Linux Audio

Check our new training course

Loading...
v3.5.6
 
   1/*
   2 *  linux/arch/arm/kernel/setup.c
   3 *
   4 *  Copyright (C) 1995-2001 Russell King
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License version 2 as
   8 * published by the Free Software Foundation.
   9 */
 
  10#include <linux/export.h>
  11#include <linux/kernel.h>
  12#include <linux/stddef.h>
  13#include <linux/ioport.h>
  14#include <linux/delay.h>
  15#include <linux/utsname.h>
  16#include <linux/initrd.h>
  17#include <linux/console.h>
  18#include <linux/bootmem.h>
  19#include <linux/seq_file.h>
  20#include <linux/screen_info.h>
 
  21#include <linux/init.h>
  22#include <linux/kexec.h>
 
  23#include <linux/of_fdt.h>
  24#include <linux/root_dev.h>
  25#include <linux/cpu.h>
  26#include <linux/interrupt.h>
  27#include <linux/smp.h>
  28#include <linux/fs.h>
  29#include <linux/proc_fs.h>
  30#include <linux/memblock.h>
  31#include <linux/bug.h>
  32#include <linux/compiler.h>
  33#include <linux/sort.h>
 
  34
  35#include <asm/unified.h>
  36#include <asm/cp15.h>
  37#include <asm/cpu.h>
  38#include <asm/cputype.h>
 
  39#include <asm/elf.h>
 
 
  40#include <asm/procinfo.h>
 
  41#include <asm/sections.h>
  42#include <asm/setup.h>
  43#include <asm/smp_plat.h>
  44#include <asm/mach-types.h>
  45#include <asm/cacheflush.h>
  46#include <asm/cachetype.h>
  47#include <asm/tlbflush.h>
 
  48
  49#include <asm/prom.h>
  50#include <asm/mach/arch.h>
  51#include <asm/mach/irq.h>
  52#include <asm/mach/time.h>
  53#include <asm/system_info.h>
  54#include <asm/system_misc.h>
  55#include <asm/traps.h>
  56#include <asm/unwind.h>
  57#include <asm/memblock.h>
 
 
  58
  59#if defined(CONFIG_DEPRECATED_PARAM_STRUCT)
  60#include "compat.h"
  61#endif
  62#include "atags.h"
  63#include "tcm.h"
  64
  65#ifndef MEM_SIZE
  66#define MEM_SIZE	(16*1024*1024)
  67#endif
  68
  69#if defined(CONFIG_FPE_NWFPE) || defined(CONFIG_FPE_FASTFPE)
  70char fpe_type[8];
  71
  72static int __init fpe_setup(char *line)
  73{
  74	memcpy(fpe_type, line, 8);
  75	return 1;
  76}
  77
  78__setup("fpe=", fpe_setup);
  79#endif
  80
  81extern void paging_init(struct machine_desc *desc);
  82extern void sanity_check_meminfo(void);
  83extern void reboot_setup(char *str);
  84extern void setup_dma_zone(struct machine_desc *desc);
 
 
  85
  86unsigned int processor_id;
  87EXPORT_SYMBOL(processor_id);
  88unsigned int __machine_arch_type __read_mostly;
  89EXPORT_SYMBOL(__machine_arch_type);
  90unsigned int cacheid __read_mostly;
  91EXPORT_SYMBOL(cacheid);
  92
  93unsigned int __atags_pointer __initdata;
  94
  95unsigned int system_rev;
  96EXPORT_SYMBOL(system_rev);
  97
 
 
 
  98unsigned int system_serial_low;
  99EXPORT_SYMBOL(system_serial_low);
 100
 101unsigned int system_serial_high;
 102EXPORT_SYMBOL(system_serial_high);
 103
 104unsigned int elf_hwcap __read_mostly;
 105EXPORT_SYMBOL(elf_hwcap);
 106
 
 
 
 107
 108#ifdef MULTI_CPU
 109struct processor processor __read_mostly;
 
 
 
 
 
 110#endif
 111#ifdef MULTI_TLB
 112struct cpu_tlb_fns cpu_tlb __read_mostly;
 113#endif
 114#ifdef MULTI_USER
 115struct cpu_user_fns cpu_user __read_mostly;
 116#endif
 117#ifdef MULTI_CACHE
 118struct cpu_cache_fns cpu_cache __read_mostly;
 119#endif
 120#ifdef CONFIG_OUTER_CACHE
 121struct outer_cache_fns outer_cache __read_mostly;
 122EXPORT_SYMBOL(outer_cache);
 123#endif
 124
 125/*
 126 * Cached cpu_architecture() result for use by assembler code.
 127 * C code should use the cpu_architecture() function instead of accessing this
 128 * variable directly.
 129 */
 130int __cpu_architecture __read_mostly = CPU_ARCH_UNKNOWN;
 131
 132struct stack {
 133	u32 irq[3];
 134	u32 abt[3];
 135	u32 und[3];
 
 136} ____cacheline_aligned;
 137
 
 138static struct stack stacks[NR_CPUS];
 
 139
 140char elf_platform[ELF_PLATFORM_SIZE];
 141EXPORT_SYMBOL(elf_platform);
 142
 143static const char *cpu_name;
 144static const char *machine_name;
 145static char __initdata cmd_line[COMMAND_LINE_SIZE];
 146struct machine_desc *machine_desc __initdata;
 147
 148static char default_command_line[COMMAND_LINE_SIZE] __initdata = CONFIG_CMDLINE;
 149static union { char c[4]; unsigned long l; } endian_test __initdata = { { 'l', '?', '?', 'b' } };
 150#define ENDIANNESS ((char)endian_test.l)
 151
 152DEFINE_PER_CPU(struct cpuinfo_arm, cpu_data);
 153
 154/*
 155 * Standard memory resources
 156 */
 157static struct resource mem_res[] = {
 158	{
 159		.name = "Video RAM",
 160		.start = 0,
 161		.end = 0,
 162		.flags = IORESOURCE_MEM
 163	},
 164	{
 165		.name = "Kernel code",
 166		.start = 0,
 167		.end = 0,
 168		.flags = IORESOURCE_MEM
 169	},
 170	{
 171		.name = "Kernel data",
 172		.start = 0,
 173		.end = 0,
 174		.flags = IORESOURCE_MEM
 175	}
 176};
 177
 178#define video_ram   mem_res[0]
 179#define kernel_code mem_res[1]
 180#define kernel_data mem_res[2]
 181
 182static struct resource io_res[] = {
 183	{
 184		.name = "reserved",
 185		.start = 0x3bc,
 186		.end = 0x3be,
 187		.flags = IORESOURCE_IO | IORESOURCE_BUSY
 188	},
 189	{
 190		.name = "reserved",
 191		.start = 0x378,
 192		.end = 0x37f,
 193		.flags = IORESOURCE_IO | IORESOURCE_BUSY
 194	},
 195	{
 196		.name = "reserved",
 197		.start = 0x278,
 198		.end = 0x27f,
 199		.flags = IORESOURCE_IO | IORESOURCE_BUSY
 200	}
 201};
 202
 203#define lp0 io_res[0]
 204#define lp1 io_res[1]
 205#define lp2 io_res[2]
 206
 207static const char *proc_arch[] = {
 208	"undefined/unknown",
 209	"3",
 210	"4",
 211	"4T",
 212	"5",
 213	"5T",
 214	"5TE",
 215	"5TEJ",
 216	"6TEJ",
 217	"7",
 218	"?(11)",
 219	"?(12)",
 220	"?(13)",
 221	"?(14)",
 222	"?(15)",
 223	"?(16)",
 224	"?(17)",
 225};
 226
 
 
 
 
 
 
 227static int __get_cpu_architecture(void)
 228{
 229	int cpu_arch;
 230
 231	if ((read_cpuid_id() & 0x0008f000) == 0) {
 232		cpu_arch = CPU_ARCH_UNKNOWN;
 233	} else if ((read_cpuid_id() & 0x0008f000) == 0x00007000) {
 234		cpu_arch = (read_cpuid_id() & (1 << 23)) ? CPU_ARCH_ARMv4T : CPU_ARCH_ARMv3;
 235	} else if ((read_cpuid_id() & 0x00080000) == 0x00000000) {
 236		cpu_arch = (read_cpuid_id() >> 16) & 7;
 237		if (cpu_arch)
 238			cpu_arch += CPU_ARCH_ARMv3;
 239	} else if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) {
 240		unsigned int mmfr0;
 241
 242		/* Revised CPUID format. Read the Memory Model Feature
 243		 * Register 0 and check for VMSAv7 or PMSAv7 */
 244		asm("mrc	p15, 0, %0, c0, c1, 4"
 245		    : "=r" (mmfr0));
 246		if ((mmfr0 & 0x0000000f) >= 0x00000003 ||
 247		    (mmfr0 & 0x000000f0) >= 0x00000030)
 248			cpu_arch = CPU_ARCH_ARMv7;
 249		else if ((mmfr0 & 0x0000000f) == 0x00000002 ||
 250			 (mmfr0 & 0x000000f0) == 0x00000020)
 251			cpu_arch = CPU_ARCH_ARMv6;
 252		else
 253			cpu_arch = CPU_ARCH_UNKNOWN;
 254	} else
 255		cpu_arch = CPU_ARCH_UNKNOWN;
 256
 257	return cpu_arch;
 258}
 
 259
 260int __pure cpu_architecture(void)
 261{
 262	BUG_ON(__cpu_architecture == CPU_ARCH_UNKNOWN);
 263
 264	return __cpu_architecture;
 265}
 266
 267static int cpu_has_aliasing_icache(unsigned int arch)
 268{
 269	int aliasing_icache;
 270	unsigned int id_reg, num_sets, line_size;
 271
 272	/* PIPT caches never alias. */
 273	if (icache_is_pipt())
 274		return 0;
 275
 276	/* arch specifies the register format */
 277	switch (arch) {
 278	case CPU_ARCH_ARMv7:
 279		asm("mcr	p15, 2, %0, c0, c0, 0 @ set CSSELR"
 280		    : /* No output operands */
 281		    : "r" (1));
 282		isb();
 283		asm("mrc	p15, 1, %0, c0, c0, 0 @ read CCSIDR"
 284		    : "=r" (id_reg));
 285		line_size = 4 << ((id_reg & 0x7) + 2);
 286		num_sets = ((id_reg >> 13) & 0x7fff) + 1;
 287		aliasing_icache = (line_size * num_sets) > PAGE_SIZE;
 288		break;
 289	case CPU_ARCH_ARMv6:
 290		aliasing_icache = read_cpuid_cachetype() & (1 << 11);
 291		break;
 292	default:
 293		/* I-cache aliases will be handled by D-cache aliasing code */
 294		aliasing_icache = 0;
 295	}
 296
 297	return aliasing_icache;
 298}
 299
 300static void __init cacheid_init(void)
 301{
 302	unsigned int cachetype = read_cpuid_cachetype();
 303	unsigned int arch = cpu_architecture();
 304
 305	if (arch >= CPU_ARCH_ARMv6) {
 306		if ((cachetype & (7 << 29)) == 4 << 29) {
 
 
 
 
 307			/* ARMv7 register format */
 308			arch = CPU_ARCH_ARMv7;
 309			cacheid = CACHEID_VIPT_NONALIASING;
 310			switch (cachetype & (3 << 14)) {
 311			case (1 << 14):
 312				cacheid |= CACHEID_ASID_TAGGED;
 313				break;
 314			case (3 << 14):
 315				cacheid |= CACHEID_PIPT;
 316				break;
 317			}
 318		} else {
 319			arch = CPU_ARCH_ARMv6;
 320			if (cachetype & (1 << 23))
 321				cacheid = CACHEID_VIPT_ALIASING;
 322			else
 323				cacheid = CACHEID_VIPT_NONALIASING;
 324		}
 325		if (cpu_has_aliasing_icache(arch))
 326			cacheid |= CACHEID_VIPT_I_ALIASING;
 327	} else {
 328		cacheid = CACHEID_VIVT;
 329	}
 330
 331	printk("CPU: %s data cache, %s instruction cache\n",
 332		cache_is_vivt() ? "VIVT" :
 333		cache_is_vipt_aliasing() ? "VIPT aliasing" :
 334		cache_is_vipt_nonaliasing() ? "PIPT / VIPT nonaliasing" : "unknown",
 335		cache_is_vivt() ? "VIVT" :
 336		icache_is_vivt_asid_tagged() ? "VIVT ASID tagged" :
 337		icache_is_vipt_aliasing() ? "VIPT aliasing" :
 338		icache_is_pipt() ? "PIPT" :
 339		cache_is_vipt_nonaliasing() ? "VIPT nonaliasing" : "unknown");
 340}
 341
 342/*
 343 * These functions re-use the assembly code in head.S, which
 344 * already provide the required functionality.
 345 */
 346extern struct proc_info_list *lookup_processor_type(unsigned int);
 347
 348void __init early_print(const char *str, ...)
 349{
 350	extern void printascii(const char *);
 351	char buf[256];
 352	va_list ap;
 353
 354	va_start(ap, str);
 355	vsnprintf(buf, sizeof(buf), str, ap);
 356	va_end(ap);
 357
 358#ifdef CONFIG_DEBUG_LL
 359	printascii(buf);
 360#endif
 361	printk("%s", buf);
 362}
 363
 364static void __init feat_v6_fixup(void)
 
 
 365{
 366	int id = read_cpuid_id();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 367
 368	if ((id & 0xff0f0000) != 0x41070000)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 369		return;
 370
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 371	/*
 372	 * HWCAP_TLS is available only on 1136 r1p0 and later,
 373	 * see also kuser_get_tls_init.
 374	 */
 375	if ((((id >> 4) & 0xfff) == 0xb36) && (((id >> 20) & 3) == 0))
 
 376		elf_hwcap &= ~HWCAP_TLS;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 377}
 378
 379/*
 380 * cpu_init - initialise one CPU.
 381 *
 382 * cpu_init sets up the per-CPU stacks.
 383 */
 384void cpu_init(void)
 385{
 
 386	unsigned int cpu = smp_processor_id();
 387	struct stack *stk = &stacks[cpu];
 388
 389	if (cpu >= NR_CPUS) {
 390		printk(KERN_CRIT "CPU%u: bad primary CPU number\n", cpu);
 391		BUG();
 392	}
 393
 
 
 
 
 
 
 394	cpu_proc_init();
 395
 396	/*
 397	 * Define the placement constraint for the inline asm directive below.
 398	 * In Thumb-2, msr with an immediate value is not allowed.
 399	 */
 400#ifdef CONFIG_THUMB2_KERNEL
 401#define PLC	"r"
 
 402#else
 403#define PLC	"I"
 
 404#endif
 405
 406	/*
 407	 * setup stacks for re-entrant exception handlers
 408	 */
 409	__asm__ (
 410	"msr	cpsr_c, %1\n\t"
 411	"add	r14, %0, %2\n\t"
 412	"mov	sp, r14\n\t"
 413	"msr	cpsr_c, %3\n\t"
 414	"add	r14, %0, %4\n\t"
 415	"mov	sp, r14\n\t"
 416	"msr	cpsr_c, %5\n\t"
 417	"add	r14, %0, %6\n\t"
 418	"mov	sp, r14\n\t"
 419	"msr	cpsr_c, %7"
 
 
 
 420	    :
 421	    : "r" (stk),
 422	      PLC (PSR_F_BIT | PSR_I_BIT | IRQ_MODE),
 423	      "I" (offsetof(struct stack, irq[0])),
 424	      PLC (PSR_F_BIT | PSR_I_BIT | ABT_MODE),
 425	      "I" (offsetof(struct stack, abt[0])),
 426	      PLC (PSR_F_BIT | PSR_I_BIT | UND_MODE),
 427	      "I" (offsetof(struct stack, und[0])),
 428	      PLC (PSR_F_BIT | PSR_I_BIT | SVC_MODE)
 
 
 429	    : "r14");
 
 430}
 431
 432int __cpu_logical_map[NR_CPUS];
 433
 434void __init smp_setup_processor_id(void)
 435{
 436	int i;
 437	u32 cpu = is_smp() ? read_cpuid_mpidr() & 0xff : 0;
 
 438
 439	cpu_logical_map(0) = cpu;
 440	for (i = 1; i < NR_CPUS; ++i)
 441		cpu_logical_map(i) = i == cpu ? 0 : i;
 442
 443	printk(KERN_INFO "Booting Linux on physical CPU %d\n", cpu);
 
 
 
 
 
 
 
 444}
 445
 446static void __init setup_processor(void)
 
 
 
 
 
 
 
 
 447{
 448	struct proc_info_list *list;
 449
 450	/*
 451	 * locate processor in the list of supported processor
 452	 * types.  The linker builds this table for us from the
 453	 * entries in arch/arm/mm/proc-*.S
 454	 */
 455	list = lookup_processor_type(read_cpuid_id());
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 456	if (!list) {
 457		printk("CPU configuration botched (ID %08x), unable "
 458		       "to continue.\n", read_cpuid_id());
 459		while (1);
 
 460	}
 461
 
 
 
 
 
 
 
 
 462	cpu_name = list->cpu_name;
 463	__cpu_architecture = __get_cpu_architecture();
 464
 465#ifdef MULTI_CPU
 466	processor = *list->proc;
 467#endif
 468#ifdef MULTI_TLB
 469	cpu_tlb = *list->tlb;
 470#endif
 471#ifdef MULTI_USER
 472	cpu_user = *list->user;
 473#endif
 474#ifdef MULTI_CACHE
 475	cpu_cache = *list->cache;
 476#endif
 477
 478	printk("CPU: %s [%08x] revision %d (ARMv%s), cr=%08lx\n",
 479	       cpu_name, read_cpuid_id(), read_cpuid_id() & 15,
 480	       proc_arch[cpu_architecture()], cr_alignment);
 481
 482	snprintf(init_utsname()->machine, __NEW_UTS_LEN + 1, "%s%c",
 483		 list->arch_name, ENDIANNESS);
 484	snprintf(elf_platform, ELF_PLATFORM_SIZE, "%s%c",
 485		 list->elf_name, ENDIANNESS);
 486	elf_hwcap = list->elf_hwcap;
 
 
 
 
 487#ifndef CONFIG_ARM_THUMB
 488	elf_hwcap &= ~HWCAP_THUMB;
 
 
 
 489#endif
 
 490
 491	feat_v6_fixup();
 492
 493	cacheid_init();
 494	cpu_init();
 495}
 496
 497void __init dump_machine_table(void)
 498{
 499	struct machine_desc *p;
 500
 501	early_print("Available machine support:\n\nID (hex)\tNAME\n");
 502	for_each_machine_desc(p)
 503		early_print("%08x\t%s\n", p->nr, p->name);
 504
 505	early_print("\nPlease check your kernel config and/or bootloader.\n");
 506
 507	while (true)
 508		/* can't use cpu_relax() here as it may require MMU setup */;
 509}
 510
 511int __init arm_add_memory(phys_addr_t start, unsigned long size)
 512{
 513	struct membank *bank = &meminfo.bank[meminfo.nr_banks];
 514
 515	if (meminfo.nr_banks >= NR_BANKS) {
 516		printk(KERN_CRIT "NR_BANKS too low, "
 517			"ignoring memory at 0x%08llx\n", (long long)start);
 518		return -EINVAL;
 519	}
 520
 521	/*
 522	 * Ensure that start/size are aligned to a page boundary.
 523	 * Size is appropriately rounded down, start is rounded up.
 524	 */
 525	size -= start & ~PAGE_MASK;
 526	bank->start = PAGE_ALIGN(start);
 
 
 
 
 
 
 
 
 
 
 527
 528#ifndef CONFIG_LPAE
 529	if (bank->start + size < bank->start) {
 530		printk(KERN_CRIT "Truncating memory at 0x%08llx to fit in "
 531			"32-bit physical address space\n", (long long)start);
 532		/*
 533		 * To ensure bank->start + bank->size is representable in
 534		 * 32 bits, we use ULONG_MAX as the upper limit rather than 4GB.
 535		 * This means we lose a page after masking.
 536		 */
 537		size = ULONG_MAX - bank->start;
 538	}
 539#endif
 540
 541	bank->size = size & PAGE_MASK;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 542
 543	/*
 544	 * Check whether this memory region has non-zero size or
 545	 * invalid node number.
 546	 */
 547	if (bank->size == 0)
 548		return -EINVAL;
 549
 550	meminfo.nr_banks++;
 551	return 0;
 552}
 553
 554/*
 555 * Pick out the memory size.  We look for mem=size@start,
 556 * where start and size are "size[KkMm]"
 557 */
 
 558static int __init early_mem(char *p)
 559{
 560	static int usermem __initdata = 0;
 561	unsigned long size;
 562	phys_addr_t start;
 563	char *endp;
 564
 565	/*
 566	 * If the user specifies memory size, we
 567	 * blow away any automatically generated
 568	 * size.
 569	 */
 570	if (usermem == 0) {
 571		usermem = 1;
 572		meminfo.nr_banks = 0;
 
 573	}
 574
 575	start = PHYS_OFFSET;
 576	size  = memparse(p, &endp);
 577	if (*endp == '@')
 578		start = memparse(endp + 1, NULL);
 579
 580	arm_add_memory(start, size);
 581
 582	return 0;
 583}
 584early_param("mem", early_mem);
 585
 586static void __init
 587setup_ramdisk(int doload, int prompt, int image_start, unsigned int rd_sz)
 588{
 589#ifdef CONFIG_BLK_DEV_RAM
 590	extern int rd_size, rd_image_start, rd_prompt, rd_doload;
 591
 592	rd_image_start = image_start;
 593	rd_prompt = prompt;
 594	rd_doload = doload;
 595
 596	if (rd_sz)
 597		rd_size = rd_sz;
 598#endif
 599}
 600
 601static void __init request_standard_resources(struct machine_desc *mdesc)
 602{
 603	struct memblock_region *region;
 604	struct resource *res;
 
 605
 606	kernel_code.start   = virt_to_phys(_text);
 607	kernel_code.end     = virt_to_phys(_etext - 1);
 608	kernel_data.start   = virt_to_phys(_sdata);
 609	kernel_data.end     = virt_to_phys(_end - 1);
 610
 611	for_each_memblock(memory, region) {
 612		res = alloc_bootmem_low(sizeof(*res));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 613		res->name  = "System RAM";
 614		res->start = __pfn_to_phys(memblock_region_memory_base_pfn(region));
 615		res->end = __pfn_to_phys(memblock_region_memory_end_pfn(region)) - 1;
 616		res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
 617
 618		request_resource(&iomem_resource, res);
 619
 620		if (kernel_code.start >= res->start &&
 621		    kernel_code.end <= res->end)
 622			request_resource(res, &kernel_code);
 623		if (kernel_data.start >= res->start &&
 624		    kernel_data.end <= res->end)
 625			request_resource(res, &kernel_data);
 626	}
 627
 628	if (mdesc->video_start) {
 629		video_ram.start = mdesc->video_start;
 630		video_ram.end   = mdesc->video_end;
 631		request_resource(&iomem_resource, &video_ram);
 632	}
 633
 634	/*
 635	 * Some machines don't have the possibility of ever
 636	 * possessing lp0, lp1 or lp2
 637	 */
 638	if (mdesc->reserve_lp0)
 639		request_resource(&ioport_resource, &lp0);
 640	if (mdesc->reserve_lp1)
 641		request_resource(&ioport_resource, &lp1);
 642	if (mdesc->reserve_lp2)
 643		request_resource(&ioport_resource, &lp2);
 644}
 645
 646/*
 647 *  Tag parsing.
 648 *
 649 * This is the new way of passing data to the kernel at boot time.  Rather
 650 * than passing a fixed inflexible structure to the kernel, we pass a list
 651 * of variable-sized tags to the kernel.  The first tag must be a ATAG_CORE
 652 * tag for the list to be recognised (to distinguish the tagged list from
 653 * a param_struct).  The list is terminated with a zero-length tag (this tag
 654 * is not parsed in any way).
 655 */
 656static int __init parse_tag_core(const struct tag *tag)
 657{
 658	if (tag->hdr.size > 2) {
 659		if ((tag->u.core.flags & 1) == 0)
 660			root_mountflags &= ~MS_RDONLY;
 661		ROOT_DEV = old_decode_dev(tag->u.core.rootdev);
 662	}
 663	return 0;
 664}
 665
 666__tagtable(ATAG_CORE, parse_tag_core);
 667
 668static int __init parse_tag_mem32(const struct tag *tag)
 669{
 670	return arm_add_memory(tag->u.mem.start, tag->u.mem.size);
 671}
 672
 673__tagtable(ATAG_MEM, parse_tag_mem32);
 674
 675#if defined(CONFIG_VGA_CONSOLE) || defined(CONFIG_DUMMY_CONSOLE)
 676struct screen_info screen_info = {
 677 .orig_video_lines	= 30,
 678 .orig_video_cols	= 80,
 679 .orig_video_mode	= 0,
 680 .orig_video_ega_bx	= 0,
 681 .orig_video_isVGA	= 1,
 682 .orig_video_points	= 8
 683};
 684
 685static int __init parse_tag_videotext(const struct tag *tag)
 686{
 687	screen_info.orig_x            = tag->u.videotext.x;
 688	screen_info.orig_y            = tag->u.videotext.y;
 689	screen_info.orig_video_page   = tag->u.videotext.video_page;
 690	screen_info.orig_video_mode   = tag->u.videotext.video_mode;
 691	screen_info.orig_video_cols   = tag->u.videotext.video_cols;
 692	screen_info.orig_video_ega_bx = tag->u.videotext.video_ega_bx;
 693	screen_info.orig_video_lines  = tag->u.videotext.video_lines;
 694	screen_info.orig_video_isVGA  = tag->u.videotext.video_isvga;
 695	screen_info.orig_video_points = tag->u.videotext.video_points;
 696	return 0;
 697}
 698
 699__tagtable(ATAG_VIDEOTEXT, parse_tag_videotext);
 700#endif
 701
 702static int __init parse_tag_ramdisk(const struct tag *tag)
 703{
 704	setup_ramdisk((tag->u.ramdisk.flags & 1) == 0,
 705		      (tag->u.ramdisk.flags & 2) == 0,
 706		      tag->u.ramdisk.start, tag->u.ramdisk.size);
 707	return 0;
 708}
 709
 710__tagtable(ATAG_RAMDISK, parse_tag_ramdisk);
 711
 712static int __init parse_tag_serialnr(const struct tag *tag)
 713{
 714	system_serial_low = tag->u.serialnr.low;
 715	system_serial_high = tag->u.serialnr.high;
 716	return 0;
 717}
 718
 719__tagtable(ATAG_SERIAL, parse_tag_serialnr);
 720
 721static int __init parse_tag_revision(const struct tag *tag)
 722{
 723	system_rev = tag->u.revision.rev;
 724	return 0;
 725}
 726
 727__tagtable(ATAG_REVISION, parse_tag_revision);
 728
 729static int __init parse_tag_cmdline(const struct tag *tag)
 730{
 731#if defined(CONFIG_CMDLINE_EXTEND)
 732	strlcat(default_command_line, " ", COMMAND_LINE_SIZE);
 733	strlcat(default_command_line, tag->u.cmdline.cmdline,
 734		COMMAND_LINE_SIZE);
 735#elif defined(CONFIG_CMDLINE_FORCE)
 736	pr_warning("Ignoring tag cmdline (using the default kernel command line)\n");
 737#else
 738	strlcpy(default_command_line, tag->u.cmdline.cmdline,
 739		COMMAND_LINE_SIZE);
 740#endif
 741	return 0;
 742}
 743
 744__tagtable(ATAG_CMDLINE, parse_tag_cmdline);
 745
 746/*
 747 * Scan the tag table for this tag, and call its parse function.
 748 * The tag table is built by the linker from all the __tagtable
 749 * declarations.
 750 */
 751static int __init parse_tag(const struct tag *tag)
 752{
 753	extern struct tagtable __tagtable_begin, __tagtable_end;
 754	struct tagtable *t;
 755
 756	for (t = &__tagtable_begin; t < &__tagtable_end; t++)
 757		if (tag->hdr.tag == t->tag) {
 758			t->parse(tag);
 759			break;
 760		}
 761
 762	return t < &__tagtable_end;
 763}
 764
 765/*
 766 * Parse all tags in the list, checking both the global and architecture
 767 * specific tag tables.
 768 */
 769static void __init parse_tags(const struct tag *t)
 770{
 771	for (; t->hdr.size; t = tag_next(t))
 772		if (!parse_tag(t))
 773			printk(KERN_WARNING
 774				"Ignoring unrecognised tag 0x%08x\n",
 775				t->hdr.tag);
 776}
 777
 778/*
 779 * This holds our defaults.
 780 */
 781static struct init_tags {
 782	struct tag_header hdr1;
 783	struct tag_core   core;
 784	struct tag_header hdr2;
 785	struct tag_mem32  mem;
 786	struct tag_header hdr3;
 787} init_tags __initdata = {
 788	{ tag_size(tag_core), ATAG_CORE },
 789	{ 1, PAGE_SIZE, 0xff },
 790	{ tag_size(tag_mem32), ATAG_MEM },
 791	{ MEM_SIZE },
 792	{ 0, ATAG_NONE }
 793};
 794
 795static int __init customize_machine(void)
 796{
 797	/* customizes platform devices, or adds new ones */
 
 
 
 
 
 798	if (machine_desc->init_machine)
 799		machine_desc->init_machine();
 
 800	return 0;
 801}
 802arch_initcall(customize_machine);
 803
 804static int __init init_machine_late(void)
 805{
 
 
 
 806	if (machine_desc->init_late)
 807		machine_desc->init_late();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 808	return 0;
 809}
 810late_initcall(init_machine_late);
 811
 812#ifdef CONFIG_KEXEC
 
 
 
 
 
 
 813static inline unsigned long long get_total_mem(void)
 814{
 815	unsigned long total;
 816
 817	total = max_low_pfn - min_low_pfn;
 818	return total << PAGE_SHIFT;
 819}
 820
 821/**
 822 * reserve_crashkernel() - reserves memory are for crash kernel
 823 *
 824 * This function reserves memory area given in "crashkernel=" kernel command
 825 * line parameter. The memory reserved is used by a dump capture kernel when
 826 * primary kernel is crashing.
 827 */
 828static void __init reserve_crashkernel(void)
 829{
 830	unsigned long long crash_size, crash_base;
 831	unsigned long long total_mem;
 832	int ret;
 833
 834	total_mem = get_total_mem();
 835	ret = parse_crashkernel(boot_command_line, total_mem,
 836				&crash_size, &crash_base);
 837	if (ret)
 
 838		return;
 839
 840	ret = reserve_bootmem(crash_base, crash_size, BOOTMEM_EXCLUSIVE);
 841	if (ret < 0) {
 842		printk(KERN_WARNING "crashkernel reservation failed - "
 843		       "memory is in use (0x%lx)\n", (unsigned long)crash_base);
 844		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 845	}
 846
 847	printk(KERN_INFO "Reserving %ldMB of memory at %ldMB "
 848	       "for crashkernel (System RAM: %ldMB)\n",
 849	       (unsigned long)(crash_size >> 20),
 850	       (unsigned long)(crash_base >> 20),
 851	       (unsigned long)(total_mem >> 20));
 852
 
 853	crashk_res.start = crash_base;
 854	crashk_res.end = crash_base + crash_size - 1;
 855	insert_resource(&iomem_resource, &crashk_res);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 856}
 857#else
 858static inline void reserve_crashkernel(void) {}
 859#endif /* CONFIG_KEXEC */
 860
 861static void __init squash_mem_tags(struct tag *tag)
 862{
 863	for (; tag->hdr.size; tag = tag_next(tag))
 864		if (tag->hdr.tag == ATAG_MEM)
 865			tag->hdr.tag = ATAG_NONE;
 866}
 867
 868static struct machine_desc * __init setup_machine_tags(unsigned int nr)
 869{
 870	struct tag *tags = (struct tag *)&init_tags;
 871	struct machine_desc *mdesc = NULL, *p;
 872	char *from = default_command_line;
 873
 874	init_tags.mem.start = PHYS_OFFSET;
 875
 876	/*
 877	 * locate machine in the list of supported machines.
 878	 */
 879	for_each_machine_desc(p)
 880		if (nr == p->nr) {
 881			printk("Machine: %s\n", p->name);
 882			mdesc = p;
 883			break;
 884		}
 885
 886	if (!mdesc) {
 887		early_print("\nError: unrecognized/unsupported machine ID"
 888			" (r1 = 0x%08x).\n\n", nr);
 889		dump_machine_table(); /* does not return */
 890	}
 891
 892	if (__atags_pointer)
 893		tags = phys_to_virt(__atags_pointer);
 894	else if (mdesc->atag_offset)
 895		tags = (void *)(PAGE_OFFSET + mdesc->atag_offset);
 896
 897#if defined(CONFIG_DEPRECATED_PARAM_STRUCT)
 898	/*
 899	 * If we have the old style parameters, convert them to
 900	 * a tag list.
 901	 */
 902	if (tags->hdr.tag != ATAG_CORE)
 903		convert_to_tag_list(tags);
 904#endif
 905
 906	if (tags->hdr.tag != ATAG_CORE) {
 907#if defined(CONFIG_OF)
 908		/*
 909		 * If CONFIG_OF is set, then assume this is a reasonably
 910		 * modern system that should pass boot parameters
 911		 */
 912		early_print("Warning: Neither atags nor dtb found\n");
 913#endif
 914		tags = (struct tag *)&init_tags;
 915	}
 916
 917	if (mdesc->fixup)
 918		mdesc->fixup(tags, &from, &meminfo);
 919
 920	if (tags->hdr.tag == ATAG_CORE) {
 921		if (meminfo.nr_banks != 0)
 922			squash_mem_tags(tags);
 923		save_atags(tags);
 924		parse_tags(tags);
 925	}
 926
 927	/* parse_early_param needs a boot_command_line */
 928	strlcpy(boot_command_line, from, COMMAND_LINE_SIZE);
 929
 930	return mdesc;
 931}
 932
 933static int __init meminfo_cmp(const void *_a, const void *_b)
 
 
 
 934{
 935	const struct membank *a = _a, *b = _b;
 936	long cmp = bank_pfn_start(a) - bank_pfn_start(b);
 937	return cmp < 0 ? -1 : cmp > 0 ? 1 : 0;
 938}
 939
 
 
 
 
 
 940void __init setup_arch(char **cmdline_p)
 941{
 942	struct machine_desc *mdesc;
 
 
 
 
 943
 944	setup_processor();
 945	mdesc = setup_machine_fdt(__atags_pointer);
 
 
 
 
 
 946	if (!mdesc)
 947		mdesc = setup_machine_tags(machine_arch_type);
 
 
 
 
 
 
 
 
 
 948	machine_desc = mdesc;
 949	machine_name = mdesc->name;
 
 950
 951	setup_dma_zone(mdesc);
 952
 953	if (mdesc->restart_mode)
 954		reboot_setup(&mdesc->restart_mode);
 955
 956	init_mm.start_code = (unsigned long) _text;
 957	init_mm.end_code   = (unsigned long) _etext;
 958	init_mm.end_data   = (unsigned long) _edata;
 959	init_mm.brk	   = (unsigned long) _end;
 960
 961	/* populate cmd_line too for later use, preserving boot_command_line */
 962	strlcpy(cmd_line, boot_command_line, COMMAND_LINE_SIZE);
 963	*cmdline_p = cmd_line;
 964
 
 
 
 965	parse_early_param();
 966
 967	sort(&meminfo.bank, meminfo.nr_banks, sizeof(meminfo.bank[0]), meminfo_cmp, NULL);
 968	sanity_check_meminfo();
 969	arm_memblock_init(&meminfo, mdesc);
 
 
 
 
 
 
 
 
 
 
 
 
 
 970
 971	paging_init(mdesc);
 
 972	request_standard_resources(mdesc);
 973
 974	if (mdesc->restart)
 975		arm_pm_restart = mdesc->restart;
 
 
 976
 977	unflatten_device_tree();
 978
 
 
 979#ifdef CONFIG_SMP
 980	if (is_smp())
 
 
 
 
 
 
 981		smp_init_cpus();
 
 
 982#endif
 983	reserve_crashkernel();
 984
 985	tcm_init();
 
 986
 987#ifdef CONFIG_MULTI_IRQ_HANDLER
 
 
 988	handle_arch_irq = mdesc->handle_irq;
 989#endif
 990
 991#ifdef CONFIG_VT
 992#if defined(CONFIG_VGA_CONSOLE)
 993	conswitchp = &vga_con;
 994#elif defined(CONFIG_DUMMY_CONSOLE)
 995	conswitchp = &dummy_con;
 996#endif
 997#endif
 998
 999	if (mdesc->init_early)
1000		mdesc->init_early();
1001}
1002
1003
1004static int __init topology_init(void)
1005{
1006	int cpu;
1007
1008	for_each_possible_cpu(cpu) {
1009		struct cpuinfo_arm *cpuinfo = &per_cpu(cpu_data, cpu);
1010		cpuinfo->cpu.hotpluggable = 1;
1011		register_cpu(&cpuinfo->cpu, cpu);
1012	}
1013
1014	return 0;
1015}
1016subsys_initcall(topology_init);
1017
1018#ifdef CONFIG_HAVE_PROC_CPU
1019static int __init proc_cpu_init(void)
1020{
1021	struct proc_dir_entry *res;
1022
1023	res = proc_mkdir("cpu", NULL);
1024	if (!res)
1025		return -ENOMEM;
1026	return 0;
1027}
1028fs_initcall(proc_cpu_init);
1029#endif
1030
1031static const char *hwcap_str[] = {
1032	"swp",
1033	"half",
1034	"thumb",
1035	"26bit",
1036	"fastmult",
1037	"fpa",
1038	"vfp",
1039	"edsp",
1040	"java",
1041	"iwmmxt",
1042	"crunch",
1043	"thumbee",
1044	"neon",
1045	"vfpv3",
1046	"vfpv3d16",
1047	"tls",
1048	"vfpv4",
1049	"idiva",
1050	"idivt",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1051	NULL
1052};
1053
1054static int c_show(struct seq_file *m, void *v)
1055{
1056	int i;
 
1057
1058	seq_printf(m, "Processor\t: %s rev %d (%s)\n",
1059		   cpu_name, read_cpuid_id() & 15, elf_platform);
1060
1061#if defined(CONFIG_SMP)
1062	for_each_online_cpu(i) {
1063		/*
1064		 * glibc reads /proc/cpuinfo to determine the number of
1065		 * online processors, looking for lines beginning with
1066		 * "processor".  Give glibc what it expects.
1067		 */
1068		seq_printf(m, "processor\t: %d\n", i);
1069		seq_printf(m, "BogoMIPS\t: %lu.%02lu\n\n",
 
 
 
 
 
1070			   per_cpu(cpu_data, i).loops_per_jiffy / (500000UL/HZ),
1071			   (per_cpu(cpu_data, i).loops_per_jiffy / (5000UL/HZ)) % 100);
1072	}
1073#else /* CONFIG_SMP */
1074	seq_printf(m, "BogoMIPS\t: %lu.%02lu\n",
1075		   loops_per_jiffy / (500000/HZ),
1076		   (loops_per_jiffy / (5000/HZ)) % 100);
1077#endif
1078
1079	/* dump out the processor features */
1080	seq_puts(m, "Features\t: ");
1081
1082	for (i = 0; hwcap_str[i]; i++)
1083		if (elf_hwcap & (1 << i))
1084			seq_printf(m, "%s ", hwcap_str[i]);
1085
1086	seq_printf(m, "\nCPU implementer\t: 0x%02x\n", read_cpuid_id() >> 24);
1087	seq_printf(m, "CPU architecture: %s\n", proc_arch[cpu_architecture()]);
1088
1089	if ((read_cpuid_id() & 0x0008f000) == 0x00000000) {
1090		/* pre-ARM7 */
1091		seq_printf(m, "CPU part\t: %07x\n", read_cpuid_id() >> 4);
1092	} else {
1093		if ((read_cpuid_id() & 0x0008f000) == 0x00007000) {
1094			/* ARM7 */
1095			seq_printf(m, "CPU variant\t: 0x%02x\n",
1096				   (read_cpuid_id() >> 16) & 127);
1097		} else {
1098			/* post-ARM7 */
1099			seq_printf(m, "CPU variant\t: 0x%x\n",
1100				   (read_cpuid_id() >> 20) & 15);
 
 
 
 
 
 
 
 
1101		}
1102		seq_printf(m, "CPU part\t: 0x%03x\n",
1103			   (read_cpuid_id() >> 4) & 0xfff);
1104	}
1105	seq_printf(m, "CPU revision\t: %d\n", read_cpuid_id() & 15);
1106
1107	seq_puts(m, "\n");
1108
1109	seq_printf(m, "Hardware\t: %s\n", machine_name);
1110	seq_printf(m, "Revision\t: %04x\n", system_rev);
1111	seq_printf(m, "Serial\t\t: %08x%08x\n",
1112		   system_serial_high, system_serial_low);
1113
1114	return 0;
1115}
1116
1117static void *c_start(struct seq_file *m, loff_t *pos)
1118{
1119	return *pos < 1 ? (void *)1 : NULL;
1120}
1121
1122static void *c_next(struct seq_file *m, void *v, loff_t *pos)
1123{
1124	++*pos;
1125	return NULL;
1126}
1127
1128static void c_stop(struct seq_file *m, void *v)
1129{
1130}
1131
1132const struct seq_operations cpuinfo_op = {
1133	.start	= c_start,
1134	.next	= c_next,
1135	.stop	= c_stop,
1136	.show	= c_show
1137};
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/arch/arm/kernel/setup.c
   4 *
   5 *  Copyright (C) 1995-2001 Russell King
 
 
 
 
   6 */
   7#include <linux/efi.h>
   8#include <linux/export.h>
   9#include <linux/kernel.h>
  10#include <linux/stddef.h>
  11#include <linux/ioport.h>
  12#include <linux/delay.h>
  13#include <linux/utsname.h>
  14#include <linux/initrd.h>
  15#include <linux/console.h>
 
  16#include <linux/seq_file.h>
  17#include <linux/screen_info.h>
  18#include <linux/of_platform.h>
  19#include <linux/init.h>
  20#include <linux/kexec.h>
  21#include <linux/libfdt.h>
  22#include <linux/of_fdt.h>
 
  23#include <linux/cpu.h>
  24#include <linux/interrupt.h>
  25#include <linux/smp.h>
 
  26#include <linux/proc_fs.h>
  27#include <linux/memblock.h>
  28#include <linux/bug.h>
  29#include <linux/compiler.h>
  30#include <linux/sort.h>
  31#include <linux/psci.h>
  32
  33#include <asm/unified.h>
  34#include <asm/cp15.h>
  35#include <asm/cpu.h>
  36#include <asm/cputype.h>
  37#include <asm/efi.h>
  38#include <asm/elf.h>
  39#include <asm/early_ioremap.h>
  40#include <asm/fixmap.h>
  41#include <asm/procinfo.h>
  42#include <asm/psci.h>
  43#include <asm/sections.h>
  44#include <asm/setup.h>
  45#include <asm/smp_plat.h>
  46#include <asm/mach-types.h>
  47#include <asm/cacheflush.h>
  48#include <asm/cachetype.h>
  49#include <asm/tlbflush.h>
  50#include <asm/xen/hypervisor.h>
  51
  52#include <asm/prom.h>
  53#include <asm/mach/arch.h>
  54#include <asm/mach/irq.h>
  55#include <asm/mach/time.h>
  56#include <asm/system_info.h>
  57#include <asm/system_misc.h>
  58#include <asm/traps.h>
  59#include <asm/unwind.h>
  60#include <asm/memblock.h>
  61#include <asm/virt.h>
  62#include <asm/kasan.h>
  63
 
 
 
  64#include "atags.h"
 
  65
 
 
 
  66
  67#if defined(CONFIG_FPE_NWFPE) || defined(CONFIG_FPE_FASTFPE)
  68char fpe_type[8];
  69
  70static int __init fpe_setup(char *line)
  71{
  72	memcpy(fpe_type, line, 8);
  73	return 1;
  74}
  75
  76__setup("fpe=", fpe_setup);
  77#endif
  78
  79extern void init_default_cache_policy(unsigned long);
  80extern void paging_init(const struct machine_desc *desc);
  81extern void early_mm_init(const struct machine_desc *);
  82extern void adjust_lowmem_bounds(void);
  83extern enum reboot_mode reboot_mode;
  84extern void setup_dma_zone(const struct machine_desc *desc);
  85
  86unsigned int processor_id;
  87EXPORT_SYMBOL(processor_id);
  88unsigned int __machine_arch_type __read_mostly;
  89EXPORT_SYMBOL(__machine_arch_type);
  90unsigned int cacheid __read_mostly;
  91EXPORT_SYMBOL(cacheid);
  92
  93unsigned int __atags_pointer __initdata;
  94
  95unsigned int system_rev;
  96EXPORT_SYMBOL(system_rev);
  97
  98const char *system_serial;
  99EXPORT_SYMBOL(system_serial);
 100
 101unsigned int system_serial_low;
 102EXPORT_SYMBOL(system_serial_low);
 103
 104unsigned int system_serial_high;
 105EXPORT_SYMBOL(system_serial_high);
 106
 107unsigned int elf_hwcap __read_mostly;
 108EXPORT_SYMBOL(elf_hwcap);
 109
 110unsigned int elf_hwcap2 __read_mostly;
 111EXPORT_SYMBOL(elf_hwcap2);
 112
 113
 114#ifdef MULTI_CPU
 115struct processor processor __ro_after_init;
 116#if defined(CONFIG_BIG_LITTLE) && defined(CONFIG_HARDEN_BRANCH_PREDICTOR)
 117struct processor *cpu_vtable[NR_CPUS] = {
 118	[0] = &processor,
 119};
 120#endif
 121#endif
 122#ifdef MULTI_TLB
 123struct cpu_tlb_fns cpu_tlb __ro_after_init;
 124#endif
 125#ifdef MULTI_USER
 126struct cpu_user_fns cpu_user __ro_after_init;
 127#endif
 128#ifdef MULTI_CACHE
 129struct cpu_cache_fns cpu_cache __ro_after_init;
 130#endif
 131#ifdef CONFIG_OUTER_CACHE
 132struct outer_cache_fns outer_cache __ro_after_init;
 133EXPORT_SYMBOL(outer_cache);
 134#endif
 135
 136/*
 137 * Cached cpu_architecture() result for use by assembler code.
 138 * C code should use the cpu_architecture() function instead of accessing this
 139 * variable directly.
 140 */
 141int __cpu_architecture __read_mostly = CPU_ARCH_UNKNOWN;
 142
 143struct stack {
 144	u32 irq[4];
 145	u32 abt[4];
 146	u32 und[4];
 147	u32 fiq[4];
 148} ____cacheline_aligned;
 149
 150#ifndef CONFIG_CPU_V7M
 151static struct stack stacks[NR_CPUS];
 152#endif
 153
 154char elf_platform[ELF_PLATFORM_SIZE];
 155EXPORT_SYMBOL(elf_platform);
 156
 157static const char *cpu_name;
 158static const char *machine_name;
 159static char __initdata cmd_line[COMMAND_LINE_SIZE];
 160const struct machine_desc *machine_desc __initdata;
 161
 
 162static union { char c[4]; unsigned long l; } endian_test __initdata = { { 'l', '?', '?', 'b' } };
 163#define ENDIANNESS ((char)endian_test.l)
 164
 165DEFINE_PER_CPU(struct cpuinfo_arm, cpu_data);
 166
 167/*
 168 * Standard memory resources
 169 */
 170static struct resource mem_res[] = {
 171	{
 172		.name = "Video RAM",
 173		.start = 0,
 174		.end = 0,
 175		.flags = IORESOURCE_MEM
 176	},
 177	{
 178		.name = "Kernel code",
 179		.start = 0,
 180		.end = 0,
 181		.flags = IORESOURCE_SYSTEM_RAM
 182	},
 183	{
 184		.name = "Kernel data",
 185		.start = 0,
 186		.end = 0,
 187		.flags = IORESOURCE_SYSTEM_RAM
 188	}
 189};
 190
 191#define video_ram   mem_res[0]
 192#define kernel_code mem_res[1]
 193#define kernel_data mem_res[2]
 194
 195static struct resource io_res[] = {
 196	{
 197		.name = "reserved",
 198		.start = 0x3bc,
 199		.end = 0x3be,
 200		.flags = IORESOURCE_IO | IORESOURCE_BUSY
 201	},
 202	{
 203		.name = "reserved",
 204		.start = 0x378,
 205		.end = 0x37f,
 206		.flags = IORESOURCE_IO | IORESOURCE_BUSY
 207	},
 208	{
 209		.name = "reserved",
 210		.start = 0x278,
 211		.end = 0x27f,
 212		.flags = IORESOURCE_IO | IORESOURCE_BUSY
 213	}
 214};
 215
 216#define lp0 io_res[0]
 217#define lp1 io_res[1]
 218#define lp2 io_res[2]
 219
 220static const char *proc_arch[] = {
 221	"undefined/unknown",
 222	"3",
 223	"4",
 224	"4T",
 225	"5",
 226	"5T",
 227	"5TE",
 228	"5TEJ",
 229	"6TEJ",
 230	"7",
 231	"7M",
 232	"?(12)",
 233	"?(13)",
 234	"?(14)",
 235	"?(15)",
 236	"?(16)",
 237	"?(17)",
 238};
 239
 240#ifdef CONFIG_CPU_V7M
 241static int __get_cpu_architecture(void)
 242{
 243	return CPU_ARCH_ARMv7M;
 244}
 245#else
 246static int __get_cpu_architecture(void)
 247{
 248	int cpu_arch;
 249
 250	if ((read_cpuid_id() & 0x0008f000) == 0) {
 251		cpu_arch = CPU_ARCH_UNKNOWN;
 252	} else if ((read_cpuid_id() & 0x0008f000) == 0x00007000) {
 253		cpu_arch = (read_cpuid_id() & (1 << 23)) ? CPU_ARCH_ARMv4T : CPU_ARCH_ARMv3;
 254	} else if ((read_cpuid_id() & 0x00080000) == 0x00000000) {
 255		cpu_arch = (read_cpuid_id() >> 16) & 7;
 256		if (cpu_arch)
 257			cpu_arch += CPU_ARCH_ARMv3;
 258	} else if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) {
 
 
 259		/* Revised CPUID format. Read the Memory Model Feature
 260		 * Register 0 and check for VMSAv7 or PMSAv7 */
 261		unsigned int mmfr0 = read_cpuid_ext(CPUID_EXT_MMFR0);
 
 262		if ((mmfr0 & 0x0000000f) >= 0x00000003 ||
 263		    (mmfr0 & 0x000000f0) >= 0x00000030)
 264			cpu_arch = CPU_ARCH_ARMv7;
 265		else if ((mmfr0 & 0x0000000f) == 0x00000002 ||
 266			 (mmfr0 & 0x000000f0) == 0x00000020)
 267			cpu_arch = CPU_ARCH_ARMv6;
 268		else
 269			cpu_arch = CPU_ARCH_UNKNOWN;
 270	} else
 271		cpu_arch = CPU_ARCH_UNKNOWN;
 272
 273	return cpu_arch;
 274}
 275#endif
 276
 277int __pure cpu_architecture(void)
 278{
 279	BUG_ON(__cpu_architecture == CPU_ARCH_UNKNOWN);
 280
 281	return __cpu_architecture;
 282}
 283
 284static int cpu_has_aliasing_icache(unsigned int arch)
 285{
 286	int aliasing_icache;
 287	unsigned int id_reg, num_sets, line_size;
 288
 289	/* PIPT caches never alias. */
 290	if (icache_is_pipt())
 291		return 0;
 292
 293	/* arch specifies the register format */
 294	switch (arch) {
 295	case CPU_ARCH_ARMv7:
 296		set_csselr(CSSELR_ICACHE | CSSELR_L1);
 
 
 297		isb();
 298		id_reg = read_ccsidr();
 
 299		line_size = 4 << ((id_reg & 0x7) + 2);
 300		num_sets = ((id_reg >> 13) & 0x7fff) + 1;
 301		aliasing_icache = (line_size * num_sets) > PAGE_SIZE;
 302		break;
 303	case CPU_ARCH_ARMv6:
 304		aliasing_icache = read_cpuid_cachetype() & (1 << 11);
 305		break;
 306	default:
 307		/* I-cache aliases will be handled by D-cache aliasing code */
 308		aliasing_icache = 0;
 309	}
 310
 311	return aliasing_icache;
 312}
 313
 314static void __init cacheid_init(void)
 315{
 
 316	unsigned int arch = cpu_architecture();
 317
 318	if (arch >= CPU_ARCH_ARMv6) {
 319		unsigned int cachetype = read_cpuid_cachetype();
 320
 321		if ((arch == CPU_ARCH_ARMv7M) && !(cachetype & 0xf000f)) {
 322			cacheid = 0;
 323		} else if ((cachetype & (7 << 29)) == 4 << 29) {
 324			/* ARMv7 register format */
 325			arch = CPU_ARCH_ARMv7;
 326			cacheid = CACHEID_VIPT_NONALIASING;
 327			switch (cachetype & (3 << 14)) {
 328			case (1 << 14):
 329				cacheid |= CACHEID_ASID_TAGGED;
 330				break;
 331			case (3 << 14):
 332				cacheid |= CACHEID_PIPT;
 333				break;
 334			}
 335		} else {
 336			arch = CPU_ARCH_ARMv6;
 337			if (cachetype & (1 << 23))
 338				cacheid = CACHEID_VIPT_ALIASING;
 339			else
 340				cacheid = CACHEID_VIPT_NONALIASING;
 341		}
 342		if (cpu_has_aliasing_icache(arch))
 343			cacheid |= CACHEID_VIPT_I_ALIASING;
 344	} else {
 345		cacheid = CACHEID_VIVT;
 346	}
 347
 348	pr_info("CPU: %s data cache, %s instruction cache\n",
 349		cache_is_vivt() ? "VIVT" :
 350		cache_is_vipt_aliasing() ? "VIPT aliasing" :
 351		cache_is_vipt_nonaliasing() ? "PIPT / VIPT nonaliasing" : "unknown",
 352		cache_is_vivt() ? "VIVT" :
 353		icache_is_vivt_asid_tagged() ? "VIVT ASID tagged" :
 354		icache_is_vipt_aliasing() ? "VIPT aliasing" :
 355		icache_is_pipt() ? "PIPT" :
 356		cache_is_vipt_nonaliasing() ? "VIPT nonaliasing" : "unknown");
 357}
 358
 359/*
 360 * These functions re-use the assembly code in head.S, which
 361 * already provide the required functionality.
 362 */
 363extern struct proc_info_list *lookup_processor_type(unsigned int);
 364
 365void __init early_print(const char *str, ...)
 366{
 367	extern void printascii(const char *);
 368	char buf[256];
 369	va_list ap;
 370
 371	va_start(ap, str);
 372	vsnprintf(buf, sizeof(buf), str, ap);
 373	va_end(ap);
 374
 375#ifdef CONFIG_DEBUG_LL
 376	printascii(buf);
 377#endif
 378	printk("%s", buf);
 379}
 380
 381#ifdef CONFIG_ARM_PATCH_IDIV
 382
 383static inline u32 __attribute_const__ sdiv_instruction(void)
 384{
 385	if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) {
 386		/* "sdiv r0, r0, r1" */
 387		u32 insn = __opcode_thumb32_compose(0xfb90, 0xf0f1);
 388		return __opcode_to_mem_thumb32(insn);
 389	}
 390
 391	/* "sdiv r0, r0, r1" */
 392	return __opcode_to_mem_arm(0xe710f110);
 393}
 394
 395static inline u32 __attribute_const__ udiv_instruction(void)
 396{
 397	if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) {
 398		/* "udiv r0, r0, r1" */
 399		u32 insn = __opcode_thumb32_compose(0xfbb0, 0xf0f1);
 400		return __opcode_to_mem_thumb32(insn);
 401	}
 402
 403	/* "udiv r0, r0, r1" */
 404	return __opcode_to_mem_arm(0xe730f110);
 405}
 406
 407static inline u32 __attribute_const__ bx_lr_instruction(void)
 408{
 409	if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) {
 410		/* "bx lr; nop" */
 411		u32 insn = __opcode_thumb32_compose(0x4770, 0x46c0);
 412		return __opcode_to_mem_thumb32(insn);
 413	}
 414
 415	/* "bx lr" */
 416	return __opcode_to_mem_arm(0xe12fff1e);
 417}
 418
 419static void __init patch_aeabi_idiv(void)
 420{
 421	extern void __aeabi_uidiv(void);
 422	extern void __aeabi_idiv(void);
 423	uintptr_t fn_addr;
 424	unsigned int mask;
 425
 426	mask = IS_ENABLED(CONFIG_THUMB2_KERNEL) ? HWCAP_IDIVT : HWCAP_IDIVA;
 427	if (!(elf_hwcap & mask))
 428		return;
 429
 430	pr_info("CPU: div instructions available: patching division code\n");
 431
 432	fn_addr = ((uintptr_t)&__aeabi_uidiv) & ~1;
 433	asm ("" : "+g" (fn_addr));
 434	((u32 *)fn_addr)[0] = udiv_instruction();
 435	((u32 *)fn_addr)[1] = bx_lr_instruction();
 436	flush_icache_range(fn_addr, fn_addr + 8);
 437
 438	fn_addr = ((uintptr_t)&__aeabi_idiv) & ~1;
 439	asm ("" : "+g" (fn_addr));
 440	((u32 *)fn_addr)[0] = sdiv_instruction();
 441	((u32 *)fn_addr)[1] = bx_lr_instruction();
 442	flush_icache_range(fn_addr, fn_addr + 8);
 443}
 444
 445#else
 446static inline void patch_aeabi_idiv(void) { }
 447#endif
 448
 449static void __init cpuid_init_hwcaps(void)
 450{
 451	int block;
 452	u32 isar5;
 453	u32 isar6;
 454	u32 pfr2;
 455
 456	if (cpu_architecture() < CPU_ARCH_ARMv7)
 457		return;
 458
 459	block = cpuid_feature_extract(CPUID_EXT_ISAR0, 24);
 460	if (block >= 2)
 461		elf_hwcap |= HWCAP_IDIVA;
 462	if (block >= 1)
 463		elf_hwcap |= HWCAP_IDIVT;
 464
 465	/* LPAE implies atomic ldrd/strd instructions */
 466	block = cpuid_feature_extract(CPUID_EXT_MMFR0, 0);
 467	if (block >= 5)
 468		elf_hwcap |= HWCAP_LPAE;
 469
 470	/* check for supported v8 Crypto instructions */
 471	isar5 = read_cpuid_ext(CPUID_EXT_ISAR5);
 472
 473	block = cpuid_feature_extract_field(isar5, 4);
 474	if (block >= 2)
 475		elf_hwcap2 |= HWCAP2_PMULL;
 476	if (block >= 1)
 477		elf_hwcap2 |= HWCAP2_AES;
 478
 479	block = cpuid_feature_extract_field(isar5, 8);
 480	if (block >= 1)
 481		elf_hwcap2 |= HWCAP2_SHA1;
 482
 483	block = cpuid_feature_extract_field(isar5, 12);
 484	if (block >= 1)
 485		elf_hwcap2 |= HWCAP2_SHA2;
 486
 487	block = cpuid_feature_extract_field(isar5, 16);
 488	if (block >= 1)
 489		elf_hwcap2 |= HWCAP2_CRC32;
 490
 491	/* Check for Speculation barrier instruction */
 492	isar6 = read_cpuid_ext(CPUID_EXT_ISAR6);
 493	block = cpuid_feature_extract_field(isar6, 12);
 494	if (block >= 1)
 495		elf_hwcap2 |= HWCAP2_SB;
 496
 497	/* Check for Speculative Store Bypassing control */
 498	pfr2 = read_cpuid_ext(CPUID_EXT_PFR2);
 499	block = cpuid_feature_extract_field(pfr2, 4);
 500	if (block >= 1)
 501		elf_hwcap2 |= HWCAP2_SSBS;
 502}
 503
 504static void __init elf_hwcap_fixup(void)
 505{
 506	unsigned id = read_cpuid_id();
 507
 508	/*
 509	 * HWCAP_TLS is available only on 1136 r1p0 and later,
 510	 * see also kuser_get_tls_init.
 511	 */
 512	if (read_cpuid_part() == ARM_CPU_PART_ARM1136 &&
 513	    ((id >> 20) & 3) == 0) {
 514		elf_hwcap &= ~HWCAP_TLS;
 515		return;
 516	}
 517
 518	/* Verify if CPUID scheme is implemented */
 519	if ((id & 0x000f0000) != 0x000f0000)
 520		return;
 521
 522	/*
 523	 * If the CPU supports LDREX/STREX and LDREXB/STREXB,
 524	 * avoid advertising SWP; it may not be atomic with
 525	 * multiprocessing cores.
 526	 */
 527	if (cpuid_feature_extract(CPUID_EXT_ISAR3, 12) > 1 ||
 528	    (cpuid_feature_extract(CPUID_EXT_ISAR3, 12) == 1 &&
 529	     cpuid_feature_extract(CPUID_EXT_ISAR4, 20) >= 3))
 530		elf_hwcap &= ~HWCAP_SWP;
 531}
 532
 533/*
 534 * cpu_init - initialise one CPU.
 535 *
 536 * cpu_init sets up the per-CPU stacks.
 537 */
 538void notrace cpu_init(void)
 539{
 540#ifndef CONFIG_CPU_V7M
 541	unsigned int cpu = smp_processor_id();
 542	struct stack *stk = &stacks[cpu];
 543
 544	if (cpu >= NR_CPUS) {
 545		pr_crit("CPU%u: bad primary CPU number\n", cpu);
 546		BUG();
 547	}
 548
 549	/*
 550	 * This only works on resume and secondary cores. For booting on the
 551	 * boot cpu, smp_prepare_boot_cpu is called after percpu area setup.
 552	 */
 553	set_my_cpu_offset(per_cpu_offset(cpu));
 554
 555	cpu_proc_init();
 556
 557	/*
 558	 * Define the placement constraint for the inline asm directive below.
 559	 * In Thumb-2, msr with an immediate value is not allowed.
 560	 */
 561#ifdef CONFIG_THUMB2_KERNEL
 562#define PLC_l	"l"
 563#define PLC_r	"r"
 564#else
 565#define PLC_l	"I"
 566#define PLC_r	"I"
 567#endif
 568
 569	/*
 570	 * setup stacks for re-entrant exception handlers
 571	 */
 572	__asm__ (
 573	"msr	cpsr_c, %1\n\t"
 574	"add	r14, %0, %2\n\t"
 575	"mov	sp, r14\n\t"
 576	"msr	cpsr_c, %3\n\t"
 577	"add	r14, %0, %4\n\t"
 578	"mov	sp, r14\n\t"
 579	"msr	cpsr_c, %5\n\t"
 580	"add	r14, %0, %6\n\t"
 581	"mov	sp, r14\n\t"
 582	"msr	cpsr_c, %7\n\t"
 583	"add	r14, %0, %8\n\t"
 584	"mov	sp, r14\n\t"
 585	"msr	cpsr_c, %9"
 586	    :
 587	    : "r" (stk),
 588	      PLC_r (PSR_F_BIT | PSR_I_BIT | IRQ_MODE),
 589	      "I" (offsetof(struct stack, irq[0])),
 590	      PLC_r (PSR_F_BIT | PSR_I_BIT | ABT_MODE),
 591	      "I" (offsetof(struct stack, abt[0])),
 592	      PLC_r (PSR_F_BIT | PSR_I_BIT | UND_MODE),
 593	      "I" (offsetof(struct stack, und[0])),
 594	      PLC_r (PSR_F_BIT | PSR_I_BIT | FIQ_MODE),
 595	      "I" (offsetof(struct stack, fiq[0])),
 596	      PLC_l (PSR_F_BIT | PSR_I_BIT | SVC_MODE)
 597	    : "r14");
 598#endif
 599}
 600
 601u32 __cpu_logical_map[NR_CPUS] = { [0 ... NR_CPUS-1] = MPIDR_INVALID };
 602
 603void __init smp_setup_processor_id(void)
 604{
 605	int i;
 606	u32 mpidr = is_smp() ? read_cpuid_mpidr() & MPIDR_HWID_BITMASK : 0;
 607	u32 cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
 608
 609	cpu_logical_map(0) = cpu;
 610	for (i = 1; i < nr_cpu_ids; ++i)
 611		cpu_logical_map(i) = i == cpu ? 0 : i;
 612
 613	/*
 614	 * clear __my_cpu_offset on boot CPU to avoid hang caused by
 615	 * using percpu variable early, for example, lockdep will
 616	 * access percpu variable inside lock_release
 617	 */
 618	set_my_cpu_offset(0);
 619
 620	pr_info("Booting Linux on physical CPU 0x%x\n", mpidr);
 621}
 622
 623struct mpidr_hash mpidr_hash;
 624#ifdef CONFIG_SMP
 625/**
 626 * smp_build_mpidr_hash - Pre-compute shifts required at each affinity
 627 *			  level in order to build a linear index from an
 628 *			  MPIDR value. Resulting algorithm is a collision
 629 *			  free hash carried out through shifting and ORing
 630 */
 631static void __init smp_build_mpidr_hash(void)
 632{
 633	u32 i, affinity;
 634	u32 fs[3], bits[3], ls, mask = 0;
 635	/*
 636	 * Pre-scan the list of MPIDRS and filter out bits that do
 637	 * not contribute to affinity levels, ie they never toggle.
 
 638	 */
 639	for_each_possible_cpu(i)
 640		mask |= (cpu_logical_map(i) ^ cpu_logical_map(0));
 641	pr_debug("mask of set bits 0x%x\n", mask);
 642	/*
 643	 * Find and stash the last and first bit set at all affinity levels to
 644	 * check how many bits are required to represent them.
 645	 */
 646	for (i = 0; i < 3; i++) {
 647		affinity = MPIDR_AFFINITY_LEVEL(mask, i);
 648		/*
 649		 * Find the MSB bit and LSB bits position
 650		 * to determine how many bits are required
 651		 * to express the affinity level.
 652		 */
 653		ls = fls(affinity);
 654		fs[i] = affinity ? ffs(affinity) - 1 : 0;
 655		bits[i] = ls - fs[i];
 656	}
 657	/*
 658	 * An index can be created from the MPIDR by isolating the
 659	 * significant bits at each affinity level and by shifting
 660	 * them in order to compress the 24 bits values space to a
 661	 * compressed set of values. This is equivalent to hashing
 662	 * the MPIDR through shifting and ORing. It is a collision free
 663	 * hash though not minimal since some levels might contain a number
 664	 * of CPUs that is not an exact power of 2 and their bit
 665	 * representation might contain holes, eg MPIDR[7:0] = {0x2, 0x80}.
 666	 */
 667	mpidr_hash.shift_aff[0] = fs[0];
 668	mpidr_hash.shift_aff[1] = MPIDR_LEVEL_BITS + fs[1] - bits[0];
 669	mpidr_hash.shift_aff[2] = 2*MPIDR_LEVEL_BITS + fs[2] -
 670						(bits[1] + bits[0]);
 671	mpidr_hash.mask = mask;
 672	mpidr_hash.bits = bits[2] + bits[1] + bits[0];
 673	pr_debug("MPIDR hash: aff0[%u] aff1[%u] aff2[%u] mask[0x%x] bits[%u]\n",
 674				mpidr_hash.shift_aff[0],
 675				mpidr_hash.shift_aff[1],
 676				mpidr_hash.shift_aff[2],
 677				mpidr_hash.mask,
 678				mpidr_hash.bits);
 679	/*
 680	 * 4x is an arbitrary value used to warn on a hash table much bigger
 681	 * than expected on most systems.
 682	 */
 683	if (mpidr_hash_size() > 4 * num_possible_cpus())
 684		pr_warn("Large number of MPIDR hash buckets detected\n");
 685	sync_cache_w(&mpidr_hash);
 686}
 687#endif
 688
 689/*
 690 * locate processor in the list of supported processor types.  The linker
 691 * builds this table for us from the entries in arch/arm/mm/proc-*.S
 692 */
 693struct proc_info_list *lookup_processor(u32 midr)
 694{
 695	struct proc_info_list *list = lookup_processor_type(midr);
 696
 697	if (!list) {
 698		pr_err("CPU%u: configuration botched (ID %08x), CPU halted\n",
 699		       smp_processor_id(), midr);
 700		while (1)
 701		/* can't use cpu_relax() here as it may require MMU setup */;
 702	}
 703
 704	return list;
 705}
 706
 707static void __init setup_processor(void)
 708{
 709	unsigned int midr = read_cpuid_id();
 710	struct proc_info_list *list = lookup_processor(midr);
 711
 712	cpu_name = list->cpu_name;
 713	__cpu_architecture = __get_cpu_architecture();
 714
 715	init_proc_vtable(list->proc);
 
 
 716#ifdef MULTI_TLB
 717	cpu_tlb = *list->tlb;
 718#endif
 719#ifdef MULTI_USER
 720	cpu_user = *list->user;
 721#endif
 722#ifdef MULTI_CACHE
 723	cpu_cache = *list->cache;
 724#endif
 725
 726	pr_info("CPU: %s [%08x] revision %d (ARMv%s), cr=%08lx\n",
 727		list->cpu_name, midr, midr & 15,
 728		proc_arch[cpu_architecture()], get_cr());
 729
 730	snprintf(init_utsname()->machine, __NEW_UTS_LEN + 1, "%s%c",
 731		 list->arch_name, ENDIANNESS);
 732	snprintf(elf_platform, ELF_PLATFORM_SIZE, "%s%c",
 733		 list->elf_name, ENDIANNESS);
 734	elf_hwcap = list->elf_hwcap;
 735
 736	cpuid_init_hwcaps();
 737	patch_aeabi_idiv();
 738
 739#ifndef CONFIG_ARM_THUMB
 740	elf_hwcap &= ~(HWCAP_THUMB | HWCAP_IDIVT);
 741#endif
 742#ifdef CONFIG_MMU
 743	init_default_cache_policy(list->__cpu_mm_mmu_flags);
 744#endif
 745	erratum_a15_798181_init();
 746
 747	elf_hwcap_fixup();
 748
 749	cacheid_init();
 750	cpu_init();
 751}
 752
 753void __init dump_machine_table(void)
 754{
 755	const struct machine_desc *p;
 756
 757	early_print("Available machine support:\n\nID (hex)\tNAME\n");
 758	for_each_machine_desc(p)
 759		early_print("%08x\t%s\n", p->nr, p->name);
 760
 761	early_print("\nPlease check your kernel config and/or bootloader.\n");
 762
 763	while (true)
 764		/* can't use cpu_relax() here as it may require MMU setup */;
 765}
 766
 767int __init arm_add_memory(u64 start, u64 size)
 768{
 769	u64 aligned_start;
 
 
 
 
 
 
 770
 771	/*
 772	 * Ensure that start/size are aligned to a page boundary.
 773	 * Size is rounded down, start is rounded up.
 774	 */
 775	aligned_start = PAGE_ALIGN(start);
 776	if (aligned_start > start + size)
 777		size = 0;
 778	else
 779		size -= aligned_start - start;
 780
 781#ifndef CONFIG_PHYS_ADDR_T_64BIT
 782	if (aligned_start > ULONG_MAX) {
 783		pr_crit("Ignoring memory at 0x%08llx outside 32-bit physical address space\n",
 784			start);
 785		return -EINVAL;
 786	}
 787
 788	if (aligned_start + size > ULONG_MAX) {
 789		pr_crit("Truncating memory at 0x%08llx to fit in 32-bit physical address space\n",
 790			(long long)start);
 
 791		/*
 792		 * To ensure bank->start + bank->size is representable in
 793		 * 32 bits, we use ULONG_MAX as the upper limit rather than 4GB.
 794		 * This means we lose a page after masking.
 795		 */
 796		size = ULONG_MAX - aligned_start;
 797	}
 798#endif
 799
 800	if (aligned_start < PHYS_OFFSET) {
 801		if (aligned_start + size <= PHYS_OFFSET) {
 802			pr_info("Ignoring memory below PHYS_OFFSET: 0x%08llx-0x%08llx\n",
 803				aligned_start, aligned_start + size);
 804			return -EINVAL;
 805		}
 806
 807		pr_info("Ignoring memory below PHYS_OFFSET: 0x%08llx-0x%08llx\n",
 808			aligned_start, (u64)PHYS_OFFSET);
 809
 810		size -= PHYS_OFFSET - aligned_start;
 811		aligned_start = PHYS_OFFSET;
 812	}
 813
 814	start = aligned_start;
 815	size = size & ~(phys_addr_t)(PAGE_SIZE - 1);
 816
 817	/*
 818	 * Check whether this memory region has non-zero size or
 819	 * invalid node number.
 820	 */
 821	if (size == 0)
 822		return -EINVAL;
 823
 824	memblock_add(start, size);
 825	return 0;
 826}
 827
 828/*
 829 * Pick out the memory size.  We look for mem=size@start,
 830 * where start and size are "size[KkMm]"
 831 */
 832
 833static int __init early_mem(char *p)
 834{
 835	static int usermem __initdata = 0;
 836	u64 size;
 837	u64 start;
 838	char *endp;
 839
 840	/*
 841	 * If the user specifies memory size, we
 842	 * blow away any automatically generated
 843	 * size.
 844	 */
 845	if (usermem == 0) {
 846		usermem = 1;
 847		memblock_remove(memblock_start_of_DRAM(),
 848			memblock_end_of_DRAM() - memblock_start_of_DRAM());
 849	}
 850
 851	start = PHYS_OFFSET;
 852	size  = memparse(p, &endp);
 853	if (*endp == '@')
 854		start = memparse(endp + 1, NULL);
 855
 856	arm_add_memory(start, size);
 857
 858	return 0;
 859}
 860early_param("mem", early_mem);
 861
 862static void __init request_standard_resources(const struct machine_desc *mdesc)
 
 863{
 864	phys_addr_t start, end, res_end;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 865	struct resource *res;
 866	u64 i;
 867
 868	kernel_code.start   = virt_to_phys(_text);
 869	kernel_code.end     = virt_to_phys(__init_begin - 1);
 870	kernel_data.start   = virt_to_phys(_sdata);
 871	kernel_data.end     = virt_to_phys(_end - 1);
 872
 873	for_each_mem_range(i, &start, &end) {
 874		unsigned long boot_alias_start;
 875
 876		/*
 877		 * In memblock, end points to the first byte after the
 878		 * range while in resourses, end points to the last byte in
 879		 * the range.
 880		 */
 881		res_end = end - 1;
 882
 883		/*
 884		 * Some systems have a special memory alias which is only
 885		 * used for booting.  We need to advertise this region to
 886		 * kexec-tools so they know where bootable RAM is located.
 887		 */
 888		boot_alias_start = phys_to_idmap(start);
 889		if (arm_has_idmap_alias() && boot_alias_start != IDMAP_INVALID_ADDR) {
 890			res = memblock_alloc(sizeof(*res), SMP_CACHE_BYTES);
 891			if (!res)
 892				panic("%s: Failed to allocate %zu bytes\n",
 893				      __func__, sizeof(*res));
 894			res->name = "System RAM (boot alias)";
 895			res->start = boot_alias_start;
 896			res->end = phys_to_idmap(res_end);
 897			res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
 898			request_resource(&iomem_resource, res);
 899		}
 900
 901		res = memblock_alloc(sizeof(*res), SMP_CACHE_BYTES);
 902		if (!res)
 903			panic("%s: Failed to allocate %zu bytes\n", __func__,
 904			      sizeof(*res));
 905		res->name  = "System RAM";
 906		res->start = start;
 907		res->end = res_end;
 908		res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
 909
 910		request_resource(&iomem_resource, res);
 911
 912		if (kernel_code.start >= res->start &&
 913		    kernel_code.end <= res->end)
 914			request_resource(res, &kernel_code);
 915		if (kernel_data.start >= res->start &&
 916		    kernel_data.end <= res->end)
 917			request_resource(res, &kernel_data);
 918	}
 919
 920	if (mdesc->video_start) {
 921		video_ram.start = mdesc->video_start;
 922		video_ram.end   = mdesc->video_end;
 923		request_resource(&iomem_resource, &video_ram);
 924	}
 925
 926	/*
 927	 * Some machines don't have the possibility of ever
 928	 * possessing lp0, lp1 or lp2
 929	 */
 930	if (mdesc->reserve_lp0)
 931		request_resource(&ioport_resource, &lp0);
 932	if (mdesc->reserve_lp1)
 933		request_resource(&ioport_resource, &lp1);
 934	if (mdesc->reserve_lp2)
 935		request_resource(&ioport_resource, &lp2);
 936}
 937
 938#if defined(CONFIG_VGA_CONSOLE) || defined(CONFIG_DUMMY_CONSOLE) || \
 939    defined(CONFIG_EFI)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 940struct screen_info screen_info = {
 941 .orig_video_lines	= 30,
 942 .orig_video_cols	= 80,
 943 .orig_video_mode	= 0,
 944 .orig_video_ega_bx	= 0,
 945 .orig_video_isVGA	= 1,
 946 .orig_video_points	= 8
 947};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 948#endif
 949
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 950static int __init customize_machine(void)
 951{
 952	/*
 953	 * customizes platform devices, or adds new ones
 954	 * On DT based machines, we fall back to populating the
 955	 * machine from the device tree, if no callback is provided,
 956	 * otherwise we would always need an init_machine callback.
 957	 */
 958	if (machine_desc->init_machine)
 959		machine_desc->init_machine();
 960
 961	return 0;
 962}
 963arch_initcall(customize_machine);
 964
 965static int __init init_machine_late(void)
 966{
 967	struct device_node *root;
 968	int ret;
 969
 970	if (machine_desc->init_late)
 971		machine_desc->init_late();
 972
 973	root = of_find_node_by_path("/");
 974	if (root) {
 975		ret = of_property_read_string(root, "serial-number",
 976					      &system_serial);
 977		if (ret)
 978			system_serial = NULL;
 979	}
 980
 981	if (!system_serial)
 982		system_serial = kasprintf(GFP_KERNEL, "%08x%08x",
 983					  system_serial_high,
 984					  system_serial_low);
 985
 986	return 0;
 987}
 988late_initcall(init_machine_late);
 989
 990#ifdef CONFIG_KEXEC
 991/*
 992 * The crash region must be aligned to 128MB to avoid
 993 * zImage relocating below the reserved region.
 994 */
 995#define CRASH_ALIGN	(128 << 20)
 996
 997static inline unsigned long long get_total_mem(void)
 998{
 999	unsigned long total;
1000
1001	total = max_low_pfn - min_low_pfn;
1002	return total << PAGE_SHIFT;
1003}
1004
1005/**
1006 * reserve_crashkernel() - reserves memory are for crash kernel
1007 *
1008 * This function reserves memory area given in "crashkernel=" kernel command
1009 * line parameter. The memory reserved is used by a dump capture kernel when
1010 * primary kernel is crashing.
1011 */
1012static void __init reserve_crashkernel(void)
1013{
1014	unsigned long long crash_size, crash_base;
1015	unsigned long long total_mem;
1016	int ret;
1017
1018	total_mem = get_total_mem();
1019	ret = parse_crashkernel(boot_command_line, total_mem,
1020				&crash_size, &crash_base);
1021	/* invalid value specified or crashkernel=0 */
1022	if (ret || !crash_size)
1023		return;
1024
1025	if (crash_base <= 0) {
1026		unsigned long long crash_max = idmap_to_phys((u32)~0);
1027		unsigned long long lowmem_max = __pa(high_memory - 1) + 1;
1028		if (crash_max > lowmem_max)
1029			crash_max = lowmem_max;
1030
1031		crash_base = memblock_phys_alloc_range(crash_size, CRASH_ALIGN,
1032						       CRASH_ALIGN, crash_max);
1033		if (!crash_base) {
1034			pr_err("crashkernel reservation failed - No suitable area found.\n");
1035			return;
1036		}
1037	} else {
1038		unsigned long long crash_max = crash_base + crash_size;
1039		unsigned long long start;
1040
1041		start = memblock_phys_alloc_range(crash_size, SECTION_SIZE,
1042						  crash_base, crash_max);
1043		if (!start) {
1044			pr_err("crashkernel reservation failed - memory is in use.\n");
1045			return;
1046		}
1047	}
1048
1049	pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n",
1050		(unsigned long)(crash_size >> 20),
1051		(unsigned long)(crash_base >> 20),
1052		(unsigned long)(total_mem >> 20));
 
1053
1054	/* The crashk resource must always be located in normal mem */
1055	crashk_res.start = crash_base;
1056	crashk_res.end = crash_base + crash_size - 1;
1057	insert_resource(&iomem_resource, &crashk_res);
1058
1059	if (arm_has_idmap_alias()) {
1060		/*
1061		 * If we have a special RAM alias for use at boot, we
1062		 * need to advertise to kexec tools where the alias is.
1063		 */
1064		static struct resource crashk_boot_res = {
1065			.name = "Crash kernel (boot alias)",
1066			.flags = IORESOURCE_BUSY | IORESOURCE_MEM,
1067		};
1068
1069		crashk_boot_res.start = phys_to_idmap(crash_base);
1070		crashk_boot_res.end = crashk_boot_res.start + crash_size - 1;
1071		insert_resource(&iomem_resource, &crashk_boot_res);
1072	}
1073}
1074#else
1075static inline void reserve_crashkernel(void) {}
1076#endif /* CONFIG_KEXEC */
1077
1078void __init hyp_mode_check(void)
 
 
 
 
 
 
 
1079{
1080#ifdef CONFIG_ARM_VIRT_EXT
1081	sync_boot_mode();
 
 
 
1082
1083	if (is_hyp_mode_available()) {
1084		pr_info("CPU: All CPU(s) started in HYP mode.\n");
1085		pr_info("CPU: Virtualization extensions available.\n");
1086	} else if (is_hyp_mode_mismatched()) {
1087		pr_warn("CPU: WARNING: CPU(s) started in wrong/inconsistent modes (primary CPU mode 0x%x)\n",
1088			__boot_cpu_mode & MODE_MASK);
1089		pr_warn("CPU: This may indicate a broken bootloader or firmware.\n");
1090	} else
1091		pr_info("CPU: All CPU(s) started in SVC mode.\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1092#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1093}
1094
1095static void (*__arm_pm_restart)(enum reboot_mode reboot_mode, const char *cmd);
1096
1097static int arm_restart(struct notifier_block *nb, unsigned long action,
1098		       void *data)
1099{
1100	__arm_pm_restart(action, data);
1101	return NOTIFY_DONE;
 
1102}
1103
1104static struct notifier_block arm_restart_nb = {
1105	.notifier_call = arm_restart,
1106	.priority = 128,
1107};
1108
1109void __init setup_arch(char **cmdline_p)
1110{
1111	const struct machine_desc *mdesc = NULL;
1112	void *atags_vaddr = NULL;
1113
1114	if (__atags_pointer)
1115		atags_vaddr = FDT_VIRT_BASE(__atags_pointer);
1116
1117	setup_processor();
1118	if (atags_vaddr) {
1119		mdesc = setup_machine_fdt(atags_vaddr);
1120		if (mdesc)
1121			memblock_reserve(__atags_pointer,
1122					 fdt_totalsize(atags_vaddr));
1123	}
1124	if (!mdesc)
1125		mdesc = setup_machine_tags(atags_vaddr, __machine_arch_type);
1126	if (!mdesc) {
1127		early_print("\nError: invalid dtb and unrecognized/unsupported machine ID\n");
1128		early_print("  r1=0x%08x, r2=0x%08x\n", __machine_arch_type,
1129			    __atags_pointer);
1130		if (__atags_pointer)
1131			early_print("  r2[]=%*ph\n", 16, atags_vaddr);
1132		dump_machine_table();
1133	}
1134
1135	machine_desc = mdesc;
1136	machine_name = mdesc->name;
1137	dump_stack_set_arch_desc("%s", mdesc->name);
1138
1139	if (mdesc->reboot_mode != REBOOT_HARD)
1140		reboot_mode = mdesc->reboot_mode;
 
 
1141
1142	setup_initial_init_mm(_text, _etext, _edata, _end);
 
 
 
1143
1144	/* populate cmd_line too for later use, preserving boot_command_line */
1145	strlcpy(cmd_line, boot_command_line, COMMAND_LINE_SIZE);
1146	*cmdline_p = cmd_line;
1147
1148	early_fixmap_init();
1149	early_ioremap_init();
1150
1151	parse_early_param();
1152
1153#ifdef CONFIG_MMU
1154	early_mm_init(mdesc);
1155#endif
1156	setup_dma_zone(mdesc);
1157	xen_early_init();
1158	arm_efi_init();
1159	/*
1160	 * Make sure the calculation for lowmem/highmem is set appropriately
1161	 * before reserving/allocating any memory
1162	 */
1163	adjust_lowmem_bounds();
1164	arm_memblock_init(mdesc);
1165	/* Memory may have been removed so recalculate the bounds. */
1166	adjust_lowmem_bounds();
1167
1168	early_ioremap_reset();
1169
1170	paging_init(mdesc);
1171	kasan_init();
1172	request_standard_resources(mdesc);
1173
1174	if (mdesc->restart) {
1175		__arm_pm_restart = mdesc->restart;
1176		register_restart_handler(&arm_restart_nb);
1177	}
1178
1179	unflatten_device_tree();
1180
1181	arm_dt_init_cpu_maps();
1182	psci_dt_init();
1183#ifdef CONFIG_SMP
1184	if (is_smp()) {
1185		if (!mdesc->smp_init || !mdesc->smp_init()) {
1186			if (psci_smp_available())
1187				smp_set_ops(&psci_smp_ops);
1188			else if (mdesc->smp)
1189				smp_set_ops(mdesc->smp);
1190		}
1191		smp_init_cpus();
1192		smp_build_mpidr_hash();
1193	}
1194#endif
 
1195
1196	if (!is_smp())
1197		hyp_mode_check();
1198
1199	reserve_crashkernel();
1200
1201#ifdef CONFIG_GENERIC_IRQ_MULTI_HANDLER
1202	handle_arch_irq = mdesc->handle_irq;
1203#endif
1204
1205#ifdef CONFIG_VT
1206#if defined(CONFIG_VGA_CONSOLE)
1207	conswitchp = &vga_con;
 
 
1208#endif
1209#endif
1210
1211	if (mdesc->init_early)
1212		mdesc->init_early();
1213}
1214
1215
1216static int __init topology_init(void)
1217{
1218	int cpu;
1219
1220	for_each_possible_cpu(cpu) {
1221		struct cpuinfo_arm *cpuinfo = &per_cpu(cpu_data, cpu);
1222		cpuinfo->cpu.hotpluggable = platform_can_hotplug_cpu(cpu);
1223		register_cpu(&cpuinfo->cpu, cpu);
1224	}
1225
1226	return 0;
1227}
1228subsys_initcall(topology_init);
1229
1230#ifdef CONFIG_HAVE_PROC_CPU
1231static int __init proc_cpu_init(void)
1232{
1233	struct proc_dir_entry *res;
1234
1235	res = proc_mkdir("cpu", NULL);
1236	if (!res)
1237		return -ENOMEM;
1238	return 0;
1239}
1240fs_initcall(proc_cpu_init);
1241#endif
1242
1243static const char *hwcap_str[] = {
1244	"swp",
1245	"half",
1246	"thumb",
1247	"26bit",
1248	"fastmult",
1249	"fpa",
1250	"vfp",
1251	"edsp",
1252	"java",
1253	"iwmmxt",
1254	"crunch",
1255	"thumbee",
1256	"neon",
1257	"vfpv3",
1258	"vfpv3d16",
1259	"tls",
1260	"vfpv4",
1261	"idiva",
1262	"idivt",
1263	"vfpd32",
1264	"lpae",
1265	"evtstrm",
1266	"fphp",
1267	"asimdhp",
1268	"asimddp",
1269	"asimdfhm",
1270	"asimdbf16",
1271	"i8mm",
1272	NULL
1273};
1274
1275static const char *hwcap2_str[] = {
1276	"aes",
1277	"pmull",
1278	"sha1",
1279	"sha2",
1280	"crc32",
1281	"sb",
1282	"ssbs",
1283	NULL
1284};
1285
1286static int c_show(struct seq_file *m, void *v)
1287{
1288	int i, j;
1289	u32 cpuid;
1290
 
 
 
 
1291	for_each_online_cpu(i) {
1292		/*
1293		 * glibc reads /proc/cpuinfo to determine the number of
1294		 * online processors, looking for lines beginning with
1295		 * "processor".  Give glibc what it expects.
1296		 */
1297		seq_printf(m, "processor\t: %d\n", i);
1298		cpuid = is_smp() ? per_cpu(cpu_data, i).cpuid : read_cpuid_id();
1299		seq_printf(m, "model name\t: %s rev %d (%s)\n",
1300			   cpu_name, cpuid & 15, elf_platform);
1301
1302#if defined(CONFIG_SMP)
1303		seq_printf(m, "BogoMIPS\t: %lu.%02lu\n",
1304			   per_cpu(cpu_data, i).loops_per_jiffy / (500000UL/HZ),
1305			   (per_cpu(cpu_data, i).loops_per_jiffy / (5000UL/HZ)) % 100);
1306#else
1307		seq_printf(m, "BogoMIPS\t: %lu.%02lu\n",
1308			   loops_per_jiffy / (500000/HZ),
1309			   (loops_per_jiffy / (5000/HZ)) % 100);
1310#endif
1311		/* dump out the processor features */
1312		seq_puts(m, "Features\t: ");
1313
1314		for (j = 0; hwcap_str[j]; j++)
1315			if (elf_hwcap & (1 << j))
1316				seq_printf(m, "%s ", hwcap_str[j]);
1317
1318		for (j = 0; hwcap2_str[j]; j++)
1319			if (elf_hwcap2 & (1 << j))
1320				seq_printf(m, "%s ", hwcap2_str[j]);
1321
1322		seq_printf(m, "\nCPU implementer\t: 0x%02x\n", cpuid >> 24);
1323		seq_printf(m, "CPU architecture: %s\n",
1324			   proc_arch[cpu_architecture()]);
1325
1326		if ((cpuid & 0x0008f000) == 0x00000000) {
1327			/* pre-ARM7 */
1328			seq_printf(m, "CPU part\t: %07x\n", cpuid >> 4);
 
 
1329		} else {
1330			if ((cpuid & 0x0008f000) == 0x00007000) {
1331				/* ARM7 */
1332				seq_printf(m, "CPU variant\t: 0x%02x\n",
1333					   (cpuid >> 16) & 127);
1334			} else {
1335				/* post-ARM7 */
1336				seq_printf(m, "CPU variant\t: 0x%x\n",
1337					   (cpuid >> 20) & 15);
1338			}
1339			seq_printf(m, "CPU part\t: 0x%03x\n",
1340				   (cpuid >> 4) & 0xfff);
1341		}
1342		seq_printf(m, "CPU revision\t: %d\n\n", cpuid & 15);
 
1343	}
 
 
 
1344
1345	seq_printf(m, "Hardware\t: %s\n", machine_name);
1346	seq_printf(m, "Revision\t: %04x\n", system_rev);
1347	seq_printf(m, "Serial\t\t: %s\n", system_serial);
 
1348
1349	return 0;
1350}
1351
1352static void *c_start(struct seq_file *m, loff_t *pos)
1353{
1354	return *pos < 1 ? (void *)1 : NULL;
1355}
1356
1357static void *c_next(struct seq_file *m, void *v, loff_t *pos)
1358{
1359	++*pos;
1360	return NULL;
1361}
1362
1363static void c_stop(struct seq_file *m, void *v)
1364{
1365}
1366
1367const struct seq_operations cpuinfo_op = {
1368	.start	= c_start,
1369	.next	= c_next,
1370	.stop	= c_stop,
1371	.show	= c_show
1372};