	on_each_cpu(flush_tlb_all_ipi, NULL, 1);
224}
225
226static void flush_tlb_mm_ipi(void *mm)
227{
228	local_flush_tlb_mm((struct mm_struct *)mm);
229}
230
231/*
232 * Special Variant of smp_call_function for use by TLB functions:
233 *
234 *  o No return value
235 *  o collapses to normal function call on UP kernels
236 *  o collapses to normal function call on systems with a single shared
237 *    primary cache.
238 *  o CONFIG_MIPS_MT_SMTC currently implies there is only one physical core.
239 */
240static inline void smp_on_other_tlbs(void (*func) (void *info), void *info)
241{
242#ifndef CONFIG_MIPS_MT_SMTC
243	smp_call_function(func, info, 1);
244#endif
245}
246
247static inline void smp_on_each_tlb(void (*func) (void *info), void *info)
248{
249	preempt_disable();
250
251	smp_on_other_tlbs(func, info);
252	func(info);
253
254	preempt_enable();
255}
256
257/*
258 * The following tlb flush calls are invoked when old translations are
259 * being torn down, or pte attributes are changing. For single threaded
260 * address spaces, a new context is obtained on the current cpu, and tlb
261 * context on other cpus are invalidated to force a new context allocation
262 * at switch_mm time, should the mm ever be used on other cpus. For
263 * multithreaded address spaces, intercpu interrupts have to be sent.
264 * Another case where intercpu interrupts are required is when the target
265 * mm might be active on another cpu (eg debuggers doing the flushes on
266 * behalf of debugees, kswapd stealing pages from another process etc).
267 * Kanoj 07/00.
268 */
269
270void flush_tlb_mm(struct mm_struct *mm)
271{
272	preempt_disable();
273
274	if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
275		smp_on_other_tlbs(flush_tlb_mm_ipi, mm);
276	} else {
277		unsigned int cpu;
278
279		for_each_online_cpu(cpu) {
280			if (cpu != smp_processor_id() && cpu_context(cpu, mm))
281				cpu_context(cpu, mm) = 0;
282		}
283	}
284	local_flush_tlb_mm(mm);
285
286	preempt_enable();
287}
288
289struct flush_tlb_data {
290	struct vm_area_struct *vma;
291	unsigned long addr1;
292	unsigned long addr2;
293};
294
295static void flush_tlb_range_ipi(void *info)
296{
297	struct flush_tlb_data *fd = info;
298
299	local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2);
300}
301
302void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
303{
304	struct mm_struct *mm = vma->vm_mm;
305
306	preempt_disable();
307	if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
308		struct flush_tlb_data fd = {
309			.vma = vma,
310			.addr1 = start,
311			.addr2 = end,
312		};
313
314		smp_on_other_tlbs(flush_tlb_range_ipi, &fd);
315	} else {
316		unsigned int cpu;
317
318		for_each_online_cpu(cpu) {
319			if (cpu != smp_processor_id() && cpu_context(cpu, mm))
320				cpu_context(cpu, mm) = 0;
321		}
322	}
323	local_flush_tlb_range(vma, start, end);
324	preempt_enable();
325}
326
327static void flush_tlb_kernel_range_ipi(void *info)
328{
329	struct flush_tlb_data *fd = info;
330
331	local_flush_tlb_kernel_range(fd->addr1, fd->addr2);
332}
333
334void flush_tlb_kernel_range(unsigned long start, unsigned long end)
335{
336	struct flush_tlb_data fd = {
337		.addr1 = start,
338		.addr2 = end,
339	};
340
341	on_each_cpu(flush_tlb_kernel_range_ipi, &fd, 1);
342}
343
344static void flush_tlb_page_ipi(void *info)
345{
346	struct flush_tlb_data *fd = info;
347
348	local_flush_tlb_page(fd->vma, fd->addr1);
349}
350
351void flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
352{
353	preempt_disable();
354	if ((atomic_read(&vma->vm_mm->mm_users) != 1) || (current->mm != vma->vm_mm)) {
355		struct flush_tlb_data fd = {
356			.vma = vma,
357			.addr1 = page,
358		};
359
360		smp_on_other_tlbs(flush_tlb_page_ipi, &fd);
361	} else {
362		unsigned int cpu;
363
364		for_each_online_cpu(cpu) {
365			if (cpu != smp_processor_id() && cpu_context(cpu, vma->vm_mm))
366				cpu_context(cpu, vma->vm_mm) = 0;
367		}
368	}
369	local_flush_tlb_page(vma, page);
370	preempt_enable();
371}
372
373static void flush_tlb_one_ipi(void *info)
374{
375	unsigned long vaddr = (unsigned long) info;
376
377	local_flush_tlb_one(vaddr);
378}
379
380void flush_tlb_one(unsigned long vaddr)
381{
382	smp_on_each_tlb(flush_tlb_one_ipi, (void *) vaddr);
383}
384
385EXPORT_SYMBOL(flush_tlb_page);
386EXPORT_SYMBOL(flush_tlb_one);
v4.6
  1/*
  2 * This program is free software; you can redistribute it and/or
  3 * modify it under the terms of the GNU General Public License
  4 * as published by the Free Software Foundation; either version 2
  5 * of the License, or (at your option) any later version.
  6 *
  7 * This program is distributed in the hope that it will be useful,
  8 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 10 * GNU General Public License for more details.
 11 *
 12 * You should have received a copy of the GNU General Public License
 13 * along with this program; if not, write to the Free Software
 14 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
 15 *
 16 * Copyright (C) 2000, 2001 Kanoj Sarcar
 17 * Copyright (C) 2000, 2001 Ralf Baechle
 18 * Copyright (C) 2000, 2001 Silicon Graphics, Inc.
 19 * Copyright (C) 2000, 2001, 2003 Broadcom Corporation
 20 */
 21#include <linux/cache.h>
 22#include <linux/delay.h>
 23#include <linux/init.h>
 24#include <linux/interrupt.h>
 25#include <linux/smp.h>
 26#include <linux/spinlock.h>
 27#include <linux/threads.h>
 28#include <linux/module.h>
 29#include <linux/time.h>
 30#include <linux/timex.h>
 31#include <linux/sched.h>
 32#include <linux/cpumask.h>
 33#include <linux/cpu.h>
 34#include <linux/err.h>
 35#include <linux/ftrace.h>
 36#include <linux/irqdomain.h>
 37#include <linux/of.h>
 38#include <linux/of_irq.h>
 39
 40#include <linux/atomic.h>
 41#include <asm/cpu.h>
 42#include <asm/processor.h>
 43#include <asm/idle.h>
 44#include <asm/r4k-timer.h>
 45#include <asm/mips-cpc.h>
 46#include <asm/mmu_context.h>
 47#include <asm/time.h>
 48#include <asm/setup.h>
 49#include <asm/maar.h>
 50
 51cpumask_t cpu_callin_map;		/* Bitmask of started secondaries */
 
 
 
 
 52
 53int __cpu_number_map[NR_CPUS];		/* Map physical to logical */
 54EXPORT_SYMBOL(__cpu_number_map);
 55
 56int __cpu_logical_map[NR_CPUS];		/* Map logical to physical */
 57EXPORT_SYMBOL(__cpu_logical_map);
 58
 59/* Number of TCs (or siblings in Intel speak) per CPU core */
 60int smp_num_siblings = 1;
 61EXPORT_SYMBOL(smp_num_siblings);
 62
 63/* representing the TCs (or siblings in Intel speak) of each logical CPU */
 64cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly;
 65EXPORT_SYMBOL(cpu_sibling_map);
 66
 67/* representing the core map of multi-core chips of each logical CPU */
 68cpumask_t cpu_core_map[NR_CPUS] __read_mostly;
 69EXPORT_SYMBOL(cpu_core_map);
 70
 71/*
 72 * A logcal cpu mask containing only one VPE per core to
 73 * reduce the number of IPIs on large MT systems.
 74 */
 75cpumask_t cpu_foreign_map __read_mostly;
 76EXPORT_SYMBOL(cpu_foreign_map);
 77
 78/* representing cpus for which sibling maps can be computed */
 79static cpumask_t cpu_sibling_setup_map;
 80
 81/* representing cpus for which core maps can be computed */
 82static cpumask_t cpu_core_setup_map;
 83
 84cpumask_t cpu_coherent_mask;
 85
 86#ifdef CONFIG_GENERIC_IRQ_IPI
 87static struct irq_desc *call_desc;
 88static struct irq_desc *sched_desc;
 89#endif
 90
 91static inline void set_cpu_sibling_map(int cpu)
 92{
 93	int i;
 94
 95	cpumask_set_cpu(cpu, &cpu_sibling_setup_map);
 96
 97	if (smp_num_siblings > 1) {
 98		for_each_cpu(i, &cpu_sibling_setup_map) {
 99			if (cpu_data[cpu].package == cpu_data[i].package &&
100				    cpu_data[cpu].core == cpu_data[i].core) {
101				cpumask_set_cpu(i, &cpu_sibling_map[cpu]);
102				cpumask_set_cpu(cpu, &cpu_sibling_map[i]);
103			}
104		}
105	} else
106		cpumask_set_cpu(cpu, &cpu_sibling_map[cpu]);
107}
108
109static inline void set_cpu_core_map(int cpu)
110{
111	int i;
112
113	cpumask_set_cpu(cpu, &cpu_core_setup_map);
114
115	for_each_cpu(i, &cpu_core_setup_map) {
116		if (cpu_data[cpu].package == cpu_data[i].package) {
117			cpumask_set_cpu(i, &cpu_core_map[cpu]);
118			cpumask_set_cpu(cpu, &cpu_core_map[i]);
119		}
120	}
121}
122
123/*
124 * Calculate a new cpu_foreign_map mask whenever a
125 * new cpu appears or disappears.
126 */
127static inline void calculate_cpu_foreign_map(void)
128{
129	int i, k, core_present;
130	cpumask_t temp_foreign_map;
131
132	/* Re-calculate the mask */
133	cpumask_clear(&temp_foreign_map);
134	for_each_online_cpu(i) {
135		core_present = 0;
136		for_each_cpu(k, &temp_foreign_map)
137			if (cpu_data[i].package == cpu_data[k].package &&
138			    cpu_data[i].core == cpu_data[k].core)
139				core_present = 1;
140		if (!core_present)
141			cpumask_set_cpu(i, &temp_foreign_map);
142	}
143
144	cpumask_copy(&cpu_foreign_map, &temp_foreign_map);
145}
146
147struct plat_smp_ops *mp_ops;
148EXPORT_SYMBOL(mp_ops);
149
150void register_smp_ops(struct plat_smp_ops *ops)
151{
152	if (mp_ops)
153		printk(KERN_WARNING "Overriding previously set SMP ops\n");
154
155	mp_ops = ops;
156}
157
158#ifdef CONFIG_GENERIC_IRQ_IPI
159void mips_smp_send_ipi_single(int cpu, unsigned int action)
160{
161	mips_smp_send_ipi_mask(cpumask_of(cpu), action);
162}
163
164void mips_smp_send_ipi_mask(const struct cpumask *mask, unsigned int action)
165{
166	unsigned long flags;
167	unsigned int core;
168	int cpu;
169
170	local_irq_save(flags);
171
172	switch (action) {
173	case SMP_CALL_FUNCTION:
174		__ipi_send_mask(call_desc, mask);
175		break;
176
177	case SMP_RESCHEDULE_YOURSELF:
178		__ipi_send_mask(sched_desc, mask);
179		break;
180
181	default:
182		BUG();
183	}
184
185	if (mips_cpc_present()) {
186		for_each_cpu(cpu, mask) {
187			core = cpu_data[cpu].core;
188
189			if (core == current_cpu_data.core)
190				continue;
191
192			while (!cpumask_test_cpu(cpu, &cpu_coherent_mask)) {
193				mips_cpc_lock_other(core);
194				write_cpc_co_cmd(CPC_Cx_CMD_PWRUP);
195				mips_cpc_unlock_other();
196			}
197		}
198	}
199
200	local_irq_restore(flags);
201}
202
203
204static irqreturn_t ipi_resched_interrupt(int irq, void *dev_id)
205{
206	scheduler_ipi();
207
208	return IRQ_HANDLED;
209}
210
211static irqreturn_t ipi_call_interrupt(int irq, void *dev_id)
212{
213	generic_smp_call_function_interrupt();
214
215	return IRQ_HANDLED;
216}
217
218static struct irqaction irq_resched = {
219	.handler	= ipi_resched_interrupt,
220	.flags		= IRQF_PERCPU,
221	.name		= "IPI resched"
222};
223
224static struct irqaction irq_call = {
225	.handler	= ipi_call_interrupt,
226	.flags		= IRQF_PERCPU,
227	.name		= "IPI call"
228};
229
230static __init void smp_ipi_init_one(unsigned int virq,
231				    struct irqaction *action)
232{
233	int ret;
234
235	irq_set_handler(virq, handle_percpu_irq);
236	ret = setup_irq(virq, action);
237	BUG_ON(ret);
238}
239
240static int __init mips_smp_ipi_init(void)
241{
242	unsigned int call_virq, sched_virq;
243	struct irq_domain *ipidomain;
244	struct device_node *node;
245
246	/*
247	 * In some cases like qemu-malta, it is desired to try SMP with
248	 * a single core. Qemu-malta has no GIC, so an attempt to set any IPIs
249	 * would cause a BUG_ON() to be triggered since there's no ipidomain.
250	 *
251	 * Since for a single core system IPIs aren't required really, skip the
252	 * initialisation which should generally keep any such configurations
253	 * happy and only fail hard when trying to truely run SMP.
254	 */
255	if (cpumask_weight(cpu_possible_mask) == 1)
256		return 0;
257
258	node = of_irq_find_parent(of_root);
259	ipidomain = irq_find_matching_host(node, DOMAIN_BUS_IPI);
260
261	/*
262	 * Some platforms have half DT setup. So if we found irq node but
263	 * didn't find an ipidomain, try to search for one that is not in the
264	 * DT.
265	 */
266	if (node && !ipidomain)
267		ipidomain = irq_find_matching_host(NULL, DOMAIN_BUS_IPI);
268
269	BUG_ON(!ipidomain);
270
271	call_virq = irq_reserve_ipi(ipidomain, cpu_possible_mask);
272	BUG_ON(!call_virq);
273
274	sched_virq = irq_reserve_ipi(ipidomain, cpu_possible_mask);
275	BUG_ON(!sched_virq);
276
277	if (irq_domain_is_ipi_per_cpu(ipidomain)) {
278		int cpu;
279
280		for_each_cpu(cpu, cpu_possible_mask) {
281			smp_ipi_init_one(call_virq + cpu, &irq_call);
282			smp_ipi_init_one(sched_virq + cpu, &irq_resched);
283		}
284	} else {
285		smp_ipi_init_one(call_virq, &irq_call);
286		smp_ipi_init_one(sched_virq, &irq_resched);
287	}
288
289	call_desc = irq_to_desc(call_virq);
290	sched_desc = irq_to_desc(sched_virq);
291
292	return 0;
293}
294early_initcall(mips_smp_ipi_init);
295#endif
296
297/*
298 * First C code run on the secondary CPUs after being started up by
299 * the master.
300 */
301asmlinkage void start_secondary(void)
302{
303	unsigned int cpu;
304
 
 
 
 
305	cpu_probe();
 
306	per_cpu_trap_init(false);
307	mips_clockevent_init();
308	mp_ops->init_secondary();
309	cpu_report();
310	maar_init();
311
312	/*
313	 * XXX parity protection should be folded in here when it's converted
314	 * to an option instead of something based on .cputype
315	 */
316
317	calibrate_delay();
318	preempt_disable();
319	cpu = smp_processor_id();
320	cpu_data[cpu].udelay_val = loops_per_jiffy;
321
322	cpumask_set_cpu(cpu, &cpu_coherent_mask);
323	notify_cpu_starting(cpu);
324
325	set_cpu_online(cpu, true);
326
327	set_cpu_sibling_map(cpu);
328	set_cpu_core_map(cpu);
329
330	calculate_cpu_foreign_map();
331
332	cpumask_set_cpu(cpu, &cpu_callin_map);
333
334	synchronise_count_slave(cpu);
335
336	/*
337	 * irq will be enabled in ->smp_finish(), enabling it too early
338	 * is dangerous.
339	 */
340	WARN_ON_ONCE(!irqs_disabled());
341	mp_ops->smp_finish();
342
343	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
 
 
 
 
 
 
 
 
 
 
 
344}
345
346static void stop_this_cpu(void *dummy)
347{
348	/*
349	 * Remove this CPU. Be a bit slow here and
350	 * set the bits for every online CPU so we don't miss
351	 * any IPI whilst taking this VPE down.
352	 */
353
354	cpumask_copy(&cpu_foreign_map, cpu_online_mask);
355
356	/* Make it visible to every other CPU */
357	smp_mb();
358
359	set_cpu_online(smp_processor_id(), false);
360	calculate_cpu_foreign_map();
361	local_irq_disable();
362	while (1);
 
363}
364
365void smp_send_stop(void)
366{
367	smp_call_function(stop_this_cpu, NULL, 0);
368}
369
370void __init smp_cpus_done(unsigned int max_cpus)
371{
 
 
372}
373
374/* called from main before smp_init() */
375void __init smp_prepare_cpus(unsigned int max_cpus)
376{
377	init_new_context(current, &init_mm);
378	current_thread_info()->cpu = 0;
379	mp_ops->prepare_cpus(max_cpus);
380	set_cpu_sibling_map(0);
381	set_cpu_core_map(0);
382	calculate_cpu_foreign_map();
383#ifndef CONFIG_HOTPLUG_CPU
384	init_cpu_present(cpu_possible_mask);
385#endif
386	cpumask_copy(&cpu_coherent_mask, cpu_possible_mask);
387}
388
389/* preload SMP state for boot cpu */
390void smp_prepare_boot_cpu(void)
391{
392	set_cpu_possible(0, true);
393	set_cpu_online(0, true);
394	cpumask_set_cpu(0, &cpu_callin_map);
395}
396
397int __cpu_up(unsigned int cpu, struct task_struct *tidle)
398{
399	mp_ops->boot_secondary(cpu, tidle);
400
401	/*
402	 * Trust is futile.  We should really have timeouts ...
403	 */
404	while (!cpumask_test_cpu(cpu, &cpu_callin_map)) {
405		udelay(100);
406		schedule();
407	}
408
409	synchronise_count_master(cpu);
410	return 0;
411}
412
413/* Not really SMP stuff ... */
414int setup_profiling_timer(unsigned int multiplier)
415{
416	return 0;
417}
418
419static void flush_tlb_all_ipi(void *info)
420{
421	local_flush_tlb_all();
422}
423
424void flush_tlb_all(void)
425{
426	on_each_cpu(flush_tlb_all_ipi, NULL, 1);
427}
428
429static void flush_tlb_mm_ipi(void *mm)
430{
431	local_flush_tlb_mm((struct mm_struct *)mm);
432}
433
434/*
435 * Special Variant of smp_call_function for use by TLB functions:
436 *
437 *  o No return value
438 *  o collapses to normal function call on UP kernels
439 *  o collapses to normal function call on systems with a single shared
440 *    primary cache.
 
441 */
442static inline void smp_on_other_tlbs(void (*func) (void *info), void *info)
443{
 
444	smp_call_function(func, info, 1);
 
445}
446
447static inline void smp_on_each_tlb(void (*func) (void *info), void *info)
448{
449	preempt_disable();
450
451	smp_on_other_tlbs(func, info);
452	func(info);
453
454	preempt_enable();
455}
456
457/*
458 * The following tlb flush calls are invoked when old translations are
459 * being torn down, or pte attributes are changing. For single threaded
460 * address spaces, a new context is obtained on the current cpu, and tlb
461 * context on other cpus are invalidated to force a new context allocation
462 * at switch_mm time, should the mm ever be used on other cpus. For
463 * multithreaded address spaces, intercpu interrupts have to be sent.
464 * Another case where intercpu interrupts are required is when the target
465 * mm might be active on another cpu (eg debuggers doing the flushes on
466 * behalf of debugees, kswapd stealing pages from another process etc).
467 * Kanoj 07/00.
468 */
469
470void flush_tlb_mm(struct mm_struct *mm)
471{
472	preempt_disable();
473
474	if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
475		smp_on_other_tlbs(flush_tlb_mm_ipi, mm);
476	} else {
477		unsigned int cpu;
478
479		for_each_online_cpu(cpu) {
480			if (cpu != smp_processor_id() && cpu_context(cpu, mm))
481				cpu_context(cpu, mm) = 0;
482		}
483	}
484	local_flush_tlb_mm(mm);
485
486	preempt_enable();
487}
488
489struct flush_tlb_data {
490	struct vm_area_struct *vma;
491	unsigned long addr1;
492	unsigned long addr2;
493};
494
495static void flush_tlb_range_ipi(void *info)
496{
497	struct flush_tlb_data *fd = info;
498
499	local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2);
500}
501
502void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
503{
504	struct mm_struct *mm = vma->vm_mm;
505
506	preempt_disable();
507	if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
508		struct flush_tlb_data fd = {
509			.vma = vma,
510			.addr1 = start,
511			.addr2 = end,
512		};
513
514		smp_on_other_tlbs(flush_tlb_range_ipi, &fd);
515	} else {
516		unsigned int cpu;
517
518		for_each_online_cpu(cpu) {
519			if (cpu != smp_processor_id() && cpu_context(cpu, mm))
520				cpu_context(cpu, mm) = 0;
521		}
522	}
523	local_flush_tlb_range(vma, start, end);
524	preempt_enable();
525}
526
527static void flush_tlb_kernel_range_ipi(void *info)
528{
529	struct flush_tlb_data *fd = info;
530
531	local_flush_tlb_kernel_range(fd->addr1, fd->addr2);
532}
533
534void flush_tlb_kernel_range(unsigned long start, unsigned long end)
535{
536	struct flush_tlb_data fd = {
537		.addr1 = start,
538		.addr2 = end,
539	};
540
541	on_each_cpu(flush_tlb_kernel_range_ipi, &fd, 1);
542}
543
544static void flush_tlb_page_ipi(void *info)
545{
546	struct flush_tlb_data *fd = info;
547
548	local_flush_tlb_page(fd->vma, fd->addr1);
549}
550
551void flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
552{
553	preempt_disable();
554	if ((atomic_read(&vma->vm_mm->mm_users) != 1) || (current->mm != vma->vm_mm)) {
555		struct flush_tlb_data fd = {
556			.vma = vma,
557			.addr1 = page,
558		};
559
560		smp_on_other_tlbs(flush_tlb_page_ipi, &fd);
561	} else {
562		unsigned int cpu;
563
564		for_each_online_cpu(cpu) {
565			if (cpu != smp_processor_id() && cpu_context(cpu, vma->vm_mm))
566				cpu_context(cpu, vma->vm_mm) = 0;
567		}
568	}
569	local_flush_tlb_page(vma, page);
570	preempt_enable();
571}
572
573static void flush_tlb_one_ipi(void *info)
574{
575	unsigned long vaddr = (unsigned long) info;
576
577	local_flush_tlb_one(vaddr);
578}
579
580void flush_tlb_one(unsigned long vaddr)
581{
582	smp_on_each_tlb(flush_tlb_one_ipi, (void *) vaddr);
583}
584
585EXPORT_SYMBOL(flush_tlb_page);
586EXPORT_SYMBOL(flush_tlb_one);
587
588#if defined(CONFIG_KEXEC)
589void (*dump_ipi_function_ptr)(void *) = NULL;
590void dump_send_ipi(void (*dump_ipi_callback)(void *))
591{
592	int i;
593	int cpu = smp_processor_id();
594
595	dump_ipi_function_ptr = dump_ipi_callback;
596	smp_mb();
597	for_each_online_cpu(i)
598		if (i != cpu)
599			mp_ops->send_ipi_single(i, SMP_DUMP);
600
601}
602EXPORT_SYMBOL(dump_send_ipi);
603#endif
604
605#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
606
607static DEFINE_PER_CPU(atomic_t, tick_broadcast_count);
608static DEFINE_PER_CPU(struct call_single_data, tick_broadcast_csd);
609
610void tick_broadcast(const struct cpumask *mask)
611{
612	atomic_t *count;
613	struct call_single_data *csd;
614	int cpu;
615
616	for_each_cpu(cpu, mask) {
617		count = &per_cpu(tick_broadcast_count, cpu);
618		csd = &per_cpu(tick_broadcast_csd, cpu);
619
620		if (atomic_inc_return(count) == 1)
621			smp_call_function_single_async(cpu, csd);
622	}
623}
624
625static void tick_broadcast_callee(void *info)
626{
627	int cpu = smp_processor_id();
628	tick_receive_broadcast();
629	atomic_set(&per_cpu(tick_broadcast_count, cpu), 0);
630}
631
632static int __init tick_broadcast_init(void)
633{
634	struct call_single_data *csd;
635	int cpu;
636
637	for (cpu = 0; cpu < NR_CPUS; cpu++) {
638		csd = &per_cpu(tick_broadcast_csd, cpu);
639		csd->func = tick_broadcast_callee;
640	}
641
642	return 0;
643}
644early_initcall(tick_broadcast_init);
645
646#endif /* CONFIG_GENERIC_CLOCKEVENTS_BROADCAST */