Loading...
1/*
2 * linux/arch/arm/kernel/setup.c
3 *
4 * Copyright (C) 1995-2001 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10#include <linux/export.h>
11#include <linux/kernel.h>
12#include <linux/stddef.h>
13#include <linux/ioport.h>
14#include <linux/delay.h>
15#include <linux/utsname.h>
16#include <linux/initrd.h>
17#include <linux/console.h>
18#include <linux/bootmem.h>
19#include <linux/seq_file.h>
20#include <linux/screen_info.h>
21#include <linux/init.h>
22#include <linux/kexec.h>
23#include <linux/of_fdt.h>
24#include <linux/root_dev.h>
25#include <linux/cpu.h>
26#include <linux/interrupt.h>
27#include <linux/smp.h>
28#include <linux/fs.h>
29#include <linux/proc_fs.h>
30#include <linux/memblock.h>
31#include <linux/bug.h>
32#include <linux/compiler.h>
33#include <linux/sort.h>
34
35#include <asm/unified.h>
36#include <asm/cp15.h>
37#include <asm/cpu.h>
38#include <asm/cputype.h>
39#include <asm/elf.h>
40#include <asm/procinfo.h>
41#include <asm/sections.h>
42#include <asm/setup.h>
43#include <asm/smp_plat.h>
44#include <asm/mach-types.h>
45#include <asm/cacheflush.h>
46#include <asm/cachetype.h>
47#include <asm/tlbflush.h>
48
49#include <asm/prom.h>
50#include <asm/mach/arch.h>
51#include <asm/mach/irq.h>
52#include <asm/mach/time.h>
53#include <asm/system_info.h>
54#include <asm/system_misc.h>
55#include <asm/traps.h>
56#include <asm/unwind.h>
57#include <asm/memblock.h>
58
59#if defined(CONFIG_DEPRECATED_PARAM_STRUCT)
60#include "compat.h"
61#endif
62#include "atags.h"
63#include "tcm.h"
64
65#ifndef MEM_SIZE
66#define MEM_SIZE (16*1024*1024)
67#endif
68
69#if defined(CONFIG_FPE_NWFPE) || defined(CONFIG_FPE_FASTFPE)
70char fpe_type[8];
71
72static int __init fpe_setup(char *line)
73{
74 memcpy(fpe_type, line, 8);
75 return 1;
76}
77
78__setup("fpe=", fpe_setup);
79#endif
80
81extern void paging_init(struct machine_desc *desc);
82extern void sanity_check_meminfo(void);
83extern void reboot_setup(char *str);
84extern void setup_dma_zone(struct machine_desc *desc);
85
86unsigned int processor_id;
87EXPORT_SYMBOL(processor_id);
88unsigned int __machine_arch_type __read_mostly;
89EXPORT_SYMBOL(__machine_arch_type);
90unsigned int cacheid __read_mostly;
91EXPORT_SYMBOL(cacheid);
92
93unsigned int __atags_pointer __initdata;
94
95unsigned int system_rev;
96EXPORT_SYMBOL(system_rev);
97
98unsigned int system_serial_low;
99EXPORT_SYMBOL(system_serial_low);
100
101unsigned int system_serial_high;
102EXPORT_SYMBOL(system_serial_high);
103
104unsigned int elf_hwcap __read_mostly;
105EXPORT_SYMBOL(elf_hwcap);
106
107
108#ifdef MULTI_CPU
109struct processor processor __read_mostly;
110#endif
111#ifdef MULTI_TLB
112struct cpu_tlb_fns cpu_tlb __read_mostly;
113#endif
114#ifdef MULTI_USER
115struct cpu_user_fns cpu_user __read_mostly;
116#endif
117#ifdef MULTI_CACHE
118struct cpu_cache_fns cpu_cache __read_mostly;
119#endif
120#ifdef CONFIG_OUTER_CACHE
121struct outer_cache_fns outer_cache __read_mostly;
122EXPORT_SYMBOL(outer_cache);
123#endif
124
125/*
126 * Cached cpu_architecture() result for use by assembler code.
127 * C code should use the cpu_architecture() function instead of accessing this
128 * variable directly.
129 */
130int __cpu_architecture __read_mostly = CPU_ARCH_UNKNOWN;
131
132struct stack {
133 u32 irq[3];
134 u32 abt[3];
135 u32 und[3];
136} ____cacheline_aligned;
137
138static struct stack stacks[NR_CPUS];
139
140char elf_platform[ELF_PLATFORM_SIZE];
141EXPORT_SYMBOL(elf_platform);
142
143static const char *cpu_name;
144static const char *machine_name;
145static char __initdata cmd_line[COMMAND_LINE_SIZE];
146struct machine_desc *machine_desc __initdata;
147
148static char default_command_line[COMMAND_LINE_SIZE] __initdata = CONFIG_CMDLINE;
149static union { char c[4]; unsigned long l; } endian_test __initdata = { { 'l', '?', '?', 'b' } };
150#define ENDIANNESS ((char)endian_test.l)
151
152DEFINE_PER_CPU(struct cpuinfo_arm, cpu_data);
153
154/*
155 * Standard memory resources
156 */
157static struct resource mem_res[] = {
158 {
159 .name = "Video RAM",
160 .start = 0,
161 .end = 0,
162 .flags = IORESOURCE_MEM
163 },
164 {
165 .name = "Kernel code",
166 .start = 0,
167 .end = 0,
168 .flags = IORESOURCE_MEM
169 },
170 {
171 .name = "Kernel data",
172 .start = 0,
173 .end = 0,
174 .flags = IORESOURCE_MEM
175 }
176};
177
178#define video_ram mem_res[0]
179#define kernel_code mem_res[1]
180#define kernel_data mem_res[2]
181
182static struct resource io_res[] = {
183 {
184 .name = "reserved",
185 .start = 0x3bc,
186 .end = 0x3be,
187 .flags = IORESOURCE_IO | IORESOURCE_BUSY
188 },
189 {
190 .name = "reserved",
191 .start = 0x378,
192 .end = 0x37f,
193 .flags = IORESOURCE_IO | IORESOURCE_BUSY
194 },
195 {
196 .name = "reserved",
197 .start = 0x278,
198 .end = 0x27f,
199 .flags = IORESOURCE_IO | IORESOURCE_BUSY
200 }
201};
202
203#define lp0 io_res[0]
204#define lp1 io_res[1]
205#define lp2 io_res[2]
206
207static const char *proc_arch[] = {
208 "undefined/unknown",
209 "3",
210 "4",
211 "4T",
212 "5",
213 "5T",
214 "5TE",
215 "5TEJ",
216 "6TEJ",
217 "7",
218 "?(11)",
219 "?(12)",
220 "?(13)",
221 "?(14)",
222 "?(15)",
223 "?(16)",
224 "?(17)",
225};
226
227static int __get_cpu_architecture(void)
228{
229 int cpu_arch;
230
231 if ((read_cpuid_id() & 0x0008f000) == 0) {
232 cpu_arch = CPU_ARCH_UNKNOWN;
233 } else if ((read_cpuid_id() & 0x0008f000) == 0x00007000) {
234 cpu_arch = (read_cpuid_id() & (1 << 23)) ? CPU_ARCH_ARMv4T : CPU_ARCH_ARMv3;
235 } else if ((read_cpuid_id() & 0x00080000) == 0x00000000) {
236 cpu_arch = (read_cpuid_id() >> 16) & 7;
237 if (cpu_arch)
238 cpu_arch += CPU_ARCH_ARMv3;
239 } else if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) {
240 unsigned int mmfr0;
241
242 /* Revised CPUID format. Read the Memory Model Feature
243 * Register 0 and check for VMSAv7 or PMSAv7 */
244 asm("mrc p15, 0, %0, c0, c1, 4"
245 : "=r" (mmfr0));
246 if ((mmfr0 & 0x0000000f) >= 0x00000003 ||
247 (mmfr0 & 0x000000f0) >= 0x00000030)
248 cpu_arch = CPU_ARCH_ARMv7;
249 else if ((mmfr0 & 0x0000000f) == 0x00000002 ||
250 (mmfr0 & 0x000000f0) == 0x00000020)
251 cpu_arch = CPU_ARCH_ARMv6;
252 else
253 cpu_arch = CPU_ARCH_UNKNOWN;
254 } else
255 cpu_arch = CPU_ARCH_UNKNOWN;
256
257 return cpu_arch;
258}
259
260int __pure cpu_architecture(void)
261{
262 BUG_ON(__cpu_architecture == CPU_ARCH_UNKNOWN);
263
264 return __cpu_architecture;
265}
266
267static int cpu_has_aliasing_icache(unsigned int arch)
268{
269 int aliasing_icache;
270 unsigned int id_reg, num_sets, line_size;
271
272 /* PIPT caches never alias. */
273 if (icache_is_pipt())
274 return 0;
275
276 /* arch specifies the register format */
277 switch (arch) {
278 case CPU_ARCH_ARMv7:
279 asm("mcr p15, 2, %0, c0, c0, 0 @ set CSSELR"
280 : /* No output operands */
281 : "r" (1));
282 isb();
283 asm("mrc p15, 1, %0, c0, c0, 0 @ read CCSIDR"
284 : "=r" (id_reg));
285 line_size = 4 << ((id_reg & 0x7) + 2);
286 num_sets = ((id_reg >> 13) & 0x7fff) + 1;
287 aliasing_icache = (line_size * num_sets) > PAGE_SIZE;
288 break;
289 case CPU_ARCH_ARMv6:
290 aliasing_icache = read_cpuid_cachetype() & (1 << 11);
291 break;
292 default:
293 /* I-cache aliases will be handled by D-cache aliasing code */
294 aliasing_icache = 0;
295 }
296
297 return aliasing_icache;
298}
299
300static void __init cacheid_init(void)
301{
302 unsigned int cachetype = read_cpuid_cachetype();
303 unsigned int arch = cpu_architecture();
304
305 if (arch >= CPU_ARCH_ARMv6) {
306 if ((cachetype & (7 << 29)) == 4 << 29) {
307 /* ARMv7 register format */
308 arch = CPU_ARCH_ARMv7;
309 cacheid = CACHEID_VIPT_NONALIASING;
310 switch (cachetype & (3 << 14)) {
311 case (1 << 14):
312 cacheid |= CACHEID_ASID_TAGGED;
313 break;
314 case (3 << 14):
315 cacheid |= CACHEID_PIPT;
316 break;
317 }
318 } else {
319 arch = CPU_ARCH_ARMv6;
320 if (cachetype & (1 << 23))
321 cacheid = CACHEID_VIPT_ALIASING;
322 else
323 cacheid = CACHEID_VIPT_NONALIASING;
324 }
325 if (cpu_has_aliasing_icache(arch))
326 cacheid |= CACHEID_VIPT_I_ALIASING;
327 } else {
328 cacheid = CACHEID_VIVT;
329 }
330
331 printk("CPU: %s data cache, %s instruction cache\n",
332 cache_is_vivt() ? "VIVT" :
333 cache_is_vipt_aliasing() ? "VIPT aliasing" :
334 cache_is_vipt_nonaliasing() ? "PIPT / VIPT nonaliasing" : "unknown",
335 cache_is_vivt() ? "VIVT" :
336 icache_is_vivt_asid_tagged() ? "VIVT ASID tagged" :
337 icache_is_vipt_aliasing() ? "VIPT aliasing" :
338 icache_is_pipt() ? "PIPT" :
339 cache_is_vipt_nonaliasing() ? "VIPT nonaliasing" : "unknown");
340}
341
342/*
343 * These functions re-use the assembly code in head.S, which
344 * already provide the required functionality.
345 */
346extern struct proc_info_list *lookup_processor_type(unsigned int);
347
348void __init early_print(const char *str, ...)
349{
350 extern void printascii(const char *);
351 char buf[256];
352 va_list ap;
353
354 va_start(ap, str);
355 vsnprintf(buf, sizeof(buf), str, ap);
356 va_end(ap);
357
358#ifdef CONFIG_DEBUG_LL
359 printascii(buf);
360#endif
361 printk("%s", buf);
362}
363
364static void __init feat_v6_fixup(void)
365{
366 int id = read_cpuid_id();
367
368 if ((id & 0xff0f0000) != 0x41070000)
369 return;
370
371 /*
372 * HWCAP_TLS is available only on 1136 r1p0 and later,
373 * see also kuser_get_tls_init.
374 */
375 if ((((id >> 4) & 0xfff) == 0xb36) && (((id >> 20) & 3) == 0))
376 elf_hwcap &= ~HWCAP_TLS;
377}
378
379/*
380 * cpu_init - initialise one CPU.
381 *
382 * cpu_init sets up the per-CPU stacks.
383 */
384void cpu_init(void)
385{
386 unsigned int cpu = smp_processor_id();
387 struct stack *stk = &stacks[cpu];
388
389 if (cpu >= NR_CPUS) {
390 printk(KERN_CRIT "CPU%u: bad primary CPU number\n", cpu);
391 BUG();
392 }
393
394 cpu_proc_init();
395
396 /*
397 * Define the placement constraint for the inline asm directive below.
398 * In Thumb-2, msr with an immediate value is not allowed.
399 */
400#ifdef CONFIG_THUMB2_KERNEL
401#define PLC "r"
402#else
403#define PLC "I"
404#endif
405
406 /*
407 * setup stacks for re-entrant exception handlers
408 */
409 __asm__ (
410 "msr cpsr_c, %1\n\t"
411 "add r14, %0, %2\n\t"
412 "mov sp, r14\n\t"
413 "msr cpsr_c, %3\n\t"
414 "add r14, %0, %4\n\t"
415 "mov sp, r14\n\t"
416 "msr cpsr_c, %5\n\t"
417 "add r14, %0, %6\n\t"
418 "mov sp, r14\n\t"
419 "msr cpsr_c, %7"
420 :
421 : "r" (stk),
422 PLC (PSR_F_BIT | PSR_I_BIT | IRQ_MODE),
423 "I" (offsetof(struct stack, irq[0])),
424 PLC (PSR_F_BIT | PSR_I_BIT | ABT_MODE),
425 "I" (offsetof(struct stack, abt[0])),
426 PLC (PSR_F_BIT | PSR_I_BIT | UND_MODE),
427 "I" (offsetof(struct stack, und[0])),
428 PLC (PSR_F_BIT | PSR_I_BIT | SVC_MODE)
429 : "r14");
430}
431
432int __cpu_logical_map[NR_CPUS];
433
434void __init smp_setup_processor_id(void)
435{
436 int i;
437 u32 cpu = is_smp() ? read_cpuid_mpidr() & 0xff : 0;
438
439 cpu_logical_map(0) = cpu;
440 for (i = 1; i < NR_CPUS; ++i)
441 cpu_logical_map(i) = i == cpu ? 0 : i;
442
443 printk(KERN_INFO "Booting Linux on physical CPU %d\n", cpu);
444}
445
446static void __init setup_processor(void)
447{
448 struct proc_info_list *list;
449
450 /*
451 * locate processor in the list of supported processor
452 * types. The linker builds this table for us from the
453 * entries in arch/arm/mm/proc-*.S
454 */
455 list = lookup_processor_type(read_cpuid_id());
456 if (!list) {
457 printk("CPU configuration botched (ID %08x), unable "
458 "to continue.\n", read_cpuid_id());
459 while (1);
460 }
461
462 cpu_name = list->cpu_name;
463 __cpu_architecture = __get_cpu_architecture();
464
465#ifdef MULTI_CPU
466 processor = *list->proc;
467#endif
468#ifdef MULTI_TLB
469 cpu_tlb = *list->tlb;
470#endif
471#ifdef MULTI_USER
472 cpu_user = *list->user;
473#endif
474#ifdef MULTI_CACHE
475 cpu_cache = *list->cache;
476#endif
477
478 printk("CPU: %s [%08x] revision %d (ARMv%s), cr=%08lx\n",
479 cpu_name, read_cpuid_id(), read_cpuid_id() & 15,
480 proc_arch[cpu_architecture()], cr_alignment);
481
482 snprintf(init_utsname()->machine, __NEW_UTS_LEN + 1, "%s%c",
483 list->arch_name, ENDIANNESS);
484 snprintf(elf_platform, ELF_PLATFORM_SIZE, "%s%c",
485 list->elf_name, ENDIANNESS);
486 elf_hwcap = list->elf_hwcap;
487#ifndef CONFIG_ARM_THUMB
488 elf_hwcap &= ~HWCAP_THUMB;
489#endif
490
491 feat_v6_fixup();
492
493 cacheid_init();
494 cpu_init();
495}
496
497void __init dump_machine_table(void)
498{
499 struct machine_desc *p;
500
501 early_print("Available machine support:\n\nID (hex)\tNAME\n");
502 for_each_machine_desc(p)
503 early_print("%08x\t%s\n", p->nr, p->name);
504
505 early_print("\nPlease check your kernel config and/or bootloader.\n");
506
507 while (true)
508 /* can't use cpu_relax() here as it may require MMU setup */;
509}
510
511int __init arm_add_memory(phys_addr_t start, unsigned long size)
512{
513 struct membank *bank = &meminfo.bank[meminfo.nr_banks];
514
515 if (meminfo.nr_banks >= NR_BANKS) {
516 printk(KERN_CRIT "NR_BANKS too low, "
517 "ignoring memory at 0x%08llx\n", (long long)start);
518 return -EINVAL;
519 }
520
521 /*
522 * Ensure that start/size are aligned to a page boundary.
523 * Size is appropriately rounded down, start is rounded up.
524 */
525 size -= start & ~PAGE_MASK;
526 bank->start = PAGE_ALIGN(start);
527
528#ifndef CONFIG_LPAE
529 if (bank->start + size < bank->start) {
530 printk(KERN_CRIT "Truncating memory at 0x%08llx to fit in "
531 "32-bit physical address space\n", (long long)start);
532 /*
533 * To ensure bank->start + bank->size is representable in
534 * 32 bits, we use ULONG_MAX as the upper limit rather than 4GB.
535 * This means we lose a page after masking.
536 */
537 size = ULONG_MAX - bank->start;
538 }
539#endif
540
541 bank->size = size & PAGE_MASK;
542
543 /*
544 * Check whether this memory region has non-zero size or
545 * invalid node number.
546 */
547 if (bank->size == 0)
548 return -EINVAL;
549
550 meminfo.nr_banks++;
551 return 0;
552}
553
554/*
555 * Pick out the memory size. We look for mem=size@start,
556 * where start and size are "size[KkMm]"
557 */
558static int __init early_mem(char *p)
559{
560 static int usermem __initdata = 0;
561 unsigned long size;
562 phys_addr_t start;
563 char *endp;
564
565 /*
566 * If the user specifies memory size, we
567 * blow away any automatically generated
568 * size.
569 */
570 if (usermem == 0) {
571 usermem = 1;
572 meminfo.nr_banks = 0;
573 }
574
575 start = PHYS_OFFSET;
576 size = memparse(p, &endp);
577 if (*endp == '@')
578 start = memparse(endp + 1, NULL);
579
580 arm_add_memory(start, size);
581
582 return 0;
583}
584early_param("mem", early_mem);
585
586static void __init
587setup_ramdisk(int doload, int prompt, int image_start, unsigned int rd_sz)
588{
589#ifdef CONFIG_BLK_DEV_RAM
590 extern int rd_size, rd_image_start, rd_prompt, rd_doload;
591
592 rd_image_start = image_start;
593 rd_prompt = prompt;
594 rd_doload = doload;
595
596 if (rd_sz)
597 rd_size = rd_sz;
598#endif
599}
600
601static void __init request_standard_resources(struct machine_desc *mdesc)
602{
603 struct memblock_region *region;
604 struct resource *res;
605
606 kernel_code.start = virt_to_phys(_text);
607 kernel_code.end = virt_to_phys(_etext - 1);
608 kernel_data.start = virt_to_phys(_sdata);
609 kernel_data.end = virt_to_phys(_end - 1);
610
611 for_each_memblock(memory, region) {
612 res = alloc_bootmem_low(sizeof(*res));
613 res->name = "System RAM";
614 res->start = __pfn_to_phys(memblock_region_memory_base_pfn(region));
615 res->end = __pfn_to_phys(memblock_region_memory_end_pfn(region)) - 1;
616 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
617
618 request_resource(&iomem_resource, res);
619
620 if (kernel_code.start >= res->start &&
621 kernel_code.end <= res->end)
622 request_resource(res, &kernel_code);
623 if (kernel_data.start >= res->start &&
624 kernel_data.end <= res->end)
625 request_resource(res, &kernel_data);
626 }
627
628 if (mdesc->video_start) {
629 video_ram.start = mdesc->video_start;
630 video_ram.end = mdesc->video_end;
631 request_resource(&iomem_resource, &video_ram);
632 }
633
634 /*
635 * Some machines don't have the possibility of ever
636 * possessing lp0, lp1 or lp2
637 */
638 if (mdesc->reserve_lp0)
639 request_resource(&ioport_resource, &lp0);
640 if (mdesc->reserve_lp1)
641 request_resource(&ioport_resource, &lp1);
642 if (mdesc->reserve_lp2)
643 request_resource(&ioport_resource, &lp2);
644}
645
646/*
647 * Tag parsing.
648 *
649 * This is the new way of passing data to the kernel at boot time. Rather
650 * than passing a fixed inflexible structure to the kernel, we pass a list
651 * of variable-sized tags to the kernel. The first tag must be a ATAG_CORE
652 * tag for the list to be recognised (to distinguish the tagged list from
653 * a param_struct). The list is terminated with a zero-length tag (this tag
654 * is not parsed in any way).
655 */
656static int __init parse_tag_core(const struct tag *tag)
657{
658 if (tag->hdr.size > 2) {
659 if ((tag->u.core.flags & 1) == 0)
660 root_mountflags &= ~MS_RDONLY;
661 ROOT_DEV = old_decode_dev(tag->u.core.rootdev);
662 }
663 return 0;
664}
665
666__tagtable(ATAG_CORE, parse_tag_core);
667
668static int __init parse_tag_mem32(const struct tag *tag)
669{
670 return arm_add_memory(tag->u.mem.start, tag->u.mem.size);
671}
672
673__tagtable(ATAG_MEM, parse_tag_mem32);
674
675#if defined(CONFIG_VGA_CONSOLE) || defined(CONFIG_DUMMY_CONSOLE)
676struct screen_info screen_info = {
677 .orig_video_lines = 30,
678 .orig_video_cols = 80,
679 .orig_video_mode = 0,
680 .orig_video_ega_bx = 0,
681 .orig_video_isVGA = 1,
682 .orig_video_points = 8
683};
684
685static int __init parse_tag_videotext(const struct tag *tag)
686{
687 screen_info.orig_x = tag->u.videotext.x;
688 screen_info.orig_y = tag->u.videotext.y;
689 screen_info.orig_video_page = tag->u.videotext.video_page;
690 screen_info.orig_video_mode = tag->u.videotext.video_mode;
691 screen_info.orig_video_cols = tag->u.videotext.video_cols;
692 screen_info.orig_video_ega_bx = tag->u.videotext.video_ega_bx;
693 screen_info.orig_video_lines = tag->u.videotext.video_lines;
694 screen_info.orig_video_isVGA = tag->u.videotext.video_isvga;
695 screen_info.orig_video_points = tag->u.videotext.video_points;
696 return 0;
697}
698
699__tagtable(ATAG_VIDEOTEXT, parse_tag_videotext);
700#endif
701
702static int __init parse_tag_ramdisk(const struct tag *tag)
703{
704 setup_ramdisk((tag->u.ramdisk.flags & 1) == 0,
705 (tag->u.ramdisk.flags & 2) == 0,
706 tag->u.ramdisk.start, tag->u.ramdisk.size);
707 return 0;
708}
709
710__tagtable(ATAG_RAMDISK, parse_tag_ramdisk);
711
712static int __init parse_tag_serialnr(const struct tag *tag)
713{
714 system_serial_low = tag->u.serialnr.low;
715 system_serial_high = tag->u.serialnr.high;
716 return 0;
717}
718
719__tagtable(ATAG_SERIAL, parse_tag_serialnr);
720
721static int __init parse_tag_revision(const struct tag *tag)
722{
723 system_rev = tag->u.revision.rev;
724 return 0;
725}
726
727__tagtable(ATAG_REVISION, parse_tag_revision);
728
729static int __init parse_tag_cmdline(const struct tag *tag)
730{
731#if defined(CONFIG_CMDLINE_EXTEND)
732 strlcat(default_command_line, " ", COMMAND_LINE_SIZE);
733 strlcat(default_command_line, tag->u.cmdline.cmdline,
734 COMMAND_LINE_SIZE);
735#elif defined(CONFIG_CMDLINE_FORCE)
736 pr_warning("Ignoring tag cmdline (using the default kernel command line)\n");
737#else
738 strlcpy(default_command_line, tag->u.cmdline.cmdline,
739 COMMAND_LINE_SIZE);
740#endif
741 return 0;
742}
743
744__tagtable(ATAG_CMDLINE, parse_tag_cmdline);
745
746/*
747 * Scan the tag table for this tag, and call its parse function.
748 * The tag table is built by the linker from all the __tagtable
749 * declarations.
750 */
751static int __init parse_tag(const struct tag *tag)
752{
753 extern struct tagtable __tagtable_begin, __tagtable_end;
754 struct tagtable *t;
755
756 for (t = &__tagtable_begin; t < &__tagtable_end; t++)
757 if (tag->hdr.tag == t->tag) {
758 t->parse(tag);
759 break;
760 }
761
762 return t < &__tagtable_end;
763}
764
765/*
766 * Parse all tags in the list, checking both the global and architecture
767 * specific tag tables.
768 */
769static void __init parse_tags(const struct tag *t)
770{
771 for (; t->hdr.size; t = tag_next(t))
772 if (!parse_tag(t))
773 printk(KERN_WARNING
774 "Ignoring unrecognised tag 0x%08x\n",
775 t->hdr.tag);
776}
777
778/*
779 * This holds our defaults.
780 */
781static struct init_tags {
782 struct tag_header hdr1;
783 struct tag_core core;
784 struct tag_header hdr2;
785 struct tag_mem32 mem;
786 struct tag_header hdr3;
787} init_tags __initdata = {
788 { tag_size(tag_core), ATAG_CORE },
789 { 1, PAGE_SIZE, 0xff },
790 { tag_size(tag_mem32), ATAG_MEM },
791 { MEM_SIZE },
792 { 0, ATAG_NONE }
793};
794
795static int __init customize_machine(void)
796{
797 /* customizes platform devices, or adds new ones */
798 if (machine_desc->init_machine)
799 machine_desc->init_machine();
800 return 0;
801}
802arch_initcall(customize_machine);
803
804static int __init init_machine_late(void)
805{
806 if (machine_desc->init_late)
807 machine_desc->init_late();
808 return 0;
809}
810late_initcall(init_machine_late);
811
812#ifdef CONFIG_KEXEC
813static inline unsigned long long get_total_mem(void)
814{
815 unsigned long total;
816
817 total = max_low_pfn - min_low_pfn;
818 return total << PAGE_SHIFT;
819}
820
821/**
822 * reserve_crashkernel() - reserves memory are for crash kernel
823 *
824 * This function reserves memory area given in "crashkernel=" kernel command
825 * line parameter. The memory reserved is used by a dump capture kernel when
826 * primary kernel is crashing.
827 */
828static void __init reserve_crashkernel(void)
829{
830 unsigned long long crash_size, crash_base;
831 unsigned long long total_mem;
832 int ret;
833
834 total_mem = get_total_mem();
835 ret = parse_crashkernel(boot_command_line, total_mem,
836 &crash_size, &crash_base);
837 if (ret)
838 return;
839
840 ret = reserve_bootmem(crash_base, crash_size, BOOTMEM_EXCLUSIVE);
841 if (ret < 0) {
842 printk(KERN_WARNING "crashkernel reservation failed - "
843 "memory is in use (0x%lx)\n", (unsigned long)crash_base);
844 return;
845 }
846
847 printk(KERN_INFO "Reserving %ldMB of memory at %ldMB "
848 "for crashkernel (System RAM: %ldMB)\n",
849 (unsigned long)(crash_size >> 20),
850 (unsigned long)(crash_base >> 20),
851 (unsigned long)(total_mem >> 20));
852
853 crashk_res.start = crash_base;
854 crashk_res.end = crash_base + crash_size - 1;
855 insert_resource(&iomem_resource, &crashk_res);
856}
857#else
858static inline void reserve_crashkernel(void) {}
859#endif /* CONFIG_KEXEC */
860
861static void __init squash_mem_tags(struct tag *tag)
862{
863 for (; tag->hdr.size; tag = tag_next(tag))
864 if (tag->hdr.tag == ATAG_MEM)
865 tag->hdr.tag = ATAG_NONE;
866}
867
868static struct machine_desc * __init setup_machine_tags(unsigned int nr)
869{
870 struct tag *tags = (struct tag *)&init_tags;
871 struct machine_desc *mdesc = NULL, *p;
872 char *from = default_command_line;
873
874 init_tags.mem.start = PHYS_OFFSET;
875
876 /*
877 * locate machine in the list of supported machines.
878 */
879 for_each_machine_desc(p)
880 if (nr == p->nr) {
881 printk("Machine: %s\n", p->name);
882 mdesc = p;
883 break;
884 }
885
886 if (!mdesc) {
887 early_print("\nError: unrecognized/unsupported machine ID"
888 " (r1 = 0x%08x).\n\n", nr);
889 dump_machine_table(); /* does not return */
890 }
891
892 if (__atags_pointer)
893 tags = phys_to_virt(__atags_pointer);
894 else if (mdesc->atag_offset)
895 tags = (void *)(PAGE_OFFSET + mdesc->atag_offset);
896
897#if defined(CONFIG_DEPRECATED_PARAM_STRUCT)
898 /*
899 * If we have the old style parameters, convert them to
900 * a tag list.
901 */
902 if (tags->hdr.tag != ATAG_CORE)
903 convert_to_tag_list(tags);
904#endif
905
906 if (tags->hdr.tag != ATAG_CORE) {
907#if defined(CONFIG_OF)
908 /*
909 * If CONFIG_OF is set, then assume this is a reasonably
910 * modern system that should pass boot parameters
911 */
912 early_print("Warning: Neither atags nor dtb found\n");
913#endif
914 tags = (struct tag *)&init_tags;
915 }
916
917 if (mdesc->fixup)
918 mdesc->fixup(tags, &from, &meminfo);
919
920 if (tags->hdr.tag == ATAG_CORE) {
921 if (meminfo.nr_banks != 0)
922 squash_mem_tags(tags);
923 save_atags(tags);
924 parse_tags(tags);
925 }
926
927 /* parse_early_param needs a boot_command_line */
928 strlcpy(boot_command_line, from, COMMAND_LINE_SIZE);
929
930 return mdesc;
931}
932
933static int __init meminfo_cmp(const void *_a, const void *_b)
934{
935 const struct membank *a = _a, *b = _b;
936 long cmp = bank_pfn_start(a) - bank_pfn_start(b);
937 return cmp < 0 ? -1 : cmp > 0 ? 1 : 0;
938}
939
940void __init setup_arch(char **cmdline_p)
941{
942 struct machine_desc *mdesc;
943
944 setup_processor();
945 mdesc = setup_machine_fdt(__atags_pointer);
946 if (!mdesc)
947 mdesc = setup_machine_tags(machine_arch_type);
948 machine_desc = mdesc;
949 machine_name = mdesc->name;
950
951 setup_dma_zone(mdesc);
952
953 if (mdesc->restart_mode)
954 reboot_setup(&mdesc->restart_mode);
955
956 init_mm.start_code = (unsigned long) _text;
957 init_mm.end_code = (unsigned long) _etext;
958 init_mm.end_data = (unsigned long) _edata;
959 init_mm.brk = (unsigned long) _end;
960
961 /* populate cmd_line too for later use, preserving boot_command_line */
962 strlcpy(cmd_line, boot_command_line, COMMAND_LINE_SIZE);
963 *cmdline_p = cmd_line;
964
965 parse_early_param();
966
967 sort(&meminfo.bank, meminfo.nr_banks, sizeof(meminfo.bank[0]), meminfo_cmp, NULL);
968 sanity_check_meminfo();
969 arm_memblock_init(&meminfo, mdesc);
970
971 paging_init(mdesc);
972 request_standard_resources(mdesc);
973
974 if (mdesc->restart)
975 arm_pm_restart = mdesc->restart;
976
977 unflatten_device_tree();
978
979#ifdef CONFIG_SMP
980 if (is_smp())
981 smp_init_cpus();
982#endif
983 reserve_crashkernel();
984
985 tcm_init();
986
987#ifdef CONFIG_MULTI_IRQ_HANDLER
988 handle_arch_irq = mdesc->handle_irq;
989#endif
990
991#ifdef CONFIG_VT
992#if defined(CONFIG_VGA_CONSOLE)
993 conswitchp = &vga_con;
994#elif defined(CONFIG_DUMMY_CONSOLE)
995 conswitchp = &dummy_con;
996#endif
997#endif
998
999 if (mdesc->init_early)
1000 mdesc->init_early();
1001}
1002
1003
1004static int __init topology_init(void)
1005{
1006 int cpu;
1007
1008 for_each_possible_cpu(cpu) {
1009 struct cpuinfo_arm *cpuinfo = &per_cpu(cpu_data, cpu);
1010 cpuinfo->cpu.hotpluggable = 1;
1011 register_cpu(&cpuinfo->cpu, cpu);
1012 }
1013
1014 return 0;
1015}
1016subsys_initcall(topology_init);
1017
1018#ifdef CONFIG_HAVE_PROC_CPU
1019static int __init proc_cpu_init(void)
1020{
1021 struct proc_dir_entry *res;
1022
1023 res = proc_mkdir("cpu", NULL);
1024 if (!res)
1025 return -ENOMEM;
1026 return 0;
1027}
1028fs_initcall(proc_cpu_init);
1029#endif
1030
1031static const char *hwcap_str[] = {
1032 "swp",
1033 "half",
1034 "thumb",
1035 "26bit",
1036 "fastmult",
1037 "fpa",
1038 "vfp",
1039 "edsp",
1040 "java",
1041 "iwmmxt",
1042 "crunch",
1043 "thumbee",
1044 "neon",
1045 "vfpv3",
1046 "vfpv3d16",
1047 "tls",
1048 "vfpv4",
1049 "idiva",
1050 "idivt",
1051 NULL
1052};
1053
1054static int c_show(struct seq_file *m, void *v)
1055{
1056 int i;
1057
1058 seq_printf(m, "Processor\t: %s rev %d (%s)\n",
1059 cpu_name, read_cpuid_id() & 15, elf_platform);
1060
1061#if defined(CONFIG_SMP)
1062 for_each_online_cpu(i) {
1063 /*
1064 * glibc reads /proc/cpuinfo to determine the number of
1065 * online processors, looking for lines beginning with
1066 * "processor". Give glibc what it expects.
1067 */
1068 seq_printf(m, "processor\t: %d\n", i);
1069 seq_printf(m, "BogoMIPS\t: %lu.%02lu\n\n",
1070 per_cpu(cpu_data, i).loops_per_jiffy / (500000UL/HZ),
1071 (per_cpu(cpu_data, i).loops_per_jiffy / (5000UL/HZ)) % 100);
1072 }
1073#else /* CONFIG_SMP */
1074 seq_printf(m, "BogoMIPS\t: %lu.%02lu\n",
1075 loops_per_jiffy / (500000/HZ),
1076 (loops_per_jiffy / (5000/HZ)) % 100);
1077#endif
1078
1079 /* dump out the processor features */
1080 seq_puts(m, "Features\t: ");
1081
1082 for (i = 0; hwcap_str[i]; i++)
1083 if (elf_hwcap & (1 << i))
1084 seq_printf(m, "%s ", hwcap_str[i]);
1085
1086 seq_printf(m, "\nCPU implementer\t: 0x%02x\n", read_cpuid_id() >> 24);
1087 seq_printf(m, "CPU architecture: %s\n", proc_arch[cpu_architecture()]);
1088
1089 if ((read_cpuid_id() & 0x0008f000) == 0x00000000) {
1090 /* pre-ARM7 */
1091 seq_printf(m, "CPU part\t: %07x\n", read_cpuid_id() >> 4);
1092 } else {
1093 if ((read_cpuid_id() & 0x0008f000) == 0x00007000) {
1094 /* ARM7 */
1095 seq_printf(m, "CPU variant\t: 0x%02x\n",
1096 (read_cpuid_id() >> 16) & 127);
1097 } else {
1098 /* post-ARM7 */
1099 seq_printf(m, "CPU variant\t: 0x%x\n",
1100 (read_cpuid_id() >> 20) & 15);
1101 }
1102 seq_printf(m, "CPU part\t: 0x%03x\n",
1103 (read_cpuid_id() >> 4) & 0xfff);
1104 }
1105 seq_printf(m, "CPU revision\t: %d\n", read_cpuid_id() & 15);
1106
1107 seq_puts(m, "\n");
1108
1109 seq_printf(m, "Hardware\t: %s\n", machine_name);
1110 seq_printf(m, "Revision\t: %04x\n", system_rev);
1111 seq_printf(m, "Serial\t\t: %08x%08x\n",
1112 system_serial_high, system_serial_low);
1113
1114 return 0;
1115}
1116
1117static void *c_start(struct seq_file *m, loff_t *pos)
1118{
1119 return *pos < 1 ? (void *)1 : NULL;
1120}
1121
1122static void *c_next(struct seq_file *m, void *v, loff_t *pos)
1123{
1124 ++*pos;
1125 return NULL;
1126}
1127
1128static void c_stop(struct seq_file *m, void *v)
1129{
1130}
1131
1132const struct seq_operations cpuinfo_op = {
1133 .start = c_start,
1134 .next = c_next,
1135 .stop = c_stop,
1136 .show = c_show
1137};
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/arch/arm/kernel/setup.c
4 *
5 * Copyright (C) 1995-2001 Russell King
6 */
7#include <linux/efi.h>
8#include <linux/export.h>
9#include <linux/kernel.h>
10#include <linux/stddef.h>
11#include <linux/ioport.h>
12#include <linux/delay.h>
13#include <linux/utsname.h>
14#include <linux/initrd.h>
15#include <linux/console.h>
16#include <linux/seq_file.h>
17#include <linux/screen_info.h>
18#include <linux/of_platform.h>
19#include <linux/init.h>
20#include <linux/kexec.h>
21#include <linux/libfdt.h>
22#include <linux/of_fdt.h>
23#include <linux/cpu.h>
24#include <linux/interrupt.h>
25#include <linux/smp.h>
26#include <linux/proc_fs.h>
27#include <linux/memblock.h>
28#include <linux/bug.h>
29#include <linux/compiler.h>
30#include <linux/sort.h>
31#include <linux/psci.h>
32
33#include <asm/unified.h>
34#include <asm/cp15.h>
35#include <asm/cpu.h>
36#include <asm/cputype.h>
37#include <asm/efi.h>
38#include <asm/elf.h>
39#include <asm/early_ioremap.h>
40#include <asm/fixmap.h>
41#include <asm/procinfo.h>
42#include <asm/psci.h>
43#include <asm/sections.h>
44#include <asm/setup.h>
45#include <asm/smp_plat.h>
46#include <asm/mach-types.h>
47#include <asm/cacheflush.h>
48#include <asm/cachetype.h>
49#include <asm/tlbflush.h>
50#include <asm/xen/hypervisor.h>
51
52#include <asm/prom.h>
53#include <asm/mach/arch.h>
54#include <asm/mach/irq.h>
55#include <asm/mach/time.h>
56#include <asm/system_info.h>
57#include <asm/system_misc.h>
58#include <asm/traps.h>
59#include <asm/unwind.h>
60#include <asm/memblock.h>
61#include <asm/virt.h>
62#include <asm/kasan.h>
63
64#include "atags.h"
65
66
67#if defined(CONFIG_FPE_NWFPE) || defined(CONFIG_FPE_FASTFPE)
68char fpe_type[8];
69
70static int __init fpe_setup(char *line)
71{
72 memcpy(fpe_type, line, 8);
73 return 1;
74}
75
76__setup("fpe=", fpe_setup);
77#endif
78
79extern void init_default_cache_policy(unsigned long);
80extern void paging_init(const struct machine_desc *desc);
81extern void early_mm_init(const struct machine_desc *);
82extern void adjust_lowmem_bounds(void);
83extern enum reboot_mode reboot_mode;
84extern void setup_dma_zone(const struct machine_desc *desc);
85
86unsigned int processor_id;
87EXPORT_SYMBOL(processor_id);
88unsigned int __machine_arch_type __read_mostly;
89EXPORT_SYMBOL(__machine_arch_type);
90unsigned int cacheid __read_mostly;
91EXPORT_SYMBOL(cacheid);
92
93unsigned int __atags_pointer __initdata;
94
95unsigned int system_rev;
96EXPORT_SYMBOL(system_rev);
97
98const char *system_serial;
99EXPORT_SYMBOL(system_serial);
100
101unsigned int system_serial_low;
102EXPORT_SYMBOL(system_serial_low);
103
104unsigned int system_serial_high;
105EXPORT_SYMBOL(system_serial_high);
106
107unsigned int elf_hwcap __read_mostly;
108EXPORT_SYMBOL(elf_hwcap);
109
110unsigned int elf_hwcap2 __read_mostly;
111EXPORT_SYMBOL(elf_hwcap2);
112
113
114#ifdef MULTI_CPU
115struct processor processor __ro_after_init;
116#if defined(CONFIG_BIG_LITTLE) && defined(CONFIG_HARDEN_BRANCH_PREDICTOR)
117struct processor *cpu_vtable[NR_CPUS] = {
118 [0] = &processor,
119};
120#endif
121#endif
122#ifdef MULTI_TLB
123struct cpu_tlb_fns cpu_tlb __ro_after_init;
124#endif
125#ifdef MULTI_USER
126struct cpu_user_fns cpu_user __ro_after_init;
127#endif
128#ifdef MULTI_CACHE
129struct cpu_cache_fns cpu_cache __ro_after_init;
130#endif
131#ifdef CONFIG_OUTER_CACHE
132struct outer_cache_fns outer_cache __ro_after_init;
133EXPORT_SYMBOL(outer_cache);
134#endif
135
136/*
137 * Cached cpu_architecture() result for use by assembler code.
138 * C code should use the cpu_architecture() function instead of accessing this
139 * variable directly.
140 */
141int __cpu_architecture __read_mostly = CPU_ARCH_UNKNOWN;
142
143struct stack {
144 u32 irq[4];
145 u32 abt[4];
146 u32 und[4];
147 u32 fiq[4];
148} ____cacheline_aligned;
149
150#ifndef CONFIG_CPU_V7M
151static struct stack stacks[NR_CPUS];
152#endif
153
154char elf_platform[ELF_PLATFORM_SIZE];
155EXPORT_SYMBOL(elf_platform);
156
157static const char *cpu_name;
158static const char *machine_name;
159static char __initdata cmd_line[COMMAND_LINE_SIZE];
160const struct machine_desc *machine_desc __initdata;
161
162static union { char c[4]; unsigned long l; } endian_test __initdata = { { 'l', '?', '?', 'b' } };
163#define ENDIANNESS ((char)endian_test.l)
164
165DEFINE_PER_CPU(struct cpuinfo_arm, cpu_data);
166
167/*
168 * Standard memory resources
169 */
170static struct resource mem_res[] = {
171 {
172 .name = "Video RAM",
173 .start = 0,
174 .end = 0,
175 .flags = IORESOURCE_MEM
176 },
177 {
178 .name = "Kernel code",
179 .start = 0,
180 .end = 0,
181 .flags = IORESOURCE_SYSTEM_RAM
182 },
183 {
184 .name = "Kernel data",
185 .start = 0,
186 .end = 0,
187 .flags = IORESOURCE_SYSTEM_RAM
188 }
189};
190
191#define video_ram mem_res[0]
192#define kernel_code mem_res[1]
193#define kernel_data mem_res[2]
194
195static struct resource io_res[] = {
196 {
197 .name = "reserved",
198 .start = 0x3bc,
199 .end = 0x3be,
200 .flags = IORESOURCE_IO | IORESOURCE_BUSY
201 },
202 {
203 .name = "reserved",
204 .start = 0x378,
205 .end = 0x37f,
206 .flags = IORESOURCE_IO | IORESOURCE_BUSY
207 },
208 {
209 .name = "reserved",
210 .start = 0x278,
211 .end = 0x27f,
212 .flags = IORESOURCE_IO | IORESOURCE_BUSY
213 }
214};
215
216#define lp0 io_res[0]
217#define lp1 io_res[1]
218#define lp2 io_res[2]
219
220static const char *proc_arch[] = {
221 "undefined/unknown",
222 "3",
223 "4",
224 "4T",
225 "5",
226 "5T",
227 "5TE",
228 "5TEJ",
229 "6TEJ",
230 "7",
231 "7M",
232 "?(12)",
233 "?(13)",
234 "?(14)",
235 "?(15)",
236 "?(16)",
237 "?(17)",
238};
239
240#ifdef CONFIG_CPU_V7M
241static int __get_cpu_architecture(void)
242{
243 return CPU_ARCH_ARMv7M;
244}
245#else
246static int __get_cpu_architecture(void)
247{
248 int cpu_arch;
249
250 if ((read_cpuid_id() & 0x0008f000) == 0) {
251 cpu_arch = CPU_ARCH_UNKNOWN;
252 } else if ((read_cpuid_id() & 0x0008f000) == 0x00007000) {
253 cpu_arch = (read_cpuid_id() & (1 << 23)) ? CPU_ARCH_ARMv4T : CPU_ARCH_ARMv3;
254 } else if ((read_cpuid_id() & 0x00080000) == 0x00000000) {
255 cpu_arch = (read_cpuid_id() >> 16) & 7;
256 if (cpu_arch)
257 cpu_arch += CPU_ARCH_ARMv3;
258 } else if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) {
259 /* Revised CPUID format. Read the Memory Model Feature
260 * Register 0 and check for VMSAv7 or PMSAv7 */
261 unsigned int mmfr0 = read_cpuid_ext(CPUID_EXT_MMFR0);
262 if ((mmfr0 & 0x0000000f) >= 0x00000003 ||
263 (mmfr0 & 0x000000f0) >= 0x00000030)
264 cpu_arch = CPU_ARCH_ARMv7;
265 else if ((mmfr0 & 0x0000000f) == 0x00000002 ||
266 (mmfr0 & 0x000000f0) == 0x00000020)
267 cpu_arch = CPU_ARCH_ARMv6;
268 else
269 cpu_arch = CPU_ARCH_UNKNOWN;
270 } else
271 cpu_arch = CPU_ARCH_UNKNOWN;
272
273 return cpu_arch;
274}
275#endif
276
277int __pure cpu_architecture(void)
278{
279 BUG_ON(__cpu_architecture == CPU_ARCH_UNKNOWN);
280
281 return __cpu_architecture;
282}
283
284static int cpu_has_aliasing_icache(unsigned int arch)
285{
286 int aliasing_icache;
287 unsigned int id_reg, num_sets, line_size;
288
289 /* PIPT caches never alias. */
290 if (icache_is_pipt())
291 return 0;
292
293 /* arch specifies the register format */
294 switch (arch) {
295 case CPU_ARCH_ARMv7:
296 set_csselr(CSSELR_ICACHE | CSSELR_L1);
297 isb();
298 id_reg = read_ccsidr();
299 line_size = 4 << ((id_reg & 0x7) + 2);
300 num_sets = ((id_reg >> 13) & 0x7fff) + 1;
301 aliasing_icache = (line_size * num_sets) > PAGE_SIZE;
302 break;
303 case CPU_ARCH_ARMv6:
304 aliasing_icache = read_cpuid_cachetype() & (1 << 11);
305 break;
306 default:
307 /* I-cache aliases will be handled by D-cache aliasing code */
308 aliasing_icache = 0;
309 }
310
311 return aliasing_icache;
312}
313
314static void __init cacheid_init(void)
315{
316 unsigned int arch = cpu_architecture();
317
318 if (arch >= CPU_ARCH_ARMv6) {
319 unsigned int cachetype = read_cpuid_cachetype();
320
321 if ((arch == CPU_ARCH_ARMv7M) && !(cachetype & 0xf000f)) {
322 cacheid = 0;
323 } else if ((cachetype & (7 << 29)) == 4 << 29) {
324 /* ARMv7 register format */
325 arch = CPU_ARCH_ARMv7;
326 cacheid = CACHEID_VIPT_NONALIASING;
327 switch (cachetype & (3 << 14)) {
328 case (1 << 14):
329 cacheid |= CACHEID_ASID_TAGGED;
330 break;
331 case (3 << 14):
332 cacheid |= CACHEID_PIPT;
333 break;
334 }
335 } else {
336 arch = CPU_ARCH_ARMv6;
337 if (cachetype & (1 << 23))
338 cacheid = CACHEID_VIPT_ALIASING;
339 else
340 cacheid = CACHEID_VIPT_NONALIASING;
341 }
342 if (cpu_has_aliasing_icache(arch))
343 cacheid |= CACHEID_VIPT_I_ALIASING;
344 } else {
345 cacheid = CACHEID_VIVT;
346 }
347
348 pr_info("CPU: %s data cache, %s instruction cache\n",
349 cache_is_vivt() ? "VIVT" :
350 cache_is_vipt_aliasing() ? "VIPT aliasing" :
351 cache_is_vipt_nonaliasing() ? "PIPT / VIPT nonaliasing" : "unknown",
352 cache_is_vivt() ? "VIVT" :
353 icache_is_vivt_asid_tagged() ? "VIVT ASID tagged" :
354 icache_is_vipt_aliasing() ? "VIPT aliasing" :
355 icache_is_pipt() ? "PIPT" :
356 cache_is_vipt_nonaliasing() ? "VIPT nonaliasing" : "unknown");
357}
358
359/*
360 * These functions re-use the assembly code in head.S, which
361 * already provide the required functionality.
362 */
363extern struct proc_info_list *lookup_processor_type(unsigned int);
364
365void __init early_print(const char *str, ...)
366{
367 extern void printascii(const char *);
368 char buf[256];
369 va_list ap;
370
371 va_start(ap, str);
372 vsnprintf(buf, sizeof(buf), str, ap);
373 va_end(ap);
374
375#ifdef CONFIG_DEBUG_LL
376 printascii(buf);
377#endif
378 printk("%s", buf);
379}
380
381#ifdef CONFIG_ARM_PATCH_IDIV
382
383static inline u32 __attribute_const__ sdiv_instruction(void)
384{
385 if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) {
386 /* "sdiv r0, r0, r1" */
387 u32 insn = __opcode_thumb32_compose(0xfb90, 0xf0f1);
388 return __opcode_to_mem_thumb32(insn);
389 }
390
391 /* "sdiv r0, r0, r1" */
392 return __opcode_to_mem_arm(0xe710f110);
393}
394
395static inline u32 __attribute_const__ udiv_instruction(void)
396{
397 if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) {
398 /* "udiv r0, r0, r1" */
399 u32 insn = __opcode_thumb32_compose(0xfbb0, 0xf0f1);
400 return __opcode_to_mem_thumb32(insn);
401 }
402
403 /* "udiv r0, r0, r1" */
404 return __opcode_to_mem_arm(0xe730f110);
405}
406
407static inline u32 __attribute_const__ bx_lr_instruction(void)
408{
409 if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) {
410 /* "bx lr; nop" */
411 u32 insn = __opcode_thumb32_compose(0x4770, 0x46c0);
412 return __opcode_to_mem_thumb32(insn);
413 }
414
415 /* "bx lr" */
416 return __opcode_to_mem_arm(0xe12fff1e);
417}
418
419static void __init patch_aeabi_idiv(void)
420{
421 extern void __aeabi_uidiv(void);
422 extern void __aeabi_idiv(void);
423 uintptr_t fn_addr;
424 unsigned int mask;
425
426 mask = IS_ENABLED(CONFIG_THUMB2_KERNEL) ? HWCAP_IDIVT : HWCAP_IDIVA;
427 if (!(elf_hwcap & mask))
428 return;
429
430 pr_info("CPU: div instructions available: patching division code\n");
431
432 fn_addr = ((uintptr_t)&__aeabi_uidiv) & ~1;
433 asm ("" : "+g" (fn_addr));
434 ((u32 *)fn_addr)[0] = udiv_instruction();
435 ((u32 *)fn_addr)[1] = bx_lr_instruction();
436 flush_icache_range(fn_addr, fn_addr + 8);
437
438 fn_addr = ((uintptr_t)&__aeabi_idiv) & ~1;
439 asm ("" : "+g" (fn_addr));
440 ((u32 *)fn_addr)[0] = sdiv_instruction();
441 ((u32 *)fn_addr)[1] = bx_lr_instruction();
442 flush_icache_range(fn_addr, fn_addr + 8);
443}
444
445#else
446static inline void patch_aeabi_idiv(void) { }
447#endif
448
449static void __init cpuid_init_hwcaps(void)
450{
451 int block;
452 u32 isar5;
453 u32 isar6;
454 u32 pfr2;
455
456 if (cpu_architecture() < CPU_ARCH_ARMv7)
457 return;
458
459 block = cpuid_feature_extract(CPUID_EXT_ISAR0, 24);
460 if (block >= 2)
461 elf_hwcap |= HWCAP_IDIVA;
462 if (block >= 1)
463 elf_hwcap |= HWCAP_IDIVT;
464
465 /* LPAE implies atomic ldrd/strd instructions */
466 block = cpuid_feature_extract(CPUID_EXT_MMFR0, 0);
467 if (block >= 5)
468 elf_hwcap |= HWCAP_LPAE;
469
470 /* check for supported v8 Crypto instructions */
471 isar5 = read_cpuid_ext(CPUID_EXT_ISAR5);
472
473 block = cpuid_feature_extract_field(isar5, 4);
474 if (block >= 2)
475 elf_hwcap2 |= HWCAP2_PMULL;
476 if (block >= 1)
477 elf_hwcap2 |= HWCAP2_AES;
478
479 block = cpuid_feature_extract_field(isar5, 8);
480 if (block >= 1)
481 elf_hwcap2 |= HWCAP2_SHA1;
482
483 block = cpuid_feature_extract_field(isar5, 12);
484 if (block >= 1)
485 elf_hwcap2 |= HWCAP2_SHA2;
486
487 block = cpuid_feature_extract_field(isar5, 16);
488 if (block >= 1)
489 elf_hwcap2 |= HWCAP2_CRC32;
490
491 /* Check for Speculation barrier instruction */
492 isar6 = read_cpuid_ext(CPUID_EXT_ISAR6);
493 block = cpuid_feature_extract_field(isar6, 12);
494 if (block >= 1)
495 elf_hwcap2 |= HWCAP2_SB;
496
497 /* Check for Speculative Store Bypassing control */
498 pfr2 = read_cpuid_ext(CPUID_EXT_PFR2);
499 block = cpuid_feature_extract_field(pfr2, 4);
500 if (block >= 1)
501 elf_hwcap2 |= HWCAP2_SSBS;
502}
503
504static void __init elf_hwcap_fixup(void)
505{
506 unsigned id = read_cpuid_id();
507
508 /*
509 * HWCAP_TLS is available only on 1136 r1p0 and later,
510 * see also kuser_get_tls_init.
511 */
512 if (read_cpuid_part() == ARM_CPU_PART_ARM1136 &&
513 ((id >> 20) & 3) == 0) {
514 elf_hwcap &= ~HWCAP_TLS;
515 return;
516 }
517
518 /* Verify if CPUID scheme is implemented */
519 if ((id & 0x000f0000) != 0x000f0000)
520 return;
521
522 /*
523 * If the CPU supports LDREX/STREX and LDREXB/STREXB,
524 * avoid advertising SWP; it may not be atomic with
525 * multiprocessing cores.
526 */
527 if (cpuid_feature_extract(CPUID_EXT_ISAR3, 12) > 1 ||
528 (cpuid_feature_extract(CPUID_EXT_ISAR3, 12) == 1 &&
529 cpuid_feature_extract(CPUID_EXT_ISAR4, 20) >= 3))
530 elf_hwcap &= ~HWCAP_SWP;
531}
532
533/*
534 * cpu_init - initialise one CPU.
535 *
536 * cpu_init sets up the per-CPU stacks.
537 */
538void notrace cpu_init(void)
539{
540#ifndef CONFIG_CPU_V7M
541 unsigned int cpu = smp_processor_id();
542 struct stack *stk = &stacks[cpu];
543
544 if (cpu >= NR_CPUS) {
545 pr_crit("CPU%u: bad primary CPU number\n", cpu);
546 BUG();
547 }
548
549 /*
550 * This only works on resume and secondary cores. For booting on the
551 * boot cpu, smp_prepare_boot_cpu is called after percpu area setup.
552 */
553 set_my_cpu_offset(per_cpu_offset(cpu));
554
555 cpu_proc_init();
556
557 /*
558 * Define the placement constraint for the inline asm directive below.
559 * In Thumb-2, msr with an immediate value is not allowed.
560 */
561#ifdef CONFIG_THUMB2_KERNEL
562#define PLC_l "l"
563#define PLC_r "r"
564#else
565#define PLC_l "I"
566#define PLC_r "I"
567#endif
568
569 /*
570 * setup stacks for re-entrant exception handlers
571 */
572 __asm__ (
573 "msr cpsr_c, %1\n\t"
574 "add r14, %0, %2\n\t"
575 "mov sp, r14\n\t"
576 "msr cpsr_c, %3\n\t"
577 "add r14, %0, %4\n\t"
578 "mov sp, r14\n\t"
579 "msr cpsr_c, %5\n\t"
580 "add r14, %0, %6\n\t"
581 "mov sp, r14\n\t"
582 "msr cpsr_c, %7\n\t"
583 "add r14, %0, %8\n\t"
584 "mov sp, r14\n\t"
585 "msr cpsr_c, %9"
586 :
587 : "r" (stk),
588 PLC_r (PSR_F_BIT | PSR_I_BIT | IRQ_MODE),
589 "I" (offsetof(struct stack, irq[0])),
590 PLC_r (PSR_F_BIT | PSR_I_BIT | ABT_MODE),
591 "I" (offsetof(struct stack, abt[0])),
592 PLC_r (PSR_F_BIT | PSR_I_BIT | UND_MODE),
593 "I" (offsetof(struct stack, und[0])),
594 PLC_r (PSR_F_BIT | PSR_I_BIT | FIQ_MODE),
595 "I" (offsetof(struct stack, fiq[0])),
596 PLC_l (PSR_F_BIT | PSR_I_BIT | SVC_MODE)
597 : "r14");
598#endif
599}
600
601u32 __cpu_logical_map[NR_CPUS] = { [0 ... NR_CPUS-1] = MPIDR_INVALID };
602
603void __init smp_setup_processor_id(void)
604{
605 int i;
606 u32 mpidr = is_smp() ? read_cpuid_mpidr() & MPIDR_HWID_BITMASK : 0;
607 u32 cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
608
609 cpu_logical_map(0) = cpu;
610 for (i = 1; i < nr_cpu_ids; ++i)
611 cpu_logical_map(i) = i == cpu ? 0 : i;
612
613 /*
614 * clear __my_cpu_offset on boot CPU to avoid hang caused by
615 * using percpu variable early, for example, lockdep will
616 * access percpu variable inside lock_release
617 */
618 set_my_cpu_offset(0);
619
620 pr_info("Booting Linux on physical CPU 0x%x\n", mpidr);
621}
622
623struct mpidr_hash mpidr_hash;
624#ifdef CONFIG_SMP
625/**
626 * smp_build_mpidr_hash - Pre-compute shifts required at each affinity
627 * level in order to build a linear index from an
628 * MPIDR value. Resulting algorithm is a collision
629 * free hash carried out through shifting and ORing
630 */
631static void __init smp_build_mpidr_hash(void)
632{
633 u32 i, affinity;
634 u32 fs[3], bits[3], ls, mask = 0;
635 /*
636 * Pre-scan the list of MPIDRS and filter out bits that do
637 * not contribute to affinity levels, ie they never toggle.
638 */
639 for_each_possible_cpu(i)
640 mask |= (cpu_logical_map(i) ^ cpu_logical_map(0));
641 pr_debug("mask of set bits 0x%x\n", mask);
642 /*
643 * Find and stash the last and first bit set at all affinity levels to
644 * check how many bits are required to represent them.
645 */
646 for (i = 0; i < 3; i++) {
647 affinity = MPIDR_AFFINITY_LEVEL(mask, i);
648 /*
649 * Find the MSB bit and LSB bits position
650 * to determine how many bits are required
651 * to express the affinity level.
652 */
653 ls = fls(affinity);
654 fs[i] = affinity ? ffs(affinity) - 1 : 0;
655 bits[i] = ls - fs[i];
656 }
657 /*
658 * An index can be created from the MPIDR by isolating the
659 * significant bits at each affinity level and by shifting
660 * them in order to compress the 24 bits values space to a
661 * compressed set of values. This is equivalent to hashing
662 * the MPIDR through shifting and ORing. It is a collision free
663 * hash though not minimal since some levels might contain a number
664 * of CPUs that is not an exact power of 2 and their bit
665 * representation might contain holes, eg MPIDR[7:0] = {0x2, 0x80}.
666 */
667 mpidr_hash.shift_aff[0] = fs[0];
668 mpidr_hash.shift_aff[1] = MPIDR_LEVEL_BITS + fs[1] - bits[0];
669 mpidr_hash.shift_aff[2] = 2*MPIDR_LEVEL_BITS + fs[2] -
670 (bits[1] + bits[0]);
671 mpidr_hash.mask = mask;
672 mpidr_hash.bits = bits[2] + bits[1] + bits[0];
673 pr_debug("MPIDR hash: aff0[%u] aff1[%u] aff2[%u] mask[0x%x] bits[%u]\n",
674 mpidr_hash.shift_aff[0],
675 mpidr_hash.shift_aff[1],
676 mpidr_hash.shift_aff[2],
677 mpidr_hash.mask,
678 mpidr_hash.bits);
679 /*
680 * 4x is an arbitrary value used to warn on a hash table much bigger
681 * than expected on most systems.
682 */
683 if (mpidr_hash_size() > 4 * num_possible_cpus())
684 pr_warn("Large number of MPIDR hash buckets detected\n");
685 sync_cache_w(&mpidr_hash);
686}
687#endif
688
689/*
690 * locate processor in the list of supported processor types. The linker
691 * builds this table for us from the entries in arch/arm/mm/proc-*.S
692 */
693struct proc_info_list *lookup_processor(u32 midr)
694{
695 struct proc_info_list *list = lookup_processor_type(midr);
696
697 if (!list) {
698 pr_err("CPU%u: configuration botched (ID %08x), CPU halted\n",
699 smp_processor_id(), midr);
700 while (1)
701 /* can't use cpu_relax() here as it may require MMU setup */;
702 }
703
704 return list;
705}
706
707static void __init setup_processor(void)
708{
709 unsigned int midr = read_cpuid_id();
710 struct proc_info_list *list = lookup_processor(midr);
711
712 cpu_name = list->cpu_name;
713 __cpu_architecture = __get_cpu_architecture();
714
715 init_proc_vtable(list->proc);
716#ifdef MULTI_TLB
717 cpu_tlb = *list->tlb;
718#endif
719#ifdef MULTI_USER
720 cpu_user = *list->user;
721#endif
722#ifdef MULTI_CACHE
723 cpu_cache = *list->cache;
724#endif
725
726 pr_info("CPU: %s [%08x] revision %d (ARMv%s), cr=%08lx\n",
727 list->cpu_name, midr, midr & 15,
728 proc_arch[cpu_architecture()], get_cr());
729
730 snprintf(init_utsname()->machine, __NEW_UTS_LEN + 1, "%s%c",
731 list->arch_name, ENDIANNESS);
732 snprintf(elf_platform, ELF_PLATFORM_SIZE, "%s%c",
733 list->elf_name, ENDIANNESS);
734 elf_hwcap = list->elf_hwcap;
735
736 cpuid_init_hwcaps();
737 patch_aeabi_idiv();
738
739#ifndef CONFIG_ARM_THUMB
740 elf_hwcap &= ~(HWCAP_THUMB | HWCAP_IDIVT);
741#endif
742#ifdef CONFIG_MMU
743 init_default_cache_policy(list->__cpu_mm_mmu_flags);
744#endif
745 erratum_a15_798181_init();
746
747 elf_hwcap_fixup();
748
749 cacheid_init();
750 cpu_init();
751}
752
753void __init dump_machine_table(void)
754{
755 const struct machine_desc *p;
756
757 early_print("Available machine support:\n\nID (hex)\tNAME\n");
758 for_each_machine_desc(p)
759 early_print("%08x\t%s\n", p->nr, p->name);
760
761 early_print("\nPlease check your kernel config and/or bootloader.\n");
762
763 while (true)
764 /* can't use cpu_relax() here as it may require MMU setup */;
765}
766
767int __init arm_add_memory(u64 start, u64 size)
768{
769 u64 aligned_start;
770
771 /*
772 * Ensure that start/size are aligned to a page boundary.
773 * Size is rounded down, start is rounded up.
774 */
775 aligned_start = PAGE_ALIGN(start);
776 if (aligned_start > start + size)
777 size = 0;
778 else
779 size -= aligned_start - start;
780
781#ifndef CONFIG_PHYS_ADDR_T_64BIT
782 if (aligned_start > ULONG_MAX) {
783 pr_crit("Ignoring memory at 0x%08llx outside 32-bit physical address space\n",
784 start);
785 return -EINVAL;
786 }
787
788 if (aligned_start + size > ULONG_MAX) {
789 pr_crit("Truncating memory at 0x%08llx to fit in 32-bit physical address space\n",
790 (long long)start);
791 /*
792 * To ensure bank->start + bank->size is representable in
793 * 32 bits, we use ULONG_MAX as the upper limit rather than 4GB.
794 * This means we lose a page after masking.
795 */
796 size = ULONG_MAX - aligned_start;
797 }
798#endif
799
800 if (aligned_start < PHYS_OFFSET) {
801 if (aligned_start + size <= PHYS_OFFSET) {
802 pr_info("Ignoring memory below PHYS_OFFSET: 0x%08llx-0x%08llx\n",
803 aligned_start, aligned_start + size);
804 return -EINVAL;
805 }
806
807 pr_info("Ignoring memory below PHYS_OFFSET: 0x%08llx-0x%08llx\n",
808 aligned_start, (u64)PHYS_OFFSET);
809
810 size -= PHYS_OFFSET - aligned_start;
811 aligned_start = PHYS_OFFSET;
812 }
813
814 start = aligned_start;
815 size = size & ~(phys_addr_t)(PAGE_SIZE - 1);
816
817 /*
818 * Check whether this memory region has non-zero size or
819 * invalid node number.
820 */
821 if (size == 0)
822 return -EINVAL;
823
824 memblock_add(start, size);
825 return 0;
826}
827
828/*
829 * Pick out the memory size. We look for mem=size@start,
830 * where start and size are "size[KkMm]"
831 */
832
833static int __init early_mem(char *p)
834{
835 static int usermem __initdata = 0;
836 u64 size;
837 u64 start;
838 char *endp;
839
840 /*
841 * If the user specifies memory size, we
842 * blow away any automatically generated
843 * size.
844 */
845 if (usermem == 0) {
846 usermem = 1;
847 memblock_remove(memblock_start_of_DRAM(),
848 memblock_end_of_DRAM() - memblock_start_of_DRAM());
849 }
850
851 start = PHYS_OFFSET;
852 size = memparse(p, &endp);
853 if (*endp == '@')
854 start = memparse(endp + 1, NULL);
855
856 arm_add_memory(start, size);
857
858 return 0;
859}
860early_param("mem", early_mem);
861
862static void __init request_standard_resources(const struct machine_desc *mdesc)
863{
864 phys_addr_t start, end, res_end;
865 struct resource *res;
866 u64 i;
867
868 kernel_code.start = virt_to_phys(_text);
869 kernel_code.end = virt_to_phys(__init_begin - 1);
870 kernel_data.start = virt_to_phys(_sdata);
871 kernel_data.end = virt_to_phys(_end - 1);
872
873 for_each_mem_range(i, &start, &end) {
874 unsigned long boot_alias_start;
875
876 /*
877 * In memblock, end points to the first byte after the
878 * range while in resourses, end points to the last byte in
879 * the range.
880 */
881 res_end = end - 1;
882
883 /*
884 * Some systems have a special memory alias which is only
885 * used for booting. We need to advertise this region to
886 * kexec-tools so they know where bootable RAM is located.
887 */
888 boot_alias_start = phys_to_idmap(start);
889 if (arm_has_idmap_alias() && boot_alias_start != IDMAP_INVALID_ADDR) {
890 res = memblock_alloc(sizeof(*res), SMP_CACHE_BYTES);
891 if (!res)
892 panic("%s: Failed to allocate %zu bytes\n",
893 __func__, sizeof(*res));
894 res->name = "System RAM (boot alias)";
895 res->start = boot_alias_start;
896 res->end = phys_to_idmap(res_end);
897 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
898 request_resource(&iomem_resource, res);
899 }
900
901 res = memblock_alloc(sizeof(*res), SMP_CACHE_BYTES);
902 if (!res)
903 panic("%s: Failed to allocate %zu bytes\n", __func__,
904 sizeof(*res));
905 res->name = "System RAM";
906 res->start = start;
907 res->end = res_end;
908 res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
909
910 request_resource(&iomem_resource, res);
911
912 if (kernel_code.start >= res->start &&
913 kernel_code.end <= res->end)
914 request_resource(res, &kernel_code);
915 if (kernel_data.start >= res->start &&
916 kernel_data.end <= res->end)
917 request_resource(res, &kernel_data);
918 }
919
920 if (mdesc->video_start) {
921 video_ram.start = mdesc->video_start;
922 video_ram.end = mdesc->video_end;
923 request_resource(&iomem_resource, &video_ram);
924 }
925
926 /*
927 * Some machines don't have the possibility of ever
928 * possessing lp0, lp1 or lp2
929 */
930 if (mdesc->reserve_lp0)
931 request_resource(&ioport_resource, &lp0);
932 if (mdesc->reserve_lp1)
933 request_resource(&ioport_resource, &lp1);
934 if (mdesc->reserve_lp2)
935 request_resource(&ioport_resource, &lp2);
936}
937
938#if defined(CONFIG_VGA_CONSOLE) || defined(CONFIG_DUMMY_CONSOLE) || \
939 defined(CONFIG_EFI)
940struct screen_info screen_info = {
941 .orig_video_lines = 30,
942 .orig_video_cols = 80,
943 .orig_video_mode = 0,
944 .orig_video_ega_bx = 0,
945 .orig_video_isVGA = 1,
946 .orig_video_points = 8
947};
948#endif
949
950static int __init customize_machine(void)
951{
952 /*
953 * customizes platform devices, or adds new ones
954 * On DT based machines, we fall back to populating the
955 * machine from the device tree, if no callback is provided,
956 * otherwise we would always need an init_machine callback.
957 */
958 if (machine_desc->init_machine)
959 machine_desc->init_machine();
960
961 return 0;
962}
963arch_initcall(customize_machine);
964
965static int __init init_machine_late(void)
966{
967 struct device_node *root;
968 int ret;
969
970 if (machine_desc->init_late)
971 machine_desc->init_late();
972
973 root = of_find_node_by_path("/");
974 if (root) {
975 ret = of_property_read_string(root, "serial-number",
976 &system_serial);
977 if (ret)
978 system_serial = NULL;
979 }
980
981 if (!system_serial)
982 system_serial = kasprintf(GFP_KERNEL, "%08x%08x",
983 system_serial_high,
984 system_serial_low);
985
986 return 0;
987}
988late_initcall(init_machine_late);
989
990#ifdef CONFIG_KEXEC
991/*
992 * The crash region must be aligned to 128MB to avoid
993 * zImage relocating below the reserved region.
994 */
995#define CRASH_ALIGN (128 << 20)
996
997static inline unsigned long long get_total_mem(void)
998{
999 unsigned long total;
1000
1001 total = max_low_pfn - min_low_pfn;
1002 return total << PAGE_SHIFT;
1003}
1004
1005/**
1006 * reserve_crashkernel() - reserves memory are for crash kernel
1007 *
1008 * This function reserves memory area given in "crashkernel=" kernel command
1009 * line parameter. The memory reserved is used by a dump capture kernel when
1010 * primary kernel is crashing.
1011 */
1012static void __init reserve_crashkernel(void)
1013{
1014 unsigned long long crash_size, crash_base;
1015 unsigned long long total_mem;
1016 int ret;
1017
1018 total_mem = get_total_mem();
1019 ret = parse_crashkernel(boot_command_line, total_mem,
1020 &crash_size, &crash_base);
1021 /* invalid value specified or crashkernel=0 */
1022 if (ret || !crash_size)
1023 return;
1024
1025 if (crash_base <= 0) {
1026 unsigned long long crash_max = idmap_to_phys((u32)~0);
1027 unsigned long long lowmem_max = __pa(high_memory - 1) + 1;
1028 if (crash_max > lowmem_max)
1029 crash_max = lowmem_max;
1030
1031 crash_base = memblock_phys_alloc_range(crash_size, CRASH_ALIGN,
1032 CRASH_ALIGN, crash_max);
1033 if (!crash_base) {
1034 pr_err("crashkernel reservation failed - No suitable area found.\n");
1035 return;
1036 }
1037 } else {
1038 unsigned long long crash_max = crash_base + crash_size;
1039 unsigned long long start;
1040
1041 start = memblock_phys_alloc_range(crash_size, SECTION_SIZE,
1042 crash_base, crash_max);
1043 if (!start) {
1044 pr_err("crashkernel reservation failed - memory is in use.\n");
1045 return;
1046 }
1047 }
1048
1049 pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n",
1050 (unsigned long)(crash_size >> 20),
1051 (unsigned long)(crash_base >> 20),
1052 (unsigned long)(total_mem >> 20));
1053
1054 /* The crashk resource must always be located in normal mem */
1055 crashk_res.start = crash_base;
1056 crashk_res.end = crash_base + crash_size - 1;
1057 insert_resource(&iomem_resource, &crashk_res);
1058
1059 if (arm_has_idmap_alias()) {
1060 /*
1061 * If we have a special RAM alias for use at boot, we
1062 * need to advertise to kexec tools where the alias is.
1063 */
1064 static struct resource crashk_boot_res = {
1065 .name = "Crash kernel (boot alias)",
1066 .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
1067 };
1068
1069 crashk_boot_res.start = phys_to_idmap(crash_base);
1070 crashk_boot_res.end = crashk_boot_res.start + crash_size - 1;
1071 insert_resource(&iomem_resource, &crashk_boot_res);
1072 }
1073}
1074#else
1075static inline void reserve_crashkernel(void) {}
1076#endif /* CONFIG_KEXEC */
1077
1078void __init hyp_mode_check(void)
1079{
1080#ifdef CONFIG_ARM_VIRT_EXT
1081 sync_boot_mode();
1082
1083 if (is_hyp_mode_available()) {
1084 pr_info("CPU: All CPU(s) started in HYP mode.\n");
1085 pr_info("CPU: Virtualization extensions available.\n");
1086 } else if (is_hyp_mode_mismatched()) {
1087 pr_warn("CPU: WARNING: CPU(s) started in wrong/inconsistent modes (primary CPU mode 0x%x)\n",
1088 __boot_cpu_mode & MODE_MASK);
1089 pr_warn("CPU: This may indicate a broken bootloader or firmware.\n");
1090 } else
1091 pr_info("CPU: All CPU(s) started in SVC mode.\n");
1092#endif
1093}
1094
1095static void (*__arm_pm_restart)(enum reboot_mode reboot_mode, const char *cmd);
1096
1097static int arm_restart(struct notifier_block *nb, unsigned long action,
1098 void *data)
1099{
1100 __arm_pm_restart(action, data);
1101 return NOTIFY_DONE;
1102}
1103
1104static struct notifier_block arm_restart_nb = {
1105 .notifier_call = arm_restart,
1106 .priority = 128,
1107};
1108
1109void __init setup_arch(char **cmdline_p)
1110{
1111 const struct machine_desc *mdesc = NULL;
1112 void *atags_vaddr = NULL;
1113
1114 if (__atags_pointer)
1115 atags_vaddr = FDT_VIRT_BASE(__atags_pointer);
1116
1117 setup_processor();
1118 if (atags_vaddr) {
1119 mdesc = setup_machine_fdt(atags_vaddr);
1120 if (mdesc)
1121 memblock_reserve(__atags_pointer,
1122 fdt_totalsize(atags_vaddr));
1123 }
1124 if (!mdesc)
1125 mdesc = setup_machine_tags(atags_vaddr, __machine_arch_type);
1126 if (!mdesc) {
1127 early_print("\nError: invalid dtb and unrecognized/unsupported machine ID\n");
1128 early_print(" r1=0x%08x, r2=0x%08x\n", __machine_arch_type,
1129 __atags_pointer);
1130 if (__atags_pointer)
1131 early_print(" r2[]=%*ph\n", 16, atags_vaddr);
1132 dump_machine_table();
1133 }
1134
1135 machine_desc = mdesc;
1136 machine_name = mdesc->name;
1137 dump_stack_set_arch_desc("%s", mdesc->name);
1138
1139 if (mdesc->reboot_mode != REBOOT_HARD)
1140 reboot_mode = mdesc->reboot_mode;
1141
1142 setup_initial_init_mm(_text, _etext, _edata, _end);
1143
1144 /* populate cmd_line too for later use, preserving boot_command_line */
1145 strlcpy(cmd_line, boot_command_line, COMMAND_LINE_SIZE);
1146 *cmdline_p = cmd_line;
1147
1148 early_fixmap_init();
1149 early_ioremap_init();
1150
1151 parse_early_param();
1152
1153#ifdef CONFIG_MMU
1154 early_mm_init(mdesc);
1155#endif
1156 setup_dma_zone(mdesc);
1157 xen_early_init();
1158 arm_efi_init();
1159 /*
1160 * Make sure the calculation for lowmem/highmem is set appropriately
1161 * before reserving/allocating any memory
1162 */
1163 adjust_lowmem_bounds();
1164 arm_memblock_init(mdesc);
1165 /* Memory may have been removed so recalculate the bounds. */
1166 adjust_lowmem_bounds();
1167
1168 early_ioremap_reset();
1169
1170 paging_init(mdesc);
1171 kasan_init();
1172 request_standard_resources(mdesc);
1173
1174 if (mdesc->restart) {
1175 __arm_pm_restart = mdesc->restart;
1176 register_restart_handler(&arm_restart_nb);
1177 }
1178
1179 unflatten_device_tree();
1180
1181 arm_dt_init_cpu_maps();
1182 psci_dt_init();
1183#ifdef CONFIG_SMP
1184 if (is_smp()) {
1185 if (!mdesc->smp_init || !mdesc->smp_init()) {
1186 if (psci_smp_available())
1187 smp_set_ops(&psci_smp_ops);
1188 else if (mdesc->smp)
1189 smp_set_ops(mdesc->smp);
1190 }
1191 smp_init_cpus();
1192 smp_build_mpidr_hash();
1193 }
1194#endif
1195
1196 if (!is_smp())
1197 hyp_mode_check();
1198
1199 reserve_crashkernel();
1200
1201#ifdef CONFIG_GENERIC_IRQ_MULTI_HANDLER
1202 handle_arch_irq = mdesc->handle_irq;
1203#endif
1204
1205#ifdef CONFIG_VT
1206#if defined(CONFIG_VGA_CONSOLE)
1207 conswitchp = &vga_con;
1208#endif
1209#endif
1210
1211 if (mdesc->init_early)
1212 mdesc->init_early();
1213}
1214
1215
1216static int __init topology_init(void)
1217{
1218 int cpu;
1219
1220 for_each_possible_cpu(cpu) {
1221 struct cpuinfo_arm *cpuinfo = &per_cpu(cpu_data, cpu);
1222 cpuinfo->cpu.hotpluggable = platform_can_hotplug_cpu(cpu);
1223 register_cpu(&cpuinfo->cpu, cpu);
1224 }
1225
1226 return 0;
1227}
1228subsys_initcall(topology_init);
1229
1230#ifdef CONFIG_HAVE_PROC_CPU
1231static int __init proc_cpu_init(void)
1232{
1233 struct proc_dir_entry *res;
1234
1235 res = proc_mkdir("cpu", NULL);
1236 if (!res)
1237 return -ENOMEM;
1238 return 0;
1239}
1240fs_initcall(proc_cpu_init);
1241#endif
1242
1243static const char *hwcap_str[] = {
1244 "swp",
1245 "half",
1246 "thumb",
1247 "26bit",
1248 "fastmult",
1249 "fpa",
1250 "vfp",
1251 "edsp",
1252 "java",
1253 "iwmmxt",
1254 "crunch",
1255 "thumbee",
1256 "neon",
1257 "vfpv3",
1258 "vfpv3d16",
1259 "tls",
1260 "vfpv4",
1261 "idiva",
1262 "idivt",
1263 "vfpd32",
1264 "lpae",
1265 "evtstrm",
1266 "fphp",
1267 "asimdhp",
1268 "asimddp",
1269 "asimdfhm",
1270 "asimdbf16",
1271 "i8mm",
1272 NULL
1273};
1274
1275static const char *hwcap2_str[] = {
1276 "aes",
1277 "pmull",
1278 "sha1",
1279 "sha2",
1280 "crc32",
1281 "sb",
1282 "ssbs",
1283 NULL
1284};
1285
1286static int c_show(struct seq_file *m, void *v)
1287{
1288 int i, j;
1289 u32 cpuid;
1290
1291 for_each_online_cpu(i) {
1292 /*
1293 * glibc reads /proc/cpuinfo to determine the number of
1294 * online processors, looking for lines beginning with
1295 * "processor". Give glibc what it expects.
1296 */
1297 seq_printf(m, "processor\t: %d\n", i);
1298 cpuid = is_smp() ? per_cpu(cpu_data, i).cpuid : read_cpuid_id();
1299 seq_printf(m, "model name\t: %s rev %d (%s)\n",
1300 cpu_name, cpuid & 15, elf_platform);
1301
1302#if defined(CONFIG_SMP)
1303 seq_printf(m, "BogoMIPS\t: %lu.%02lu\n",
1304 per_cpu(cpu_data, i).loops_per_jiffy / (500000UL/HZ),
1305 (per_cpu(cpu_data, i).loops_per_jiffy / (5000UL/HZ)) % 100);
1306#else
1307 seq_printf(m, "BogoMIPS\t: %lu.%02lu\n",
1308 loops_per_jiffy / (500000/HZ),
1309 (loops_per_jiffy / (5000/HZ)) % 100);
1310#endif
1311 /* dump out the processor features */
1312 seq_puts(m, "Features\t: ");
1313
1314 for (j = 0; hwcap_str[j]; j++)
1315 if (elf_hwcap & (1 << j))
1316 seq_printf(m, "%s ", hwcap_str[j]);
1317
1318 for (j = 0; hwcap2_str[j]; j++)
1319 if (elf_hwcap2 & (1 << j))
1320 seq_printf(m, "%s ", hwcap2_str[j]);
1321
1322 seq_printf(m, "\nCPU implementer\t: 0x%02x\n", cpuid >> 24);
1323 seq_printf(m, "CPU architecture: %s\n",
1324 proc_arch[cpu_architecture()]);
1325
1326 if ((cpuid & 0x0008f000) == 0x00000000) {
1327 /* pre-ARM7 */
1328 seq_printf(m, "CPU part\t: %07x\n", cpuid >> 4);
1329 } else {
1330 if ((cpuid & 0x0008f000) == 0x00007000) {
1331 /* ARM7 */
1332 seq_printf(m, "CPU variant\t: 0x%02x\n",
1333 (cpuid >> 16) & 127);
1334 } else {
1335 /* post-ARM7 */
1336 seq_printf(m, "CPU variant\t: 0x%x\n",
1337 (cpuid >> 20) & 15);
1338 }
1339 seq_printf(m, "CPU part\t: 0x%03x\n",
1340 (cpuid >> 4) & 0xfff);
1341 }
1342 seq_printf(m, "CPU revision\t: %d\n\n", cpuid & 15);
1343 }
1344
1345 seq_printf(m, "Hardware\t: %s\n", machine_name);
1346 seq_printf(m, "Revision\t: %04x\n", system_rev);
1347 seq_printf(m, "Serial\t\t: %s\n", system_serial);
1348
1349 return 0;
1350}
1351
1352static void *c_start(struct seq_file *m, loff_t *pos)
1353{
1354 return *pos < 1 ? (void *)1 : NULL;
1355}
1356
1357static void *c_next(struct seq_file *m, void *v, loff_t *pos)
1358{
1359 ++*pos;
1360 return NULL;
1361}
1362
1363static void c_stop(struct seq_file *m, void *v)
1364{
1365}
1366
1367const struct seq_operations cpuinfo_op = {
1368 .start = c_start,
1369 .next = c_next,
1370 .stop = c_stop,
1371 .show = c_show
1372};