Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.5.6.
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * AArch64 loadable module support.
  4 *
  5 * Copyright (C) 2012 ARM Limited
  6 *
  7 * Author: Will Deacon <will.deacon@arm.com>
  8 */
  9
 10#include <linux/bitops.h>
 11#include <linux/elf.h>
 12#include <linux/ftrace.h>
 13#include <linux/gfp.h>
 14#include <linux/kasan.h>
 15#include <linux/kernel.h>
 16#include <linux/mm.h>
 17#include <linux/moduleloader.h>
 18#include <linux/scs.h>
 19#include <linux/vmalloc.h>
 20#include <asm/alternative.h>
 21#include <asm/insn.h>
 22#include <asm/scs.h>
 23#include <asm/sections.h>
 24
 25void *module_alloc(unsigned long size)
 26{
 27	u64 module_alloc_end = module_alloc_base + MODULES_VSIZE;
 28	gfp_t gfp_mask = GFP_KERNEL;
 29	void *p;
 30
 31	/* Silence the initial allocation */
 32	if (IS_ENABLED(CONFIG_ARM64_MODULE_PLTS))
 33		gfp_mask |= __GFP_NOWARN;
 34
 35	if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
 36	    IS_ENABLED(CONFIG_KASAN_SW_TAGS))
 37		/* don't exceed the static module region - see below */
 38		module_alloc_end = MODULES_END;
 39
 40	p = __vmalloc_node_range(size, MODULE_ALIGN, module_alloc_base,
 41				module_alloc_end, gfp_mask, PAGE_KERNEL, VM_DEFER_KMEMLEAK,
 42				NUMA_NO_NODE, __builtin_return_address(0));
 43
 44	if (!p && IS_ENABLED(CONFIG_ARM64_MODULE_PLTS) &&
 45	    (IS_ENABLED(CONFIG_KASAN_VMALLOC) ||
 46	     (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
 47	      !IS_ENABLED(CONFIG_KASAN_SW_TAGS))))
 48		/*
 49		 * KASAN without KASAN_VMALLOC can only deal with module
 50		 * allocations being served from the reserved module region,
 51		 * since the remainder of the vmalloc region is already
 52		 * backed by zero shadow pages, and punching holes into it
 53		 * is non-trivial. Since the module region is not randomized
 54		 * when KASAN is enabled without KASAN_VMALLOC, it is even
 55		 * less likely that the module region gets exhausted, so we
 56		 * can simply omit this fallback in that case.
 57		 */
 58		p = __vmalloc_node_range(size, MODULE_ALIGN, module_alloc_base,
 59				module_alloc_base + SZ_2G, GFP_KERNEL,
 60				PAGE_KERNEL, 0, NUMA_NO_NODE,
 61				__builtin_return_address(0));
 62
 63	if (p && (kasan_alloc_module_shadow(p, size, gfp_mask) < 0)) {
 64		vfree(p);
 65		return NULL;
 66	}
 67
 68	/* Memory is intended to be executable, reset the pointer tag. */
 69	return kasan_reset_tag(p);
 70}
 71
 72enum aarch64_reloc_op {
 73	RELOC_OP_NONE,
 74	RELOC_OP_ABS,
 75	RELOC_OP_PREL,
 76	RELOC_OP_PAGE,
 77};
 78
 79static u64 do_reloc(enum aarch64_reloc_op reloc_op, __le32 *place, u64 val)
 80{
 81	switch (reloc_op) {
 82	case RELOC_OP_ABS:
 83		return val;
 84	case RELOC_OP_PREL:
 85		return val - (u64)place;
 86	case RELOC_OP_PAGE:
 87		return (val & ~0xfff) - ((u64)place & ~0xfff);
 88	case RELOC_OP_NONE:
 89		return 0;
 90	}
 91
 92	pr_err("do_reloc: unknown relocation operation %d\n", reloc_op);
 93	return 0;
 94}
 95
 96static int reloc_data(enum aarch64_reloc_op op, void *place, u64 val, int len)
 97{
 98	s64 sval = do_reloc(op, place, val);
 99
100	/*
101	 * The ELF psABI for AArch64 documents the 16-bit and 32-bit place
102	 * relative and absolute relocations as having a range of [-2^15, 2^16)
103	 * or [-2^31, 2^32), respectively. However, in order to be able to
104	 * detect overflows reliably, we have to choose whether we interpret
105	 * such quantities as signed or as unsigned, and stick with it.
106	 * The way we organize our address space requires a signed
107	 * interpretation of 32-bit relative references, so let's use that
108	 * for all R_AARCH64_PRELxx relocations. This means our upper
109	 * bound for overflow detection should be Sxx_MAX rather than Uxx_MAX.
110	 */
111
112	switch (len) {
113	case 16:
114		*(s16 *)place = sval;
115		switch (op) {
116		case RELOC_OP_ABS:
117			if (sval < 0 || sval > U16_MAX)
118				return -ERANGE;
119			break;
120		case RELOC_OP_PREL:
121			if (sval < S16_MIN || sval > S16_MAX)
122				return -ERANGE;
123			break;
124		default:
125			pr_err("Invalid 16-bit data relocation (%d)\n", op);
126			return 0;
127		}
128		break;
129	case 32:
130		*(s32 *)place = sval;
131		switch (op) {
132		case RELOC_OP_ABS:
133			if (sval < 0 || sval > U32_MAX)
134				return -ERANGE;
135			break;
136		case RELOC_OP_PREL:
137			if (sval < S32_MIN || sval > S32_MAX)
138				return -ERANGE;
139			break;
140		default:
141			pr_err("Invalid 32-bit data relocation (%d)\n", op);
142			return 0;
143		}
144		break;
145	case 64:
146		*(s64 *)place = sval;
147		break;
148	default:
149		pr_err("Invalid length (%d) for data relocation\n", len);
150		return 0;
151	}
152	return 0;
153}
154
155enum aarch64_insn_movw_imm_type {
156	AARCH64_INSN_IMM_MOVNZ,
157	AARCH64_INSN_IMM_MOVKZ,
158};
159
160static int reloc_insn_movw(enum aarch64_reloc_op op, __le32 *place, u64 val,
161			   int lsb, enum aarch64_insn_movw_imm_type imm_type)
162{
163	u64 imm;
164	s64 sval;
165	u32 insn = le32_to_cpu(*place);
166
167	sval = do_reloc(op, place, val);
168	imm = sval >> lsb;
169
170	if (imm_type == AARCH64_INSN_IMM_MOVNZ) {
171		/*
172		 * For signed MOVW relocations, we have to manipulate the
173		 * instruction encoding depending on whether or not the
174		 * immediate is less than zero.
175		 */
176		insn &= ~(3 << 29);
177		if (sval >= 0) {
178			/* >=0: Set the instruction to MOVZ (opcode 10b). */
179			insn |= 2 << 29;
180		} else {
181			/*
182			 * <0: Set the instruction to MOVN (opcode 00b).
183			 *     Since we've masked the opcode already, we
184			 *     don't need to do anything other than
185			 *     inverting the new immediate field.
186			 */
187			imm = ~imm;
188		}
189	}
190
191	/* Update the instruction with the new encoding. */
192	insn = aarch64_insn_encode_immediate(AARCH64_INSN_IMM_16, insn, imm);
193	*place = cpu_to_le32(insn);
194
195	if (imm > U16_MAX)
196		return -ERANGE;
197
198	return 0;
199}
200
201static int reloc_insn_imm(enum aarch64_reloc_op op, __le32 *place, u64 val,
202			  int lsb, int len, enum aarch64_insn_imm_type imm_type)
203{
204	u64 imm, imm_mask;
205	s64 sval;
206	u32 insn = le32_to_cpu(*place);
207
208	/* Calculate the relocation value. */
209	sval = do_reloc(op, place, val);
210	sval >>= lsb;
211
212	/* Extract the value bits and shift them to bit 0. */
213	imm_mask = (BIT(lsb + len) - 1) >> lsb;
214	imm = sval & imm_mask;
215
216	/* Update the instruction's immediate field. */
217	insn = aarch64_insn_encode_immediate(imm_type, insn, imm);
218	*place = cpu_to_le32(insn);
219
220	/*
221	 * Extract the upper value bits (including the sign bit) and
222	 * shift them to bit 0.
223	 */
224	sval = (s64)(sval & ~(imm_mask >> 1)) >> (len - 1);
225
226	/*
227	 * Overflow has occurred if the upper bits are not all equal to
228	 * the sign bit of the value.
229	 */
230	if ((u64)(sval + 1) >= 2)
231		return -ERANGE;
232
233	return 0;
234}
235
236static int reloc_insn_adrp(struct module *mod, Elf64_Shdr *sechdrs,
237			   __le32 *place, u64 val)
238{
239	u32 insn;
240
241	if (!is_forbidden_offset_for_adrp(place))
242		return reloc_insn_imm(RELOC_OP_PAGE, place, val, 12, 21,
243				      AARCH64_INSN_IMM_ADR);
244
245	/* patch ADRP to ADR if it is in range */
246	if (!reloc_insn_imm(RELOC_OP_PREL, place, val & ~0xfff, 0, 21,
247			    AARCH64_INSN_IMM_ADR)) {
248		insn = le32_to_cpu(*place);
249		insn &= ~BIT(31);
250	} else {
251		/* out of range for ADR -> emit a veneer */
252		val = module_emit_veneer_for_adrp(mod, sechdrs, place, val & ~0xfff);
253		if (!val)
254			return -ENOEXEC;
255		insn = aarch64_insn_gen_branch_imm((u64)place, val,
256						   AARCH64_INSN_BRANCH_NOLINK);
257	}
258
259	*place = cpu_to_le32(insn);
260	return 0;
261}
262
263int apply_relocate_add(Elf64_Shdr *sechdrs,
264		       const char *strtab,
265		       unsigned int symindex,
266		       unsigned int relsec,
267		       struct module *me)
268{
269	unsigned int i;
270	int ovf;
271	bool overflow_check;
272	Elf64_Sym *sym;
273	void *loc;
274	u64 val;
275	Elf64_Rela *rel = (void *)sechdrs[relsec].sh_addr;
276
277	for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) {
278		/* loc corresponds to P in the AArch64 ELF document. */
279		loc = (void *)sechdrs[sechdrs[relsec].sh_info].sh_addr
280			+ rel[i].r_offset;
281
282		/* sym is the ELF symbol we're referring to. */
283		sym = (Elf64_Sym *)sechdrs[symindex].sh_addr
284			+ ELF64_R_SYM(rel[i].r_info);
285
286		/* val corresponds to (S + A) in the AArch64 ELF document. */
287		val = sym->st_value + rel[i].r_addend;
288
289		/* Check for overflow by default. */
290		overflow_check = true;
291
292		/* Perform the static relocation. */
293		switch (ELF64_R_TYPE(rel[i].r_info)) {
294		/* Null relocations. */
295		case R_ARM_NONE:
296		case R_AARCH64_NONE:
297			ovf = 0;
298			break;
299
300		/* Data relocations. */
301		case R_AARCH64_ABS64:
302			overflow_check = false;
303			ovf = reloc_data(RELOC_OP_ABS, loc, val, 64);
304			break;
305		case R_AARCH64_ABS32:
306			ovf = reloc_data(RELOC_OP_ABS, loc, val, 32);
307			break;
308		case R_AARCH64_ABS16:
309			ovf = reloc_data(RELOC_OP_ABS, loc, val, 16);
310			break;
311		case R_AARCH64_PREL64:
312			overflow_check = false;
313			ovf = reloc_data(RELOC_OP_PREL, loc, val, 64);
314			break;
315		case R_AARCH64_PREL32:
316			ovf = reloc_data(RELOC_OP_PREL, loc, val, 32);
317			break;
318		case R_AARCH64_PREL16:
319			ovf = reloc_data(RELOC_OP_PREL, loc, val, 16);
320			break;
321
322		/* MOVW instruction relocations. */
323		case R_AARCH64_MOVW_UABS_G0_NC:
324			overflow_check = false;
325			fallthrough;
326		case R_AARCH64_MOVW_UABS_G0:
327			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 0,
328					      AARCH64_INSN_IMM_MOVKZ);
329			break;
330		case R_AARCH64_MOVW_UABS_G1_NC:
331			overflow_check = false;
332			fallthrough;
333		case R_AARCH64_MOVW_UABS_G1:
334			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 16,
335					      AARCH64_INSN_IMM_MOVKZ);
336			break;
337		case R_AARCH64_MOVW_UABS_G2_NC:
338			overflow_check = false;
339			fallthrough;
340		case R_AARCH64_MOVW_UABS_G2:
341			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 32,
342					      AARCH64_INSN_IMM_MOVKZ);
343			break;
344		case R_AARCH64_MOVW_UABS_G3:
345			/* We're using the top bits so we can't overflow. */
346			overflow_check = false;
347			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 48,
348					      AARCH64_INSN_IMM_MOVKZ);
349			break;
350		case R_AARCH64_MOVW_SABS_G0:
351			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 0,
352					      AARCH64_INSN_IMM_MOVNZ);
353			break;
354		case R_AARCH64_MOVW_SABS_G1:
355			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 16,
356					      AARCH64_INSN_IMM_MOVNZ);
357			break;
358		case R_AARCH64_MOVW_SABS_G2:
359			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 32,
360					      AARCH64_INSN_IMM_MOVNZ);
361			break;
362		case R_AARCH64_MOVW_PREL_G0_NC:
363			overflow_check = false;
364			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 0,
365					      AARCH64_INSN_IMM_MOVKZ);
366			break;
367		case R_AARCH64_MOVW_PREL_G0:
368			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 0,
369					      AARCH64_INSN_IMM_MOVNZ);
370			break;
371		case R_AARCH64_MOVW_PREL_G1_NC:
372			overflow_check = false;
373			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 16,
374					      AARCH64_INSN_IMM_MOVKZ);
375			break;
376		case R_AARCH64_MOVW_PREL_G1:
377			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 16,
378					      AARCH64_INSN_IMM_MOVNZ);
379			break;
380		case R_AARCH64_MOVW_PREL_G2_NC:
381			overflow_check = false;
382			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 32,
383					      AARCH64_INSN_IMM_MOVKZ);
384			break;
385		case R_AARCH64_MOVW_PREL_G2:
386			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 32,
387					      AARCH64_INSN_IMM_MOVNZ);
388			break;
389		case R_AARCH64_MOVW_PREL_G3:
390			/* We're using the top bits so we can't overflow. */
391			overflow_check = false;
392			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 48,
393					      AARCH64_INSN_IMM_MOVNZ);
394			break;
395
396		/* Immediate instruction relocations. */
397		case R_AARCH64_LD_PREL_LO19:
398			ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 19,
399					     AARCH64_INSN_IMM_19);
400			break;
401		case R_AARCH64_ADR_PREL_LO21:
402			ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 0, 21,
403					     AARCH64_INSN_IMM_ADR);
404			break;
405		case R_AARCH64_ADR_PREL_PG_HI21_NC:
406			overflow_check = false;
407			fallthrough;
408		case R_AARCH64_ADR_PREL_PG_HI21:
409			ovf = reloc_insn_adrp(me, sechdrs, loc, val);
410			if (ovf && ovf != -ERANGE)
411				return ovf;
412			break;
413		case R_AARCH64_ADD_ABS_LO12_NC:
414		case R_AARCH64_LDST8_ABS_LO12_NC:
415			overflow_check = false;
416			ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 0, 12,
417					     AARCH64_INSN_IMM_12);
418			break;
419		case R_AARCH64_LDST16_ABS_LO12_NC:
420			overflow_check = false;
421			ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 1, 11,
422					     AARCH64_INSN_IMM_12);
423			break;
424		case R_AARCH64_LDST32_ABS_LO12_NC:
425			overflow_check = false;
426			ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 2, 10,
427					     AARCH64_INSN_IMM_12);
428			break;
429		case R_AARCH64_LDST64_ABS_LO12_NC:
430			overflow_check = false;
431			ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 3, 9,
432					     AARCH64_INSN_IMM_12);
433			break;
434		case R_AARCH64_LDST128_ABS_LO12_NC:
435			overflow_check = false;
436			ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 4, 8,
437					     AARCH64_INSN_IMM_12);
438			break;
439		case R_AARCH64_TSTBR14:
440			ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 14,
441					     AARCH64_INSN_IMM_14);
442			break;
443		case R_AARCH64_CONDBR19:
444			ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 19,
445					     AARCH64_INSN_IMM_19);
446			break;
447		case R_AARCH64_JUMP26:
448		case R_AARCH64_CALL26:
449			ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 26,
450					     AARCH64_INSN_IMM_26);
451
452			if (IS_ENABLED(CONFIG_ARM64_MODULE_PLTS) &&
453			    ovf == -ERANGE) {
454				val = module_emit_plt_entry(me, sechdrs, loc, &rel[i], sym);
455				if (!val)
456					return -ENOEXEC;
457				ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2,
458						     26, AARCH64_INSN_IMM_26);
459			}
460			break;
461
462		default:
463			pr_err("module %s: unsupported RELA relocation: %llu\n",
464			       me->name, ELF64_R_TYPE(rel[i].r_info));
465			return -ENOEXEC;
466		}
467
468		if (overflow_check && ovf == -ERANGE)
469			goto overflow;
470
471	}
472
473	return 0;
474
475overflow:
476	pr_err("module %s: overflow in relocation type %d val %Lx\n",
477	       me->name, (int)ELF64_R_TYPE(rel[i].r_info), val);
478	return -ENOEXEC;
479}
480
481static inline void __init_plt(struct plt_entry *plt, unsigned long addr)
482{
483	*plt = get_plt_entry(addr, plt);
484}
485
486static int module_init_ftrace_plt(const Elf_Ehdr *hdr,
487				  const Elf_Shdr *sechdrs,
488				  struct module *mod)
489{
490#if defined(CONFIG_ARM64_MODULE_PLTS) && defined(CONFIG_DYNAMIC_FTRACE)
491	const Elf_Shdr *s;
492	struct plt_entry *plts;
493
494	s = find_section(hdr, sechdrs, ".text.ftrace_trampoline");
495	if (!s)
496		return -ENOEXEC;
497
498	plts = (void *)s->sh_addr;
499
500	__init_plt(&plts[FTRACE_PLT_IDX], FTRACE_ADDR);
501
502	mod->arch.ftrace_trampolines = plts;
503#endif
504	return 0;
505}
506
507int module_finalize(const Elf_Ehdr *hdr,
508		    const Elf_Shdr *sechdrs,
509		    struct module *me)
510{
511	const Elf_Shdr *s;
512	s = find_section(hdr, sechdrs, ".altinstructions");
513	if (s)
514		apply_alternatives_module((void *)s->sh_addr, s->sh_size);
515
516	if (scs_is_dynamic()) {
517		s = find_section(hdr, sechdrs, ".init.eh_frame");
518		if (s)
519			scs_patch((void *)s->sh_addr, s->sh_size);
520	}
521
522	return module_init_ftrace_plt(hdr, sechdrs, me);
523}