Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.5.6.
  1/*
  2 * This file is subject to the terms and conditions of the GNU General Public
  3 * License.  See the file "COPYING" in the main directory of this archive
  4 * for more details.
  5 *
  6 * KVM/MIPS MMU handling in the KVM module.
  7 *
  8 * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved.
  9 * Authors: Sanjay Lal <sanjayl@kymasys.com>
 10 */
 11
 12#include <linux/highmem.h>
 13#include <linux/kvm_host.h>
 14#include <linux/uaccess.h>
 15#include <asm/mmu_context.h>
 16#include <asm/pgalloc.h>
 17
 18/*
 19 * KVM_MMU_CACHE_MIN_PAGES is the number of GPA page table translation levels
 20 * for which pages need to be cached.
 21 */
 22#if defined(__PAGETABLE_PMD_FOLDED)
 23#define KVM_MMU_CACHE_MIN_PAGES 1
 24#else
 25#define KVM_MMU_CACHE_MIN_PAGES 2
 26#endif
 27
 28void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu)
 29{
 30	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
 31}
 32
 33/**
 34 * kvm_pgd_init() - Initialise KVM GPA page directory.
 35 * @page:	Pointer to page directory (PGD) for KVM GPA.
 36 *
 37 * Initialise a KVM GPA page directory with pointers to the invalid table, i.e.
 38 * representing no mappings. This is similar to pgd_init(), however it
 39 * initialises all the page directory pointers, not just the ones corresponding
 40 * to the userland address space (since it is for the guest physical address
 41 * space rather than a virtual address space).
 42 */
 43static void kvm_pgd_init(void *page)
 44{
 45	unsigned long *p, *end;
 46	unsigned long entry;
 47
 48#ifdef __PAGETABLE_PMD_FOLDED
 49	entry = (unsigned long)invalid_pte_table;
 50#else
 51	entry = (unsigned long)invalid_pmd_table;
 52#endif
 53
 54	p = (unsigned long *)page;
 55	end = p + PTRS_PER_PGD;
 56
 57	do {
 58		p[0] = entry;
 59		p[1] = entry;
 60		p[2] = entry;
 61		p[3] = entry;
 62		p[4] = entry;
 63		p += 8;
 64		p[-3] = entry;
 65		p[-2] = entry;
 66		p[-1] = entry;
 67	} while (p != end);
 68}
 69
 70/**
 71 * kvm_pgd_alloc() - Allocate and initialise a KVM GPA page directory.
 72 *
 73 * Allocate a blank KVM GPA page directory (PGD) for representing guest physical
 74 * to host physical page mappings.
 75 *
 76 * Returns:	Pointer to new KVM GPA page directory.
 77 *		NULL on allocation failure.
 78 */
 79pgd_t *kvm_pgd_alloc(void)
 80{
 81	pgd_t *ret;
 82
 83	ret = (pgd_t *)__get_free_pages(GFP_KERNEL, PGD_ORDER);
 84	if (ret)
 85		kvm_pgd_init(ret);
 86
 87	return ret;
 88}
 89
 90/**
 91 * kvm_mips_walk_pgd() - Walk page table with optional allocation.
 92 * @pgd:	Page directory pointer.
 93 * @addr:	Address to index page table using.
 94 * @cache:	MMU page cache to allocate new page tables from, or NULL.
 95 *
 96 * Walk the page tables pointed to by @pgd to find the PTE corresponding to the
 97 * address @addr. If page tables don't exist for @addr, they will be created
 98 * from the MMU cache if @cache is not NULL.
 99 *
100 * Returns:	Pointer to pte_t corresponding to @addr.
101 *		NULL if a page table doesn't exist for @addr and !@cache.
102 *		NULL if a page table allocation failed.
103 */
104static pte_t *kvm_mips_walk_pgd(pgd_t *pgd, struct kvm_mmu_memory_cache *cache,
105				unsigned long addr)
106{
107	p4d_t *p4d;
108	pud_t *pud;
109	pmd_t *pmd;
110
111	pgd += pgd_index(addr);
112	if (pgd_none(*pgd)) {
113		/* Not used on MIPS yet */
114		BUG();
115		return NULL;
116	}
117	p4d = p4d_offset(pgd, addr);
118	pud = pud_offset(p4d, addr);
119	if (pud_none(*pud)) {
120		pmd_t *new_pmd;
121
122		if (!cache)
123			return NULL;
124		new_pmd = kvm_mmu_memory_cache_alloc(cache);
125		pmd_init((unsigned long)new_pmd,
126			 (unsigned long)invalid_pte_table);
127		pud_populate(NULL, pud, new_pmd);
128	}
129	pmd = pmd_offset(pud, addr);
130	if (pmd_none(*pmd)) {
131		pte_t *new_pte;
132
133		if (!cache)
134			return NULL;
135		new_pte = kvm_mmu_memory_cache_alloc(cache);
136		clear_page(new_pte);
137		pmd_populate_kernel(NULL, pmd, new_pte);
138	}
139	return pte_offset_kernel(pmd, addr);
140}
141
142/* Caller must hold kvm->mm_lock */
143static pte_t *kvm_mips_pte_for_gpa(struct kvm *kvm,
144				   struct kvm_mmu_memory_cache *cache,
145				   unsigned long addr)
146{
147	return kvm_mips_walk_pgd(kvm->arch.gpa_mm.pgd, cache, addr);
148}
149
150/*
151 * kvm_mips_flush_gpa_{pte,pmd,pud,pgd,pt}.
152 * Flush a range of guest physical address space from the VM's GPA page tables.
153 */
154
155static bool kvm_mips_flush_gpa_pte(pte_t *pte, unsigned long start_gpa,
156				   unsigned long end_gpa)
157{
158	int i_min = pte_index(start_gpa);
159	int i_max = pte_index(end_gpa);
160	bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PTE - 1);
161	int i;
162
163	for (i = i_min; i <= i_max; ++i) {
164		if (!pte_present(pte[i]))
165			continue;
166
167		set_pte(pte + i, __pte(0));
168	}
169	return safe_to_remove;
170}
171
172static bool kvm_mips_flush_gpa_pmd(pmd_t *pmd, unsigned long start_gpa,
173				   unsigned long end_gpa)
174{
175	pte_t *pte;
176	unsigned long end = ~0ul;
177	int i_min = pmd_index(start_gpa);
178	int i_max = pmd_index(end_gpa);
179	bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PMD - 1);
180	int i;
181
182	for (i = i_min; i <= i_max; ++i, start_gpa = 0) {
183		if (!pmd_present(pmd[i]))
184			continue;
185
186		pte = pte_offset_kernel(pmd + i, 0);
187		if (i == i_max)
188			end = end_gpa;
189
190		if (kvm_mips_flush_gpa_pte(pte, start_gpa, end)) {
191			pmd_clear(pmd + i);
192			pte_free_kernel(NULL, pte);
193		} else {
194			safe_to_remove = false;
195		}
196	}
197	return safe_to_remove;
198}
199
200static bool kvm_mips_flush_gpa_pud(pud_t *pud, unsigned long start_gpa,
201				   unsigned long end_gpa)
202{
203	pmd_t *pmd;
204	unsigned long end = ~0ul;
205	int i_min = pud_index(start_gpa);
206	int i_max = pud_index(end_gpa);
207	bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PUD - 1);
208	int i;
209
210	for (i = i_min; i <= i_max; ++i, start_gpa = 0) {
211		if (!pud_present(pud[i]))
212			continue;
213
214		pmd = pmd_offset(pud + i, 0);
215		if (i == i_max)
216			end = end_gpa;
217
218		if (kvm_mips_flush_gpa_pmd(pmd, start_gpa, end)) {
219			pud_clear(pud + i);
220			pmd_free(NULL, pmd);
221		} else {
222			safe_to_remove = false;
223		}
224	}
225	return safe_to_remove;
226}
227
228static bool kvm_mips_flush_gpa_pgd(pgd_t *pgd, unsigned long start_gpa,
229				   unsigned long end_gpa)
230{
231	p4d_t *p4d;
232	pud_t *pud;
233	unsigned long end = ~0ul;
234	int i_min = pgd_index(start_gpa);
235	int i_max = pgd_index(end_gpa);
236	bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PGD - 1);
237	int i;
238
239	for (i = i_min; i <= i_max; ++i, start_gpa = 0) {
240		if (!pgd_present(pgd[i]))
241			continue;
242
243		p4d = p4d_offset(pgd, 0);
244		pud = pud_offset(p4d + i, 0);
245		if (i == i_max)
246			end = end_gpa;
247
248		if (kvm_mips_flush_gpa_pud(pud, start_gpa, end)) {
249			pgd_clear(pgd + i);
250			pud_free(NULL, pud);
251		} else {
252			safe_to_remove = false;
253		}
254	}
255	return safe_to_remove;
256}
257
258/**
259 * kvm_mips_flush_gpa_pt() - Flush a range of guest physical addresses.
260 * @kvm:	KVM pointer.
261 * @start_gfn:	Guest frame number of first page in GPA range to flush.
262 * @end_gfn:	Guest frame number of last page in GPA range to flush.
263 *
264 * Flushes a range of GPA mappings from the GPA page tables.
265 *
266 * The caller must hold the @kvm->mmu_lock spinlock.
267 *
268 * Returns:	Whether its safe to remove the top level page directory because
269 *		all lower levels have been removed.
270 */
271bool kvm_mips_flush_gpa_pt(struct kvm *kvm, gfn_t start_gfn, gfn_t end_gfn)
272{
273	return kvm_mips_flush_gpa_pgd(kvm->arch.gpa_mm.pgd,
274				      start_gfn << PAGE_SHIFT,
275				      end_gfn << PAGE_SHIFT);
276}
277
278#define BUILD_PTE_RANGE_OP(name, op)					\
279static int kvm_mips_##name##_pte(pte_t *pte, unsigned long start,	\
280				 unsigned long end)			\
281{									\
282	int ret = 0;							\
283	int i_min = pte_index(start);				\
284	int i_max = pte_index(end);					\
285	int i;								\
286	pte_t old, new;							\
287									\
288	for (i = i_min; i <= i_max; ++i) {				\
289		if (!pte_present(pte[i]))				\
290			continue;					\
291									\
292		old = pte[i];						\
293		new = op(old);						\
294		if (pte_val(new) == pte_val(old))			\
295			continue;					\
296		set_pte(pte + i, new);					\
297		ret = 1;						\
298	}								\
299	return ret;							\
300}									\
301									\
302/* returns true if anything was done */					\
303static int kvm_mips_##name##_pmd(pmd_t *pmd, unsigned long start,	\
304				 unsigned long end)			\
305{									\
306	int ret = 0;							\
307	pte_t *pte;							\
308	unsigned long cur_end = ~0ul;					\
309	int i_min = pmd_index(start);				\
310	int i_max = pmd_index(end);					\
311	int i;								\
312									\
313	for (i = i_min; i <= i_max; ++i, start = 0) {			\
314		if (!pmd_present(pmd[i]))				\
315			continue;					\
316									\
317		pte = pte_offset_kernel(pmd + i, 0);				\
318		if (i == i_max)						\
319			cur_end = end;					\
320									\
321		ret |= kvm_mips_##name##_pte(pte, start, cur_end);	\
322	}								\
323	return ret;							\
324}									\
325									\
326static int kvm_mips_##name##_pud(pud_t *pud, unsigned long start,	\
327				 unsigned long end)			\
328{									\
329	int ret = 0;							\
330	pmd_t *pmd;							\
331	unsigned long cur_end = ~0ul;					\
332	int i_min = pud_index(start);				\
333	int i_max = pud_index(end);					\
334	int i;								\
335									\
336	for (i = i_min; i <= i_max; ++i, start = 0) {			\
337		if (!pud_present(pud[i]))				\
338			continue;					\
339									\
340		pmd = pmd_offset(pud + i, 0);				\
341		if (i == i_max)						\
342			cur_end = end;					\
343									\
344		ret |= kvm_mips_##name##_pmd(pmd, start, cur_end);	\
345	}								\
346	return ret;							\
347}									\
348									\
349static int kvm_mips_##name##_pgd(pgd_t *pgd, unsigned long start,	\
350				 unsigned long end)			\
351{									\
352	int ret = 0;							\
353	p4d_t *p4d;							\
354	pud_t *pud;							\
355	unsigned long cur_end = ~0ul;					\
356	int i_min = pgd_index(start);					\
357	int i_max = pgd_index(end);					\
358	int i;								\
359									\
360	for (i = i_min; i <= i_max; ++i, start = 0) {			\
361		if (!pgd_present(pgd[i]))				\
362			continue;					\
363									\
364		p4d = p4d_offset(pgd, 0);				\
365		pud = pud_offset(p4d + i, 0);				\
366		if (i == i_max)						\
367			cur_end = end;					\
368									\
369		ret |= kvm_mips_##name##_pud(pud, start, cur_end);	\
370	}								\
371	return ret;							\
372}
373
374/*
375 * kvm_mips_mkclean_gpa_pt.
376 * Mark a range of guest physical address space clean (writes fault) in the VM's
377 * GPA page table to allow dirty page tracking.
378 */
379
380BUILD_PTE_RANGE_OP(mkclean, pte_mkclean)
381
382/**
383 * kvm_mips_mkclean_gpa_pt() - Make a range of guest physical addresses clean.
384 * @kvm:	KVM pointer.
385 * @start_gfn:	Guest frame number of first page in GPA range to flush.
386 * @end_gfn:	Guest frame number of last page in GPA range to flush.
387 *
388 * Make a range of GPA mappings clean so that guest writes will fault and
389 * trigger dirty page logging.
390 *
391 * The caller must hold the @kvm->mmu_lock spinlock.
392 *
393 * Returns:	Whether any GPA mappings were modified, which would require
394 *		derived mappings (GVA page tables & TLB enties) to be
395 *		invalidated.
396 */
397int kvm_mips_mkclean_gpa_pt(struct kvm *kvm, gfn_t start_gfn, gfn_t end_gfn)
398{
399	return kvm_mips_mkclean_pgd(kvm->arch.gpa_mm.pgd,
400				    start_gfn << PAGE_SHIFT,
401				    end_gfn << PAGE_SHIFT);
402}
403
404/**
405 * kvm_arch_mmu_enable_log_dirty_pt_masked() - write protect dirty pages
406 * @kvm:	The KVM pointer
407 * @slot:	The memory slot associated with mask
408 * @gfn_offset:	The gfn offset in memory slot
409 * @mask:	The mask of dirty pages at offset 'gfn_offset' in this memory
410 *		slot to be write protected
411 *
412 * Walks bits set in mask write protects the associated pte's. Caller must
413 * acquire @kvm->mmu_lock.
414 */
415void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
416		struct kvm_memory_slot *slot,
417		gfn_t gfn_offset, unsigned long mask)
418{
419	gfn_t base_gfn = slot->base_gfn + gfn_offset;
420	gfn_t start = base_gfn +  __ffs(mask);
421	gfn_t end = base_gfn + __fls(mask);
422
423	kvm_mips_mkclean_gpa_pt(kvm, start, end);
424}
425
426/*
427 * kvm_mips_mkold_gpa_pt.
428 * Mark a range of guest physical address space old (all accesses fault) in the
429 * VM's GPA page table to allow detection of commonly used pages.
430 */
431
432BUILD_PTE_RANGE_OP(mkold, pte_mkold)
433
434static int kvm_mips_mkold_gpa_pt(struct kvm *kvm, gfn_t start_gfn,
435				 gfn_t end_gfn)
436{
437	return kvm_mips_mkold_pgd(kvm->arch.gpa_mm.pgd,
438				  start_gfn << PAGE_SHIFT,
439				  end_gfn << PAGE_SHIFT);
440}
441
442bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
443{
444	kvm_mips_flush_gpa_pt(kvm, range->start, range->end);
445	return 1;
446}
447
448bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
449{
450	gpa_t gpa = range->start << PAGE_SHIFT;
451	pte_t hva_pte = range->pte;
452	pte_t *gpa_pte = kvm_mips_pte_for_gpa(kvm, NULL, gpa);
453	pte_t old_pte;
454
455	if (!gpa_pte)
456		return false;
457
458	/* Mapping may need adjusting depending on memslot flags */
459	old_pte = *gpa_pte;
460	if (range->slot->flags & KVM_MEM_LOG_DIRTY_PAGES && !pte_dirty(old_pte))
461		hva_pte = pte_mkclean(hva_pte);
462	else if (range->slot->flags & KVM_MEM_READONLY)
463		hva_pte = pte_wrprotect(hva_pte);
464
465	set_pte(gpa_pte, hva_pte);
466
467	/* Replacing an absent or old page doesn't need flushes */
468	if (!pte_present(old_pte) || !pte_young(old_pte))
469		return false;
470
471	/* Pages swapped, aged, moved, or cleaned require flushes */
472	return !pte_present(hva_pte) ||
473	       !pte_young(hva_pte) ||
474	       pte_pfn(old_pte) != pte_pfn(hva_pte) ||
475	       (pte_dirty(old_pte) && !pte_dirty(hva_pte));
476}
477
478bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
479{
480	return kvm_mips_mkold_gpa_pt(kvm, range->start, range->end);
481}
482
483bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
484{
485	gpa_t gpa = range->start << PAGE_SHIFT;
486	pte_t *gpa_pte = kvm_mips_pte_for_gpa(kvm, NULL, gpa);
487
488	if (!gpa_pte)
489		return 0;
490	return pte_young(*gpa_pte);
491}
492
493/**
494 * _kvm_mips_map_page_fast() - Fast path GPA fault handler.
495 * @vcpu:		VCPU pointer.
496 * @gpa:		Guest physical address of fault.
497 * @write_fault:	Whether the fault was due to a write.
498 * @out_entry:		New PTE for @gpa (written on success unless NULL).
499 * @out_buddy:		New PTE for @gpa's buddy (written on success unless
500 *			NULL).
501 *
502 * Perform fast path GPA fault handling, doing all that can be done without
503 * calling into KVM. This handles marking old pages young (for idle page
504 * tracking), and dirtying of clean pages (for dirty page logging).
505 *
506 * Returns:	0 on success, in which case we can update derived mappings and
507 *		resume guest execution.
508 *		-EFAULT on failure due to absent GPA mapping or write to
509 *		read-only page, in which case KVM must be consulted.
510 */
511static int _kvm_mips_map_page_fast(struct kvm_vcpu *vcpu, unsigned long gpa,
512				   bool write_fault,
513				   pte_t *out_entry, pte_t *out_buddy)
514{
515	struct kvm *kvm = vcpu->kvm;
516	gfn_t gfn = gpa >> PAGE_SHIFT;
517	pte_t *ptep;
518	kvm_pfn_t pfn = 0;	/* silence bogus GCC warning */
519	bool pfn_valid = false;
520	int ret = 0;
521
522	spin_lock(&kvm->mmu_lock);
523
524	/* Fast path - just check GPA page table for an existing entry */
525	ptep = kvm_mips_pte_for_gpa(kvm, NULL, gpa);
526	if (!ptep || !pte_present(*ptep)) {
527		ret = -EFAULT;
528		goto out;
529	}
530
531	/* Track access to pages marked old */
532	if (!pte_young(*ptep)) {
533		set_pte(ptep, pte_mkyoung(*ptep));
534		pfn = pte_pfn(*ptep);
535		pfn_valid = true;
536		/* call kvm_set_pfn_accessed() after unlock */
537	}
538	if (write_fault && !pte_dirty(*ptep)) {
539		if (!pte_write(*ptep)) {
540			ret = -EFAULT;
541			goto out;
542		}
543
544		/* Track dirtying of writeable pages */
545		set_pte(ptep, pte_mkdirty(*ptep));
546		pfn = pte_pfn(*ptep);
547		mark_page_dirty(kvm, gfn);
548		kvm_set_pfn_dirty(pfn);
549	}
550
551	if (out_entry)
552		*out_entry = *ptep;
553	if (out_buddy)
554		*out_buddy = *ptep_buddy(ptep);
555
556out:
557	spin_unlock(&kvm->mmu_lock);
558	if (pfn_valid)
559		kvm_set_pfn_accessed(pfn);
560	return ret;
561}
562
563/**
564 * kvm_mips_map_page() - Map a guest physical page.
565 * @vcpu:		VCPU pointer.
566 * @gpa:		Guest physical address of fault.
567 * @write_fault:	Whether the fault was due to a write.
568 * @out_entry:		New PTE for @gpa (written on success unless NULL).
569 * @out_buddy:		New PTE for @gpa's buddy (written on success unless
570 *			NULL).
571 *
572 * Handle GPA faults by creating a new GPA mapping (or updating an existing
573 * one).
574 *
575 * This takes care of marking pages young or dirty (idle/dirty page tracking),
576 * asking KVM for the corresponding PFN, and creating a mapping in the GPA page
577 * tables. Derived mappings (GVA page tables and TLBs) must be handled by the
578 * caller.
579 *
580 * Returns:	0 on success, in which case the caller may use the @out_entry
581 *		and @out_buddy PTEs to update derived mappings and resume guest
582 *		execution.
583 *		-EFAULT if there is no memory region at @gpa or a write was
584 *		attempted to a read-only memory region. This is usually handled
585 *		as an MMIO access.
586 */
587static int kvm_mips_map_page(struct kvm_vcpu *vcpu, unsigned long gpa,
588			     bool write_fault,
589			     pte_t *out_entry, pte_t *out_buddy)
590{
591	struct kvm *kvm = vcpu->kvm;
592	struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
593	gfn_t gfn = gpa >> PAGE_SHIFT;
594	int srcu_idx, err;
595	kvm_pfn_t pfn;
596	pte_t *ptep, entry, old_pte;
597	bool writeable;
598	unsigned long prot_bits;
599	unsigned long mmu_seq;
600
601	/* Try the fast path to handle old / clean pages */
602	srcu_idx = srcu_read_lock(&kvm->srcu);
603	err = _kvm_mips_map_page_fast(vcpu, gpa, write_fault, out_entry,
604				      out_buddy);
605	if (!err)
606		goto out;
607
608	/* We need a minimum of cached pages ready for page table creation */
609	err = kvm_mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES);
610	if (err)
611		goto out;
612
613retry:
614	/*
615	 * Used to check for invalidations in progress, of the pfn that is
616	 * returned by pfn_to_pfn_prot below.
617	 */
618	mmu_seq = kvm->mmu_notifier_seq;
619	/*
620	 * Ensure the read of mmu_notifier_seq isn't reordered with PTE reads in
621	 * gfn_to_pfn_prot() (which calls get_user_pages()), so that we don't
622	 * risk the page we get a reference to getting unmapped before we have a
623	 * chance to grab the mmu_lock without mmu_notifier_retry() noticing.
624	 *
625	 * This smp_rmb() pairs with the effective smp_wmb() of the combination
626	 * of the pte_unmap_unlock() after the PTE is zapped, and the
627	 * spin_lock() in kvm_mmu_notifier_invalidate_<page|range_end>() before
628	 * mmu_notifier_seq is incremented.
629	 */
630	smp_rmb();
631
632	/* Slow path - ask KVM core whether we can access this GPA */
633	pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writeable);
634	if (is_error_noslot_pfn(pfn)) {
635		err = -EFAULT;
636		goto out;
637	}
638
639	spin_lock(&kvm->mmu_lock);
640	/* Check if an invalidation has taken place since we got pfn */
641	if (mmu_notifier_retry(kvm, mmu_seq)) {
642		/*
643		 * This can happen when mappings are changed asynchronously, but
644		 * also synchronously if a COW is triggered by
645		 * gfn_to_pfn_prot().
646		 */
647		spin_unlock(&kvm->mmu_lock);
648		kvm_release_pfn_clean(pfn);
649		goto retry;
650	}
651
652	/* Ensure page tables are allocated */
653	ptep = kvm_mips_pte_for_gpa(kvm, memcache, gpa);
654
655	/* Set up the PTE */
656	prot_bits = _PAGE_PRESENT | __READABLE | _page_cachable_default;
657	if (writeable) {
658		prot_bits |= _PAGE_WRITE;
659		if (write_fault) {
660			prot_bits |= __WRITEABLE;
661			mark_page_dirty(kvm, gfn);
662			kvm_set_pfn_dirty(pfn);
663		}
664	}
665	entry = pfn_pte(pfn, __pgprot(prot_bits));
666
667	/* Write the PTE */
668	old_pte = *ptep;
669	set_pte(ptep, entry);
670
671	err = 0;
672	if (out_entry)
673		*out_entry = *ptep;
674	if (out_buddy)
675		*out_buddy = *ptep_buddy(ptep);
676
677	spin_unlock(&kvm->mmu_lock);
678	kvm_release_pfn_clean(pfn);
679	kvm_set_pfn_accessed(pfn);
680out:
681	srcu_read_unlock(&kvm->srcu, srcu_idx);
682	return err;
683}
684
685int kvm_mips_handle_vz_root_tlb_fault(unsigned long badvaddr,
686				      struct kvm_vcpu *vcpu,
687				      bool write_fault)
688{
689	int ret;
690
691	ret = kvm_mips_map_page(vcpu, badvaddr, write_fault, NULL, NULL);
692	if (ret)
693		return ret;
694
695	/* Invalidate this entry in the TLB */
696	return kvm_vz_host_tlb_inv(vcpu, badvaddr);
697}
698
699/**
700 * kvm_mips_migrate_count() - Migrate timer.
701 * @vcpu:	Virtual CPU.
702 *
703 * Migrate CP0_Count hrtimer to the current CPU by cancelling and restarting it
704 * if it was running prior to being cancelled.
705 *
706 * Must be called when the VCPU is migrated to a different CPU to ensure that
707 * timer expiry during guest execution interrupts the guest and causes the
708 * interrupt to be delivered in a timely manner.
709 */
710static void kvm_mips_migrate_count(struct kvm_vcpu *vcpu)
711{
712	if (hrtimer_cancel(&vcpu->arch.comparecount_timer))
713		hrtimer_restart(&vcpu->arch.comparecount_timer);
714}
715
716/* Restore ASID once we are scheduled back after preemption */
717void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
718{
719	unsigned long flags;
720
721	kvm_debug("%s: vcpu %p, cpu: %d\n", __func__, vcpu, cpu);
722
723	local_irq_save(flags);
724
725	vcpu->cpu = cpu;
726	if (vcpu->arch.last_sched_cpu != cpu) {
727		kvm_debug("[%d->%d]KVM VCPU[%d] switch\n",
728			  vcpu->arch.last_sched_cpu, cpu, vcpu->vcpu_id);
729		/*
730		 * Migrate the timer interrupt to the current CPU so that it
731		 * always interrupts the guest and synchronously triggers a
732		 * guest timer interrupt.
733		 */
734		kvm_mips_migrate_count(vcpu);
735	}
736
737	/* restore guest state to registers */
738	kvm_mips_callbacks->vcpu_load(vcpu, cpu);
739
740	local_irq_restore(flags);
741}
742
743/* ASID can change if another task is scheduled during preemption */
744void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
745{
746	unsigned long flags;
747	int cpu;
748
749	local_irq_save(flags);
750
751	cpu = smp_processor_id();
752	vcpu->arch.last_sched_cpu = cpu;
753	vcpu->cpu = -1;
754
755	/* save guest state in registers */
756	kvm_mips_callbacks->vcpu_put(vcpu, cpu);
757
758	local_irq_restore(flags);
759}