Linux Audio

Check our new training course

Loading...
v3.5.6
 
  1#ifndef __ASM_SPINLOCK_H
  2#define __ASM_SPINLOCK_H
  3
  4#if __LINUX_ARM_ARCH__ < 6
  5#error SMP not supported on pre-ARMv6 CPUs
  6#endif
  7
 
 
  8#include <asm/processor.h>
  9
 10/*
 11 * sev and wfe are ARMv6K extensions.  Uniprocessor ARMv6 may not have the K
 12 * extensions, so when running on UP, we have to patch these instructions away.
 13 */
 14#define ALT_SMP(smp, up)					\
 15	"9998:	" smp "\n"					\
 16	"	.pushsection \".alt.smp.init\", \"a\"\n"	\
 17	"	.long	9998b\n"				\
 18	"	" up "\n"					\
 19	"	.popsection\n"
 20
 21#ifdef CONFIG_THUMB2_KERNEL
 22#define SEV		ALT_SMP("sev.w", "nop.w")
 23/*
 24 * For Thumb-2, special care is needed to ensure that the conditional WFE
 25 * instruction really does assemble to exactly 4 bytes (as required by
 26 * the SMP_ON_UP fixup code).   By itself "wfene" might cause the
 27 * assembler to insert a extra (16-bit) IT instruction, depending on the
 28 * presence or absence of neighbouring conditional instructions.
 29 *
 30 * To avoid this unpredictableness, an approprite IT is inserted explicitly:
 31 * the assembler won't change IT instructions which are explicitly present
 32 * in the input.
 33 */
 34#define WFE(cond)	ALT_SMP(		\
 35	"it " cond "\n\t"			\
 36	"wfe" cond ".n",			\
 37						\
 38	"nop.w"					\
 39)
 40#else
 41#define SEV		ALT_SMP("sev", "nop")
 42#define WFE(cond)	ALT_SMP("wfe" cond, "nop")
 43#endif
 44
 
 
 45static inline void dsb_sev(void)
 46{
 47#if __LINUX_ARM_ARCH__ >= 7
 48	__asm__ __volatile__ (
 49		"dsb\n"
 50		SEV
 51	);
 52#else
 53	__asm__ __volatile__ (
 54		"mcr p15, 0, %0, c7, c10, 4\n"
 55		SEV
 56		: : "r" (0)
 57	);
 58#endif
 59}
 60
 61/*
 62 * ARMv6 Spin-locking.
 63 *
 64 * We exclusively read the old value.  If it is zero, we may have
 65 * won the lock, so we try exclusively storing it.  A memory barrier
 66 * is required after we get a lock, and before we release it, because
 67 * V6 CPUs are assumed to have weakly ordered memory.
 68 *
 69 * Unlocked value: 0
 70 * Locked value: 1
 
 71 */
 72
 73#define arch_spin_is_locked(x)		((x)->lock != 0)
 74#define arch_spin_unlock_wait(lock) \
 75	do { while (arch_spin_is_locked(lock)) cpu_relax(); } while (0)
 76
 77#define arch_spin_lock_flags(lock, flags) arch_spin_lock(lock)
 78
 79static inline void arch_spin_lock(arch_spinlock_t *lock)
 80{
 81	unsigned long tmp;
 
 
 82
 
 83	__asm__ __volatile__(
 84"1:	ldrex	%0, [%1]\n"
 85"	teq	%0, #0\n"
 86	WFE("ne")
 87"	strexeq	%0, %2, [%1]\n"
 88"	teqeq	%0, #0\n"
 89"	bne	1b"
 90	: "=&r" (tmp)
 91	: "r" (&lock->lock), "r" (1)
 92	: "cc");
 93
 
 
 
 
 
 94	smp_mb();
 95}
 96
 97static inline int arch_spin_trylock(arch_spinlock_t *lock)
 98{
 99	unsigned long tmp;
 
100
101	__asm__ __volatile__(
102"	ldrex	%0, [%1]\n"
103"	teq	%0, #0\n"
104"	strexeq	%0, %2, [%1]"
105	: "=&r" (tmp)
106	: "r" (&lock->lock), "r" (1)
107	: "cc");
 
 
 
 
 
108
109	if (tmp == 0) {
110		smp_mb();
111		return 1;
112	} else {
113		return 0;
114	}
115}
116
117static inline void arch_spin_unlock(arch_spinlock_t *lock)
118{
119	smp_mb();
 
 
 
120
121	__asm__ __volatile__(
122"	str	%1, [%0]\n"
123	:
124	: "r" (&lock->lock), "r" (0)
125	: "cc");
126
127	dsb_sev();
 
 
 
 
 
 
 
 
128}
 
129
130/*
131 * RWLOCKS
132 *
133 *
134 * Write locks are easy - we just set bit 31.  When unlocking, we can
135 * just write zero since the lock is exclusively held.
136 */
137
138static inline void arch_write_lock(arch_rwlock_t *rw)
139{
140	unsigned long tmp;
141
 
142	__asm__ __volatile__(
143"1:	ldrex	%0, [%1]\n"
144"	teq	%0, #0\n"
145	WFE("ne")
146"	strexeq	%0, %2, [%1]\n"
147"	teq	%0, #0\n"
148"	bne	1b"
149	: "=&r" (tmp)
150	: "r" (&rw->lock), "r" (0x80000000)
151	: "cc");
152
153	smp_mb();
154}
155
156static inline int arch_write_trylock(arch_rwlock_t *rw)
157{
158	unsigned long tmp;
159
160	__asm__ __volatile__(
161"1:	ldrex	%0, [%1]\n"
162"	teq	%0, #0\n"
163"	strexeq	%0, %2, [%1]"
164	: "=&r" (tmp)
165	: "r" (&rw->lock), "r" (0x80000000)
166	: "cc");
 
 
 
 
167
168	if (tmp == 0) {
169		smp_mb();
170		return 1;
171	} else {
172		return 0;
173	}
174}
175
176static inline void arch_write_unlock(arch_rwlock_t *rw)
177{
178	smp_mb();
179
180	__asm__ __volatile__(
181	"str	%1, [%0]\n"
182	:
183	: "r" (&rw->lock), "r" (0)
184	: "cc");
185
186	dsb_sev();
187}
188
189/* write_can_lock - would write_trylock() succeed? */
190#define arch_write_can_lock(x)		((x)->lock == 0)
191
192/*
193 * Read locks are a bit more hairy:
194 *  - Exclusively load the lock value.
195 *  - Increment it.
196 *  - Store new lock value if positive, and we still own this location.
197 *    If the value is negative, we've already failed.
198 *  - If we failed to store the value, we want a negative result.
199 *  - If we failed, try again.
200 * Unlocking is similarly hairy.  We may have multiple read locks
201 * currently active.  However, we know we won't have any write
202 * locks.
203 */
204static inline void arch_read_lock(arch_rwlock_t *rw)
205{
206	unsigned long tmp, tmp2;
207
 
208	__asm__ __volatile__(
 
209"1:	ldrex	%0, [%2]\n"
210"	adds	%0, %0, #1\n"
211"	strexpl	%1, %0, [%2]\n"
212	WFE("mi")
213"	rsbpls	%0, %1, #0\n"
214"	bmi	1b"
215	: "=&r" (tmp), "=&r" (tmp2)
216	: "r" (&rw->lock)
217	: "cc");
218
219	smp_mb();
220}
221
222static inline void arch_read_unlock(arch_rwlock_t *rw)
223{
224	unsigned long tmp, tmp2;
225
226	smp_mb();
227
 
228	__asm__ __volatile__(
229"1:	ldrex	%0, [%2]\n"
230"	sub	%0, %0, #1\n"
231"	strex	%1, %0, [%2]\n"
232"	teq	%1, #0\n"
233"	bne	1b"
234	: "=&r" (tmp), "=&r" (tmp2)
235	: "r" (&rw->lock)
236	: "cc");
237
238	if (tmp == 0)
239		dsb_sev();
240}
241
242static inline int arch_read_trylock(arch_rwlock_t *rw)
243{
244	unsigned long tmp, tmp2 = 1;
245
246	__asm__ __volatile__(
247"1:	ldrex	%0, [%2]\n"
248"	adds	%0, %0, #1\n"
249"	strexpl	%1, %0, [%2]\n"
250	: "=&r" (tmp), "+r" (tmp2)
251	: "r" (&rw->lock)
252	: "cc");
 
 
 
 
253
254	smp_mb();
255	return tmp2 == 0;
 
 
 
 
 
256}
257
258/* read_can_lock - would read_trylock() succeed? */
259#define arch_read_can_lock(x)		((x)->lock < 0x80000000)
260
261#define arch_read_lock_flags(lock, flags) arch_read_lock(lock)
262#define arch_write_lock_flags(lock, flags) arch_write_lock(lock)
263
264#define arch_spin_relax(lock)	cpu_relax()
265#define arch_read_relax(lock)	cpu_relax()
266#define arch_write_relax(lock)	cpu_relax()
267
268#endif /* __ASM_SPINLOCK_H */
v6.13.7
  1/* SPDX-License-Identifier: GPL-2.0 */
  2#ifndef __ASM_SPINLOCK_H
  3#define __ASM_SPINLOCK_H
  4
  5#if __LINUX_ARM_ARCH__ < 6
  6#error SMP not supported on pre-ARMv6 CPUs
  7#endif
  8
  9#include <linux/prefetch.h>
 10#include <asm/barrier.h>
 11#include <asm/processor.h>
 12
 13/*
 14 * sev and wfe are ARMv6K extensions.  Uniprocessor ARMv6 may not have the K
 15 * extensions, so when running on UP, we have to patch these instructions away.
 16 */
 
 
 
 
 
 
 
 17#ifdef CONFIG_THUMB2_KERNEL
 
 18/*
 19 * For Thumb-2, special care is needed to ensure that the conditional WFE
 20 * instruction really does assemble to exactly 4 bytes (as required by
 21 * the SMP_ON_UP fixup code).   By itself "wfene" might cause the
 22 * assembler to insert a extra (16-bit) IT instruction, depending on the
 23 * presence or absence of neighbouring conditional instructions.
 24 *
 25 * To avoid this unpredictability, an appropriate IT is inserted explicitly:
 26 * the assembler won't change IT instructions which are explicitly present
 27 * in the input.
 28 */
 29#define WFE(cond)	__ALT_SMP_ASM(		\
 30	"it " cond "\n\t"			\
 31	"wfe" cond ".n",			\
 32						\
 33	"nop.w"					\
 34)
 35#else
 36#define WFE(cond)	__ALT_SMP_ASM("wfe" cond, "nop")
 
 37#endif
 38
 39#define SEV		__ALT_SMP_ASM(WASM(sev), WASM(nop))
 40
 41static inline void dsb_sev(void)
 42{
 43
 44	dsb(ishst);
 45	__asm__(SEV);
 
 
 
 
 
 
 
 
 
 46}
 47
 48/*
 49 * ARMv6 ticket-based spin-locking.
 
 
 
 
 
 50 *
 51 * A memory barrier is required after we get a lock, and before we
 52 * release it, because V6 CPUs are assumed to have weakly ordered
 53 * memory.
 54 */
 55
 
 
 
 
 
 
 56static inline void arch_spin_lock(arch_spinlock_t *lock)
 57{
 58	unsigned long tmp;
 59	u32 newval;
 60	arch_spinlock_t lockval;
 61
 62	prefetchw(&lock->slock);
 63	__asm__ __volatile__(
 64"1:	ldrex	%0, [%3]\n"
 65"	add	%1, %0, %4\n"
 66"	strex	%2, %1, [%3]\n"
 67"	teq	%2, #0\n"
 
 68"	bne	1b"
 69	: "=&r" (lockval), "=&r" (newval), "=&r" (tmp)
 70	: "r" (&lock->slock), "I" (1 << TICKET_SHIFT)
 71	: "cc");
 72
 73	while (lockval.tickets.next != lockval.tickets.owner) {
 74		wfe();
 75		lockval.tickets.owner = READ_ONCE(lock->tickets.owner);
 76	}
 77
 78	smp_mb();
 79}
 80
 81static inline int arch_spin_trylock(arch_spinlock_t *lock)
 82{
 83	unsigned long contended, res;
 84	u32 slock;
 85
 86	prefetchw(&lock->slock);
 87	do {
 88		__asm__ __volatile__(
 89		"	ldrex	%0, [%3]\n"
 90		"	mov	%2, #0\n"
 91		"	subs	%1, %0, %0, ror #16\n"
 92		"	addeq	%0, %0, %4\n"
 93		"	strexeq	%2, %0, [%3]"
 94		: "=&r" (slock), "=&r" (contended), "=&r" (res)
 95		: "r" (&lock->slock), "I" (1 << TICKET_SHIFT)
 96		: "cc");
 97	} while (res);
 98
 99	if (!contended) {
100		smp_mb();
101		return 1;
102	} else {
103		return 0;
104	}
105}
106
107static inline void arch_spin_unlock(arch_spinlock_t *lock)
108{
109	smp_mb();
110	lock->tickets.owner++;
111	dsb_sev();
112}
113
114static inline int arch_spin_value_unlocked(arch_spinlock_t lock)
115{
116	return lock.tickets.owner == lock.tickets.next;
117}
 
118
119static inline int arch_spin_is_locked(arch_spinlock_t *lock)
120{
121	return !arch_spin_value_unlocked(READ_ONCE(*lock));
122}
123
124static inline int arch_spin_is_contended(arch_spinlock_t *lock)
125{
126	struct __raw_tickets tickets = READ_ONCE(lock->tickets);
127	return (tickets.next - tickets.owner) > 1;
128}
129#define arch_spin_is_contended	arch_spin_is_contended
130
131/*
132 * RWLOCKS
133 *
134 *
135 * Write locks are easy - we just set bit 31.  When unlocking, we can
136 * just write zero since the lock is exclusively held.
137 */
138
139static inline void arch_write_lock(arch_rwlock_t *rw)
140{
141	unsigned long tmp;
142
143	prefetchw(&rw->lock);
144	__asm__ __volatile__(
145"1:	ldrex	%0, [%1]\n"
146"	teq	%0, #0\n"
147	WFE("ne")
148"	strexeq	%0, %2, [%1]\n"
149"	teq	%0, #0\n"
150"	bne	1b"
151	: "=&r" (tmp)
152	: "r" (&rw->lock), "r" (0x80000000)
153	: "cc");
154
155	smp_mb();
156}
157
158static inline int arch_write_trylock(arch_rwlock_t *rw)
159{
160	unsigned long contended, res;
161
162	prefetchw(&rw->lock);
163	do {
164		__asm__ __volatile__(
165		"	ldrex	%0, [%2]\n"
166		"	mov	%1, #0\n"
167		"	teq	%0, #0\n"
168		"	strexeq	%1, %3, [%2]"
169		: "=&r" (contended), "=&r" (res)
170		: "r" (&rw->lock), "r" (0x80000000)
171		: "cc");
172	} while (res);
173
174	if (!contended) {
175		smp_mb();
176		return 1;
177	} else {
178		return 0;
179	}
180}
181
182static inline void arch_write_unlock(arch_rwlock_t *rw)
183{
184	smp_mb();
185
186	__asm__ __volatile__(
187	"str	%1, [%0]\n"
188	:
189	: "r" (&rw->lock), "r" (0)
190	: "cc");
191
192	dsb_sev();
193}
194
 
 
 
195/*
196 * Read locks are a bit more hairy:
197 *  - Exclusively load the lock value.
198 *  - Increment it.
199 *  - Store new lock value if positive, and we still own this location.
200 *    If the value is negative, we've already failed.
201 *  - If we failed to store the value, we want a negative result.
202 *  - If we failed, try again.
203 * Unlocking is similarly hairy.  We may have multiple read locks
204 * currently active.  However, we know we won't have any write
205 * locks.
206 */
207static inline void arch_read_lock(arch_rwlock_t *rw)
208{
209	unsigned long tmp, tmp2;
210
211	prefetchw(&rw->lock);
212	__asm__ __volatile__(
213"	.syntax unified\n"
214"1:	ldrex	%0, [%2]\n"
215"	adds	%0, %0, #1\n"
216"	strexpl	%1, %0, [%2]\n"
217	WFE("mi")
218"	rsbspl	%0, %1, #0\n"
219"	bmi	1b"
220	: "=&r" (tmp), "=&r" (tmp2)
221	: "r" (&rw->lock)
222	: "cc");
223
224	smp_mb();
225}
226
227static inline void arch_read_unlock(arch_rwlock_t *rw)
228{
229	unsigned long tmp, tmp2;
230
231	smp_mb();
232
233	prefetchw(&rw->lock);
234	__asm__ __volatile__(
235"1:	ldrex	%0, [%2]\n"
236"	sub	%0, %0, #1\n"
237"	strex	%1, %0, [%2]\n"
238"	teq	%1, #0\n"
239"	bne	1b"
240	: "=&r" (tmp), "=&r" (tmp2)
241	: "r" (&rw->lock)
242	: "cc");
243
244	if (tmp == 0)
245		dsb_sev();
246}
247
248static inline int arch_read_trylock(arch_rwlock_t *rw)
249{
250	unsigned long contended, res;
251
252	prefetchw(&rw->lock);
253	do {
254		__asm__ __volatile__(
255		"	ldrex	%0, [%2]\n"
256		"	mov	%1, #0\n"
257		"	adds	%0, %0, #1\n"
258		"	strexpl	%1, %0, [%2]"
259		: "=&r" (contended), "=&r" (res)
260		: "r" (&rw->lock)
261		: "cc");
262	} while (res);
263
264	/* If the lock is negative, then it is already held for write. */
265	if (contended < 0x80000000) {
266		smp_mb();
267		return 1;
268	} else {
269		return 0;
270	}
271}
 
 
 
 
 
 
 
 
 
 
272
273#endif /* __ASM_SPINLOCK_H */