Linux Audio

Check our new training course

Linux BSP upgrade and security maintenance

Need help to get security updates for your Linux BSP?
Loading...
Note: File does not exist in v3.5.6.
   1// SPDX-License-Identifier: GPL-2.0
   2
   3/* net/sched/sch_taprio.c	 Time Aware Priority Scheduler
   4 *
   5 * Authors:	Vinicius Costa Gomes <vinicius.gomes@intel.com>
   6 *
   7 */
   8
   9#include <linux/ethtool.h>
  10#include <linux/ethtool_netlink.h>
  11#include <linux/types.h>
  12#include <linux/slab.h>
  13#include <linux/kernel.h>
  14#include <linux/string.h>
  15#include <linux/list.h>
  16#include <linux/errno.h>
  17#include <linux/skbuff.h>
  18#include <linux/math64.h>
  19#include <linux/module.h>
  20#include <linux/spinlock.h>
  21#include <linux/rcupdate.h>
  22#include <linux/time.h>
  23#include <net/gso.h>
  24#include <net/netlink.h>
  25#include <net/pkt_sched.h>
  26#include <net/pkt_cls.h>
  27#include <net/sch_generic.h>
  28#include <net/sock.h>
  29#include <net/tcp.h>
  30
  31#define TAPRIO_STAT_NOT_SET	(~0ULL)
  32
  33#include "sch_mqprio_lib.h"
  34
  35static LIST_HEAD(taprio_list);
  36static struct static_key_false taprio_have_broken_mqprio;
  37static struct static_key_false taprio_have_working_mqprio;
  38
  39#define TAPRIO_ALL_GATES_OPEN -1
  40
  41#define TXTIME_ASSIST_IS_ENABLED(flags) ((flags) & TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST)
  42#define FULL_OFFLOAD_IS_ENABLED(flags) ((flags) & TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD)
  43#define TAPRIO_SUPPORTED_FLAGS \
  44	(TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST | TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD)
  45#define TAPRIO_FLAGS_INVALID U32_MAX
  46
  47struct sched_entry {
  48	/* Durations between this GCL entry and the GCL entry where the
  49	 * respective traffic class gate closes
  50	 */
  51	u64 gate_duration[TC_MAX_QUEUE];
  52	atomic_t budget[TC_MAX_QUEUE];
  53	/* The qdisc makes some effort so that no packet leaves
  54	 * after this time
  55	 */
  56	ktime_t gate_close_time[TC_MAX_QUEUE];
  57	struct list_head list;
  58	/* Used to calculate when to advance the schedule */
  59	ktime_t end_time;
  60	ktime_t next_txtime;
  61	int index;
  62	u32 gate_mask;
  63	u32 interval;
  64	u8 command;
  65};
  66
  67struct sched_gate_list {
  68	/* Longest non-zero contiguous gate durations per traffic class,
  69	 * or 0 if a traffic class gate never opens during the schedule.
  70	 */
  71	u64 max_open_gate_duration[TC_MAX_QUEUE];
  72	u32 max_frm_len[TC_MAX_QUEUE]; /* for the fast path */
  73	u32 max_sdu[TC_MAX_QUEUE]; /* for dump */
  74	struct rcu_head rcu;
  75	struct list_head entries;
  76	size_t num_entries;
  77	ktime_t cycle_end_time;
  78	s64 cycle_time;
  79	s64 cycle_time_extension;
  80	s64 base_time;
  81};
  82
  83struct taprio_sched {
  84	struct Qdisc **qdiscs;
  85	struct Qdisc *root;
  86	u32 flags;
  87	enum tk_offsets tk_offset;
  88	int clockid;
  89	bool offloaded;
  90	bool detected_mqprio;
  91	bool broken_mqprio;
  92	atomic64_t picos_per_byte; /* Using picoseconds because for 10Gbps+
  93				    * speeds it's sub-nanoseconds per byte
  94				    */
  95
  96	/* Protects the update side of the RCU protected current_entry */
  97	spinlock_t current_entry_lock;
  98	struct sched_entry __rcu *current_entry;
  99	struct sched_gate_list __rcu *oper_sched;
 100	struct sched_gate_list __rcu *admin_sched;
 101	struct hrtimer advance_timer;
 102	struct list_head taprio_list;
 103	int cur_txq[TC_MAX_QUEUE];
 104	u32 max_sdu[TC_MAX_QUEUE]; /* save info from the user */
 105	u32 fp[TC_QOPT_MAX_QUEUE]; /* only for dump and offloading */
 106	u32 txtime_delay;
 107};
 108
 109struct __tc_taprio_qopt_offload {
 110	refcount_t users;
 111	struct tc_taprio_qopt_offload offload;
 112};
 113
 114static void taprio_calculate_gate_durations(struct taprio_sched *q,
 115					    struct sched_gate_list *sched)
 116{
 117	struct net_device *dev = qdisc_dev(q->root);
 118	int num_tc = netdev_get_num_tc(dev);
 119	struct sched_entry *entry, *cur;
 120	int tc;
 121
 122	list_for_each_entry(entry, &sched->entries, list) {
 123		u32 gates_still_open = entry->gate_mask;
 124
 125		/* For each traffic class, calculate each open gate duration,
 126		 * starting at this schedule entry and ending at the schedule
 127		 * entry containing a gate close event for that TC.
 128		 */
 129		cur = entry;
 130
 131		do {
 132			if (!gates_still_open)
 133				break;
 134
 135			for (tc = 0; tc < num_tc; tc++) {
 136				if (!(gates_still_open & BIT(tc)))
 137					continue;
 138
 139				if (cur->gate_mask & BIT(tc))
 140					entry->gate_duration[tc] += cur->interval;
 141				else
 142					gates_still_open &= ~BIT(tc);
 143			}
 144
 145			cur = list_next_entry_circular(cur, &sched->entries, list);
 146		} while (cur != entry);
 147
 148		/* Keep track of the maximum gate duration for each traffic
 149		 * class, taking care to not confuse a traffic class which is
 150		 * temporarily closed with one that is always closed.
 151		 */
 152		for (tc = 0; tc < num_tc; tc++)
 153			if (entry->gate_duration[tc] &&
 154			    sched->max_open_gate_duration[tc] < entry->gate_duration[tc])
 155				sched->max_open_gate_duration[tc] = entry->gate_duration[tc];
 156	}
 157}
 158
 159static bool taprio_entry_allows_tx(ktime_t skb_end_time,
 160				   struct sched_entry *entry, int tc)
 161{
 162	return ktime_before(skb_end_time, entry->gate_close_time[tc]);
 163}
 164
 165static ktime_t sched_base_time(const struct sched_gate_list *sched)
 166{
 167	if (!sched)
 168		return KTIME_MAX;
 169
 170	return ns_to_ktime(sched->base_time);
 171}
 172
 173static ktime_t taprio_mono_to_any(const struct taprio_sched *q, ktime_t mono)
 174{
 175	/* This pairs with WRITE_ONCE() in taprio_parse_clockid() */
 176	enum tk_offsets tk_offset = READ_ONCE(q->tk_offset);
 177
 178	switch (tk_offset) {
 179	case TK_OFFS_MAX:
 180		return mono;
 181	default:
 182		return ktime_mono_to_any(mono, tk_offset);
 183	}
 184}
 185
 186static ktime_t taprio_get_time(const struct taprio_sched *q)
 187{
 188	return taprio_mono_to_any(q, ktime_get());
 189}
 190
 191static void taprio_free_sched_cb(struct rcu_head *head)
 192{
 193	struct sched_gate_list *sched = container_of(head, struct sched_gate_list, rcu);
 194	struct sched_entry *entry, *n;
 195
 196	list_for_each_entry_safe(entry, n, &sched->entries, list) {
 197		list_del(&entry->list);
 198		kfree(entry);
 199	}
 200
 201	kfree(sched);
 202}
 203
 204static void switch_schedules(struct taprio_sched *q,
 205			     struct sched_gate_list **admin,
 206			     struct sched_gate_list **oper)
 207{
 208	rcu_assign_pointer(q->oper_sched, *admin);
 209	rcu_assign_pointer(q->admin_sched, NULL);
 210
 211	if (*oper)
 212		call_rcu(&(*oper)->rcu, taprio_free_sched_cb);
 213
 214	*oper = *admin;
 215	*admin = NULL;
 216}
 217
 218/* Get how much time has been already elapsed in the current cycle. */
 219static s32 get_cycle_time_elapsed(struct sched_gate_list *sched, ktime_t time)
 220{
 221	ktime_t time_since_sched_start;
 222	s32 time_elapsed;
 223
 224	time_since_sched_start = ktime_sub(time, sched->base_time);
 225	div_s64_rem(time_since_sched_start, sched->cycle_time, &time_elapsed);
 226
 227	return time_elapsed;
 228}
 229
 230static ktime_t get_interval_end_time(struct sched_gate_list *sched,
 231				     struct sched_gate_list *admin,
 232				     struct sched_entry *entry,
 233				     ktime_t intv_start)
 234{
 235	s32 cycle_elapsed = get_cycle_time_elapsed(sched, intv_start);
 236	ktime_t intv_end, cycle_ext_end, cycle_end;
 237
 238	cycle_end = ktime_add_ns(intv_start, sched->cycle_time - cycle_elapsed);
 239	intv_end = ktime_add_ns(intv_start, entry->interval);
 240	cycle_ext_end = ktime_add(cycle_end, sched->cycle_time_extension);
 241
 242	if (ktime_before(intv_end, cycle_end))
 243		return intv_end;
 244	else if (admin && admin != sched &&
 245		 ktime_after(admin->base_time, cycle_end) &&
 246		 ktime_before(admin->base_time, cycle_ext_end))
 247		return admin->base_time;
 248	else
 249		return cycle_end;
 250}
 251
 252static int length_to_duration(struct taprio_sched *q, int len)
 253{
 254	return div_u64(len * atomic64_read(&q->picos_per_byte), PSEC_PER_NSEC);
 255}
 256
 257static int duration_to_length(struct taprio_sched *q, u64 duration)
 258{
 259	return div_u64(duration * PSEC_PER_NSEC, atomic64_read(&q->picos_per_byte));
 260}
 261
 262/* Sets sched->max_sdu[] and sched->max_frm_len[] to the minimum between the
 263 * q->max_sdu[] requested by the user and the max_sdu dynamically determined by
 264 * the maximum open gate durations at the given link speed.
 265 */
 266static void taprio_update_queue_max_sdu(struct taprio_sched *q,
 267					struct sched_gate_list *sched,
 268					struct qdisc_size_table *stab)
 269{
 270	struct net_device *dev = qdisc_dev(q->root);
 271	int num_tc = netdev_get_num_tc(dev);
 272	u32 max_sdu_from_user;
 273	u32 max_sdu_dynamic;
 274	u32 max_sdu;
 275	int tc;
 276
 277	for (tc = 0; tc < num_tc; tc++) {
 278		max_sdu_from_user = q->max_sdu[tc] ?: U32_MAX;
 279
 280		/* TC gate never closes => keep the queueMaxSDU
 281		 * selected by the user
 282		 */
 283		if (sched->max_open_gate_duration[tc] == sched->cycle_time) {
 284			max_sdu_dynamic = U32_MAX;
 285		} else {
 286			u32 max_frm_len;
 287
 288			max_frm_len = duration_to_length(q, sched->max_open_gate_duration[tc]);
 289			/* Compensate for L1 overhead from size table,
 290			 * but don't let the frame size go negative
 291			 */
 292			if (stab) {
 293				max_frm_len -= stab->szopts.overhead;
 294				max_frm_len = max_t(int, max_frm_len,
 295						    dev->hard_header_len + 1);
 296			}
 297			max_sdu_dynamic = max_frm_len - dev->hard_header_len;
 298			if (max_sdu_dynamic > dev->max_mtu)
 299				max_sdu_dynamic = U32_MAX;
 300		}
 301
 302		max_sdu = min(max_sdu_dynamic, max_sdu_from_user);
 303
 304		if (max_sdu != U32_MAX) {
 305			sched->max_frm_len[tc] = max_sdu + dev->hard_header_len;
 306			sched->max_sdu[tc] = max_sdu;
 307		} else {
 308			sched->max_frm_len[tc] = U32_MAX; /* never oversized */
 309			sched->max_sdu[tc] = 0;
 310		}
 311	}
 312}
 313
 314/* Returns the entry corresponding to next available interval. If
 315 * validate_interval is set, it only validates whether the timestamp occurs
 316 * when the gate corresponding to the skb's traffic class is open.
 317 */
 318static struct sched_entry *find_entry_to_transmit(struct sk_buff *skb,
 319						  struct Qdisc *sch,
 320						  struct sched_gate_list *sched,
 321						  struct sched_gate_list *admin,
 322						  ktime_t time,
 323						  ktime_t *interval_start,
 324						  ktime_t *interval_end,
 325						  bool validate_interval)
 326{
 327	ktime_t curr_intv_start, curr_intv_end, cycle_end, packet_transmit_time;
 328	ktime_t earliest_txtime = KTIME_MAX, txtime, cycle, transmit_end_time;
 329	struct sched_entry *entry = NULL, *entry_found = NULL;
 330	struct taprio_sched *q = qdisc_priv(sch);
 331	struct net_device *dev = qdisc_dev(sch);
 332	bool entry_available = false;
 333	s32 cycle_elapsed;
 334	int tc, n;
 335
 336	tc = netdev_get_prio_tc_map(dev, skb->priority);
 337	packet_transmit_time = length_to_duration(q, qdisc_pkt_len(skb));
 338
 339	*interval_start = 0;
 340	*interval_end = 0;
 341
 342	if (!sched)
 343		return NULL;
 344
 345	cycle = sched->cycle_time;
 346	cycle_elapsed = get_cycle_time_elapsed(sched, time);
 347	curr_intv_end = ktime_sub_ns(time, cycle_elapsed);
 348	cycle_end = ktime_add_ns(curr_intv_end, cycle);
 349
 350	list_for_each_entry(entry, &sched->entries, list) {
 351		curr_intv_start = curr_intv_end;
 352		curr_intv_end = get_interval_end_time(sched, admin, entry,
 353						      curr_intv_start);
 354
 355		if (ktime_after(curr_intv_start, cycle_end))
 356			break;
 357
 358		if (!(entry->gate_mask & BIT(tc)) ||
 359		    packet_transmit_time > entry->interval)
 360			continue;
 361
 362		txtime = entry->next_txtime;
 363
 364		if (ktime_before(txtime, time) || validate_interval) {
 365			transmit_end_time = ktime_add_ns(time, packet_transmit_time);
 366			if ((ktime_before(curr_intv_start, time) &&
 367			     ktime_before(transmit_end_time, curr_intv_end)) ||
 368			    (ktime_after(curr_intv_start, time) && !validate_interval)) {
 369				entry_found = entry;
 370				*interval_start = curr_intv_start;
 371				*interval_end = curr_intv_end;
 372				break;
 373			} else if (!entry_available && !validate_interval) {
 374				/* Here, we are just trying to find out the
 375				 * first available interval in the next cycle.
 376				 */
 377				entry_available = true;
 378				entry_found = entry;
 379				*interval_start = ktime_add_ns(curr_intv_start, cycle);
 380				*interval_end = ktime_add_ns(curr_intv_end, cycle);
 381			}
 382		} else if (ktime_before(txtime, earliest_txtime) &&
 383			   !entry_available) {
 384			earliest_txtime = txtime;
 385			entry_found = entry;
 386			n = div_s64(ktime_sub(txtime, curr_intv_start), cycle);
 387			*interval_start = ktime_add(curr_intv_start, n * cycle);
 388			*interval_end = ktime_add(curr_intv_end, n * cycle);
 389		}
 390	}
 391
 392	return entry_found;
 393}
 394
 395static bool is_valid_interval(struct sk_buff *skb, struct Qdisc *sch)
 396{
 397	struct taprio_sched *q = qdisc_priv(sch);
 398	struct sched_gate_list *sched, *admin;
 399	ktime_t interval_start, interval_end;
 400	struct sched_entry *entry;
 401
 402	rcu_read_lock();
 403	sched = rcu_dereference(q->oper_sched);
 404	admin = rcu_dereference(q->admin_sched);
 405
 406	entry = find_entry_to_transmit(skb, sch, sched, admin, skb->tstamp,
 407				       &interval_start, &interval_end, true);
 408	rcu_read_unlock();
 409
 410	return entry;
 411}
 412
 413/* This returns the tstamp value set by TCP in terms of the set clock. */
 414static ktime_t get_tcp_tstamp(struct taprio_sched *q, struct sk_buff *skb)
 415{
 416	unsigned int offset = skb_network_offset(skb);
 417	const struct ipv6hdr *ipv6h;
 418	const struct iphdr *iph;
 419	struct ipv6hdr _ipv6h;
 420
 421	ipv6h = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
 422	if (!ipv6h)
 423		return 0;
 424
 425	if (ipv6h->version == 4) {
 426		iph = (struct iphdr *)ipv6h;
 427		offset += iph->ihl * 4;
 428
 429		/* special-case 6in4 tunnelling, as that is a common way to get
 430		 * v6 connectivity in the home
 431		 */
 432		if (iph->protocol == IPPROTO_IPV6) {
 433			ipv6h = skb_header_pointer(skb, offset,
 434						   sizeof(_ipv6h), &_ipv6h);
 435
 436			if (!ipv6h || ipv6h->nexthdr != IPPROTO_TCP)
 437				return 0;
 438		} else if (iph->protocol != IPPROTO_TCP) {
 439			return 0;
 440		}
 441	} else if (ipv6h->version == 6 && ipv6h->nexthdr != IPPROTO_TCP) {
 442		return 0;
 443	}
 444
 445	return taprio_mono_to_any(q, skb->skb_mstamp_ns);
 446}
 447
 448/* There are a few scenarios where we will have to modify the txtime from
 449 * what is read from next_txtime in sched_entry. They are:
 450 * 1. If txtime is in the past,
 451 *    a. The gate for the traffic class is currently open and packet can be
 452 *       transmitted before it closes, schedule the packet right away.
 453 *    b. If the gate corresponding to the traffic class is going to open later
 454 *       in the cycle, set the txtime of packet to the interval start.
 455 * 2. If txtime is in the future, there are packets corresponding to the
 456 *    current traffic class waiting to be transmitted. So, the following
 457 *    possibilities exist:
 458 *    a. We can transmit the packet before the window containing the txtime
 459 *       closes.
 460 *    b. The window might close before the transmission can be completed
 461 *       successfully. So, schedule the packet in the next open window.
 462 */
 463static long get_packet_txtime(struct sk_buff *skb, struct Qdisc *sch)
 464{
 465	ktime_t transmit_end_time, interval_end, interval_start, tcp_tstamp;
 466	struct taprio_sched *q = qdisc_priv(sch);
 467	struct sched_gate_list *sched, *admin;
 468	ktime_t minimum_time, now, txtime;
 469	int len, packet_transmit_time;
 470	struct sched_entry *entry;
 471	bool sched_changed;
 472
 473	now = taprio_get_time(q);
 474	minimum_time = ktime_add_ns(now, q->txtime_delay);
 475
 476	tcp_tstamp = get_tcp_tstamp(q, skb);
 477	minimum_time = max_t(ktime_t, minimum_time, tcp_tstamp);
 478
 479	rcu_read_lock();
 480	admin = rcu_dereference(q->admin_sched);
 481	sched = rcu_dereference(q->oper_sched);
 482	if (admin && ktime_after(minimum_time, admin->base_time))
 483		switch_schedules(q, &admin, &sched);
 484
 485	/* Until the schedule starts, all the queues are open */
 486	if (!sched || ktime_before(minimum_time, sched->base_time)) {
 487		txtime = minimum_time;
 488		goto done;
 489	}
 490
 491	len = qdisc_pkt_len(skb);
 492	packet_transmit_time = length_to_duration(q, len);
 493
 494	do {
 495		sched_changed = false;
 496
 497		entry = find_entry_to_transmit(skb, sch, sched, admin,
 498					       minimum_time,
 499					       &interval_start, &interval_end,
 500					       false);
 501		if (!entry) {
 502			txtime = 0;
 503			goto done;
 504		}
 505
 506		txtime = entry->next_txtime;
 507		txtime = max_t(ktime_t, txtime, minimum_time);
 508		txtime = max_t(ktime_t, txtime, interval_start);
 509
 510		if (admin && admin != sched &&
 511		    ktime_after(txtime, admin->base_time)) {
 512			sched = admin;
 513			sched_changed = true;
 514			continue;
 515		}
 516
 517		transmit_end_time = ktime_add(txtime, packet_transmit_time);
 518		minimum_time = transmit_end_time;
 519
 520		/* Update the txtime of current entry to the next time it's
 521		 * interval starts.
 522		 */
 523		if (ktime_after(transmit_end_time, interval_end))
 524			entry->next_txtime = ktime_add(interval_start, sched->cycle_time);
 525	} while (sched_changed || ktime_after(transmit_end_time, interval_end));
 526
 527	entry->next_txtime = transmit_end_time;
 528
 529done:
 530	rcu_read_unlock();
 531	return txtime;
 532}
 533
 534/* Devices with full offload are expected to honor this in hardware */
 535static bool taprio_skb_exceeds_queue_max_sdu(struct Qdisc *sch,
 536					     struct sk_buff *skb)
 537{
 538	struct taprio_sched *q = qdisc_priv(sch);
 539	struct net_device *dev = qdisc_dev(sch);
 540	struct sched_gate_list *sched;
 541	int prio = skb->priority;
 542	bool exceeds = false;
 543	u8 tc;
 544
 545	tc = netdev_get_prio_tc_map(dev, prio);
 546
 547	rcu_read_lock();
 548	sched = rcu_dereference(q->oper_sched);
 549	if (sched && skb->len > sched->max_frm_len[tc])
 550		exceeds = true;
 551	rcu_read_unlock();
 552
 553	return exceeds;
 554}
 555
 556static int taprio_enqueue_one(struct sk_buff *skb, struct Qdisc *sch,
 557			      struct Qdisc *child, struct sk_buff **to_free)
 558{
 559	struct taprio_sched *q = qdisc_priv(sch);
 560
 561	/* sk_flags are only safe to use on full sockets. */
 562	if (skb->sk && sk_fullsock(skb->sk) && sock_flag(skb->sk, SOCK_TXTIME)) {
 563		if (!is_valid_interval(skb, sch))
 564			return qdisc_drop(skb, sch, to_free);
 565	} else if (TXTIME_ASSIST_IS_ENABLED(q->flags)) {
 566		skb->tstamp = get_packet_txtime(skb, sch);
 567		if (!skb->tstamp)
 568			return qdisc_drop(skb, sch, to_free);
 569	}
 570
 571	qdisc_qstats_backlog_inc(sch, skb);
 572	sch->q.qlen++;
 573
 574	return qdisc_enqueue(skb, child, to_free);
 575}
 576
 577static int taprio_enqueue_segmented(struct sk_buff *skb, struct Qdisc *sch,
 578				    struct Qdisc *child,
 579				    struct sk_buff **to_free)
 580{
 581	unsigned int slen = 0, numsegs = 0, len = qdisc_pkt_len(skb);
 582	netdev_features_t features = netif_skb_features(skb);
 583	struct sk_buff *segs, *nskb;
 584	int ret;
 585
 586	segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
 587	if (IS_ERR_OR_NULL(segs))
 588		return qdisc_drop(skb, sch, to_free);
 589
 590	skb_list_walk_safe(segs, segs, nskb) {
 591		skb_mark_not_on_list(segs);
 592		qdisc_skb_cb(segs)->pkt_len = segs->len;
 593		slen += segs->len;
 594
 595		/* FIXME: we should be segmenting to a smaller size
 596		 * rather than dropping these
 597		 */
 598		if (taprio_skb_exceeds_queue_max_sdu(sch, segs))
 599			ret = qdisc_drop(segs, sch, to_free);
 600		else
 601			ret = taprio_enqueue_one(segs, sch, child, to_free);
 602
 603		if (ret != NET_XMIT_SUCCESS) {
 604			if (net_xmit_drop_count(ret))
 605				qdisc_qstats_drop(sch);
 606		} else {
 607			numsegs++;
 608		}
 609	}
 610
 611	if (numsegs > 1)
 612		qdisc_tree_reduce_backlog(sch, 1 - numsegs, len - slen);
 613	consume_skb(skb);
 614
 615	return numsegs > 0 ? NET_XMIT_SUCCESS : NET_XMIT_DROP;
 616}
 617
 618/* Will not be called in the full offload case, since the TX queues are
 619 * attached to the Qdisc created using qdisc_create_dflt()
 620 */
 621static int taprio_enqueue(struct sk_buff *skb, struct Qdisc *sch,
 622			  struct sk_buff **to_free)
 623{
 624	struct taprio_sched *q = qdisc_priv(sch);
 625	struct Qdisc *child;
 626	int queue;
 627
 628	queue = skb_get_queue_mapping(skb);
 629
 630	child = q->qdiscs[queue];
 631	if (unlikely(!child))
 632		return qdisc_drop(skb, sch, to_free);
 633
 634	if (taprio_skb_exceeds_queue_max_sdu(sch, skb)) {
 635		/* Large packets might not be transmitted when the transmission
 636		 * duration exceeds any configured interval. Therefore, segment
 637		 * the skb into smaller chunks. Drivers with full offload are
 638		 * expected to handle this in hardware.
 639		 */
 640		if (skb_is_gso(skb))
 641			return taprio_enqueue_segmented(skb, sch, child,
 642							to_free);
 643
 644		return qdisc_drop(skb, sch, to_free);
 645	}
 646
 647	return taprio_enqueue_one(skb, sch, child, to_free);
 648}
 649
 650static struct sk_buff *taprio_peek(struct Qdisc *sch)
 651{
 652	WARN_ONCE(1, "taprio only supports operating as root qdisc, peek() not implemented");
 653	return NULL;
 654}
 655
 656static void taprio_set_budgets(struct taprio_sched *q,
 657			       struct sched_gate_list *sched,
 658			       struct sched_entry *entry)
 659{
 660	struct net_device *dev = qdisc_dev(q->root);
 661	int num_tc = netdev_get_num_tc(dev);
 662	int tc, budget;
 663
 664	for (tc = 0; tc < num_tc; tc++) {
 665		/* Traffic classes which never close have infinite budget */
 666		if (entry->gate_duration[tc] == sched->cycle_time)
 667			budget = INT_MAX;
 668		else
 669			budget = div64_u64((u64)entry->gate_duration[tc] * PSEC_PER_NSEC,
 670					   atomic64_read(&q->picos_per_byte));
 671
 672		atomic_set(&entry->budget[tc], budget);
 673	}
 674}
 675
 676/* When an skb is sent, it consumes from the budget of all traffic classes */
 677static int taprio_update_budgets(struct sched_entry *entry, size_t len,
 678				 int tc_consumed, int num_tc)
 679{
 680	int tc, budget, new_budget = 0;
 681
 682	for (tc = 0; tc < num_tc; tc++) {
 683		budget = atomic_read(&entry->budget[tc]);
 684		/* Don't consume from infinite budget */
 685		if (budget == INT_MAX) {
 686			if (tc == tc_consumed)
 687				new_budget = budget;
 688			continue;
 689		}
 690
 691		if (tc == tc_consumed)
 692			new_budget = atomic_sub_return(len, &entry->budget[tc]);
 693		else
 694			atomic_sub(len, &entry->budget[tc]);
 695	}
 696
 697	return new_budget;
 698}
 699
 700static struct sk_buff *taprio_dequeue_from_txq(struct Qdisc *sch, int txq,
 701					       struct sched_entry *entry,
 702					       u32 gate_mask)
 703{
 704	struct taprio_sched *q = qdisc_priv(sch);
 705	struct net_device *dev = qdisc_dev(sch);
 706	struct Qdisc *child = q->qdiscs[txq];
 707	int num_tc = netdev_get_num_tc(dev);
 708	struct sk_buff *skb;
 709	ktime_t guard;
 710	int prio;
 711	int len;
 712	u8 tc;
 713
 714	if (unlikely(!child))
 715		return NULL;
 716
 717	if (TXTIME_ASSIST_IS_ENABLED(q->flags))
 718		goto skip_peek_checks;
 719
 720	skb = child->ops->peek(child);
 721	if (!skb)
 722		return NULL;
 723
 724	prio = skb->priority;
 725	tc = netdev_get_prio_tc_map(dev, prio);
 726
 727	if (!(gate_mask & BIT(tc)))
 728		return NULL;
 729
 730	len = qdisc_pkt_len(skb);
 731	guard = ktime_add_ns(taprio_get_time(q), length_to_duration(q, len));
 732
 733	/* In the case that there's no gate entry, there's no
 734	 * guard band ...
 735	 */
 736	if (gate_mask != TAPRIO_ALL_GATES_OPEN &&
 737	    !taprio_entry_allows_tx(guard, entry, tc))
 738		return NULL;
 739
 740	/* ... and no budget. */
 741	if (gate_mask != TAPRIO_ALL_GATES_OPEN &&
 742	    taprio_update_budgets(entry, len, tc, num_tc) < 0)
 743		return NULL;
 744
 745skip_peek_checks:
 746	skb = child->ops->dequeue(child);
 747	if (unlikely(!skb))
 748		return NULL;
 749
 750	qdisc_bstats_update(sch, skb);
 751	qdisc_qstats_backlog_dec(sch, skb);
 752	sch->q.qlen--;
 753
 754	return skb;
 755}
 756
 757static void taprio_next_tc_txq(struct net_device *dev, int tc, int *txq)
 758{
 759	int offset = dev->tc_to_txq[tc].offset;
 760	int count = dev->tc_to_txq[tc].count;
 761
 762	(*txq)++;
 763	if (*txq == offset + count)
 764		*txq = offset;
 765}
 766
 767/* Prioritize higher traffic classes, and select among TXQs belonging to the
 768 * same TC using round robin
 769 */
 770static struct sk_buff *taprio_dequeue_tc_priority(struct Qdisc *sch,
 771						  struct sched_entry *entry,
 772						  u32 gate_mask)
 773{
 774	struct taprio_sched *q = qdisc_priv(sch);
 775	struct net_device *dev = qdisc_dev(sch);
 776	int num_tc = netdev_get_num_tc(dev);
 777	struct sk_buff *skb;
 778	int tc;
 779
 780	for (tc = num_tc - 1; tc >= 0; tc--) {
 781		int first_txq = q->cur_txq[tc];
 782
 783		if (!(gate_mask & BIT(tc)))
 784			continue;
 785
 786		do {
 787			skb = taprio_dequeue_from_txq(sch, q->cur_txq[tc],
 788						      entry, gate_mask);
 789
 790			taprio_next_tc_txq(dev, tc, &q->cur_txq[tc]);
 791
 792			if (q->cur_txq[tc] >= dev->num_tx_queues)
 793				q->cur_txq[tc] = first_txq;
 794
 795			if (skb)
 796				return skb;
 797		} while (q->cur_txq[tc] != first_txq);
 798	}
 799
 800	return NULL;
 801}
 802
 803/* Broken way of prioritizing smaller TXQ indices and ignoring the traffic
 804 * class other than to determine whether the gate is open or not
 805 */
 806static struct sk_buff *taprio_dequeue_txq_priority(struct Qdisc *sch,
 807						   struct sched_entry *entry,
 808						   u32 gate_mask)
 809{
 810	struct net_device *dev = qdisc_dev(sch);
 811	struct sk_buff *skb;
 812	int i;
 813
 814	for (i = 0; i < dev->num_tx_queues; i++) {
 815		skb = taprio_dequeue_from_txq(sch, i, entry, gate_mask);
 816		if (skb)
 817			return skb;
 818	}
 819
 820	return NULL;
 821}
 822
 823/* Will not be called in the full offload case, since the TX queues are
 824 * attached to the Qdisc created using qdisc_create_dflt()
 825 */
 826static struct sk_buff *taprio_dequeue(struct Qdisc *sch)
 827{
 828	struct taprio_sched *q = qdisc_priv(sch);
 829	struct sk_buff *skb = NULL;
 830	struct sched_entry *entry;
 831	u32 gate_mask;
 832
 833	rcu_read_lock();
 834	entry = rcu_dereference(q->current_entry);
 835	/* if there's no entry, it means that the schedule didn't
 836	 * start yet, so force all gates to be open, this is in
 837	 * accordance to IEEE 802.1Qbv-2015 Section 8.6.9.4.5
 838	 * "AdminGateStates"
 839	 */
 840	gate_mask = entry ? entry->gate_mask : TAPRIO_ALL_GATES_OPEN;
 841	if (!gate_mask)
 842		goto done;
 843
 844	if (static_branch_unlikely(&taprio_have_broken_mqprio) &&
 845	    !static_branch_likely(&taprio_have_working_mqprio)) {
 846		/* Single NIC kind which is broken */
 847		skb = taprio_dequeue_txq_priority(sch, entry, gate_mask);
 848	} else if (static_branch_likely(&taprio_have_working_mqprio) &&
 849		   !static_branch_unlikely(&taprio_have_broken_mqprio)) {
 850		/* Single NIC kind which prioritizes properly */
 851		skb = taprio_dequeue_tc_priority(sch, entry, gate_mask);
 852	} else {
 853		/* Mixed NIC kinds present in system, need dynamic testing */
 854		if (q->broken_mqprio)
 855			skb = taprio_dequeue_txq_priority(sch, entry, gate_mask);
 856		else
 857			skb = taprio_dequeue_tc_priority(sch, entry, gate_mask);
 858	}
 859
 860done:
 861	rcu_read_unlock();
 862
 863	return skb;
 864}
 865
 866static bool should_restart_cycle(const struct sched_gate_list *oper,
 867				 const struct sched_entry *entry)
 868{
 869	if (list_is_last(&entry->list, &oper->entries))
 870		return true;
 871
 872	if (ktime_compare(entry->end_time, oper->cycle_end_time) == 0)
 873		return true;
 874
 875	return false;
 876}
 877
 878static bool should_change_schedules(const struct sched_gate_list *admin,
 879				    const struct sched_gate_list *oper,
 880				    ktime_t end_time)
 881{
 882	ktime_t next_base_time, extension_time;
 883
 884	if (!admin)
 885		return false;
 886
 887	next_base_time = sched_base_time(admin);
 888
 889	/* This is the simple case, the end_time would fall after
 890	 * the next schedule base_time.
 891	 */
 892	if (ktime_compare(next_base_time, end_time) <= 0)
 893		return true;
 894
 895	/* This is the cycle_time_extension case, if the end_time
 896	 * plus the amount that can be extended would fall after the
 897	 * next schedule base_time, we can extend the current schedule
 898	 * for that amount.
 899	 */
 900	extension_time = ktime_add_ns(end_time, oper->cycle_time_extension);
 901
 902	/* FIXME: the IEEE 802.1Q-2018 Specification isn't clear about
 903	 * how precisely the extension should be made. So after
 904	 * conformance testing, this logic may change.
 905	 */
 906	if (ktime_compare(next_base_time, extension_time) <= 0)
 907		return true;
 908
 909	return false;
 910}
 911
 912static enum hrtimer_restart advance_sched(struct hrtimer *timer)
 913{
 914	struct taprio_sched *q = container_of(timer, struct taprio_sched,
 915					      advance_timer);
 916	struct net_device *dev = qdisc_dev(q->root);
 917	struct sched_gate_list *oper, *admin;
 918	int num_tc = netdev_get_num_tc(dev);
 919	struct sched_entry *entry, *next;
 920	struct Qdisc *sch = q->root;
 921	ktime_t end_time;
 922	int tc;
 923
 924	spin_lock(&q->current_entry_lock);
 925	entry = rcu_dereference_protected(q->current_entry,
 926					  lockdep_is_held(&q->current_entry_lock));
 927	oper = rcu_dereference_protected(q->oper_sched,
 928					 lockdep_is_held(&q->current_entry_lock));
 929	admin = rcu_dereference_protected(q->admin_sched,
 930					  lockdep_is_held(&q->current_entry_lock));
 931
 932	if (!oper)
 933		switch_schedules(q, &admin, &oper);
 934
 935	/* This can happen in two cases: 1. this is the very first run
 936	 * of this function (i.e. we weren't running any schedule
 937	 * previously); 2. The previous schedule just ended. The first
 938	 * entry of all schedules are pre-calculated during the
 939	 * schedule initialization.
 940	 */
 941	if (unlikely(!entry || entry->end_time == oper->base_time)) {
 942		next = list_first_entry(&oper->entries, struct sched_entry,
 943					list);
 944		end_time = next->end_time;
 945		goto first_run;
 946	}
 947
 948	if (should_restart_cycle(oper, entry)) {
 949		next = list_first_entry(&oper->entries, struct sched_entry,
 950					list);
 951		oper->cycle_end_time = ktime_add_ns(oper->cycle_end_time,
 952						    oper->cycle_time);
 953	} else {
 954		next = list_next_entry(entry, list);
 955	}
 956
 957	end_time = ktime_add_ns(entry->end_time, next->interval);
 958	end_time = min_t(ktime_t, end_time, oper->cycle_end_time);
 959
 960	for (tc = 0; tc < num_tc; tc++) {
 961		if (next->gate_duration[tc] == oper->cycle_time)
 962			next->gate_close_time[tc] = KTIME_MAX;
 963		else
 964			next->gate_close_time[tc] = ktime_add_ns(entry->end_time,
 965								 next->gate_duration[tc]);
 966	}
 967
 968	if (should_change_schedules(admin, oper, end_time)) {
 969		/* Set things so the next time this runs, the new
 970		 * schedule runs.
 971		 */
 972		end_time = sched_base_time(admin);
 973		switch_schedules(q, &admin, &oper);
 974	}
 975
 976	next->end_time = end_time;
 977	taprio_set_budgets(q, oper, next);
 978
 979first_run:
 980	rcu_assign_pointer(q->current_entry, next);
 981	spin_unlock(&q->current_entry_lock);
 982
 983	hrtimer_set_expires(&q->advance_timer, end_time);
 984
 985	rcu_read_lock();
 986	__netif_schedule(sch);
 987	rcu_read_unlock();
 988
 989	return HRTIMER_RESTART;
 990}
 991
 992static const struct nla_policy entry_policy[TCA_TAPRIO_SCHED_ENTRY_MAX + 1] = {
 993	[TCA_TAPRIO_SCHED_ENTRY_INDEX]	   = { .type = NLA_U32 },
 994	[TCA_TAPRIO_SCHED_ENTRY_CMD]	   = { .type = NLA_U8 },
 995	[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK] = { .type = NLA_U32 },
 996	[TCA_TAPRIO_SCHED_ENTRY_INTERVAL]  = { .type = NLA_U32 },
 997};
 998
 999static const struct nla_policy taprio_tc_policy[TCA_TAPRIO_TC_ENTRY_MAX + 1] = {
1000	[TCA_TAPRIO_TC_ENTRY_INDEX]	   = NLA_POLICY_MAX(NLA_U32,
1001							    TC_QOPT_MAX_QUEUE),
1002	[TCA_TAPRIO_TC_ENTRY_MAX_SDU]	   = { .type = NLA_U32 },
1003	[TCA_TAPRIO_TC_ENTRY_FP]	   = NLA_POLICY_RANGE(NLA_U32,
1004							      TC_FP_EXPRESS,
1005							      TC_FP_PREEMPTIBLE),
1006};
1007
1008static const struct netlink_range_validation_signed taprio_cycle_time_range = {
1009	.min = 0,
1010	.max = INT_MAX,
1011};
1012
1013static const struct nla_policy taprio_policy[TCA_TAPRIO_ATTR_MAX + 1] = {
1014	[TCA_TAPRIO_ATTR_PRIOMAP]	       = {
1015		.len = sizeof(struct tc_mqprio_qopt)
1016	},
1017	[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST]           = { .type = NLA_NESTED },
1018	[TCA_TAPRIO_ATTR_SCHED_BASE_TIME]            = { .type = NLA_S64 },
1019	[TCA_TAPRIO_ATTR_SCHED_SINGLE_ENTRY]         = { .type = NLA_NESTED },
1020	[TCA_TAPRIO_ATTR_SCHED_CLOCKID]              = { .type = NLA_S32 },
1021	[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME]           =
1022		NLA_POLICY_FULL_RANGE_SIGNED(NLA_S64, &taprio_cycle_time_range),
1023	[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION] = { .type = NLA_S64 },
1024	[TCA_TAPRIO_ATTR_FLAGS]                      =
1025		NLA_POLICY_MASK(NLA_U32, TAPRIO_SUPPORTED_FLAGS),
1026	[TCA_TAPRIO_ATTR_TXTIME_DELAY]		     = { .type = NLA_U32 },
1027	[TCA_TAPRIO_ATTR_TC_ENTRY]		     = { .type = NLA_NESTED },
1028};
1029
1030static int fill_sched_entry(struct taprio_sched *q, struct nlattr **tb,
1031			    struct sched_entry *entry,
1032			    struct netlink_ext_ack *extack)
1033{
1034	int min_duration = length_to_duration(q, ETH_ZLEN);
1035	u32 interval = 0;
1036
1037	if (tb[TCA_TAPRIO_SCHED_ENTRY_CMD])
1038		entry->command = nla_get_u8(
1039			tb[TCA_TAPRIO_SCHED_ENTRY_CMD]);
1040
1041	if (tb[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK])
1042		entry->gate_mask = nla_get_u32(
1043			tb[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK]);
1044
1045	if (tb[TCA_TAPRIO_SCHED_ENTRY_INTERVAL])
1046		interval = nla_get_u32(
1047			tb[TCA_TAPRIO_SCHED_ENTRY_INTERVAL]);
1048
1049	/* The interval should allow at least the minimum ethernet
1050	 * frame to go out.
1051	 */
1052	if (interval < min_duration) {
1053		NL_SET_ERR_MSG(extack, "Invalid interval for schedule entry");
1054		return -EINVAL;
1055	}
1056
1057	entry->interval = interval;
1058
1059	return 0;
1060}
1061
1062static int parse_sched_entry(struct taprio_sched *q, struct nlattr *n,
1063			     struct sched_entry *entry, int index,
1064			     struct netlink_ext_ack *extack)
1065{
1066	struct nlattr *tb[TCA_TAPRIO_SCHED_ENTRY_MAX + 1] = { };
1067	int err;
1068
1069	err = nla_parse_nested_deprecated(tb, TCA_TAPRIO_SCHED_ENTRY_MAX, n,
1070					  entry_policy, NULL);
1071	if (err < 0) {
1072		NL_SET_ERR_MSG(extack, "Could not parse nested entry");
1073		return -EINVAL;
1074	}
1075
1076	entry->index = index;
1077
1078	return fill_sched_entry(q, tb, entry, extack);
1079}
1080
1081static int parse_sched_list(struct taprio_sched *q, struct nlattr *list,
1082			    struct sched_gate_list *sched,
1083			    struct netlink_ext_ack *extack)
1084{
1085	struct nlattr *n;
1086	int err, rem;
1087	int i = 0;
1088
1089	if (!list)
1090		return -EINVAL;
1091
1092	nla_for_each_nested(n, list, rem) {
1093		struct sched_entry *entry;
1094
1095		if (nla_type(n) != TCA_TAPRIO_SCHED_ENTRY) {
1096			NL_SET_ERR_MSG(extack, "Attribute is not of type 'entry'");
1097			continue;
1098		}
1099
1100		entry = kzalloc(sizeof(*entry), GFP_KERNEL);
1101		if (!entry) {
1102			NL_SET_ERR_MSG(extack, "Not enough memory for entry");
1103			return -ENOMEM;
1104		}
1105
1106		err = parse_sched_entry(q, n, entry, i, extack);
1107		if (err < 0) {
1108			kfree(entry);
1109			return err;
1110		}
1111
1112		list_add_tail(&entry->list, &sched->entries);
1113		i++;
1114	}
1115
1116	sched->num_entries = i;
1117
1118	return i;
1119}
1120
1121static int parse_taprio_schedule(struct taprio_sched *q, struct nlattr **tb,
1122				 struct sched_gate_list *new,
1123				 struct netlink_ext_ack *extack)
1124{
1125	int err = 0;
1126
1127	if (tb[TCA_TAPRIO_ATTR_SCHED_SINGLE_ENTRY]) {
1128		NL_SET_ERR_MSG(extack, "Adding a single entry is not supported");
1129		return -ENOTSUPP;
1130	}
1131
1132	if (tb[TCA_TAPRIO_ATTR_SCHED_BASE_TIME])
1133		new->base_time = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_BASE_TIME]);
1134
1135	if (tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION])
1136		new->cycle_time_extension = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION]);
1137
1138	if (tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME])
1139		new->cycle_time = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME]);
1140
1141	if (tb[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST])
1142		err = parse_sched_list(q, tb[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST],
1143				       new, extack);
1144	if (err < 0)
1145		return err;
1146
1147	if (!new->cycle_time) {
1148		struct sched_entry *entry;
1149		ktime_t cycle = 0;
1150
1151		list_for_each_entry(entry, &new->entries, list)
1152			cycle = ktime_add_ns(cycle, entry->interval);
1153
1154		if (cycle < 0 || cycle > INT_MAX) {
1155			NL_SET_ERR_MSG(extack, "'cycle_time' is too big");
1156			return -EINVAL;
1157		}
1158
1159		new->cycle_time = cycle;
1160	}
1161
1162	if (new->cycle_time < new->num_entries * length_to_duration(q, ETH_ZLEN)) {
1163		NL_SET_ERR_MSG(extack, "'cycle_time' is too small");
1164		return -EINVAL;
1165	}
1166
1167	taprio_calculate_gate_durations(q, new);
1168
1169	return 0;
1170}
1171
1172static int taprio_parse_mqprio_opt(struct net_device *dev,
1173				   struct tc_mqprio_qopt *qopt,
1174				   struct netlink_ext_ack *extack,
1175				   u32 taprio_flags)
1176{
1177	bool allow_overlapping_txqs = TXTIME_ASSIST_IS_ENABLED(taprio_flags);
1178
1179	if (!qopt) {
1180		if (!dev->num_tc) {
1181			NL_SET_ERR_MSG(extack, "'mqprio' configuration is necessary");
1182			return -EINVAL;
1183		}
1184		return 0;
1185	}
1186
1187	/* taprio imposes that traffic classes map 1:n to tx queues */
1188	if (qopt->num_tc > dev->num_tx_queues) {
1189		NL_SET_ERR_MSG(extack, "Number of traffic classes is greater than number of HW queues");
1190		return -EINVAL;
1191	}
1192
1193	/* For some reason, in txtime-assist mode, we allow TXQ ranges for
1194	 * different TCs to overlap, and just validate the TXQ ranges.
1195	 */
1196	return mqprio_validate_qopt(dev, qopt, true, allow_overlapping_txqs,
1197				    extack);
1198}
1199
1200static int taprio_get_start_time(struct Qdisc *sch,
1201				 struct sched_gate_list *sched,
1202				 ktime_t *start)
1203{
1204	struct taprio_sched *q = qdisc_priv(sch);
1205	ktime_t now, base, cycle;
1206	s64 n;
1207
1208	base = sched_base_time(sched);
1209	now = taprio_get_time(q);
1210
1211	if (ktime_after(base, now)) {
1212		*start = base;
1213		return 0;
1214	}
1215
1216	cycle = sched->cycle_time;
1217
1218	/* The qdisc is expected to have at least one sched_entry.  Moreover,
1219	 * any entry must have 'interval' > 0. Thus if the cycle time is zero,
1220	 * something went really wrong. In that case, we should warn about this
1221	 * inconsistent state and return error.
1222	 */
1223	if (WARN_ON(!cycle))
1224		return -EFAULT;
1225
1226	/* Schedule the start time for the beginning of the next
1227	 * cycle.
1228	 */
1229	n = div64_s64(ktime_sub_ns(now, base), cycle);
1230	*start = ktime_add_ns(base, (n + 1) * cycle);
1231	return 0;
1232}
1233
1234static void setup_first_end_time(struct taprio_sched *q,
1235				 struct sched_gate_list *sched, ktime_t base)
1236{
1237	struct net_device *dev = qdisc_dev(q->root);
1238	int num_tc = netdev_get_num_tc(dev);
1239	struct sched_entry *first;
1240	ktime_t cycle;
1241	int tc;
1242
1243	first = list_first_entry(&sched->entries,
1244				 struct sched_entry, list);
1245
1246	cycle = sched->cycle_time;
1247
1248	/* FIXME: find a better place to do this */
1249	sched->cycle_end_time = ktime_add_ns(base, cycle);
1250
1251	first->end_time = ktime_add_ns(base, first->interval);
1252	taprio_set_budgets(q, sched, first);
1253
1254	for (tc = 0; tc < num_tc; tc++) {
1255		if (first->gate_duration[tc] == sched->cycle_time)
1256			first->gate_close_time[tc] = KTIME_MAX;
1257		else
1258			first->gate_close_time[tc] = ktime_add_ns(base, first->gate_duration[tc]);
1259	}
1260
1261	rcu_assign_pointer(q->current_entry, NULL);
1262}
1263
1264static void taprio_start_sched(struct Qdisc *sch,
1265			       ktime_t start, struct sched_gate_list *new)
1266{
1267	struct taprio_sched *q = qdisc_priv(sch);
1268	ktime_t expires;
1269
1270	if (FULL_OFFLOAD_IS_ENABLED(q->flags))
1271		return;
1272
1273	expires = hrtimer_get_expires(&q->advance_timer);
1274	if (expires == 0)
1275		expires = KTIME_MAX;
1276
1277	/* If the new schedule starts before the next expiration, we
1278	 * reprogram it to the earliest one, so we change the admin
1279	 * schedule to the operational one at the right time.
1280	 */
1281	start = min_t(ktime_t, start, expires);
1282
1283	hrtimer_start(&q->advance_timer, start, HRTIMER_MODE_ABS);
1284}
1285
1286static void taprio_set_picos_per_byte(struct net_device *dev,
1287				      struct taprio_sched *q)
1288{
1289	struct ethtool_link_ksettings ecmd;
1290	int speed = SPEED_10;
1291	int picos_per_byte;
1292	int err;
1293
1294	err = __ethtool_get_link_ksettings(dev, &ecmd);
1295	if (err < 0)
1296		goto skip;
1297
1298	if (ecmd.base.speed && ecmd.base.speed != SPEED_UNKNOWN)
1299		speed = ecmd.base.speed;
1300
1301skip:
1302	picos_per_byte = (USEC_PER_SEC * 8) / speed;
1303
1304	atomic64_set(&q->picos_per_byte, picos_per_byte);
1305	netdev_dbg(dev, "taprio: set %s's picos_per_byte to: %lld, linkspeed: %d\n",
1306		   dev->name, (long long)atomic64_read(&q->picos_per_byte),
1307		   ecmd.base.speed);
1308}
1309
1310static int taprio_dev_notifier(struct notifier_block *nb, unsigned long event,
1311			       void *ptr)
1312{
1313	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1314	struct sched_gate_list *oper, *admin;
1315	struct qdisc_size_table *stab;
1316	struct taprio_sched *q;
1317
1318	ASSERT_RTNL();
1319
1320	if (event != NETDEV_UP && event != NETDEV_CHANGE)
1321		return NOTIFY_DONE;
1322
1323	list_for_each_entry(q, &taprio_list, taprio_list) {
1324		if (dev != qdisc_dev(q->root))
1325			continue;
1326
1327		taprio_set_picos_per_byte(dev, q);
1328
1329		stab = rtnl_dereference(q->root->stab);
1330
1331		oper = rtnl_dereference(q->oper_sched);
1332		if (oper)
1333			taprio_update_queue_max_sdu(q, oper, stab);
1334
1335		admin = rtnl_dereference(q->admin_sched);
1336		if (admin)
1337			taprio_update_queue_max_sdu(q, admin, stab);
1338
1339		break;
1340	}
1341
1342	return NOTIFY_DONE;
1343}
1344
1345static void setup_txtime(struct taprio_sched *q,
1346			 struct sched_gate_list *sched, ktime_t base)
1347{
1348	struct sched_entry *entry;
1349	u64 interval = 0;
1350
1351	list_for_each_entry(entry, &sched->entries, list) {
1352		entry->next_txtime = ktime_add_ns(base, interval);
1353		interval += entry->interval;
1354	}
1355}
1356
1357static struct tc_taprio_qopt_offload *taprio_offload_alloc(int num_entries)
1358{
1359	struct __tc_taprio_qopt_offload *__offload;
1360
1361	__offload = kzalloc(struct_size(__offload, offload.entries, num_entries),
1362			    GFP_KERNEL);
1363	if (!__offload)
1364		return NULL;
1365
1366	refcount_set(&__offload->users, 1);
1367
1368	return &__offload->offload;
1369}
1370
1371struct tc_taprio_qopt_offload *taprio_offload_get(struct tc_taprio_qopt_offload
1372						  *offload)
1373{
1374	struct __tc_taprio_qopt_offload *__offload;
1375
1376	__offload = container_of(offload, struct __tc_taprio_qopt_offload,
1377				 offload);
1378
1379	refcount_inc(&__offload->users);
1380
1381	return offload;
1382}
1383EXPORT_SYMBOL_GPL(taprio_offload_get);
1384
1385void taprio_offload_free(struct tc_taprio_qopt_offload *offload)
1386{
1387	struct __tc_taprio_qopt_offload *__offload;
1388
1389	__offload = container_of(offload, struct __tc_taprio_qopt_offload,
1390				 offload);
1391
1392	if (!refcount_dec_and_test(&__offload->users))
1393		return;
1394
1395	kfree(__offload);
1396}
1397EXPORT_SYMBOL_GPL(taprio_offload_free);
1398
1399/* The function will only serve to keep the pointers to the "oper" and "admin"
1400 * schedules valid in relation to their base times, so when calling dump() the
1401 * users looks at the right schedules.
1402 * When using full offload, the admin configuration is promoted to oper at the
1403 * base_time in the PHC time domain.  But because the system time is not
1404 * necessarily in sync with that, we can't just trigger a hrtimer to call
1405 * switch_schedules at the right hardware time.
1406 * At the moment we call this by hand right away from taprio, but in the future
1407 * it will be useful to create a mechanism for drivers to notify taprio of the
1408 * offload state (PENDING, ACTIVE, INACTIVE) so it can be visible in dump().
1409 * This is left as TODO.
1410 */
1411static void taprio_offload_config_changed(struct taprio_sched *q)
1412{
1413	struct sched_gate_list *oper, *admin;
1414
1415	oper = rtnl_dereference(q->oper_sched);
1416	admin = rtnl_dereference(q->admin_sched);
1417
1418	switch_schedules(q, &admin, &oper);
1419}
1420
1421static u32 tc_map_to_queue_mask(struct net_device *dev, u32 tc_mask)
1422{
1423	u32 i, queue_mask = 0;
1424
1425	for (i = 0; i < dev->num_tc; i++) {
1426		u32 offset, count;
1427
1428		if (!(tc_mask & BIT(i)))
1429			continue;
1430
1431		offset = dev->tc_to_txq[i].offset;
1432		count = dev->tc_to_txq[i].count;
1433
1434		queue_mask |= GENMASK(offset + count - 1, offset);
1435	}
1436
1437	return queue_mask;
1438}
1439
1440static void taprio_sched_to_offload(struct net_device *dev,
1441				    struct sched_gate_list *sched,
1442				    struct tc_taprio_qopt_offload *offload,
1443				    const struct tc_taprio_caps *caps)
1444{
1445	struct sched_entry *entry;
1446	int i = 0;
1447
1448	offload->base_time = sched->base_time;
1449	offload->cycle_time = sched->cycle_time;
1450	offload->cycle_time_extension = sched->cycle_time_extension;
1451
1452	list_for_each_entry(entry, &sched->entries, list) {
1453		struct tc_taprio_sched_entry *e = &offload->entries[i];
1454
1455		e->command = entry->command;
1456		e->interval = entry->interval;
1457		if (caps->gate_mask_per_txq)
1458			e->gate_mask = tc_map_to_queue_mask(dev,
1459							    entry->gate_mask);
1460		else
1461			e->gate_mask = entry->gate_mask;
1462
1463		i++;
1464	}
1465
1466	offload->num_entries = i;
1467}
1468
1469static void taprio_detect_broken_mqprio(struct taprio_sched *q)
1470{
1471	struct net_device *dev = qdisc_dev(q->root);
1472	struct tc_taprio_caps caps;
1473
1474	qdisc_offload_query_caps(dev, TC_SETUP_QDISC_TAPRIO,
1475				 &caps, sizeof(caps));
1476
1477	q->broken_mqprio = caps.broken_mqprio;
1478	if (q->broken_mqprio)
1479		static_branch_inc(&taprio_have_broken_mqprio);
1480	else
1481		static_branch_inc(&taprio_have_working_mqprio);
1482
1483	q->detected_mqprio = true;
1484}
1485
1486static void taprio_cleanup_broken_mqprio(struct taprio_sched *q)
1487{
1488	if (!q->detected_mqprio)
1489		return;
1490
1491	if (q->broken_mqprio)
1492		static_branch_dec(&taprio_have_broken_mqprio);
1493	else
1494		static_branch_dec(&taprio_have_working_mqprio);
1495}
1496
1497static int taprio_enable_offload(struct net_device *dev,
1498				 struct taprio_sched *q,
1499				 struct sched_gate_list *sched,
1500				 struct netlink_ext_ack *extack)
1501{
1502	const struct net_device_ops *ops = dev->netdev_ops;
1503	struct tc_taprio_qopt_offload *offload;
1504	struct tc_taprio_caps caps;
1505	int tc, err = 0;
1506
1507	if (!ops->ndo_setup_tc) {
1508		NL_SET_ERR_MSG(extack,
1509			       "Device does not support taprio offload");
1510		return -EOPNOTSUPP;
1511	}
1512
1513	qdisc_offload_query_caps(dev, TC_SETUP_QDISC_TAPRIO,
1514				 &caps, sizeof(caps));
1515
1516	if (!caps.supports_queue_max_sdu) {
1517		for (tc = 0; tc < TC_MAX_QUEUE; tc++) {
1518			if (q->max_sdu[tc]) {
1519				NL_SET_ERR_MSG_MOD(extack,
1520						   "Device does not handle queueMaxSDU");
1521				return -EOPNOTSUPP;
1522			}
1523		}
1524	}
1525
1526	offload = taprio_offload_alloc(sched->num_entries);
1527	if (!offload) {
1528		NL_SET_ERR_MSG(extack,
1529			       "Not enough memory for enabling offload mode");
1530		return -ENOMEM;
1531	}
1532	offload->cmd = TAPRIO_CMD_REPLACE;
1533	offload->extack = extack;
1534	mqprio_qopt_reconstruct(dev, &offload->mqprio.qopt);
1535	offload->mqprio.extack = extack;
1536	taprio_sched_to_offload(dev, sched, offload, &caps);
1537	mqprio_fp_to_offload(q->fp, &offload->mqprio);
1538
1539	for (tc = 0; tc < TC_MAX_QUEUE; tc++)
1540		offload->max_sdu[tc] = q->max_sdu[tc];
1541
1542	err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TAPRIO, offload);
1543	if (err < 0) {
1544		NL_SET_ERR_MSG_WEAK(extack,
1545				    "Device failed to setup taprio offload");
1546		goto done;
1547	}
1548
1549	q->offloaded = true;
1550
1551done:
1552	/* The offload structure may linger around via a reference taken by the
1553	 * device driver, so clear up the netlink extack pointer so that the
1554	 * driver isn't tempted to dereference data which stopped being valid
1555	 */
1556	offload->extack = NULL;
1557	offload->mqprio.extack = NULL;
1558	taprio_offload_free(offload);
1559
1560	return err;
1561}
1562
1563static int taprio_disable_offload(struct net_device *dev,
1564				  struct taprio_sched *q,
1565				  struct netlink_ext_ack *extack)
1566{
1567	const struct net_device_ops *ops = dev->netdev_ops;
1568	struct tc_taprio_qopt_offload *offload;
1569	int err;
1570
1571	if (!q->offloaded)
1572		return 0;
1573
1574	offload = taprio_offload_alloc(0);
1575	if (!offload) {
1576		NL_SET_ERR_MSG(extack,
1577			       "Not enough memory to disable offload mode");
1578		return -ENOMEM;
1579	}
1580	offload->cmd = TAPRIO_CMD_DESTROY;
1581
1582	err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TAPRIO, offload);
1583	if (err < 0) {
1584		NL_SET_ERR_MSG(extack,
1585			       "Device failed to disable offload");
1586		goto out;
1587	}
1588
1589	q->offloaded = false;
1590
1591out:
1592	taprio_offload_free(offload);
1593
1594	return err;
1595}
1596
1597/* If full offload is enabled, the only possible clockid is the net device's
1598 * PHC. For that reason, specifying a clockid through netlink is incorrect.
1599 * For txtime-assist, it is implicitly assumed that the device's PHC is kept
1600 * in sync with the specified clockid via a user space daemon such as phc2sys.
1601 * For both software taprio and txtime-assist, the clockid is used for the
1602 * hrtimer that advances the schedule and hence mandatory.
1603 */
1604static int taprio_parse_clockid(struct Qdisc *sch, struct nlattr **tb,
1605				struct netlink_ext_ack *extack)
1606{
1607	struct taprio_sched *q = qdisc_priv(sch);
1608	struct net_device *dev = qdisc_dev(sch);
1609	int err = -EINVAL;
1610
1611	if (FULL_OFFLOAD_IS_ENABLED(q->flags)) {
1612		const struct ethtool_ops *ops = dev->ethtool_ops;
1613		struct kernel_ethtool_ts_info info = {
1614			.cmd = ETHTOOL_GET_TS_INFO,
1615			.phc_index = -1,
1616		};
1617
1618		if (tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]) {
1619			NL_SET_ERR_MSG(extack,
1620				       "The 'clockid' cannot be specified for full offload");
1621			goto out;
1622		}
1623
1624		if (ops && ops->get_ts_info)
1625			err = ops->get_ts_info(dev, &info);
1626
1627		if (err || info.phc_index < 0) {
1628			NL_SET_ERR_MSG(extack,
1629				       "Device does not have a PTP clock");
1630			err = -ENOTSUPP;
1631			goto out;
1632		}
1633	} else if (tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]) {
1634		int clockid = nla_get_s32(tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]);
1635		enum tk_offsets tk_offset;
1636
1637		/* We only support static clockids and we don't allow
1638		 * for it to be modified after the first init.
1639		 */
1640		if (clockid < 0 ||
1641		    (q->clockid != -1 && q->clockid != clockid)) {
1642			NL_SET_ERR_MSG(extack,
1643				       "Changing the 'clockid' of a running schedule is not supported");
1644			err = -ENOTSUPP;
1645			goto out;
1646		}
1647
1648		switch (clockid) {
1649		case CLOCK_REALTIME:
1650			tk_offset = TK_OFFS_REAL;
1651			break;
1652		case CLOCK_MONOTONIC:
1653			tk_offset = TK_OFFS_MAX;
1654			break;
1655		case CLOCK_BOOTTIME:
1656			tk_offset = TK_OFFS_BOOT;
1657			break;
1658		case CLOCK_TAI:
1659			tk_offset = TK_OFFS_TAI;
1660			break;
1661		default:
1662			NL_SET_ERR_MSG(extack, "Invalid 'clockid'");
1663			err = -EINVAL;
1664			goto out;
1665		}
1666		/* This pairs with READ_ONCE() in taprio_mono_to_any */
1667		WRITE_ONCE(q->tk_offset, tk_offset);
1668
1669		q->clockid = clockid;
1670	} else {
1671		NL_SET_ERR_MSG(extack, "Specifying a 'clockid' is mandatory");
1672		goto out;
1673	}
1674
1675	/* Everything went ok, return success. */
1676	err = 0;
1677
1678out:
1679	return err;
1680}
1681
1682static int taprio_parse_tc_entry(struct Qdisc *sch,
1683				 struct nlattr *opt,
1684				 u32 max_sdu[TC_QOPT_MAX_QUEUE],
1685				 u32 fp[TC_QOPT_MAX_QUEUE],
1686				 unsigned long *seen_tcs,
1687				 struct netlink_ext_ack *extack)
1688{
1689	struct nlattr *tb[TCA_TAPRIO_TC_ENTRY_MAX + 1] = { };
1690	struct net_device *dev = qdisc_dev(sch);
1691	int err, tc;
1692	u32 val;
1693
1694	err = nla_parse_nested(tb, TCA_TAPRIO_TC_ENTRY_MAX, opt,
1695			       taprio_tc_policy, extack);
1696	if (err < 0)
1697		return err;
1698
1699	if (!tb[TCA_TAPRIO_TC_ENTRY_INDEX]) {
1700		NL_SET_ERR_MSG_MOD(extack, "TC entry index missing");
1701		return -EINVAL;
1702	}
1703
1704	tc = nla_get_u32(tb[TCA_TAPRIO_TC_ENTRY_INDEX]);
1705	if (tc >= TC_QOPT_MAX_QUEUE) {
1706		NL_SET_ERR_MSG_MOD(extack, "TC entry index out of range");
1707		return -ERANGE;
1708	}
1709
1710	if (*seen_tcs & BIT(tc)) {
1711		NL_SET_ERR_MSG_MOD(extack, "Duplicate TC entry");
1712		return -EINVAL;
1713	}
1714
1715	*seen_tcs |= BIT(tc);
1716
1717	if (tb[TCA_TAPRIO_TC_ENTRY_MAX_SDU]) {
1718		val = nla_get_u32(tb[TCA_TAPRIO_TC_ENTRY_MAX_SDU]);
1719		if (val > dev->max_mtu) {
1720			NL_SET_ERR_MSG_MOD(extack, "TC max SDU exceeds device max MTU");
1721			return -ERANGE;
1722		}
1723
1724		max_sdu[tc] = val;
1725	}
1726
1727	if (tb[TCA_TAPRIO_TC_ENTRY_FP])
1728		fp[tc] = nla_get_u32(tb[TCA_TAPRIO_TC_ENTRY_FP]);
1729
1730	return 0;
1731}
1732
1733static int taprio_parse_tc_entries(struct Qdisc *sch,
1734				   struct nlattr *opt,
1735				   struct netlink_ext_ack *extack)
1736{
1737	struct taprio_sched *q = qdisc_priv(sch);
1738	struct net_device *dev = qdisc_dev(sch);
1739	u32 max_sdu[TC_QOPT_MAX_QUEUE];
1740	bool have_preemption = false;
1741	unsigned long seen_tcs = 0;
1742	u32 fp[TC_QOPT_MAX_QUEUE];
1743	struct nlattr *n;
1744	int tc, rem;
1745	int err = 0;
1746
1747	for (tc = 0; tc < TC_QOPT_MAX_QUEUE; tc++) {
1748		max_sdu[tc] = q->max_sdu[tc];
1749		fp[tc] = q->fp[tc];
1750	}
1751
1752	nla_for_each_nested_type(n, TCA_TAPRIO_ATTR_TC_ENTRY, opt, rem) {
1753		err = taprio_parse_tc_entry(sch, n, max_sdu, fp, &seen_tcs,
1754					    extack);
1755		if (err)
1756			return err;
1757	}
1758
1759	for (tc = 0; tc < TC_QOPT_MAX_QUEUE; tc++) {
1760		q->max_sdu[tc] = max_sdu[tc];
1761		q->fp[tc] = fp[tc];
1762		if (fp[tc] != TC_FP_EXPRESS)
1763			have_preemption = true;
1764	}
1765
1766	if (have_preemption) {
1767		if (!FULL_OFFLOAD_IS_ENABLED(q->flags)) {
1768			NL_SET_ERR_MSG(extack,
1769				       "Preemption only supported with full offload");
1770			return -EOPNOTSUPP;
1771		}
1772
1773		if (!ethtool_dev_mm_supported(dev)) {
1774			NL_SET_ERR_MSG(extack,
1775				       "Device does not support preemption");
1776			return -EOPNOTSUPP;
1777		}
1778	}
1779
1780	return err;
1781}
1782
1783static int taprio_mqprio_cmp(const struct net_device *dev,
1784			     const struct tc_mqprio_qopt *mqprio)
1785{
1786	int i;
1787
1788	if (!mqprio || mqprio->num_tc != dev->num_tc)
1789		return -1;
1790
1791	for (i = 0; i < mqprio->num_tc; i++)
1792		if (dev->tc_to_txq[i].count != mqprio->count[i] ||
1793		    dev->tc_to_txq[i].offset != mqprio->offset[i])
1794			return -1;
1795
1796	for (i = 0; i <= TC_BITMASK; i++)
1797		if (dev->prio_tc_map[i] != mqprio->prio_tc_map[i])
1798			return -1;
1799
1800	return 0;
1801}
1802
1803static int taprio_change(struct Qdisc *sch, struct nlattr *opt,
1804			 struct netlink_ext_ack *extack)
1805{
1806	struct qdisc_size_table *stab = rtnl_dereference(sch->stab);
1807	struct nlattr *tb[TCA_TAPRIO_ATTR_MAX + 1] = { };
1808	struct sched_gate_list *oper, *admin, *new_admin;
1809	struct taprio_sched *q = qdisc_priv(sch);
1810	struct net_device *dev = qdisc_dev(sch);
1811	struct tc_mqprio_qopt *mqprio = NULL;
1812	unsigned long flags;
1813	u32 taprio_flags;
1814	ktime_t start;
1815	int i, err;
1816
1817	err = nla_parse_nested_deprecated(tb, TCA_TAPRIO_ATTR_MAX, opt,
1818					  taprio_policy, extack);
1819	if (err < 0)
1820		return err;
1821
1822	if (tb[TCA_TAPRIO_ATTR_PRIOMAP])
1823		mqprio = nla_data(tb[TCA_TAPRIO_ATTR_PRIOMAP]);
1824
1825	/* The semantics of the 'flags' argument in relation to 'change()'
1826	 * requests, are interpreted following two rules (which are applied in
1827	 * this order): (1) an omitted 'flags' argument is interpreted as
1828	 * zero; (2) the 'flags' of a "running" taprio instance cannot be
1829	 * changed.
1830	 */
1831	taprio_flags = nla_get_u32_default(tb[TCA_TAPRIO_ATTR_FLAGS], 0);
1832
1833	/* txtime-assist and full offload are mutually exclusive */
1834	if ((taprio_flags & TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST) &&
1835	    (taprio_flags & TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD)) {
1836		NL_SET_ERR_MSG_ATTR(extack, tb[TCA_TAPRIO_ATTR_FLAGS],
1837				    "TXTIME_ASSIST and FULL_OFFLOAD are mutually exclusive");
1838		return -EINVAL;
1839	}
1840
1841	if (q->flags != TAPRIO_FLAGS_INVALID && q->flags != taprio_flags) {
1842		NL_SET_ERR_MSG_MOD(extack,
1843				   "Changing 'flags' of a running schedule is not supported");
1844		return -EOPNOTSUPP;
1845	}
1846	q->flags = taprio_flags;
1847
1848	/* Needed for length_to_duration() during netlink attribute parsing */
1849	taprio_set_picos_per_byte(dev, q);
1850
1851	err = taprio_parse_mqprio_opt(dev, mqprio, extack, q->flags);
1852	if (err < 0)
1853		return err;
1854
1855	err = taprio_parse_tc_entries(sch, opt, extack);
1856	if (err)
1857		return err;
1858
1859	new_admin = kzalloc(sizeof(*new_admin), GFP_KERNEL);
1860	if (!new_admin) {
1861		NL_SET_ERR_MSG(extack, "Not enough memory for a new schedule");
1862		return -ENOMEM;
1863	}
1864	INIT_LIST_HEAD(&new_admin->entries);
1865
1866	oper = rtnl_dereference(q->oper_sched);
1867	admin = rtnl_dereference(q->admin_sched);
1868
1869	/* no changes - no new mqprio settings */
1870	if (!taprio_mqprio_cmp(dev, mqprio))
1871		mqprio = NULL;
1872
1873	if (mqprio && (oper || admin)) {
1874		NL_SET_ERR_MSG(extack, "Changing the traffic mapping of a running schedule is not supported");
1875		err = -ENOTSUPP;
1876		goto free_sched;
1877	}
1878
1879	if (mqprio) {
1880		err = netdev_set_num_tc(dev, mqprio->num_tc);
1881		if (err)
1882			goto free_sched;
1883		for (i = 0; i < mqprio->num_tc; i++) {
1884			netdev_set_tc_queue(dev, i,
1885					    mqprio->count[i],
1886					    mqprio->offset[i]);
1887			q->cur_txq[i] = mqprio->offset[i];
1888		}
1889
1890		/* Always use supplied priority mappings */
1891		for (i = 0; i <= TC_BITMASK; i++)
1892			netdev_set_prio_tc_map(dev, i,
1893					       mqprio->prio_tc_map[i]);
1894	}
1895
1896	err = parse_taprio_schedule(q, tb, new_admin, extack);
1897	if (err < 0)
1898		goto free_sched;
1899
1900	if (new_admin->num_entries == 0) {
1901		NL_SET_ERR_MSG(extack, "There should be at least one entry in the schedule");
1902		err = -EINVAL;
1903		goto free_sched;
1904	}
1905
1906	err = taprio_parse_clockid(sch, tb, extack);
1907	if (err < 0)
1908		goto free_sched;
1909
1910	taprio_update_queue_max_sdu(q, new_admin, stab);
1911
1912	if (FULL_OFFLOAD_IS_ENABLED(q->flags))
1913		err = taprio_enable_offload(dev, q, new_admin, extack);
1914	else
1915		err = taprio_disable_offload(dev, q, extack);
1916	if (err)
1917		goto free_sched;
1918
1919	/* Protects against enqueue()/dequeue() */
1920	spin_lock_bh(qdisc_lock(sch));
1921
1922	if (tb[TCA_TAPRIO_ATTR_TXTIME_DELAY]) {
1923		if (!TXTIME_ASSIST_IS_ENABLED(q->flags)) {
1924			NL_SET_ERR_MSG_MOD(extack, "txtime-delay can only be set when txtime-assist mode is enabled");
1925			err = -EINVAL;
1926			goto unlock;
1927		}
1928
1929		q->txtime_delay = nla_get_u32(tb[TCA_TAPRIO_ATTR_TXTIME_DELAY]);
1930	}
1931
1932	if (!TXTIME_ASSIST_IS_ENABLED(q->flags) &&
1933	    !FULL_OFFLOAD_IS_ENABLED(q->flags) &&
1934	    !hrtimer_active(&q->advance_timer)) {
1935		hrtimer_init(&q->advance_timer, q->clockid, HRTIMER_MODE_ABS);
1936		q->advance_timer.function = advance_sched;
1937	}
1938
1939	err = taprio_get_start_time(sch, new_admin, &start);
1940	if (err < 0) {
1941		NL_SET_ERR_MSG(extack, "Internal error: failed get start time");
1942		goto unlock;
1943	}
1944
1945	setup_txtime(q, new_admin, start);
1946
1947	if (TXTIME_ASSIST_IS_ENABLED(q->flags)) {
1948		if (!oper) {
1949			rcu_assign_pointer(q->oper_sched, new_admin);
1950			err = 0;
1951			new_admin = NULL;
1952			goto unlock;
1953		}
1954
1955		/* Not going to race against advance_sched(), but still */
1956		admin = rcu_replace_pointer(q->admin_sched, new_admin,
1957					    lockdep_rtnl_is_held());
1958		if (admin)
1959			call_rcu(&admin->rcu, taprio_free_sched_cb);
1960	} else {
1961		setup_first_end_time(q, new_admin, start);
1962
1963		/* Protects against advance_sched() */
1964		spin_lock_irqsave(&q->current_entry_lock, flags);
1965
1966		taprio_start_sched(sch, start, new_admin);
1967
1968		admin = rcu_replace_pointer(q->admin_sched, new_admin,
1969					    lockdep_rtnl_is_held());
1970		if (admin)
1971			call_rcu(&admin->rcu, taprio_free_sched_cb);
1972
1973		spin_unlock_irqrestore(&q->current_entry_lock, flags);
1974
1975		if (FULL_OFFLOAD_IS_ENABLED(q->flags))
1976			taprio_offload_config_changed(q);
1977	}
1978
1979	new_admin = NULL;
1980	err = 0;
1981
1982	if (!stab)
1983		NL_SET_ERR_MSG_MOD(extack,
1984				   "Size table not specified, frame length estimations may be inaccurate");
1985
1986unlock:
1987	spin_unlock_bh(qdisc_lock(sch));
1988
1989free_sched:
1990	if (new_admin)
1991		call_rcu(&new_admin->rcu, taprio_free_sched_cb);
1992
1993	return err;
1994}
1995
1996static void taprio_reset(struct Qdisc *sch)
1997{
1998	struct taprio_sched *q = qdisc_priv(sch);
1999	struct net_device *dev = qdisc_dev(sch);
2000	int i;
2001
2002	hrtimer_cancel(&q->advance_timer);
2003
2004	if (q->qdiscs) {
2005		for (i = 0; i < dev->num_tx_queues; i++)
2006			if (q->qdiscs[i])
2007				qdisc_reset(q->qdiscs[i]);
2008	}
2009}
2010
2011static void taprio_destroy(struct Qdisc *sch)
2012{
2013	struct taprio_sched *q = qdisc_priv(sch);
2014	struct net_device *dev = qdisc_dev(sch);
2015	struct sched_gate_list *oper, *admin;
2016	unsigned int i;
2017
2018	list_del(&q->taprio_list);
2019
2020	/* Note that taprio_reset() might not be called if an error
2021	 * happens in qdisc_create(), after taprio_init() has been called.
2022	 */
2023	hrtimer_cancel(&q->advance_timer);
2024	qdisc_synchronize(sch);
2025
2026	taprio_disable_offload(dev, q, NULL);
2027
2028	if (q->qdiscs) {
2029		for (i = 0; i < dev->num_tx_queues; i++)
2030			qdisc_put(q->qdiscs[i]);
2031
2032		kfree(q->qdiscs);
2033	}
2034	q->qdiscs = NULL;
2035
2036	netdev_reset_tc(dev);
2037
2038	oper = rtnl_dereference(q->oper_sched);
2039	admin = rtnl_dereference(q->admin_sched);
2040
2041	if (oper)
2042		call_rcu(&oper->rcu, taprio_free_sched_cb);
2043
2044	if (admin)
2045		call_rcu(&admin->rcu, taprio_free_sched_cb);
2046
2047	taprio_cleanup_broken_mqprio(q);
2048}
2049
2050static int taprio_init(struct Qdisc *sch, struct nlattr *opt,
2051		       struct netlink_ext_ack *extack)
2052{
2053	struct taprio_sched *q = qdisc_priv(sch);
2054	struct net_device *dev = qdisc_dev(sch);
2055	int i, tc;
2056
2057	spin_lock_init(&q->current_entry_lock);
2058
2059	hrtimer_init(&q->advance_timer, CLOCK_TAI, HRTIMER_MODE_ABS);
2060	q->advance_timer.function = advance_sched;
2061
2062	q->root = sch;
2063
2064	/* We only support static clockids. Use an invalid value as default
2065	 * and get the valid one on taprio_change().
2066	 */
2067	q->clockid = -1;
2068	q->flags = TAPRIO_FLAGS_INVALID;
2069
2070	list_add(&q->taprio_list, &taprio_list);
2071
2072	if (sch->parent != TC_H_ROOT) {
2073		NL_SET_ERR_MSG_MOD(extack, "Can only be attached as root qdisc");
2074		return -EOPNOTSUPP;
2075	}
2076
2077	if (!netif_is_multiqueue(dev)) {
2078		NL_SET_ERR_MSG_MOD(extack, "Multi-queue device is required");
2079		return -EOPNOTSUPP;
2080	}
2081
2082	q->qdiscs = kcalloc(dev->num_tx_queues, sizeof(q->qdiscs[0]),
2083			    GFP_KERNEL);
2084	if (!q->qdiscs)
2085		return -ENOMEM;
2086
2087	if (!opt)
2088		return -EINVAL;
2089
2090	for (i = 0; i < dev->num_tx_queues; i++) {
2091		struct netdev_queue *dev_queue;
2092		struct Qdisc *qdisc;
2093
2094		dev_queue = netdev_get_tx_queue(dev, i);
2095		qdisc = qdisc_create_dflt(dev_queue,
2096					  &pfifo_qdisc_ops,
2097					  TC_H_MAKE(TC_H_MAJ(sch->handle),
2098						    TC_H_MIN(i + 1)),
2099					  extack);
2100		if (!qdisc)
2101			return -ENOMEM;
2102
2103		if (i < dev->real_num_tx_queues)
2104			qdisc_hash_add(qdisc, false);
2105
2106		q->qdiscs[i] = qdisc;
2107	}
2108
2109	for (tc = 0; tc < TC_QOPT_MAX_QUEUE; tc++)
2110		q->fp[tc] = TC_FP_EXPRESS;
2111
2112	taprio_detect_broken_mqprio(q);
2113
2114	return taprio_change(sch, opt, extack);
2115}
2116
2117static void taprio_attach(struct Qdisc *sch)
2118{
2119	struct taprio_sched *q = qdisc_priv(sch);
2120	struct net_device *dev = qdisc_dev(sch);
2121	unsigned int ntx;
2122
2123	/* Attach underlying qdisc */
2124	for (ntx = 0; ntx < dev->num_tx_queues; ntx++) {
2125		struct netdev_queue *dev_queue = netdev_get_tx_queue(dev, ntx);
2126		struct Qdisc *old, *dev_queue_qdisc;
2127
2128		if (FULL_OFFLOAD_IS_ENABLED(q->flags)) {
2129			struct Qdisc *qdisc = q->qdiscs[ntx];
2130
2131			/* In offload mode, the root taprio qdisc is bypassed
2132			 * and the netdev TX queues see the children directly
2133			 */
2134			qdisc->flags |= TCQ_F_ONETXQUEUE | TCQ_F_NOPARENT;
2135			dev_queue_qdisc = qdisc;
2136		} else {
2137			/* In software mode, attach the root taprio qdisc
2138			 * to all netdev TX queues, so that dev_qdisc_enqueue()
2139			 * goes through taprio_enqueue().
2140			 */
2141			dev_queue_qdisc = sch;
2142		}
2143		old = dev_graft_qdisc(dev_queue, dev_queue_qdisc);
2144		/* The qdisc's refcount requires to be elevated once
2145		 * for each netdev TX queue it is grafted onto
2146		 */
2147		qdisc_refcount_inc(dev_queue_qdisc);
2148		if (old)
2149			qdisc_put(old);
2150	}
2151}
2152
2153static struct netdev_queue *taprio_queue_get(struct Qdisc *sch,
2154					     unsigned long cl)
2155{
2156	struct net_device *dev = qdisc_dev(sch);
2157	unsigned long ntx = cl - 1;
2158
2159	if (ntx >= dev->num_tx_queues)
2160		return NULL;
2161
2162	return netdev_get_tx_queue(dev, ntx);
2163}
2164
2165static int taprio_graft(struct Qdisc *sch, unsigned long cl,
2166			struct Qdisc *new, struct Qdisc **old,
2167			struct netlink_ext_ack *extack)
2168{
2169	struct taprio_sched *q = qdisc_priv(sch);
2170	struct net_device *dev = qdisc_dev(sch);
2171	struct netdev_queue *dev_queue = taprio_queue_get(sch, cl);
2172
2173	if (!dev_queue)
2174		return -EINVAL;
2175
2176	if (dev->flags & IFF_UP)
2177		dev_deactivate(dev);
2178
2179	/* In offload mode, the child Qdisc is directly attached to the netdev
2180	 * TX queue, and thus, we need to keep its refcount elevated in order
2181	 * to counteract qdisc_graft()'s call to qdisc_put() once per TX queue.
2182	 * However, save the reference to the new qdisc in the private array in
2183	 * both software and offload cases, to have an up-to-date reference to
2184	 * our children.
2185	 */
2186	*old = q->qdiscs[cl - 1];
2187	if (FULL_OFFLOAD_IS_ENABLED(q->flags)) {
2188		WARN_ON_ONCE(dev_graft_qdisc(dev_queue, new) != *old);
2189		if (new)
2190			qdisc_refcount_inc(new);
2191		if (*old)
2192			qdisc_put(*old);
2193	}
2194
2195	q->qdiscs[cl - 1] = new;
2196	if (new)
2197		new->flags |= TCQ_F_ONETXQUEUE | TCQ_F_NOPARENT;
2198
2199	if (dev->flags & IFF_UP)
2200		dev_activate(dev);
2201
2202	return 0;
2203}
2204
2205static int dump_entry(struct sk_buff *msg,
2206		      const struct sched_entry *entry)
2207{
2208	struct nlattr *item;
2209
2210	item = nla_nest_start_noflag(msg, TCA_TAPRIO_SCHED_ENTRY);
2211	if (!item)
2212		return -ENOSPC;
2213
2214	if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_INDEX, entry->index))
2215		goto nla_put_failure;
2216
2217	if (nla_put_u8(msg, TCA_TAPRIO_SCHED_ENTRY_CMD, entry->command))
2218		goto nla_put_failure;
2219
2220	if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_GATE_MASK,
2221			entry->gate_mask))
2222		goto nla_put_failure;
2223
2224	if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_INTERVAL,
2225			entry->interval))
2226		goto nla_put_failure;
2227
2228	return nla_nest_end(msg, item);
2229
2230nla_put_failure:
2231	nla_nest_cancel(msg, item);
2232	return -1;
2233}
2234
2235static int dump_schedule(struct sk_buff *msg,
2236			 const struct sched_gate_list *root)
2237{
2238	struct nlattr *entry_list;
2239	struct sched_entry *entry;
2240
2241	if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_BASE_TIME,
2242			root->base_time, TCA_TAPRIO_PAD))
2243		return -1;
2244
2245	if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME,
2246			root->cycle_time, TCA_TAPRIO_PAD))
2247		return -1;
2248
2249	if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION,
2250			root->cycle_time_extension, TCA_TAPRIO_PAD))
2251		return -1;
2252
2253	entry_list = nla_nest_start_noflag(msg,
2254					   TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST);
2255	if (!entry_list)
2256		goto error_nest;
2257
2258	list_for_each_entry(entry, &root->entries, list) {
2259		if (dump_entry(msg, entry) < 0)
2260			goto error_nest;
2261	}
2262
2263	nla_nest_end(msg, entry_list);
2264	return 0;
2265
2266error_nest:
2267	nla_nest_cancel(msg, entry_list);
2268	return -1;
2269}
2270
2271static int taprio_dump_tc_entries(struct sk_buff *skb,
2272				  struct taprio_sched *q,
2273				  struct sched_gate_list *sched)
2274{
2275	struct nlattr *n;
2276	int tc;
2277
2278	for (tc = 0; tc < TC_MAX_QUEUE; tc++) {
2279		n = nla_nest_start(skb, TCA_TAPRIO_ATTR_TC_ENTRY);
2280		if (!n)
2281			return -EMSGSIZE;
2282
2283		if (nla_put_u32(skb, TCA_TAPRIO_TC_ENTRY_INDEX, tc))
2284			goto nla_put_failure;
2285
2286		if (nla_put_u32(skb, TCA_TAPRIO_TC_ENTRY_MAX_SDU,
2287				sched->max_sdu[tc]))
2288			goto nla_put_failure;
2289
2290		if (nla_put_u32(skb, TCA_TAPRIO_TC_ENTRY_FP, q->fp[tc]))
2291			goto nla_put_failure;
2292
2293		nla_nest_end(skb, n);
2294	}
2295
2296	return 0;
2297
2298nla_put_failure:
2299	nla_nest_cancel(skb, n);
2300	return -EMSGSIZE;
2301}
2302
2303static int taprio_put_stat(struct sk_buff *skb, u64 val, u16 attrtype)
2304{
2305	if (val == TAPRIO_STAT_NOT_SET)
2306		return 0;
2307	if (nla_put_u64_64bit(skb, attrtype, val, TCA_TAPRIO_OFFLOAD_STATS_PAD))
2308		return -EMSGSIZE;
2309	return 0;
2310}
2311
2312static int taprio_dump_xstats(struct Qdisc *sch, struct gnet_dump *d,
2313			      struct tc_taprio_qopt_offload *offload,
2314			      struct tc_taprio_qopt_stats *stats)
2315{
2316	struct net_device *dev = qdisc_dev(sch);
2317	const struct net_device_ops *ops;
2318	struct sk_buff *skb = d->skb;
2319	struct nlattr *xstats;
2320	int err;
2321
2322	ops = qdisc_dev(sch)->netdev_ops;
2323
2324	/* FIXME I could use qdisc_offload_dump_helper(), but that messes
2325	 * with sch->flags depending on whether the device reports taprio
2326	 * stats, and I'm not sure whether that's a good idea, considering
2327	 * that stats are optional to the offload itself
2328	 */
2329	if (!ops->ndo_setup_tc)
2330		return 0;
2331
2332	memset(stats, 0xff, sizeof(*stats));
2333
2334	err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TAPRIO, offload);
2335	if (err == -EOPNOTSUPP)
2336		return 0;
2337	if (err)
2338		return err;
2339
2340	xstats = nla_nest_start(skb, TCA_STATS_APP);
2341	if (!xstats)
2342		goto err;
2343
2344	if (taprio_put_stat(skb, stats->window_drops,
2345			    TCA_TAPRIO_OFFLOAD_STATS_WINDOW_DROPS) ||
2346	    taprio_put_stat(skb, stats->tx_overruns,
2347			    TCA_TAPRIO_OFFLOAD_STATS_TX_OVERRUNS))
2348		goto err_cancel;
2349
2350	nla_nest_end(skb, xstats);
2351
2352	return 0;
2353
2354err_cancel:
2355	nla_nest_cancel(skb, xstats);
2356err:
2357	return -EMSGSIZE;
2358}
2359
2360static int taprio_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
2361{
2362	struct tc_taprio_qopt_offload offload = {
2363		.cmd = TAPRIO_CMD_STATS,
2364	};
2365
2366	return taprio_dump_xstats(sch, d, &offload, &offload.stats);
2367}
2368
2369static int taprio_dump(struct Qdisc *sch, struct sk_buff *skb)
2370{
2371	struct taprio_sched *q = qdisc_priv(sch);
2372	struct net_device *dev = qdisc_dev(sch);
2373	struct sched_gate_list *oper, *admin;
2374	struct tc_mqprio_qopt opt = { 0 };
2375	struct nlattr *nest, *sched_nest;
2376
2377	mqprio_qopt_reconstruct(dev, &opt);
2378
2379	nest = nla_nest_start_noflag(skb, TCA_OPTIONS);
2380	if (!nest)
2381		goto start_error;
2382
2383	if (nla_put(skb, TCA_TAPRIO_ATTR_PRIOMAP, sizeof(opt), &opt))
2384		goto options_error;
2385
2386	if (!FULL_OFFLOAD_IS_ENABLED(q->flags) &&
2387	    nla_put_s32(skb, TCA_TAPRIO_ATTR_SCHED_CLOCKID, q->clockid))
2388		goto options_error;
2389
2390	if (q->flags && nla_put_u32(skb, TCA_TAPRIO_ATTR_FLAGS, q->flags))
2391		goto options_error;
2392
2393	if (q->txtime_delay &&
2394	    nla_put_u32(skb, TCA_TAPRIO_ATTR_TXTIME_DELAY, q->txtime_delay))
2395		goto options_error;
2396
2397	rcu_read_lock();
2398
2399	oper = rtnl_dereference(q->oper_sched);
2400	admin = rtnl_dereference(q->admin_sched);
2401
2402	if (oper && taprio_dump_tc_entries(skb, q, oper))
2403		goto options_error_rcu;
2404
2405	if (oper && dump_schedule(skb, oper))
2406		goto options_error_rcu;
2407
2408	if (!admin)
2409		goto done;
2410
2411	sched_nest = nla_nest_start_noflag(skb, TCA_TAPRIO_ATTR_ADMIN_SCHED);
2412	if (!sched_nest)
2413		goto options_error_rcu;
2414
2415	if (dump_schedule(skb, admin))
2416		goto admin_error;
2417
2418	nla_nest_end(skb, sched_nest);
2419
2420done:
2421	rcu_read_unlock();
2422	return nla_nest_end(skb, nest);
2423
2424admin_error:
2425	nla_nest_cancel(skb, sched_nest);
2426
2427options_error_rcu:
2428	rcu_read_unlock();
2429
2430options_error:
2431	nla_nest_cancel(skb, nest);
2432
2433start_error:
2434	return -ENOSPC;
2435}
2436
2437static struct Qdisc *taprio_leaf(struct Qdisc *sch, unsigned long cl)
2438{
2439	struct taprio_sched *q = qdisc_priv(sch);
2440	struct net_device *dev = qdisc_dev(sch);
2441	unsigned int ntx = cl - 1;
2442
2443	if (ntx >= dev->num_tx_queues)
2444		return NULL;
2445
2446	return q->qdiscs[ntx];
2447}
2448
2449static unsigned long taprio_find(struct Qdisc *sch, u32 classid)
2450{
2451	unsigned int ntx = TC_H_MIN(classid);
2452
2453	if (!taprio_queue_get(sch, ntx))
2454		return 0;
2455	return ntx;
2456}
2457
2458static int taprio_dump_class(struct Qdisc *sch, unsigned long cl,
2459			     struct sk_buff *skb, struct tcmsg *tcm)
2460{
2461	struct Qdisc *child = taprio_leaf(sch, cl);
2462
2463	tcm->tcm_parent = TC_H_ROOT;
2464	tcm->tcm_handle |= TC_H_MIN(cl);
2465	tcm->tcm_info = child->handle;
2466
2467	return 0;
2468}
2469
2470static int taprio_dump_class_stats(struct Qdisc *sch, unsigned long cl,
2471				   struct gnet_dump *d)
2472	__releases(d->lock)
2473	__acquires(d->lock)
2474{
2475	struct Qdisc *child = taprio_leaf(sch, cl);
2476	struct tc_taprio_qopt_offload offload = {
2477		.cmd = TAPRIO_CMD_QUEUE_STATS,
2478		.queue_stats = {
2479			.queue = cl - 1,
2480		},
2481	};
2482
2483	if (gnet_stats_copy_basic(d, NULL, &child->bstats, true) < 0 ||
2484	    qdisc_qstats_copy(d, child) < 0)
2485		return -1;
2486
2487	return taprio_dump_xstats(sch, d, &offload, &offload.queue_stats.stats);
2488}
2489
2490static void taprio_walk(struct Qdisc *sch, struct qdisc_walker *arg)
2491{
2492	struct net_device *dev = qdisc_dev(sch);
2493	unsigned long ntx;
2494
2495	if (arg->stop)
2496		return;
2497
2498	arg->count = arg->skip;
2499	for (ntx = arg->skip; ntx < dev->num_tx_queues; ntx++) {
2500		if (!tc_qdisc_stats_dump(sch, ntx + 1, arg))
2501			break;
2502	}
2503}
2504
2505static struct netdev_queue *taprio_select_queue(struct Qdisc *sch,
2506						struct tcmsg *tcm)
2507{
2508	return taprio_queue_get(sch, TC_H_MIN(tcm->tcm_parent));
2509}
2510
2511static const struct Qdisc_class_ops taprio_class_ops = {
2512	.graft		= taprio_graft,
2513	.leaf		= taprio_leaf,
2514	.find		= taprio_find,
2515	.walk		= taprio_walk,
2516	.dump		= taprio_dump_class,
2517	.dump_stats	= taprio_dump_class_stats,
2518	.select_queue	= taprio_select_queue,
2519};
2520
2521static struct Qdisc_ops taprio_qdisc_ops __read_mostly = {
2522	.cl_ops		= &taprio_class_ops,
2523	.id		= "taprio",
2524	.priv_size	= sizeof(struct taprio_sched),
2525	.init		= taprio_init,
2526	.change		= taprio_change,
2527	.destroy	= taprio_destroy,
2528	.reset		= taprio_reset,
2529	.attach		= taprio_attach,
2530	.peek		= taprio_peek,
2531	.dequeue	= taprio_dequeue,
2532	.enqueue	= taprio_enqueue,
2533	.dump		= taprio_dump,
2534	.dump_stats	= taprio_dump_stats,
2535	.owner		= THIS_MODULE,
2536};
2537MODULE_ALIAS_NET_SCH("taprio");
2538
2539static struct notifier_block taprio_device_notifier = {
2540	.notifier_call = taprio_dev_notifier,
2541};
2542
2543static int __init taprio_module_init(void)
2544{
2545	int err = register_netdevice_notifier(&taprio_device_notifier);
2546
2547	if (err)
2548		return err;
2549
2550	return register_qdisc(&taprio_qdisc_ops);
2551}
2552
2553static void __exit taprio_module_exit(void)
2554{
2555	unregister_qdisc(&taprio_qdisc_ops);
2556	unregister_netdevice_notifier(&taprio_device_notifier);
2557}
2558
2559module_init(taprio_module_init);
2560module_exit(taprio_module_exit);
2561MODULE_LICENSE("GPL");
2562MODULE_DESCRIPTION("Time Aware Priority qdisc");