Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.5.6.
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Driver for Silicon Labs Si5340, Si5341, Si5342, Si5344 and Si5345
   4 * Copyright (C) 2019 Topic Embedded Products
   5 * Author: Mike Looijmans <mike.looijmans@topic.nl>
   6 *
   7 * The Si5341 has 10 outputs and 5 synthesizers.
   8 * The Si5340 is a smaller version of the Si5341 with only 4 outputs.
   9 * The Si5345 is similar to the Si5341, with the addition of fractional input
  10 * dividers and automatic input selection.
  11 * The Si5342 and Si5344 are smaller versions of the Si5345.
  12 */
  13
  14#include <linux/clk.h>
  15#include <linux/clk-provider.h>
  16#include <linux/delay.h>
  17#include <linux/gcd.h>
  18#include <linux/math64.h>
  19#include <linux/i2c.h>
  20#include <linux/module.h>
  21#include <linux/regmap.h>
  22#include <linux/regulator/consumer.h>
  23#include <linux/slab.h>
  24#include <asm/unaligned.h>
  25
  26#define SI5341_NUM_INPUTS 4
  27
  28#define SI5340_MAX_NUM_OUTPUTS 4
  29#define SI5341_MAX_NUM_OUTPUTS 10
  30#define SI5342_MAX_NUM_OUTPUTS 2
  31#define SI5344_MAX_NUM_OUTPUTS 4
  32#define SI5345_MAX_NUM_OUTPUTS 10
  33
  34#define SI5340_NUM_SYNTH 4
  35#define SI5341_NUM_SYNTH 5
  36#define SI5342_NUM_SYNTH 2
  37#define SI5344_NUM_SYNTH 4
  38#define SI5345_NUM_SYNTH 5
  39
  40/* Range of the synthesizer fractional divider */
  41#define SI5341_SYNTH_N_MIN	10
  42#define SI5341_SYNTH_N_MAX	4095
  43
  44/* The chip can get its input clock from 3 input pins or an XTAL */
  45
  46/* There is one PLL running at 13500–14256 MHz */
  47#define SI5341_PLL_VCO_MIN 13500000000ull
  48#define SI5341_PLL_VCO_MAX 14256000000ull
  49
  50/* The 5 frequency synthesizers obtain their input from the PLL */
  51struct clk_si5341_synth {
  52	struct clk_hw hw;
  53	struct clk_si5341 *data;
  54	u8 index;
  55};
  56#define to_clk_si5341_synth(_hw) \
  57	container_of(_hw, struct clk_si5341_synth, hw)
  58
  59/* The output stages can be connected to any synth (full mux) */
  60struct clk_si5341_output {
  61	struct clk_hw hw;
  62	struct clk_si5341 *data;
  63	struct regulator *vddo_reg;
  64	u8 index;
  65};
  66#define to_clk_si5341_output(_hw) \
  67	container_of(_hw, struct clk_si5341_output, hw)
  68
  69struct clk_si5341 {
  70	struct clk_hw hw;
  71	struct regmap *regmap;
  72	struct i2c_client *i2c_client;
  73	struct clk_si5341_synth synth[SI5341_NUM_SYNTH];
  74	struct clk_si5341_output clk[SI5341_MAX_NUM_OUTPUTS];
  75	struct clk *input_clk[SI5341_NUM_INPUTS];
  76	const char *input_clk_name[SI5341_NUM_INPUTS];
  77	const u16 *reg_output_offset;
  78	const u16 *reg_rdiv_offset;
  79	u64 freq_vco; /* 13500–14256 MHz */
  80	u8 num_outputs;
  81	u8 num_synth;
  82	u16 chip_id;
  83	bool xaxb_ext_clk;
  84	bool iovdd_33;
  85};
  86#define to_clk_si5341(_hw)	container_of(_hw, struct clk_si5341, hw)
  87
  88struct clk_si5341_output_config {
  89	u8 out_format_drv_bits;
  90	u8 out_cm_ampl_bits;
  91	u8 vdd_sel_bits;
  92	bool synth_master;
  93	bool always_on;
  94};
  95
  96#define SI5341_PAGE		0x0001
  97#define SI5341_PN_BASE		0x0002
  98#define SI5341_DEVICE_REV	0x0005
  99#define SI5341_STATUS		0x000C
 100#define SI5341_LOS		0x000D
 101#define SI5341_STATUS_STICKY	0x0011
 102#define SI5341_LOS_STICKY	0x0012
 103#define SI5341_SOFT_RST		0x001C
 104#define SI5341_IN_SEL		0x0021
 105#define SI5341_DEVICE_READY	0x00FE
 106#define SI5341_XAXB_CFG		0x090E
 107#define SI5341_IO_VDD_SEL	0x0943
 108#define SI5341_IN_EN		0x0949
 109#define SI5341_INX_TO_PFD_EN	0x094A
 110
 111/* Status bits */
 112#define SI5341_STATUS_SYSINCAL	BIT(0)
 113#define SI5341_STATUS_LOSXAXB	BIT(1)
 114#define SI5341_STATUS_LOSREF	BIT(2)
 115#define SI5341_STATUS_LOL	BIT(3)
 116
 117/* Input selection */
 118#define SI5341_IN_SEL_MASK	0x06
 119#define SI5341_IN_SEL_SHIFT	1
 120#define SI5341_IN_SEL_REGCTRL	0x01
 121#define SI5341_INX_TO_PFD_SHIFT	4
 122
 123/* XTAL config bits */
 124#define SI5341_XAXB_CFG_EXTCLK_EN	BIT(0)
 125#define SI5341_XAXB_CFG_PDNB		BIT(1)
 126
 127/* Input dividers (48-bit) */
 128#define SI5341_IN_PDIV(x)	(0x0208 + ((x) * 10))
 129#define SI5341_IN_PSET(x)	(0x020E + ((x) * 10))
 130#define SI5341_PX_UPD		0x0230
 131
 132/* PLL configuration */
 133#define SI5341_PLL_M_NUM	0x0235
 134#define SI5341_PLL_M_DEN	0x023B
 135
 136/* Output configuration */
 137#define SI5341_OUT_CONFIG(output)	\
 138			((output)->data->reg_output_offset[(output)->index])
 139#define SI5341_OUT_FORMAT(output)	(SI5341_OUT_CONFIG(output) + 1)
 140#define SI5341_OUT_CM(output)		(SI5341_OUT_CONFIG(output) + 2)
 141#define SI5341_OUT_MUX_SEL(output)	(SI5341_OUT_CONFIG(output) + 3)
 142#define SI5341_OUT_R_REG(output)	\
 143			((output)->data->reg_rdiv_offset[(output)->index])
 144
 145#define SI5341_OUT_MUX_VDD_SEL_MASK 0x38
 146
 147/* Synthesize N divider */
 148#define SI5341_SYNTH_N_NUM(x)	(0x0302 + ((x) * 11))
 149#define SI5341_SYNTH_N_DEN(x)	(0x0308 + ((x) * 11))
 150#define SI5341_SYNTH_N_UPD(x)	(0x030C + ((x) * 11))
 151
 152/* Synthesizer output enable, phase bypass, power mode */
 153#define SI5341_SYNTH_N_CLK_TO_OUTX_EN	0x0A03
 154#define SI5341_SYNTH_N_PIBYP		0x0A04
 155#define SI5341_SYNTH_N_PDNB		0x0A05
 156#define SI5341_SYNTH_N_CLK_DIS		0x0B4A
 157
 158#define SI5341_REGISTER_MAX	0xBFF
 159
 160/* SI5341_OUT_CONFIG bits */
 161#define SI5341_OUT_CFG_PDN		BIT(0)
 162#define SI5341_OUT_CFG_OE		BIT(1)
 163#define SI5341_OUT_CFG_RDIV_FORCE2	BIT(2)
 164
 165/* Static configuration (to be moved to firmware) */
 166struct si5341_reg_default {
 167	u16 address;
 168	u8 value;
 169};
 170
 171static const char * const si5341_input_clock_names[] = {
 172	"in0", "in1", "in2", "xtal"
 173};
 174
 175/* Output configuration registers 0..9 are not quite logically organized */
 176/* Also for si5345 */
 177static const u16 si5341_reg_output_offset[] = {
 178	0x0108,
 179	0x010D,
 180	0x0112,
 181	0x0117,
 182	0x011C,
 183	0x0121,
 184	0x0126,
 185	0x012B,
 186	0x0130,
 187	0x013A,
 188};
 189
 190/* for si5340, si5342 and si5344 */
 191static const u16 si5340_reg_output_offset[] = {
 192	0x0112,
 193	0x0117,
 194	0x0126,
 195	0x012B,
 196};
 197
 198/* The location of the R divider registers */
 199static const u16 si5341_reg_rdiv_offset[] = {
 200	0x024A,
 201	0x024D,
 202	0x0250,
 203	0x0253,
 204	0x0256,
 205	0x0259,
 206	0x025C,
 207	0x025F,
 208	0x0262,
 209	0x0268,
 210};
 211static const u16 si5340_reg_rdiv_offset[] = {
 212	0x0250,
 213	0x0253,
 214	0x025C,
 215	0x025F,
 216};
 217
 218/*
 219 * Programming sequence from ClockBuilder, settings to initialize the system
 220 * using only the XTAL input, without pre-divider.
 221 * This also contains settings that aren't mentioned anywhere in the datasheet.
 222 * The "known" settings like synth and output configuration are done later.
 223 */
 224static const struct si5341_reg_default si5341_reg_defaults[] = {
 225	{ 0x0017, 0x3A }, /* INT mask (disable interrupts) */
 226	{ 0x0018, 0xFF }, /* INT mask */
 227	{ 0x0021, 0x0F }, /* Select XTAL as input */
 228	{ 0x0022, 0x00 }, /* Not in datasheet */
 229	{ 0x002B, 0x02 }, /* SPI config */
 230	{ 0x002C, 0x20 }, /* LOS enable for XTAL */
 231	{ 0x002D, 0x00 }, /* LOS timing */
 232	{ 0x002E, 0x00 },
 233	{ 0x002F, 0x00 },
 234	{ 0x0030, 0x00 },
 235	{ 0x0031, 0x00 },
 236	{ 0x0032, 0x00 },
 237	{ 0x0033, 0x00 },
 238	{ 0x0034, 0x00 },
 239	{ 0x0035, 0x00 },
 240	{ 0x0036, 0x00 },
 241	{ 0x0037, 0x00 },
 242	{ 0x0038, 0x00 }, /* LOS setting (thresholds) */
 243	{ 0x0039, 0x00 },
 244	{ 0x003A, 0x00 },
 245	{ 0x003B, 0x00 },
 246	{ 0x003C, 0x00 },
 247	{ 0x003D, 0x00 }, /* LOS setting (thresholds) end */
 248	{ 0x0041, 0x00 }, /* LOS0_DIV_SEL */
 249	{ 0x0042, 0x00 }, /* LOS1_DIV_SEL */
 250	{ 0x0043, 0x00 }, /* LOS2_DIV_SEL */
 251	{ 0x0044, 0x00 }, /* LOS3_DIV_SEL */
 252	{ 0x009E, 0x00 }, /* Not in datasheet */
 253	{ 0x0102, 0x01 }, /* Enable outputs */
 254	{ 0x013F, 0x00 }, /* Not in datasheet */
 255	{ 0x0140, 0x00 }, /* Not in datasheet */
 256	{ 0x0141, 0x40 }, /* OUT LOS */
 257	{ 0x0202, 0x00 }, /* XAXB_FREQ_OFFSET (=0)*/
 258	{ 0x0203, 0x00 },
 259	{ 0x0204, 0x00 },
 260	{ 0x0205, 0x00 },
 261	{ 0x0206, 0x00 }, /* PXAXB (2^x) */
 262	{ 0x0208, 0x00 }, /* Px divider setting (usually 0) */
 263	{ 0x0209, 0x00 },
 264	{ 0x020A, 0x00 },
 265	{ 0x020B, 0x00 },
 266	{ 0x020C, 0x00 },
 267	{ 0x020D, 0x00 },
 268	{ 0x020E, 0x00 },
 269	{ 0x020F, 0x00 },
 270	{ 0x0210, 0x00 },
 271	{ 0x0211, 0x00 },
 272	{ 0x0212, 0x00 },
 273	{ 0x0213, 0x00 },
 274	{ 0x0214, 0x00 },
 275	{ 0x0215, 0x00 },
 276	{ 0x0216, 0x00 },
 277	{ 0x0217, 0x00 },
 278	{ 0x0218, 0x00 },
 279	{ 0x0219, 0x00 },
 280	{ 0x021A, 0x00 },
 281	{ 0x021B, 0x00 },
 282	{ 0x021C, 0x00 },
 283	{ 0x021D, 0x00 },
 284	{ 0x021E, 0x00 },
 285	{ 0x021F, 0x00 },
 286	{ 0x0220, 0x00 },
 287	{ 0x0221, 0x00 },
 288	{ 0x0222, 0x00 },
 289	{ 0x0223, 0x00 },
 290	{ 0x0224, 0x00 },
 291	{ 0x0225, 0x00 },
 292	{ 0x0226, 0x00 },
 293	{ 0x0227, 0x00 },
 294	{ 0x0228, 0x00 },
 295	{ 0x0229, 0x00 },
 296	{ 0x022A, 0x00 },
 297	{ 0x022B, 0x00 },
 298	{ 0x022C, 0x00 },
 299	{ 0x022D, 0x00 },
 300	{ 0x022E, 0x00 },
 301	{ 0x022F, 0x00 }, /* Px divider setting (usually 0) end */
 302	{ 0x026B, 0x00 }, /* DESIGN_ID (ASCII string) */
 303	{ 0x026C, 0x00 },
 304	{ 0x026D, 0x00 },
 305	{ 0x026E, 0x00 },
 306	{ 0x026F, 0x00 },
 307	{ 0x0270, 0x00 },
 308	{ 0x0271, 0x00 },
 309	{ 0x0272, 0x00 }, /* DESIGN_ID (ASCII string) end */
 310	{ 0x0339, 0x1F }, /* N_FSTEP_MSK */
 311	{ 0x033B, 0x00 }, /* Nx_FSTEPW (Frequency step) */
 312	{ 0x033C, 0x00 },
 313	{ 0x033D, 0x00 },
 314	{ 0x033E, 0x00 },
 315	{ 0x033F, 0x00 },
 316	{ 0x0340, 0x00 },
 317	{ 0x0341, 0x00 },
 318	{ 0x0342, 0x00 },
 319	{ 0x0343, 0x00 },
 320	{ 0x0344, 0x00 },
 321	{ 0x0345, 0x00 },
 322	{ 0x0346, 0x00 },
 323	{ 0x0347, 0x00 },
 324	{ 0x0348, 0x00 },
 325	{ 0x0349, 0x00 },
 326	{ 0x034A, 0x00 },
 327	{ 0x034B, 0x00 },
 328	{ 0x034C, 0x00 },
 329	{ 0x034D, 0x00 },
 330	{ 0x034E, 0x00 },
 331	{ 0x034F, 0x00 },
 332	{ 0x0350, 0x00 },
 333	{ 0x0351, 0x00 },
 334	{ 0x0352, 0x00 },
 335	{ 0x0353, 0x00 },
 336	{ 0x0354, 0x00 },
 337	{ 0x0355, 0x00 },
 338	{ 0x0356, 0x00 },
 339	{ 0x0357, 0x00 },
 340	{ 0x0358, 0x00 }, /* Nx_FSTEPW (Frequency step) end */
 341	{ 0x0359, 0x00 }, /* Nx_DELAY */
 342	{ 0x035A, 0x00 },
 343	{ 0x035B, 0x00 },
 344	{ 0x035C, 0x00 },
 345	{ 0x035D, 0x00 },
 346	{ 0x035E, 0x00 },
 347	{ 0x035F, 0x00 },
 348	{ 0x0360, 0x00 },
 349	{ 0x0361, 0x00 },
 350	{ 0x0362, 0x00 }, /* Nx_DELAY end */
 351	{ 0x0802, 0x00 }, /* Not in datasheet */
 352	{ 0x0803, 0x00 }, /* Not in datasheet */
 353	{ 0x0804, 0x00 }, /* Not in datasheet */
 354	{ 0x090E, 0x02 }, /* XAXB_EXTCLK_EN=0 XAXB_PDNB=1 (use XTAL) */
 355	{ 0x091C, 0x04 }, /* ZDM_EN=4 (Normal mode) */
 356	{ 0x0949, 0x00 }, /* IN_EN (disable input clocks) */
 357	{ 0x094A, 0x00 }, /* INx_TO_PFD_EN (disabled) */
 358	{ 0x0A02, 0x00 }, /* Not in datasheet */
 359	{ 0x0B44, 0x0F }, /* PDIV_ENB (datasheet does not mention what it is) */
 360	{ 0x0B57, 0x10 }, /* VCO_RESET_CALCODE (not described in datasheet) */
 361	{ 0x0B58, 0x05 }, /* VCO_RESET_CALCODE (not described in datasheet) */
 362};
 363
 364/* Read and interpret a 44-bit followed by a 32-bit value in the regmap */
 365static int si5341_decode_44_32(struct regmap *regmap, unsigned int reg,
 366	u64 *val1, u32 *val2)
 367{
 368	int err;
 369	u8 r[10];
 370
 371	err = regmap_bulk_read(regmap, reg, r, 10);
 372	if (err < 0)
 373		return err;
 374
 375	*val1 = ((u64)((r[5] & 0x0f) << 8 | r[4]) << 32) |
 376		 (get_unaligned_le32(r));
 377	*val2 = get_unaligned_le32(&r[6]);
 378
 379	return 0;
 380}
 381
 382static int si5341_encode_44_32(struct regmap *regmap, unsigned int reg,
 383	u64 n_num, u32 n_den)
 384{
 385	u8 r[10];
 386
 387	/* Shift left as far as possible without overflowing */
 388	while (!(n_num & BIT_ULL(43)) && !(n_den & BIT(31))) {
 389		n_num <<= 1;
 390		n_den <<= 1;
 391	}
 392
 393	/* 44 bits (6 bytes) numerator */
 394	put_unaligned_le32(n_num, r);
 395	r[4] = (n_num >> 32) & 0xff;
 396	r[5] = (n_num >> 40) & 0x0f;
 397	/* 32 bits denominator */
 398	put_unaligned_le32(n_den, &r[6]);
 399
 400	/* Program the fraction */
 401	return regmap_bulk_write(regmap, reg, r, sizeof(r));
 402}
 403
 404/* VCO, we assume it runs at a constant frequency */
 405static unsigned long si5341_clk_recalc_rate(struct clk_hw *hw,
 406		unsigned long parent_rate)
 407{
 408	struct clk_si5341 *data = to_clk_si5341(hw);
 409	int err;
 410	u64 res;
 411	u64 m_num;
 412	u32 m_den;
 413	unsigned int shift;
 414
 415	/* Assume that PDIV is not being used, just read the PLL setting */
 416	err = si5341_decode_44_32(data->regmap, SI5341_PLL_M_NUM,
 417				&m_num, &m_den);
 418	if (err < 0)
 419		return 0;
 420
 421	if (!m_num || !m_den)
 422		return 0;
 423
 424	/*
 425	 * Though m_num is 64-bit, only the upper bits are actually used. While
 426	 * calculating m_num and m_den, they are shifted as far as possible to
 427	 * the left. To avoid 96-bit division here, we just shift them back so
 428	 * we can do with just 64 bits.
 429	 */
 430	shift = 0;
 431	res = m_num;
 432	while (res & 0xffff00000000ULL) {
 433		++shift;
 434		res >>= 1;
 435	}
 436	res *= parent_rate;
 437	do_div(res, (m_den >> shift));
 438
 439	/* We cannot return the actual frequency in 32 bit, store it locally */
 440	data->freq_vco = res;
 441
 442	/* Report kHz since the value is out of range */
 443	do_div(res, 1000);
 444
 445	return (unsigned long)res;
 446}
 447
 448static int si5341_clk_get_selected_input(struct clk_si5341 *data)
 449{
 450	int err;
 451	u32 val;
 452
 453	err = regmap_read(data->regmap, SI5341_IN_SEL, &val);
 454	if (err < 0)
 455		return err;
 456
 457	return (val & SI5341_IN_SEL_MASK) >> SI5341_IN_SEL_SHIFT;
 458}
 459
 460static u8 si5341_clk_get_parent(struct clk_hw *hw)
 461{
 462	struct clk_si5341 *data = to_clk_si5341(hw);
 463	int res = si5341_clk_get_selected_input(data);
 464
 465	if (res < 0)
 466		return 0; /* Apparently we cannot report errors */
 467
 468	return res;
 469}
 470
 471static int si5341_clk_reparent(struct clk_si5341 *data, u8 index)
 472{
 473	int err;
 474	u8 val;
 475
 476	val = (index << SI5341_IN_SEL_SHIFT) & SI5341_IN_SEL_MASK;
 477	/* Enable register-based input selection */
 478	val |= SI5341_IN_SEL_REGCTRL;
 479
 480	err = regmap_update_bits(data->regmap,
 481		SI5341_IN_SEL, SI5341_IN_SEL_REGCTRL | SI5341_IN_SEL_MASK, val);
 482	if (err < 0)
 483		return err;
 484
 485	if (index < 3) {
 486		/* Enable input buffer for selected input */
 487		err = regmap_update_bits(data->regmap,
 488				SI5341_IN_EN, 0x07, BIT(index));
 489		if (err < 0)
 490			return err;
 491
 492		/* Enables the input to phase detector */
 493		err = regmap_update_bits(data->regmap, SI5341_INX_TO_PFD_EN,
 494				0x7 << SI5341_INX_TO_PFD_SHIFT,
 495				BIT(index + SI5341_INX_TO_PFD_SHIFT));
 496		if (err < 0)
 497			return err;
 498
 499		/* Power down XTAL oscillator and buffer */
 500		err = regmap_update_bits(data->regmap, SI5341_XAXB_CFG,
 501				SI5341_XAXB_CFG_PDNB, 0);
 502		if (err < 0)
 503			return err;
 504
 505		/*
 506		 * Set the P divider to "1". There's no explanation in the
 507		 * datasheet of these registers, but the clockbuilder software
 508		 * programs a "1" when the input is being used.
 509		 */
 510		err = regmap_write(data->regmap, SI5341_IN_PDIV(index), 1);
 511		if (err < 0)
 512			return err;
 513
 514		err = regmap_write(data->regmap, SI5341_IN_PSET(index), 1);
 515		if (err < 0)
 516			return err;
 517
 518		/* Set update PDIV bit */
 519		err = regmap_write(data->regmap, SI5341_PX_UPD, BIT(index));
 520		if (err < 0)
 521			return err;
 522	} else {
 523		/* Disable all input buffers */
 524		err = regmap_update_bits(data->regmap, SI5341_IN_EN, 0x07, 0);
 525		if (err < 0)
 526			return err;
 527
 528		/* Disable input to phase detector */
 529		err = regmap_update_bits(data->regmap, SI5341_INX_TO_PFD_EN,
 530				0x7 << SI5341_INX_TO_PFD_SHIFT, 0);
 531		if (err < 0)
 532			return err;
 533
 534		/* Power up XTAL oscillator and buffer, select clock mode */
 535		err = regmap_update_bits(data->regmap, SI5341_XAXB_CFG,
 536				SI5341_XAXB_CFG_PDNB | SI5341_XAXB_CFG_EXTCLK_EN,
 537				SI5341_XAXB_CFG_PDNB | (data->xaxb_ext_clk ?
 538					SI5341_XAXB_CFG_EXTCLK_EN : 0));
 539		if (err < 0)
 540			return err;
 541	}
 542
 543	return 0;
 544}
 545
 546static int si5341_clk_set_parent(struct clk_hw *hw, u8 index)
 547{
 548	struct clk_si5341 *data = to_clk_si5341(hw);
 549
 550	return si5341_clk_reparent(data, index);
 551}
 552
 553static const struct clk_ops si5341_clk_ops = {
 554	.set_parent = si5341_clk_set_parent,
 555	.get_parent = si5341_clk_get_parent,
 556	.recalc_rate = si5341_clk_recalc_rate,
 557};
 558
 559/* Synthesizers, there are 5 synthesizers that connect to any of the outputs */
 560
 561/* The synthesizer is on if all power and enable bits are set */
 562static int si5341_synth_clk_is_on(struct clk_hw *hw)
 563{
 564	struct clk_si5341_synth *synth = to_clk_si5341_synth(hw);
 565	int err;
 566	u32 val;
 567	u8 index = synth->index;
 568
 569	err = regmap_read(synth->data->regmap,
 570			SI5341_SYNTH_N_CLK_TO_OUTX_EN, &val);
 571	if (err < 0)
 572		return 0;
 573
 574	if (!(val & BIT(index)))
 575		return 0;
 576
 577	err = regmap_read(synth->data->regmap, SI5341_SYNTH_N_PDNB, &val);
 578	if (err < 0)
 579		return 0;
 580
 581	if (!(val & BIT(index)))
 582		return 0;
 583
 584	/* This bit must be 0 for the synthesizer to receive clock input */
 585	err = regmap_read(synth->data->regmap, SI5341_SYNTH_N_CLK_DIS, &val);
 586	if (err < 0)
 587		return 0;
 588
 589	return !(val & BIT(index));
 590}
 591
 592static void si5341_synth_clk_unprepare(struct clk_hw *hw)
 593{
 594	struct clk_si5341_synth *synth = to_clk_si5341_synth(hw);
 595	u8 index = synth->index; /* In range 0..5 */
 596	u8 mask = BIT(index);
 597
 598	/* Disable output */
 599	regmap_update_bits(synth->data->regmap,
 600		SI5341_SYNTH_N_CLK_TO_OUTX_EN, mask, 0);
 601	/* Power down */
 602	regmap_update_bits(synth->data->regmap,
 603		SI5341_SYNTH_N_PDNB, mask, 0);
 604	/* Disable clock input to synth (set to 1 to disable) */
 605	regmap_update_bits(synth->data->regmap,
 606		SI5341_SYNTH_N_CLK_DIS, mask, mask);
 607}
 608
 609static int si5341_synth_clk_prepare(struct clk_hw *hw)
 610{
 611	struct clk_si5341_synth *synth = to_clk_si5341_synth(hw);
 612	int err;
 613	u8 index = synth->index;
 614	u8 mask = BIT(index);
 615
 616	/* Power up */
 617	err = regmap_update_bits(synth->data->regmap,
 618		SI5341_SYNTH_N_PDNB, mask, mask);
 619	if (err < 0)
 620		return err;
 621
 622	/* Enable clock input to synth (set bit to 0 to enable) */
 623	err = regmap_update_bits(synth->data->regmap,
 624		SI5341_SYNTH_N_CLK_DIS, mask, 0);
 625	if (err < 0)
 626		return err;
 627
 628	/* Enable output */
 629	return regmap_update_bits(synth->data->regmap,
 630		SI5341_SYNTH_N_CLK_TO_OUTX_EN, mask, mask);
 631}
 632
 633/* Synth clock frequency: Fvco * n_den / n_den, with Fvco in 13500-14256 MHz */
 634static unsigned long si5341_synth_clk_recalc_rate(struct clk_hw *hw,
 635		unsigned long parent_rate)
 636{
 637	struct clk_si5341_synth *synth = to_clk_si5341_synth(hw);
 638	u64 f;
 639	u64 n_num;
 640	u32 n_den;
 641	int err;
 642
 643	err = si5341_decode_44_32(synth->data->regmap,
 644			SI5341_SYNTH_N_NUM(synth->index), &n_num, &n_den);
 645	if (err < 0)
 646		return err;
 647	/* Check for bogus/uninitialized settings */
 648	if (!n_num || !n_den)
 649		return 0;
 650
 651	/*
 652	 * n_num and n_den are shifted left as much as possible, so to prevent
 653	 * overflow in 64-bit math, we shift n_den 4 bits to the right
 654	 */
 655	f = synth->data->freq_vco;
 656	f *= n_den >> 4;
 657
 658	/* Now we need to do 64-bit division: f/n_num */
 659	/* And compensate for the 4 bits we dropped */
 660	f = div64_u64(f, (n_num >> 4));
 661
 662	return f;
 663}
 664
 665static long si5341_synth_clk_round_rate(struct clk_hw *hw, unsigned long rate,
 666		unsigned long *parent_rate)
 667{
 668	struct clk_si5341_synth *synth = to_clk_si5341_synth(hw);
 669	u64 f;
 670
 671	/* The synthesizer accuracy is such that anything in range will work */
 672	f = synth->data->freq_vco;
 673	do_div(f, SI5341_SYNTH_N_MAX);
 674	if (rate < f)
 675		return f;
 676
 677	f = synth->data->freq_vco;
 678	do_div(f, SI5341_SYNTH_N_MIN);
 679	if (rate > f)
 680		return f;
 681
 682	return rate;
 683}
 684
 685static int si5341_synth_program(struct clk_si5341_synth *synth,
 686	u64 n_num, u32 n_den, bool is_integer)
 687{
 688	int err;
 689	u8 index = synth->index;
 690
 691	err = si5341_encode_44_32(synth->data->regmap,
 692			SI5341_SYNTH_N_NUM(index), n_num, n_den);
 693
 694	err = regmap_update_bits(synth->data->regmap,
 695		SI5341_SYNTH_N_PIBYP, BIT(index), is_integer ? BIT(index) : 0);
 696	if (err < 0)
 697		return err;
 698
 699	return regmap_write(synth->data->regmap,
 700		SI5341_SYNTH_N_UPD(index), 0x01);
 701}
 702
 703
 704static int si5341_synth_clk_set_rate(struct clk_hw *hw, unsigned long rate,
 705		unsigned long parent_rate)
 706{
 707	struct clk_si5341_synth *synth = to_clk_si5341_synth(hw);
 708	u64 n_num;
 709	u32 n_den;
 710	u32 r;
 711	u32 g;
 712	bool is_integer;
 713
 714	n_num = synth->data->freq_vco;
 715
 716	/* see if there's an integer solution */
 717	r = do_div(n_num, rate);
 718	is_integer = (r == 0);
 719	if (is_integer) {
 720		/* Integer divider equal to n_num */
 721		n_den = 1;
 722	} else {
 723		/* Calculate a fractional solution */
 724		g = gcd(r, rate);
 725		n_den = rate / g;
 726		n_num *= n_den;
 727		n_num += r / g;
 728	}
 729
 730	dev_dbg(&synth->data->i2c_client->dev,
 731			"%s(%u): n=0x%llx d=0x%x %s\n", __func__,
 732				synth->index, n_num, n_den,
 733				is_integer ? "int" : "frac");
 734
 735	return si5341_synth_program(synth, n_num, n_den, is_integer);
 736}
 737
 738static const struct clk_ops si5341_synth_clk_ops = {
 739	.is_prepared = si5341_synth_clk_is_on,
 740	.prepare = si5341_synth_clk_prepare,
 741	.unprepare = si5341_synth_clk_unprepare,
 742	.recalc_rate = si5341_synth_clk_recalc_rate,
 743	.round_rate = si5341_synth_clk_round_rate,
 744	.set_rate = si5341_synth_clk_set_rate,
 745};
 746
 747static int si5341_output_clk_is_on(struct clk_hw *hw)
 748{
 749	struct clk_si5341_output *output = to_clk_si5341_output(hw);
 750	int err;
 751	u32 val;
 752
 753	err = regmap_read(output->data->regmap,
 754			SI5341_OUT_CONFIG(output), &val);
 755	if (err < 0)
 756		return err;
 757
 758	/* Bit 0=PDN, 1=OE so only a value of 0x2 enables the output */
 759	return (val & 0x03) == SI5341_OUT_CFG_OE;
 760}
 761
 762/* Disables and then powers down the output */
 763static void si5341_output_clk_unprepare(struct clk_hw *hw)
 764{
 765	struct clk_si5341_output *output = to_clk_si5341_output(hw);
 766
 767	regmap_update_bits(output->data->regmap,
 768			SI5341_OUT_CONFIG(output),
 769			SI5341_OUT_CFG_OE, 0);
 770	regmap_update_bits(output->data->regmap,
 771			SI5341_OUT_CONFIG(output),
 772			SI5341_OUT_CFG_PDN, SI5341_OUT_CFG_PDN);
 773}
 774
 775/* Powers up and then enables the output */
 776static int si5341_output_clk_prepare(struct clk_hw *hw)
 777{
 778	struct clk_si5341_output *output = to_clk_si5341_output(hw);
 779	int err;
 780
 781	err = regmap_update_bits(output->data->regmap,
 782			SI5341_OUT_CONFIG(output),
 783			SI5341_OUT_CFG_PDN, 0);
 784	if (err < 0)
 785		return err;
 786
 787	return regmap_update_bits(output->data->regmap,
 788			SI5341_OUT_CONFIG(output),
 789			SI5341_OUT_CFG_OE, SI5341_OUT_CFG_OE);
 790}
 791
 792static unsigned long si5341_output_clk_recalc_rate(struct clk_hw *hw,
 793		unsigned long parent_rate)
 794{
 795	struct clk_si5341_output *output = to_clk_si5341_output(hw);
 796	int err;
 797	u32 val;
 798	u32 r_divider;
 799	u8 r[3];
 800
 801	err = regmap_read(output->data->regmap,
 802			SI5341_OUT_CONFIG(output), &val);
 803	if (err < 0)
 804		return err;
 805
 806	/* If SI5341_OUT_CFG_RDIV_FORCE2 is set, r_divider is 2 */
 807	if (val & SI5341_OUT_CFG_RDIV_FORCE2)
 808		return parent_rate / 2;
 809
 810	err = regmap_bulk_read(output->data->regmap,
 811			SI5341_OUT_R_REG(output), r, 3);
 812	if (err < 0)
 813		return err;
 814
 815	/* Calculate value as 24-bit integer*/
 816	r_divider = r[2] << 16 | r[1] << 8 | r[0];
 817
 818	/* If Rx_REG is zero, the divider is disabled, so return a "0" rate */
 819	if (!r_divider)
 820		return 0;
 821
 822	/* Divider is 2*(Rx_REG+1) */
 823	r_divider += 1;
 824	r_divider <<= 1;
 825
 826
 827	return parent_rate / r_divider;
 828}
 829
 830static long si5341_output_clk_round_rate(struct clk_hw *hw, unsigned long rate,
 831		unsigned long *parent_rate)
 832{
 833	unsigned long r;
 834
 835	if (!rate)
 836		return 0;
 837
 838	r = *parent_rate >> 1;
 839
 840	/* If rate is an even divisor, no changes to parent required */
 841	if (r && !(r % rate))
 842		return (long)rate;
 843
 844	if (clk_hw_get_flags(hw) & CLK_SET_RATE_PARENT) {
 845		if (rate > 200000000) {
 846			/* minimum r-divider is 2 */
 847			r = 2;
 848		} else {
 849			/* Take a parent frequency near 400 MHz */
 850			r = (400000000u / rate) & ~1;
 851		}
 852		*parent_rate = r * rate;
 853	} else {
 854		/* We cannot change our parent's rate, report what we can do */
 855		r /= rate;
 856		rate = *parent_rate / (r << 1);
 857	}
 858
 859	return rate;
 860}
 861
 862static int si5341_output_clk_set_rate(struct clk_hw *hw, unsigned long rate,
 863		unsigned long parent_rate)
 864{
 865	struct clk_si5341_output *output = to_clk_si5341_output(hw);
 866	u32 r_div;
 867	int err;
 868	u8 r[3];
 869
 870	if (!rate)
 871		return -EINVAL;
 872
 873	/* Frequency divider is (r_div + 1) * 2 */
 874	r_div = (parent_rate / rate) >> 1;
 875
 876	if (r_div <= 1)
 877		r_div = 0;
 878	else if (r_div >= BIT(24))
 879		r_div = BIT(24) - 1;
 880	else
 881		--r_div;
 882
 883	/* For a value of "2", we set the "OUT0_RDIV_FORCE2" bit */
 884	err = regmap_update_bits(output->data->regmap,
 885			SI5341_OUT_CONFIG(output),
 886			SI5341_OUT_CFG_RDIV_FORCE2,
 887			(r_div == 0) ? SI5341_OUT_CFG_RDIV_FORCE2 : 0);
 888	if (err < 0)
 889		return err;
 890
 891	/* Always write Rx_REG, because a zero value disables the divider */
 892	r[0] = r_div ? (r_div & 0xff) : 1;
 893	r[1] = (r_div >> 8) & 0xff;
 894	r[2] = (r_div >> 16) & 0xff;
 895	err = regmap_bulk_write(output->data->regmap,
 896			SI5341_OUT_R_REG(output), r, 3);
 897
 898	return 0;
 899}
 900
 901static int si5341_output_reparent(struct clk_si5341_output *output, u8 index)
 902{
 903	return regmap_update_bits(output->data->regmap,
 904		SI5341_OUT_MUX_SEL(output), 0x07, index);
 905}
 906
 907static int si5341_output_set_parent(struct clk_hw *hw, u8 index)
 908{
 909	struct clk_si5341_output *output = to_clk_si5341_output(hw);
 910
 911	if (index >= output->data->num_synth)
 912		return -EINVAL;
 913
 914	return si5341_output_reparent(output, index);
 915}
 916
 917static u8 si5341_output_get_parent(struct clk_hw *hw)
 918{
 919	struct clk_si5341_output *output = to_clk_si5341_output(hw);
 920	u32 val;
 921
 922	regmap_read(output->data->regmap, SI5341_OUT_MUX_SEL(output), &val);
 923
 924	return val & 0x7;
 925}
 926
 927static const struct clk_ops si5341_output_clk_ops = {
 928	.is_prepared = si5341_output_clk_is_on,
 929	.prepare = si5341_output_clk_prepare,
 930	.unprepare = si5341_output_clk_unprepare,
 931	.recalc_rate = si5341_output_clk_recalc_rate,
 932	.round_rate = si5341_output_clk_round_rate,
 933	.set_rate = si5341_output_clk_set_rate,
 934	.set_parent = si5341_output_set_parent,
 935	.get_parent = si5341_output_get_parent,
 936};
 937
 938/*
 939 * The chip can be bought in a pre-programmed version, or one can program the
 940 * NVM in the chip to boot up in a preset mode. This routine tries to determine
 941 * if that's the case, or if we need to reset and program everything from
 942 * scratch. Returns negative error, or true/false.
 943 */
 944static int si5341_is_programmed_already(struct clk_si5341 *data)
 945{
 946	int err;
 947	u8 r[4];
 948
 949	/* Read the PLL divider value, it must have a non-zero value */
 950	err = regmap_bulk_read(data->regmap, SI5341_PLL_M_DEN,
 951			r, ARRAY_SIZE(r));
 952	if (err < 0)
 953		return err;
 954
 955	return !!get_unaligned_le32(r);
 956}
 957
 958static struct clk_hw *
 959of_clk_si5341_get(struct of_phandle_args *clkspec, void *_data)
 960{
 961	struct clk_si5341 *data = _data;
 962	unsigned int idx = clkspec->args[1];
 963	unsigned int group = clkspec->args[0];
 964
 965	switch (group) {
 966	case 0:
 967		if (idx >= data->num_outputs) {
 968			dev_err(&data->i2c_client->dev,
 969				"invalid output index %u\n", idx);
 970			return ERR_PTR(-EINVAL);
 971		}
 972		return &data->clk[idx].hw;
 973	case 1:
 974		if (idx >= data->num_synth) {
 975			dev_err(&data->i2c_client->dev,
 976				"invalid synthesizer index %u\n", idx);
 977			return ERR_PTR(-EINVAL);
 978		}
 979		return &data->synth[idx].hw;
 980	case 2:
 981		if (idx > 0) {
 982			dev_err(&data->i2c_client->dev,
 983				"invalid PLL index %u\n", idx);
 984			return ERR_PTR(-EINVAL);
 985		}
 986		return &data->hw;
 987	default:
 988		dev_err(&data->i2c_client->dev, "invalid group %u\n", group);
 989		return ERR_PTR(-EINVAL);
 990	}
 991}
 992
 993static int si5341_probe_chip_id(struct clk_si5341 *data)
 994{
 995	int err;
 996	u8 reg[4];
 997	u16 model;
 998
 999	err = regmap_bulk_read(data->regmap, SI5341_PN_BASE, reg,
1000				ARRAY_SIZE(reg));
1001	if (err < 0) {
1002		dev_err(&data->i2c_client->dev, "Failed to read chip ID\n");
1003		return err;
1004	}
1005
1006	model = get_unaligned_le16(reg);
1007
1008	dev_info(&data->i2c_client->dev, "Chip: %x Grade: %u Rev: %u\n",
1009		 model, reg[2], reg[3]);
1010
1011	switch (model) {
1012	case 0x5340:
1013		data->num_outputs = SI5340_MAX_NUM_OUTPUTS;
1014		data->num_synth = SI5340_NUM_SYNTH;
1015		data->reg_output_offset = si5340_reg_output_offset;
1016		data->reg_rdiv_offset = si5340_reg_rdiv_offset;
1017		break;
1018	case 0x5341:
1019		data->num_outputs = SI5341_MAX_NUM_OUTPUTS;
1020		data->num_synth = SI5341_NUM_SYNTH;
1021		data->reg_output_offset = si5341_reg_output_offset;
1022		data->reg_rdiv_offset = si5341_reg_rdiv_offset;
1023		break;
1024	case 0x5342:
1025		data->num_outputs = SI5342_MAX_NUM_OUTPUTS;
1026		data->num_synth = SI5342_NUM_SYNTH;
1027		data->reg_output_offset = si5340_reg_output_offset;
1028		data->reg_rdiv_offset = si5340_reg_rdiv_offset;
1029		break;
1030	case 0x5344:
1031		data->num_outputs = SI5344_MAX_NUM_OUTPUTS;
1032		data->num_synth = SI5344_NUM_SYNTH;
1033		data->reg_output_offset = si5340_reg_output_offset;
1034		data->reg_rdiv_offset = si5340_reg_rdiv_offset;
1035		break;
1036	case 0x5345:
1037		data->num_outputs = SI5345_MAX_NUM_OUTPUTS;
1038		data->num_synth = SI5345_NUM_SYNTH;
1039		data->reg_output_offset = si5341_reg_output_offset;
1040		data->reg_rdiv_offset = si5341_reg_rdiv_offset;
1041		break;
1042	default:
1043		dev_err(&data->i2c_client->dev, "Model '%x' not supported\n",
1044			model);
1045		return -EINVAL;
1046	}
1047
1048	data->chip_id = model;
1049
1050	return 0;
1051}
1052
1053/* Read active settings into the regmap cache for later reference */
1054static int si5341_read_settings(struct clk_si5341 *data)
1055{
1056	int err;
1057	u8 i;
1058	u8 r[10];
1059
1060	err = regmap_bulk_read(data->regmap, SI5341_PLL_M_NUM, r, 10);
1061	if (err < 0)
1062		return err;
1063
1064	err = regmap_bulk_read(data->regmap,
1065				SI5341_SYNTH_N_CLK_TO_OUTX_EN, r, 3);
1066	if (err < 0)
1067		return err;
1068
1069	err = regmap_bulk_read(data->regmap,
1070				SI5341_SYNTH_N_CLK_DIS, r, 1);
1071	if (err < 0)
1072		return err;
1073
1074	for (i = 0; i < data->num_synth; ++i) {
1075		err = regmap_bulk_read(data->regmap,
1076					SI5341_SYNTH_N_NUM(i), r, 10);
1077		if (err < 0)
1078			return err;
1079	}
1080
1081	for (i = 0; i < data->num_outputs; ++i) {
1082		err = regmap_bulk_read(data->regmap,
1083					data->reg_output_offset[i], r, 4);
1084		if (err < 0)
1085			return err;
1086
1087		err = regmap_bulk_read(data->regmap,
1088					data->reg_rdiv_offset[i], r, 3);
1089		if (err < 0)
1090			return err;
1091	}
1092
1093	return 0;
1094}
1095
1096static int si5341_write_multiple(struct clk_si5341 *data,
1097	const struct si5341_reg_default *values, unsigned int num_values)
1098{
1099	unsigned int i;
1100	int res;
1101
1102	for (i = 0; i < num_values; ++i) {
1103		res = regmap_write(data->regmap,
1104			values[i].address, values[i].value);
1105		if (res < 0) {
1106			dev_err(&data->i2c_client->dev,
1107				"Failed to write %#x:%#x\n",
1108				values[i].address, values[i].value);
1109			return res;
1110		}
1111	}
1112
1113	return 0;
1114}
1115
1116static const struct si5341_reg_default si5341_preamble[] = {
1117	{ 0x0B25, 0x00 },
1118	{ 0x0502, 0x01 },
1119	{ 0x0505, 0x03 },
1120	{ 0x0957, 0x17 },
1121	{ 0x0B4E, 0x1A },
1122};
1123
1124static const struct si5341_reg_default si5345_preamble[] = {
1125	{ 0x0B25, 0x00 },
1126	{ 0x0540, 0x01 },
1127};
1128
1129static int si5341_send_preamble(struct clk_si5341 *data)
1130{
1131	int res;
1132	u32 revision;
1133
1134	/* For revision 2 and up, the values are slightly different */
1135	res = regmap_read(data->regmap, SI5341_DEVICE_REV, &revision);
1136	if (res < 0)
1137		return res;
1138
1139	/* Write "preamble" as specified by datasheet */
1140	res = regmap_write(data->regmap, 0xB24, revision < 2 ? 0xD8 : 0xC0);
1141	if (res < 0)
1142		return res;
1143
1144	/* The si5342..si5345 require a different preamble */
1145	if (data->chip_id > 0x5341)
1146		res = si5341_write_multiple(data,
1147			si5345_preamble, ARRAY_SIZE(si5345_preamble));
1148	else
1149		res = si5341_write_multiple(data,
1150			si5341_preamble, ARRAY_SIZE(si5341_preamble));
1151	if (res < 0)
1152		return res;
1153
1154	/* Datasheet specifies a 300ms wait after sending the preamble */
1155	msleep(300);
1156
1157	return 0;
1158}
1159
1160/* Perform a soft reset and write post-amble */
1161static int si5341_finalize_defaults(struct clk_si5341 *data)
1162{
1163	int res;
1164	u32 revision;
1165
1166	res = regmap_write(data->regmap, SI5341_IO_VDD_SEL,
1167			   data->iovdd_33 ? 1 : 0);
1168	if (res < 0)
1169		return res;
1170
1171	res = regmap_read(data->regmap, SI5341_DEVICE_REV, &revision);
1172	if (res < 0)
1173		return res;
1174
1175	dev_dbg(&data->i2c_client->dev, "%s rev=%u\n", __func__, revision);
1176
1177	res = regmap_write(data->regmap, SI5341_SOFT_RST, 0x01);
1178	if (res < 0)
1179		return res;
1180
1181	/* The si5342..si5345 have an additional post-amble */
1182	if (data->chip_id > 0x5341) {
1183		res = regmap_write(data->regmap, 0x540, 0x0);
1184		if (res < 0)
1185			return res;
1186	}
1187
1188	/* Datasheet does not explain these nameless registers */
1189	res = regmap_write(data->regmap, 0xB24, revision < 2 ? 0xDB : 0xC3);
1190	if (res < 0)
1191		return res;
1192	res = regmap_write(data->regmap, 0x0B25, 0x02);
1193	if (res < 0)
1194		return res;
1195
1196	return 0;
1197}
1198
1199
1200static const struct regmap_range si5341_regmap_volatile_range[] = {
1201	regmap_reg_range(0x000C, 0x0012), /* Status */
1202	regmap_reg_range(0x001C, 0x001E), /* reset, finc/fdec */
1203	regmap_reg_range(0x00E2, 0x00FE), /* NVM, interrupts, device ready */
1204	/* Update bits for P divider and synth config */
1205	regmap_reg_range(SI5341_PX_UPD, SI5341_PX_UPD),
1206	regmap_reg_range(SI5341_SYNTH_N_UPD(0), SI5341_SYNTH_N_UPD(0)),
1207	regmap_reg_range(SI5341_SYNTH_N_UPD(1), SI5341_SYNTH_N_UPD(1)),
1208	regmap_reg_range(SI5341_SYNTH_N_UPD(2), SI5341_SYNTH_N_UPD(2)),
1209	regmap_reg_range(SI5341_SYNTH_N_UPD(3), SI5341_SYNTH_N_UPD(3)),
1210	regmap_reg_range(SI5341_SYNTH_N_UPD(4), SI5341_SYNTH_N_UPD(4)),
1211};
1212
1213static const struct regmap_access_table si5341_regmap_volatile = {
1214	.yes_ranges = si5341_regmap_volatile_range,
1215	.n_yes_ranges = ARRAY_SIZE(si5341_regmap_volatile_range),
1216};
1217
1218/* Pages 0, 1, 2, 3, 9, A, B are valid, so there are 12 pages */
1219static const struct regmap_range_cfg si5341_regmap_ranges[] = {
1220	{
1221		.range_min = 0,
1222		.range_max = SI5341_REGISTER_MAX,
1223		.selector_reg = SI5341_PAGE,
1224		.selector_mask = 0xff,
1225		.selector_shift = 0,
1226		.window_start = 0,
1227		.window_len = 256,
1228	},
1229};
1230
1231static int si5341_wait_device_ready(struct i2c_client *client)
1232{
1233	int count;
1234
1235	/* Datasheet warns: Any attempt to read or write any register other
1236	 * than DEVICE_READY before DEVICE_READY reads as 0x0F may corrupt the
1237	 * NVM programming and may corrupt the register contents, as they are
1238	 * read from NVM. Note that this includes accesses to the PAGE register.
1239	 * Also: DEVICE_READY is available on every register page, so no page
1240	 * change is needed to read it.
1241	 * Do this outside regmap to avoid automatic PAGE register access.
1242	 * May take up to 300ms to complete.
1243	 */
1244	for (count = 0; count < 15; ++count) {
1245		s32 result = i2c_smbus_read_byte_data(client,
1246						      SI5341_DEVICE_READY);
1247		if (result < 0)
1248			return result;
1249		if (result == 0x0F)
1250			return 0;
1251		msleep(20);
1252	}
1253	dev_err(&client->dev, "timeout waiting for DEVICE_READY\n");
1254	return -EIO;
1255}
1256
1257static const struct regmap_config si5341_regmap_config = {
1258	.reg_bits = 8,
1259	.val_bits = 8,
1260	.cache_type = REGCACHE_RBTREE,
1261	.ranges = si5341_regmap_ranges,
1262	.num_ranges = ARRAY_SIZE(si5341_regmap_ranges),
1263	.max_register = SI5341_REGISTER_MAX,
1264	.volatile_table = &si5341_regmap_volatile,
1265};
1266
1267static int si5341_dt_parse_dt(struct clk_si5341 *data,
1268			      struct clk_si5341_output_config *config)
1269{
1270	struct device_node *child;
1271	struct device_node *np = data->i2c_client->dev.of_node;
1272	u32 num;
1273	u32 val;
1274
1275	memset(config, 0, sizeof(struct clk_si5341_output_config) *
1276				SI5341_MAX_NUM_OUTPUTS);
1277
1278	for_each_child_of_node(np, child) {
1279		if (of_property_read_u32(child, "reg", &num)) {
1280			dev_err(&data->i2c_client->dev, "missing reg property of %s\n",
1281				child->name);
1282			goto put_child;
1283		}
1284
1285		if (num >= SI5341_MAX_NUM_OUTPUTS) {
1286			dev_err(&data->i2c_client->dev, "invalid clkout %d\n", num);
1287			goto put_child;
1288		}
1289
1290		if (!of_property_read_u32(child, "silabs,format", &val)) {
1291			/* Set cm and ampl conservatively to 3v3 settings */
1292			switch (val) {
1293			case 1: /* normal differential */
1294				config[num].out_cm_ampl_bits = 0x33;
1295				break;
1296			case 2: /* low-power differential */
1297				config[num].out_cm_ampl_bits = 0x13;
1298				break;
1299			case 4: /* LVCMOS */
1300				config[num].out_cm_ampl_bits = 0x33;
1301				/* Set SI recommended impedance for LVCMOS */
1302				config[num].out_format_drv_bits |= 0xc0;
1303				break;
1304			default:
1305				dev_err(&data->i2c_client->dev,
1306					"invalid silabs,format %u for %u\n",
1307					val, num);
1308				goto put_child;
1309			}
1310			config[num].out_format_drv_bits &= ~0x07;
1311			config[num].out_format_drv_bits |= val & 0x07;
1312			/* Always enable the SYNC feature */
1313			config[num].out_format_drv_bits |= 0x08;
1314		}
1315
1316		if (!of_property_read_u32(child, "silabs,common-mode", &val)) {
1317			if (val > 0xf) {
1318				dev_err(&data->i2c_client->dev,
1319					"invalid silabs,common-mode %u\n",
1320					val);
1321				goto put_child;
1322			}
1323			config[num].out_cm_ampl_bits &= 0xf0;
1324			config[num].out_cm_ampl_bits |= val & 0x0f;
1325		}
1326
1327		if (!of_property_read_u32(child, "silabs,amplitude", &val)) {
1328			if (val > 0xf) {
1329				dev_err(&data->i2c_client->dev,
1330					"invalid silabs,amplitude %u\n",
1331					val);
1332				goto put_child;
1333			}
1334			config[num].out_cm_ampl_bits &= 0x0f;
1335			config[num].out_cm_ampl_bits |= (val << 4) & 0xf0;
1336		}
1337
1338		if (of_property_read_bool(child, "silabs,disable-high"))
1339			config[num].out_format_drv_bits |= 0x10;
1340
1341		config[num].synth_master =
1342			of_property_read_bool(child, "silabs,synth-master");
1343
1344		config[num].always_on =
1345			of_property_read_bool(child, "always-on");
1346
1347		config[num].vdd_sel_bits = 0x08;
1348		if (data->clk[num].vddo_reg) {
1349			int vdd = regulator_get_voltage(data->clk[num].vddo_reg);
1350
1351			switch (vdd) {
1352			case 3300000:
1353				config[num].vdd_sel_bits |= 0 << 4;
1354				break;
1355			case 1800000:
1356				config[num].vdd_sel_bits |= 1 << 4;
1357				break;
1358			case 2500000:
1359				config[num].vdd_sel_bits |= 2 << 4;
1360				break;
1361			default:
1362				dev_err(&data->i2c_client->dev,
1363					"unsupported vddo voltage %d for %s\n",
1364					vdd, child->name);
1365				goto put_child;
1366			}
1367		} else {
1368			/* chip seems to default to 2.5V when not set */
1369			dev_warn(&data->i2c_client->dev,
1370				"no regulator set, defaulting vdd_sel to 2.5V for %s\n",
1371				child->name);
1372			config[num].vdd_sel_bits |= 2 << 4;
1373		}
1374	}
1375
1376	return 0;
1377
1378put_child:
1379	of_node_put(child);
1380	return -EINVAL;
1381}
1382
1383/*
1384 * If not pre-configured, calculate and set the PLL configuration manually.
1385 * For low-jitter performance, the PLL should be set such that the synthesizers
1386 * only need integer division.
1387 * Without any user guidance, we'll set the PLL to 14GHz, which still allows
1388 * the chip to generate any frequency on its outputs, but jitter performance
1389 * may be sub-optimal.
1390 */
1391static int si5341_initialize_pll(struct clk_si5341 *data)
1392{
1393	struct device_node *np = data->i2c_client->dev.of_node;
1394	u32 m_num = 0;
1395	u32 m_den = 0;
1396	int sel;
1397
1398	if (of_property_read_u32(np, "silabs,pll-m-num", &m_num)) {
1399		dev_err(&data->i2c_client->dev,
1400			"PLL configuration requires silabs,pll-m-num\n");
1401	}
1402	if (of_property_read_u32(np, "silabs,pll-m-den", &m_den)) {
1403		dev_err(&data->i2c_client->dev,
1404			"PLL configuration requires silabs,pll-m-den\n");
1405	}
1406
1407	if (!m_num || !m_den) {
1408		dev_err(&data->i2c_client->dev,
1409			"PLL configuration invalid, assume 14GHz\n");
1410		sel = si5341_clk_get_selected_input(data);
1411		if (sel < 0)
1412			return sel;
1413
1414		m_den = clk_get_rate(data->input_clk[sel]) / 10;
1415		m_num = 1400000000;
1416	}
1417
1418	return si5341_encode_44_32(data->regmap,
1419			SI5341_PLL_M_NUM, m_num, m_den);
1420}
1421
1422static int si5341_clk_select_active_input(struct clk_si5341 *data)
1423{
1424	int res;
1425	int err;
1426	int i;
1427
1428	res = si5341_clk_get_selected_input(data);
1429	if (res < 0)
1430		return res;
1431
1432	/* If the current register setting is invalid, pick the first input */
1433	if (!data->input_clk[res]) {
1434		dev_dbg(&data->i2c_client->dev,
1435			"Input %d not connected, rerouting\n", res);
1436		res = -ENODEV;
1437		for (i = 0; i < SI5341_NUM_INPUTS; ++i) {
1438			if (data->input_clk[i]) {
1439				res = i;
1440				break;
1441			}
1442		}
1443		if (res < 0) {
1444			dev_err(&data->i2c_client->dev,
1445				"No clock input available\n");
1446			return res;
1447		}
1448	}
1449
1450	/* Make sure the selected clock is also enabled and routed */
1451	err = si5341_clk_reparent(data, res);
1452	if (err < 0)
1453		return err;
1454
1455	err = clk_prepare_enable(data->input_clk[res]);
1456	if (err < 0)
1457		return err;
1458
1459	return res;
1460}
1461
1462static ssize_t input_present_show(struct device *dev,
1463				  struct device_attribute *attr,
1464				  char *buf)
1465{
1466	struct clk_si5341 *data = dev_get_drvdata(dev);
1467	u32 status;
1468	int res = regmap_read(data->regmap, SI5341_STATUS, &status);
1469
1470	if (res < 0)
1471		return res;
1472	res = !(status & SI5341_STATUS_LOSREF);
1473	return sysfs_emit(buf, "%d\n", res);
1474}
1475static DEVICE_ATTR_RO(input_present);
1476
1477static ssize_t input_present_sticky_show(struct device *dev,
1478					 struct device_attribute *attr,
1479					 char *buf)
1480{
1481	struct clk_si5341 *data = dev_get_drvdata(dev);
1482	u32 status;
1483	int res = regmap_read(data->regmap, SI5341_STATUS_STICKY, &status);
1484
1485	if (res < 0)
1486		return res;
1487	res = !(status & SI5341_STATUS_LOSREF);
1488	return sysfs_emit(buf, "%d\n", res);
1489}
1490static DEVICE_ATTR_RO(input_present_sticky);
1491
1492static ssize_t pll_locked_show(struct device *dev,
1493			       struct device_attribute *attr,
1494			       char *buf)
1495{
1496	struct clk_si5341 *data = dev_get_drvdata(dev);
1497	u32 status;
1498	int res = regmap_read(data->regmap, SI5341_STATUS, &status);
1499
1500	if (res < 0)
1501		return res;
1502	res = !(status & SI5341_STATUS_LOL);
1503	return sysfs_emit(buf, "%d\n", res);
1504}
1505static DEVICE_ATTR_RO(pll_locked);
1506
1507static ssize_t pll_locked_sticky_show(struct device *dev,
1508				      struct device_attribute *attr,
1509				      char *buf)
1510{
1511	struct clk_si5341 *data = dev_get_drvdata(dev);
1512	u32 status;
1513	int res = regmap_read(data->regmap, SI5341_STATUS_STICKY, &status);
1514
1515	if (res < 0)
1516		return res;
1517	res = !(status & SI5341_STATUS_LOL);
1518	return sysfs_emit(buf, "%d\n", res);
1519}
1520static DEVICE_ATTR_RO(pll_locked_sticky);
1521
1522static ssize_t clear_sticky_store(struct device *dev,
1523				  struct device_attribute *attr,
1524				  const char *buf, size_t count)
1525{
1526	struct clk_si5341 *data = dev_get_drvdata(dev);
1527	long val;
1528
1529	if (kstrtol(buf, 10, &val))
1530		return -EINVAL;
1531	if (val) {
1532		int res = regmap_write(data->regmap, SI5341_STATUS_STICKY, 0);
1533
1534		if (res < 0)
1535			return res;
1536	}
1537	return count;
1538}
1539static DEVICE_ATTR_WO(clear_sticky);
1540
1541static const struct attribute *si5341_attributes[] = {
1542	&dev_attr_input_present.attr,
1543	&dev_attr_input_present_sticky.attr,
1544	&dev_attr_pll_locked.attr,
1545	&dev_attr_pll_locked_sticky.attr,
1546	&dev_attr_clear_sticky.attr,
1547	NULL
1548};
1549
1550static int si5341_probe(struct i2c_client *client)
1551{
1552	struct clk_si5341 *data;
1553	struct clk_init_data init;
1554	struct clk *input;
1555	const char *root_clock_name;
1556	const char *synth_clock_names[SI5341_NUM_SYNTH];
1557	int err;
1558	unsigned int i;
1559	struct clk_si5341_output_config config[SI5341_MAX_NUM_OUTPUTS];
1560	bool initialization_required;
1561	u32 status;
1562
1563	data = devm_kzalloc(&client->dev, sizeof(*data), GFP_KERNEL);
1564	if (!data)
1565		return -ENOMEM;
1566
1567	data->i2c_client = client;
1568
1569	/* Must be done before otherwise touching hardware */
1570	err = si5341_wait_device_ready(client);
1571	if (err)
1572		return err;
1573
1574	for (i = 0; i < SI5341_NUM_INPUTS; ++i) {
1575		input = devm_clk_get(&client->dev, si5341_input_clock_names[i]);
1576		if (IS_ERR(input)) {
1577			if (PTR_ERR(input) == -EPROBE_DEFER)
1578				return -EPROBE_DEFER;
1579			data->input_clk_name[i] = si5341_input_clock_names[i];
1580		} else {
1581			data->input_clk[i] = input;
1582			data->input_clk_name[i] = __clk_get_name(input);
1583		}
1584	}
1585
1586	for (i = 0; i < SI5341_MAX_NUM_OUTPUTS; ++i) {
1587		char reg_name[10];
1588
1589		snprintf(reg_name, sizeof(reg_name), "vddo%d", i);
1590		data->clk[i].vddo_reg = devm_regulator_get_optional(
1591			&client->dev, reg_name);
1592		if (IS_ERR(data->clk[i].vddo_reg)) {
1593			err = PTR_ERR(data->clk[i].vddo_reg);
1594			data->clk[i].vddo_reg = NULL;
1595			if (err == -ENODEV)
1596				continue;
1597			goto cleanup;
1598		} else {
1599			err = regulator_enable(data->clk[i].vddo_reg);
1600			if (err) {
1601				dev_err(&client->dev,
1602					"failed to enable %s regulator: %d\n",
1603					reg_name, err);
1604				data->clk[i].vddo_reg = NULL;
1605				goto cleanup;
1606			}
1607		}
1608	}
1609
1610	err = si5341_dt_parse_dt(data, config);
1611	if (err)
1612		goto cleanup;
1613
1614	if (of_property_read_string(client->dev.of_node, "clock-output-names",
1615			&init.name))
1616		init.name = client->dev.of_node->name;
1617	root_clock_name = init.name;
1618
1619	data->regmap = devm_regmap_init_i2c(client, &si5341_regmap_config);
1620	if (IS_ERR(data->regmap)) {
1621		err = PTR_ERR(data->regmap);
1622		goto cleanup;
1623	}
1624
1625	i2c_set_clientdata(client, data);
1626
1627	err = si5341_probe_chip_id(data);
1628	if (err < 0)
1629		goto cleanup;
1630
1631	if (of_property_read_bool(client->dev.of_node, "silabs,reprogram")) {
1632		initialization_required = true;
1633	} else {
1634		err = si5341_is_programmed_already(data);
1635		if (err < 0)
1636			goto cleanup;
1637
1638		initialization_required = !err;
1639	}
1640	data->xaxb_ext_clk = of_property_read_bool(client->dev.of_node,
1641						   "silabs,xaxb-ext-clk");
1642	data->iovdd_33 = of_property_read_bool(client->dev.of_node,
1643					       "silabs,iovdd-33");
1644
1645	if (initialization_required) {
1646		/* Populate the regmap cache in preparation for "cache only" */
1647		err = si5341_read_settings(data);
1648		if (err < 0)
1649			goto cleanup;
1650
1651		err = si5341_send_preamble(data);
1652		if (err < 0)
1653			goto cleanup;
1654
1655		/*
1656		 * We intend to send all 'final' register values in a single
1657		 * transaction. So cache all register writes until we're done
1658		 * configuring.
1659		 */
1660		regcache_cache_only(data->regmap, true);
1661
1662		/* Write the configuration pairs from the firmware blob */
1663		err = si5341_write_multiple(data, si5341_reg_defaults,
1664					ARRAY_SIZE(si5341_reg_defaults));
1665		if (err < 0)
1666			goto cleanup;
1667	}
1668
1669	/* Input must be up and running at this point */
1670	err = si5341_clk_select_active_input(data);
1671	if (err < 0)
1672		goto cleanup;
1673
1674	if (initialization_required) {
1675		/* PLL configuration is required */
1676		err = si5341_initialize_pll(data);
1677		if (err < 0)
1678			goto cleanup;
1679	}
1680
1681	/* Register the PLL */
1682	init.parent_names = data->input_clk_name;
1683	init.num_parents = SI5341_NUM_INPUTS;
1684	init.ops = &si5341_clk_ops;
1685	init.flags = 0;
1686	data->hw.init = &init;
1687
1688	err = devm_clk_hw_register(&client->dev, &data->hw);
1689	if (err) {
1690		dev_err(&client->dev, "clock registration failed\n");
1691		goto cleanup;
1692	}
1693
1694	init.num_parents = 1;
1695	init.parent_names = &root_clock_name;
1696	init.ops = &si5341_synth_clk_ops;
1697	for (i = 0; i < data->num_synth; ++i) {
1698		synth_clock_names[i] = devm_kasprintf(&client->dev, GFP_KERNEL,
1699				"%s.N%u", client->dev.of_node->name, i);
1700		init.name = synth_clock_names[i];
1701		data->synth[i].index = i;
1702		data->synth[i].data = data;
1703		data->synth[i].hw.init = &init;
1704		err = devm_clk_hw_register(&client->dev, &data->synth[i].hw);
1705		if (err) {
1706			dev_err(&client->dev,
1707				"synth N%u registration failed\n", i);
1708		}
1709	}
1710
1711	init.num_parents = data->num_synth;
1712	init.parent_names = synth_clock_names;
1713	init.ops = &si5341_output_clk_ops;
1714	for (i = 0; i < data->num_outputs; ++i) {
1715		init.name = kasprintf(GFP_KERNEL, "%s.%d",
1716			client->dev.of_node->name, i);
1717		init.flags = config[i].synth_master ? CLK_SET_RATE_PARENT : 0;
1718		data->clk[i].index = i;
1719		data->clk[i].data = data;
1720		data->clk[i].hw.init = &init;
1721		if (config[i].out_format_drv_bits & 0x07) {
1722			regmap_write(data->regmap,
1723				SI5341_OUT_FORMAT(&data->clk[i]),
1724				config[i].out_format_drv_bits);
1725			regmap_write(data->regmap,
1726				SI5341_OUT_CM(&data->clk[i]),
1727				config[i].out_cm_ampl_bits);
1728			regmap_update_bits(data->regmap,
1729				SI5341_OUT_MUX_SEL(&data->clk[i]),
1730				SI5341_OUT_MUX_VDD_SEL_MASK,
1731				config[i].vdd_sel_bits);
1732		}
1733		err = devm_clk_hw_register(&client->dev, &data->clk[i].hw);
1734		kfree(init.name); /* clock framework made a copy of the name */
1735		if (err) {
1736			dev_err(&client->dev,
1737				"output %u registration failed\n", i);
1738			goto cleanup;
1739		}
1740		if (config[i].always_on)
1741			clk_prepare(data->clk[i].hw.clk);
1742	}
1743
1744	err = devm_of_clk_add_hw_provider(&client->dev, of_clk_si5341_get,
1745			data);
1746	if (err) {
1747		dev_err(&client->dev, "unable to add clk provider\n");
1748		goto cleanup;
1749	}
1750
1751	if (initialization_required) {
1752		/* Synchronize */
1753		regcache_cache_only(data->regmap, false);
1754		err = regcache_sync(data->regmap);
1755		if (err < 0)
1756			goto cleanup;
1757
1758		err = si5341_finalize_defaults(data);
1759		if (err < 0)
1760			goto cleanup;
1761	}
1762
1763	/* wait for device to report input clock present and PLL lock */
1764	err = regmap_read_poll_timeout(data->regmap, SI5341_STATUS, status,
1765		!(status & (SI5341_STATUS_LOSREF | SI5341_STATUS_LOL)),
1766	       10000, 250000);
1767	if (err) {
1768		dev_err(&client->dev, "Error waiting for input clock or PLL lock\n");
1769		goto cleanup;
1770	}
1771
1772	/* clear sticky alarm bits from initialization */
1773	err = regmap_write(data->regmap, SI5341_STATUS_STICKY, 0);
1774	if (err) {
1775		dev_err(&client->dev, "unable to clear sticky status\n");
1776		goto cleanup;
1777	}
1778
1779	err = sysfs_create_files(&client->dev.kobj, si5341_attributes);
1780	if (err) {
1781		dev_err(&client->dev, "unable to create sysfs files\n");
1782		goto cleanup;
1783	}
1784
1785	/* Free the names, clk framework makes copies */
1786	for (i = 0; i < data->num_synth; ++i)
1787		 devm_kfree(&client->dev, (void *)synth_clock_names[i]);
1788
1789	return 0;
1790
1791cleanup:
1792	for (i = 0; i < SI5341_MAX_NUM_OUTPUTS; ++i) {
1793		if (data->clk[i].vddo_reg)
1794			regulator_disable(data->clk[i].vddo_reg);
1795	}
1796	return err;
1797}
1798
1799static void si5341_remove(struct i2c_client *client)
1800{
1801	struct clk_si5341 *data = i2c_get_clientdata(client);
1802	int i;
1803
1804	sysfs_remove_files(&client->dev.kobj, si5341_attributes);
1805
1806	for (i = 0; i < SI5341_MAX_NUM_OUTPUTS; ++i) {
1807		if (data->clk[i].vddo_reg)
1808			regulator_disable(data->clk[i].vddo_reg);
1809	}
1810}
1811
1812static const struct i2c_device_id si5341_id[] = {
1813	{ "si5340", 0 },
1814	{ "si5341", 1 },
1815	{ "si5342", 2 },
1816	{ "si5344", 4 },
1817	{ "si5345", 5 },
1818	{ }
1819};
1820MODULE_DEVICE_TABLE(i2c, si5341_id);
1821
1822static const struct of_device_id clk_si5341_of_match[] = {
1823	{ .compatible = "silabs,si5340" },
1824	{ .compatible = "silabs,si5341" },
1825	{ .compatible = "silabs,si5342" },
1826	{ .compatible = "silabs,si5344" },
1827	{ .compatible = "silabs,si5345" },
1828	{ }
1829};
1830MODULE_DEVICE_TABLE(of, clk_si5341_of_match);
1831
1832static struct i2c_driver si5341_driver = {
1833	.driver = {
1834		.name = "si5341",
1835		.of_match_table = clk_si5341_of_match,
1836	},
1837	.probe_new	= si5341_probe,
1838	.remove		= si5341_remove,
1839	.id_table	= si5341_id,
1840};
1841module_i2c_driver(si5341_driver);
1842
1843MODULE_AUTHOR("Mike Looijmans <mike.looijmans@topic.nl>");
1844MODULE_DESCRIPTION("Si5341 driver");
1845MODULE_LICENSE("GPL");