Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.5.6.
  1/*
  2 * This file is subject to the terms and conditions of the GNU General Public
  3 * License.  See the file "COPYING" in the main directory of this archive
  4 * for more details.
  5 *
  6 * KVM/MIPS MMU handling in the KVM module.
  7 *
  8 * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved.
  9 * Authors: Sanjay Lal <sanjayl@kymasys.com>
 10 */
 11
 12#include <linux/highmem.h>
 13#include <linux/kvm_host.h>
 14#include <linux/uaccess.h>
 15#include <asm/mmu_context.h>
 16#include <asm/pgalloc.h>
 17
 18/*
 19 * KVM_MMU_CACHE_MIN_PAGES is the number of GPA page table translation levels
 20 * for which pages need to be cached.
 21 */
 22#if defined(__PAGETABLE_PMD_FOLDED)
 23#define KVM_MMU_CACHE_MIN_PAGES 1
 24#else
 25#define KVM_MMU_CACHE_MIN_PAGES 2
 26#endif
 27
 28void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu)
 29{
 30	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
 31}
 32
 33/**
 34 * kvm_pgd_init() - Initialise KVM GPA page directory.
 35 * @page:	Pointer to page directory (PGD) for KVM GPA.
 36 *
 37 * Initialise a KVM GPA page directory with pointers to the invalid table, i.e.
 38 * representing no mappings. This is similar to pgd_init(), however it
 39 * initialises all the page directory pointers, not just the ones corresponding
 40 * to the userland address space (since it is for the guest physical address
 41 * space rather than a virtual address space).
 42 */
 43static void kvm_pgd_init(void *page)
 44{
 45	unsigned long *p, *end;
 46	unsigned long entry;
 47
 48#ifdef __PAGETABLE_PMD_FOLDED
 49	entry = (unsigned long)invalid_pte_table;
 50#else
 51	entry = (unsigned long)invalid_pmd_table;
 52#endif
 53
 54	p = (unsigned long *)page;
 55	end = p + PTRS_PER_PGD;
 56
 57	do {
 58		p[0] = entry;
 59		p[1] = entry;
 60		p[2] = entry;
 61		p[3] = entry;
 62		p[4] = entry;
 63		p += 8;
 64		p[-3] = entry;
 65		p[-2] = entry;
 66		p[-1] = entry;
 67	} while (p != end);
 68}
 69
 70/**
 71 * kvm_pgd_alloc() - Allocate and initialise a KVM GPA page directory.
 72 *
 73 * Allocate a blank KVM GPA page directory (PGD) for representing guest physical
 74 * to host physical page mappings.
 75 *
 76 * Returns:	Pointer to new KVM GPA page directory.
 77 *		NULL on allocation failure.
 78 */
 79pgd_t *kvm_pgd_alloc(void)
 80{
 81	pgd_t *ret;
 82
 83	ret = (pgd_t *)__get_free_pages(GFP_KERNEL, PGD_TABLE_ORDER);
 84	if (ret)
 85		kvm_pgd_init(ret);
 86
 87	return ret;
 88}
 89
 90/**
 91 * kvm_mips_walk_pgd() - Walk page table with optional allocation.
 92 * @pgd:	Page directory pointer.
 93 * @addr:	Address to index page table using.
 94 * @cache:	MMU page cache to allocate new page tables from, or NULL.
 95 *
 96 * Walk the page tables pointed to by @pgd to find the PTE corresponding to the
 97 * address @addr. If page tables don't exist for @addr, they will be created
 98 * from the MMU cache if @cache is not NULL.
 99 *
100 * Returns:	Pointer to pte_t corresponding to @addr.
101 *		NULL if a page table doesn't exist for @addr and !@cache.
102 *		NULL if a page table allocation failed.
103 */
104static pte_t *kvm_mips_walk_pgd(pgd_t *pgd, struct kvm_mmu_memory_cache *cache,
105				unsigned long addr)
106{
107	p4d_t *p4d;
108	pud_t *pud;
109	pmd_t *pmd;
110
111	pgd += pgd_index(addr);
112	if (pgd_none(*pgd)) {
113		/* Not used on MIPS yet */
114		BUG();
115		return NULL;
116	}
117	p4d = p4d_offset(pgd, addr);
118	pud = pud_offset(p4d, addr);
119	if (pud_none(*pud)) {
120		pmd_t *new_pmd;
121
122		if (!cache)
123			return NULL;
124		new_pmd = kvm_mmu_memory_cache_alloc(cache);
125		pmd_init(new_pmd);
126		pud_populate(NULL, pud, new_pmd);
127	}
128	pmd = pmd_offset(pud, addr);
129	if (pmd_none(*pmd)) {
130		pte_t *new_pte;
131
132		if (!cache)
133			return NULL;
134		new_pte = kvm_mmu_memory_cache_alloc(cache);
135		clear_page(new_pte);
136		pmd_populate_kernel(NULL, pmd, new_pte);
137	}
138	return pte_offset_kernel(pmd, addr);
139}
140
141/* Caller must hold kvm->mm_lock */
142static pte_t *kvm_mips_pte_for_gpa(struct kvm *kvm,
143				   struct kvm_mmu_memory_cache *cache,
144				   unsigned long addr)
145{
146	return kvm_mips_walk_pgd(kvm->arch.gpa_mm.pgd, cache, addr);
147}
148
149/*
150 * kvm_mips_flush_gpa_{pte,pmd,pud,pgd,pt}.
151 * Flush a range of guest physical address space from the VM's GPA page tables.
152 */
153
154static bool kvm_mips_flush_gpa_pte(pte_t *pte, unsigned long start_gpa,
155				   unsigned long end_gpa)
156{
157	int i_min = pte_index(start_gpa);
158	int i_max = pte_index(end_gpa);
159	bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PTE - 1);
160	int i;
161
162	for (i = i_min; i <= i_max; ++i) {
163		if (!pte_present(pte[i]))
164			continue;
165
166		set_pte(pte + i, __pte(0));
167	}
168	return safe_to_remove;
169}
170
171static bool kvm_mips_flush_gpa_pmd(pmd_t *pmd, unsigned long start_gpa,
172				   unsigned long end_gpa)
173{
174	pte_t *pte;
175	unsigned long end = ~0ul;
176	int i_min = pmd_index(start_gpa);
177	int i_max = pmd_index(end_gpa);
178	bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PMD - 1);
179	int i;
180
181	for (i = i_min; i <= i_max; ++i, start_gpa = 0) {
182		if (!pmd_present(pmd[i]))
183			continue;
184
185		pte = pte_offset_kernel(pmd + i, 0);
186		if (i == i_max)
187			end = end_gpa;
188
189		if (kvm_mips_flush_gpa_pte(pte, start_gpa, end)) {
190			pmd_clear(pmd + i);
191			pte_free_kernel(NULL, pte);
192		} else {
193			safe_to_remove = false;
194		}
195	}
196	return safe_to_remove;
197}
198
199static bool kvm_mips_flush_gpa_pud(pud_t *pud, unsigned long start_gpa,
200				   unsigned long end_gpa)
201{
202	pmd_t *pmd;
203	unsigned long end = ~0ul;
204	int i_min = pud_index(start_gpa);
205	int i_max = pud_index(end_gpa);
206	bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PUD - 1);
207	int i;
208
209	for (i = i_min; i <= i_max; ++i, start_gpa = 0) {
210		if (!pud_present(pud[i]))
211			continue;
212
213		pmd = pmd_offset(pud + i, 0);
214		if (i == i_max)
215			end = end_gpa;
216
217		if (kvm_mips_flush_gpa_pmd(pmd, start_gpa, end)) {
218			pud_clear(pud + i);
219			pmd_free(NULL, pmd);
220		} else {
221			safe_to_remove = false;
222		}
223	}
224	return safe_to_remove;
225}
226
227static bool kvm_mips_flush_gpa_pgd(pgd_t *pgd, unsigned long start_gpa,
228				   unsigned long end_gpa)
229{
230	p4d_t *p4d;
231	pud_t *pud;
232	unsigned long end = ~0ul;
233	int i_min = pgd_index(start_gpa);
234	int i_max = pgd_index(end_gpa);
235	bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PGD - 1);
236	int i;
237
238	for (i = i_min; i <= i_max; ++i, start_gpa = 0) {
239		if (!pgd_present(pgd[i]))
240			continue;
241
242		p4d = p4d_offset(pgd, 0);
243		pud = pud_offset(p4d + i, 0);
244		if (i == i_max)
245			end = end_gpa;
246
247		if (kvm_mips_flush_gpa_pud(pud, start_gpa, end)) {
248			pgd_clear(pgd + i);
249			pud_free(NULL, pud);
250		} else {
251			safe_to_remove = false;
252		}
253	}
254	return safe_to_remove;
255}
256
257/**
258 * kvm_mips_flush_gpa_pt() - Flush a range of guest physical addresses.
259 * @kvm:	KVM pointer.
260 * @start_gfn:	Guest frame number of first page in GPA range to flush.
261 * @end_gfn:	Guest frame number of last page in GPA range to flush.
262 *
263 * Flushes a range of GPA mappings from the GPA page tables.
264 *
265 * The caller must hold the @kvm->mmu_lock spinlock.
266 *
267 * Returns:	Whether its safe to remove the top level page directory because
268 *		all lower levels have been removed.
269 */
270bool kvm_mips_flush_gpa_pt(struct kvm *kvm, gfn_t start_gfn, gfn_t end_gfn)
271{
272	return kvm_mips_flush_gpa_pgd(kvm->arch.gpa_mm.pgd,
273				      start_gfn << PAGE_SHIFT,
274				      end_gfn << PAGE_SHIFT);
275}
276
277#define BUILD_PTE_RANGE_OP(name, op)					\
278static int kvm_mips_##name##_pte(pte_t *pte, unsigned long start,	\
279				 unsigned long end)			\
280{									\
281	int ret = 0;							\
282	int i_min = pte_index(start);				\
283	int i_max = pte_index(end);					\
284	int i;								\
285	pte_t old, new;							\
286									\
287	for (i = i_min; i <= i_max; ++i) {				\
288		if (!pte_present(pte[i]))				\
289			continue;					\
290									\
291		old = pte[i];						\
292		new = op(old);						\
293		if (pte_val(new) == pte_val(old))			\
294			continue;					\
295		set_pte(pte + i, new);					\
296		ret = 1;						\
297	}								\
298	return ret;							\
299}									\
300									\
301/* returns true if anything was done */					\
302static int kvm_mips_##name##_pmd(pmd_t *pmd, unsigned long start,	\
303				 unsigned long end)			\
304{									\
305	int ret = 0;							\
306	pte_t *pte;							\
307	unsigned long cur_end = ~0ul;					\
308	int i_min = pmd_index(start);				\
309	int i_max = pmd_index(end);					\
310	int i;								\
311									\
312	for (i = i_min; i <= i_max; ++i, start = 0) {			\
313		if (!pmd_present(pmd[i]))				\
314			continue;					\
315									\
316		pte = pte_offset_kernel(pmd + i, 0);				\
317		if (i == i_max)						\
318			cur_end = end;					\
319									\
320		ret |= kvm_mips_##name##_pte(pte, start, cur_end);	\
321	}								\
322	return ret;							\
323}									\
324									\
325static int kvm_mips_##name##_pud(pud_t *pud, unsigned long start,	\
326				 unsigned long end)			\
327{									\
328	int ret = 0;							\
329	pmd_t *pmd;							\
330	unsigned long cur_end = ~0ul;					\
331	int i_min = pud_index(start);				\
332	int i_max = pud_index(end);					\
333	int i;								\
334									\
335	for (i = i_min; i <= i_max; ++i, start = 0) {			\
336		if (!pud_present(pud[i]))				\
337			continue;					\
338									\
339		pmd = pmd_offset(pud + i, 0);				\
340		if (i == i_max)						\
341			cur_end = end;					\
342									\
343		ret |= kvm_mips_##name##_pmd(pmd, start, cur_end);	\
344	}								\
345	return ret;							\
346}									\
347									\
348static int kvm_mips_##name##_pgd(pgd_t *pgd, unsigned long start,	\
349				 unsigned long end)			\
350{									\
351	int ret = 0;							\
352	p4d_t *p4d;							\
353	pud_t *pud;							\
354	unsigned long cur_end = ~0ul;					\
355	int i_min = pgd_index(start);					\
356	int i_max = pgd_index(end);					\
357	int i;								\
358									\
359	for (i = i_min; i <= i_max; ++i, start = 0) {			\
360		if (!pgd_present(pgd[i]))				\
361			continue;					\
362									\
363		p4d = p4d_offset(pgd, 0);				\
364		pud = pud_offset(p4d + i, 0);				\
365		if (i == i_max)						\
366			cur_end = end;					\
367									\
368		ret |= kvm_mips_##name##_pud(pud, start, cur_end);	\
369	}								\
370	return ret;							\
371}
372
373/*
374 * kvm_mips_mkclean_gpa_pt.
375 * Mark a range of guest physical address space clean (writes fault) in the VM's
376 * GPA page table to allow dirty page tracking.
377 */
378
379BUILD_PTE_RANGE_OP(mkclean, pte_mkclean)
380
381/**
382 * kvm_mips_mkclean_gpa_pt() - Make a range of guest physical addresses clean.
383 * @kvm:	KVM pointer.
384 * @start_gfn:	Guest frame number of first page in GPA range to flush.
385 * @end_gfn:	Guest frame number of last page in GPA range to flush.
386 *
387 * Make a range of GPA mappings clean so that guest writes will fault and
388 * trigger dirty page logging.
389 *
390 * The caller must hold the @kvm->mmu_lock spinlock.
391 *
392 * Returns:	Whether any GPA mappings were modified, which would require
393 *		derived mappings (GVA page tables & TLB enties) to be
394 *		invalidated.
395 */
396int kvm_mips_mkclean_gpa_pt(struct kvm *kvm, gfn_t start_gfn, gfn_t end_gfn)
397{
398	return kvm_mips_mkclean_pgd(kvm->arch.gpa_mm.pgd,
399				    start_gfn << PAGE_SHIFT,
400				    end_gfn << PAGE_SHIFT);
401}
402
403/**
404 * kvm_arch_mmu_enable_log_dirty_pt_masked() - write protect dirty pages
405 * @kvm:	The KVM pointer
406 * @slot:	The memory slot associated with mask
407 * @gfn_offset:	The gfn offset in memory slot
408 * @mask:	The mask of dirty pages at offset 'gfn_offset' in this memory
409 *		slot to be write protected
410 *
411 * Walks bits set in mask write protects the associated pte's. Caller must
412 * acquire @kvm->mmu_lock.
413 */
414void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
415		struct kvm_memory_slot *slot,
416		gfn_t gfn_offset, unsigned long mask)
417{
418	gfn_t base_gfn = slot->base_gfn + gfn_offset;
419	gfn_t start = base_gfn +  __ffs(mask);
420	gfn_t end = base_gfn + __fls(mask);
421
422	kvm_mips_mkclean_gpa_pt(kvm, start, end);
423}
424
425/*
426 * kvm_mips_mkold_gpa_pt.
427 * Mark a range of guest physical address space old (all accesses fault) in the
428 * VM's GPA page table to allow detection of commonly used pages.
429 */
430
431BUILD_PTE_RANGE_OP(mkold, pte_mkold)
432
433static int kvm_mips_mkold_gpa_pt(struct kvm *kvm, gfn_t start_gfn,
434				 gfn_t end_gfn)
435{
436	return kvm_mips_mkold_pgd(kvm->arch.gpa_mm.pgd,
437				  start_gfn << PAGE_SHIFT,
438				  end_gfn << PAGE_SHIFT);
439}
440
441bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
442{
443	kvm_mips_flush_gpa_pt(kvm, range->start, range->end);
444	return true;
445}
446
447bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
448{
449	return kvm_mips_mkold_gpa_pt(kvm, range->start, range->end);
450}
451
452bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
453{
454	gpa_t gpa = range->start << PAGE_SHIFT;
455	pte_t *gpa_pte = kvm_mips_pte_for_gpa(kvm, NULL, gpa);
456
457	if (!gpa_pte)
458		return false;
459	return pte_young(*gpa_pte);
460}
461
462/**
463 * _kvm_mips_map_page_fast() - Fast path GPA fault handler.
464 * @vcpu:		VCPU pointer.
465 * @gpa:		Guest physical address of fault.
466 * @write_fault:	Whether the fault was due to a write.
467 * @out_entry:		New PTE for @gpa (written on success unless NULL).
468 * @out_buddy:		New PTE for @gpa's buddy (written on success unless
469 *			NULL).
470 *
471 * Perform fast path GPA fault handling, doing all that can be done without
472 * calling into KVM. This handles marking old pages young (for idle page
473 * tracking), and dirtying of clean pages (for dirty page logging).
474 *
475 * Returns:	0 on success, in which case we can update derived mappings and
476 *		resume guest execution.
477 *		-EFAULT on failure due to absent GPA mapping or write to
478 *		read-only page, in which case KVM must be consulted.
479 */
480static int _kvm_mips_map_page_fast(struct kvm_vcpu *vcpu, unsigned long gpa,
481				   bool write_fault,
482				   pte_t *out_entry, pte_t *out_buddy)
483{
484	struct kvm *kvm = vcpu->kvm;
485	gfn_t gfn = gpa >> PAGE_SHIFT;
486	pte_t *ptep;
487	int ret = 0;
488
489	spin_lock(&kvm->mmu_lock);
490
491	/* Fast path - just check GPA page table for an existing entry */
492	ptep = kvm_mips_pte_for_gpa(kvm, NULL, gpa);
493	if (!ptep || !pte_present(*ptep)) {
494		ret = -EFAULT;
495		goto out;
496	}
497
498	/* Track access to pages marked old */
499	if (!pte_young(*ptep))
500		set_pte(ptep, pte_mkyoung(*ptep));
501
502	if (write_fault && !pte_dirty(*ptep)) {
503		if (!pte_write(*ptep)) {
504			ret = -EFAULT;
505			goto out;
506		}
507
508		/* Track dirtying of writeable pages */
509		set_pte(ptep, pte_mkdirty(*ptep));
510		mark_page_dirty(kvm, gfn);
511	}
512
513	if (out_entry)
514		*out_entry = *ptep;
515	if (out_buddy)
516		*out_buddy = *ptep_buddy(ptep);
517
518out:
519	spin_unlock(&kvm->mmu_lock);
520	return ret;
521}
522
523/**
524 * kvm_mips_map_page() - Map a guest physical page.
525 * @vcpu:		VCPU pointer.
526 * @gpa:		Guest physical address of fault.
527 * @write_fault:	Whether the fault was due to a write.
528 * @out_entry:		New PTE for @gpa (written on success unless NULL).
529 * @out_buddy:		New PTE for @gpa's buddy (written on success unless
530 *			NULL).
531 *
532 * Handle GPA faults by creating a new GPA mapping (or updating an existing
533 * one).
534 *
535 * This takes care of marking pages young or dirty (idle/dirty page tracking),
536 * asking KVM for the corresponding PFN, and creating a mapping in the GPA page
537 * tables. Derived mappings (GVA page tables and TLBs) must be handled by the
538 * caller.
539 *
540 * Returns:	0 on success, in which case the caller may use the @out_entry
541 *		and @out_buddy PTEs to update derived mappings and resume guest
542 *		execution.
543 *		-EFAULT if there is no memory region at @gpa or a write was
544 *		attempted to a read-only memory region. This is usually handled
545 *		as an MMIO access.
546 */
547static int kvm_mips_map_page(struct kvm_vcpu *vcpu, unsigned long gpa,
548			     bool write_fault,
549			     pte_t *out_entry, pte_t *out_buddy)
550{
551	struct kvm *kvm = vcpu->kvm;
552	struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
553	gfn_t gfn = gpa >> PAGE_SHIFT;
554	int srcu_idx, err;
555	kvm_pfn_t pfn;
556	pte_t *ptep, entry;
557	bool writeable;
558	unsigned long prot_bits;
559	unsigned long mmu_seq;
560	struct page *page;
561
562	/* Try the fast path to handle old / clean pages */
563	srcu_idx = srcu_read_lock(&kvm->srcu);
564	err = _kvm_mips_map_page_fast(vcpu, gpa, write_fault, out_entry,
565				      out_buddy);
566	if (!err)
567		goto out;
568
569	/* We need a minimum of cached pages ready for page table creation */
570	err = kvm_mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES);
571	if (err)
572		goto out;
573
574retry:
575	/*
576	 * Used to check for invalidations in progress, of the pfn that is
577	 * returned by pfn_to_pfn_prot below.
578	 */
579	mmu_seq = kvm->mmu_invalidate_seq;
580	/*
581	 * Ensure the read of mmu_invalidate_seq isn't reordered with PTE reads
582	 * in kvm_faultin_pfn() (which calls get_user_pages()), so that we don't
583	 * risk the page we get a reference to getting unmapped before we have a
584	 * chance to grab the mmu_lock without mmu_invalidate_retry() noticing.
585	 *
586	 * This smp_rmb() pairs with the effective smp_wmb() of the combination
587	 * of the pte_unmap_unlock() after the PTE is zapped, and the
588	 * spin_lock() in kvm_mmu_notifier_invalidate_<page|range_end>() before
589	 * mmu_invalidate_seq is incremented.
590	 */
591	smp_rmb();
592
593	/* Slow path - ask KVM core whether we can access this GPA */
594	pfn = kvm_faultin_pfn(vcpu, gfn, write_fault, &writeable, &page);
595	if (is_error_noslot_pfn(pfn)) {
596		err = -EFAULT;
597		goto out;
598	}
599
600	spin_lock(&kvm->mmu_lock);
601	/* Check if an invalidation has taken place since we got pfn */
602	if (mmu_invalidate_retry(kvm, mmu_seq)) {
603		/*
604		 * This can happen when mappings are changed asynchronously, but
605		 * also synchronously if a COW is triggered by
606		 * kvm_faultin_pfn().
607		 */
608		spin_unlock(&kvm->mmu_lock);
609		kvm_release_page_unused(page);
610		goto retry;
611	}
612
613	/* Ensure page tables are allocated */
614	ptep = kvm_mips_pte_for_gpa(kvm, memcache, gpa);
615
616	/* Set up the PTE */
617	prot_bits = _PAGE_PRESENT | __READABLE | _page_cachable_default;
618	if (writeable) {
619		prot_bits |= _PAGE_WRITE;
620		if (write_fault) {
621			prot_bits |= __WRITEABLE;
622			mark_page_dirty(kvm, gfn);
623		}
624	}
625	entry = pfn_pte(pfn, __pgprot(prot_bits));
626
627	/* Write the PTE */
628	set_pte(ptep, entry);
629
630	err = 0;
631	if (out_entry)
632		*out_entry = *ptep;
633	if (out_buddy)
634		*out_buddy = *ptep_buddy(ptep);
635
636	kvm_release_faultin_page(kvm, page, false, writeable);
637	spin_unlock(&kvm->mmu_lock);
638out:
639	srcu_read_unlock(&kvm->srcu, srcu_idx);
640	return err;
641}
642
643int kvm_mips_handle_vz_root_tlb_fault(unsigned long badvaddr,
644				      struct kvm_vcpu *vcpu,
645				      bool write_fault)
646{
647	int ret;
648
649	ret = kvm_mips_map_page(vcpu, badvaddr, write_fault, NULL, NULL);
650	if (ret)
651		return ret;
652
653	/* Invalidate this entry in the TLB */
654	return kvm_vz_host_tlb_inv(vcpu, badvaddr);
655}
656
657/**
658 * kvm_mips_migrate_count() - Migrate timer.
659 * @vcpu:	Virtual CPU.
660 *
661 * Migrate CP0_Count hrtimer to the current CPU by cancelling and restarting it
662 * if it was running prior to being cancelled.
663 *
664 * Must be called when the VCPU is migrated to a different CPU to ensure that
665 * timer expiry during guest execution interrupts the guest and causes the
666 * interrupt to be delivered in a timely manner.
667 */
668static void kvm_mips_migrate_count(struct kvm_vcpu *vcpu)
669{
670	if (hrtimer_cancel(&vcpu->arch.comparecount_timer))
671		hrtimer_restart(&vcpu->arch.comparecount_timer);
672}
673
674/* Restore ASID once we are scheduled back after preemption */
675void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
676{
677	unsigned long flags;
678
679	kvm_debug("%s: vcpu %p, cpu: %d\n", __func__, vcpu, cpu);
680
681	local_irq_save(flags);
682
683	vcpu->cpu = cpu;
684	if (vcpu->arch.last_sched_cpu != cpu) {
685		kvm_debug("[%d->%d]KVM VCPU[%d] switch\n",
686			  vcpu->arch.last_sched_cpu, cpu, vcpu->vcpu_id);
687		/*
688		 * Migrate the timer interrupt to the current CPU so that it
689		 * always interrupts the guest and synchronously triggers a
690		 * guest timer interrupt.
691		 */
692		kvm_mips_migrate_count(vcpu);
693	}
694
695	/* restore guest state to registers */
696	kvm_mips_callbacks->vcpu_load(vcpu, cpu);
697
698	local_irq_restore(flags);
699}
700
701/* ASID can change if another task is scheduled during preemption */
702void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
703{
704	unsigned long flags;
705	int cpu;
706
707	local_irq_save(flags);
708
709	cpu = smp_processor_id();
710	vcpu->arch.last_sched_cpu = cpu;
711	vcpu->cpu = -1;
712
713	/* save guest state in registers */
714	kvm_mips_callbacks->vcpu_put(vcpu, cpu);
715
716	local_irq_restore(flags);
717}