Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.5.6.
   1// SPDX-License-Identifier: GPL-2.0
   2
   3/* net/sched/sch_taprio.c	 Time Aware Priority Scheduler
   4 *
   5 * Authors:	Vinicius Costa Gomes <vinicius.gomes@intel.com>
   6 *
   7 */
   8
   9#include <linux/ethtool.h>
  10#include <linux/types.h>
  11#include <linux/slab.h>
  12#include <linux/kernel.h>
  13#include <linux/string.h>
  14#include <linux/list.h>
  15#include <linux/errno.h>
  16#include <linux/skbuff.h>
  17#include <linux/math64.h>
  18#include <linux/module.h>
  19#include <linux/spinlock.h>
  20#include <linux/rcupdate.h>
  21#include <net/netlink.h>
  22#include <net/pkt_sched.h>
  23#include <net/pkt_cls.h>
  24#include <net/sch_generic.h>
  25#include <net/sock.h>
  26#include <net/tcp.h>
  27
  28static LIST_HEAD(taprio_list);
  29static DEFINE_SPINLOCK(taprio_list_lock);
  30
  31#define TAPRIO_ALL_GATES_OPEN -1
  32
  33#define TXTIME_ASSIST_IS_ENABLED(flags) ((flags) & TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST)
  34#define FULL_OFFLOAD_IS_ENABLED(flags) ((flags) & TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD)
  35#define TAPRIO_FLAGS_INVALID U32_MAX
  36
  37struct sched_entry {
  38	struct list_head list;
  39
  40	/* The instant that this entry "closes" and the next one
  41	 * should open, the qdisc will make some effort so that no
  42	 * packet leaves after this time.
  43	 */
  44	ktime_t close_time;
  45	ktime_t next_txtime;
  46	atomic_t budget;
  47	int index;
  48	u32 gate_mask;
  49	u32 interval;
  50	u8 command;
  51};
  52
  53struct sched_gate_list {
  54	struct rcu_head rcu;
  55	struct list_head entries;
  56	size_t num_entries;
  57	ktime_t cycle_close_time;
  58	s64 cycle_time;
  59	s64 cycle_time_extension;
  60	s64 base_time;
  61};
  62
  63struct taprio_sched {
  64	struct Qdisc **qdiscs;
  65	struct Qdisc *root;
  66	u32 flags;
  67	enum tk_offsets tk_offset;
  68	int clockid;
  69	atomic64_t picos_per_byte; /* Using picoseconds because for 10Gbps+
  70				    * speeds it's sub-nanoseconds per byte
  71				    */
  72
  73	/* Protects the update side of the RCU protected current_entry */
  74	spinlock_t current_entry_lock;
  75	struct sched_entry __rcu *current_entry;
  76	struct sched_gate_list __rcu *oper_sched;
  77	struct sched_gate_list __rcu *admin_sched;
  78	struct hrtimer advance_timer;
  79	struct list_head taprio_list;
  80	struct sk_buff *(*dequeue)(struct Qdisc *sch);
  81	struct sk_buff *(*peek)(struct Qdisc *sch);
  82	u32 txtime_delay;
  83};
  84
  85struct __tc_taprio_qopt_offload {
  86	refcount_t users;
  87	struct tc_taprio_qopt_offload offload;
  88};
  89
  90static ktime_t sched_base_time(const struct sched_gate_list *sched)
  91{
  92	if (!sched)
  93		return KTIME_MAX;
  94
  95	return ns_to_ktime(sched->base_time);
  96}
  97
  98static ktime_t taprio_get_time(struct taprio_sched *q)
  99{
 100	ktime_t mono = ktime_get();
 101
 102	switch (q->tk_offset) {
 103	case TK_OFFS_MAX:
 104		return mono;
 105	default:
 106		return ktime_mono_to_any(mono, q->tk_offset);
 107	}
 108
 109	return KTIME_MAX;
 110}
 111
 112static void taprio_free_sched_cb(struct rcu_head *head)
 113{
 114	struct sched_gate_list *sched = container_of(head, struct sched_gate_list, rcu);
 115	struct sched_entry *entry, *n;
 116
 117	list_for_each_entry_safe(entry, n, &sched->entries, list) {
 118		list_del(&entry->list);
 119		kfree(entry);
 120	}
 121
 122	kfree(sched);
 123}
 124
 125static void switch_schedules(struct taprio_sched *q,
 126			     struct sched_gate_list **admin,
 127			     struct sched_gate_list **oper)
 128{
 129	rcu_assign_pointer(q->oper_sched, *admin);
 130	rcu_assign_pointer(q->admin_sched, NULL);
 131
 132	if (*oper)
 133		call_rcu(&(*oper)->rcu, taprio_free_sched_cb);
 134
 135	*oper = *admin;
 136	*admin = NULL;
 137}
 138
 139/* Get how much time has been already elapsed in the current cycle. */
 140static s32 get_cycle_time_elapsed(struct sched_gate_list *sched, ktime_t time)
 141{
 142	ktime_t time_since_sched_start;
 143	s32 time_elapsed;
 144
 145	time_since_sched_start = ktime_sub(time, sched->base_time);
 146	div_s64_rem(time_since_sched_start, sched->cycle_time, &time_elapsed);
 147
 148	return time_elapsed;
 149}
 150
 151static ktime_t get_interval_end_time(struct sched_gate_list *sched,
 152				     struct sched_gate_list *admin,
 153				     struct sched_entry *entry,
 154				     ktime_t intv_start)
 155{
 156	s32 cycle_elapsed = get_cycle_time_elapsed(sched, intv_start);
 157	ktime_t intv_end, cycle_ext_end, cycle_end;
 158
 159	cycle_end = ktime_add_ns(intv_start, sched->cycle_time - cycle_elapsed);
 160	intv_end = ktime_add_ns(intv_start, entry->interval);
 161	cycle_ext_end = ktime_add(cycle_end, sched->cycle_time_extension);
 162
 163	if (ktime_before(intv_end, cycle_end))
 164		return intv_end;
 165	else if (admin && admin != sched &&
 166		 ktime_after(admin->base_time, cycle_end) &&
 167		 ktime_before(admin->base_time, cycle_ext_end))
 168		return admin->base_time;
 169	else
 170		return cycle_end;
 171}
 172
 173static int length_to_duration(struct taprio_sched *q, int len)
 174{
 175	return div_u64(len * atomic64_read(&q->picos_per_byte), 1000);
 176}
 177
 178/* Returns the entry corresponding to next available interval. If
 179 * validate_interval is set, it only validates whether the timestamp occurs
 180 * when the gate corresponding to the skb's traffic class is open.
 181 */
 182static struct sched_entry *find_entry_to_transmit(struct sk_buff *skb,
 183						  struct Qdisc *sch,
 184						  struct sched_gate_list *sched,
 185						  struct sched_gate_list *admin,
 186						  ktime_t time,
 187						  ktime_t *interval_start,
 188						  ktime_t *interval_end,
 189						  bool validate_interval)
 190{
 191	ktime_t curr_intv_start, curr_intv_end, cycle_end, packet_transmit_time;
 192	ktime_t earliest_txtime = KTIME_MAX, txtime, cycle, transmit_end_time;
 193	struct sched_entry *entry = NULL, *entry_found = NULL;
 194	struct taprio_sched *q = qdisc_priv(sch);
 195	struct net_device *dev = qdisc_dev(sch);
 196	bool entry_available = false;
 197	s32 cycle_elapsed;
 198	int tc, n;
 199
 200	tc = netdev_get_prio_tc_map(dev, skb->priority);
 201	packet_transmit_time = length_to_duration(q, qdisc_pkt_len(skb));
 202
 203	*interval_start = 0;
 204	*interval_end = 0;
 205
 206	if (!sched)
 207		return NULL;
 208
 209	cycle = sched->cycle_time;
 210	cycle_elapsed = get_cycle_time_elapsed(sched, time);
 211	curr_intv_end = ktime_sub_ns(time, cycle_elapsed);
 212	cycle_end = ktime_add_ns(curr_intv_end, cycle);
 213
 214	list_for_each_entry(entry, &sched->entries, list) {
 215		curr_intv_start = curr_intv_end;
 216		curr_intv_end = get_interval_end_time(sched, admin, entry,
 217						      curr_intv_start);
 218
 219		if (ktime_after(curr_intv_start, cycle_end))
 220			break;
 221
 222		if (!(entry->gate_mask & BIT(tc)) ||
 223		    packet_transmit_time > entry->interval)
 224			continue;
 225
 226		txtime = entry->next_txtime;
 227
 228		if (ktime_before(txtime, time) || validate_interval) {
 229			transmit_end_time = ktime_add_ns(time, packet_transmit_time);
 230			if ((ktime_before(curr_intv_start, time) &&
 231			     ktime_before(transmit_end_time, curr_intv_end)) ||
 232			    (ktime_after(curr_intv_start, time) && !validate_interval)) {
 233				entry_found = entry;
 234				*interval_start = curr_intv_start;
 235				*interval_end = curr_intv_end;
 236				break;
 237			} else if (!entry_available && !validate_interval) {
 238				/* Here, we are just trying to find out the
 239				 * first available interval in the next cycle.
 240				 */
 241				entry_available = true;
 242				entry_found = entry;
 243				*interval_start = ktime_add_ns(curr_intv_start, cycle);
 244				*interval_end = ktime_add_ns(curr_intv_end, cycle);
 245			}
 246		} else if (ktime_before(txtime, earliest_txtime) &&
 247			   !entry_available) {
 248			earliest_txtime = txtime;
 249			entry_found = entry;
 250			n = div_s64(ktime_sub(txtime, curr_intv_start), cycle);
 251			*interval_start = ktime_add(curr_intv_start, n * cycle);
 252			*interval_end = ktime_add(curr_intv_end, n * cycle);
 253		}
 254	}
 255
 256	return entry_found;
 257}
 258
 259static bool is_valid_interval(struct sk_buff *skb, struct Qdisc *sch)
 260{
 261	struct taprio_sched *q = qdisc_priv(sch);
 262	struct sched_gate_list *sched, *admin;
 263	ktime_t interval_start, interval_end;
 264	struct sched_entry *entry;
 265
 266	rcu_read_lock();
 267	sched = rcu_dereference(q->oper_sched);
 268	admin = rcu_dereference(q->admin_sched);
 269
 270	entry = find_entry_to_transmit(skb, sch, sched, admin, skb->tstamp,
 271				       &interval_start, &interval_end, true);
 272	rcu_read_unlock();
 273
 274	return entry;
 275}
 276
 277static bool taprio_flags_valid(u32 flags)
 278{
 279	/* Make sure no other flag bits are set. */
 280	if (flags & ~(TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST |
 281		      TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD))
 282		return false;
 283	/* txtime-assist and full offload are mutually exclusive */
 284	if ((flags & TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST) &&
 285	    (flags & TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD))
 286		return false;
 287	return true;
 288}
 289
 290/* This returns the tstamp value set by TCP in terms of the set clock. */
 291static ktime_t get_tcp_tstamp(struct taprio_sched *q, struct sk_buff *skb)
 292{
 293	unsigned int offset = skb_network_offset(skb);
 294	const struct ipv6hdr *ipv6h;
 295	const struct iphdr *iph;
 296	struct ipv6hdr _ipv6h;
 297
 298	ipv6h = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
 299	if (!ipv6h)
 300		return 0;
 301
 302	if (ipv6h->version == 4) {
 303		iph = (struct iphdr *)ipv6h;
 304		offset += iph->ihl * 4;
 305
 306		/* special-case 6in4 tunnelling, as that is a common way to get
 307		 * v6 connectivity in the home
 308		 */
 309		if (iph->protocol == IPPROTO_IPV6) {
 310			ipv6h = skb_header_pointer(skb, offset,
 311						   sizeof(_ipv6h), &_ipv6h);
 312
 313			if (!ipv6h || ipv6h->nexthdr != IPPROTO_TCP)
 314				return 0;
 315		} else if (iph->protocol != IPPROTO_TCP) {
 316			return 0;
 317		}
 318	} else if (ipv6h->version == 6 && ipv6h->nexthdr != IPPROTO_TCP) {
 319		return 0;
 320	}
 321
 322	return ktime_mono_to_any(skb->skb_mstamp_ns, q->tk_offset);
 323}
 324
 325/* There are a few scenarios where we will have to modify the txtime from
 326 * what is read from next_txtime in sched_entry. They are:
 327 * 1. If txtime is in the past,
 328 *    a. The gate for the traffic class is currently open and packet can be
 329 *       transmitted before it closes, schedule the packet right away.
 330 *    b. If the gate corresponding to the traffic class is going to open later
 331 *       in the cycle, set the txtime of packet to the interval start.
 332 * 2. If txtime is in the future, there are packets corresponding to the
 333 *    current traffic class waiting to be transmitted. So, the following
 334 *    possibilities exist:
 335 *    a. We can transmit the packet before the window containing the txtime
 336 *       closes.
 337 *    b. The window might close before the transmission can be completed
 338 *       successfully. So, schedule the packet in the next open window.
 339 */
 340static long get_packet_txtime(struct sk_buff *skb, struct Qdisc *sch)
 341{
 342	ktime_t transmit_end_time, interval_end, interval_start, tcp_tstamp;
 343	struct taprio_sched *q = qdisc_priv(sch);
 344	struct sched_gate_list *sched, *admin;
 345	ktime_t minimum_time, now, txtime;
 346	int len, packet_transmit_time;
 347	struct sched_entry *entry;
 348	bool sched_changed;
 349
 350	now = taprio_get_time(q);
 351	minimum_time = ktime_add_ns(now, q->txtime_delay);
 352
 353	tcp_tstamp = get_tcp_tstamp(q, skb);
 354	minimum_time = max_t(ktime_t, minimum_time, tcp_tstamp);
 355
 356	rcu_read_lock();
 357	admin = rcu_dereference(q->admin_sched);
 358	sched = rcu_dereference(q->oper_sched);
 359	if (admin && ktime_after(minimum_time, admin->base_time))
 360		switch_schedules(q, &admin, &sched);
 361
 362	/* Until the schedule starts, all the queues are open */
 363	if (!sched || ktime_before(minimum_time, sched->base_time)) {
 364		txtime = minimum_time;
 365		goto done;
 366	}
 367
 368	len = qdisc_pkt_len(skb);
 369	packet_transmit_time = length_to_duration(q, len);
 370
 371	do {
 372		sched_changed = false;
 373
 374		entry = find_entry_to_transmit(skb, sch, sched, admin,
 375					       minimum_time,
 376					       &interval_start, &interval_end,
 377					       false);
 378		if (!entry) {
 379			txtime = 0;
 380			goto done;
 381		}
 382
 383		txtime = entry->next_txtime;
 384		txtime = max_t(ktime_t, txtime, minimum_time);
 385		txtime = max_t(ktime_t, txtime, interval_start);
 386
 387		if (admin && admin != sched &&
 388		    ktime_after(txtime, admin->base_time)) {
 389			sched = admin;
 390			sched_changed = true;
 391			continue;
 392		}
 393
 394		transmit_end_time = ktime_add(txtime, packet_transmit_time);
 395		minimum_time = transmit_end_time;
 396
 397		/* Update the txtime of current entry to the next time it's
 398		 * interval starts.
 399		 */
 400		if (ktime_after(transmit_end_time, interval_end))
 401			entry->next_txtime = ktime_add(interval_start, sched->cycle_time);
 402	} while (sched_changed || ktime_after(transmit_end_time, interval_end));
 403
 404	entry->next_txtime = transmit_end_time;
 405
 406done:
 407	rcu_read_unlock();
 408	return txtime;
 409}
 410
 411static int taprio_enqueue_one(struct sk_buff *skb, struct Qdisc *sch,
 412			      struct Qdisc *child, struct sk_buff **to_free)
 413{
 414	struct taprio_sched *q = qdisc_priv(sch);
 415
 416	if (skb->sk && sock_flag(skb->sk, SOCK_TXTIME)) {
 417		if (!is_valid_interval(skb, sch))
 418			return qdisc_drop(skb, sch, to_free);
 419	} else if (TXTIME_ASSIST_IS_ENABLED(q->flags)) {
 420		skb->tstamp = get_packet_txtime(skb, sch);
 421		if (!skb->tstamp)
 422			return qdisc_drop(skb, sch, to_free);
 423	}
 424
 425	qdisc_qstats_backlog_inc(sch, skb);
 426	sch->q.qlen++;
 427
 428	return qdisc_enqueue(skb, child, to_free);
 429}
 430
 431static int taprio_enqueue(struct sk_buff *skb, struct Qdisc *sch,
 432			  struct sk_buff **to_free)
 433{
 434	struct taprio_sched *q = qdisc_priv(sch);
 435	struct Qdisc *child;
 436	int queue;
 437
 438	if (unlikely(FULL_OFFLOAD_IS_ENABLED(q->flags))) {
 439		WARN_ONCE(1, "Trying to enqueue skb into the root of a taprio qdisc configured with full offload\n");
 440		return qdisc_drop(skb, sch, to_free);
 441	}
 442
 443	queue = skb_get_queue_mapping(skb);
 444
 445	child = q->qdiscs[queue];
 446	if (unlikely(!child))
 447		return qdisc_drop(skb, sch, to_free);
 448
 449	/* Large packets might not be transmitted when the transmission duration
 450	 * exceeds any configured interval. Therefore, segment the skb into
 451	 * smaller chunks. Skip it for the full offload case, as the driver
 452	 * and/or the hardware is expected to handle this.
 453	 */
 454	if (skb_is_gso(skb) && !FULL_OFFLOAD_IS_ENABLED(q->flags)) {
 455		unsigned int slen = 0, numsegs = 0, len = qdisc_pkt_len(skb);
 456		netdev_features_t features = netif_skb_features(skb);
 457		struct sk_buff *segs, *nskb;
 458		int ret;
 459
 460		segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
 461		if (IS_ERR_OR_NULL(segs))
 462			return qdisc_drop(skb, sch, to_free);
 463
 464		skb_list_walk_safe(segs, segs, nskb) {
 465			skb_mark_not_on_list(segs);
 466			qdisc_skb_cb(segs)->pkt_len = segs->len;
 467			slen += segs->len;
 468
 469			ret = taprio_enqueue_one(segs, sch, child, to_free);
 470			if (ret != NET_XMIT_SUCCESS) {
 471				if (net_xmit_drop_count(ret))
 472					qdisc_qstats_drop(sch);
 473			} else {
 474				numsegs++;
 475			}
 476		}
 477
 478		if (numsegs > 1)
 479			qdisc_tree_reduce_backlog(sch, 1 - numsegs, len - slen);
 480		consume_skb(skb);
 481
 482		return numsegs > 0 ? NET_XMIT_SUCCESS : NET_XMIT_DROP;
 483	}
 484
 485	return taprio_enqueue_one(skb, sch, child, to_free);
 486}
 487
 488static struct sk_buff *taprio_peek_soft(struct Qdisc *sch)
 489{
 490	struct taprio_sched *q = qdisc_priv(sch);
 491	struct net_device *dev = qdisc_dev(sch);
 492	struct sched_entry *entry;
 493	struct sk_buff *skb;
 494	u32 gate_mask;
 495	int i;
 496
 497	rcu_read_lock();
 498	entry = rcu_dereference(q->current_entry);
 499	gate_mask = entry ? entry->gate_mask : TAPRIO_ALL_GATES_OPEN;
 500	rcu_read_unlock();
 501
 502	if (!gate_mask)
 503		return NULL;
 504
 505	for (i = 0; i < dev->num_tx_queues; i++) {
 506		struct Qdisc *child = q->qdiscs[i];
 507		int prio;
 508		u8 tc;
 509
 510		if (unlikely(!child))
 511			continue;
 512
 513		skb = child->ops->peek(child);
 514		if (!skb)
 515			continue;
 516
 517		if (TXTIME_ASSIST_IS_ENABLED(q->flags))
 518			return skb;
 519
 520		prio = skb->priority;
 521		tc = netdev_get_prio_tc_map(dev, prio);
 522
 523		if (!(gate_mask & BIT(tc)))
 524			continue;
 525
 526		return skb;
 527	}
 528
 529	return NULL;
 530}
 531
 532static struct sk_buff *taprio_peek_offload(struct Qdisc *sch)
 533{
 534	WARN_ONCE(1, "Trying to peek into the root of a taprio qdisc configured with full offload\n");
 535
 536	return NULL;
 537}
 538
 539static struct sk_buff *taprio_peek(struct Qdisc *sch)
 540{
 541	struct taprio_sched *q = qdisc_priv(sch);
 542
 543	return q->peek(sch);
 544}
 545
 546static void taprio_set_budget(struct taprio_sched *q, struct sched_entry *entry)
 547{
 548	atomic_set(&entry->budget,
 549		   div64_u64((u64)entry->interval * 1000,
 550			     atomic64_read(&q->picos_per_byte)));
 551}
 552
 553static struct sk_buff *taprio_dequeue_soft(struct Qdisc *sch)
 554{
 555	struct taprio_sched *q = qdisc_priv(sch);
 556	struct net_device *dev = qdisc_dev(sch);
 557	struct sk_buff *skb = NULL;
 558	struct sched_entry *entry;
 559	u32 gate_mask;
 560	int i;
 561
 562	rcu_read_lock();
 563	entry = rcu_dereference(q->current_entry);
 564	/* if there's no entry, it means that the schedule didn't
 565	 * start yet, so force all gates to be open, this is in
 566	 * accordance to IEEE 802.1Qbv-2015 Section 8.6.9.4.5
 567	 * "AdminGateStates"
 568	 */
 569	gate_mask = entry ? entry->gate_mask : TAPRIO_ALL_GATES_OPEN;
 570
 571	if (!gate_mask)
 572		goto done;
 573
 574	for (i = 0; i < dev->num_tx_queues; i++) {
 575		struct Qdisc *child = q->qdiscs[i];
 576		ktime_t guard;
 577		int prio;
 578		int len;
 579		u8 tc;
 580
 581		if (unlikely(!child))
 582			continue;
 583
 584		if (TXTIME_ASSIST_IS_ENABLED(q->flags)) {
 585			skb = child->ops->dequeue(child);
 586			if (!skb)
 587				continue;
 588			goto skb_found;
 589		}
 590
 591		skb = child->ops->peek(child);
 592		if (!skb)
 593			continue;
 594
 595		prio = skb->priority;
 596		tc = netdev_get_prio_tc_map(dev, prio);
 597
 598		if (!(gate_mask & BIT(tc))) {
 599			skb = NULL;
 600			continue;
 601		}
 602
 603		len = qdisc_pkt_len(skb);
 604		guard = ktime_add_ns(taprio_get_time(q),
 605				     length_to_duration(q, len));
 606
 607		/* In the case that there's no gate entry, there's no
 608		 * guard band ...
 609		 */
 610		if (gate_mask != TAPRIO_ALL_GATES_OPEN &&
 611		    ktime_after(guard, entry->close_time)) {
 612			skb = NULL;
 613			continue;
 614		}
 615
 616		/* ... and no budget. */
 617		if (gate_mask != TAPRIO_ALL_GATES_OPEN &&
 618		    atomic_sub_return(len, &entry->budget) < 0) {
 619			skb = NULL;
 620			continue;
 621		}
 622
 623		skb = child->ops->dequeue(child);
 624		if (unlikely(!skb))
 625			goto done;
 626
 627skb_found:
 628		qdisc_bstats_update(sch, skb);
 629		qdisc_qstats_backlog_dec(sch, skb);
 630		sch->q.qlen--;
 631
 632		goto done;
 633	}
 634
 635done:
 636	rcu_read_unlock();
 637
 638	return skb;
 639}
 640
 641static struct sk_buff *taprio_dequeue_offload(struct Qdisc *sch)
 642{
 643	WARN_ONCE(1, "Trying to dequeue from the root of a taprio qdisc configured with full offload\n");
 644
 645	return NULL;
 646}
 647
 648static struct sk_buff *taprio_dequeue(struct Qdisc *sch)
 649{
 650	struct taprio_sched *q = qdisc_priv(sch);
 651
 652	return q->dequeue(sch);
 653}
 654
 655static bool should_restart_cycle(const struct sched_gate_list *oper,
 656				 const struct sched_entry *entry)
 657{
 658	if (list_is_last(&entry->list, &oper->entries))
 659		return true;
 660
 661	if (ktime_compare(entry->close_time, oper->cycle_close_time) == 0)
 662		return true;
 663
 664	return false;
 665}
 666
 667static bool should_change_schedules(const struct sched_gate_list *admin,
 668				    const struct sched_gate_list *oper,
 669				    ktime_t close_time)
 670{
 671	ktime_t next_base_time, extension_time;
 672
 673	if (!admin)
 674		return false;
 675
 676	next_base_time = sched_base_time(admin);
 677
 678	/* This is the simple case, the close_time would fall after
 679	 * the next schedule base_time.
 680	 */
 681	if (ktime_compare(next_base_time, close_time) <= 0)
 682		return true;
 683
 684	/* This is the cycle_time_extension case, if the close_time
 685	 * plus the amount that can be extended would fall after the
 686	 * next schedule base_time, we can extend the current schedule
 687	 * for that amount.
 688	 */
 689	extension_time = ktime_add_ns(close_time, oper->cycle_time_extension);
 690
 691	/* FIXME: the IEEE 802.1Q-2018 Specification isn't clear about
 692	 * how precisely the extension should be made. So after
 693	 * conformance testing, this logic may change.
 694	 */
 695	if (ktime_compare(next_base_time, extension_time) <= 0)
 696		return true;
 697
 698	return false;
 699}
 700
 701static enum hrtimer_restart advance_sched(struct hrtimer *timer)
 702{
 703	struct taprio_sched *q = container_of(timer, struct taprio_sched,
 704					      advance_timer);
 705	struct sched_gate_list *oper, *admin;
 706	struct sched_entry *entry, *next;
 707	struct Qdisc *sch = q->root;
 708	ktime_t close_time;
 709
 710	spin_lock(&q->current_entry_lock);
 711	entry = rcu_dereference_protected(q->current_entry,
 712					  lockdep_is_held(&q->current_entry_lock));
 713	oper = rcu_dereference_protected(q->oper_sched,
 714					 lockdep_is_held(&q->current_entry_lock));
 715	admin = rcu_dereference_protected(q->admin_sched,
 716					  lockdep_is_held(&q->current_entry_lock));
 717
 718	if (!oper)
 719		switch_schedules(q, &admin, &oper);
 720
 721	/* This can happen in two cases: 1. this is the very first run
 722	 * of this function (i.e. we weren't running any schedule
 723	 * previously); 2. The previous schedule just ended. The first
 724	 * entry of all schedules are pre-calculated during the
 725	 * schedule initialization.
 726	 */
 727	if (unlikely(!entry || entry->close_time == oper->base_time)) {
 728		next = list_first_entry(&oper->entries, struct sched_entry,
 729					list);
 730		close_time = next->close_time;
 731		goto first_run;
 732	}
 733
 734	if (should_restart_cycle(oper, entry)) {
 735		next = list_first_entry(&oper->entries, struct sched_entry,
 736					list);
 737		oper->cycle_close_time = ktime_add_ns(oper->cycle_close_time,
 738						      oper->cycle_time);
 739	} else {
 740		next = list_next_entry(entry, list);
 741	}
 742
 743	close_time = ktime_add_ns(entry->close_time, next->interval);
 744	close_time = min_t(ktime_t, close_time, oper->cycle_close_time);
 745
 746	if (should_change_schedules(admin, oper, close_time)) {
 747		/* Set things so the next time this runs, the new
 748		 * schedule runs.
 749		 */
 750		close_time = sched_base_time(admin);
 751		switch_schedules(q, &admin, &oper);
 752	}
 753
 754	next->close_time = close_time;
 755	taprio_set_budget(q, next);
 756
 757first_run:
 758	rcu_assign_pointer(q->current_entry, next);
 759	spin_unlock(&q->current_entry_lock);
 760
 761	hrtimer_set_expires(&q->advance_timer, close_time);
 762
 763	rcu_read_lock();
 764	__netif_schedule(sch);
 765	rcu_read_unlock();
 766
 767	return HRTIMER_RESTART;
 768}
 769
 770static const struct nla_policy entry_policy[TCA_TAPRIO_SCHED_ENTRY_MAX + 1] = {
 771	[TCA_TAPRIO_SCHED_ENTRY_INDEX]	   = { .type = NLA_U32 },
 772	[TCA_TAPRIO_SCHED_ENTRY_CMD]	   = { .type = NLA_U8 },
 773	[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK] = { .type = NLA_U32 },
 774	[TCA_TAPRIO_SCHED_ENTRY_INTERVAL]  = { .type = NLA_U32 },
 775};
 776
 777static const struct nla_policy taprio_policy[TCA_TAPRIO_ATTR_MAX + 1] = {
 778	[TCA_TAPRIO_ATTR_PRIOMAP]	       = {
 779		.len = sizeof(struct tc_mqprio_qopt)
 780	},
 781	[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST]           = { .type = NLA_NESTED },
 782	[TCA_TAPRIO_ATTR_SCHED_BASE_TIME]            = { .type = NLA_S64 },
 783	[TCA_TAPRIO_ATTR_SCHED_SINGLE_ENTRY]         = { .type = NLA_NESTED },
 784	[TCA_TAPRIO_ATTR_SCHED_CLOCKID]              = { .type = NLA_S32 },
 785	[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME]           = { .type = NLA_S64 },
 786	[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION] = { .type = NLA_S64 },
 787	[TCA_TAPRIO_ATTR_FLAGS]                      = { .type = NLA_U32 },
 788	[TCA_TAPRIO_ATTR_TXTIME_DELAY]		     = { .type = NLA_U32 },
 789};
 790
 791static int fill_sched_entry(struct taprio_sched *q, struct nlattr **tb,
 792			    struct sched_entry *entry,
 793			    struct netlink_ext_ack *extack)
 794{
 795	int min_duration = length_to_duration(q, ETH_ZLEN);
 796	u32 interval = 0;
 797
 798	if (tb[TCA_TAPRIO_SCHED_ENTRY_CMD])
 799		entry->command = nla_get_u8(
 800			tb[TCA_TAPRIO_SCHED_ENTRY_CMD]);
 801
 802	if (tb[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK])
 803		entry->gate_mask = nla_get_u32(
 804			tb[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK]);
 805
 806	if (tb[TCA_TAPRIO_SCHED_ENTRY_INTERVAL])
 807		interval = nla_get_u32(
 808			tb[TCA_TAPRIO_SCHED_ENTRY_INTERVAL]);
 809
 810	/* The interval should allow at least the minimum ethernet
 811	 * frame to go out.
 812	 */
 813	if (interval < min_duration) {
 814		NL_SET_ERR_MSG(extack, "Invalid interval for schedule entry");
 815		return -EINVAL;
 816	}
 817
 818	entry->interval = interval;
 819
 820	return 0;
 821}
 822
 823static int parse_sched_entry(struct taprio_sched *q, struct nlattr *n,
 824			     struct sched_entry *entry, int index,
 825			     struct netlink_ext_ack *extack)
 826{
 827	struct nlattr *tb[TCA_TAPRIO_SCHED_ENTRY_MAX + 1] = { };
 828	int err;
 829
 830	err = nla_parse_nested_deprecated(tb, TCA_TAPRIO_SCHED_ENTRY_MAX, n,
 831					  entry_policy, NULL);
 832	if (err < 0) {
 833		NL_SET_ERR_MSG(extack, "Could not parse nested entry");
 834		return -EINVAL;
 835	}
 836
 837	entry->index = index;
 838
 839	return fill_sched_entry(q, tb, entry, extack);
 840}
 841
 842static int parse_sched_list(struct taprio_sched *q, struct nlattr *list,
 843			    struct sched_gate_list *sched,
 844			    struct netlink_ext_ack *extack)
 845{
 846	struct nlattr *n;
 847	int err, rem;
 848	int i = 0;
 849
 850	if (!list)
 851		return -EINVAL;
 852
 853	nla_for_each_nested(n, list, rem) {
 854		struct sched_entry *entry;
 855
 856		if (nla_type(n) != TCA_TAPRIO_SCHED_ENTRY) {
 857			NL_SET_ERR_MSG(extack, "Attribute is not of type 'entry'");
 858			continue;
 859		}
 860
 861		entry = kzalloc(sizeof(*entry), GFP_KERNEL);
 862		if (!entry) {
 863			NL_SET_ERR_MSG(extack, "Not enough memory for entry");
 864			return -ENOMEM;
 865		}
 866
 867		err = parse_sched_entry(q, n, entry, i, extack);
 868		if (err < 0) {
 869			kfree(entry);
 870			return err;
 871		}
 872
 873		list_add_tail(&entry->list, &sched->entries);
 874		i++;
 875	}
 876
 877	sched->num_entries = i;
 878
 879	return i;
 880}
 881
 882static int parse_taprio_schedule(struct taprio_sched *q, struct nlattr **tb,
 883				 struct sched_gate_list *new,
 884				 struct netlink_ext_ack *extack)
 885{
 886	int err = 0;
 887
 888	if (tb[TCA_TAPRIO_ATTR_SCHED_SINGLE_ENTRY]) {
 889		NL_SET_ERR_MSG(extack, "Adding a single entry is not supported");
 890		return -ENOTSUPP;
 891	}
 892
 893	if (tb[TCA_TAPRIO_ATTR_SCHED_BASE_TIME])
 894		new->base_time = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_BASE_TIME]);
 895
 896	if (tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION])
 897		new->cycle_time_extension = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION]);
 898
 899	if (tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME])
 900		new->cycle_time = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME]);
 901
 902	if (tb[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST])
 903		err = parse_sched_list(q, tb[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST],
 904				       new, extack);
 905	if (err < 0)
 906		return err;
 907
 908	if (!new->cycle_time) {
 909		struct sched_entry *entry;
 910		ktime_t cycle = 0;
 911
 912		list_for_each_entry(entry, &new->entries, list)
 913			cycle = ktime_add_ns(cycle, entry->interval);
 914
 915		if (!cycle) {
 916			NL_SET_ERR_MSG(extack, "'cycle_time' can never be 0");
 917			return -EINVAL;
 918		}
 919
 920		new->cycle_time = cycle;
 921	}
 922
 923	return 0;
 924}
 925
 926static int taprio_parse_mqprio_opt(struct net_device *dev,
 927				   struct tc_mqprio_qopt *qopt,
 928				   struct netlink_ext_ack *extack,
 929				   u32 taprio_flags)
 930{
 931	int i, j;
 932
 933	if (!qopt && !dev->num_tc) {
 934		NL_SET_ERR_MSG(extack, "'mqprio' configuration is necessary");
 935		return -EINVAL;
 936	}
 937
 938	/* If num_tc is already set, it means that the user already
 939	 * configured the mqprio part
 940	 */
 941	if (dev->num_tc)
 942		return 0;
 943
 944	/* Verify num_tc is not out of max range */
 945	if (qopt->num_tc > TC_MAX_QUEUE) {
 946		NL_SET_ERR_MSG(extack, "Number of traffic classes is outside valid range");
 947		return -EINVAL;
 948	}
 949
 950	/* taprio imposes that traffic classes map 1:n to tx queues */
 951	if (qopt->num_tc > dev->num_tx_queues) {
 952		NL_SET_ERR_MSG(extack, "Number of traffic classes is greater than number of HW queues");
 953		return -EINVAL;
 954	}
 955
 956	/* Verify priority mapping uses valid tcs */
 957	for (i = 0; i <= TC_BITMASK; i++) {
 958		if (qopt->prio_tc_map[i] >= qopt->num_tc) {
 959			NL_SET_ERR_MSG(extack, "Invalid traffic class in priority to traffic class mapping");
 960			return -EINVAL;
 961		}
 962	}
 963
 964	for (i = 0; i < qopt->num_tc; i++) {
 965		unsigned int last = qopt->offset[i] + qopt->count[i];
 966
 967		/* Verify the queue count is in tx range being equal to the
 968		 * real_num_tx_queues indicates the last queue is in use.
 969		 */
 970		if (qopt->offset[i] >= dev->num_tx_queues ||
 971		    !qopt->count[i] ||
 972		    last > dev->real_num_tx_queues) {
 973			NL_SET_ERR_MSG(extack, "Invalid queue in traffic class to queue mapping");
 974			return -EINVAL;
 975		}
 976
 977		if (TXTIME_ASSIST_IS_ENABLED(taprio_flags))
 978			continue;
 979
 980		/* Verify that the offset and counts do not overlap */
 981		for (j = i + 1; j < qopt->num_tc; j++) {
 982			if (last > qopt->offset[j]) {
 983				NL_SET_ERR_MSG(extack, "Detected overlap in the traffic class to queue mapping");
 984				return -EINVAL;
 985			}
 986		}
 987	}
 988
 989	return 0;
 990}
 991
 992static int taprio_get_start_time(struct Qdisc *sch,
 993				 struct sched_gate_list *sched,
 994				 ktime_t *start)
 995{
 996	struct taprio_sched *q = qdisc_priv(sch);
 997	ktime_t now, base, cycle;
 998	s64 n;
 999
1000	base = sched_base_time(sched);
1001	now = taprio_get_time(q);
1002
1003	if (ktime_after(base, now)) {
1004		*start = base;
1005		return 0;
1006	}
1007
1008	cycle = sched->cycle_time;
1009
1010	/* The qdisc is expected to have at least one sched_entry.  Moreover,
1011	 * any entry must have 'interval' > 0. Thus if the cycle time is zero,
1012	 * something went really wrong. In that case, we should warn about this
1013	 * inconsistent state and return error.
1014	 */
1015	if (WARN_ON(!cycle))
1016		return -EFAULT;
1017
1018	/* Schedule the start time for the beginning of the next
1019	 * cycle.
1020	 */
1021	n = div64_s64(ktime_sub_ns(now, base), cycle);
1022	*start = ktime_add_ns(base, (n + 1) * cycle);
1023	return 0;
1024}
1025
1026static void setup_first_close_time(struct taprio_sched *q,
1027				   struct sched_gate_list *sched, ktime_t base)
1028{
1029	struct sched_entry *first;
1030	ktime_t cycle;
1031
1032	first = list_first_entry(&sched->entries,
1033				 struct sched_entry, list);
1034
1035	cycle = sched->cycle_time;
1036
1037	/* FIXME: find a better place to do this */
1038	sched->cycle_close_time = ktime_add_ns(base, cycle);
1039
1040	first->close_time = ktime_add_ns(base, first->interval);
1041	taprio_set_budget(q, first);
1042	rcu_assign_pointer(q->current_entry, NULL);
1043}
1044
1045static void taprio_start_sched(struct Qdisc *sch,
1046			       ktime_t start, struct sched_gate_list *new)
1047{
1048	struct taprio_sched *q = qdisc_priv(sch);
1049	ktime_t expires;
1050
1051	if (FULL_OFFLOAD_IS_ENABLED(q->flags))
1052		return;
1053
1054	expires = hrtimer_get_expires(&q->advance_timer);
1055	if (expires == 0)
1056		expires = KTIME_MAX;
1057
1058	/* If the new schedule starts before the next expiration, we
1059	 * reprogram it to the earliest one, so we change the admin
1060	 * schedule to the operational one at the right time.
1061	 */
1062	start = min_t(ktime_t, start, expires);
1063
1064	hrtimer_start(&q->advance_timer, start, HRTIMER_MODE_ABS);
1065}
1066
1067static void taprio_set_picos_per_byte(struct net_device *dev,
1068				      struct taprio_sched *q)
1069{
1070	struct ethtool_link_ksettings ecmd;
1071	int speed = SPEED_10;
1072	int picos_per_byte;
1073	int err;
1074
1075	err = __ethtool_get_link_ksettings(dev, &ecmd);
1076	if (err < 0)
1077		goto skip;
1078
1079	if (ecmd.base.speed && ecmd.base.speed != SPEED_UNKNOWN)
1080		speed = ecmd.base.speed;
1081
1082skip:
1083	picos_per_byte = (USEC_PER_SEC * 8) / speed;
1084
1085	atomic64_set(&q->picos_per_byte, picos_per_byte);
1086	netdev_dbg(dev, "taprio: set %s's picos_per_byte to: %lld, linkspeed: %d\n",
1087		   dev->name, (long long)atomic64_read(&q->picos_per_byte),
1088		   ecmd.base.speed);
1089}
1090
1091static int taprio_dev_notifier(struct notifier_block *nb, unsigned long event,
1092			       void *ptr)
1093{
1094	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1095	struct net_device *qdev;
1096	struct taprio_sched *q;
1097	bool found = false;
1098
1099	ASSERT_RTNL();
1100
1101	if (event != NETDEV_UP && event != NETDEV_CHANGE)
1102		return NOTIFY_DONE;
1103
1104	spin_lock(&taprio_list_lock);
1105	list_for_each_entry(q, &taprio_list, taprio_list) {
1106		qdev = qdisc_dev(q->root);
1107		if (qdev == dev) {
1108			found = true;
1109			break;
1110		}
1111	}
1112	spin_unlock(&taprio_list_lock);
1113
1114	if (found)
1115		taprio_set_picos_per_byte(dev, q);
1116
1117	return NOTIFY_DONE;
1118}
1119
1120static void setup_txtime(struct taprio_sched *q,
1121			 struct sched_gate_list *sched, ktime_t base)
1122{
1123	struct sched_entry *entry;
1124	u32 interval = 0;
1125
1126	list_for_each_entry(entry, &sched->entries, list) {
1127		entry->next_txtime = ktime_add_ns(base, interval);
1128		interval += entry->interval;
1129	}
1130}
1131
1132static struct tc_taprio_qopt_offload *taprio_offload_alloc(int num_entries)
1133{
1134	struct __tc_taprio_qopt_offload *__offload;
1135
1136	__offload = kzalloc(struct_size(__offload, offload.entries, num_entries),
1137			    GFP_KERNEL);
1138	if (!__offload)
1139		return NULL;
1140
1141	refcount_set(&__offload->users, 1);
1142
1143	return &__offload->offload;
1144}
1145
1146struct tc_taprio_qopt_offload *taprio_offload_get(struct tc_taprio_qopt_offload
1147						  *offload)
1148{
1149	struct __tc_taprio_qopt_offload *__offload;
1150
1151	__offload = container_of(offload, struct __tc_taprio_qopt_offload,
1152				 offload);
1153
1154	refcount_inc(&__offload->users);
1155
1156	return offload;
1157}
1158EXPORT_SYMBOL_GPL(taprio_offload_get);
1159
1160void taprio_offload_free(struct tc_taprio_qopt_offload *offload)
1161{
1162	struct __tc_taprio_qopt_offload *__offload;
1163
1164	__offload = container_of(offload, struct __tc_taprio_qopt_offload,
1165				 offload);
1166
1167	if (!refcount_dec_and_test(&__offload->users))
1168		return;
1169
1170	kfree(__offload);
1171}
1172EXPORT_SYMBOL_GPL(taprio_offload_free);
1173
1174/* The function will only serve to keep the pointers to the "oper" and "admin"
1175 * schedules valid in relation to their base times, so when calling dump() the
1176 * users looks at the right schedules.
1177 * When using full offload, the admin configuration is promoted to oper at the
1178 * base_time in the PHC time domain.  But because the system time is not
1179 * necessarily in sync with that, we can't just trigger a hrtimer to call
1180 * switch_schedules at the right hardware time.
1181 * At the moment we call this by hand right away from taprio, but in the future
1182 * it will be useful to create a mechanism for drivers to notify taprio of the
1183 * offload state (PENDING, ACTIVE, INACTIVE) so it can be visible in dump().
1184 * This is left as TODO.
1185 */
1186static void taprio_offload_config_changed(struct taprio_sched *q)
1187{
1188	struct sched_gate_list *oper, *admin;
1189
1190	spin_lock(&q->current_entry_lock);
1191
1192	oper = rcu_dereference_protected(q->oper_sched,
1193					 lockdep_is_held(&q->current_entry_lock));
1194	admin = rcu_dereference_protected(q->admin_sched,
1195					  lockdep_is_held(&q->current_entry_lock));
1196
1197	switch_schedules(q, &admin, &oper);
1198
1199	spin_unlock(&q->current_entry_lock);
1200}
1201
1202static u32 tc_map_to_queue_mask(struct net_device *dev, u32 tc_mask)
1203{
1204	u32 i, queue_mask = 0;
1205
1206	for (i = 0; i < dev->num_tc; i++) {
1207		u32 offset, count;
1208
1209		if (!(tc_mask & BIT(i)))
1210			continue;
1211
1212		offset = dev->tc_to_txq[i].offset;
1213		count = dev->tc_to_txq[i].count;
1214
1215		queue_mask |= GENMASK(offset + count - 1, offset);
1216	}
1217
1218	return queue_mask;
1219}
1220
1221static void taprio_sched_to_offload(struct net_device *dev,
1222				    struct sched_gate_list *sched,
1223				    struct tc_taprio_qopt_offload *offload)
1224{
1225	struct sched_entry *entry;
1226	int i = 0;
1227
1228	offload->base_time = sched->base_time;
1229	offload->cycle_time = sched->cycle_time;
1230	offload->cycle_time_extension = sched->cycle_time_extension;
1231
1232	list_for_each_entry(entry, &sched->entries, list) {
1233		struct tc_taprio_sched_entry *e = &offload->entries[i];
1234
1235		e->command = entry->command;
1236		e->interval = entry->interval;
1237		e->gate_mask = tc_map_to_queue_mask(dev, entry->gate_mask);
1238
1239		i++;
1240	}
1241
1242	offload->num_entries = i;
1243}
1244
1245static int taprio_enable_offload(struct net_device *dev,
1246				 struct taprio_sched *q,
1247				 struct sched_gate_list *sched,
1248				 struct netlink_ext_ack *extack)
1249{
1250	const struct net_device_ops *ops = dev->netdev_ops;
1251	struct tc_taprio_qopt_offload *offload;
1252	int err = 0;
1253
1254	if (!ops->ndo_setup_tc) {
1255		NL_SET_ERR_MSG(extack,
1256			       "Device does not support taprio offload");
1257		return -EOPNOTSUPP;
1258	}
1259
1260	offload = taprio_offload_alloc(sched->num_entries);
1261	if (!offload) {
1262		NL_SET_ERR_MSG(extack,
1263			       "Not enough memory for enabling offload mode");
1264		return -ENOMEM;
1265	}
1266	offload->enable = 1;
1267	taprio_sched_to_offload(dev, sched, offload);
1268
1269	err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TAPRIO, offload);
1270	if (err < 0) {
1271		NL_SET_ERR_MSG(extack,
1272			       "Device failed to setup taprio offload");
1273		goto done;
1274	}
1275
1276done:
1277	taprio_offload_free(offload);
1278
1279	return err;
1280}
1281
1282static int taprio_disable_offload(struct net_device *dev,
1283				  struct taprio_sched *q,
1284				  struct netlink_ext_ack *extack)
1285{
1286	const struct net_device_ops *ops = dev->netdev_ops;
1287	struct tc_taprio_qopt_offload *offload;
1288	int err;
1289
1290	if (!FULL_OFFLOAD_IS_ENABLED(q->flags))
1291		return 0;
1292
1293	if (!ops->ndo_setup_tc)
1294		return -EOPNOTSUPP;
1295
1296	offload = taprio_offload_alloc(0);
1297	if (!offload) {
1298		NL_SET_ERR_MSG(extack,
1299			       "Not enough memory to disable offload mode");
1300		return -ENOMEM;
1301	}
1302	offload->enable = 0;
1303
1304	err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TAPRIO, offload);
1305	if (err < 0) {
1306		NL_SET_ERR_MSG(extack,
1307			       "Device failed to disable offload");
1308		goto out;
1309	}
1310
1311out:
1312	taprio_offload_free(offload);
1313
1314	return err;
1315}
1316
1317/* If full offload is enabled, the only possible clockid is the net device's
1318 * PHC. For that reason, specifying a clockid through netlink is incorrect.
1319 * For txtime-assist, it is implicitly assumed that the device's PHC is kept
1320 * in sync with the specified clockid via a user space daemon such as phc2sys.
1321 * For both software taprio and txtime-assist, the clockid is used for the
1322 * hrtimer that advances the schedule and hence mandatory.
1323 */
1324static int taprio_parse_clockid(struct Qdisc *sch, struct nlattr **tb,
1325				struct netlink_ext_ack *extack)
1326{
1327	struct taprio_sched *q = qdisc_priv(sch);
1328	struct net_device *dev = qdisc_dev(sch);
1329	int err = -EINVAL;
1330
1331	if (FULL_OFFLOAD_IS_ENABLED(q->flags)) {
1332		const struct ethtool_ops *ops = dev->ethtool_ops;
1333		struct ethtool_ts_info info = {
1334			.cmd = ETHTOOL_GET_TS_INFO,
1335			.phc_index = -1,
1336		};
1337
1338		if (tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]) {
1339			NL_SET_ERR_MSG(extack,
1340				       "The 'clockid' cannot be specified for full offload");
1341			goto out;
1342		}
1343
1344		if (ops && ops->get_ts_info)
1345			err = ops->get_ts_info(dev, &info);
1346
1347		if (err || info.phc_index < 0) {
1348			NL_SET_ERR_MSG(extack,
1349				       "Device does not have a PTP clock");
1350			err = -ENOTSUPP;
1351			goto out;
1352		}
1353	} else if (tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]) {
1354		int clockid = nla_get_s32(tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]);
1355
1356		/* We only support static clockids and we don't allow
1357		 * for it to be modified after the first init.
1358		 */
1359		if (clockid < 0 ||
1360		    (q->clockid != -1 && q->clockid != clockid)) {
1361			NL_SET_ERR_MSG(extack,
1362				       "Changing the 'clockid' of a running schedule is not supported");
1363			err = -ENOTSUPP;
1364			goto out;
1365		}
1366
1367		switch (clockid) {
1368		case CLOCK_REALTIME:
1369			q->tk_offset = TK_OFFS_REAL;
1370			break;
1371		case CLOCK_MONOTONIC:
1372			q->tk_offset = TK_OFFS_MAX;
1373			break;
1374		case CLOCK_BOOTTIME:
1375			q->tk_offset = TK_OFFS_BOOT;
1376			break;
1377		case CLOCK_TAI:
1378			q->tk_offset = TK_OFFS_TAI;
1379			break;
1380		default:
1381			NL_SET_ERR_MSG(extack, "Invalid 'clockid'");
1382			err = -EINVAL;
1383			goto out;
1384		}
1385
1386		q->clockid = clockid;
1387	} else {
1388		NL_SET_ERR_MSG(extack, "Specifying a 'clockid' is mandatory");
1389		goto out;
1390	}
1391
1392	/* Everything went ok, return success. */
1393	err = 0;
1394
1395out:
1396	return err;
1397}
1398
1399static int taprio_mqprio_cmp(const struct net_device *dev,
1400			     const struct tc_mqprio_qopt *mqprio)
1401{
1402	int i;
1403
1404	if (!mqprio || mqprio->num_tc != dev->num_tc)
1405		return -1;
1406
1407	for (i = 0; i < mqprio->num_tc; i++)
1408		if (dev->tc_to_txq[i].count != mqprio->count[i] ||
1409		    dev->tc_to_txq[i].offset != mqprio->offset[i])
1410			return -1;
1411
1412	for (i = 0; i <= TC_BITMASK; i++)
1413		if (dev->prio_tc_map[i] != mqprio->prio_tc_map[i])
1414			return -1;
1415
1416	return 0;
1417}
1418
1419/* The semantics of the 'flags' argument in relation to 'change()'
1420 * requests, are interpreted following two rules (which are applied in
1421 * this order): (1) an omitted 'flags' argument is interpreted as
1422 * zero; (2) the 'flags' of a "running" taprio instance cannot be
1423 * changed.
1424 */
1425static int taprio_new_flags(const struct nlattr *attr, u32 old,
1426			    struct netlink_ext_ack *extack)
1427{
1428	u32 new = 0;
1429
1430	if (attr)
1431		new = nla_get_u32(attr);
1432
1433	if (old != TAPRIO_FLAGS_INVALID && old != new) {
1434		NL_SET_ERR_MSG_MOD(extack, "Changing 'flags' of a running schedule is not supported");
1435		return -EOPNOTSUPP;
1436	}
1437
1438	if (!taprio_flags_valid(new)) {
1439		NL_SET_ERR_MSG_MOD(extack, "Specified 'flags' are not valid");
1440		return -EINVAL;
1441	}
1442
1443	return new;
1444}
1445
1446static int taprio_change(struct Qdisc *sch, struct nlattr *opt,
1447			 struct netlink_ext_ack *extack)
1448{
1449	struct nlattr *tb[TCA_TAPRIO_ATTR_MAX + 1] = { };
1450	struct sched_gate_list *oper, *admin, *new_admin;
1451	struct taprio_sched *q = qdisc_priv(sch);
1452	struct net_device *dev = qdisc_dev(sch);
1453	struct tc_mqprio_qopt *mqprio = NULL;
1454	unsigned long flags;
1455	ktime_t start;
1456	int i, err;
1457
1458	err = nla_parse_nested_deprecated(tb, TCA_TAPRIO_ATTR_MAX, opt,
1459					  taprio_policy, extack);
1460	if (err < 0)
1461		return err;
1462
1463	if (tb[TCA_TAPRIO_ATTR_PRIOMAP])
1464		mqprio = nla_data(tb[TCA_TAPRIO_ATTR_PRIOMAP]);
1465
1466	err = taprio_new_flags(tb[TCA_TAPRIO_ATTR_FLAGS],
1467			       q->flags, extack);
1468	if (err < 0)
1469		return err;
1470
1471	q->flags = err;
1472
1473	err = taprio_parse_mqprio_opt(dev, mqprio, extack, q->flags);
1474	if (err < 0)
1475		return err;
1476
1477	new_admin = kzalloc(sizeof(*new_admin), GFP_KERNEL);
1478	if (!new_admin) {
1479		NL_SET_ERR_MSG(extack, "Not enough memory for a new schedule");
1480		return -ENOMEM;
1481	}
1482	INIT_LIST_HEAD(&new_admin->entries);
1483
1484	rcu_read_lock();
1485	oper = rcu_dereference(q->oper_sched);
1486	admin = rcu_dereference(q->admin_sched);
1487	rcu_read_unlock();
1488
1489	/* no changes - no new mqprio settings */
1490	if (!taprio_mqprio_cmp(dev, mqprio))
1491		mqprio = NULL;
1492
1493	if (mqprio && (oper || admin)) {
1494		NL_SET_ERR_MSG(extack, "Changing the traffic mapping of a running schedule is not supported");
1495		err = -ENOTSUPP;
1496		goto free_sched;
1497	}
1498
1499	err = parse_taprio_schedule(q, tb, new_admin, extack);
1500	if (err < 0)
1501		goto free_sched;
1502
1503	if (new_admin->num_entries == 0) {
1504		NL_SET_ERR_MSG(extack, "There should be at least one entry in the schedule");
1505		err = -EINVAL;
1506		goto free_sched;
1507	}
1508
1509	err = taprio_parse_clockid(sch, tb, extack);
1510	if (err < 0)
1511		goto free_sched;
1512
1513	taprio_set_picos_per_byte(dev, q);
1514
1515	if (mqprio) {
1516		err = netdev_set_num_tc(dev, mqprio->num_tc);
1517		if (err)
1518			goto free_sched;
1519		for (i = 0; i < mqprio->num_tc; i++)
1520			netdev_set_tc_queue(dev, i,
1521					    mqprio->count[i],
1522					    mqprio->offset[i]);
1523
1524		/* Always use supplied priority mappings */
1525		for (i = 0; i <= TC_BITMASK; i++)
1526			netdev_set_prio_tc_map(dev, i,
1527					       mqprio->prio_tc_map[i]);
1528	}
1529
1530	if (FULL_OFFLOAD_IS_ENABLED(q->flags))
1531		err = taprio_enable_offload(dev, q, new_admin, extack);
1532	else
1533		err = taprio_disable_offload(dev, q, extack);
1534	if (err)
1535		goto free_sched;
1536
1537	/* Protects against enqueue()/dequeue() */
1538	spin_lock_bh(qdisc_lock(sch));
1539
1540	if (tb[TCA_TAPRIO_ATTR_TXTIME_DELAY]) {
1541		if (!TXTIME_ASSIST_IS_ENABLED(q->flags)) {
1542			NL_SET_ERR_MSG_MOD(extack, "txtime-delay can only be set when txtime-assist mode is enabled");
1543			err = -EINVAL;
1544			goto unlock;
1545		}
1546
1547		q->txtime_delay = nla_get_u32(tb[TCA_TAPRIO_ATTR_TXTIME_DELAY]);
1548	}
1549
1550	if (!TXTIME_ASSIST_IS_ENABLED(q->flags) &&
1551	    !FULL_OFFLOAD_IS_ENABLED(q->flags) &&
1552	    !hrtimer_active(&q->advance_timer)) {
1553		hrtimer_init(&q->advance_timer, q->clockid, HRTIMER_MODE_ABS);
1554		q->advance_timer.function = advance_sched;
1555	}
1556
1557	if (FULL_OFFLOAD_IS_ENABLED(q->flags)) {
1558		q->dequeue = taprio_dequeue_offload;
1559		q->peek = taprio_peek_offload;
1560	} else {
1561		/* Be sure to always keep the function pointers
1562		 * in a consistent state.
1563		 */
1564		q->dequeue = taprio_dequeue_soft;
1565		q->peek = taprio_peek_soft;
1566	}
1567
1568	err = taprio_get_start_time(sch, new_admin, &start);
1569	if (err < 0) {
1570		NL_SET_ERR_MSG(extack, "Internal error: failed get start time");
1571		goto unlock;
1572	}
1573
1574	setup_txtime(q, new_admin, start);
1575
1576	if (TXTIME_ASSIST_IS_ENABLED(q->flags)) {
1577		if (!oper) {
1578			rcu_assign_pointer(q->oper_sched, new_admin);
1579			err = 0;
1580			new_admin = NULL;
1581			goto unlock;
1582		}
1583
1584		rcu_assign_pointer(q->admin_sched, new_admin);
1585		if (admin)
1586			call_rcu(&admin->rcu, taprio_free_sched_cb);
1587	} else {
1588		setup_first_close_time(q, new_admin, start);
1589
1590		/* Protects against advance_sched() */
1591		spin_lock_irqsave(&q->current_entry_lock, flags);
1592
1593		taprio_start_sched(sch, start, new_admin);
1594
1595		rcu_assign_pointer(q->admin_sched, new_admin);
1596		if (admin)
1597			call_rcu(&admin->rcu, taprio_free_sched_cb);
1598
1599		spin_unlock_irqrestore(&q->current_entry_lock, flags);
1600
1601		if (FULL_OFFLOAD_IS_ENABLED(q->flags))
1602			taprio_offload_config_changed(q);
1603	}
1604
1605	new_admin = NULL;
1606	err = 0;
1607
1608unlock:
1609	spin_unlock_bh(qdisc_lock(sch));
1610
1611free_sched:
1612	if (new_admin)
1613		call_rcu(&new_admin->rcu, taprio_free_sched_cb);
1614
1615	return err;
1616}
1617
1618static void taprio_reset(struct Qdisc *sch)
1619{
1620	struct taprio_sched *q = qdisc_priv(sch);
1621	struct net_device *dev = qdisc_dev(sch);
1622	int i;
1623
1624	hrtimer_cancel(&q->advance_timer);
1625	if (q->qdiscs) {
1626		for (i = 0; i < dev->num_tx_queues; i++)
1627			if (q->qdiscs[i])
1628				qdisc_reset(q->qdiscs[i]);
1629	}
1630	sch->qstats.backlog = 0;
1631	sch->q.qlen = 0;
1632}
1633
1634static void taprio_destroy(struct Qdisc *sch)
1635{
1636	struct taprio_sched *q = qdisc_priv(sch);
1637	struct net_device *dev = qdisc_dev(sch);
1638	unsigned int i;
1639
1640	spin_lock(&taprio_list_lock);
1641	list_del(&q->taprio_list);
1642	spin_unlock(&taprio_list_lock);
1643
1644	/* Note that taprio_reset() might not be called if an error
1645	 * happens in qdisc_create(), after taprio_init() has been called.
1646	 */
1647	hrtimer_cancel(&q->advance_timer);
1648
1649	taprio_disable_offload(dev, q, NULL);
1650
1651	if (q->qdiscs) {
1652		for (i = 0; i < dev->num_tx_queues; i++)
1653			qdisc_put(q->qdiscs[i]);
1654
1655		kfree(q->qdiscs);
1656	}
1657	q->qdiscs = NULL;
1658
1659	netdev_reset_tc(dev);
1660
1661	if (q->oper_sched)
1662		call_rcu(&q->oper_sched->rcu, taprio_free_sched_cb);
1663
1664	if (q->admin_sched)
1665		call_rcu(&q->admin_sched->rcu, taprio_free_sched_cb);
1666}
1667
1668static int taprio_init(struct Qdisc *sch, struct nlattr *opt,
1669		       struct netlink_ext_ack *extack)
1670{
1671	struct taprio_sched *q = qdisc_priv(sch);
1672	struct net_device *dev = qdisc_dev(sch);
1673	int i;
1674
1675	spin_lock_init(&q->current_entry_lock);
1676
1677	hrtimer_init(&q->advance_timer, CLOCK_TAI, HRTIMER_MODE_ABS);
1678	q->advance_timer.function = advance_sched;
1679
1680	q->dequeue = taprio_dequeue_soft;
1681	q->peek = taprio_peek_soft;
1682
1683	q->root = sch;
1684
1685	/* We only support static clockids. Use an invalid value as default
1686	 * and get the valid one on taprio_change().
1687	 */
1688	q->clockid = -1;
1689	q->flags = TAPRIO_FLAGS_INVALID;
1690
1691	spin_lock(&taprio_list_lock);
1692	list_add(&q->taprio_list, &taprio_list);
1693	spin_unlock(&taprio_list_lock);
1694
1695	if (sch->parent != TC_H_ROOT)
1696		return -EOPNOTSUPP;
1697
1698	if (!netif_is_multiqueue(dev))
1699		return -EOPNOTSUPP;
1700
1701	/* pre-allocate qdisc, attachment can't fail */
1702	q->qdiscs = kcalloc(dev->num_tx_queues,
1703			    sizeof(q->qdiscs[0]),
1704			    GFP_KERNEL);
1705
1706	if (!q->qdiscs)
1707		return -ENOMEM;
1708
1709	if (!opt)
1710		return -EINVAL;
1711
1712	for (i = 0; i < dev->num_tx_queues; i++) {
1713		struct netdev_queue *dev_queue;
1714		struct Qdisc *qdisc;
1715
1716		dev_queue = netdev_get_tx_queue(dev, i);
1717		qdisc = qdisc_create_dflt(dev_queue,
1718					  &pfifo_qdisc_ops,
1719					  TC_H_MAKE(TC_H_MAJ(sch->handle),
1720						    TC_H_MIN(i + 1)),
1721					  extack);
1722		if (!qdisc)
1723			return -ENOMEM;
1724
1725		if (i < dev->real_num_tx_queues)
1726			qdisc_hash_add(qdisc, false);
1727
1728		q->qdiscs[i] = qdisc;
1729	}
1730
1731	return taprio_change(sch, opt, extack);
1732}
1733
1734static void taprio_attach(struct Qdisc *sch)
1735{
1736	struct taprio_sched *q = qdisc_priv(sch);
1737	struct net_device *dev = qdisc_dev(sch);
1738	unsigned int ntx;
1739
1740	/* Attach underlying qdisc */
1741	for (ntx = 0; ntx < dev->num_tx_queues; ntx++) {
1742		struct Qdisc *qdisc = q->qdiscs[ntx];
1743		struct Qdisc *old;
1744
1745		if (FULL_OFFLOAD_IS_ENABLED(q->flags)) {
1746			qdisc->flags |= TCQ_F_ONETXQUEUE | TCQ_F_NOPARENT;
1747			old = dev_graft_qdisc(qdisc->dev_queue, qdisc);
1748		} else {
1749			old = dev_graft_qdisc(qdisc->dev_queue, sch);
1750			qdisc_refcount_inc(sch);
1751		}
1752		if (old)
1753			qdisc_put(old);
1754	}
1755
1756	/* access to the child qdiscs is not needed in offload mode */
1757	if (FULL_OFFLOAD_IS_ENABLED(q->flags)) {
1758		kfree(q->qdiscs);
1759		q->qdiscs = NULL;
1760	}
1761}
1762
1763static struct netdev_queue *taprio_queue_get(struct Qdisc *sch,
1764					     unsigned long cl)
1765{
1766	struct net_device *dev = qdisc_dev(sch);
1767	unsigned long ntx = cl - 1;
1768
1769	if (ntx >= dev->num_tx_queues)
1770		return NULL;
1771
1772	return netdev_get_tx_queue(dev, ntx);
1773}
1774
1775static int taprio_graft(struct Qdisc *sch, unsigned long cl,
1776			struct Qdisc *new, struct Qdisc **old,
1777			struct netlink_ext_ack *extack)
1778{
1779	struct taprio_sched *q = qdisc_priv(sch);
1780	struct net_device *dev = qdisc_dev(sch);
1781	struct netdev_queue *dev_queue = taprio_queue_get(sch, cl);
1782
1783	if (!dev_queue)
1784		return -EINVAL;
1785
1786	if (dev->flags & IFF_UP)
1787		dev_deactivate(dev);
1788
1789	if (FULL_OFFLOAD_IS_ENABLED(q->flags)) {
1790		*old = dev_graft_qdisc(dev_queue, new);
1791	} else {
1792		*old = q->qdiscs[cl - 1];
1793		q->qdiscs[cl - 1] = new;
1794	}
1795
1796	if (new)
1797		new->flags |= TCQ_F_ONETXQUEUE | TCQ_F_NOPARENT;
1798
1799	if (dev->flags & IFF_UP)
1800		dev_activate(dev);
1801
1802	return 0;
1803}
1804
1805static int dump_entry(struct sk_buff *msg,
1806		      const struct sched_entry *entry)
1807{
1808	struct nlattr *item;
1809
1810	item = nla_nest_start_noflag(msg, TCA_TAPRIO_SCHED_ENTRY);
1811	if (!item)
1812		return -ENOSPC;
1813
1814	if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_INDEX, entry->index))
1815		goto nla_put_failure;
1816
1817	if (nla_put_u8(msg, TCA_TAPRIO_SCHED_ENTRY_CMD, entry->command))
1818		goto nla_put_failure;
1819
1820	if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_GATE_MASK,
1821			entry->gate_mask))
1822		goto nla_put_failure;
1823
1824	if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_INTERVAL,
1825			entry->interval))
1826		goto nla_put_failure;
1827
1828	return nla_nest_end(msg, item);
1829
1830nla_put_failure:
1831	nla_nest_cancel(msg, item);
1832	return -1;
1833}
1834
1835static int dump_schedule(struct sk_buff *msg,
1836			 const struct sched_gate_list *root)
1837{
1838	struct nlattr *entry_list;
1839	struct sched_entry *entry;
1840
1841	if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_BASE_TIME,
1842			root->base_time, TCA_TAPRIO_PAD))
1843		return -1;
1844
1845	if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME,
1846			root->cycle_time, TCA_TAPRIO_PAD))
1847		return -1;
1848
1849	if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION,
1850			root->cycle_time_extension, TCA_TAPRIO_PAD))
1851		return -1;
1852
1853	entry_list = nla_nest_start_noflag(msg,
1854					   TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST);
1855	if (!entry_list)
1856		goto error_nest;
1857
1858	list_for_each_entry(entry, &root->entries, list) {
1859		if (dump_entry(msg, entry) < 0)
1860			goto error_nest;
1861	}
1862
1863	nla_nest_end(msg, entry_list);
1864	return 0;
1865
1866error_nest:
1867	nla_nest_cancel(msg, entry_list);
1868	return -1;
1869}
1870
1871static int taprio_dump(struct Qdisc *sch, struct sk_buff *skb)
1872{
1873	struct taprio_sched *q = qdisc_priv(sch);
1874	struct net_device *dev = qdisc_dev(sch);
1875	struct sched_gate_list *oper, *admin;
1876	struct tc_mqprio_qopt opt = { 0 };
1877	struct nlattr *nest, *sched_nest;
1878	unsigned int i;
1879
1880	rcu_read_lock();
1881	oper = rcu_dereference(q->oper_sched);
1882	admin = rcu_dereference(q->admin_sched);
1883
1884	opt.num_tc = netdev_get_num_tc(dev);
1885	memcpy(opt.prio_tc_map, dev->prio_tc_map, sizeof(opt.prio_tc_map));
1886
1887	for (i = 0; i < netdev_get_num_tc(dev); i++) {
1888		opt.count[i] = dev->tc_to_txq[i].count;
1889		opt.offset[i] = dev->tc_to_txq[i].offset;
1890	}
1891
1892	nest = nla_nest_start_noflag(skb, TCA_OPTIONS);
1893	if (!nest)
1894		goto start_error;
1895
1896	if (nla_put(skb, TCA_TAPRIO_ATTR_PRIOMAP, sizeof(opt), &opt))
1897		goto options_error;
1898
1899	if (!FULL_OFFLOAD_IS_ENABLED(q->flags) &&
1900	    nla_put_s32(skb, TCA_TAPRIO_ATTR_SCHED_CLOCKID, q->clockid))
1901		goto options_error;
1902
1903	if (q->flags && nla_put_u32(skb, TCA_TAPRIO_ATTR_FLAGS, q->flags))
1904		goto options_error;
1905
1906	if (q->txtime_delay &&
1907	    nla_put_u32(skb, TCA_TAPRIO_ATTR_TXTIME_DELAY, q->txtime_delay))
1908		goto options_error;
1909
1910	if (oper && dump_schedule(skb, oper))
1911		goto options_error;
1912
1913	if (!admin)
1914		goto done;
1915
1916	sched_nest = nla_nest_start_noflag(skb, TCA_TAPRIO_ATTR_ADMIN_SCHED);
1917	if (!sched_nest)
1918		goto options_error;
1919
1920	if (dump_schedule(skb, admin))
1921		goto admin_error;
1922
1923	nla_nest_end(skb, sched_nest);
1924
1925done:
1926	rcu_read_unlock();
1927
1928	return nla_nest_end(skb, nest);
1929
1930admin_error:
1931	nla_nest_cancel(skb, sched_nest);
1932
1933options_error:
1934	nla_nest_cancel(skb, nest);
1935
1936start_error:
1937	rcu_read_unlock();
1938	return -ENOSPC;
1939}
1940
1941static struct Qdisc *taprio_leaf(struct Qdisc *sch, unsigned long cl)
1942{
1943	struct netdev_queue *dev_queue = taprio_queue_get(sch, cl);
1944
1945	if (!dev_queue)
1946		return NULL;
1947
1948	return dev_queue->qdisc_sleeping;
1949}
1950
1951static unsigned long taprio_find(struct Qdisc *sch, u32 classid)
1952{
1953	unsigned int ntx = TC_H_MIN(classid);
1954
1955	if (!taprio_queue_get(sch, ntx))
1956		return 0;
1957	return ntx;
1958}
1959
1960static int taprio_dump_class(struct Qdisc *sch, unsigned long cl,
1961			     struct sk_buff *skb, struct tcmsg *tcm)
1962{
1963	struct netdev_queue *dev_queue = taprio_queue_get(sch, cl);
1964
1965	tcm->tcm_parent = TC_H_ROOT;
1966	tcm->tcm_handle |= TC_H_MIN(cl);
1967	tcm->tcm_info = dev_queue->qdisc_sleeping->handle;
1968
1969	return 0;
1970}
1971
1972static int taprio_dump_class_stats(struct Qdisc *sch, unsigned long cl,
1973				   struct gnet_dump *d)
1974	__releases(d->lock)
1975	__acquires(d->lock)
1976{
1977	struct netdev_queue *dev_queue = taprio_queue_get(sch, cl);
1978
1979	sch = dev_queue->qdisc_sleeping;
1980	if (gnet_stats_copy_basic(&sch->running, d, NULL, &sch->bstats) < 0 ||
1981	    qdisc_qstats_copy(d, sch) < 0)
1982		return -1;
1983	return 0;
1984}
1985
1986static void taprio_walk(struct Qdisc *sch, struct qdisc_walker *arg)
1987{
1988	struct net_device *dev = qdisc_dev(sch);
1989	unsigned long ntx;
1990
1991	if (arg->stop)
1992		return;
1993
1994	arg->count = arg->skip;
1995	for (ntx = arg->skip; ntx < dev->num_tx_queues; ntx++) {
1996		if (arg->fn(sch, ntx + 1, arg) < 0) {
1997			arg->stop = 1;
1998			break;
1999		}
2000		arg->count++;
2001	}
2002}
2003
2004static struct netdev_queue *taprio_select_queue(struct Qdisc *sch,
2005						struct tcmsg *tcm)
2006{
2007	return taprio_queue_get(sch, TC_H_MIN(tcm->tcm_parent));
2008}
2009
2010static const struct Qdisc_class_ops taprio_class_ops = {
2011	.graft		= taprio_graft,
2012	.leaf		= taprio_leaf,
2013	.find		= taprio_find,
2014	.walk		= taprio_walk,
2015	.dump		= taprio_dump_class,
2016	.dump_stats	= taprio_dump_class_stats,
2017	.select_queue	= taprio_select_queue,
2018};
2019
2020static struct Qdisc_ops taprio_qdisc_ops __read_mostly = {
2021	.cl_ops		= &taprio_class_ops,
2022	.id		= "taprio",
2023	.priv_size	= sizeof(struct taprio_sched),
2024	.init		= taprio_init,
2025	.change		= taprio_change,
2026	.destroy	= taprio_destroy,
2027	.reset		= taprio_reset,
2028	.attach		= taprio_attach,
2029	.peek		= taprio_peek,
2030	.dequeue	= taprio_dequeue,
2031	.enqueue	= taprio_enqueue,
2032	.dump		= taprio_dump,
2033	.owner		= THIS_MODULE,
2034};
2035
2036static struct notifier_block taprio_device_notifier = {
2037	.notifier_call = taprio_dev_notifier,
2038};
2039
2040static int __init taprio_module_init(void)
2041{
2042	int err = register_netdevice_notifier(&taprio_device_notifier);
2043
2044	if (err)
2045		return err;
2046
2047	return register_qdisc(&taprio_qdisc_ops);
2048}
2049
2050static void __exit taprio_module_exit(void)
2051{
2052	unregister_qdisc(&taprio_qdisc_ops);
2053	unregister_netdevice_notifier(&taprio_device_notifier);
2054}
2055
2056module_init(taprio_module_init);
2057module_exit(taprio_module_exit);
2058MODULE_LICENSE("GPL");