Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.5.6.
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * AArch64 loadable module support.
  4 *
  5 * Copyright (C) 2012 ARM Limited
  6 *
  7 * Author: Will Deacon <will.deacon@arm.com>
  8 */
  9
 10#include <linux/bitops.h>
 11#include <linux/elf.h>
 12#include <linux/ftrace.h>
 13#include <linux/gfp.h>
 14#include <linux/kasan.h>
 15#include <linux/kernel.h>
 16#include <linux/mm.h>
 17#include <linux/moduleloader.h>
 18#include <linux/vmalloc.h>
 19#include <asm/alternative.h>
 20#include <asm/insn.h>
 21#include <asm/sections.h>
 22
 23void *module_alloc(unsigned long size)
 24{
 25	u64 module_alloc_end = module_alloc_base + MODULES_VSIZE;
 26	gfp_t gfp_mask = GFP_KERNEL;
 27	void *p;
 28
 29	/* Silence the initial allocation */
 30	if (IS_ENABLED(CONFIG_ARM64_MODULE_PLTS))
 31		gfp_mask |= __GFP_NOWARN;
 32
 33	if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
 34	    IS_ENABLED(CONFIG_KASAN_SW_TAGS))
 35		/* don't exceed the static module region - see below */
 36		module_alloc_end = MODULES_END;
 37
 38	p = __vmalloc_node_range(size, MODULE_ALIGN, module_alloc_base,
 39				module_alloc_end, gfp_mask, PAGE_KERNEL, 0,
 40				NUMA_NO_NODE, __builtin_return_address(0));
 41
 42	if (!p && IS_ENABLED(CONFIG_ARM64_MODULE_PLTS) &&
 43	    (IS_ENABLED(CONFIG_KASAN_VMALLOC) ||
 44	     (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
 45	      !IS_ENABLED(CONFIG_KASAN_SW_TAGS))))
 46		/*
 47		 * KASAN without KASAN_VMALLOC can only deal with module
 48		 * allocations being served from the reserved module region,
 49		 * since the remainder of the vmalloc region is already
 50		 * backed by zero shadow pages, and punching holes into it
 51		 * is non-trivial. Since the module region is not randomized
 52		 * when KASAN is enabled without KASAN_VMALLOC, it is even
 53		 * less likely that the module region gets exhausted, so we
 54		 * can simply omit this fallback in that case.
 55		 */
 56		p = __vmalloc_node_range(size, MODULE_ALIGN, module_alloc_base,
 57				module_alloc_base + SZ_2G, GFP_KERNEL,
 58				PAGE_KERNEL, 0, NUMA_NO_NODE,
 59				__builtin_return_address(0));
 60
 61	if (p && (kasan_module_alloc(p, size) < 0)) {
 62		vfree(p);
 63		return NULL;
 64	}
 65
 66	return p;
 67}
 68
 69enum aarch64_reloc_op {
 70	RELOC_OP_NONE,
 71	RELOC_OP_ABS,
 72	RELOC_OP_PREL,
 73	RELOC_OP_PAGE,
 74};
 75
 76static u64 do_reloc(enum aarch64_reloc_op reloc_op, __le32 *place, u64 val)
 77{
 78	switch (reloc_op) {
 79	case RELOC_OP_ABS:
 80		return val;
 81	case RELOC_OP_PREL:
 82		return val - (u64)place;
 83	case RELOC_OP_PAGE:
 84		return (val & ~0xfff) - ((u64)place & ~0xfff);
 85	case RELOC_OP_NONE:
 86		return 0;
 87	}
 88
 89	pr_err("do_reloc: unknown relocation operation %d\n", reloc_op);
 90	return 0;
 91}
 92
 93static int reloc_data(enum aarch64_reloc_op op, void *place, u64 val, int len)
 94{
 95	s64 sval = do_reloc(op, place, val);
 96
 97	/*
 98	 * The ELF psABI for AArch64 documents the 16-bit and 32-bit place
 99	 * relative and absolute relocations as having a range of [-2^15, 2^16)
100	 * or [-2^31, 2^32), respectively. However, in order to be able to
101	 * detect overflows reliably, we have to choose whether we interpret
102	 * such quantities as signed or as unsigned, and stick with it.
103	 * The way we organize our address space requires a signed
104	 * interpretation of 32-bit relative references, so let's use that
105	 * for all R_AARCH64_PRELxx relocations. This means our upper
106	 * bound for overflow detection should be Sxx_MAX rather than Uxx_MAX.
107	 */
108
109	switch (len) {
110	case 16:
111		*(s16 *)place = sval;
112		switch (op) {
113		case RELOC_OP_ABS:
114			if (sval < 0 || sval > U16_MAX)
115				return -ERANGE;
116			break;
117		case RELOC_OP_PREL:
118			if (sval < S16_MIN || sval > S16_MAX)
119				return -ERANGE;
120			break;
121		default:
122			pr_err("Invalid 16-bit data relocation (%d)\n", op);
123			return 0;
124		}
125		break;
126	case 32:
127		*(s32 *)place = sval;
128		switch (op) {
129		case RELOC_OP_ABS:
130			if (sval < 0 || sval > U32_MAX)
131				return -ERANGE;
132			break;
133		case RELOC_OP_PREL:
134			if (sval < S32_MIN || sval > S32_MAX)
135				return -ERANGE;
136			break;
137		default:
138			pr_err("Invalid 32-bit data relocation (%d)\n", op);
139			return 0;
140		}
141		break;
142	case 64:
143		*(s64 *)place = sval;
144		break;
145	default:
146		pr_err("Invalid length (%d) for data relocation\n", len);
147		return 0;
148	}
149	return 0;
150}
151
152enum aarch64_insn_movw_imm_type {
153	AARCH64_INSN_IMM_MOVNZ,
154	AARCH64_INSN_IMM_MOVKZ,
155};
156
157static int reloc_insn_movw(enum aarch64_reloc_op op, __le32 *place, u64 val,
158			   int lsb, enum aarch64_insn_movw_imm_type imm_type)
159{
160	u64 imm;
161	s64 sval;
162	u32 insn = le32_to_cpu(*place);
163
164	sval = do_reloc(op, place, val);
165	imm = sval >> lsb;
166
167	if (imm_type == AARCH64_INSN_IMM_MOVNZ) {
168		/*
169		 * For signed MOVW relocations, we have to manipulate the
170		 * instruction encoding depending on whether or not the
171		 * immediate is less than zero.
172		 */
173		insn &= ~(3 << 29);
174		if (sval >= 0) {
175			/* >=0: Set the instruction to MOVZ (opcode 10b). */
176			insn |= 2 << 29;
177		} else {
178			/*
179			 * <0: Set the instruction to MOVN (opcode 00b).
180			 *     Since we've masked the opcode already, we
181			 *     don't need to do anything other than
182			 *     inverting the new immediate field.
183			 */
184			imm = ~imm;
185		}
186	}
187
188	/* Update the instruction with the new encoding. */
189	insn = aarch64_insn_encode_immediate(AARCH64_INSN_IMM_16, insn, imm);
190	*place = cpu_to_le32(insn);
191
192	if (imm > U16_MAX)
193		return -ERANGE;
194
195	return 0;
196}
197
198static int reloc_insn_imm(enum aarch64_reloc_op op, __le32 *place, u64 val,
199			  int lsb, int len, enum aarch64_insn_imm_type imm_type)
200{
201	u64 imm, imm_mask;
202	s64 sval;
203	u32 insn = le32_to_cpu(*place);
204
205	/* Calculate the relocation value. */
206	sval = do_reloc(op, place, val);
207	sval >>= lsb;
208
209	/* Extract the value bits and shift them to bit 0. */
210	imm_mask = (BIT(lsb + len) - 1) >> lsb;
211	imm = sval & imm_mask;
212
213	/* Update the instruction's immediate field. */
214	insn = aarch64_insn_encode_immediate(imm_type, insn, imm);
215	*place = cpu_to_le32(insn);
216
217	/*
218	 * Extract the upper value bits (including the sign bit) and
219	 * shift them to bit 0.
220	 */
221	sval = (s64)(sval & ~(imm_mask >> 1)) >> (len - 1);
222
223	/*
224	 * Overflow has occurred if the upper bits are not all equal to
225	 * the sign bit of the value.
226	 */
227	if ((u64)(sval + 1) >= 2)
228		return -ERANGE;
229
230	return 0;
231}
232
233static int reloc_insn_adrp(struct module *mod, Elf64_Shdr *sechdrs,
234			   __le32 *place, u64 val)
235{
236	u32 insn;
237
238	if (!is_forbidden_offset_for_adrp(place))
239		return reloc_insn_imm(RELOC_OP_PAGE, place, val, 12, 21,
240				      AARCH64_INSN_IMM_ADR);
241
242	/* patch ADRP to ADR if it is in range */
243	if (!reloc_insn_imm(RELOC_OP_PREL, place, val & ~0xfff, 0, 21,
244			    AARCH64_INSN_IMM_ADR)) {
245		insn = le32_to_cpu(*place);
246		insn &= ~BIT(31);
247	} else {
248		/* out of range for ADR -> emit a veneer */
249		val = module_emit_veneer_for_adrp(mod, sechdrs, place, val & ~0xfff);
250		if (!val)
251			return -ENOEXEC;
252		insn = aarch64_insn_gen_branch_imm((u64)place, val,
253						   AARCH64_INSN_BRANCH_NOLINK);
254	}
255
256	*place = cpu_to_le32(insn);
257	return 0;
258}
259
260int apply_relocate_add(Elf64_Shdr *sechdrs,
261		       const char *strtab,
262		       unsigned int symindex,
263		       unsigned int relsec,
264		       struct module *me)
265{
266	unsigned int i;
267	int ovf;
268	bool overflow_check;
269	Elf64_Sym *sym;
270	void *loc;
271	u64 val;
272	Elf64_Rela *rel = (void *)sechdrs[relsec].sh_addr;
273
274	for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) {
275		/* loc corresponds to P in the AArch64 ELF document. */
276		loc = (void *)sechdrs[sechdrs[relsec].sh_info].sh_addr
277			+ rel[i].r_offset;
278
279		/* sym is the ELF symbol we're referring to. */
280		sym = (Elf64_Sym *)sechdrs[symindex].sh_addr
281			+ ELF64_R_SYM(rel[i].r_info);
282
283		/* val corresponds to (S + A) in the AArch64 ELF document. */
284		val = sym->st_value + rel[i].r_addend;
285
286		/* Check for overflow by default. */
287		overflow_check = true;
288
289		/* Perform the static relocation. */
290		switch (ELF64_R_TYPE(rel[i].r_info)) {
291		/* Null relocations. */
292		case R_ARM_NONE:
293		case R_AARCH64_NONE:
294			ovf = 0;
295			break;
296
297		/* Data relocations. */
298		case R_AARCH64_ABS64:
299			overflow_check = false;
300			ovf = reloc_data(RELOC_OP_ABS, loc, val, 64);
301			break;
302		case R_AARCH64_ABS32:
303			ovf = reloc_data(RELOC_OP_ABS, loc, val, 32);
304			break;
305		case R_AARCH64_ABS16:
306			ovf = reloc_data(RELOC_OP_ABS, loc, val, 16);
307			break;
308		case R_AARCH64_PREL64:
309			overflow_check = false;
310			ovf = reloc_data(RELOC_OP_PREL, loc, val, 64);
311			break;
312		case R_AARCH64_PREL32:
313			ovf = reloc_data(RELOC_OP_PREL, loc, val, 32);
314			break;
315		case R_AARCH64_PREL16:
316			ovf = reloc_data(RELOC_OP_PREL, loc, val, 16);
317			break;
318
319		/* MOVW instruction relocations. */
320		case R_AARCH64_MOVW_UABS_G0_NC:
321			overflow_check = false;
322			fallthrough;
323		case R_AARCH64_MOVW_UABS_G0:
324			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 0,
325					      AARCH64_INSN_IMM_MOVKZ);
326			break;
327		case R_AARCH64_MOVW_UABS_G1_NC:
328			overflow_check = false;
329			fallthrough;
330		case R_AARCH64_MOVW_UABS_G1:
331			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 16,
332					      AARCH64_INSN_IMM_MOVKZ);
333			break;
334		case R_AARCH64_MOVW_UABS_G2_NC:
335			overflow_check = false;
336			fallthrough;
337		case R_AARCH64_MOVW_UABS_G2:
338			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 32,
339					      AARCH64_INSN_IMM_MOVKZ);
340			break;
341		case R_AARCH64_MOVW_UABS_G3:
342			/* We're using the top bits so we can't overflow. */
343			overflow_check = false;
344			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 48,
345					      AARCH64_INSN_IMM_MOVKZ);
346			break;
347		case R_AARCH64_MOVW_SABS_G0:
348			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 0,
349					      AARCH64_INSN_IMM_MOVNZ);
350			break;
351		case R_AARCH64_MOVW_SABS_G1:
352			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 16,
353					      AARCH64_INSN_IMM_MOVNZ);
354			break;
355		case R_AARCH64_MOVW_SABS_G2:
356			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 32,
357					      AARCH64_INSN_IMM_MOVNZ);
358			break;
359		case R_AARCH64_MOVW_PREL_G0_NC:
360			overflow_check = false;
361			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 0,
362					      AARCH64_INSN_IMM_MOVKZ);
363			break;
364		case R_AARCH64_MOVW_PREL_G0:
365			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 0,
366					      AARCH64_INSN_IMM_MOVNZ);
367			break;
368		case R_AARCH64_MOVW_PREL_G1_NC:
369			overflow_check = false;
370			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 16,
371					      AARCH64_INSN_IMM_MOVKZ);
372			break;
373		case R_AARCH64_MOVW_PREL_G1:
374			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 16,
375					      AARCH64_INSN_IMM_MOVNZ);
376			break;
377		case R_AARCH64_MOVW_PREL_G2_NC:
378			overflow_check = false;
379			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 32,
380					      AARCH64_INSN_IMM_MOVKZ);
381			break;
382		case R_AARCH64_MOVW_PREL_G2:
383			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 32,
384					      AARCH64_INSN_IMM_MOVNZ);
385			break;
386		case R_AARCH64_MOVW_PREL_G3:
387			/* We're using the top bits so we can't overflow. */
388			overflow_check = false;
389			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 48,
390					      AARCH64_INSN_IMM_MOVNZ);
391			break;
392
393		/* Immediate instruction relocations. */
394		case R_AARCH64_LD_PREL_LO19:
395			ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 19,
396					     AARCH64_INSN_IMM_19);
397			break;
398		case R_AARCH64_ADR_PREL_LO21:
399			ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 0, 21,
400					     AARCH64_INSN_IMM_ADR);
401			break;
402		case R_AARCH64_ADR_PREL_PG_HI21_NC:
403			overflow_check = false;
404			fallthrough;
405		case R_AARCH64_ADR_PREL_PG_HI21:
406			ovf = reloc_insn_adrp(me, sechdrs, loc, val);
407			if (ovf && ovf != -ERANGE)
408				return ovf;
409			break;
410		case R_AARCH64_ADD_ABS_LO12_NC:
411		case R_AARCH64_LDST8_ABS_LO12_NC:
412			overflow_check = false;
413			ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 0, 12,
414					     AARCH64_INSN_IMM_12);
415			break;
416		case R_AARCH64_LDST16_ABS_LO12_NC:
417			overflow_check = false;
418			ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 1, 11,
419					     AARCH64_INSN_IMM_12);
420			break;
421		case R_AARCH64_LDST32_ABS_LO12_NC:
422			overflow_check = false;
423			ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 2, 10,
424					     AARCH64_INSN_IMM_12);
425			break;
426		case R_AARCH64_LDST64_ABS_LO12_NC:
427			overflow_check = false;
428			ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 3, 9,
429					     AARCH64_INSN_IMM_12);
430			break;
431		case R_AARCH64_LDST128_ABS_LO12_NC:
432			overflow_check = false;
433			ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 4, 8,
434					     AARCH64_INSN_IMM_12);
435			break;
436		case R_AARCH64_TSTBR14:
437			ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 14,
438					     AARCH64_INSN_IMM_14);
439			break;
440		case R_AARCH64_CONDBR19:
441			ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 19,
442					     AARCH64_INSN_IMM_19);
443			break;
444		case R_AARCH64_JUMP26:
445		case R_AARCH64_CALL26:
446			ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 26,
447					     AARCH64_INSN_IMM_26);
448
449			if (IS_ENABLED(CONFIG_ARM64_MODULE_PLTS) &&
450			    ovf == -ERANGE) {
451				val = module_emit_plt_entry(me, sechdrs, loc, &rel[i], sym);
452				if (!val)
453					return -ENOEXEC;
454				ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2,
455						     26, AARCH64_INSN_IMM_26);
456			}
457			break;
458
459		default:
460			pr_err("module %s: unsupported RELA relocation: %llu\n",
461			       me->name, ELF64_R_TYPE(rel[i].r_info));
462			return -ENOEXEC;
463		}
464
465		if (overflow_check && ovf == -ERANGE)
466			goto overflow;
467
468	}
469
470	return 0;
471
472overflow:
473	pr_err("module %s: overflow in relocation type %d val %Lx\n",
474	       me->name, (int)ELF64_R_TYPE(rel[i].r_info), val);
475	return -ENOEXEC;
476}
477
478static const Elf_Shdr *find_section(const Elf_Ehdr *hdr,
479				    const Elf_Shdr *sechdrs,
480				    const char *name)
481{
482	const Elf_Shdr *s, *se;
483	const char *secstrs = (void *)hdr + sechdrs[hdr->e_shstrndx].sh_offset;
484
485	for (s = sechdrs, se = sechdrs + hdr->e_shnum; s < se; s++) {
486		if (strcmp(name, secstrs + s->sh_name) == 0)
487			return s;
488	}
489
490	return NULL;
491}
492
493static inline void __init_plt(struct plt_entry *plt, unsigned long addr)
494{
495	*plt = get_plt_entry(addr, plt);
496}
497
498static int module_init_ftrace_plt(const Elf_Ehdr *hdr,
499				  const Elf_Shdr *sechdrs,
500				  struct module *mod)
501{
502#if defined(CONFIG_ARM64_MODULE_PLTS) && defined(CONFIG_DYNAMIC_FTRACE)
503	const Elf_Shdr *s;
504	struct plt_entry *plts;
505
506	s = find_section(hdr, sechdrs, ".text.ftrace_trampoline");
507	if (!s)
508		return -ENOEXEC;
509
510	plts = (void *)s->sh_addr;
511
512	__init_plt(&plts[FTRACE_PLT_IDX], FTRACE_ADDR);
513
514	if (IS_ENABLED(CONFIG_DYNAMIC_FTRACE_WITH_REGS))
515		__init_plt(&plts[FTRACE_REGS_PLT_IDX], FTRACE_REGS_ADDR);
516
517	mod->arch.ftrace_trampolines = plts;
518#endif
519	return 0;
520}
521
522int module_finalize(const Elf_Ehdr *hdr,
523		    const Elf_Shdr *sechdrs,
524		    struct module *me)
525{
526	const Elf_Shdr *s;
527	s = find_section(hdr, sechdrs, ".altinstructions");
528	if (s)
529		apply_alternatives_module((void *)s->sh_addr, s->sh_size);
530
531	return module_init_ftrace_plt(hdr, sechdrs, me);
532}