Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.5.6.
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Driver for Silicon Labs Si5340, Si5341, Si5342, Si5344 and Si5345
   4 * Copyright (C) 2019 Topic Embedded Products
   5 * Author: Mike Looijmans <mike.looijmans@topic.nl>
   6 *
   7 * The Si5341 has 10 outputs and 5 synthesizers.
   8 * The Si5340 is a smaller version of the Si5341 with only 4 outputs.
   9 * The Si5345 is similar to the Si5341, with the addition of fractional input
  10 * dividers and automatic input selection.
  11 * The Si5342 and Si5344 are smaller versions of the Si5345.
  12 */
  13
  14#include <linux/clk.h>
  15#include <linux/clk-provider.h>
  16#include <linux/delay.h>
  17#include <linux/gcd.h>
  18#include <linux/math64.h>
  19#include <linux/i2c.h>
  20#include <linux/module.h>
  21#include <linux/regmap.h>
  22#include <linux/regulator/consumer.h>
  23#include <linux/slab.h>
  24#include <linux/unaligned.h>
  25
  26#define SI5341_NUM_INPUTS 4
  27
  28#define SI5340_MAX_NUM_OUTPUTS 4
  29#define SI5341_MAX_NUM_OUTPUTS 10
  30#define SI5342_MAX_NUM_OUTPUTS 2
  31#define SI5344_MAX_NUM_OUTPUTS 4
  32#define SI5345_MAX_NUM_OUTPUTS 10
  33
  34#define SI5340_NUM_SYNTH 4
  35#define SI5341_NUM_SYNTH 5
  36#define SI5342_NUM_SYNTH 2
  37#define SI5344_NUM_SYNTH 4
  38#define SI5345_NUM_SYNTH 5
  39
  40/* Range of the synthesizer fractional divider */
  41#define SI5341_SYNTH_N_MIN	10
  42#define SI5341_SYNTH_N_MAX	4095
  43
  44/* The chip can get its input clock from 3 input pins or an XTAL */
  45
  46/* There is one PLL running at 13500–14256 MHz */
  47#define SI5341_PLL_VCO_MIN 13500000000ull
  48#define SI5341_PLL_VCO_MAX 14256000000ull
  49
  50/* The 5 frequency synthesizers obtain their input from the PLL */
  51struct clk_si5341_synth {
  52	struct clk_hw hw;
  53	struct clk_si5341 *data;
  54	u8 index;
  55};
  56#define to_clk_si5341_synth(_hw) \
  57	container_of(_hw, struct clk_si5341_synth, hw)
  58
  59/* The output stages can be connected to any synth (full mux) */
  60struct clk_si5341_output {
  61	struct clk_hw hw;
  62	struct clk_si5341 *data;
  63	struct regulator *vddo_reg;
  64	u8 index;
  65};
  66#define to_clk_si5341_output(_hw) \
  67	container_of(_hw, struct clk_si5341_output, hw)
  68
  69struct clk_si5341 {
  70	struct clk_hw hw;
  71	struct regmap *regmap;
  72	struct i2c_client *i2c_client;
  73	struct clk_si5341_synth synth[SI5341_NUM_SYNTH];
  74	struct clk_si5341_output clk[SI5341_MAX_NUM_OUTPUTS];
  75	struct clk *input_clk[SI5341_NUM_INPUTS];
  76	const char *input_clk_name[SI5341_NUM_INPUTS];
  77	const u16 *reg_output_offset;
  78	const u16 *reg_rdiv_offset;
  79	u64 freq_vco; /* 13500–14256 MHz */
  80	u8 num_outputs;
  81	u8 num_synth;
  82	u16 chip_id;
  83	bool xaxb_ext_clk;
  84	bool iovdd_33;
  85};
  86#define to_clk_si5341(_hw)	container_of(_hw, struct clk_si5341, hw)
  87
  88struct clk_si5341_output_config {
  89	u8 out_format_drv_bits;
  90	u8 out_cm_ampl_bits;
  91	u8 vdd_sel_bits;
  92	bool synth_master;
  93	bool always_on;
  94};
  95
  96#define SI5341_PAGE		0x0001
  97#define SI5341_PN_BASE		0x0002
  98#define SI5341_DEVICE_REV	0x0005
  99#define SI5341_STATUS		0x000C
 100#define SI5341_LOS		0x000D
 101#define SI5341_STATUS_STICKY	0x0011
 102#define SI5341_LOS_STICKY	0x0012
 103#define SI5341_SOFT_RST		0x001C
 104#define SI5341_IN_SEL		0x0021
 105#define SI5341_DEVICE_READY	0x00FE
 106#define SI5341_XAXB_CFG		0x090E
 107#define SI5341_IO_VDD_SEL	0x0943
 108#define SI5341_IN_EN		0x0949
 109#define SI5341_INX_TO_PFD_EN	0x094A
 110
 111/* Status bits */
 112#define SI5341_STATUS_SYSINCAL	BIT(0)
 113#define SI5341_STATUS_LOSXAXB	BIT(1)
 114#define SI5341_STATUS_LOSREF	BIT(2)
 115#define SI5341_STATUS_LOL	BIT(3)
 116
 117/* Input selection */
 118#define SI5341_IN_SEL_MASK	0x06
 119#define SI5341_IN_SEL_SHIFT	1
 120#define SI5341_IN_SEL_REGCTRL	0x01
 121#define SI5341_INX_TO_PFD_SHIFT	4
 122
 123/* XTAL config bits */
 124#define SI5341_XAXB_CFG_EXTCLK_EN	BIT(0)
 125#define SI5341_XAXB_CFG_PDNB		BIT(1)
 126
 127/* Input dividers (48-bit) */
 128#define SI5341_IN_PDIV(x)	(0x0208 + ((x) * 10))
 129#define SI5341_IN_PSET(x)	(0x020E + ((x) * 10))
 130#define SI5341_PX_UPD		0x0230
 131
 132/* PLL configuration */
 133#define SI5341_PLL_M_NUM	0x0235
 134#define SI5341_PLL_M_DEN	0x023B
 135
 136/* Output configuration */
 137#define SI5341_OUT_CONFIG(output)	\
 138			((output)->data->reg_output_offset[(output)->index])
 139#define SI5341_OUT_FORMAT(output)	(SI5341_OUT_CONFIG(output) + 1)
 140#define SI5341_OUT_CM(output)		(SI5341_OUT_CONFIG(output) + 2)
 141#define SI5341_OUT_MUX_SEL(output)	(SI5341_OUT_CONFIG(output) + 3)
 142#define SI5341_OUT_R_REG(output)	\
 143			((output)->data->reg_rdiv_offset[(output)->index])
 144
 145#define SI5341_OUT_MUX_VDD_SEL_MASK 0x38
 146
 147/* Synthesize N divider */
 148#define SI5341_SYNTH_N_NUM(x)	(0x0302 + ((x) * 11))
 149#define SI5341_SYNTH_N_DEN(x)	(0x0308 + ((x) * 11))
 150#define SI5341_SYNTH_N_UPD(x)	(0x030C + ((x) * 11))
 151
 152/* Synthesizer output enable, phase bypass, power mode */
 153#define SI5341_SYNTH_N_CLK_TO_OUTX_EN	0x0A03
 154#define SI5341_SYNTH_N_PIBYP		0x0A04
 155#define SI5341_SYNTH_N_PDNB		0x0A05
 156#define SI5341_SYNTH_N_CLK_DIS		0x0B4A
 157
 158#define SI5341_REGISTER_MAX	0xBFF
 159
 160/* SI5341_OUT_CONFIG bits */
 161#define SI5341_OUT_CFG_PDN		BIT(0)
 162#define SI5341_OUT_CFG_OE		BIT(1)
 163#define SI5341_OUT_CFG_RDIV_FORCE2	BIT(2)
 164
 165/* Static configuration (to be moved to firmware) */
 166struct si5341_reg_default {
 167	u16 address;
 168	u8 value;
 169};
 170
 171static const char * const si5341_input_clock_names[] = {
 172	"in0", "in1", "in2", "xtal"
 173};
 174
 175/* Output configuration registers 0..9 are not quite logically organized */
 176/* Also for si5345 */
 177static const u16 si5341_reg_output_offset[] = {
 178	0x0108,
 179	0x010D,
 180	0x0112,
 181	0x0117,
 182	0x011C,
 183	0x0121,
 184	0x0126,
 185	0x012B,
 186	0x0130,
 187	0x013A,
 188};
 189
 190/* for si5340, si5342 and si5344 */
 191static const u16 si5340_reg_output_offset[] = {
 192	0x0112,
 193	0x0117,
 194	0x0126,
 195	0x012B,
 196};
 197
 198/* The location of the R divider registers */
 199static const u16 si5341_reg_rdiv_offset[] = {
 200	0x024A,
 201	0x024D,
 202	0x0250,
 203	0x0253,
 204	0x0256,
 205	0x0259,
 206	0x025C,
 207	0x025F,
 208	0x0262,
 209	0x0268,
 210};
 211static const u16 si5340_reg_rdiv_offset[] = {
 212	0x0250,
 213	0x0253,
 214	0x025C,
 215	0x025F,
 216};
 217
 218/*
 219 * Programming sequence from ClockBuilder, settings to initialize the system
 220 * using only the XTAL input, without pre-divider.
 221 * This also contains settings that aren't mentioned anywhere in the datasheet.
 222 * The "known" settings like synth and output configuration are done later.
 223 */
 224static const struct si5341_reg_default si5341_reg_defaults[] = {
 225	{ 0x0017, 0x3A }, /* INT mask (disable interrupts) */
 226	{ 0x0018, 0xFF }, /* INT mask */
 227	{ 0x0021, 0x0F }, /* Select XTAL as input */
 228	{ 0x0022, 0x00 }, /* Not in datasheet */
 229	{ 0x002B, 0x02 }, /* SPI config */
 230	{ 0x002C, 0x20 }, /* LOS enable for XTAL */
 231	{ 0x002D, 0x00 }, /* LOS timing */
 232	{ 0x002E, 0x00 },
 233	{ 0x002F, 0x00 },
 234	{ 0x0030, 0x00 },
 235	{ 0x0031, 0x00 },
 236	{ 0x0032, 0x00 },
 237	{ 0x0033, 0x00 },
 238	{ 0x0034, 0x00 },
 239	{ 0x0035, 0x00 },
 240	{ 0x0036, 0x00 },
 241	{ 0x0037, 0x00 },
 242	{ 0x0038, 0x00 }, /* LOS setting (thresholds) */
 243	{ 0x0039, 0x00 },
 244	{ 0x003A, 0x00 },
 245	{ 0x003B, 0x00 },
 246	{ 0x003C, 0x00 },
 247	{ 0x003D, 0x00 }, /* LOS setting (thresholds) end */
 248	{ 0x0041, 0x00 }, /* LOS0_DIV_SEL */
 249	{ 0x0042, 0x00 }, /* LOS1_DIV_SEL */
 250	{ 0x0043, 0x00 }, /* LOS2_DIV_SEL */
 251	{ 0x0044, 0x00 }, /* LOS3_DIV_SEL */
 252	{ 0x009E, 0x00 }, /* Not in datasheet */
 253	{ 0x0102, 0x01 }, /* Enable outputs */
 254	{ 0x013F, 0x00 }, /* Not in datasheet */
 255	{ 0x0140, 0x00 }, /* Not in datasheet */
 256	{ 0x0141, 0x40 }, /* OUT LOS */
 257	{ 0x0202, 0x00 }, /* XAXB_FREQ_OFFSET (=0)*/
 258	{ 0x0203, 0x00 },
 259	{ 0x0204, 0x00 },
 260	{ 0x0205, 0x00 },
 261	{ 0x0206, 0x00 }, /* PXAXB (2^x) */
 262	{ 0x0208, 0x00 }, /* Px divider setting (usually 0) */
 263	{ 0x0209, 0x00 },
 264	{ 0x020A, 0x00 },
 265	{ 0x020B, 0x00 },
 266	{ 0x020C, 0x00 },
 267	{ 0x020D, 0x00 },
 268	{ 0x020E, 0x00 },
 269	{ 0x020F, 0x00 },
 270	{ 0x0210, 0x00 },
 271	{ 0x0211, 0x00 },
 272	{ 0x0212, 0x00 },
 273	{ 0x0213, 0x00 },
 274	{ 0x0214, 0x00 },
 275	{ 0x0215, 0x00 },
 276	{ 0x0216, 0x00 },
 277	{ 0x0217, 0x00 },
 278	{ 0x0218, 0x00 },
 279	{ 0x0219, 0x00 },
 280	{ 0x021A, 0x00 },
 281	{ 0x021B, 0x00 },
 282	{ 0x021C, 0x00 },
 283	{ 0x021D, 0x00 },
 284	{ 0x021E, 0x00 },
 285	{ 0x021F, 0x00 },
 286	{ 0x0220, 0x00 },
 287	{ 0x0221, 0x00 },
 288	{ 0x0222, 0x00 },
 289	{ 0x0223, 0x00 },
 290	{ 0x0224, 0x00 },
 291	{ 0x0225, 0x00 },
 292	{ 0x0226, 0x00 },
 293	{ 0x0227, 0x00 },
 294	{ 0x0228, 0x00 },
 295	{ 0x0229, 0x00 },
 296	{ 0x022A, 0x00 },
 297	{ 0x022B, 0x00 },
 298	{ 0x022C, 0x00 },
 299	{ 0x022D, 0x00 },
 300	{ 0x022E, 0x00 },
 301	{ 0x022F, 0x00 }, /* Px divider setting (usually 0) end */
 302	{ 0x026B, 0x00 }, /* DESIGN_ID (ASCII string) */
 303	{ 0x026C, 0x00 },
 304	{ 0x026D, 0x00 },
 305	{ 0x026E, 0x00 },
 306	{ 0x026F, 0x00 },
 307	{ 0x0270, 0x00 },
 308	{ 0x0271, 0x00 },
 309	{ 0x0272, 0x00 }, /* DESIGN_ID (ASCII string) end */
 310	{ 0x0339, 0x1F }, /* N_FSTEP_MSK */
 311	{ 0x033B, 0x00 }, /* Nx_FSTEPW (Frequency step) */
 312	{ 0x033C, 0x00 },
 313	{ 0x033D, 0x00 },
 314	{ 0x033E, 0x00 },
 315	{ 0x033F, 0x00 },
 316	{ 0x0340, 0x00 },
 317	{ 0x0341, 0x00 },
 318	{ 0x0342, 0x00 },
 319	{ 0x0343, 0x00 },
 320	{ 0x0344, 0x00 },
 321	{ 0x0345, 0x00 },
 322	{ 0x0346, 0x00 },
 323	{ 0x0347, 0x00 },
 324	{ 0x0348, 0x00 },
 325	{ 0x0349, 0x00 },
 326	{ 0x034A, 0x00 },
 327	{ 0x034B, 0x00 },
 328	{ 0x034C, 0x00 },
 329	{ 0x034D, 0x00 },
 330	{ 0x034E, 0x00 },
 331	{ 0x034F, 0x00 },
 332	{ 0x0350, 0x00 },
 333	{ 0x0351, 0x00 },
 334	{ 0x0352, 0x00 },
 335	{ 0x0353, 0x00 },
 336	{ 0x0354, 0x00 },
 337	{ 0x0355, 0x00 },
 338	{ 0x0356, 0x00 },
 339	{ 0x0357, 0x00 },
 340	{ 0x0358, 0x00 }, /* Nx_FSTEPW (Frequency step) end */
 341	{ 0x0359, 0x00 }, /* Nx_DELAY */
 342	{ 0x035A, 0x00 },
 343	{ 0x035B, 0x00 },
 344	{ 0x035C, 0x00 },
 345	{ 0x035D, 0x00 },
 346	{ 0x035E, 0x00 },
 347	{ 0x035F, 0x00 },
 348	{ 0x0360, 0x00 },
 349	{ 0x0361, 0x00 },
 350	{ 0x0362, 0x00 }, /* Nx_DELAY end */
 351	{ 0x0802, 0x00 }, /* Not in datasheet */
 352	{ 0x0803, 0x00 }, /* Not in datasheet */
 353	{ 0x0804, 0x00 }, /* Not in datasheet */
 354	{ 0x090E, 0x02 }, /* XAXB_EXTCLK_EN=0 XAXB_PDNB=1 (use XTAL) */
 355	{ 0x091C, 0x04 }, /* ZDM_EN=4 (Normal mode) */
 356	{ 0x0949, 0x00 }, /* IN_EN (disable input clocks) */
 357	{ 0x094A, 0x00 }, /* INx_TO_PFD_EN (disabled) */
 358	{ 0x0A02, 0x00 }, /* Not in datasheet */
 359	{ 0x0B44, 0x0F }, /* PDIV_ENB (datasheet does not mention what it is) */
 360	{ 0x0B57, 0x10 }, /* VCO_RESET_CALCODE (not described in datasheet) */
 361	{ 0x0B58, 0x05 }, /* VCO_RESET_CALCODE (not described in datasheet) */
 362};
 363
 364/* Read and interpret a 44-bit followed by a 32-bit value in the regmap */
 365static int si5341_decode_44_32(struct regmap *regmap, unsigned int reg,
 366	u64 *val1, u32 *val2)
 367{
 368	int err;
 369	u8 r[10];
 370
 371	err = regmap_bulk_read(regmap, reg, r, 10);
 372	if (err < 0)
 373		return err;
 374
 375	*val1 = ((u64)((r[5] & 0x0f) << 8 | r[4]) << 32) |
 376		 (get_unaligned_le32(r));
 377	*val2 = get_unaligned_le32(&r[6]);
 378
 379	return 0;
 380}
 381
 382static int si5341_encode_44_32(struct regmap *regmap, unsigned int reg,
 383	u64 n_num, u32 n_den)
 384{
 385	u8 r[10];
 386
 387	/* Shift left as far as possible without overflowing */
 388	while (!(n_num & BIT_ULL(43)) && !(n_den & BIT(31))) {
 389		n_num <<= 1;
 390		n_den <<= 1;
 391	}
 392
 393	/* 44 bits (6 bytes) numerator */
 394	put_unaligned_le32(n_num, r);
 395	r[4] = (n_num >> 32) & 0xff;
 396	r[5] = (n_num >> 40) & 0x0f;
 397	/* 32 bits denominator */
 398	put_unaligned_le32(n_den, &r[6]);
 399
 400	/* Program the fraction */
 401	return regmap_bulk_write(regmap, reg, r, sizeof(r));
 402}
 403
 404/* VCO, we assume it runs at a constant frequency */
 405static unsigned long si5341_clk_recalc_rate(struct clk_hw *hw,
 406		unsigned long parent_rate)
 407{
 408	struct clk_si5341 *data = to_clk_si5341(hw);
 409	int err;
 410	u64 res;
 411	u64 m_num;
 412	u32 m_den;
 413	unsigned int shift;
 414
 415	/* Assume that PDIV is not being used, just read the PLL setting */
 416	err = si5341_decode_44_32(data->regmap, SI5341_PLL_M_NUM,
 417				&m_num, &m_den);
 418	if (err < 0)
 419		return 0;
 420
 421	if (!m_num || !m_den)
 422		return 0;
 423
 424	/*
 425	 * Though m_num is 64-bit, only the upper bits are actually used. While
 426	 * calculating m_num and m_den, they are shifted as far as possible to
 427	 * the left. To avoid 96-bit division here, we just shift them back so
 428	 * we can do with just 64 bits.
 429	 */
 430	shift = 0;
 431	res = m_num;
 432	while (res & 0xffff00000000ULL) {
 433		++shift;
 434		res >>= 1;
 435	}
 436	res *= parent_rate;
 437	do_div(res, (m_den >> shift));
 438
 439	/* We cannot return the actual frequency in 32 bit, store it locally */
 440	data->freq_vco = res;
 441
 442	/* Report kHz since the value is out of range */
 443	do_div(res, 1000);
 444
 445	return (unsigned long)res;
 446}
 447
 448static int si5341_clk_get_selected_input(struct clk_si5341 *data)
 449{
 450	int err;
 451	u32 val;
 452
 453	err = regmap_read(data->regmap, SI5341_IN_SEL, &val);
 454	if (err < 0)
 455		return err;
 456
 457	return (val & SI5341_IN_SEL_MASK) >> SI5341_IN_SEL_SHIFT;
 458}
 459
 460static u8 si5341_clk_get_parent(struct clk_hw *hw)
 461{
 462	struct clk_si5341 *data = to_clk_si5341(hw);
 463	int res = si5341_clk_get_selected_input(data);
 464
 465	if (res < 0)
 466		return 0; /* Apparently we cannot report errors */
 467
 468	return res;
 469}
 470
 471static int si5341_clk_reparent(struct clk_si5341 *data, u8 index)
 472{
 473	int err;
 474	u8 val;
 475
 476	val = (index << SI5341_IN_SEL_SHIFT) & SI5341_IN_SEL_MASK;
 477	/* Enable register-based input selection */
 478	val |= SI5341_IN_SEL_REGCTRL;
 479
 480	err = regmap_update_bits(data->regmap,
 481		SI5341_IN_SEL, SI5341_IN_SEL_REGCTRL | SI5341_IN_SEL_MASK, val);
 482	if (err < 0)
 483		return err;
 484
 485	if (index < 3) {
 486		/* Enable input buffer for selected input */
 487		err = regmap_update_bits(data->regmap,
 488				SI5341_IN_EN, 0x07, BIT(index));
 489		if (err < 0)
 490			return err;
 491
 492		/* Enables the input to phase detector */
 493		err = regmap_update_bits(data->regmap, SI5341_INX_TO_PFD_EN,
 494				0x7 << SI5341_INX_TO_PFD_SHIFT,
 495				BIT(index + SI5341_INX_TO_PFD_SHIFT));
 496		if (err < 0)
 497			return err;
 498
 499		/* Power down XTAL oscillator and buffer */
 500		err = regmap_update_bits(data->regmap, SI5341_XAXB_CFG,
 501				SI5341_XAXB_CFG_PDNB, 0);
 502		if (err < 0)
 503			return err;
 504
 505		/*
 506		 * Set the P divider to "1". There's no explanation in the
 507		 * datasheet of these registers, but the clockbuilder software
 508		 * programs a "1" when the input is being used.
 509		 */
 510		err = regmap_write(data->regmap, SI5341_IN_PDIV(index), 1);
 511		if (err < 0)
 512			return err;
 513
 514		err = regmap_write(data->regmap, SI5341_IN_PSET(index), 1);
 515		if (err < 0)
 516			return err;
 517
 518		/* Set update PDIV bit */
 519		err = regmap_write(data->regmap, SI5341_PX_UPD, BIT(index));
 520		if (err < 0)
 521			return err;
 522	} else {
 523		/* Disable all input buffers */
 524		err = regmap_update_bits(data->regmap, SI5341_IN_EN, 0x07, 0);
 525		if (err < 0)
 526			return err;
 527
 528		/* Disable input to phase detector */
 529		err = regmap_update_bits(data->regmap, SI5341_INX_TO_PFD_EN,
 530				0x7 << SI5341_INX_TO_PFD_SHIFT, 0);
 531		if (err < 0)
 532			return err;
 533
 534		/* Power up XTAL oscillator and buffer, select clock mode */
 535		err = regmap_update_bits(data->regmap, SI5341_XAXB_CFG,
 536				SI5341_XAXB_CFG_PDNB | SI5341_XAXB_CFG_EXTCLK_EN,
 537				SI5341_XAXB_CFG_PDNB | (data->xaxb_ext_clk ?
 538					SI5341_XAXB_CFG_EXTCLK_EN : 0));
 539		if (err < 0)
 540			return err;
 541	}
 542
 543	return 0;
 544}
 545
 546static int si5341_clk_set_parent(struct clk_hw *hw, u8 index)
 547{
 548	struct clk_si5341 *data = to_clk_si5341(hw);
 549
 550	return si5341_clk_reparent(data, index);
 551}
 552
 553static const struct clk_ops si5341_clk_ops = {
 554	.determine_rate = clk_hw_determine_rate_no_reparent,
 555	.set_parent = si5341_clk_set_parent,
 556	.get_parent = si5341_clk_get_parent,
 557	.recalc_rate = si5341_clk_recalc_rate,
 558};
 559
 560/* Synthesizers, there are 5 synthesizers that connect to any of the outputs */
 561
 562/* The synthesizer is on if all power and enable bits are set */
 563static int si5341_synth_clk_is_on(struct clk_hw *hw)
 564{
 565	struct clk_si5341_synth *synth = to_clk_si5341_synth(hw);
 566	int err;
 567	u32 val;
 568	u8 index = synth->index;
 569
 570	err = regmap_read(synth->data->regmap,
 571			SI5341_SYNTH_N_CLK_TO_OUTX_EN, &val);
 572	if (err < 0)
 573		return 0;
 574
 575	if (!(val & BIT(index)))
 576		return 0;
 577
 578	err = regmap_read(synth->data->regmap, SI5341_SYNTH_N_PDNB, &val);
 579	if (err < 0)
 580		return 0;
 581
 582	if (!(val & BIT(index)))
 583		return 0;
 584
 585	/* This bit must be 0 for the synthesizer to receive clock input */
 586	err = regmap_read(synth->data->regmap, SI5341_SYNTH_N_CLK_DIS, &val);
 587	if (err < 0)
 588		return 0;
 589
 590	return !(val & BIT(index));
 591}
 592
 593static void si5341_synth_clk_unprepare(struct clk_hw *hw)
 594{
 595	struct clk_si5341_synth *synth = to_clk_si5341_synth(hw);
 596	u8 index = synth->index; /* In range 0..5 */
 597	u8 mask = BIT(index);
 598
 599	/* Disable output */
 600	regmap_update_bits(synth->data->regmap,
 601		SI5341_SYNTH_N_CLK_TO_OUTX_EN, mask, 0);
 602	/* Power down */
 603	regmap_update_bits(synth->data->regmap,
 604		SI5341_SYNTH_N_PDNB, mask, 0);
 605	/* Disable clock input to synth (set to 1 to disable) */
 606	regmap_update_bits(synth->data->regmap,
 607		SI5341_SYNTH_N_CLK_DIS, mask, mask);
 608}
 609
 610static int si5341_synth_clk_prepare(struct clk_hw *hw)
 611{
 612	struct clk_si5341_synth *synth = to_clk_si5341_synth(hw);
 613	int err;
 614	u8 index = synth->index;
 615	u8 mask = BIT(index);
 616
 617	/* Power up */
 618	err = regmap_update_bits(synth->data->regmap,
 619		SI5341_SYNTH_N_PDNB, mask, mask);
 620	if (err < 0)
 621		return err;
 622
 623	/* Enable clock input to synth (set bit to 0 to enable) */
 624	err = regmap_update_bits(synth->data->regmap,
 625		SI5341_SYNTH_N_CLK_DIS, mask, 0);
 626	if (err < 0)
 627		return err;
 628
 629	/* Enable output */
 630	return regmap_update_bits(synth->data->regmap,
 631		SI5341_SYNTH_N_CLK_TO_OUTX_EN, mask, mask);
 632}
 633
 634/* Synth clock frequency: Fvco * n_den / n_den, with Fvco in 13500-14256 MHz */
 635static unsigned long si5341_synth_clk_recalc_rate(struct clk_hw *hw,
 636		unsigned long parent_rate)
 637{
 638	struct clk_si5341_synth *synth = to_clk_si5341_synth(hw);
 639	u64 f;
 640	u64 n_num;
 641	u32 n_den;
 642	int err;
 643
 644	err = si5341_decode_44_32(synth->data->regmap,
 645			SI5341_SYNTH_N_NUM(synth->index), &n_num, &n_den);
 646	if (err < 0)
 647		return err;
 648	/* Check for bogus/uninitialized settings */
 649	if (!n_num || !n_den)
 650		return 0;
 651
 652	/*
 653	 * n_num and n_den are shifted left as much as possible, so to prevent
 654	 * overflow in 64-bit math, we shift n_den 4 bits to the right
 655	 */
 656	f = synth->data->freq_vco;
 657	f *= n_den >> 4;
 658
 659	/* Now we need to do 64-bit division: f/n_num */
 660	/* And compensate for the 4 bits we dropped */
 661	f = div64_u64(f, (n_num >> 4));
 662
 663	return f;
 664}
 665
 666static long si5341_synth_clk_round_rate(struct clk_hw *hw, unsigned long rate,
 667		unsigned long *parent_rate)
 668{
 669	struct clk_si5341_synth *synth = to_clk_si5341_synth(hw);
 670	u64 f;
 671
 672	/* The synthesizer accuracy is such that anything in range will work */
 673	f = synth->data->freq_vco;
 674	do_div(f, SI5341_SYNTH_N_MAX);
 675	if (rate < f)
 676		return f;
 677
 678	f = synth->data->freq_vco;
 679	do_div(f, SI5341_SYNTH_N_MIN);
 680	if (rate > f)
 681		return f;
 682
 683	return rate;
 684}
 685
 686static int si5341_synth_program(struct clk_si5341_synth *synth,
 687	u64 n_num, u32 n_den, bool is_integer)
 688{
 689	int err;
 690	u8 index = synth->index;
 691
 692	err = si5341_encode_44_32(synth->data->regmap,
 693			SI5341_SYNTH_N_NUM(index), n_num, n_den);
 694
 695	err = regmap_update_bits(synth->data->regmap,
 696		SI5341_SYNTH_N_PIBYP, BIT(index), is_integer ? BIT(index) : 0);
 697	if (err < 0)
 698		return err;
 699
 700	return regmap_write(synth->data->regmap,
 701		SI5341_SYNTH_N_UPD(index), 0x01);
 702}
 703
 704
 705static int si5341_synth_clk_set_rate(struct clk_hw *hw, unsigned long rate,
 706		unsigned long parent_rate)
 707{
 708	struct clk_si5341_synth *synth = to_clk_si5341_synth(hw);
 709	u64 n_num;
 710	u32 n_den;
 711	u32 r;
 712	u32 g;
 713	bool is_integer;
 714
 715	n_num = synth->data->freq_vco;
 716
 717	/* see if there's an integer solution */
 718	r = do_div(n_num, rate);
 719	is_integer = (r == 0);
 720	if (is_integer) {
 721		/* Integer divider equal to n_num */
 722		n_den = 1;
 723	} else {
 724		/* Calculate a fractional solution */
 725		g = gcd(r, rate);
 726		n_den = rate / g;
 727		n_num *= n_den;
 728		n_num += r / g;
 729	}
 730
 731	dev_dbg(&synth->data->i2c_client->dev,
 732			"%s(%u): n=0x%llx d=0x%x %s\n", __func__,
 733				synth->index, n_num, n_den,
 734				is_integer ? "int" : "frac");
 735
 736	return si5341_synth_program(synth, n_num, n_den, is_integer);
 737}
 738
 739static const struct clk_ops si5341_synth_clk_ops = {
 740	.is_prepared = si5341_synth_clk_is_on,
 741	.prepare = si5341_synth_clk_prepare,
 742	.unprepare = si5341_synth_clk_unprepare,
 743	.recalc_rate = si5341_synth_clk_recalc_rate,
 744	.round_rate = si5341_synth_clk_round_rate,
 745	.set_rate = si5341_synth_clk_set_rate,
 746};
 747
 748static int si5341_output_clk_is_on(struct clk_hw *hw)
 749{
 750	struct clk_si5341_output *output = to_clk_si5341_output(hw);
 751	int err;
 752	u32 val;
 753
 754	err = regmap_read(output->data->regmap,
 755			SI5341_OUT_CONFIG(output), &val);
 756	if (err < 0)
 757		return err;
 758
 759	/* Bit 0=PDN, 1=OE so only a value of 0x2 enables the output */
 760	return (val & 0x03) == SI5341_OUT_CFG_OE;
 761}
 762
 763/* Disables and then powers down the output */
 764static void si5341_output_clk_unprepare(struct clk_hw *hw)
 765{
 766	struct clk_si5341_output *output = to_clk_si5341_output(hw);
 767
 768	regmap_update_bits(output->data->regmap,
 769			SI5341_OUT_CONFIG(output),
 770			SI5341_OUT_CFG_OE, 0);
 771	regmap_update_bits(output->data->regmap,
 772			SI5341_OUT_CONFIG(output),
 773			SI5341_OUT_CFG_PDN, SI5341_OUT_CFG_PDN);
 774}
 775
 776/* Powers up and then enables the output */
 777static int si5341_output_clk_prepare(struct clk_hw *hw)
 778{
 779	struct clk_si5341_output *output = to_clk_si5341_output(hw);
 780	int err;
 781
 782	err = regmap_update_bits(output->data->regmap,
 783			SI5341_OUT_CONFIG(output),
 784			SI5341_OUT_CFG_PDN, 0);
 785	if (err < 0)
 786		return err;
 787
 788	return regmap_update_bits(output->data->regmap,
 789			SI5341_OUT_CONFIG(output),
 790			SI5341_OUT_CFG_OE, SI5341_OUT_CFG_OE);
 791}
 792
 793static unsigned long si5341_output_clk_recalc_rate(struct clk_hw *hw,
 794		unsigned long parent_rate)
 795{
 796	struct clk_si5341_output *output = to_clk_si5341_output(hw);
 797	int err;
 798	u32 val;
 799	u32 r_divider;
 800	u8 r[3];
 801
 802	err = regmap_read(output->data->regmap,
 803			SI5341_OUT_CONFIG(output), &val);
 804	if (err < 0)
 805		return err;
 806
 807	/* If SI5341_OUT_CFG_RDIV_FORCE2 is set, r_divider is 2 */
 808	if (val & SI5341_OUT_CFG_RDIV_FORCE2)
 809		return parent_rate / 2;
 810
 811	err = regmap_bulk_read(output->data->regmap,
 812			SI5341_OUT_R_REG(output), r, 3);
 813	if (err < 0)
 814		return err;
 815
 816	/* Calculate value as 24-bit integer*/
 817	r_divider = r[2] << 16 | r[1] << 8 | r[0];
 818
 819	/* If Rx_REG is zero, the divider is disabled, so return a "0" rate */
 820	if (!r_divider)
 821		return 0;
 822
 823	/* Divider is 2*(Rx_REG+1) */
 824	r_divider += 1;
 825	r_divider <<= 1;
 826
 827
 828	return parent_rate / r_divider;
 829}
 830
 831static int si5341_output_clk_determine_rate(struct clk_hw *hw,
 832					    struct clk_rate_request *req)
 833{
 834	unsigned long rate = req->rate;
 835	unsigned long r;
 836
 837	if (!rate)
 838		return 0;
 839
 840	r = req->best_parent_rate >> 1;
 841
 842	/* If rate is an even divisor, no changes to parent required */
 843	if (r && !(r % rate))
 844		return 0;
 845
 846	if (clk_hw_get_flags(hw) & CLK_SET_RATE_PARENT) {
 847		if (rate > 200000000) {
 848			/* minimum r-divider is 2 */
 849			r = 2;
 850		} else {
 851			/* Take a parent frequency near 400 MHz */
 852			r = (400000000u / rate) & ~1;
 853		}
 854		req->best_parent_rate = r * rate;
 855	} else {
 856		/* We cannot change our parent's rate, report what we can do */
 857		r /= rate;
 858		rate = req->best_parent_rate / (r << 1);
 859	}
 860
 861	req->rate = rate;
 862	return 0;
 863}
 864
 865static int si5341_output_clk_set_rate(struct clk_hw *hw, unsigned long rate,
 866		unsigned long parent_rate)
 867{
 868	struct clk_si5341_output *output = to_clk_si5341_output(hw);
 869	u32 r_div;
 870	int err;
 871	u8 r[3];
 872
 873	if (!rate)
 874		return -EINVAL;
 875
 876	/* Frequency divider is (r_div + 1) * 2 */
 877	r_div = (parent_rate / rate) >> 1;
 878
 879	if (r_div <= 1)
 880		r_div = 0;
 881	else if (r_div >= BIT(24))
 882		r_div = BIT(24) - 1;
 883	else
 884		--r_div;
 885
 886	/* For a value of "2", we set the "OUT0_RDIV_FORCE2" bit */
 887	err = regmap_update_bits(output->data->regmap,
 888			SI5341_OUT_CONFIG(output),
 889			SI5341_OUT_CFG_RDIV_FORCE2,
 890			(r_div == 0) ? SI5341_OUT_CFG_RDIV_FORCE2 : 0);
 891	if (err < 0)
 892		return err;
 893
 894	/* Always write Rx_REG, because a zero value disables the divider */
 895	r[0] = r_div ? (r_div & 0xff) : 1;
 896	r[1] = (r_div >> 8) & 0xff;
 897	r[2] = (r_div >> 16) & 0xff;
 898	return regmap_bulk_write(output->data->regmap,
 899			SI5341_OUT_R_REG(output), r, 3);
 900}
 901
 902static int si5341_output_reparent(struct clk_si5341_output *output, u8 index)
 903{
 904	return regmap_update_bits(output->data->regmap,
 905		SI5341_OUT_MUX_SEL(output), 0x07, index);
 906}
 907
 908static int si5341_output_set_parent(struct clk_hw *hw, u8 index)
 909{
 910	struct clk_si5341_output *output = to_clk_si5341_output(hw);
 911
 912	if (index >= output->data->num_synth)
 913		return -EINVAL;
 914
 915	return si5341_output_reparent(output, index);
 916}
 917
 918static u8 si5341_output_get_parent(struct clk_hw *hw)
 919{
 920	struct clk_si5341_output *output = to_clk_si5341_output(hw);
 921	u32 val;
 922
 923	regmap_read(output->data->regmap, SI5341_OUT_MUX_SEL(output), &val);
 924
 925	return val & 0x7;
 926}
 927
 928static const struct clk_ops si5341_output_clk_ops = {
 929	.is_prepared = si5341_output_clk_is_on,
 930	.prepare = si5341_output_clk_prepare,
 931	.unprepare = si5341_output_clk_unprepare,
 932	.recalc_rate = si5341_output_clk_recalc_rate,
 933	.determine_rate = si5341_output_clk_determine_rate,
 934	.set_rate = si5341_output_clk_set_rate,
 935	.set_parent = si5341_output_set_parent,
 936	.get_parent = si5341_output_get_parent,
 937};
 938
 939/*
 940 * The chip can be bought in a pre-programmed version, or one can program the
 941 * NVM in the chip to boot up in a preset mode. This routine tries to determine
 942 * if that's the case, or if we need to reset and program everything from
 943 * scratch. Returns negative error, or true/false.
 944 */
 945static int si5341_is_programmed_already(struct clk_si5341 *data)
 946{
 947	int err;
 948	u8 r[4];
 949
 950	/* Read the PLL divider value, it must have a non-zero value */
 951	err = regmap_bulk_read(data->regmap, SI5341_PLL_M_DEN,
 952			r, ARRAY_SIZE(r));
 953	if (err < 0)
 954		return err;
 955
 956	return !!get_unaligned_le32(r);
 957}
 958
 959static struct clk_hw *
 960of_clk_si5341_get(struct of_phandle_args *clkspec, void *_data)
 961{
 962	struct clk_si5341 *data = _data;
 963	unsigned int idx = clkspec->args[1];
 964	unsigned int group = clkspec->args[0];
 965
 966	switch (group) {
 967	case 0:
 968		if (idx >= data->num_outputs) {
 969			dev_err(&data->i2c_client->dev,
 970				"invalid output index %u\n", idx);
 971			return ERR_PTR(-EINVAL);
 972		}
 973		return &data->clk[idx].hw;
 974	case 1:
 975		if (idx >= data->num_synth) {
 976			dev_err(&data->i2c_client->dev,
 977				"invalid synthesizer index %u\n", idx);
 978			return ERR_PTR(-EINVAL);
 979		}
 980		return &data->synth[idx].hw;
 981	case 2:
 982		if (idx > 0) {
 983			dev_err(&data->i2c_client->dev,
 984				"invalid PLL index %u\n", idx);
 985			return ERR_PTR(-EINVAL);
 986		}
 987		return &data->hw;
 988	default:
 989		dev_err(&data->i2c_client->dev, "invalid group %u\n", group);
 990		return ERR_PTR(-EINVAL);
 991	}
 992}
 993
 994static int si5341_probe_chip_id(struct clk_si5341 *data)
 995{
 996	int err;
 997	u8 reg[4];
 998	u16 model;
 999
1000	err = regmap_bulk_read(data->regmap, SI5341_PN_BASE, reg,
1001				ARRAY_SIZE(reg));
1002	if (err < 0) {
1003		dev_err(&data->i2c_client->dev, "Failed to read chip ID\n");
1004		return err;
1005	}
1006
1007	model = get_unaligned_le16(reg);
1008
1009	dev_info(&data->i2c_client->dev, "Chip: %x Grade: %u Rev: %u\n",
1010		 model, reg[2], reg[3]);
1011
1012	switch (model) {
1013	case 0x5340:
1014		data->num_outputs = SI5340_MAX_NUM_OUTPUTS;
1015		data->num_synth = SI5340_NUM_SYNTH;
1016		data->reg_output_offset = si5340_reg_output_offset;
1017		data->reg_rdiv_offset = si5340_reg_rdiv_offset;
1018		break;
1019	case 0x5341:
1020		data->num_outputs = SI5341_MAX_NUM_OUTPUTS;
1021		data->num_synth = SI5341_NUM_SYNTH;
1022		data->reg_output_offset = si5341_reg_output_offset;
1023		data->reg_rdiv_offset = si5341_reg_rdiv_offset;
1024		break;
1025	case 0x5342:
1026		data->num_outputs = SI5342_MAX_NUM_OUTPUTS;
1027		data->num_synth = SI5342_NUM_SYNTH;
1028		data->reg_output_offset = si5340_reg_output_offset;
1029		data->reg_rdiv_offset = si5340_reg_rdiv_offset;
1030		break;
1031	case 0x5344:
1032		data->num_outputs = SI5344_MAX_NUM_OUTPUTS;
1033		data->num_synth = SI5344_NUM_SYNTH;
1034		data->reg_output_offset = si5340_reg_output_offset;
1035		data->reg_rdiv_offset = si5340_reg_rdiv_offset;
1036		break;
1037	case 0x5345:
1038		data->num_outputs = SI5345_MAX_NUM_OUTPUTS;
1039		data->num_synth = SI5345_NUM_SYNTH;
1040		data->reg_output_offset = si5341_reg_output_offset;
1041		data->reg_rdiv_offset = si5341_reg_rdiv_offset;
1042		break;
1043	default:
1044		dev_err(&data->i2c_client->dev, "Model '%x' not supported\n",
1045			model);
1046		return -EINVAL;
1047	}
1048
1049	data->chip_id = model;
1050
1051	return 0;
1052}
1053
1054/* Read active settings into the regmap cache for later reference */
1055static int si5341_read_settings(struct clk_si5341 *data)
1056{
1057	int err;
1058	u8 i;
1059	u8 r[10];
1060
1061	err = regmap_bulk_read(data->regmap, SI5341_PLL_M_NUM, r, 10);
1062	if (err < 0)
1063		return err;
1064
1065	err = regmap_bulk_read(data->regmap,
1066				SI5341_SYNTH_N_CLK_TO_OUTX_EN, r, 3);
1067	if (err < 0)
1068		return err;
1069
1070	err = regmap_bulk_read(data->regmap,
1071				SI5341_SYNTH_N_CLK_DIS, r, 1);
1072	if (err < 0)
1073		return err;
1074
1075	for (i = 0; i < data->num_synth; ++i) {
1076		err = regmap_bulk_read(data->regmap,
1077					SI5341_SYNTH_N_NUM(i), r, 10);
1078		if (err < 0)
1079			return err;
1080	}
1081
1082	for (i = 0; i < data->num_outputs; ++i) {
1083		err = regmap_bulk_read(data->regmap,
1084					data->reg_output_offset[i], r, 4);
1085		if (err < 0)
1086			return err;
1087
1088		err = regmap_bulk_read(data->regmap,
1089					data->reg_rdiv_offset[i], r, 3);
1090		if (err < 0)
1091			return err;
1092	}
1093
1094	return 0;
1095}
1096
1097static int si5341_write_multiple(struct clk_si5341 *data,
1098	const struct si5341_reg_default *values, unsigned int num_values)
1099{
1100	unsigned int i;
1101	int res;
1102
1103	for (i = 0; i < num_values; ++i) {
1104		res = regmap_write(data->regmap,
1105			values[i].address, values[i].value);
1106		if (res < 0) {
1107			dev_err(&data->i2c_client->dev,
1108				"Failed to write %#x:%#x\n",
1109				values[i].address, values[i].value);
1110			return res;
1111		}
1112	}
1113
1114	return 0;
1115}
1116
1117static const struct si5341_reg_default si5341_preamble[] = {
1118	{ 0x0B25, 0x00 },
1119	{ 0x0502, 0x01 },
1120	{ 0x0505, 0x03 },
1121	{ 0x0957, 0x17 },
1122	{ 0x0B4E, 0x1A },
1123};
1124
1125static const struct si5341_reg_default si5345_preamble[] = {
1126	{ 0x0B25, 0x00 },
1127	{ 0x0540, 0x01 },
1128};
1129
1130static int si5341_send_preamble(struct clk_si5341 *data)
1131{
1132	int res;
1133	u32 revision;
1134
1135	/* For revision 2 and up, the values are slightly different */
1136	res = regmap_read(data->regmap, SI5341_DEVICE_REV, &revision);
1137	if (res < 0)
1138		return res;
1139
1140	/* Write "preamble" as specified by datasheet */
1141	res = regmap_write(data->regmap, 0xB24, revision < 2 ? 0xD8 : 0xC0);
1142	if (res < 0)
1143		return res;
1144
1145	/* The si5342..si5345 require a different preamble */
1146	if (data->chip_id > 0x5341)
1147		res = si5341_write_multiple(data,
1148			si5345_preamble, ARRAY_SIZE(si5345_preamble));
1149	else
1150		res = si5341_write_multiple(data,
1151			si5341_preamble, ARRAY_SIZE(si5341_preamble));
1152	if (res < 0)
1153		return res;
1154
1155	/* Datasheet specifies a 300ms wait after sending the preamble */
1156	msleep(300);
1157
1158	return 0;
1159}
1160
1161/* Perform a soft reset and write post-amble */
1162static int si5341_finalize_defaults(struct clk_si5341 *data)
1163{
1164	int res;
1165	u32 revision;
1166
1167	res = regmap_write(data->regmap, SI5341_IO_VDD_SEL,
1168			   data->iovdd_33 ? 1 : 0);
1169	if (res < 0)
1170		return res;
1171
1172	res = regmap_read(data->regmap, SI5341_DEVICE_REV, &revision);
1173	if (res < 0)
1174		return res;
1175
1176	dev_dbg(&data->i2c_client->dev, "%s rev=%u\n", __func__, revision);
1177
1178	res = regmap_write(data->regmap, SI5341_SOFT_RST, 0x01);
1179	if (res < 0)
1180		return res;
1181
1182	/* The si5342..si5345 have an additional post-amble */
1183	if (data->chip_id > 0x5341) {
1184		res = regmap_write(data->regmap, 0x540, 0x0);
1185		if (res < 0)
1186			return res;
1187	}
1188
1189	/* Datasheet does not explain these nameless registers */
1190	res = regmap_write(data->regmap, 0xB24, revision < 2 ? 0xDB : 0xC3);
1191	if (res < 0)
1192		return res;
1193	res = regmap_write(data->regmap, 0x0B25, 0x02);
1194	if (res < 0)
1195		return res;
1196
1197	return 0;
1198}
1199
1200
1201static const struct regmap_range si5341_regmap_volatile_range[] = {
1202	regmap_reg_range(0x000C, 0x0012), /* Status */
1203	regmap_reg_range(0x001C, 0x001E), /* reset, finc/fdec */
1204	regmap_reg_range(0x00E2, 0x00FE), /* NVM, interrupts, device ready */
1205	/* Update bits for P divider and synth config */
1206	regmap_reg_range(SI5341_PX_UPD, SI5341_PX_UPD),
1207	regmap_reg_range(SI5341_SYNTH_N_UPD(0), SI5341_SYNTH_N_UPD(0)),
1208	regmap_reg_range(SI5341_SYNTH_N_UPD(1), SI5341_SYNTH_N_UPD(1)),
1209	regmap_reg_range(SI5341_SYNTH_N_UPD(2), SI5341_SYNTH_N_UPD(2)),
1210	regmap_reg_range(SI5341_SYNTH_N_UPD(3), SI5341_SYNTH_N_UPD(3)),
1211	regmap_reg_range(SI5341_SYNTH_N_UPD(4), SI5341_SYNTH_N_UPD(4)),
1212};
1213
1214static const struct regmap_access_table si5341_regmap_volatile = {
1215	.yes_ranges = si5341_regmap_volatile_range,
1216	.n_yes_ranges = ARRAY_SIZE(si5341_regmap_volatile_range),
1217};
1218
1219/* Pages 0, 1, 2, 3, 9, A, B are valid, so there are 12 pages */
1220static const struct regmap_range_cfg si5341_regmap_ranges[] = {
1221	{
1222		.range_min = 0,
1223		.range_max = SI5341_REGISTER_MAX,
1224		.selector_reg = SI5341_PAGE,
1225		.selector_mask = 0xff,
1226		.selector_shift = 0,
1227		.window_start = 0,
1228		.window_len = 256,
1229	},
1230};
1231
1232static int si5341_wait_device_ready(struct i2c_client *client)
1233{
1234	int count;
1235
1236	/* Datasheet warns: Any attempt to read or write any register other
1237	 * than DEVICE_READY before DEVICE_READY reads as 0x0F may corrupt the
1238	 * NVM programming and may corrupt the register contents, as they are
1239	 * read from NVM. Note that this includes accesses to the PAGE register.
1240	 * Also: DEVICE_READY is available on every register page, so no page
1241	 * change is needed to read it.
1242	 * Do this outside regmap to avoid automatic PAGE register access.
1243	 * May take up to 300ms to complete.
1244	 */
1245	for (count = 0; count < 15; ++count) {
1246		s32 result = i2c_smbus_read_byte_data(client,
1247						      SI5341_DEVICE_READY);
1248		if (result < 0)
1249			return result;
1250		if (result == 0x0F)
1251			return 0;
1252		msleep(20);
1253	}
1254	dev_err(&client->dev, "timeout waiting for DEVICE_READY\n");
1255	return -EIO;
1256}
1257
1258static const struct regmap_config si5341_regmap_config = {
1259	.reg_bits = 8,
1260	.val_bits = 8,
1261	.cache_type = REGCACHE_MAPLE,
1262	.ranges = si5341_regmap_ranges,
1263	.num_ranges = ARRAY_SIZE(si5341_regmap_ranges),
1264	.max_register = SI5341_REGISTER_MAX,
1265	.volatile_table = &si5341_regmap_volatile,
1266};
1267
1268static int si5341_dt_parse_dt(struct clk_si5341 *data,
1269			      struct clk_si5341_output_config *config)
1270{
1271	struct device_node *child;
1272	struct device_node *np = data->i2c_client->dev.of_node;
1273	u32 num;
1274	u32 val;
1275
1276	memset(config, 0, sizeof(struct clk_si5341_output_config) *
1277				SI5341_MAX_NUM_OUTPUTS);
1278
1279	for_each_child_of_node(np, child) {
1280		if (of_property_read_u32(child, "reg", &num)) {
1281			dev_err(&data->i2c_client->dev, "missing reg property of %s\n",
1282				child->name);
1283			goto put_child;
1284		}
1285
1286		if (num >= SI5341_MAX_NUM_OUTPUTS) {
1287			dev_err(&data->i2c_client->dev, "invalid clkout %d\n", num);
1288			goto put_child;
1289		}
1290
1291		if (!of_property_read_u32(child, "silabs,format", &val)) {
1292			/* Set cm and ampl conservatively to 3v3 settings */
1293			switch (val) {
1294			case 1: /* normal differential */
1295				config[num].out_cm_ampl_bits = 0x33;
1296				break;
1297			case 2: /* low-power differential */
1298				config[num].out_cm_ampl_bits = 0x13;
1299				break;
1300			case 4: /* LVCMOS */
1301				config[num].out_cm_ampl_bits = 0x33;
1302				/* Set SI recommended impedance for LVCMOS */
1303				config[num].out_format_drv_bits |= 0xc0;
1304				break;
1305			default:
1306				dev_err(&data->i2c_client->dev,
1307					"invalid silabs,format %u for %u\n",
1308					val, num);
1309				goto put_child;
1310			}
1311			config[num].out_format_drv_bits &= ~0x07;
1312			config[num].out_format_drv_bits |= val & 0x07;
1313			/* Always enable the SYNC feature */
1314			config[num].out_format_drv_bits |= 0x08;
1315		}
1316
1317		if (!of_property_read_u32(child, "silabs,common-mode", &val)) {
1318			if (val > 0xf) {
1319				dev_err(&data->i2c_client->dev,
1320					"invalid silabs,common-mode %u\n",
1321					val);
1322				goto put_child;
1323			}
1324			config[num].out_cm_ampl_bits &= 0xf0;
1325			config[num].out_cm_ampl_bits |= val & 0x0f;
1326		}
1327
1328		if (!of_property_read_u32(child, "silabs,amplitude", &val)) {
1329			if (val > 0xf) {
1330				dev_err(&data->i2c_client->dev,
1331					"invalid silabs,amplitude %u\n",
1332					val);
1333				goto put_child;
1334			}
1335			config[num].out_cm_ampl_bits &= 0x0f;
1336			config[num].out_cm_ampl_bits |= (val << 4) & 0xf0;
1337		}
1338
1339		if (of_property_read_bool(child, "silabs,disable-high"))
1340			config[num].out_format_drv_bits |= 0x10;
1341
1342		config[num].synth_master =
1343			of_property_read_bool(child, "silabs,synth-master");
1344
1345		config[num].always_on =
1346			of_property_read_bool(child, "always-on");
1347
1348		config[num].vdd_sel_bits = 0x08;
1349		if (data->clk[num].vddo_reg) {
1350			int vdd = regulator_get_voltage(data->clk[num].vddo_reg);
1351
1352			switch (vdd) {
1353			case 3300000:
1354				config[num].vdd_sel_bits |= 0 << 4;
1355				break;
1356			case 1800000:
1357				config[num].vdd_sel_bits |= 1 << 4;
1358				break;
1359			case 2500000:
1360				config[num].vdd_sel_bits |= 2 << 4;
1361				break;
1362			default:
1363				dev_err(&data->i2c_client->dev,
1364					"unsupported vddo voltage %d for %s\n",
1365					vdd, child->name);
1366				goto put_child;
1367			}
1368		} else {
1369			/* chip seems to default to 2.5V when not set */
1370			dev_warn(&data->i2c_client->dev,
1371				"no regulator set, defaulting vdd_sel to 2.5V for %s\n",
1372				child->name);
1373			config[num].vdd_sel_bits |= 2 << 4;
1374		}
1375	}
1376
1377	return 0;
1378
1379put_child:
1380	of_node_put(child);
1381	return -EINVAL;
1382}
1383
1384/*
1385 * If not pre-configured, calculate and set the PLL configuration manually.
1386 * For low-jitter performance, the PLL should be set such that the synthesizers
1387 * only need integer division.
1388 * Without any user guidance, we'll set the PLL to 14GHz, which still allows
1389 * the chip to generate any frequency on its outputs, but jitter performance
1390 * may be sub-optimal.
1391 */
1392static int si5341_initialize_pll(struct clk_si5341 *data)
1393{
1394	struct device_node *np = data->i2c_client->dev.of_node;
1395	u32 m_num = 0;
1396	u32 m_den = 0;
1397	int sel;
1398
1399	if (of_property_read_u32(np, "silabs,pll-m-num", &m_num)) {
1400		dev_err(&data->i2c_client->dev,
1401			"PLL configuration requires silabs,pll-m-num\n");
1402	}
1403	if (of_property_read_u32(np, "silabs,pll-m-den", &m_den)) {
1404		dev_err(&data->i2c_client->dev,
1405			"PLL configuration requires silabs,pll-m-den\n");
1406	}
1407
1408	if (!m_num || !m_den) {
1409		dev_err(&data->i2c_client->dev,
1410			"PLL configuration invalid, assume 14GHz\n");
1411		sel = si5341_clk_get_selected_input(data);
1412		if (sel < 0)
1413			return sel;
1414
1415		m_den = clk_get_rate(data->input_clk[sel]) / 10;
1416		m_num = 1400000000;
1417	}
1418
1419	return si5341_encode_44_32(data->regmap,
1420			SI5341_PLL_M_NUM, m_num, m_den);
1421}
1422
1423static int si5341_clk_select_active_input(struct clk_si5341 *data)
1424{
1425	int res;
1426	int err;
1427	int i;
1428
1429	res = si5341_clk_get_selected_input(data);
1430	if (res < 0)
1431		return res;
1432
1433	/* If the current register setting is invalid, pick the first input */
1434	if (!data->input_clk[res]) {
1435		dev_dbg(&data->i2c_client->dev,
1436			"Input %d not connected, rerouting\n", res);
1437		res = -ENODEV;
1438		for (i = 0; i < SI5341_NUM_INPUTS; ++i) {
1439			if (data->input_clk[i]) {
1440				res = i;
1441				break;
1442			}
1443		}
1444		if (res < 0) {
1445			dev_err(&data->i2c_client->dev,
1446				"No clock input available\n");
1447			return res;
1448		}
1449	}
1450
1451	/* Make sure the selected clock is also enabled and routed */
1452	err = si5341_clk_reparent(data, res);
1453	if (err < 0)
1454		return err;
1455
1456	err = clk_prepare_enable(data->input_clk[res]);
1457	if (err < 0)
1458		return err;
1459
1460	return res;
1461}
1462
1463static ssize_t input_present_show(struct device *dev,
1464				  struct device_attribute *attr,
1465				  char *buf)
1466{
1467	struct clk_si5341 *data = dev_get_drvdata(dev);
1468	u32 status;
1469	int res = regmap_read(data->regmap, SI5341_STATUS, &status);
1470
1471	if (res < 0)
1472		return res;
1473	res = !(status & SI5341_STATUS_LOSREF);
1474	return sysfs_emit(buf, "%d\n", res);
1475}
1476static DEVICE_ATTR_RO(input_present);
1477
1478static ssize_t input_present_sticky_show(struct device *dev,
1479					 struct device_attribute *attr,
1480					 char *buf)
1481{
1482	struct clk_si5341 *data = dev_get_drvdata(dev);
1483	u32 status;
1484	int res = regmap_read(data->regmap, SI5341_STATUS_STICKY, &status);
1485
1486	if (res < 0)
1487		return res;
1488	res = !(status & SI5341_STATUS_LOSREF);
1489	return sysfs_emit(buf, "%d\n", res);
1490}
1491static DEVICE_ATTR_RO(input_present_sticky);
1492
1493static ssize_t pll_locked_show(struct device *dev,
1494			       struct device_attribute *attr,
1495			       char *buf)
1496{
1497	struct clk_si5341 *data = dev_get_drvdata(dev);
1498	u32 status;
1499	int res = regmap_read(data->regmap, SI5341_STATUS, &status);
1500
1501	if (res < 0)
1502		return res;
1503	res = !(status & SI5341_STATUS_LOL);
1504	return sysfs_emit(buf, "%d\n", res);
1505}
1506static DEVICE_ATTR_RO(pll_locked);
1507
1508static ssize_t pll_locked_sticky_show(struct device *dev,
1509				      struct device_attribute *attr,
1510				      char *buf)
1511{
1512	struct clk_si5341 *data = dev_get_drvdata(dev);
1513	u32 status;
1514	int res = regmap_read(data->regmap, SI5341_STATUS_STICKY, &status);
1515
1516	if (res < 0)
1517		return res;
1518	res = !(status & SI5341_STATUS_LOL);
1519	return sysfs_emit(buf, "%d\n", res);
1520}
1521static DEVICE_ATTR_RO(pll_locked_sticky);
1522
1523static ssize_t clear_sticky_store(struct device *dev,
1524				  struct device_attribute *attr,
1525				  const char *buf, size_t count)
1526{
1527	struct clk_si5341 *data = dev_get_drvdata(dev);
1528	long val;
1529
1530	if (kstrtol(buf, 10, &val))
1531		return -EINVAL;
1532	if (val) {
1533		int res = regmap_write(data->regmap, SI5341_STATUS_STICKY, 0);
1534
1535		if (res < 0)
1536			return res;
1537	}
1538	return count;
1539}
1540static DEVICE_ATTR_WO(clear_sticky);
1541
1542static const struct attribute *si5341_attributes[] = {
1543	&dev_attr_input_present.attr,
1544	&dev_attr_input_present_sticky.attr,
1545	&dev_attr_pll_locked.attr,
1546	&dev_attr_pll_locked_sticky.attr,
1547	&dev_attr_clear_sticky.attr,
1548	NULL
1549};
1550
1551static int si5341_probe(struct i2c_client *client)
1552{
1553	struct clk_si5341 *data;
1554	struct clk_init_data init;
1555	struct clk *input;
1556	const char *root_clock_name;
1557	const char *synth_clock_names[SI5341_NUM_SYNTH] = { NULL };
1558	int err;
1559	unsigned int i;
1560	struct clk_si5341_output_config config[SI5341_MAX_NUM_OUTPUTS];
1561	bool initialization_required;
1562	u32 status;
1563
1564	data = devm_kzalloc(&client->dev, sizeof(*data), GFP_KERNEL);
1565	if (!data)
1566		return -ENOMEM;
1567
1568	data->i2c_client = client;
1569
1570	/* Must be done before otherwise touching hardware */
1571	err = si5341_wait_device_ready(client);
1572	if (err)
1573		return err;
1574
1575	for (i = 0; i < SI5341_NUM_INPUTS; ++i) {
1576		input = devm_clk_get(&client->dev, si5341_input_clock_names[i]);
1577		if (IS_ERR(input)) {
1578			if (PTR_ERR(input) == -EPROBE_DEFER)
1579				return -EPROBE_DEFER;
1580			data->input_clk_name[i] = si5341_input_clock_names[i];
1581		} else {
1582			data->input_clk[i] = input;
1583			data->input_clk_name[i] = __clk_get_name(input);
1584		}
1585	}
1586
1587	for (i = 0; i < SI5341_MAX_NUM_OUTPUTS; ++i) {
1588		char reg_name[10];
1589
1590		snprintf(reg_name, sizeof(reg_name), "vddo%d", i);
1591		data->clk[i].vddo_reg = devm_regulator_get_optional(
1592			&client->dev, reg_name);
1593		if (IS_ERR(data->clk[i].vddo_reg)) {
1594			err = PTR_ERR(data->clk[i].vddo_reg);
1595			data->clk[i].vddo_reg = NULL;
1596			if (err == -ENODEV)
1597				continue;
1598			goto cleanup;
1599		} else {
1600			err = regulator_enable(data->clk[i].vddo_reg);
1601			if (err) {
1602				dev_err(&client->dev,
1603					"failed to enable %s regulator: %d\n",
1604					reg_name, err);
1605				data->clk[i].vddo_reg = NULL;
1606				goto cleanup;
1607			}
1608		}
1609	}
1610
1611	err = si5341_dt_parse_dt(data, config);
1612	if (err)
1613		goto cleanup;
1614
1615	if (of_property_read_string(client->dev.of_node, "clock-output-names",
1616			&init.name))
1617		init.name = client->dev.of_node->name;
1618	root_clock_name = init.name;
1619
1620	data->regmap = devm_regmap_init_i2c(client, &si5341_regmap_config);
1621	if (IS_ERR(data->regmap)) {
1622		err = PTR_ERR(data->regmap);
1623		goto cleanup;
1624	}
1625
1626	i2c_set_clientdata(client, data);
1627
1628	err = si5341_probe_chip_id(data);
1629	if (err < 0)
1630		goto cleanup;
1631
1632	if (of_property_read_bool(client->dev.of_node, "silabs,reprogram")) {
1633		initialization_required = true;
1634	} else {
1635		err = si5341_is_programmed_already(data);
1636		if (err < 0)
1637			goto cleanup;
1638
1639		initialization_required = !err;
1640	}
1641	data->xaxb_ext_clk = of_property_read_bool(client->dev.of_node,
1642						   "silabs,xaxb-ext-clk");
1643	data->iovdd_33 = of_property_read_bool(client->dev.of_node,
1644					       "silabs,iovdd-33");
1645
1646	if (initialization_required) {
1647		/* Populate the regmap cache in preparation for "cache only" */
1648		err = si5341_read_settings(data);
1649		if (err < 0)
1650			goto cleanup;
1651
1652		err = si5341_send_preamble(data);
1653		if (err < 0)
1654			goto cleanup;
1655
1656		/*
1657		 * We intend to send all 'final' register values in a single
1658		 * transaction. So cache all register writes until we're done
1659		 * configuring.
1660		 */
1661		regcache_cache_only(data->regmap, true);
1662
1663		/* Write the configuration pairs from the firmware blob */
1664		err = si5341_write_multiple(data, si5341_reg_defaults,
1665					ARRAY_SIZE(si5341_reg_defaults));
1666		if (err < 0)
1667			goto cleanup;
1668	}
1669
1670	/* Input must be up and running at this point */
1671	err = si5341_clk_select_active_input(data);
1672	if (err < 0)
1673		goto cleanup;
1674
1675	if (initialization_required) {
1676		/* PLL configuration is required */
1677		err = si5341_initialize_pll(data);
1678		if (err < 0)
1679			goto cleanup;
1680	}
1681
1682	/* Register the PLL */
1683	init.parent_names = data->input_clk_name;
1684	init.num_parents = SI5341_NUM_INPUTS;
1685	init.ops = &si5341_clk_ops;
1686	init.flags = 0;
1687	data->hw.init = &init;
1688
1689	err = devm_clk_hw_register(&client->dev, &data->hw);
1690	if (err) {
1691		dev_err(&client->dev, "clock registration failed\n");
1692		goto cleanup;
1693	}
1694
1695	init.num_parents = 1;
1696	init.parent_names = &root_clock_name;
1697	init.ops = &si5341_synth_clk_ops;
1698	for (i = 0; i < data->num_synth; ++i) {
1699		synth_clock_names[i] = devm_kasprintf(&client->dev, GFP_KERNEL,
1700				"%s.N%u", client->dev.of_node->name, i);
1701		if (!synth_clock_names[i]) {
1702			err = -ENOMEM;
1703			goto free_clk_names;
1704		}
1705		init.name = synth_clock_names[i];
1706		data->synth[i].index = i;
1707		data->synth[i].data = data;
1708		data->synth[i].hw.init = &init;
1709		err = devm_clk_hw_register(&client->dev, &data->synth[i].hw);
1710		if (err) {
1711			dev_err(&client->dev,
1712				"synth N%u registration failed\n", i);
1713			goto free_clk_names;
1714		}
1715	}
1716
1717	init.num_parents = data->num_synth;
1718	init.parent_names = synth_clock_names;
1719	init.ops = &si5341_output_clk_ops;
1720	for (i = 0; i < data->num_outputs; ++i) {
1721		init.name = kasprintf(GFP_KERNEL, "%s.%d",
1722			client->dev.of_node->name, i);
1723		if (!init.name) {
1724			err = -ENOMEM;
1725			goto free_clk_names;
1726		}
1727		init.flags = config[i].synth_master ? CLK_SET_RATE_PARENT : 0;
1728		data->clk[i].index = i;
1729		data->clk[i].data = data;
1730		data->clk[i].hw.init = &init;
1731		if (config[i].out_format_drv_bits & 0x07) {
1732			regmap_write(data->regmap,
1733				SI5341_OUT_FORMAT(&data->clk[i]),
1734				config[i].out_format_drv_bits);
1735			regmap_write(data->regmap,
1736				SI5341_OUT_CM(&data->clk[i]),
1737				config[i].out_cm_ampl_bits);
1738			regmap_update_bits(data->regmap,
1739				SI5341_OUT_MUX_SEL(&data->clk[i]),
1740				SI5341_OUT_MUX_VDD_SEL_MASK,
1741				config[i].vdd_sel_bits);
1742		}
1743		err = devm_clk_hw_register(&client->dev, &data->clk[i].hw);
1744		kfree(init.name); /* clock framework made a copy of the name */
1745		if (err) {
1746			dev_err(&client->dev,
1747				"output %u registration failed\n", i);
1748			goto free_clk_names;
1749		}
1750		if (config[i].always_on)
1751			clk_prepare(data->clk[i].hw.clk);
1752	}
1753
1754	err = devm_of_clk_add_hw_provider(&client->dev, of_clk_si5341_get,
1755			data);
1756	if (err) {
1757		dev_err(&client->dev, "unable to add clk provider\n");
1758		goto free_clk_names;
1759	}
1760
1761	if (initialization_required) {
1762		/* Synchronize */
1763		regcache_cache_only(data->regmap, false);
1764		err = regcache_sync(data->regmap);
1765		if (err < 0)
1766			goto free_clk_names;
1767
1768		err = si5341_finalize_defaults(data);
1769		if (err < 0)
1770			goto free_clk_names;
1771	}
1772
1773	/* wait for device to report input clock present and PLL lock */
1774	err = regmap_read_poll_timeout(data->regmap, SI5341_STATUS, status,
1775		!(status & (SI5341_STATUS_LOSREF | SI5341_STATUS_LOL)),
1776	       10000, 250000);
1777	if (err) {
1778		dev_err(&client->dev, "Error waiting for input clock or PLL lock\n");
1779		goto free_clk_names;
1780	}
1781
1782	/* clear sticky alarm bits from initialization */
1783	err = regmap_write(data->regmap, SI5341_STATUS_STICKY, 0);
1784	if (err) {
1785		dev_err(&client->dev, "unable to clear sticky status\n");
1786		goto free_clk_names;
1787	}
1788
1789	err = sysfs_create_files(&client->dev.kobj, si5341_attributes);
1790	if (err)
1791		dev_err(&client->dev, "unable to create sysfs files\n");
1792
1793free_clk_names:
1794	/* Free the names, clk framework makes copies */
1795	for (i = 0; i < data->num_synth; ++i)
1796		 devm_kfree(&client->dev, (void *)synth_clock_names[i]);
1797
1798cleanup:
1799	if (err) {
1800		for (i = 0; i < SI5341_MAX_NUM_OUTPUTS; ++i) {
1801			if (data->clk[i].vddo_reg)
1802				regulator_disable(data->clk[i].vddo_reg);
1803		}
1804	}
1805	return err;
1806}
1807
1808static void si5341_remove(struct i2c_client *client)
1809{
1810	struct clk_si5341 *data = i2c_get_clientdata(client);
1811	int i;
1812
1813	sysfs_remove_files(&client->dev.kobj, si5341_attributes);
1814
1815	for (i = 0; i < SI5341_MAX_NUM_OUTPUTS; ++i) {
1816		if (data->clk[i].vddo_reg)
1817			regulator_disable(data->clk[i].vddo_reg);
1818	}
1819}
1820
1821static const struct i2c_device_id si5341_id[] = {
1822	{ "si5340", 0 },
1823	{ "si5341", 1 },
1824	{ "si5342", 2 },
1825	{ "si5344", 4 },
1826	{ "si5345", 5 },
1827	{ }
1828};
1829MODULE_DEVICE_TABLE(i2c, si5341_id);
1830
1831static const struct of_device_id clk_si5341_of_match[] = {
1832	{ .compatible = "silabs,si5340" },
1833	{ .compatible = "silabs,si5341" },
1834	{ .compatible = "silabs,si5342" },
1835	{ .compatible = "silabs,si5344" },
1836	{ .compatible = "silabs,si5345" },
1837	{ }
1838};
1839MODULE_DEVICE_TABLE(of, clk_si5341_of_match);
1840
1841static struct i2c_driver si5341_driver = {
1842	.driver = {
1843		.name = "si5341",
1844		.of_match_table = clk_si5341_of_match,
1845	},
1846	.probe		= si5341_probe,
1847	.remove		= si5341_remove,
1848	.id_table	= si5341_id,
1849};
1850module_i2c_driver(si5341_driver);
1851
1852MODULE_AUTHOR("Mike Looijmans <mike.looijmans@topic.nl>");
1853MODULE_DESCRIPTION("Si5341 driver");
1854MODULE_LICENSE("GPL");