Linux Audio

Check our new training course

Linux BSP upgrade and security maintenance

Need help to get security updates for your Linux BSP?
Loading...
v3.5.6
  1#ifndef __ASM_SPINLOCK_H
  2#define __ASM_SPINLOCK_H
  3
  4#if __LINUX_ARM_ARCH__ < 6
  5#error SMP not supported on pre-ARMv6 CPUs
  6#endif
  7
  8#include <asm/processor.h>
  9
 10/*
 11 * sev and wfe are ARMv6K extensions.  Uniprocessor ARMv6 may not have the K
 12 * extensions, so when running on UP, we have to patch these instructions away.
 13 */
 14#define ALT_SMP(smp, up)					\
 15	"9998:	" smp "\n"					\
 16	"	.pushsection \".alt.smp.init\", \"a\"\n"	\
 17	"	.long	9998b\n"				\
 18	"	" up "\n"					\
 19	"	.popsection\n"
 20
 21#ifdef CONFIG_THUMB2_KERNEL
 22#define SEV		ALT_SMP("sev.w", "nop.w")
 23/*
 24 * For Thumb-2, special care is needed to ensure that the conditional WFE
 25 * instruction really does assemble to exactly 4 bytes (as required by
 26 * the SMP_ON_UP fixup code).   By itself "wfene" might cause the
 27 * assembler to insert a extra (16-bit) IT instruction, depending on the
 28 * presence or absence of neighbouring conditional instructions.
 29 *
 30 * To avoid this unpredictableness, an approprite IT is inserted explicitly:
 31 * the assembler won't change IT instructions which are explicitly present
 32 * in the input.
 33 */
 34#define WFE(cond)	ALT_SMP(		\
 35	"it " cond "\n\t"			\
 36	"wfe" cond ".n",			\
 37						\
 38	"nop.w"					\
 39)
 40#else
 41#define SEV		ALT_SMP("sev", "nop")
 42#define WFE(cond)	ALT_SMP("wfe" cond, "nop")
 43#endif
 44
 
 
 45static inline void dsb_sev(void)
 46{
 47#if __LINUX_ARM_ARCH__ >= 7
 48	__asm__ __volatile__ (
 49		"dsb\n"
 50		SEV
 51	);
 52#else
 53	__asm__ __volatile__ (
 54		"mcr p15, 0, %0, c7, c10, 4\n"
 55		SEV
 56		: : "r" (0)
 57	);
 58#endif
 59}
 60
 61/*
 62 * ARMv6 Spin-locking.
 63 *
 64 * We exclusively read the old value.  If it is zero, we may have
 65 * won the lock, so we try exclusively storing it.  A memory barrier
 66 * is required after we get a lock, and before we release it, because
 67 * V6 CPUs are assumed to have weakly ordered memory.
 68 *
 69 * Unlocked value: 0
 70 * Locked value: 1
 
 71 */
 72
 73#define arch_spin_is_locked(x)		((x)->lock != 0)
 74#define arch_spin_unlock_wait(lock) \
 75	do { while (arch_spin_is_locked(lock)) cpu_relax(); } while (0)
 76
 77#define arch_spin_lock_flags(lock, flags) arch_spin_lock(lock)
 78
 79static inline void arch_spin_lock(arch_spinlock_t *lock)
 80{
 81	unsigned long tmp;
 
 
 82
 
 83	__asm__ __volatile__(
 84"1:	ldrex	%0, [%1]\n"
 85"	teq	%0, #0\n"
 86	WFE("ne")
 87"	strexeq	%0, %2, [%1]\n"
 88"	teqeq	%0, #0\n"
 89"	bne	1b"
 90	: "=&r" (tmp)
 91	: "r" (&lock->lock), "r" (1)
 92	: "cc");
 93
 
 
 
 
 
 94	smp_mb();
 95}
 96
 97static inline int arch_spin_trylock(arch_spinlock_t *lock)
 98{
 99	unsigned long tmp;
 
100
101	__asm__ __volatile__(
102"	ldrex	%0, [%1]\n"
103"	teq	%0, #0\n"
104"	strexeq	%0, %2, [%1]"
105	: "=&r" (tmp)
106	: "r" (&lock->lock), "r" (1)
107	: "cc");
 
 
 
 
 
108
109	if (tmp == 0) {
110		smp_mb();
111		return 1;
112	} else {
113		return 0;
114	}
115}
116
117static inline void arch_spin_unlock(arch_spinlock_t *lock)
118{
119	smp_mb();
 
 
 
120
121	__asm__ __volatile__(
122"	str	%1, [%0]\n"
123	:
124	: "r" (&lock->lock), "r" (0)
125	: "cc");
126
127	dsb_sev();
 
 
 
 
 
 
 
 
128}
 
129
130/*
131 * RWLOCKS
132 *
133 *
134 * Write locks are easy - we just set bit 31.  When unlocking, we can
135 * just write zero since the lock is exclusively held.
136 */
137
138static inline void arch_write_lock(arch_rwlock_t *rw)
139{
140	unsigned long tmp;
141
 
142	__asm__ __volatile__(
143"1:	ldrex	%0, [%1]\n"
144"	teq	%0, #0\n"
145	WFE("ne")
146"	strexeq	%0, %2, [%1]\n"
147"	teq	%0, #0\n"
148"	bne	1b"
149	: "=&r" (tmp)
150	: "r" (&rw->lock), "r" (0x80000000)
151	: "cc");
152
153	smp_mb();
154}
155
156static inline int arch_write_trylock(arch_rwlock_t *rw)
157{
158	unsigned long tmp;
159
160	__asm__ __volatile__(
161"1:	ldrex	%0, [%1]\n"
162"	teq	%0, #0\n"
163"	strexeq	%0, %2, [%1]"
164	: "=&r" (tmp)
165	: "r" (&rw->lock), "r" (0x80000000)
166	: "cc");
 
 
 
 
167
168	if (tmp == 0) {
169		smp_mb();
170		return 1;
171	} else {
172		return 0;
173	}
174}
175
176static inline void arch_write_unlock(arch_rwlock_t *rw)
177{
178	smp_mb();
179
180	__asm__ __volatile__(
181	"str	%1, [%0]\n"
182	:
183	: "r" (&rw->lock), "r" (0)
184	: "cc");
185
186	dsb_sev();
187}
188
189/* write_can_lock - would write_trylock() succeed? */
190#define arch_write_can_lock(x)		((x)->lock == 0)
191
192/*
193 * Read locks are a bit more hairy:
194 *  - Exclusively load the lock value.
195 *  - Increment it.
196 *  - Store new lock value if positive, and we still own this location.
197 *    If the value is negative, we've already failed.
198 *  - If we failed to store the value, we want a negative result.
199 *  - If we failed, try again.
200 * Unlocking is similarly hairy.  We may have multiple read locks
201 * currently active.  However, we know we won't have any write
202 * locks.
203 */
204static inline void arch_read_lock(arch_rwlock_t *rw)
205{
206	unsigned long tmp, tmp2;
207
 
208	__asm__ __volatile__(
209"1:	ldrex	%0, [%2]\n"
210"	adds	%0, %0, #1\n"
211"	strexpl	%1, %0, [%2]\n"
212	WFE("mi")
213"	rsbpls	%0, %1, #0\n"
214"	bmi	1b"
215	: "=&r" (tmp), "=&r" (tmp2)
216	: "r" (&rw->lock)
217	: "cc");
218
219	smp_mb();
220}
221
222static inline void arch_read_unlock(arch_rwlock_t *rw)
223{
224	unsigned long tmp, tmp2;
225
226	smp_mb();
227
 
228	__asm__ __volatile__(
229"1:	ldrex	%0, [%2]\n"
230"	sub	%0, %0, #1\n"
231"	strex	%1, %0, [%2]\n"
232"	teq	%1, #0\n"
233"	bne	1b"
234	: "=&r" (tmp), "=&r" (tmp2)
235	: "r" (&rw->lock)
236	: "cc");
237
238	if (tmp == 0)
239		dsb_sev();
240}
241
242static inline int arch_read_trylock(arch_rwlock_t *rw)
243{
244	unsigned long tmp, tmp2 = 1;
245
246	__asm__ __volatile__(
247"1:	ldrex	%0, [%2]\n"
248"	adds	%0, %0, #1\n"
249"	strexpl	%1, %0, [%2]\n"
250	: "=&r" (tmp), "+r" (tmp2)
251	: "r" (&rw->lock)
252	: "cc");
 
 
 
 
253
254	smp_mb();
255	return tmp2 == 0;
 
 
 
 
 
256}
257
258/* read_can_lock - would read_trylock() succeed? */
259#define arch_read_can_lock(x)		((x)->lock < 0x80000000)
260
261#define arch_read_lock_flags(lock, flags) arch_read_lock(lock)
262#define arch_write_lock_flags(lock, flags) arch_write_lock(lock)
263
264#define arch_spin_relax(lock)	cpu_relax()
265#define arch_read_relax(lock)	cpu_relax()
266#define arch_write_relax(lock)	cpu_relax()
267
268#endif /* __ASM_SPINLOCK_H */
v3.15
  1#ifndef __ASM_SPINLOCK_H
  2#define __ASM_SPINLOCK_H
  3
  4#if __LINUX_ARM_ARCH__ < 6
  5#error SMP not supported on pre-ARMv6 CPUs
  6#endif
  7
  8#include <linux/prefetch.h>
  9
 10/*
 11 * sev and wfe are ARMv6K extensions.  Uniprocessor ARMv6 may not have the K
 12 * extensions, so when running on UP, we have to patch these instructions away.
 13 */
 
 
 
 
 
 
 
 14#ifdef CONFIG_THUMB2_KERNEL
 
 15/*
 16 * For Thumb-2, special care is needed to ensure that the conditional WFE
 17 * instruction really does assemble to exactly 4 bytes (as required by
 18 * the SMP_ON_UP fixup code).   By itself "wfene" might cause the
 19 * assembler to insert a extra (16-bit) IT instruction, depending on the
 20 * presence or absence of neighbouring conditional instructions.
 21 *
 22 * To avoid this unpredictableness, an approprite IT is inserted explicitly:
 23 * the assembler won't change IT instructions which are explicitly present
 24 * in the input.
 25 */
 26#define WFE(cond)	__ALT_SMP_ASM(		\
 27	"it " cond "\n\t"			\
 28	"wfe" cond ".n",			\
 29						\
 30	"nop.w"					\
 31)
 32#else
 33#define WFE(cond)	__ALT_SMP_ASM("wfe" cond, "nop")
 
 34#endif
 35
 36#define SEV		__ALT_SMP_ASM(WASM(sev), WASM(nop))
 37
 38static inline void dsb_sev(void)
 39{
 40
 41	dsb(ishst);
 42	__asm__(SEV);
 
 
 
 
 
 
 
 
 
 43}
 44
 45/*
 46 * ARMv6 ticket-based spin-locking.
 
 
 
 
 
 47 *
 48 * A memory barrier is required after we get a lock, and before we
 49 * release it, because V6 CPUs are assumed to have weakly ordered
 50 * memory.
 51 */
 52
 
 53#define arch_spin_unlock_wait(lock) \
 54	do { while (arch_spin_is_locked(lock)) cpu_relax(); } while (0)
 55
 56#define arch_spin_lock_flags(lock, flags) arch_spin_lock(lock)
 57
 58static inline void arch_spin_lock(arch_spinlock_t *lock)
 59{
 60	unsigned long tmp;
 61	u32 newval;
 62	arch_spinlock_t lockval;
 63
 64	prefetchw(&lock->slock);
 65	__asm__ __volatile__(
 66"1:	ldrex	%0, [%3]\n"
 67"	add	%1, %0, %4\n"
 68"	strex	%2, %1, [%3]\n"
 69"	teq	%2, #0\n"
 
 70"	bne	1b"
 71	: "=&r" (lockval), "=&r" (newval), "=&r" (tmp)
 72	: "r" (&lock->slock), "I" (1 << TICKET_SHIFT)
 73	: "cc");
 74
 75	while (lockval.tickets.next != lockval.tickets.owner) {
 76		wfe();
 77		lockval.tickets.owner = ACCESS_ONCE(lock->tickets.owner);
 78	}
 79
 80	smp_mb();
 81}
 82
 83static inline int arch_spin_trylock(arch_spinlock_t *lock)
 84{
 85	unsigned long contended, res;
 86	u32 slock;
 87
 88	prefetchw(&lock->slock);
 89	do {
 90		__asm__ __volatile__(
 91		"	ldrex	%0, [%3]\n"
 92		"	mov	%2, #0\n"
 93		"	subs	%1, %0, %0, ror #16\n"
 94		"	addeq	%0, %0, %4\n"
 95		"	strexeq	%2, %0, [%3]"
 96		: "=&r" (slock), "=&r" (contended), "=&r" (res)
 97		: "r" (&lock->slock), "I" (1 << TICKET_SHIFT)
 98		: "cc");
 99	} while (res);
100
101	if (!contended) {
102		smp_mb();
103		return 1;
104	} else {
105		return 0;
106	}
107}
108
109static inline void arch_spin_unlock(arch_spinlock_t *lock)
110{
111	smp_mb();
112	lock->tickets.owner++;
113	dsb_sev();
114}
115
116static inline int arch_spin_value_unlocked(arch_spinlock_t lock)
117{
118	return lock.tickets.owner == lock.tickets.next;
119}
 
120
121static inline int arch_spin_is_locked(arch_spinlock_t *lock)
122{
123	return !arch_spin_value_unlocked(ACCESS_ONCE(*lock));
124}
125
126static inline int arch_spin_is_contended(arch_spinlock_t *lock)
127{
128	struct __raw_tickets tickets = ACCESS_ONCE(lock->tickets);
129	return (tickets.next - tickets.owner) > 1;
130}
131#define arch_spin_is_contended	arch_spin_is_contended
132
133/*
134 * RWLOCKS
135 *
136 *
137 * Write locks are easy - we just set bit 31.  When unlocking, we can
138 * just write zero since the lock is exclusively held.
139 */
140
141static inline void arch_write_lock(arch_rwlock_t *rw)
142{
143	unsigned long tmp;
144
145	prefetchw(&rw->lock);
146	__asm__ __volatile__(
147"1:	ldrex	%0, [%1]\n"
148"	teq	%0, #0\n"
149	WFE("ne")
150"	strexeq	%0, %2, [%1]\n"
151"	teq	%0, #0\n"
152"	bne	1b"
153	: "=&r" (tmp)
154	: "r" (&rw->lock), "r" (0x80000000)
155	: "cc");
156
157	smp_mb();
158}
159
160static inline int arch_write_trylock(arch_rwlock_t *rw)
161{
162	unsigned long contended, res;
163
164	prefetchw(&rw->lock);
165	do {
166		__asm__ __volatile__(
167		"	ldrex	%0, [%2]\n"
168		"	mov	%1, #0\n"
169		"	teq	%0, #0\n"
170		"	strexeq	%1, %3, [%2]"
171		: "=&r" (contended), "=&r" (res)
172		: "r" (&rw->lock), "r" (0x80000000)
173		: "cc");
174	} while (res);
175
176	if (!contended) {
177		smp_mb();
178		return 1;
179	} else {
180		return 0;
181	}
182}
183
184static inline void arch_write_unlock(arch_rwlock_t *rw)
185{
186	smp_mb();
187
188	__asm__ __volatile__(
189	"str	%1, [%0]\n"
190	:
191	: "r" (&rw->lock), "r" (0)
192	: "cc");
193
194	dsb_sev();
195}
196
197/* write_can_lock - would write_trylock() succeed? */
198#define arch_write_can_lock(x)		(ACCESS_ONCE((x)->lock) == 0)
199
200/*
201 * Read locks are a bit more hairy:
202 *  - Exclusively load the lock value.
203 *  - Increment it.
204 *  - Store new lock value if positive, and we still own this location.
205 *    If the value is negative, we've already failed.
206 *  - If we failed to store the value, we want a negative result.
207 *  - If we failed, try again.
208 * Unlocking is similarly hairy.  We may have multiple read locks
209 * currently active.  However, we know we won't have any write
210 * locks.
211 */
212static inline void arch_read_lock(arch_rwlock_t *rw)
213{
214	unsigned long tmp, tmp2;
215
216	prefetchw(&rw->lock);
217	__asm__ __volatile__(
218"1:	ldrex	%0, [%2]\n"
219"	adds	%0, %0, #1\n"
220"	strexpl	%1, %0, [%2]\n"
221	WFE("mi")
222"	rsbpls	%0, %1, #0\n"
223"	bmi	1b"
224	: "=&r" (tmp), "=&r" (tmp2)
225	: "r" (&rw->lock)
226	: "cc");
227
228	smp_mb();
229}
230
231static inline void arch_read_unlock(arch_rwlock_t *rw)
232{
233	unsigned long tmp, tmp2;
234
235	smp_mb();
236
237	prefetchw(&rw->lock);
238	__asm__ __volatile__(
239"1:	ldrex	%0, [%2]\n"
240"	sub	%0, %0, #1\n"
241"	strex	%1, %0, [%2]\n"
242"	teq	%1, #0\n"
243"	bne	1b"
244	: "=&r" (tmp), "=&r" (tmp2)
245	: "r" (&rw->lock)
246	: "cc");
247
248	if (tmp == 0)
249		dsb_sev();
250}
251
252static inline int arch_read_trylock(arch_rwlock_t *rw)
253{
254	unsigned long contended, res;
255
256	prefetchw(&rw->lock);
257	do {
258		__asm__ __volatile__(
259		"	ldrex	%0, [%2]\n"
260		"	mov	%1, #0\n"
261		"	adds	%0, %0, #1\n"
262		"	strexpl	%1, %0, [%2]"
263		: "=&r" (contended), "=&r" (res)
264		: "r" (&rw->lock)
265		: "cc");
266	} while (res);
267
268	/* If the lock is negative, then it is already held for write. */
269	if (contended < 0x80000000) {
270		smp_mb();
271		return 1;
272	} else {
273		return 0;
274	}
275}
276
277/* read_can_lock - would read_trylock() succeed? */
278#define arch_read_can_lock(x)		(ACCESS_ONCE((x)->lock) < 0x80000000)
279
280#define arch_read_lock_flags(lock, flags) arch_read_lock(lock)
281#define arch_write_lock_flags(lock, flags) arch_write_lock(lock)
282
283#define arch_spin_relax(lock)	cpu_relax()
284#define arch_read_relax(lock)	cpu_relax()
285#define arch_write_relax(lock)	cpu_relax()
286
287#endif /* __ASM_SPINLOCK_H */