Linux Audio

Check our new training course

Loading...
v3.5.6
 
   1/*
   2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   3 *		operating system.  INET is implemented using the  BSD Socket
   4 *		interface as the means of communication with the user level.
   5 *
   6 *		Definitions for the AF_INET socket handler.
   7 *
   8 * Version:	@(#)sock.h	1.0.4	05/13/93
   9 *
  10 * Authors:	Ross Biro
  11 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  12 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
  13 *		Florian La Roche <flla@stud.uni-sb.de>
  14 *
  15 * Fixes:
  16 *		Alan Cox	:	Volatiles in skbuff pointers. See
  17 *					skbuff comments. May be overdone,
  18 *					better to prove they can be removed
  19 *					than the reverse.
  20 *		Alan Cox	:	Added a zapped field for tcp to note
  21 *					a socket is reset and must stay shut up
  22 *		Alan Cox	:	New fields for options
  23 *	Pauline Middelink	:	identd support
  24 *		Alan Cox	:	Eliminate low level recv/recvfrom
  25 *		David S. Miller	:	New socket lookup architecture.
  26 *              Steve Whitehouse:       Default routines for sock_ops
  27 *              Arnaldo C. Melo :	removed net_pinfo, tp_pinfo and made
  28 *              			protinfo be just a void pointer, as the
  29 *              			protocol specific parts were moved to
  30 *              			respective headers and ipv4/v6, etc now
  31 *              			use private slabcaches for its socks
  32 *              Pedro Hortas	:	New flags field for socket options
  33 *
  34 *
  35 *		This program is free software; you can redistribute it and/or
  36 *		modify it under the terms of the GNU General Public License
  37 *		as published by the Free Software Foundation; either version
  38 *		2 of the License, or (at your option) any later version.
  39 */
  40#ifndef _SOCK_H
  41#define _SOCK_H
  42
  43#include <linux/hardirq.h>
  44#include <linux/kernel.h>
  45#include <linux/list.h>
  46#include <linux/list_nulls.h>
  47#include <linux/timer.h>
  48#include <linux/cache.h>
  49#include <linux/bitops.h>
  50#include <linux/lockdep.h>
  51#include <linux/netdevice.h>
  52#include <linux/skbuff.h>	/* struct sk_buff */
  53#include <linux/mm.h>
  54#include <linux/security.h>
  55#include <linux/slab.h>
  56#include <linux/uaccess.h>
 
  57#include <linux/memcontrol.h>
  58#include <linux/res_counter.h>
  59#include <linux/static_key.h>
  60#include <linux/aio.h>
  61#include <linux/sched.h>
  62
 
 
  63#include <linux/filter.h>
  64#include <linux/rculist_nulls.h>
  65#include <linux/poll.h>
 
  66
  67#include <linux/atomic.h>
 
  68#include <net/dst.h>
  69#include <net/checksum.h>
 
 
 
  70
  71struct cgroup;
  72struct cgroup_subsys;
  73#ifdef CONFIG_NET
  74int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss);
  75void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg);
  76#else
  77static inline
  78int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
  79{
  80	return 0;
  81}
  82static inline
  83void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg)
  84{
  85}
  86#endif
  87/*
  88 * This structure really needs to be cleaned up.
  89 * Most of it is for TCP, and not used by any of
  90 * the other protocols.
  91 */
  92
  93/* Define this to get the SOCK_DBG debugging facility. */
  94#define SOCK_DEBUGGING
  95#ifdef SOCK_DEBUGGING
  96#define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
  97					printk(KERN_DEBUG msg); } while (0)
  98#else
  99/* Validate arguments and do nothing */
 100static inline __printf(2, 3)
 101void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
 102{
 103}
 104#endif
 105
 106/* This is the per-socket lock.  The spinlock provides a synchronization
 107 * between user contexts and software interrupt processing, whereas the
 108 * mini-semaphore synchronizes multiple users amongst themselves.
 109 */
 110typedef struct {
 111	spinlock_t		slock;
 112	int			owned;
 113	wait_queue_head_t	wq;
 114	/*
 115	 * We express the mutex-alike socket_lock semantics
 116	 * to the lock validator by explicitly managing
 117	 * the slock as a lock variant (in addition to
 118	 * the slock itself):
 119	 */
 120#ifdef CONFIG_DEBUG_LOCK_ALLOC
 121	struct lockdep_map dep_map;
 122#endif
 123} socket_lock_t;
 124
 125struct sock;
 126struct proto;
 127struct net;
 128
 
 
 
 129/**
 130 *	struct sock_common - minimal network layer representation of sockets
 131 *	@skc_daddr: Foreign IPv4 addr
 132 *	@skc_rcv_saddr: Bound local IPv4 addr
 
 133 *	@skc_hash: hash value used with various protocol lookup tables
 134 *	@skc_u16hashes: two u16 hash values used by UDP lookup tables
 
 
 
 135 *	@skc_family: network address family
 136 *	@skc_state: Connection state
 137 *	@skc_reuse: %SO_REUSEADDR setting
 
 
 
 138 *	@skc_bound_dev_if: bound device index if != 0
 139 *	@skc_bind_node: bind hash linkage for various protocol lookup tables
 140 *	@skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
 141 *	@skc_prot: protocol handlers inside a network family
 142 *	@skc_net: reference to the network namespace of this socket
 
 
 
 143 *	@skc_node: main hash linkage for various protocol lookup tables
 144 *	@skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
 145 *	@skc_tx_queue_mapping: tx queue number for this connection
 
 
 
 
 
 
 
 
 
 
 
 
 
 146 *	@skc_refcnt: reference count
 147 *
 148 *	This is the minimal network layer representation of sockets, the header
 149 *	for struct sock and struct inet_timewait_sock.
 150 */
 151struct sock_common {
 152	/* skc_daddr and skc_rcv_saddr must be grouped :
 153	 * cf INET_MATCH() and INET_TW_MATCH()
 154	 */
 155	__be32			skc_daddr;
 156	__be32			skc_rcv_saddr;
 157
 
 
 
 
 158	union  {
 159		unsigned int	skc_hash;
 160		__u16		skc_u16hashes[2];
 161	};
 
 
 
 
 
 
 
 
 
 162	unsigned short		skc_family;
 163	volatile unsigned char	skc_state;
 164	unsigned char		skc_reuse;
 
 
 
 165	int			skc_bound_dev_if;
 166	union {
 167		struct hlist_node	skc_bind_node;
 168		struct hlist_nulls_node skc_portaddr_node;
 169	};
 170	struct proto		*skc_prot;
 171#ifdef CONFIG_NET_NS
 172	struct net	 	*skc_net;
 
 
 
 173#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 174	/*
 175	 * fields between dontcopy_begin/dontcopy_end
 176	 * are not copied in sock_copy()
 177	 */
 178	/* private: */
 179	int			skc_dontcopy_begin[0];
 180	/* public: */
 181	union {
 182		struct hlist_node	skc_node;
 183		struct hlist_nulls_node skc_nulls_node;
 184	};
 185	int			skc_tx_queue_mapping;
 186	atomic_t		skc_refcnt;
 
 
 
 
 
 
 
 
 
 187	/* private: */
 188	int                     skc_dontcopy_end[0];
 
 
 
 
 
 189	/* public: */
 190};
 191
 192struct cg_proto;
 
 193/**
 194  *	struct sock - network layer representation of sockets
 195  *	@__sk_common: shared layout with inet_timewait_sock
 196  *	@sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
 197  *	@sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
 198  *	@sk_lock:	synchronizer
 
 199  *	@sk_rcvbuf: size of receive buffer in bytes
 200  *	@sk_wq: sock wait queue and async head
 
 201  *	@sk_dst_cache: destination cache
 202  *	@sk_dst_lock: destination cache lock
 203  *	@sk_policy: flow policy
 
 204  *	@sk_receive_queue: incoming packets
 205  *	@sk_wmem_alloc: transmit queue bytes committed
 
 206  *	@sk_write_queue: Packet sending queue
 207  *	@sk_async_wait_queue: DMA copied packets
 208  *	@sk_omem_alloc: "o" is "option" or "other"
 209  *	@sk_wmem_queued: persistent queue size
 210  *	@sk_forward_alloc: space allocated forward
 
 
 211  *	@sk_allocation: allocation mode
 
 
 
 212  *	@sk_sndbuf: size of send buffer in bytes
 213  *	@sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
 214  *		   %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
 215  *	@sk_no_check: %SO_NO_CHECK setting, wether or not checkup packets
 
 216  *	@sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
 217  *	@sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
 
 
 218  *	@sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
 219  *	@sk_gso_max_size: Maximum GSO segment size to build
 220  *	@sk_gso_max_segs: Maximum number of GSO segments
 
 221  *	@sk_lingertime: %SO_LINGER l_linger setting
 222  *	@sk_backlog: always used with the per-socket spinlock held
 223  *	@sk_callback_lock: used with the callbacks in the end of this struct
 224  *	@sk_error_queue: rarely used
 225  *	@sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
 226  *			  IPV6_ADDRFORM for instance)
 227  *	@sk_err: last error
 228  *	@sk_err_soft: errors that don't cause failure but are the cause of a
 229  *		      persistent failure not just 'timed out'
 230  *	@sk_drops: raw/udp drops counter
 231  *	@sk_ack_backlog: current listen backlog
 232  *	@sk_max_ack_backlog: listen backlog set in listen()
 
 233  *	@sk_priority: %SO_PRIORITY setting
 234  *	@sk_cgrp_prioidx: socket group's priority map index
 235  *	@sk_type: socket type (%SOCK_STREAM, etc)
 236  *	@sk_protocol: which protocol this socket belongs in this network family
 237  *	@sk_peer_pid: &struct pid for this socket's peer
 238  *	@sk_peer_cred: %SO_PEERCRED setting
 239  *	@sk_rcvlowat: %SO_RCVLOWAT setting
 240  *	@sk_rcvtimeo: %SO_RCVTIMEO setting
 241  *	@sk_sndtimeo: %SO_SNDTIMEO setting
 242  *	@sk_rxhash: flow hash received from netif layer
 243  *	@sk_filter: socket filtering instructions
 244  *	@sk_protinfo: private area, net family specific, when not using slab
 245  *	@sk_timer: sock cleanup timer
 246  *	@sk_stamp: time stamp of last packet received
 
 
 
 
 247  *	@sk_socket: Identd and reporting IO signals
 248  *	@sk_user_data: RPC layer private data
 249  *	@sk_sndmsg_page: cached page for sendmsg
 250  *	@sk_sndmsg_off: cached offset for sendmsg
 251  *	@sk_peek_off: current peek_offset value
 252  *	@sk_send_head: front of stuff to transmit
 
 
 253  *	@sk_security: used by security modules
 254  *	@sk_mark: generic packet mark
 255  *	@sk_classid: this socket's cgroup classid
 256  *	@sk_cgrp: this socket's cgroup-specific proto data
 257  *	@sk_write_pending: a write to stream socket waits to start
 258  *	@sk_state_change: callback to indicate change in the state of the sock
 259  *	@sk_data_ready: callback to indicate there is data to be processed
 260  *	@sk_write_space: callback to indicate there is bf sending space available
 261  *	@sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
 262  *	@sk_backlog_rcv: callback to process the backlog
 
 263  *	@sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
 264 */
 
 
 
 
 
 
 
 265struct sock {
 266	/*
 267	 * Now struct inet_timewait_sock also uses sock_common, so please just
 268	 * don't add nothing before this first member (__sk_common) --acme
 269	 */
 270	struct sock_common	__sk_common;
 271#define sk_node			__sk_common.skc_node
 272#define sk_nulls_node		__sk_common.skc_nulls_node
 273#define sk_refcnt		__sk_common.skc_refcnt
 274#define sk_tx_queue_mapping	__sk_common.skc_tx_queue_mapping
 
 
 
 275
 276#define sk_dontcopy_begin	__sk_common.skc_dontcopy_begin
 277#define sk_dontcopy_end		__sk_common.skc_dontcopy_end
 278#define sk_hash			__sk_common.skc_hash
 
 
 
 
 
 
 279#define sk_family		__sk_common.skc_family
 280#define sk_state		__sk_common.skc_state
 281#define sk_reuse		__sk_common.skc_reuse
 
 
 
 282#define sk_bound_dev_if		__sk_common.skc_bound_dev_if
 283#define sk_bind_node		__sk_common.skc_bind_node
 284#define sk_prot			__sk_common.skc_prot
 285#define sk_net			__sk_common.skc_net
 
 
 
 
 
 
 
 286	socket_lock_t		sk_lock;
 
 
 
 
 287	struct sk_buff_head	sk_receive_queue;
 288	/*
 289	 * The backlog queue is special, it is always used with
 290	 * the per-socket spinlock held and requires low latency
 291	 * access. Therefore we special case it's implementation.
 292	 * Note : rmem_alloc is in this structure to fill a hole
 293	 * on 64bit arches, not because its logically part of
 294	 * backlog.
 295	 */
 296	struct {
 297		atomic_t	rmem_alloc;
 298		int		len;
 299		struct sk_buff	*head;
 300		struct sk_buff	*tail;
 301	} sk_backlog;
 302#define sk_rmem_alloc sk_backlog.rmem_alloc
 
 303	int			sk_forward_alloc;
 304#ifdef CONFIG_RPS
 305	__u32			sk_rxhash;
 
 
 306#endif
 307	atomic_t		sk_drops;
 308	int			sk_rcvbuf;
 309
 310	struct sk_filter __rcu	*sk_filter;
 311	struct socket_wq __rcu	*sk_wq;
 312
 313#ifdef CONFIG_NET_DMA
 314	struct sk_buff_head	sk_async_wait_queue;
 315#endif
 316
 317#ifdef CONFIG_XFRM
 318	struct xfrm_policy	*sk_policy[2];
 319#endif
 320	unsigned long 		sk_flags;
 321	struct dst_entry	*sk_dst_cache;
 322	spinlock_t		sk_dst_lock;
 323	atomic_t		sk_wmem_alloc;
 324	atomic_t		sk_omem_alloc;
 325	int			sk_sndbuf;
 326	struct sk_buff_head	sk_write_queue;
 327	kmemcheck_bitfield_begin(flags);
 328	unsigned int		sk_shutdown  : 2,
 329				sk_no_check  : 2,
 330				sk_userlocks : 4,
 331				sk_protocol  : 8,
 332				sk_type      : 16;
 333	kmemcheck_bitfield_end(flags);
 334	int			sk_wmem_queued;
 335	gfp_t			sk_allocation;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 336	netdev_features_t	sk_route_caps;
 337	netdev_features_t	sk_route_nocaps;
 
 338	int			sk_gso_type;
 339	unsigned int		sk_gso_max_size;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 340	u16			sk_gso_max_segs;
 341	int			sk_rcvlowat;
 342	unsigned long	        sk_lingertime;
 343	struct sk_buff_head	sk_error_queue;
 344	struct proto		*sk_prot_creator;
 345	rwlock_t		sk_callback_lock;
 346	int			sk_err,
 347				sk_err_soft;
 348	unsigned short		sk_ack_backlog;
 349	unsigned short		sk_max_ack_backlog;
 350	__u32			sk_priority;
 351#ifdef CONFIG_CGROUPS
 352	__u32			sk_cgrp_prioidx;
 353#endif
 354	struct pid		*sk_peer_pid;
 355	const struct cred	*sk_peer_cred;
 356	long			sk_rcvtimeo;
 357	long			sk_sndtimeo;
 358	void			*sk_protinfo;
 359	struct timer_list	sk_timer;
 360	ktime_t			sk_stamp;
 
 
 
 
 
 
 
 
 
 
 
 
 
 361	struct socket		*sk_socket;
 362	void			*sk_user_data;
 363	struct page		*sk_sndmsg_page;
 364	struct sk_buff		*sk_send_head;
 365	__u32			sk_sndmsg_off;
 366	__s32			sk_peek_off;
 367	int			sk_write_pending;
 368#ifdef CONFIG_SECURITY
 369	void			*sk_security;
 370#endif
 371	__u32			sk_mark;
 372	u32			sk_classid;
 373	struct cg_proto		*sk_cgrp;
 374	void			(*sk_state_change)(struct sock *sk);
 375	void			(*sk_data_ready)(struct sock *sk, int bytes);
 376	void			(*sk_write_space)(struct sock *sk);
 377	void			(*sk_error_report)(struct sock *sk);
 378	int			(*sk_backlog_rcv)(struct sock *sk,
 379						  struct sk_buff *skb);
 
 
 
 
 
 380	void                    (*sk_destruct)(struct sock *sk);
 
 
 
 
 
 
 
 
 
 
 
 381};
 382
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 383/*
 384 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
 385 * or not whether his port will be reused by someone else. SK_FORCE_REUSE
 386 * on a socket means that the socket will reuse everybody else's port
 387 * without looking at the other's sk_reuse value.
 388 */
 389
 390#define SK_NO_REUSE	0
 391#define SK_CAN_REUSE	1
 392#define SK_FORCE_REUSE	2
 393
 
 
 394static inline int sk_peek_offset(struct sock *sk, int flags)
 395{
 396	if ((flags & MSG_PEEK) && (sk->sk_peek_off >= 0))
 397		return sk->sk_peek_off;
 398	else
 399		return 0;
 
 400}
 401
 402static inline void sk_peek_offset_bwd(struct sock *sk, int val)
 403{
 404	if (sk->sk_peek_off >= 0) {
 405		if (sk->sk_peek_off >= val)
 406			sk->sk_peek_off -= val;
 407		else
 408			sk->sk_peek_off = 0;
 409	}
 410}
 411
 412static inline void sk_peek_offset_fwd(struct sock *sk, int val)
 413{
 414	if (sk->sk_peek_off >= 0)
 415		sk->sk_peek_off += val;
 416}
 417
 418/*
 419 * Hashed lists helper routines
 420 */
 421static inline struct sock *sk_entry(const struct hlist_node *node)
 422{
 423	return hlist_entry(node, struct sock, sk_node);
 424}
 425
 426static inline struct sock *__sk_head(const struct hlist_head *head)
 427{
 428	return hlist_entry(head->first, struct sock, sk_node);
 429}
 430
 431static inline struct sock *sk_head(const struct hlist_head *head)
 432{
 433	return hlist_empty(head) ? NULL : __sk_head(head);
 434}
 435
 436static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
 437{
 438	return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
 439}
 440
 441static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
 442{
 443	return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
 444}
 445
 446static inline struct sock *sk_next(const struct sock *sk)
 447{
 448	return sk->sk_node.next ?
 449		hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
 450}
 451
 452static inline struct sock *sk_nulls_next(const struct sock *sk)
 453{
 454	return (!is_a_nulls(sk->sk_nulls_node.next)) ?
 455		hlist_nulls_entry(sk->sk_nulls_node.next,
 456				  struct sock, sk_nulls_node) :
 457		NULL;
 458}
 459
 460static inline bool sk_unhashed(const struct sock *sk)
 461{
 462	return hlist_unhashed(&sk->sk_node);
 463}
 464
 465static inline bool sk_hashed(const struct sock *sk)
 466{
 467	return !sk_unhashed(sk);
 468}
 469
 470static inline void sk_node_init(struct hlist_node *node)
 471{
 472	node->pprev = NULL;
 473}
 474
 475static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
 476{
 477	node->pprev = NULL;
 478}
 479
 480static inline void __sk_del_node(struct sock *sk)
 481{
 482	__hlist_del(&sk->sk_node);
 483}
 484
 485/* NB: equivalent to hlist_del_init_rcu */
 486static inline bool __sk_del_node_init(struct sock *sk)
 487{
 488	if (sk_hashed(sk)) {
 489		__sk_del_node(sk);
 490		sk_node_init(&sk->sk_node);
 491		return true;
 492	}
 493	return false;
 494}
 495
 496/* Grab socket reference count. This operation is valid only
 497   when sk is ALREADY grabbed f.e. it is found in hash table
 498   or a list and the lookup is made under lock preventing hash table
 499   modifications.
 500 */
 501
 502static inline void sock_hold(struct sock *sk)
 503{
 504	atomic_inc(&sk->sk_refcnt);
 505}
 506
 507/* Ungrab socket in the context, which assumes that socket refcnt
 508   cannot hit zero, f.e. it is true in context of any socketcall.
 509 */
 510static inline void __sock_put(struct sock *sk)
 511{
 512	atomic_dec(&sk->sk_refcnt);
 513}
 514
 515static inline bool sk_del_node_init(struct sock *sk)
 516{
 517	bool rc = __sk_del_node_init(sk);
 518
 519	if (rc) {
 520		/* paranoid for a while -acme */
 521		WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
 522		__sock_put(sk);
 523	}
 524	return rc;
 525}
 526#define sk_del_node_init_rcu(sk)	sk_del_node_init(sk)
 527
 528static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
 529{
 530	if (sk_hashed(sk)) {
 531		hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
 532		return true;
 533	}
 534	return false;
 535}
 536
 537static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
 538{
 539	bool rc = __sk_nulls_del_node_init_rcu(sk);
 540
 541	if (rc) {
 542		/* paranoid for a while -acme */
 543		WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
 544		__sock_put(sk);
 545	}
 546	return rc;
 547}
 548
 549static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
 550{
 551	hlist_add_head(&sk->sk_node, list);
 552}
 553
 554static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
 555{
 556	sock_hold(sk);
 557	__sk_add_node(sk, list);
 558}
 559
 560static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
 561{
 562	sock_hold(sk);
 563	hlist_add_head_rcu(&sk->sk_node, list);
 
 
 
 
 
 
 
 
 
 
 564}
 565
 566static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
 567{
 568	hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
 569}
 570
 
 
 
 
 
 571static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
 572{
 573	sock_hold(sk);
 574	__sk_nulls_add_node_rcu(sk, list);
 575}
 576
 577static inline void __sk_del_bind_node(struct sock *sk)
 578{
 579	__hlist_del(&sk->sk_bind_node);
 580}
 581
 582static inline void sk_add_bind_node(struct sock *sk,
 583					struct hlist_head *list)
 584{
 585	hlist_add_head(&sk->sk_bind_node, list);
 586}
 587
 588#define sk_for_each(__sk, node, list) \
 589	hlist_for_each_entry(__sk, node, list, sk_node)
 590#define sk_for_each_rcu(__sk, node, list) \
 591	hlist_for_each_entry_rcu(__sk, node, list, sk_node)
 592#define sk_nulls_for_each(__sk, node, list) \
 593	hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
 594#define sk_nulls_for_each_rcu(__sk, node, list) \
 595	hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
 596#define sk_for_each_from(__sk, node) \
 597	if (__sk && ({ node = &(__sk)->sk_node; 1; })) \
 598		hlist_for_each_entry_from(__sk, node, sk_node)
 599#define sk_nulls_for_each_from(__sk, node) \
 600	if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
 601		hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
 602#define sk_for_each_safe(__sk, node, tmp, list) \
 603	hlist_for_each_entry_safe(__sk, node, tmp, list, sk_node)
 604#define sk_for_each_bound(__sk, node, list) \
 605	hlist_for_each_entry(__sk, node, list, sk_bind_node)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 606
 607/* Sock flags */
 608enum sock_flags {
 609	SOCK_DEAD,
 610	SOCK_DONE,
 611	SOCK_URGINLINE,
 612	SOCK_KEEPOPEN,
 613	SOCK_LINGER,
 614	SOCK_DESTROY,
 615	SOCK_BROADCAST,
 616	SOCK_TIMESTAMP,
 617	SOCK_ZAPPED,
 618	SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
 619	SOCK_DBG, /* %SO_DEBUG setting */
 620	SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
 621	SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
 622	SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
 623	SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
 624	SOCK_TIMESTAMPING_TX_HARDWARE,  /* %SOF_TIMESTAMPING_TX_HARDWARE */
 625	SOCK_TIMESTAMPING_TX_SOFTWARE,  /* %SOF_TIMESTAMPING_TX_SOFTWARE */
 626	SOCK_TIMESTAMPING_RX_HARDWARE,  /* %SOF_TIMESTAMPING_RX_HARDWARE */
 627	SOCK_TIMESTAMPING_RX_SOFTWARE,  /* %SOF_TIMESTAMPING_RX_SOFTWARE */
 628	SOCK_TIMESTAMPING_SOFTWARE,     /* %SOF_TIMESTAMPING_SOFTWARE */
 629	SOCK_TIMESTAMPING_RAW_HARDWARE, /* %SOF_TIMESTAMPING_RAW_HARDWARE */
 630	SOCK_TIMESTAMPING_SYS_HARDWARE, /* %SOF_TIMESTAMPING_SYS_HARDWARE */
 631	SOCK_FASYNC, /* fasync() active */
 632	SOCK_RXQ_OVFL,
 633	SOCK_ZEROCOPY, /* buffers from userspace */
 634	SOCK_WIFI_STATUS, /* push wifi status to userspace */
 635	SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
 636		     * Will use last 4 bytes of packet sent from
 637		     * user-space instead.
 638		     */
 
 
 
 
 
 
 639};
 640
 
 
 641static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
 642{
 643	nsk->sk_flags = osk->sk_flags;
 644}
 645
 646static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
 647{
 648	__set_bit(flag, &sk->sk_flags);
 649}
 650
 651static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
 652{
 653	__clear_bit(flag, &sk->sk_flags);
 654}
 655
 
 
 
 
 
 
 
 
 
 656static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
 657{
 658	return test_bit(flag, &sk->sk_flags);
 659}
 660
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 661static inline void sk_acceptq_removed(struct sock *sk)
 662{
 663	sk->sk_ack_backlog--;
 664}
 665
 666static inline void sk_acceptq_added(struct sock *sk)
 667{
 668	sk->sk_ack_backlog++;
 669}
 670
 671static inline bool sk_acceptq_is_full(const struct sock *sk)
 672{
 673	return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
 674}
 675
 676/*
 677 * Compute minimal free write space needed to queue new packets.
 678 */
 679static inline int sk_stream_min_wspace(const struct sock *sk)
 680{
 681	return sk->sk_wmem_queued >> 1;
 682}
 683
 684static inline int sk_stream_wspace(const struct sock *sk)
 685{
 686	return sk->sk_sndbuf - sk->sk_wmem_queued;
 687}
 688
 689extern void sk_stream_write_space(struct sock *sk);
 690
 691static inline bool sk_stream_memory_free(const struct sock *sk)
 692{
 693	return sk->sk_wmem_queued < sk->sk_sndbuf;
 694}
 695
 
 
 696/* OOB backlog add */
 697static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
 698{
 699	/* dont let skb dst not refcounted, we are going to leave rcu lock */
 700	skb_dst_force(skb);
 701
 702	if (!sk->sk_backlog.tail)
 703		sk->sk_backlog.head = skb;
 704	else
 705		sk->sk_backlog.tail->next = skb;
 706
 707	sk->sk_backlog.tail = skb;
 708	skb->next = NULL;
 709}
 710
 711/*
 712 * Take into account size of receive queue and backlog queue
 713 * Do not take into account this skb truesize,
 714 * to allow even a single big packet to come.
 715 */
 716static inline bool sk_rcvqueues_full(const struct sock *sk, const struct sk_buff *skb,
 717				     unsigned int limit)
 718{
 719	unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
 720
 721	return qsize > limit;
 722}
 723
 724/* The per-socket spinlock must be held here. */
 725static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
 726					      unsigned int limit)
 727{
 728	if (sk_rcvqueues_full(sk, skb, limit))
 729		return -ENOBUFS;
 730
 
 
 
 
 
 
 
 
 731	__sk_add_backlog(sk, skb);
 732	sk->sk_backlog.len += skb->truesize;
 733	return 0;
 734}
 735
 
 
 736static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
 737{
 
 
 
 738	return sk->sk_backlog_rcv(sk, skb);
 739}
 740
 741static inline void sock_rps_record_flow(const struct sock *sk)
 
 
 
 
 
 
 
 
 742{
 743#ifdef CONFIG_RPS
 744	struct rps_sock_flow_table *sock_flow_table;
 745
 746	rcu_read_lock();
 747	sock_flow_table = rcu_dereference(rps_sock_flow_table);
 748	rps_record_sock_flow(sock_flow_table, sk->sk_rxhash);
 749	rcu_read_unlock();
 750#endif
 751}
 752
 753static inline void sock_rps_reset_flow(const struct sock *sk)
 754{
 755#ifdef CONFIG_RPS
 756	struct rps_sock_flow_table *sock_flow_table;
 757
 758	rcu_read_lock();
 759	sock_flow_table = rcu_dereference(rps_sock_flow_table);
 760	rps_reset_sock_flow(sock_flow_table, sk->sk_rxhash);
 761	rcu_read_unlock();
 
 
 
 
 
 
 
 
 762#endif
 763}
 764
 765static inline void sock_rps_save_rxhash(struct sock *sk,
 766					const struct sk_buff *skb)
 767{
 768#ifdef CONFIG_RPS
 769	if (unlikely(sk->sk_rxhash != skb->rxhash)) {
 770		sock_rps_reset_flow(sk);
 771		sk->sk_rxhash = skb->rxhash;
 772	}
 773#endif
 774}
 775
 776static inline void sock_rps_reset_rxhash(struct sock *sk)
 777{
 778#ifdef CONFIG_RPS
 779	sock_rps_reset_flow(sk);
 780	sk->sk_rxhash = 0;
 781#endif
 782}
 783
 784#define sk_wait_event(__sk, __timeo, __condition)			\
 785	({	int __rc;						\
 786		release_sock(__sk);					\
 787		__rc = __condition;					\
 788		if (!__rc) {						\
 789			*(__timeo) = schedule_timeout(*(__timeo));	\
 
 
 790		}							\
 
 791		lock_sock(__sk);					\
 792		__rc = __condition;					\
 793		__rc;							\
 794	})
 795
 796extern int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
 797extern int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
 798extern void sk_stream_wait_close(struct sock *sk, long timeo_p);
 799extern int sk_stream_error(struct sock *sk, int flags, int err);
 800extern void sk_stream_kill_queues(struct sock *sk);
 
 
 801
 802extern int sk_wait_data(struct sock *sk, long *timeo);
 
 
 
 
 
 
 
 
 
 
 
 803
 804struct request_sock_ops;
 805struct timewait_sock_ops;
 806struct inet_hashinfo;
 807struct raw_hashinfo;
 
 808struct module;
 809
 
 
 
 
 
 
 
 
 
 
 
 
 810/* Networking protocol blocks we attach to sockets.
 811 * socket layer -> transport layer interface
 812 * transport -> network interface is defined by struct inet_proto
 813 */
 814struct proto {
 815	void			(*close)(struct sock *sk,
 816					long timeout);
 
 
 
 817	int			(*connect)(struct sock *sk,
 818					struct sockaddr *uaddr,
 819					int addr_len);
 820	int			(*disconnect)(struct sock *sk, int flags);
 821
 822	struct sock *		(*accept)(struct sock *sk, int flags, int *err);
 
 823
 824	int			(*ioctl)(struct sock *sk, int cmd,
 825					 unsigned long arg);
 826	int			(*init)(struct sock *sk);
 827	void			(*destroy)(struct sock *sk);
 828	void			(*shutdown)(struct sock *sk, int how);
 829	int			(*setsockopt)(struct sock *sk, int level,
 830					int optname, char __user *optval,
 831					unsigned int optlen);
 832	int			(*getsockopt)(struct sock *sk, int level,
 833					int optname, char __user *optval,
 834					int __user *option);
 
 835#ifdef CONFIG_COMPAT
 836	int			(*compat_setsockopt)(struct sock *sk,
 837					int level,
 838					int optname, char __user *optval,
 839					unsigned int optlen);
 840	int			(*compat_getsockopt)(struct sock *sk,
 841					int level,
 842					int optname, char __user *optval,
 843					int __user *option);
 844	int			(*compat_ioctl)(struct sock *sk,
 845					unsigned int cmd, unsigned long arg);
 846#endif
 847	int			(*sendmsg)(struct kiocb *iocb, struct sock *sk,
 848					   struct msghdr *msg, size_t len);
 849	int			(*recvmsg)(struct kiocb *iocb, struct sock *sk,
 850					   struct msghdr *msg,
 851					   size_t len, int noblock, int flags,
 852					   int *addr_len);
 853	int			(*sendpage)(struct sock *sk, struct page *page,
 854					int offset, size_t size, int flags);
 855	int			(*bind)(struct sock *sk,
 856					struct sockaddr *uaddr, int addr_len);
 
 
 857
 858	int			(*backlog_rcv) (struct sock *sk,
 859						struct sk_buff *skb);
 860
 
 
 861	/* Keeping track of sk's, looking them up, and port selection methods. */
 862	void			(*hash)(struct sock *sk);
 863	void			(*unhash)(struct sock *sk);
 864	void			(*rehash)(struct sock *sk);
 865	int			(*get_port)(struct sock *sk, unsigned short snum);
 866	void			(*clear_sk)(struct sock *sk, int size);
 867
 868	/* Keeping track of sockets in use */
 869#ifdef CONFIG_PROC_FS
 870	unsigned int		inuse_idx;
 871#endif
 872
 
 
 873	/* Memory pressure */
 874	void			(*enter_memory_pressure)(struct sock *sk);
 
 875	atomic_long_t		*memory_allocated;	/* Current allocated memory. */
 876	struct percpu_counter	*sockets_allocated;	/* Current number of sockets. */
 877	/*
 878	 * Pressure flag: try to collapse.
 879	 * Technical note: it is used by multiple contexts non atomically.
 880	 * All the __sk_mem_schedule() is of this nature: accounting
 881	 * is strict, actions are advisory and have some latency.
 882	 */
 883	int			*memory_pressure;
 884	long			*sysctl_mem;
 
 885	int			*sysctl_wmem;
 886	int			*sysctl_rmem;
 
 
 
 887	int			max_header;
 888	bool			no_autobind;
 889
 890	struct kmem_cache	*slab;
 891	unsigned int		obj_size;
 892	int			slab_flags;
 
 
 893
 894	struct percpu_counter	*orphan_count;
 895
 896	struct request_sock_ops	*rsk_prot;
 897	struct timewait_sock_ops *twsk_prot;
 898
 899	union {
 900		struct inet_hashinfo	*hashinfo;
 901		struct udp_table	*udp_table;
 902		struct raw_hashinfo	*raw_hash;
 
 903	} h;
 904
 905	struct module		*owner;
 906
 907	char			name[32];
 908
 909	struct list_head	node;
 910#ifdef SOCK_REFCNT_DEBUG
 911	atomic_t		socks;
 912#endif
 913#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
 914	/*
 915	 * cgroup specific init/deinit functions. Called once for all
 916	 * protocols that implement it, from cgroups populate function.
 917	 * This function has to setup any files the protocol want to
 918	 * appear in the kmem cgroup filesystem.
 919	 */
 920	int			(*init_cgroup)(struct mem_cgroup *memcg,
 921					       struct cgroup_subsys *ss);
 922	void			(*destroy_cgroup)(struct mem_cgroup *memcg);
 923	struct cg_proto		*(*proto_cgroup)(struct mem_cgroup *memcg);
 924#endif
 925};
 926
 927/*
 928 * Bits in struct cg_proto.flags
 929 */
 930enum cg_proto_flags {
 931	/* Currently active and new sockets should be assigned to cgroups */
 932	MEMCG_SOCK_ACTIVE,
 933	/* It was ever activated; we must disarm static keys on destruction */
 934	MEMCG_SOCK_ACTIVATED,
 935};
 936
 937struct cg_proto {
 938	void			(*enter_memory_pressure)(struct sock *sk);
 939	struct res_counter	*memory_allocated;	/* Current allocated memory. */
 940	struct percpu_counter	*sockets_allocated;	/* Current number of sockets. */
 941	int			*memory_pressure;
 942	long			*sysctl_mem;
 943	unsigned long		flags;
 944	/*
 945	 * memcg field is used to find which memcg we belong directly
 946	 * Each memcg struct can hold more than one cg_proto, so container_of
 947	 * won't really cut.
 948	 *
 949	 * The elegant solution would be having an inverse function to
 950	 * proto_cgroup in struct proto, but that means polluting the structure
 951	 * for everybody, instead of just for memcg users.
 952	 */
 953	struct mem_cgroup	*memcg;
 954};
 955
 956extern int proto_register(struct proto *prot, int alloc_slab);
 957extern void proto_unregister(struct proto *prot);
 958
 959static inline bool memcg_proto_active(struct cg_proto *cg_proto)
 960{
 961	return test_bit(MEMCG_SOCK_ACTIVE, &cg_proto->flags);
 962}
 963
 964static inline bool memcg_proto_activated(struct cg_proto *cg_proto)
 965{
 966	return test_bit(MEMCG_SOCK_ACTIVATED, &cg_proto->flags);
 967}
 968
 969#ifdef SOCK_REFCNT_DEBUG
 970static inline void sk_refcnt_debug_inc(struct sock *sk)
 971{
 972	atomic_inc(&sk->sk_prot->socks);
 973}
 974
 975static inline void sk_refcnt_debug_dec(struct sock *sk)
 976{
 977	atomic_dec(&sk->sk_prot->socks);
 978	printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
 979	       sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
 980}
 981
 982inline void sk_refcnt_debug_release(const struct sock *sk)
 983{
 984	if (atomic_read(&sk->sk_refcnt) != 1)
 985		printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
 986		       sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
 987}
 988#else /* SOCK_REFCNT_DEBUG */
 989#define sk_refcnt_debug_inc(sk) do { } while (0)
 990#define sk_refcnt_debug_dec(sk) do { } while (0)
 991#define sk_refcnt_debug_release(sk) do { } while (0)
 992#endif /* SOCK_REFCNT_DEBUG */
 993
 994#if defined(CONFIG_CGROUP_MEM_RES_CTLR_KMEM) && defined(CONFIG_NET)
 995extern struct static_key memcg_socket_limit_enabled;
 996static inline struct cg_proto *parent_cg_proto(struct proto *proto,
 997					       struct cg_proto *cg_proto)
 998{
 999	return proto->proto_cgroup(parent_mem_cgroup(cg_proto->memcg));
1000}
1001#define mem_cgroup_sockets_enabled static_key_false(&memcg_socket_limit_enabled)
1002#else
1003#define mem_cgroup_sockets_enabled 0
1004static inline struct cg_proto *parent_cg_proto(struct proto *proto,
1005					       struct cg_proto *cg_proto)
1006{
1007	return NULL;
1008}
1009#endif
1010
1011
1012static inline bool sk_has_memory_pressure(const struct sock *sk)
1013{
1014	return sk->sk_prot->memory_pressure != NULL;
1015}
1016
1017static inline bool sk_under_memory_pressure(const struct sock *sk)
1018{
1019	if (!sk->sk_prot->memory_pressure)
1020		return false;
1021
1022	if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1023		return !!*sk->sk_cgrp->memory_pressure;
1024
1025	return !!*sk->sk_prot->memory_pressure;
1026}
1027
1028static inline void sk_leave_memory_pressure(struct sock *sk)
1029{
1030	int *memory_pressure = sk->sk_prot->memory_pressure;
1031
1032	if (!memory_pressure)
1033		return;
1034
1035	if (*memory_pressure)
1036		*memory_pressure = 0;
1037
1038	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1039		struct cg_proto *cg_proto = sk->sk_cgrp;
1040		struct proto *prot = sk->sk_prot;
1041
1042		for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1043			if (*cg_proto->memory_pressure)
1044				*cg_proto->memory_pressure = 0;
1045	}
1046
1047}
1048
1049static inline void sk_enter_memory_pressure(struct sock *sk)
1050{
1051	if (!sk->sk_prot->enter_memory_pressure)
1052		return;
1053
1054	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1055		struct cg_proto *cg_proto = sk->sk_cgrp;
1056		struct proto *prot = sk->sk_prot;
1057
1058		for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1059			cg_proto->enter_memory_pressure(sk);
1060	}
1061
1062	sk->sk_prot->enter_memory_pressure(sk);
1063}
1064
1065static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1066{
1067	long *prot = sk->sk_prot->sysctl_mem;
1068	if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1069		prot = sk->sk_cgrp->sysctl_mem;
1070	return prot[index];
1071}
1072
1073static inline void memcg_memory_allocated_add(struct cg_proto *prot,
1074					      unsigned long amt,
1075					      int *parent_status)
1076{
1077	struct res_counter *fail;
1078	int ret;
1079
1080	ret = res_counter_charge_nofail(prot->memory_allocated,
1081					amt << PAGE_SHIFT, &fail);
1082	if (ret < 0)
1083		*parent_status = OVER_LIMIT;
1084}
1085
1086static inline void memcg_memory_allocated_sub(struct cg_proto *prot,
1087					      unsigned long amt)
1088{
1089	res_counter_uncharge(prot->memory_allocated, amt << PAGE_SHIFT);
1090}
1091
1092static inline u64 memcg_memory_allocated_read(struct cg_proto *prot)
1093{
1094	u64 ret;
1095	ret = res_counter_read_u64(prot->memory_allocated, RES_USAGE);
1096	return ret >> PAGE_SHIFT;
 
 
 
 
 
1097}
1098
1099static inline long
1100sk_memory_allocated(const struct sock *sk)
1101{
1102	struct proto *prot = sk->sk_prot;
1103	if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1104		return memcg_memory_allocated_read(sk->sk_cgrp);
1105
1106	return atomic_long_read(prot->memory_allocated);
1107}
1108
1109static inline long
1110sk_memory_allocated_add(struct sock *sk, int amt, int *parent_status)
1111{
1112	struct proto *prot = sk->sk_prot;
1113
1114	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1115		memcg_memory_allocated_add(sk->sk_cgrp, amt, parent_status);
1116		/* update the root cgroup regardless */
1117		atomic_long_add_return(amt, prot->memory_allocated);
1118		return memcg_memory_allocated_read(sk->sk_cgrp);
1119	}
1120
1121	return atomic_long_add_return(amt, prot->memory_allocated);
1122}
1123
1124static inline void
1125sk_memory_allocated_sub(struct sock *sk, int amt)
1126{
1127	struct proto *prot = sk->sk_prot;
1128
1129	if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1130		memcg_memory_allocated_sub(sk->sk_cgrp, amt);
1131
1132	atomic_long_sub(amt, prot->memory_allocated);
1133}
1134
1135static inline void sk_sockets_allocated_dec(struct sock *sk)
1136{
1137	struct proto *prot = sk->sk_prot;
1138
1139	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1140		struct cg_proto *cg_proto = sk->sk_cgrp;
1141
1142		for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1143			percpu_counter_dec(cg_proto->sockets_allocated);
1144	}
1145
1146	percpu_counter_dec(prot->sockets_allocated);
1147}
1148
1149static inline void sk_sockets_allocated_inc(struct sock *sk)
1150{
1151	struct proto *prot = sk->sk_prot;
1152
1153	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1154		struct cg_proto *cg_proto = sk->sk_cgrp;
1155
1156		for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1157			percpu_counter_inc(cg_proto->sockets_allocated);
1158	}
1159
1160	percpu_counter_inc(prot->sockets_allocated);
1161}
1162
1163static inline int
1164sk_sockets_allocated_read_positive(struct sock *sk)
1165{
1166	struct proto *prot = sk->sk_prot;
1167
1168	if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1169		return percpu_counter_read_positive(sk->sk_cgrp->sockets_allocated);
1170
1171	return percpu_counter_read_positive(prot->sockets_allocated);
1172}
1173
1174static inline int
1175proto_sockets_allocated_sum_positive(struct proto *prot)
1176{
1177	return percpu_counter_sum_positive(prot->sockets_allocated);
1178}
1179
1180static inline long
1181proto_memory_allocated(struct proto *prot)
1182{
1183	return atomic_long_read(prot->memory_allocated);
1184}
1185
1186static inline bool
1187proto_memory_pressure(struct proto *prot)
1188{
1189	if (!prot->memory_pressure)
1190		return false;
1191	return !!*prot->memory_pressure;
1192}
1193
1194
1195#ifdef CONFIG_PROC_FS
1196/* Called with local bh disabled */
1197extern void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1198extern int sock_prot_inuse_get(struct net *net, struct proto *proto);
 
1199#else
1200static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1201		int inc)
1202{
1203}
1204#endif
1205
1206
1207/* With per-bucket locks this operation is not-atomic, so that
1208 * this version is not worse.
1209 */
1210static inline void __sk_prot_rehash(struct sock *sk)
1211{
1212	sk->sk_prot->unhash(sk);
1213	sk->sk_prot->hash(sk);
1214}
1215
1216void sk_prot_clear_portaddr_nulls(struct sock *sk, int size);
1217
1218/* About 10 seconds */
1219#define SOCK_DESTROY_TIME (10*HZ)
1220
1221/* Sockets 0-1023 can't be bound to unless you are superuser */
1222#define PROT_SOCK	1024
1223
1224#define SHUTDOWN_MASK	3
1225#define RCV_SHUTDOWN	1
1226#define SEND_SHUTDOWN	2
1227
1228#define SOCK_SNDBUF_LOCK	1
1229#define SOCK_RCVBUF_LOCK	2
1230#define SOCK_BINDADDR_LOCK	4
1231#define SOCK_BINDPORT_LOCK	8
1232
1233/* sock_iocb: used to kick off async processing of socket ios */
1234struct sock_iocb {
1235	struct list_head	list;
1236
1237	int			flags;
1238	int			size;
1239	struct socket		*sock;
1240	struct sock		*sk;
1241	struct scm_cookie	*scm;
1242	struct msghdr		*msg, async_msg;
1243	struct kiocb		*kiocb;
1244};
1245
1246static inline struct sock_iocb *kiocb_to_siocb(struct kiocb *iocb)
1247{
1248	return (struct sock_iocb *)iocb->private;
1249}
1250
1251static inline struct kiocb *siocb_to_kiocb(struct sock_iocb *si)
1252{
1253	return si->kiocb;
1254}
1255
1256struct socket_alloc {
1257	struct socket socket;
1258	struct inode vfs_inode;
1259};
1260
1261static inline struct socket *SOCKET_I(struct inode *inode)
1262{
1263	return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1264}
1265
1266static inline struct inode *SOCK_INODE(struct socket *socket)
1267{
1268	return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1269}
1270
1271/*
1272 * Functions for memory accounting
1273 */
1274extern int __sk_mem_schedule(struct sock *sk, int size, int kind);
1275extern void __sk_mem_reclaim(struct sock *sk);
 
 
1276
1277#define SK_MEM_QUANTUM ((int)PAGE_SIZE)
 
 
 
1278#define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1279#define SK_MEM_SEND	0
1280#define SK_MEM_RECV	1
1281
 
 
 
 
 
 
 
 
 
 
 
 
 
1282static inline int sk_mem_pages(int amt)
1283{
1284	return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1285}
1286
1287static inline bool sk_has_account(struct sock *sk)
1288{
1289	/* return true if protocol supports memory accounting */
1290	return !!sk->sk_prot->memory_allocated;
1291}
1292
1293static inline bool sk_wmem_schedule(struct sock *sk, int size)
1294{
1295	if (!sk_has_account(sk))
1296		return true;
1297	return size <= sk->sk_forward_alloc ||
1298		__sk_mem_schedule(sk, size, SK_MEM_SEND);
1299}
1300
1301static inline bool sk_rmem_schedule(struct sock *sk, int size)
 
1302{
1303	if (!sk_has_account(sk))
1304		return true;
1305	return size <= sk->sk_forward_alloc ||
1306		__sk_mem_schedule(sk, size, SK_MEM_RECV);
 
1307}
1308
1309static inline void sk_mem_reclaim(struct sock *sk)
1310{
1311	if (!sk_has_account(sk))
1312		return;
1313	if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1314		__sk_mem_reclaim(sk);
1315}
1316
1317static inline void sk_mem_reclaim_partial(struct sock *sk)
1318{
1319	if (!sk_has_account(sk))
1320		return;
1321	if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1322		__sk_mem_reclaim(sk);
1323}
1324
1325static inline void sk_mem_charge(struct sock *sk, int size)
1326{
1327	if (!sk_has_account(sk))
1328		return;
1329	sk->sk_forward_alloc -= size;
1330}
1331
1332static inline void sk_mem_uncharge(struct sock *sk, int size)
1333{
1334	if (!sk_has_account(sk))
1335		return;
1336	sk->sk_forward_alloc += size;
 
 
 
 
 
 
 
 
 
 
1337}
1338
 
1339static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1340{
1341	sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1342	sk->sk_wmem_queued -= skb->truesize;
1343	sk_mem_uncharge(sk, skb->truesize);
 
 
 
 
 
 
 
1344	__kfree_skb(skb);
1345}
1346
1347/* Used by processes to "lock" a socket state, so that
1348 * interrupts and bottom half handlers won't change it
1349 * from under us. It essentially blocks any incoming
1350 * packets, so that we won't get any new data or any
1351 * packets that change the state of the socket.
1352 *
1353 * While locked, BH processing will add new packets to
1354 * the backlog queue.  This queue is processed by the
1355 * owner of the socket lock right before it is released.
1356 *
1357 * Since ~2.3.5 it is also exclusive sleep lock serializing
1358 * accesses from user process context.
1359 */
1360#define sock_owned_by_user(sk)	((sk)->sk_lock.owned)
1361
1362/*
1363 * Macro so as to not evaluate some arguments when
1364 * lockdep is not enabled.
1365 *
1366 * Mark both the sk_lock and the sk_lock.slock as a
1367 * per-address-family lock class.
1368 */
1369#define sock_lock_init_class_and_name(sk, sname, skey, name, key)	\
1370do {									\
1371	sk->sk_lock.owned = 0;						\
1372	init_waitqueue_head(&sk->sk_lock.wq);				\
1373	spin_lock_init(&(sk)->sk_lock.slock);				\
1374	debug_check_no_locks_freed((void *)&(sk)->sk_lock,		\
1375			sizeof((sk)->sk_lock));				\
1376	lockdep_set_class_and_name(&(sk)->sk_lock.slock,		\
1377				(skey), (sname));				\
1378	lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0);	\
1379} while (0)
1380
1381extern void lock_sock_nested(struct sock *sk, int subclass);
 
 
 
 
 
 
 
 
1382
1383static inline void lock_sock(struct sock *sk)
1384{
1385	lock_sock_nested(sk, 0);
1386}
1387
1388extern void release_sock(struct sock *sk);
 
1389
1390/* BH context may only use the following locking interface. */
1391#define bh_lock_sock(__sk)	spin_lock(&((__sk)->sk_lock.slock))
1392#define bh_lock_sock_nested(__sk) \
1393				spin_lock_nested(&((__sk)->sk_lock.slock), \
1394				SINGLE_DEPTH_NESTING)
1395#define bh_unlock_sock(__sk)	spin_unlock(&((__sk)->sk_lock.slock))
1396
1397extern bool lock_sock_fast(struct sock *sk);
1398/**
1399 * unlock_sock_fast - complement of lock_sock_fast
1400 * @sk: socket
1401 * @slow: slow mode
1402 *
1403 * fast unlock socket for user context.
1404 * If slow mode is on, we call regular release_sock()
1405 */
1406static inline void unlock_sock_fast(struct sock *sk, bool slow)
1407{
1408	if (slow)
1409		release_sock(sk);
1410	else
1411		spin_unlock_bh(&sk->sk_lock.slock);
1412}
1413
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1414
1415extern struct sock		*sk_alloc(struct net *net, int family,
1416					  gfp_t priority,
1417					  struct proto *prot);
1418extern void			sk_free(struct sock *sk);
1419extern void			sk_release_kernel(struct sock *sk);
1420extern struct sock		*sk_clone_lock(const struct sock *sk,
1421					       const gfp_t priority);
1422
1423extern struct sk_buff		*sock_wmalloc(struct sock *sk,
1424					      unsigned long size, int force,
1425					      gfp_t priority);
1426extern struct sk_buff		*sock_rmalloc(struct sock *sk,
1427					      unsigned long size, int force,
1428					      gfp_t priority);
1429extern void			sock_wfree(struct sk_buff *skb);
1430extern void			sock_rfree(struct sk_buff *skb);
1431
1432extern int			sock_setsockopt(struct socket *sock, int level,
1433						int op, char __user *optval,
1434						unsigned int optlen);
1435
1436extern int			sock_getsockopt(struct socket *sock, int level,
1437						int op, char __user *optval,
1438						int __user *optlen);
1439extern struct sk_buff		*sock_alloc_send_skb(struct sock *sk,
1440						     unsigned long size,
1441						     int noblock,
1442						     int *errcode);
1443extern struct sk_buff		*sock_alloc_send_pskb(struct sock *sk,
1444						      unsigned long header_len,
1445						      unsigned long data_len,
1446						      int noblock,
1447						      int *errcode);
1448extern void *sock_kmalloc(struct sock *sk, int size,
1449			  gfp_t priority);
1450extern void sock_kfree_s(struct sock *sk, void *mem, int size);
1451extern void sk_send_sigurg(struct sock *sk);
1452
1453#ifdef CONFIG_CGROUPS
1454extern void sock_update_classid(struct sock *sk);
1455#else
1456static inline void sock_update_classid(struct sock *sk)
1457{
 
 
 
1458}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1459#endif
1460
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1461/*
1462 * Functions to fill in entries in struct proto_ops when a protocol
1463 * does not implement a particular function.
1464 */
1465extern int                      sock_no_bind(struct socket *,
1466					     struct sockaddr *, int);
1467extern int                      sock_no_connect(struct socket *,
1468						struct sockaddr *, int, int);
1469extern int                      sock_no_socketpair(struct socket *,
1470						   struct socket *);
1471extern int                      sock_no_accept(struct socket *,
1472					       struct socket *, int);
1473extern int                      sock_no_getname(struct socket *,
1474						struct sockaddr *, int *, int);
1475extern unsigned int             sock_no_poll(struct file *, struct socket *,
1476					     struct poll_table_struct *);
1477extern int                      sock_no_ioctl(struct socket *, unsigned int,
1478					      unsigned long);
1479extern int			sock_no_listen(struct socket *, int);
1480extern int                      sock_no_shutdown(struct socket *, int);
1481extern int			sock_no_getsockopt(struct socket *, int , int,
1482						   char __user *, int __user *);
1483extern int			sock_no_setsockopt(struct socket *, int, int,
1484						   char __user *, unsigned int);
1485extern int                      sock_no_sendmsg(struct kiocb *, struct socket *,
1486						struct msghdr *, size_t);
1487extern int                      sock_no_recvmsg(struct kiocb *, struct socket *,
1488						struct msghdr *, size_t, int);
1489extern int			sock_no_mmap(struct file *file,
1490					     struct socket *sock,
1491					     struct vm_area_struct *vma);
1492extern ssize_t			sock_no_sendpage(struct socket *sock,
1493						struct page *page,
1494						int offset, size_t size,
1495						int flags);
1496
1497/*
1498 * Functions to fill in entries in struct proto_ops when a protocol
1499 * uses the inet style.
1500 */
1501extern int sock_common_getsockopt(struct socket *sock, int level, int optname,
1502				  char __user *optval, int __user *optlen);
1503extern int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
1504			       struct msghdr *msg, size_t size, int flags);
1505extern int sock_common_setsockopt(struct socket *sock, int level, int optname,
1506				  char __user *optval, unsigned int optlen);
1507extern int compat_sock_common_getsockopt(struct socket *sock, int level,
1508		int optname, char __user *optval, int __user *optlen);
1509extern int compat_sock_common_setsockopt(struct socket *sock, int level,
1510		int optname, char __user *optval, unsigned int optlen);
1511
1512extern void sk_common_release(struct sock *sk);
1513
1514/*
1515 *	Default socket callbacks and setup code
1516 */
1517
1518/* Initialise core socket variables */
1519extern void sock_init_data(struct socket *sock, struct sock *sk);
1520
1521extern void sk_filter_release_rcu(struct rcu_head *rcu);
1522
1523/**
1524 *	sk_filter_release - release a socket filter
1525 *	@fp: filter to remove
1526 *
1527 *	Remove a filter from a socket and release its resources.
1528 */
1529
1530static inline void sk_filter_release(struct sk_filter *fp)
1531{
1532	if (atomic_dec_and_test(&fp->refcnt))
1533		call_rcu(&fp->rcu, sk_filter_release_rcu);
1534}
1535
1536static inline void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1537{
1538	unsigned int size = sk_filter_len(fp);
1539
1540	atomic_sub(size, &sk->sk_omem_alloc);
1541	sk_filter_release(fp);
1542}
1543
1544static inline void sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1545{
1546	atomic_inc(&fp->refcnt);
1547	atomic_add(sk_filter_len(fp), &sk->sk_omem_alloc);
1548}
1549
1550/*
1551 * Socket reference counting postulates.
1552 *
1553 * * Each user of socket SHOULD hold a reference count.
1554 * * Each access point to socket (an hash table bucket, reference from a list,
1555 *   running timer, skb in flight MUST hold a reference count.
1556 * * When reference count hits 0, it means it will never increase back.
1557 * * When reference count hits 0, it means that no references from
1558 *   outside exist to this socket and current process on current CPU
1559 *   is last user and may/should destroy this socket.
1560 * * sk_free is called from any context: process, BH, IRQ. When
1561 *   it is called, socket has no references from outside -> sk_free
1562 *   may release descendant resources allocated by the socket, but
1563 *   to the time when it is called, socket is NOT referenced by any
1564 *   hash tables, lists etc.
1565 * * Packets, delivered from outside (from network or from another process)
1566 *   and enqueued on receive/error queues SHOULD NOT grab reference count,
1567 *   when they sit in queue. Otherwise, packets will leak to hole, when
1568 *   socket is looked up by one cpu and unhasing is made by another CPU.
1569 *   It is true for udp/raw, netlink (leak to receive and error queues), tcp
1570 *   (leak to backlog). Packet socket does all the processing inside
1571 *   BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1572 *   use separate SMP lock, so that they are prone too.
1573 */
1574
1575/* Ungrab socket and destroy it, if it was the last reference. */
1576static inline void sock_put(struct sock *sk)
1577{
1578	if (atomic_dec_and_test(&sk->sk_refcnt))
1579		sk_free(sk);
1580}
 
 
 
 
1581
1582extern int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1583			  const int nested);
 
 
 
 
 
1584
1585static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1586{
 
 
 
1587	sk->sk_tx_queue_mapping = tx_queue;
1588}
1589
 
 
1590static inline void sk_tx_queue_clear(struct sock *sk)
1591{
1592	sk->sk_tx_queue_mapping = -1;
1593}
1594
1595static inline int sk_tx_queue_get(const struct sock *sk)
1596{
1597	return sk ? sk->sk_tx_queue_mapping : -1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1598}
1599
 
 
 
 
 
 
 
 
 
 
1600static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1601{
1602	sk_tx_queue_clear(sk);
1603	sk->sk_socket = sock;
1604}
1605
1606static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1607{
1608	BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1609	return &rcu_dereference_raw(sk->sk_wq)->wait;
1610}
1611/* Detach socket from process context.
1612 * Announce socket dead, detach it from wait queue and inode.
1613 * Note that parent inode held reference count on this struct sock,
1614 * we do not release it in this function, because protocol
1615 * probably wants some additional cleanups or even continuing
1616 * to work with this socket (TCP).
1617 */
1618static inline void sock_orphan(struct sock *sk)
1619{
1620	write_lock_bh(&sk->sk_callback_lock);
1621	sock_set_flag(sk, SOCK_DEAD);
1622	sk_set_socket(sk, NULL);
1623	sk->sk_wq  = NULL;
1624	write_unlock_bh(&sk->sk_callback_lock);
1625}
1626
1627static inline void sock_graft(struct sock *sk, struct socket *parent)
1628{
 
1629	write_lock_bh(&sk->sk_callback_lock);
1630	sk->sk_wq = parent->wq;
1631	parent->sk = sk;
1632	sk_set_socket(sk, parent);
 
1633	security_sock_graft(sk, parent);
1634	write_unlock_bh(&sk->sk_callback_lock);
1635}
1636
1637extern int sock_i_uid(struct sock *sk);
1638extern unsigned long sock_i_ino(struct sock *sk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1639
1640static inline struct dst_entry *
1641__sk_dst_get(struct sock *sk)
1642{
1643	return rcu_dereference_check(sk->sk_dst_cache, sock_owned_by_user(sk) ||
1644						       lockdep_is_held(&sk->sk_lock.slock));
1645}
1646
1647static inline struct dst_entry *
1648sk_dst_get(struct sock *sk)
1649{
1650	struct dst_entry *dst;
1651
1652	rcu_read_lock();
1653	dst = rcu_dereference(sk->sk_dst_cache);
1654	if (dst)
1655		dst_hold(dst);
1656	rcu_read_unlock();
1657	return dst;
1658}
1659
1660extern void sk_reset_txq(struct sock *sk);
1661
1662static inline void dst_negative_advice(struct sock *sk)
1663{
1664	struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1665
 
 
1666	if (dst && dst->ops->negative_advice) {
1667		ndst = dst->ops->negative_advice(dst);
1668
1669		if (ndst != dst) {
1670			rcu_assign_pointer(sk->sk_dst_cache, ndst);
1671			sk_reset_txq(sk);
 
1672		}
1673	}
1674}
1675
1676static inline void
1677__sk_dst_set(struct sock *sk, struct dst_entry *dst)
1678{
1679	struct dst_entry *old_dst;
1680
1681	sk_tx_queue_clear(sk);
1682	/*
1683	 * This can be called while sk is owned by the caller only,
1684	 * with no state that can be checked in a rcu_dereference_check() cond
1685	 */
1686	old_dst = rcu_dereference_raw(sk->sk_dst_cache);
1687	rcu_assign_pointer(sk->sk_dst_cache, dst);
1688	dst_release(old_dst);
1689}
1690
1691static inline void
1692sk_dst_set(struct sock *sk, struct dst_entry *dst)
1693{
1694	spin_lock(&sk->sk_dst_lock);
1695	__sk_dst_set(sk, dst);
1696	spin_unlock(&sk->sk_dst_lock);
 
 
 
1697}
1698
1699static inline void
1700__sk_dst_reset(struct sock *sk)
1701{
1702	__sk_dst_set(sk, NULL);
1703}
1704
1705static inline void
1706sk_dst_reset(struct sock *sk)
1707{
1708	spin_lock(&sk->sk_dst_lock);
1709	__sk_dst_reset(sk);
1710	spin_unlock(&sk->sk_dst_lock);
1711}
1712
1713extern struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1714
1715extern struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1716
1717static inline bool sk_can_gso(const struct sock *sk)
1718{
1719	return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1720}
1721
1722extern void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1723
1724static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
1725{
1726	sk->sk_route_nocaps |= flags;
1727	sk->sk_route_caps &= ~flags;
1728}
1729
1730static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
1731					   char __user *from, char *to,
1732					   int copy, int offset)
1733{
1734	if (skb->ip_summed == CHECKSUM_NONE) {
1735		int err = 0;
1736		__wsum csum = csum_and_copy_from_user(from, to, copy, 0, &err);
1737		if (err)
1738			return err;
1739		skb->csum = csum_block_add(skb->csum, csum, offset);
1740	} else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1741		if (!access_ok(VERIFY_READ, from, copy) ||
1742		    __copy_from_user_nocache(to, from, copy))
1743			return -EFAULT;
1744	} else if (copy_from_user(to, from, copy))
1745		return -EFAULT;
1746
1747	return 0;
1748}
1749
1750static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
1751				       char __user *from, int copy)
1752{
1753	int err, offset = skb->len;
1754
1755	err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
1756				       copy, offset);
1757	if (err)
1758		__skb_trim(skb, offset);
1759
1760	return err;
1761}
1762
1763static inline int skb_copy_to_page_nocache(struct sock *sk, char __user *from,
1764					   struct sk_buff *skb,
1765					   struct page *page,
1766					   int off, int copy)
1767{
1768	int err;
1769
1770	err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
1771				       copy, skb->len);
1772	if (err)
1773		return err;
1774
1775	skb->len	     += copy;
1776	skb->data_len	     += copy;
1777	skb->truesize	     += copy;
1778	sk->sk_wmem_queued   += copy;
1779	sk_mem_charge(sk, copy);
1780	return 0;
1781}
1782
1783static inline int skb_copy_to_page(struct sock *sk, char __user *from,
1784				   struct sk_buff *skb, struct page *page,
1785				   int off, int copy)
1786{
1787	if (skb->ip_summed == CHECKSUM_NONE) {
1788		int err = 0;
1789		__wsum csum = csum_and_copy_from_user(from,
1790						     page_address(page) + off,
1791							    copy, 0, &err);
1792		if (err)
1793			return err;
1794		skb->csum = csum_block_add(skb->csum, csum, skb->len);
1795	} else if (copy_from_user(page_address(page) + off, from, copy))
1796		return -EFAULT;
1797
1798	skb->len	     += copy;
1799	skb->data_len	     += copy;
1800	skb->truesize	     += copy;
1801	sk->sk_wmem_queued   += copy;
1802	sk_mem_charge(sk, copy);
1803	return 0;
1804}
1805
1806/**
1807 * sk_wmem_alloc_get - returns write allocations
1808 * @sk: socket
1809 *
1810 * Returns sk_wmem_alloc minus initial offset of one
1811 */
1812static inline int sk_wmem_alloc_get(const struct sock *sk)
1813{
1814	return atomic_read(&sk->sk_wmem_alloc) - 1;
1815}
1816
1817/**
1818 * sk_rmem_alloc_get - returns read allocations
1819 * @sk: socket
1820 *
1821 * Returns sk_rmem_alloc
1822 */
1823static inline int sk_rmem_alloc_get(const struct sock *sk)
1824{
1825	return atomic_read(&sk->sk_rmem_alloc);
1826}
1827
1828/**
1829 * sk_has_allocations - check if allocations are outstanding
1830 * @sk: socket
1831 *
1832 * Returns true if socket has write or read allocations
1833 */
1834static inline bool sk_has_allocations(const struct sock *sk)
1835{
1836	return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
1837}
1838
1839/**
1840 * wq_has_sleeper - check if there are any waiting processes
1841 * @wq: struct socket_wq
1842 *
1843 * Returns true if socket_wq has waiting processes
1844 *
1845 * The purpose of the wq_has_sleeper and sock_poll_wait is to wrap the memory
1846 * barrier call. They were added due to the race found within the tcp code.
1847 *
1848 * Consider following tcp code paths:
1849 *
1850 * CPU1                  CPU2
1851 *
1852 * sys_select            receive packet
1853 *   ...                 ...
1854 *   __add_wait_queue    update tp->rcv_nxt
1855 *   ...                 ...
1856 *   tp->rcv_nxt check   sock_def_readable
1857 *   ...                 {
1858 *   schedule               rcu_read_lock();
1859 *                          wq = rcu_dereference(sk->sk_wq);
1860 *                          if (wq && waitqueue_active(&wq->wait))
1861 *                              wake_up_interruptible(&wq->wait)
1862 *                          ...
1863 *                       }
1864 *
1865 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
1866 * in its cache, and so does the tp->rcv_nxt update on CPU2 side.  The CPU1
1867 * could then endup calling schedule and sleep forever if there are no more
1868 * data on the socket.
1869 *
1870 */
1871static inline bool wq_has_sleeper(struct socket_wq *wq)
1872{
1873	/* We need to be sure we are in sync with the
1874	 * add_wait_queue modifications to the wait queue.
1875	 *
1876	 * This memory barrier is paired in the sock_poll_wait.
1877	 */
1878	smp_mb();
1879	return wq && waitqueue_active(&wq->wait);
1880}
1881
1882/**
1883 * sock_poll_wait - place memory barrier behind the poll_wait call.
1884 * @filp:           file
1885 * @wait_address:   socket wait queue
1886 * @p:              poll_table
1887 *
1888 * See the comments in the wq_has_sleeper function.
1889 */
1890static inline void sock_poll_wait(struct file *filp,
1891		wait_queue_head_t *wait_address, poll_table *p)
1892{
1893	if (!poll_does_not_wait(p) && wait_address) {
1894		poll_wait(filp, wait_address, p);
1895		/* We need to be sure we are in sync with the
1896		 * socket flags modification.
1897		 *
1898		 * This memory barrier is paired in the wq_has_sleeper.
1899		 */
1900		smp_mb();
1901	}
1902}
1903
 
 
 
 
 
 
 
 
 
 
1904/*
1905 *	Queue a received datagram if it will fit. Stream and sequenced
1906 *	protocols can't normally use this as they need to fit buffers in
1907 *	and play with them.
1908 *
1909 *	Inlined as it's very short and called for pretty much every
1910 *	packet ever received.
1911 */
1912
1913static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1914{
1915	skb_orphan(skb);
1916	skb->sk = sk;
1917	skb->destructor = sock_wfree;
1918	/*
1919	 * We used to take a refcount on sk, but following operation
1920	 * is enough to guarantee sk_free() wont free this sock until
1921	 * all in-flight packets are completed
1922	 */
1923	atomic_add(skb->truesize, &sk->sk_wmem_alloc);
1924}
1925
1926static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
1927{
1928	skb_orphan(skb);
1929	skb->sk = sk;
1930	skb->destructor = sock_rfree;
1931	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
1932	sk_mem_charge(sk, skb->truesize);
1933}
1934
1935extern void sk_reset_timer(struct sock *sk, struct timer_list *timer,
1936			   unsigned long expires);
1937
1938extern void sk_stop_timer(struct sock *sk, struct timer_list *timer);
1939
1940extern int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
 
 
 
 
 
1941
1942extern int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
 
1943
1944/*
1945 *	Recover an error report and clear atomically
1946 */
1947
1948static inline int sock_error(struct sock *sk)
1949{
1950	int err;
1951	if (likely(!sk->sk_err))
1952		return 0;
1953	err = xchg(&sk->sk_err, 0);
1954	return -err;
1955}
1956
1957static inline unsigned long sock_wspace(struct sock *sk)
1958{
1959	int amt = 0;
1960
1961	if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1962		amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
1963		if (amt < 0)
1964			amt = 0;
1965	}
1966	return amt;
1967}
1968
1969static inline void sk_wake_async(struct sock *sk, int how, int band)
 
 
 
 
1970{
1971	if (sock_flag(sk, SOCK_FASYNC))
1972		sock_wake_async(sk->sk_socket, how, band);
 
 
 
1973}
1974
1975#define SOCK_MIN_SNDBUF 2048
1976/*
1977 * Since sk_rmem_alloc sums skb->truesize, even a small frame might need
1978 * sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1979 */
1980#define SOCK_MIN_RCVBUF (2048 + sizeof(struct sk_buff))
 
 
 
1981
1982static inline void sk_stream_moderate_sndbuf(struct sock *sk)
1983{
1984	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
1985		sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
1986		sk->sk_sndbuf = max(sk->sk_sndbuf, SOCK_MIN_SNDBUF);
1987	}
 
 
 
 
1988}
1989
1990struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp);
 
1991
1992static inline struct page *sk_stream_alloc_page(struct sock *sk)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1993{
1994	struct page *page = NULL;
 
1995
1996	page = alloc_pages(sk->sk_allocation, 0);
1997	if (!page) {
1998		sk_enter_memory_pressure(sk);
1999		sk_stream_moderate_sndbuf(sk);
2000	}
2001	return page;
2002}
2003
 
 
2004/*
2005 *	Default write policy as shown to user space via poll/select/SIGIO
2006 */
2007static inline bool sock_writeable(const struct sock *sk)
2008{
2009	return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
2010}
2011
2012static inline gfp_t gfp_any(void)
2013{
2014	return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2015}
2016
2017static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2018{
2019	return noblock ? 0 : sk->sk_rcvtimeo;
2020}
2021
2022static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2023{
2024	return noblock ? 0 : sk->sk_sndtimeo;
2025}
2026
2027static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2028{
2029	return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
 
 
2030}
2031
2032/* Alas, with timeout socket operations are not restartable.
2033 * Compare this to poll().
2034 */
2035static inline int sock_intr_errno(long timeo)
2036{
2037	return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2038}
2039
2040extern void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2041	struct sk_buff *skb);
2042extern void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2043	struct sk_buff *skb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2044
2045static inline void
2046sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2047{
2048	ktime_t kt = skb->tstamp;
2049	struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2050
2051	/*
2052	 * generate control messages if
2053	 * - receive time stamping in software requested (SOCK_RCVTSTAMP
2054	 *   or SOCK_TIMESTAMPING_RX_SOFTWARE)
2055	 * - software time stamp available and wanted
2056	 *   (SOCK_TIMESTAMPING_SOFTWARE)
2057	 * - hardware time stamps available and wanted
2058	 *   (SOCK_TIMESTAMPING_SYS_HARDWARE or
2059	 *   SOCK_TIMESTAMPING_RAW_HARDWARE)
2060	 */
2061	if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2062	    sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE) ||
2063	    (kt.tv64 && sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) ||
2064	    (hwtstamps->hwtstamp.tv64 &&
2065	     sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE)) ||
2066	    (hwtstamps->syststamp.tv64 &&
2067	     sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE)))
2068		__sock_recv_timestamp(msg, sk, skb);
2069	else
2070		sk->sk_stamp = kt;
2071
2072	if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2073		__sock_recv_wifi_status(msg, sk, skb);
2074}
2075
2076extern void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2077				     struct sk_buff *skb);
2078
 
2079static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2080					  struct sk_buff *skb)
2081{
2082#define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL)			| \
2083			   (1UL << SOCK_RCVTSTAMP)			| \
2084			   (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE)	| \
2085			   (1UL << SOCK_TIMESTAMPING_SOFTWARE)		| \
2086			   (1UL << SOCK_TIMESTAMPING_RAW_HARDWARE)	| \
2087			   (1UL << SOCK_TIMESTAMPING_SYS_HARDWARE))
2088
2089	if (sk->sk_flags & FLAGS_TS_OR_DROPS)
2090		__sock_recv_ts_and_drops(msg, sk, skb);
2091	else
2092		sk->sk_stamp = skb->tstamp;
 
 
2093}
2094
 
 
2095/**
2096 * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2097 * @sk:		socket sending this packet
2098 * @tx_flags:	filled with instructions for time stamping
2099 *
2100 * Currently only depends on SOCK_TIMESTAMPING* flags. Returns error code if
2101 * parameters are invalid.
2102 */
2103extern int sock_tx_timestamp(struct sock *sk, __u8 *tx_flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2104
 
 
 
 
 
 
 
2105/**
2106 * sk_eat_skb - Release a skb if it is no longer needed
2107 * @sk: socket to eat this skb from
2108 * @skb: socket buffer to eat
2109 * @copied_early: flag indicating whether DMA operations copied this data early
2110 *
2111 * This routine must be called with interrupts disabled or with the socket
2112 * locked so that the sk_buff queue operation is ok.
2113*/
2114#ifdef CONFIG_NET_DMA
2115static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, bool copied_early)
2116{
2117	__skb_unlink(skb, &sk->sk_receive_queue);
2118	if (!copied_early)
2119		__kfree_skb(skb);
2120	else
2121		__skb_queue_tail(&sk->sk_async_wait_queue, skb);
2122}
2123#else
2124static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, bool copied_early)
2125{
2126	__skb_unlink(skb, &sk->sk_receive_queue);
 
 
 
 
 
 
2127	__kfree_skb(skb);
2128}
2129#endif
2130
2131static inline
2132struct net *sock_net(const struct sock *sk)
2133{
2134	return read_pnet(&sk->sk_net);
2135}
2136
2137static inline
2138void sock_net_set(struct sock *sk, struct net *net)
2139{
2140	write_pnet(&sk->sk_net, net);
2141}
2142
2143/*
2144 * Kernel sockets, f.e. rtnl or icmp_socket, are a part of a namespace.
2145 * They should not hold a reference to a namespace in order to allow
2146 * to stop it.
2147 * Sockets after sk_change_net should be released using sk_release_kernel
 
 
 
 
 
 
 
2148 */
2149static inline void sk_change_net(struct sock *sk, struct net *net)
2150{
2151	put_net(sock_net(sk));
2152	sock_net_set(sk, hold_net(net));
2153}
2154
2155static inline struct sock *skb_steal_sock(struct sk_buff *skb)
 
2156{
2157	if (unlikely(skb->sk)) {
 
 
 
 
 
 
 
 
 
 
 
 
2158		struct sock *sk = skb->sk;
2159
 
 
 
2160		skb->destructor = NULL;
2161		skb->sk = NULL;
2162		return sk;
2163	}
 
2164	return NULL;
2165}
2166
2167extern void sock_enable_timestamp(struct sock *sk, int flag);
2168extern int sock_get_timestamp(struct sock *, struct timeval __user *);
2169extern int sock_get_timestampns(struct sock *, struct timespec __user *);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2170
2171/*
2172 *	Enable debug/info messages
2173 */
2174extern int net_msg_warn;
2175#define NETDEBUG(fmt, args...) \
2176	do { if (net_msg_warn) printk(fmt,##args); } while (0)
 
 
 
 
 
2177
2178#define LIMIT_NETDEBUG(fmt, args...) \
2179	do { if (net_msg_warn && net_ratelimit()) printk(fmt,##args); } while(0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2180
2181extern __u32 sysctl_wmem_max;
2182extern __u32 sysctl_rmem_max;
2183
2184extern void sk_init(void);
2185
2186extern int sysctl_optmem_max;
2187
2188extern __u32 sysctl_wmem_default;
2189extern __u32 sysctl_rmem_default;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2190
2191#endif	/* _SOCK_H */
v5.9
   1/* SPDX-License-Identifier: GPL-2.0-or-later */
   2/*
   3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   4 *		operating system.  INET is implemented using the  BSD Socket
   5 *		interface as the means of communication with the user level.
   6 *
   7 *		Definitions for the AF_INET socket handler.
   8 *
   9 * Version:	@(#)sock.h	1.0.4	05/13/93
  10 *
  11 * Authors:	Ross Biro
  12 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  13 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
  14 *		Florian La Roche <flla@stud.uni-sb.de>
  15 *
  16 * Fixes:
  17 *		Alan Cox	:	Volatiles in skbuff pointers. See
  18 *					skbuff comments. May be overdone,
  19 *					better to prove they can be removed
  20 *					than the reverse.
  21 *		Alan Cox	:	Added a zapped field for tcp to note
  22 *					a socket is reset and must stay shut up
  23 *		Alan Cox	:	New fields for options
  24 *	Pauline Middelink	:	identd support
  25 *		Alan Cox	:	Eliminate low level recv/recvfrom
  26 *		David S. Miller	:	New socket lookup architecture.
  27 *              Steve Whitehouse:       Default routines for sock_ops
  28 *              Arnaldo C. Melo :	removed net_pinfo, tp_pinfo and made
  29 *              			protinfo be just a void pointer, as the
  30 *              			protocol specific parts were moved to
  31 *              			respective headers and ipv4/v6, etc now
  32 *              			use private slabcaches for its socks
  33 *              Pedro Hortas	:	New flags field for socket options
 
 
 
 
 
 
  34 */
  35#ifndef _SOCK_H
  36#define _SOCK_H
  37
  38#include <linux/hardirq.h>
  39#include <linux/kernel.h>
  40#include <linux/list.h>
  41#include <linux/list_nulls.h>
  42#include <linux/timer.h>
  43#include <linux/cache.h>
  44#include <linux/bitops.h>
  45#include <linux/lockdep.h>
  46#include <linux/netdevice.h>
  47#include <linux/skbuff.h>	/* struct sk_buff */
  48#include <linux/mm.h>
  49#include <linux/security.h>
  50#include <linux/slab.h>
  51#include <linux/uaccess.h>
  52#include <linux/page_counter.h>
  53#include <linux/memcontrol.h>
 
  54#include <linux/static_key.h>
 
  55#include <linux/sched.h>
  56#include <linux/wait.h>
  57#include <linux/cgroup-defs.h>
  58#include <linux/rbtree.h>
  59#include <linux/filter.h>
  60#include <linux/rculist_nulls.h>
  61#include <linux/poll.h>
  62#include <linux/sockptr.h>
  63
  64#include <linux/atomic.h>
  65#include <linux/refcount.h>
  66#include <net/dst.h>
  67#include <net/checksum.h>
  68#include <net/tcp_states.h>
  69#include <linux/net_tstamp.h>
  70#include <net/l3mdev.h>
  71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  72/*
  73 * This structure really needs to be cleaned up.
  74 * Most of it is for TCP, and not used by any of
  75 * the other protocols.
  76 */
  77
  78/* Define this to get the SOCK_DBG debugging facility. */
  79#define SOCK_DEBUGGING
  80#ifdef SOCK_DEBUGGING
  81#define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
  82					printk(KERN_DEBUG msg); } while (0)
  83#else
  84/* Validate arguments and do nothing */
  85static inline __printf(2, 3)
  86void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
  87{
  88}
  89#endif
  90
  91/* This is the per-socket lock.  The spinlock provides a synchronization
  92 * between user contexts and software interrupt processing, whereas the
  93 * mini-semaphore synchronizes multiple users amongst themselves.
  94 */
  95typedef struct {
  96	spinlock_t		slock;
  97	int			owned;
  98	wait_queue_head_t	wq;
  99	/*
 100	 * We express the mutex-alike socket_lock semantics
 101	 * to the lock validator by explicitly managing
 102	 * the slock as a lock variant (in addition to
 103	 * the slock itself):
 104	 */
 105#ifdef CONFIG_DEBUG_LOCK_ALLOC
 106	struct lockdep_map dep_map;
 107#endif
 108} socket_lock_t;
 109
 110struct sock;
 111struct proto;
 112struct net;
 113
 114typedef __u32 __bitwise __portpair;
 115typedef __u64 __bitwise __addrpair;
 116
 117/**
 118 *	struct sock_common - minimal network layer representation of sockets
 119 *	@skc_daddr: Foreign IPv4 addr
 120 *	@skc_rcv_saddr: Bound local IPv4 addr
 121 *	@skc_addrpair: 8-byte-aligned __u64 union of @skc_daddr & @skc_rcv_saddr
 122 *	@skc_hash: hash value used with various protocol lookup tables
 123 *	@skc_u16hashes: two u16 hash values used by UDP lookup tables
 124 *	@skc_dport: placeholder for inet_dport/tw_dport
 125 *	@skc_num: placeholder for inet_num/tw_num
 126 *	@skc_portpair: __u32 union of @skc_dport & @skc_num
 127 *	@skc_family: network address family
 128 *	@skc_state: Connection state
 129 *	@skc_reuse: %SO_REUSEADDR setting
 130 *	@skc_reuseport: %SO_REUSEPORT setting
 131 *	@skc_ipv6only: socket is IPV6 only
 132 *	@skc_net_refcnt: socket is using net ref counting
 133 *	@skc_bound_dev_if: bound device index if != 0
 134 *	@skc_bind_node: bind hash linkage for various protocol lookup tables
 135 *	@skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
 136 *	@skc_prot: protocol handlers inside a network family
 137 *	@skc_net: reference to the network namespace of this socket
 138 *	@skc_v6_daddr: IPV6 destination address
 139 *	@skc_v6_rcv_saddr: IPV6 source address
 140 *	@skc_cookie: socket's cookie value
 141 *	@skc_node: main hash linkage for various protocol lookup tables
 142 *	@skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
 143 *	@skc_tx_queue_mapping: tx queue number for this connection
 144 *	@skc_rx_queue_mapping: rx queue number for this connection
 145 *	@skc_flags: place holder for sk_flags
 146 *		%SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
 147 *		%SO_OOBINLINE settings, %SO_TIMESTAMPING settings
 148 *	@skc_listener: connection request listener socket (aka rsk_listener)
 149 *		[union with @skc_flags]
 150 *	@skc_tw_dr: (aka tw_dr) ptr to &struct inet_timewait_death_row
 151 *		[union with @skc_flags]
 152 *	@skc_incoming_cpu: record/match cpu processing incoming packets
 153 *	@skc_rcv_wnd: (aka rsk_rcv_wnd) TCP receive window size (possibly scaled)
 154 *		[union with @skc_incoming_cpu]
 155 *	@skc_tw_rcv_nxt: (aka tw_rcv_nxt) TCP window next expected seq number
 156 *		[union with @skc_incoming_cpu]
 157 *	@skc_refcnt: reference count
 158 *
 159 *	This is the minimal network layer representation of sockets, the header
 160 *	for struct sock and struct inet_timewait_sock.
 161 */
 162struct sock_common {
 163	/* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
 164	 * address on 64bit arches : cf INET_MATCH()
 165	 */
 166	union {
 167		__addrpair	skc_addrpair;
 168		struct {
 169			__be32	skc_daddr;
 170			__be32	skc_rcv_saddr;
 171		};
 172	};
 173	union  {
 174		unsigned int	skc_hash;
 175		__u16		skc_u16hashes[2];
 176	};
 177	/* skc_dport && skc_num must be grouped as well */
 178	union {
 179		__portpair	skc_portpair;
 180		struct {
 181			__be16	skc_dport;
 182			__u16	skc_num;
 183		};
 184	};
 185
 186	unsigned short		skc_family;
 187	volatile unsigned char	skc_state;
 188	unsigned char		skc_reuse:4;
 189	unsigned char		skc_reuseport:1;
 190	unsigned char		skc_ipv6only:1;
 191	unsigned char		skc_net_refcnt:1;
 192	int			skc_bound_dev_if;
 193	union {
 194		struct hlist_node	skc_bind_node;
 195		struct hlist_node	skc_portaddr_node;
 196	};
 197	struct proto		*skc_prot;
 198	possible_net_t		skc_net;
 199
 200#if IS_ENABLED(CONFIG_IPV6)
 201	struct in6_addr		skc_v6_daddr;
 202	struct in6_addr		skc_v6_rcv_saddr;
 203#endif
 204
 205	atomic64_t		skc_cookie;
 206
 207	/* following fields are padding to force
 208	 * offset(struct sock, sk_refcnt) == 128 on 64bit arches
 209	 * assuming IPV6 is enabled. We use this padding differently
 210	 * for different kind of 'sockets'
 211	 */
 212	union {
 213		unsigned long	skc_flags;
 214		struct sock	*skc_listener; /* request_sock */
 215		struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
 216	};
 217	/*
 218	 * fields between dontcopy_begin/dontcopy_end
 219	 * are not copied in sock_copy()
 220	 */
 221	/* private: */
 222	int			skc_dontcopy_begin[0];
 223	/* public: */
 224	union {
 225		struct hlist_node	skc_node;
 226		struct hlist_nulls_node skc_nulls_node;
 227	};
 228	unsigned short		skc_tx_queue_mapping;
 229#ifdef CONFIG_XPS
 230	unsigned short		skc_rx_queue_mapping;
 231#endif
 232	union {
 233		int		skc_incoming_cpu;
 234		u32		skc_rcv_wnd;
 235		u32		skc_tw_rcv_nxt; /* struct tcp_timewait_sock  */
 236	};
 237
 238	refcount_t		skc_refcnt;
 239	/* private: */
 240	int                     skc_dontcopy_end[0];
 241	union {
 242		u32		skc_rxhash;
 243		u32		skc_window_clamp;
 244		u32		skc_tw_snd_nxt; /* struct tcp_timewait_sock */
 245	};
 246	/* public: */
 247};
 248
 249struct bpf_sk_storage;
 250
 251/**
 252  *	struct sock - network layer representation of sockets
 253  *	@__sk_common: shared layout with inet_timewait_sock
 254  *	@sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
 255  *	@sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
 256  *	@sk_lock:	synchronizer
 257  *	@sk_kern_sock: True if sock is using kernel lock classes
 258  *	@sk_rcvbuf: size of receive buffer in bytes
 259  *	@sk_wq: sock wait queue and async head
 260  *	@sk_rx_dst: receive input route used by early demux
 261  *	@sk_dst_cache: destination cache
 262  *	@sk_dst_pending_confirm: need to confirm neighbour
 263  *	@sk_policy: flow policy
 264  *	@sk_rx_skb_cache: cache copy of recently accessed RX skb
 265  *	@sk_receive_queue: incoming packets
 266  *	@sk_wmem_alloc: transmit queue bytes committed
 267  *	@sk_tsq_flags: TCP Small Queues flags
 268  *	@sk_write_queue: Packet sending queue
 
 269  *	@sk_omem_alloc: "o" is "option" or "other"
 270  *	@sk_wmem_queued: persistent queue size
 271  *	@sk_forward_alloc: space allocated forward
 272  *	@sk_napi_id: id of the last napi context to receive data for sk
 273  *	@sk_ll_usec: usecs to busypoll when there is no data
 274  *	@sk_allocation: allocation mode
 275  *	@sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
 276  *	@sk_pacing_status: Pacing status (requested, handled by sch_fq)
 277  *	@sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
 278  *	@sk_sndbuf: size of send buffer in bytes
 279  *	@__sk_flags_offset: empty field used to determine location of bitfield
 280  *	@sk_padding: unused element for alignment
 281  *	@sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
 282  *	@sk_no_check_rx: allow zero checksum in RX packets
 283  *	@sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
 284  *	@sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
 285  *	@sk_route_forced_caps: static, forced route capabilities
 286  *		(set in tcp_init_sock())
 287  *	@sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
 288  *	@sk_gso_max_size: Maximum GSO segment size to build
 289  *	@sk_gso_max_segs: Maximum number of GSO segments
 290  *	@sk_pacing_shift: scaling factor for TCP Small Queues
 291  *	@sk_lingertime: %SO_LINGER l_linger setting
 292  *	@sk_backlog: always used with the per-socket spinlock held
 293  *	@sk_callback_lock: used with the callbacks in the end of this struct
 294  *	@sk_error_queue: rarely used
 295  *	@sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
 296  *			  IPV6_ADDRFORM for instance)
 297  *	@sk_err: last error
 298  *	@sk_err_soft: errors that don't cause failure but are the cause of a
 299  *		      persistent failure not just 'timed out'
 300  *	@sk_drops: raw/udp drops counter
 301  *	@sk_ack_backlog: current listen backlog
 302  *	@sk_max_ack_backlog: listen backlog set in listen()
 303  *	@sk_uid: user id of owner
 304  *	@sk_priority: %SO_PRIORITY setting
 
 305  *	@sk_type: socket type (%SOCK_STREAM, etc)
 306  *	@sk_protocol: which protocol this socket belongs in this network family
 307  *	@sk_peer_pid: &struct pid for this socket's peer
 308  *	@sk_peer_cred: %SO_PEERCRED setting
 309  *	@sk_rcvlowat: %SO_RCVLOWAT setting
 310  *	@sk_rcvtimeo: %SO_RCVTIMEO setting
 311  *	@sk_sndtimeo: %SO_SNDTIMEO setting
 312  *	@sk_txhash: computed flow hash for use on transmit
 313  *	@sk_filter: socket filtering instructions
 
 314  *	@sk_timer: sock cleanup timer
 315  *	@sk_stamp: time stamp of last packet received
 316  *	@sk_stamp_seq: lock for accessing sk_stamp on 32 bit architectures only
 317  *	@sk_tsflags: SO_TIMESTAMPING socket options
 318  *	@sk_tskey: counter to disambiguate concurrent tstamp requests
 319  *	@sk_zckey: counter to order MSG_ZEROCOPY notifications
 320  *	@sk_socket: Identd and reporting IO signals
 321  *	@sk_user_data: RPC layer private data
 322  *	@sk_frag: cached page frag
 
 323  *	@sk_peek_off: current peek_offset value
 324  *	@sk_send_head: front of stuff to transmit
 325  *	@tcp_rtx_queue: TCP re-transmit queue [union with @sk_send_head]
 326  *	@sk_tx_skb_cache: cache copy of recently accessed TX skb
 327  *	@sk_security: used by security modules
 328  *	@sk_mark: generic packet mark
 329  *	@sk_cgrp_data: cgroup data for this cgroup
 330  *	@sk_memcg: this socket's memory cgroup association
 331  *	@sk_write_pending: a write to stream socket waits to start
 332  *	@sk_state_change: callback to indicate change in the state of the sock
 333  *	@sk_data_ready: callback to indicate there is data to be processed
 334  *	@sk_write_space: callback to indicate there is bf sending space available
 335  *	@sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
 336  *	@sk_backlog_rcv: callback to process the backlog
 337  *	@sk_validate_xmit_skb: ptr to an optional validate function
 338  *	@sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
 339  *	@sk_reuseport_cb: reuseport group container
 340  *	@sk_bpf_storage: ptr to cache and control for bpf_sk_storage
 341  *	@sk_rcu: used during RCU grace period
 342  *	@sk_clockid: clockid used by time-based scheduling (SO_TXTIME)
 343  *	@sk_txtime_deadline_mode: set deadline mode for SO_TXTIME
 344  *	@sk_txtime_report_errors: set report errors mode for SO_TXTIME
 345  *	@sk_txtime_unused: unused txtime flags
 346  */
 347struct sock {
 348	/*
 349	 * Now struct inet_timewait_sock also uses sock_common, so please just
 350	 * don't add nothing before this first member (__sk_common) --acme
 351	 */
 352	struct sock_common	__sk_common;
 353#define sk_node			__sk_common.skc_node
 354#define sk_nulls_node		__sk_common.skc_nulls_node
 355#define sk_refcnt		__sk_common.skc_refcnt
 356#define sk_tx_queue_mapping	__sk_common.skc_tx_queue_mapping
 357#ifdef CONFIG_XPS
 358#define sk_rx_queue_mapping	__sk_common.skc_rx_queue_mapping
 359#endif
 360
 361#define sk_dontcopy_begin	__sk_common.skc_dontcopy_begin
 362#define sk_dontcopy_end		__sk_common.skc_dontcopy_end
 363#define sk_hash			__sk_common.skc_hash
 364#define sk_portpair		__sk_common.skc_portpair
 365#define sk_num			__sk_common.skc_num
 366#define sk_dport		__sk_common.skc_dport
 367#define sk_addrpair		__sk_common.skc_addrpair
 368#define sk_daddr		__sk_common.skc_daddr
 369#define sk_rcv_saddr		__sk_common.skc_rcv_saddr
 370#define sk_family		__sk_common.skc_family
 371#define sk_state		__sk_common.skc_state
 372#define sk_reuse		__sk_common.skc_reuse
 373#define sk_reuseport		__sk_common.skc_reuseport
 374#define sk_ipv6only		__sk_common.skc_ipv6only
 375#define sk_net_refcnt		__sk_common.skc_net_refcnt
 376#define sk_bound_dev_if		__sk_common.skc_bound_dev_if
 377#define sk_bind_node		__sk_common.skc_bind_node
 378#define sk_prot			__sk_common.skc_prot
 379#define sk_net			__sk_common.skc_net
 380#define sk_v6_daddr		__sk_common.skc_v6_daddr
 381#define sk_v6_rcv_saddr	__sk_common.skc_v6_rcv_saddr
 382#define sk_cookie		__sk_common.skc_cookie
 383#define sk_incoming_cpu		__sk_common.skc_incoming_cpu
 384#define sk_flags		__sk_common.skc_flags
 385#define sk_rxhash		__sk_common.skc_rxhash
 386
 387	socket_lock_t		sk_lock;
 388	atomic_t		sk_drops;
 389	int			sk_rcvlowat;
 390	struct sk_buff_head	sk_error_queue;
 391	struct sk_buff		*sk_rx_skb_cache;
 392	struct sk_buff_head	sk_receive_queue;
 393	/*
 394	 * The backlog queue is special, it is always used with
 395	 * the per-socket spinlock held and requires low latency
 396	 * access. Therefore we special case it's implementation.
 397	 * Note : rmem_alloc is in this structure to fill a hole
 398	 * on 64bit arches, not because its logically part of
 399	 * backlog.
 400	 */
 401	struct {
 402		atomic_t	rmem_alloc;
 403		int		len;
 404		struct sk_buff	*head;
 405		struct sk_buff	*tail;
 406	} sk_backlog;
 407#define sk_rmem_alloc sk_backlog.rmem_alloc
 408
 409	int			sk_forward_alloc;
 410#ifdef CONFIG_NET_RX_BUSY_POLL
 411	unsigned int		sk_ll_usec;
 412	/* ===== mostly read cache line ===== */
 413	unsigned int		sk_napi_id;
 414#endif
 
 415	int			sk_rcvbuf;
 416
 417	struct sk_filter __rcu	*sk_filter;
 418	union {
 419		struct socket_wq __rcu	*sk_wq;
 420		/* private: */
 421		struct socket_wq	*sk_wq_raw;
 422		/* public: */
 423	};
 424#ifdef CONFIG_XFRM
 425	struct xfrm_policy __rcu *sk_policy[2];
 426#endif
 427	struct dst_entry	*sk_rx_dst;
 428	struct dst_entry __rcu	*sk_dst_cache;
 
 
 429	atomic_t		sk_omem_alloc;
 430	int			sk_sndbuf;
 431
 432	/* ===== cache line for TX ===== */
 
 
 
 
 
 
 433	int			sk_wmem_queued;
 434	refcount_t		sk_wmem_alloc;
 435	unsigned long		sk_tsq_flags;
 436	union {
 437		struct sk_buff	*sk_send_head;
 438		struct rb_root	tcp_rtx_queue;
 439	};
 440	struct sk_buff		*sk_tx_skb_cache;
 441	struct sk_buff_head	sk_write_queue;
 442	__s32			sk_peek_off;
 443	int			sk_write_pending;
 444	__u32			sk_dst_pending_confirm;
 445	u32			sk_pacing_status; /* see enum sk_pacing */
 446	long			sk_sndtimeo;
 447	struct timer_list	sk_timer;
 448	__u32			sk_priority;
 449	__u32			sk_mark;
 450	unsigned long		sk_pacing_rate; /* bytes per second */
 451	unsigned long		sk_max_pacing_rate;
 452	struct page_frag	sk_frag;
 453	netdev_features_t	sk_route_caps;
 454	netdev_features_t	sk_route_nocaps;
 455	netdev_features_t	sk_route_forced_caps;
 456	int			sk_gso_type;
 457	unsigned int		sk_gso_max_size;
 458	gfp_t			sk_allocation;
 459	__u32			sk_txhash;
 460
 461	/*
 462	 * Because of non atomicity rules, all
 463	 * changes are protected by socket lock.
 464	 */
 465	u8			sk_padding : 1,
 466				sk_kern_sock : 1,
 467				sk_no_check_tx : 1,
 468				sk_no_check_rx : 1,
 469				sk_userlocks : 4;
 470	u8			sk_pacing_shift;
 471	u16			sk_type;
 472	u16			sk_protocol;
 473	u16			sk_gso_max_segs;
 
 474	unsigned long	        sk_lingertime;
 
 475	struct proto		*sk_prot_creator;
 476	rwlock_t		sk_callback_lock;
 477	int			sk_err,
 478				sk_err_soft;
 479	u32			sk_ack_backlog;
 480	u32			sk_max_ack_backlog;
 481	kuid_t			sk_uid;
 
 
 
 482	struct pid		*sk_peer_pid;
 483	const struct cred	*sk_peer_cred;
 484	long			sk_rcvtimeo;
 
 
 
 485	ktime_t			sk_stamp;
 486#if BITS_PER_LONG==32
 487	seqlock_t		sk_stamp_seq;
 488#endif
 489	u16			sk_tsflags;
 490	u8			sk_shutdown;
 491	u32			sk_tskey;
 492	atomic_t		sk_zckey;
 493
 494	u8			sk_clockid;
 495	u8			sk_txtime_deadline_mode : 1,
 496				sk_txtime_report_errors : 1,
 497				sk_txtime_unused : 6;
 498
 499	struct socket		*sk_socket;
 500	void			*sk_user_data;
 
 
 
 
 
 501#ifdef CONFIG_SECURITY
 502	void			*sk_security;
 503#endif
 504	struct sock_cgroup_data	sk_cgrp_data;
 505	struct mem_cgroup	*sk_memcg;
 
 506	void			(*sk_state_change)(struct sock *sk);
 507	void			(*sk_data_ready)(struct sock *sk);
 508	void			(*sk_write_space)(struct sock *sk);
 509	void			(*sk_error_report)(struct sock *sk);
 510	int			(*sk_backlog_rcv)(struct sock *sk,
 511						  struct sk_buff *skb);
 512#ifdef CONFIG_SOCK_VALIDATE_XMIT
 513	struct sk_buff*		(*sk_validate_xmit_skb)(struct sock *sk,
 514							struct net_device *dev,
 515							struct sk_buff *skb);
 516#endif
 517	void                    (*sk_destruct)(struct sock *sk);
 518	struct sock_reuseport __rcu	*sk_reuseport_cb;
 519#ifdef CONFIG_BPF_SYSCALL
 520	struct bpf_sk_storage __rcu	*sk_bpf_storage;
 521#endif
 522	struct rcu_head		sk_rcu;
 523};
 524
 525enum sk_pacing {
 526	SK_PACING_NONE		= 0,
 527	SK_PACING_NEEDED	= 1,
 528	SK_PACING_FQ		= 2,
 529};
 530
 531/* Pointer stored in sk_user_data might not be suitable for copying
 532 * when cloning the socket. For instance, it can point to a reference
 533 * counted object. sk_user_data bottom bit is set if pointer must not
 534 * be copied.
 535 */
 536#define SK_USER_DATA_NOCOPY	1UL
 537#define SK_USER_DATA_BPF	2UL	/* Managed by BPF */
 538#define SK_USER_DATA_PTRMASK	~(SK_USER_DATA_NOCOPY | SK_USER_DATA_BPF)
 539
 540/**
 541 * sk_user_data_is_nocopy - Test if sk_user_data pointer must not be copied
 542 * @sk: socket
 543 */
 544static inline bool sk_user_data_is_nocopy(const struct sock *sk)
 545{
 546	return ((uintptr_t)sk->sk_user_data & SK_USER_DATA_NOCOPY);
 547}
 548
 549#define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
 550
 551#define rcu_dereference_sk_user_data(sk)				\
 552({									\
 553	void *__tmp = rcu_dereference(__sk_user_data((sk)));		\
 554	(void *)((uintptr_t)__tmp & SK_USER_DATA_PTRMASK);		\
 555})
 556#define rcu_assign_sk_user_data(sk, ptr)				\
 557({									\
 558	uintptr_t __tmp = (uintptr_t)(ptr);				\
 559	WARN_ON_ONCE(__tmp & ~SK_USER_DATA_PTRMASK);			\
 560	rcu_assign_pointer(__sk_user_data((sk)), __tmp);		\
 561})
 562#define rcu_assign_sk_user_data_nocopy(sk, ptr)				\
 563({									\
 564	uintptr_t __tmp = (uintptr_t)(ptr);				\
 565	WARN_ON_ONCE(__tmp & ~SK_USER_DATA_PTRMASK);			\
 566	rcu_assign_pointer(__sk_user_data((sk)),			\
 567			   __tmp | SK_USER_DATA_NOCOPY);		\
 568})
 569
 570/*
 571 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
 572 * or not whether his port will be reused by someone else. SK_FORCE_REUSE
 573 * on a socket means that the socket will reuse everybody else's port
 574 * without looking at the other's sk_reuse value.
 575 */
 576
 577#define SK_NO_REUSE	0
 578#define SK_CAN_REUSE	1
 579#define SK_FORCE_REUSE	2
 580
 581int sk_set_peek_off(struct sock *sk, int val);
 582
 583static inline int sk_peek_offset(struct sock *sk, int flags)
 584{
 585	if (unlikely(flags & MSG_PEEK)) {
 586		return READ_ONCE(sk->sk_peek_off);
 587	}
 588
 589	return 0;
 590}
 591
 592static inline void sk_peek_offset_bwd(struct sock *sk, int val)
 593{
 594	s32 off = READ_ONCE(sk->sk_peek_off);
 595
 596	if (unlikely(off >= 0)) {
 597		off = max_t(s32, off - val, 0);
 598		WRITE_ONCE(sk->sk_peek_off, off);
 599	}
 600}
 601
 602static inline void sk_peek_offset_fwd(struct sock *sk, int val)
 603{
 604	sk_peek_offset_bwd(sk, -val);
 
 605}
 606
 607/*
 608 * Hashed lists helper routines
 609 */
 610static inline struct sock *sk_entry(const struct hlist_node *node)
 611{
 612	return hlist_entry(node, struct sock, sk_node);
 613}
 614
 615static inline struct sock *__sk_head(const struct hlist_head *head)
 616{
 617	return hlist_entry(head->first, struct sock, sk_node);
 618}
 619
 620static inline struct sock *sk_head(const struct hlist_head *head)
 621{
 622	return hlist_empty(head) ? NULL : __sk_head(head);
 623}
 624
 625static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
 626{
 627	return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
 628}
 629
 630static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
 631{
 632	return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
 633}
 634
 635static inline struct sock *sk_next(const struct sock *sk)
 636{
 637	return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node);
 
 638}
 639
 640static inline struct sock *sk_nulls_next(const struct sock *sk)
 641{
 642	return (!is_a_nulls(sk->sk_nulls_node.next)) ?
 643		hlist_nulls_entry(sk->sk_nulls_node.next,
 644				  struct sock, sk_nulls_node) :
 645		NULL;
 646}
 647
 648static inline bool sk_unhashed(const struct sock *sk)
 649{
 650	return hlist_unhashed(&sk->sk_node);
 651}
 652
 653static inline bool sk_hashed(const struct sock *sk)
 654{
 655	return !sk_unhashed(sk);
 656}
 657
 658static inline void sk_node_init(struct hlist_node *node)
 659{
 660	node->pprev = NULL;
 661}
 662
 663static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
 664{
 665	node->pprev = NULL;
 666}
 667
 668static inline void __sk_del_node(struct sock *sk)
 669{
 670	__hlist_del(&sk->sk_node);
 671}
 672
 673/* NB: equivalent to hlist_del_init_rcu */
 674static inline bool __sk_del_node_init(struct sock *sk)
 675{
 676	if (sk_hashed(sk)) {
 677		__sk_del_node(sk);
 678		sk_node_init(&sk->sk_node);
 679		return true;
 680	}
 681	return false;
 682}
 683
 684/* Grab socket reference count. This operation is valid only
 685   when sk is ALREADY grabbed f.e. it is found in hash table
 686   or a list and the lookup is made under lock preventing hash table
 687   modifications.
 688 */
 689
 690static __always_inline void sock_hold(struct sock *sk)
 691{
 692	refcount_inc(&sk->sk_refcnt);
 693}
 694
 695/* Ungrab socket in the context, which assumes that socket refcnt
 696   cannot hit zero, f.e. it is true in context of any socketcall.
 697 */
 698static __always_inline void __sock_put(struct sock *sk)
 699{
 700	refcount_dec(&sk->sk_refcnt);
 701}
 702
 703static inline bool sk_del_node_init(struct sock *sk)
 704{
 705	bool rc = __sk_del_node_init(sk);
 706
 707	if (rc) {
 708		/* paranoid for a while -acme */
 709		WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
 710		__sock_put(sk);
 711	}
 712	return rc;
 713}
 714#define sk_del_node_init_rcu(sk)	sk_del_node_init(sk)
 715
 716static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
 717{
 718	if (sk_hashed(sk)) {
 719		hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
 720		return true;
 721	}
 722	return false;
 723}
 724
 725static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
 726{
 727	bool rc = __sk_nulls_del_node_init_rcu(sk);
 728
 729	if (rc) {
 730		/* paranoid for a while -acme */
 731		WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
 732		__sock_put(sk);
 733	}
 734	return rc;
 735}
 736
 737static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
 738{
 739	hlist_add_head(&sk->sk_node, list);
 740}
 741
 742static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
 743{
 744	sock_hold(sk);
 745	__sk_add_node(sk, list);
 746}
 747
 748static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
 749{
 750	sock_hold(sk);
 751	if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
 752	    sk->sk_family == AF_INET6)
 753		hlist_add_tail_rcu(&sk->sk_node, list);
 754	else
 755		hlist_add_head_rcu(&sk->sk_node, list);
 756}
 757
 758static inline void sk_add_node_tail_rcu(struct sock *sk, struct hlist_head *list)
 759{
 760	sock_hold(sk);
 761	hlist_add_tail_rcu(&sk->sk_node, list);
 762}
 763
 764static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
 765{
 766	hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
 767}
 768
 769static inline void __sk_nulls_add_node_tail_rcu(struct sock *sk, struct hlist_nulls_head *list)
 770{
 771	hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list);
 772}
 773
 774static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
 775{
 776	sock_hold(sk);
 777	__sk_nulls_add_node_rcu(sk, list);
 778}
 779
 780static inline void __sk_del_bind_node(struct sock *sk)
 781{
 782	__hlist_del(&sk->sk_bind_node);
 783}
 784
 785static inline void sk_add_bind_node(struct sock *sk,
 786					struct hlist_head *list)
 787{
 788	hlist_add_head(&sk->sk_bind_node, list);
 789}
 790
 791#define sk_for_each(__sk, list) \
 792	hlist_for_each_entry(__sk, list, sk_node)
 793#define sk_for_each_rcu(__sk, list) \
 794	hlist_for_each_entry_rcu(__sk, list, sk_node)
 795#define sk_nulls_for_each(__sk, node, list) \
 796	hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
 797#define sk_nulls_for_each_rcu(__sk, node, list) \
 798	hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
 799#define sk_for_each_from(__sk) \
 800	hlist_for_each_entry_from(__sk, sk_node)
 
 801#define sk_nulls_for_each_from(__sk, node) \
 802	if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
 803		hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
 804#define sk_for_each_safe(__sk, tmp, list) \
 805	hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
 806#define sk_for_each_bound(__sk, list) \
 807	hlist_for_each_entry(__sk, list, sk_bind_node)
 808
 809/**
 810 * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
 811 * @tpos:	the type * to use as a loop cursor.
 812 * @pos:	the &struct hlist_node to use as a loop cursor.
 813 * @head:	the head for your list.
 814 * @offset:	offset of hlist_node within the struct.
 815 *
 816 */
 817#define sk_for_each_entry_offset_rcu(tpos, pos, head, offset)		       \
 818	for (pos = rcu_dereference(hlist_first_rcu(head));		       \
 819	     pos != NULL &&						       \
 820		({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;});       \
 821	     pos = rcu_dereference(hlist_next_rcu(pos)))
 822
 823static inline struct user_namespace *sk_user_ns(struct sock *sk)
 824{
 825	/* Careful only use this in a context where these parameters
 826	 * can not change and must all be valid, such as recvmsg from
 827	 * userspace.
 828	 */
 829	return sk->sk_socket->file->f_cred->user_ns;
 830}
 831
 832/* Sock flags */
 833enum sock_flags {
 834	SOCK_DEAD,
 835	SOCK_DONE,
 836	SOCK_URGINLINE,
 837	SOCK_KEEPOPEN,
 838	SOCK_LINGER,
 839	SOCK_DESTROY,
 840	SOCK_BROADCAST,
 841	SOCK_TIMESTAMP,
 842	SOCK_ZAPPED,
 843	SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
 844	SOCK_DBG, /* %SO_DEBUG setting */
 845	SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
 846	SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
 847	SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
 848	SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
 849	SOCK_MEMALLOC, /* VM depends on this socket for swapping */
 
 
 850	SOCK_TIMESTAMPING_RX_SOFTWARE,  /* %SOF_TIMESTAMPING_RX_SOFTWARE */
 
 
 
 851	SOCK_FASYNC, /* fasync() active */
 852	SOCK_RXQ_OVFL,
 853	SOCK_ZEROCOPY, /* buffers from userspace */
 854	SOCK_WIFI_STATUS, /* push wifi status to userspace */
 855	SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
 856		     * Will use last 4 bytes of packet sent from
 857		     * user-space instead.
 858		     */
 859	SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
 860	SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
 861	SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */
 862	SOCK_TXTIME,
 863	SOCK_XDP, /* XDP is attached */
 864	SOCK_TSTAMP_NEW, /* Indicates 64 bit timestamps always */
 865};
 866
 867#define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
 868
 869static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
 870{
 871	nsk->sk_flags = osk->sk_flags;
 872}
 873
 874static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
 875{
 876	__set_bit(flag, &sk->sk_flags);
 877}
 878
 879static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
 880{
 881	__clear_bit(flag, &sk->sk_flags);
 882}
 883
 884static inline void sock_valbool_flag(struct sock *sk, enum sock_flags bit,
 885				     int valbool)
 886{
 887	if (valbool)
 888		sock_set_flag(sk, bit);
 889	else
 890		sock_reset_flag(sk, bit);
 891}
 892
 893static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
 894{
 895	return test_bit(flag, &sk->sk_flags);
 896}
 897
 898#ifdef CONFIG_NET
 899DECLARE_STATIC_KEY_FALSE(memalloc_socks_key);
 900static inline int sk_memalloc_socks(void)
 901{
 902	return static_branch_unlikely(&memalloc_socks_key);
 903}
 904
 905void __receive_sock(struct file *file);
 906#else
 907
 908static inline int sk_memalloc_socks(void)
 909{
 910	return 0;
 911}
 912
 913static inline void __receive_sock(struct file *file)
 914{ }
 915#endif
 916
 917static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
 918{
 919	return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
 920}
 921
 922static inline void sk_acceptq_removed(struct sock *sk)
 923{
 924	WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog - 1);
 925}
 926
 927static inline void sk_acceptq_added(struct sock *sk)
 928{
 929	WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog + 1);
 930}
 931
 932static inline bool sk_acceptq_is_full(const struct sock *sk)
 933{
 934	return READ_ONCE(sk->sk_ack_backlog) > READ_ONCE(sk->sk_max_ack_backlog);
 935}
 936
 937/*
 938 * Compute minimal free write space needed to queue new packets.
 939 */
 940static inline int sk_stream_min_wspace(const struct sock *sk)
 941{
 942	return READ_ONCE(sk->sk_wmem_queued) >> 1;
 943}
 944
 945static inline int sk_stream_wspace(const struct sock *sk)
 946{
 947	return READ_ONCE(sk->sk_sndbuf) - READ_ONCE(sk->sk_wmem_queued);
 948}
 949
 950static inline void sk_wmem_queued_add(struct sock *sk, int val)
 
 
 951{
 952	WRITE_ONCE(sk->sk_wmem_queued, sk->sk_wmem_queued + val);
 953}
 954
 955void sk_stream_write_space(struct sock *sk);
 956
 957/* OOB backlog add */
 958static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
 959{
 960	/* dont let skb dst not refcounted, we are going to leave rcu lock */
 961	skb_dst_force(skb);
 962
 963	if (!sk->sk_backlog.tail)
 964		WRITE_ONCE(sk->sk_backlog.head, skb);
 965	else
 966		sk->sk_backlog.tail->next = skb;
 967
 968	WRITE_ONCE(sk->sk_backlog.tail, skb);
 969	skb->next = NULL;
 970}
 971
 972/*
 973 * Take into account size of receive queue and backlog queue
 974 * Do not take into account this skb truesize,
 975 * to allow even a single big packet to come.
 976 */
 977static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
 
 978{
 979	unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
 980
 981	return qsize > limit;
 982}
 983
 984/* The per-socket spinlock must be held here. */
 985static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
 986					      unsigned int limit)
 987{
 988	if (sk_rcvqueues_full(sk, limit))
 989		return -ENOBUFS;
 990
 991	/*
 992	 * If the skb was allocated from pfmemalloc reserves, only
 993	 * allow SOCK_MEMALLOC sockets to use it as this socket is
 994	 * helping free memory
 995	 */
 996	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
 997		return -ENOMEM;
 998
 999	__sk_add_backlog(sk, skb);
1000	sk->sk_backlog.len += skb->truesize;
1001	return 0;
1002}
1003
1004int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
1005
1006static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
1007{
1008	if (sk_memalloc_socks() && skb_pfmemalloc(skb))
1009		return __sk_backlog_rcv(sk, skb);
1010
1011	return sk->sk_backlog_rcv(sk, skb);
1012}
1013
1014static inline void sk_incoming_cpu_update(struct sock *sk)
1015{
1016	int cpu = raw_smp_processor_id();
1017
1018	if (unlikely(READ_ONCE(sk->sk_incoming_cpu) != cpu))
1019		WRITE_ONCE(sk->sk_incoming_cpu, cpu);
1020}
1021
1022static inline void sock_rps_record_flow_hash(__u32 hash)
1023{
1024#ifdef CONFIG_RPS
1025	struct rps_sock_flow_table *sock_flow_table;
1026
1027	rcu_read_lock();
1028	sock_flow_table = rcu_dereference(rps_sock_flow_table);
1029	rps_record_sock_flow(sock_flow_table, hash);
1030	rcu_read_unlock();
1031#endif
1032}
1033
1034static inline void sock_rps_record_flow(const struct sock *sk)
1035{
1036#ifdef CONFIG_RPS
1037	if (static_branch_unlikely(&rfs_needed)) {
1038		/* Reading sk->sk_rxhash might incur an expensive cache line
1039		 * miss.
1040		 *
1041		 * TCP_ESTABLISHED does cover almost all states where RFS
1042		 * might be useful, and is cheaper [1] than testing :
1043		 *	IPv4: inet_sk(sk)->inet_daddr
1044		 * 	IPv6: ipv6_addr_any(&sk->sk_v6_daddr)
1045		 * OR	an additional socket flag
1046		 * [1] : sk_state and sk_prot are in the same cache line.
1047		 */
1048		if (sk->sk_state == TCP_ESTABLISHED)
1049			sock_rps_record_flow_hash(sk->sk_rxhash);
1050	}
1051#endif
1052}
1053
1054static inline void sock_rps_save_rxhash(struct sock *sk,
1055					const struct sk_buff *skb)
1056{
1057#ifdef CONFIG_RPS
1058	if (unlikely(sk->sk_rxhash != skb->hash))
1059		sk->sk_rxhash = skb->hash;
 
 
1060#endif
1061}
1062
1063static inline void sock_rps_reset_rxhash(struct sock *sk)
1064{
1065#ifdef CONFIG_RPS
 
1066	sk->sk_rxhash = 0;
1067#endif
1068}
1069
1070#define sk_wait_event(__sk, __timeo, __condition, __wait)		\
1071	({	int __rc;						\
1072		release_sock(__sk);					\
1073		__rc = __condition;					\
1074		if (!__rc) {						\
1075			*(__timeo) = wait_woken(__wait,			\
1076						TASK_INTERRUPTIBLE,	\
1077						*(__timeo));		\
1078		}							\
1079		sched_annotate_sleep();					\
1080		lock_sock(__sk);					\
1081		__rc = __condition;					\
1082		__rc;							\
1083	})
1084
1085int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
1086int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
1087void sk_stream_wait_close(struct sock *sk, long timeo_p);
1088int sk_stream_error(struct sock *sk, int flags, int err);
1089void sk_stream_kill_queues(struct sock *sk);
1090void sk_set_memalloc(struct sock *sk);
1091void sk_clear_memalloc(struct sock *sk);
1092
1093void __sk_flush_backlog(struct sock *sk);
1094
1095static inline bool sk_flush_backlog(struct sock *sk)
1096{
1097	if (unlikely(READ_ONCE(sk->sk_backlog.tail))) {
1098		__sk_flush_backlog(sk);
1099		return true;
1100	}
1101	return false;
1102}
1103
1104int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
1105
1106struct request_sock_ops;
1107struct timewait_sock_ops;
1108struct inet_hashinfo;
1109struct raw_hashinfo;
1110struct smc_hashinfo;
1111struct module;
1112
1113/*
1114 * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes
1115 * un-modified. Special care is taken when initializing object to zero.
1116 */
1117static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1118{
1119	if (offsetof(struct sock, sk_node.next) != 0)
1120		memset(sk, 0, offsetof(struct sock, sk_node.next));
1121	memset(&sk->sk_node.pprev, 0,
1122	       size - offsetof(struct sock, sk_node.pprev));
1123}
1124
1125/* Networking protocol blocks we attach to sockets.
1126 * socket layer -> transport layer interface
 
1127 */
1128struct proto {
1129	void			(*close)(struct sock *sk,
1130					long timeout);
1131	int			(*pre_connect)(struct sock *sk,
1132					struct sockaddr *uaddr,
1133					int addr_len);
1134	int			(*connect)(struct sock *sk,
1135					struct sockaddr *uaddr,
1136					int addr_len);
1137	int			(*disconnect)(struct sock *sk, int flags);
1138
1139	struct sock *		(*accept)(struct sock *sk, int flags, int *err,
1140					  bool kern);
1141
1142	int			(*ioctl)(struct sock *sk, int cmd,
1143					 unsigned long arg);
1144	int			(*init)(struct sock *sk);
1145	void			(*destroy)(struct sock *sk);
1146	void			(*shutdown)(struct sock *sk, int how);
1147	int			(*setsockopt)(struct sock *sk, int level,
1148					int optname, sockptr_t optval,
1149					unsigned int optlen);
1150	int			(*getsockopt)(struct sock *sk, int level,
1151					int optname, char __user *optval,
1152					int __user *option);
1153	void			(*keepalive)(struct sock *sk, int valbool);
1154#ifdef CONFIG_COMPAT
 
 
 
 
 
 
 
 
1155	int			(*compat_ioctl)(struct sock *sk,
1156					unsigned int cmd, unsigned long arg);
1157#endif
1158	int			(*sendmsg)(struct sock *sk, struct msghdr *msg,
1159					   size_t len);
1160	int			(*recvmsg)(struct sock *sk, struct msghdr *msg,
 
1161					   size_t len, int noblock, int flags,
1162					   int *addr_len);
1163	int			(*sendpage)(struct sock *sk, struct page *page,
1164					int offset, size_t size, int flags);
1165	int			(*bind)(struct sock *sk,
1166					struct sockaddr *addr, int addr_len);
1167	int			(*bind_add)(struct sock *sk,
1168					struct sockaddr *addr, int addr_len);
1169
1170	int			(*backlog_rcv) (struct sock *sk,
1171						struct sk_buff *skb);
1172
1173	void		(*release_cb)(struct sock *sk);
1174
1175	/* Keeping track of sk's, looking them up, and port selection methods. */
1176	int			(*hash)(struct sock *sk);
1177	void			(*unhash)(struct sock *sk);
1178	void			(*rehash)(struct sock *sk);
1179	int			(*get_port)(struct sock *sk, unsigned short snum);
 
1180
1181	/* Keeping track of sockets in use */
1182#ifdef CONFIG_PROC_FS
1183	unsigned int		inuse_idx;
1184#endif
1185
1186	bool			(*stream_memory_free)(const struct sock *sk, int wake);
1187	bool			(*stream_memory_read)(const struct sock *sk);
1188	/* Memory pressure */
1189	void			(*enter_memory_pressure)(struct sock *sk);
1190	void			(*leave_memory_pressure)(struct sock *sk);
1191	atomic_long_t		*memory_allocated;	/* Current allocated memory. */
1192	struct percpu_counter	*sockets_allocated;	/* Current number of sockets. */
1193	/*
1194	 * Pressure flag: try to collapse.
1195	 * Technical note: it is used by multiple contexts non atomically.
1196	 * All the __sk_mem_schedule() is of this nature: accounting
1197	 * is strict, actions are advisory and have some latency.
1198	 */
1199	unsigned long		*memory_pressure;
1200	long			*sysctl_mem;
1201
1202	int			*sysctl_wmem;
1203	int			*sysctl_rmem;
1204	u32			sysctl_wmem_offset;
1205	u32			sysctl_rmem_offset;
1206
1207	int			max_header;
1208	bool			no_autobind;
1209
1210	struct kmem_cache	*slab;
1211	unsigned int		obj_size;
1212	slab_flags_t		slab_flags;
1213	unsigned int		useroffset;	/* Usercopy region offset */
1214	unsigned int		usersize;	/* Usercopy region size */
1215
1216	struct percpu_counter	*orphan_count;
1217
1218	struct request_sock_ops	*rsk_prot;
1219	struct timewait_sock_ops *twsk_prot;
1220
1221	union {
1222		struct inet_hashinfo	*hashinfo;
1223		struct udp_table	*udp_table;
1224		struct raw_hashinfo	*raw_hash;
1225		struct smc_hashinfo	*smc_hash;
1226	} h;
1227
1228	struct module		*owner;
1229
1230	char			name[32];
1231
1232	struct list_head	node;
1233#ifdef SOCK_REFCNT_DEBUG
1234	atomic_t		socks;
1235#endif
1236	int			(*diag_destroy)(struct sock *sk, int err);
1237} __randomize_layout;
 
 
 
 
 
 
 
 
 
 
 
1238
1239int proto_register(struct proto *prot, int alloc_slab);
1240void proto_unregister(struct proto *prot);
1241int sock_load_diag_module(int family, int protocol);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1242
1243#ifdef SOCK_REFCNT_DEBUG
1244static inline void sk_refcnt_debug_inc(struct sock *sk)
1245{
1246	atomic_inc(&sk->sk_prot->socks);
1247}
1248
1249static inline void sk_refcnt_debug_dec(struct sock *sk)
1250{
1251	atomic_dec(&sk->sk_prot->socks);
1252	printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1253	       sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1254}
1255
1256static inline void sk_refcnt_debug_release(const struct sock *sk)
1257{
1258	if (refcount_read(&sk->sk_refcnt) != 1)
1259		printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1260		       sk->sk_prot->name, sk, refcount_read(&sk->sk_refcnt));
1261}
1262#else /* SOCK_REFCNT_DEBUG */
1263#define sk_refcnt_debug_inc(sk) do { } while (0)
1264#define sk_refcnt_debug_dec(sk) do { } while (0)
1265#define sk_refcnt_debug_release(sk) do { } while (0)
1266#endif /* SOCK_REFCNT_DEBUG */
1267
1268static inline bool __sk_stream_memory_free(const struct sock *sk, int wake)
 
 
 
1269{
1270	if (READ_ONCE(sk->sk_wmem_queued) >= READ_ONCE(sk->sk_sndbuf))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1271		return false;
1272
1273	return sk->sk_prot->stream_memory_free ?
1274		sk->sk_prot->stream_memory_free(sk, wake) : true;
 
 
1275}
1276
1277static inline bool sk_stream_memory_free(const struct sock *sk)
1278{
1279	return __sk_stream_memory_free(sk, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1280}
1281
1282static inline bool __sk_stream_is_writeable(const struct sock *sk, int wake)
1283{
1284	return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1285	       __sk_stream_memory_free(sk, wake);
 
 
 
 
 
 
 
 
 
 
1286}
1287
1288static inline bool sk_stream_is_writeable(const struct sock *sk)
1289{
1290	return __sk_stream_is_writeable(sk, 0);
 
 
 
1291}
1292
1293static inline int sk_under_cgroup_hierarchy(struct sock *sk,
1294					    struct cgroup *ancestor)
 
1295{
1296#ifdef CONFIG_SOCK_CGROUP_DATA
1297	return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data),
1298				    ancestor);
1299#else
1300	return -ENOTSUPP;
1301#endif
 
1302}
1303
1304static inline bool sk_has_memory_pressure(const struct sock *sk)
 
1305{
1306	return sk->sk_prot->memory_pressure != NULL;
1307}
1308
1309static inline bool sk_under_memory_pressure(const struct sock *sk)
1310{
1311	if (!sk->sk_prot->memory_pressure)
1312		return false;
1313
1314	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
1315	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
1316		return true;
1317
1318	return !!*sk->sk_prot->memory_pressure;
1319}
1320
1321static inline long
1322sk_memory_allocated(const struct sock *sk)
1323{
1324	return atomic_long_read(sk->sk_prot->memory_allocated);
 
 
 
 
1325}
1326
1327static inline long
1328sk_memory_allocated_add(struct sock *sk, int amt)
1329{
1330	return atomic_long_add_return(amt, sk->sk_prot->memory_allocated);
 
 
 
 
 
 
 
 
 
1331}
1332
1333static inline void
1334sk_memory_allocated_sub(struct sock *sk, int amt)
1335{
1336	atomic_long_sub(amt, sk->sk_prot->memory_allocated);
 
 
 
 
 
1337}
1338
1339static inline void sk_sockets_allocated_dec(struct sock *sk)
1340{
1341	percpu_counter_dec(sk->sk_prot->sockets_allocated);
 
 
 
 
 
 
 
 
 
1342}
1343
1344static inline void sk_sockets_allocated_inc(struct sock *sk)
1345{
1346	percpu_counter_inc(sk->sk_prot->sockets_allocated);
 
 
 
 
 
 
 
 
 
1347}
1348
1349static inline u64
1350sk_sockets_allocated_read_positive(struct sock *sk)
1351{
1352	return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
 
 
 
 
 
1353}
1354
1355static inline int
1356proto_sockets_allocated_sum_positive(struct proto *prot)
1357{
1358	return percpu_counter_sum_positive(prot->sockets_allocated);
1359}
1360
1361static inline long
1362proto_memory_allocated(struct proto *prot)
1363{
1364	return atomic_long_read(prot->memory_allocated);
1365}
1366
1367static inline bool
1368proto_memory_pressure(struct proto *prot)
1369{
1370	if (!prot->memory_pressure)
1371		return false;
1372	return !!*prot->memory_pressure;
1373}
1374
1375
1376#ifdef CONFIG_PROC_FS
1377/* Called with local bh disabled */
1378void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1379int sock_prot_inuse_get(struct net *net, struct proto *proto);
1380int sock_inuse_get(struct net *net);
1381#else
1382static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1383		int inc)
1384{
1385}
1386#endif
1387
1388
1389/* With per-bucket locks this operation is not-atomic, so that
1390 * this version is not worse.
1391 */
1392static inline int __sk_prot_rehash(struct sock *sk)
1393{
1394	sk->sk_prot->unhash(sk);
1395	return sk->sk_prot->hash(sk);
1396}
1397
 
 
1398/* About 10 seconds */
1399#define SOCK_DESTROY_TIME (10*HZ)
1400
1401/* Sockets 0-1023 can't be bound to unless you are superuser */
1402#define PROT_SOCK	1024
1403
1404#define SHUTDOWN_MASK	3
1405#define RCV_SHUTDOWN	1
1406#define SEND_SHUTDOWN	2
1407
1408#define SOCK_SNDBUF_LOCK	1
1409#define SOCK_RCVBUF_LOCK	2
1410#define SOCK_BINDADDR_LOCK	4
1411#define SOCK_BINDPORT_LOCK	8
1412
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1413struct socket_alloc {
1414	struct socket socket;
1415	struct inode vfs_inode;
1416};
1417
1418static inline struct socket *SOCKET_I(struct inode *inode)
1419{
1420	return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1421}
1422
1423static inline struct inode *SOCK_INODE(struct socket *socket)
1424{
1425	return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1426}
1427
1428/*
1429 * Functions for memory accounting
1430 */
1431int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind);
1432int __sk_mem_schedule(struct sock *sk, int size, int kind);
1433void __sk_mem_reduce_allocated(struct sock *sk, int amount);
1434void __sk_mem_reclaim(struct sock *sk, int amount);
1435
1436/* We used to have PAGE_SIZE here, but systems with 64KB pages
1437 * do not necessarily have 16x time more memory than 4KB ones.
1438 */
1439#define SK_MEM_QUANTUM 4096
1440#define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1441#define SK_MEM_SEND	0
1442#define SK_MEM_RECV	1
1443
1444/* sysctl_mem values are in pages, we convert them in SK_MEM_QUANTUM units */
1445static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1446{
1447	long val = sk->sk_prot->sysctl_mem[index];
1448
1449#if PAGE_SIZE > SK_MEM_QUANTUM
1450	val <<= PAGE_SHIFT - SK_MEM_QUANTUM_SHIFT;
1451#elif PAGE_SIZE < SK_MEM_QUANTUM
1452	val >>= SK_MEM_QUANTUM_SHIFT - PAGE_SHIFT;
1453#endif
1454	return val;
1455}
1456
1457static inline int sk_mem_pages(int amt)
1458{
1459	return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1460}
1461
1462static inline bool sk_has_account(struct sock *sk)
1463{
1464	/* return true if protocol supports memory accounting */
1465	return !!sk->sk_prot->memory_allocated;
1466}
1467
1468static inline bool sk_wmem_schedule(struct sock *sk, int size)
1469{
1470	if (!sk_has_account(sk))
1471		return true;
1472	return size <= sk->sk_forward_alloc ||
1473		__sk_mem_schedule(sk, size, SK_MEM_SEND);
1474}
1475
1476static inline bool
1477sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1478{
1479	if (!sk_has_account(sk))
1480		return true;
1481	return size<= sk->sk_forward_alloc ||
1482		__sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1483		skb_pfmemalloc(skb);
1484}
1485
1486static inline void sk_mem_reclaim(struct sock *sk)
1487{
1488	if (!sk_has_account(sk))
1489		return;
1490	if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1491		__sk_mem_reclaim(sk, sk->sk_forward_alloc);
1492}
1493
1494static inline void sk_mem_reclaim_partial(struct sock *sk)
1495{
1496	if (!sk_has_account(sk))
1497		return;
1498	if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1499		__sk_mem_reclaim(sk, sk->sk_forward_alloc - 1);
1500}
1501
1502static inline void sk_mem_charge(struct sock *sk, int size)
1503{
1504	if (!sk_has_account(sk))
1505		return;
1506	sk->sk_forward_alloc -= size;
1507}
1508
1509static inline void sk_mem_uncharge(struct sock *sk, int size)
1510{
1511	if (!sk_has_account(sk))
1512		return;
1513	sk->sk_forward_alloc += size;
1514
1515	/* Avoid a possible overflow.
1516	 * TCP send queues can make this happen, if sk_mem_reclaim()
1517	 * is not called and more than 2 GBytes are released at once.
1518	 *
1519	 * If we reach 2 MBytes, reclaim 1 MBytes right now, there is
1520	 * no need to hold that much forward allocation anyway.
1521	 */
1522	if (unlikely(sk->sk_forward_alloc >= 1 << 21))
1523		__sk_mem_reclaim(sk, 1 << 20);
1524}
1525
1526DECLARE_STATIC_KEY_FALSE(tcp_tx_skb_cache_key);
1527static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1528{
1529	sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1530	sk_wmem_queued_add(sk, -skb->truesize);
1531	sk_mem_uncharge(sk, skb->truesize);
1532	if (static_branch_unlikely(&tcp_tx_skb_cache_key) &&
1533	    !sk->sk_tx_skb_cache && !skb_cloned(skb)) {
1534		skb_ext_reset(skb);
1535		skb_zcopy_clear(skb, true);
1536		sk->sk_tx_skb_cache = skb;
1537		return;
1538	}
1539	__kfree_skb(skb);
1540}
1541
1542static inline void sock_release_ownership(struct sock *sk)
1543{
1544	if (sk->sk_lock.owned) {
1545		sk->sk_lock.owned = 0;
1546
1547		/* The sk_lock has mutex_unlock() semantics: */
1548		mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
1549	}
1550}
 
 
 
 
 
1551
1552/*
1553 * Macro so as to not evaluate some arguments when
1554 * lockdep is not enabled.
1555 *
1556 * Mark both the sk_lock and the sk_lock.slock as a
1557 * per-address-family lock class.
1558 */
1559#define sock_lock_init_class_and_name(sk, sname, skey, name, key)	\
1560do {									\
1561	sk->sk_lock.owned = 0;						\
1562	init_waitqueue_head(&sk->sk_lock.wq);				\
1563	spin_lock_init(&(sk)->sk_lock.slock);				\
1564	debug_check_no_locks_freed((void *)&(sk)->sk_lock,		\
1565			sizeof((sk)->sk_lock));				\
1566	lockdep_set_class_and_name(&(sk)->sk_lock.slock,		\
1567				(skey), (sname));				\
1568	lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0);	\
1569} while (0)
1570
1571#ifdef CONFIG_LOCKDEP
1572static inline bool lockdep_sock_is_held(const struct sock *sk)
1573{
1574	return lockdep_is_held(&sk->sk_lock) ||
1575	       lockdep_is_held(&sk->sk_lock.slock);
1576}
1577#endif
1578
1579void lock_sock_nested(struct sock *sk, int subclass);
1580
1581static inline void lock_sock(struct sock *sk)
1582{
1583	lock_sock_nested(sk, 0);
1584}
1585
1586void __release_sock(struct sock *sk);
1587void release_sock(struct sock *sk);
1588
1589/* BH context may only use the following locking interface. */
1590#define bh_lock_sock(__sk)	spin_lock(&((__sk)->sk_lock.slock))
1591#define bh_lock_sock_nested(__sk) \
1592				spin_lock_nested(&((__sk)->sk_lock.slock), \
1593				SINGLE_DEPTH_NESTING)
1594#define bh_unlock_sock(__sk)	spin_unlock(&((__sk)->sk_lock.slock))
1595
1596bool lock_sock_fast(struct sock *sk);
1597/**
1598 * unlock_sock_fast - complement of lock_sock_fast
1599 * @sk: socket
1600 * @slow: slow mode
1601 *
1602 * fast unlock socket for user context.
1603 * If slow mode is on, we call regular release_sock()
1604 */
1605static inline void unlock_sock_fast(struct sock *sk, bool slow)
1606{
1607	if (slow)
1608		release_sock(sk);
1609	else
1610		spin_unlock_bh(&sk->sk_lock.slock);
1611}
1612
1613/* Used by processes to "lock" a socket state, so that
1614 * interrupts and bottom half handlers won't change it
1615 * from under us. It essentially blocks any incoming
1616 * packets, so that we won't get any new data or any
1617 * packets that change the state of the socket.
1618 *
1619 * While locked, BH processing will add new packets to
1620 * the backlog queue.  This queue is processed by the
1621 * owner of the socket lock right before it is released.
1622 *
1623 * Since ~2.3.5 it is also exclusive sleep lock serializing
1624 * accesses from user process context.
1625 */
1626
1627static inline void sock_owned_by_me(const struct sock *sk)
1628{
1629#ifdef CONFIG_LOCKDEP
1630	WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks);
1631#endif
1632}
1633
1634static inline bool sock_owned_by_user(const struct sock *sk)
1635{
1636	sock_owned_by_me(sk);
1637	return sk->sk_lock.owned;
1638}
1639
1640static inline bool sock_owned_by_user_nocheck(const struct sock *sk)
1641{
1642	return sk->sk_lock.owned;
1643}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1644
1645/* no reclassification while locks are held */
1646static inline bool sock_allow_reclassification(const struct sock *csk)
 
 
1647{
1648	struct sock *sk = (struct sock *)csk;
1649
1650	return !sk->sk_lock.owned && !spin_is_locked(&sk->sk_lock.slock);
1651}
1652
1653struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1654		      struct proto *prot, int kern);
1655void sk_free(struct sock *sk);
1656void sk_destruct(struct sock *sk);
1657struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1658void sk_free_unlock_clone(struct sock *sk);
1659
1660struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1661			     gfp_t priority);
1662void __sock_wfree(struct sk_buff *skb);
1663void sock_wfree(struct sk_buff *skb);
1664struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
1665			     gfp_t priority);
1666void skb_orphan_partial(struct sk_buff *skb);
1667void sock_rfree(struct sk_buff *skb);
1668void sock_efree(struct sk_buff *skb);
1669#ifdef CONFIG_INET
1670void sock_edemux(struct sk_buff *skb);
1671void sock_pfree(struct sk_buff *skb);
1672#else
1673#define sock_edemux sock_efree
1674#endif
1675
1676int sock_setsockopt(struct socket *sock, int level, int op,
1677		    sockptr_t optval, unsigned int optlen);
1678
1679int sock_getsockopt(struct socket *sock, int level, int op,
1680		    char __user *optval, int __user *optlen);
1681int sock_gettstamp(struct socket *sock, void __user *userstamp,
1682		   bool timeval, bool time32);
1683struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1684				    int noblock, int *errcode);
1685struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1686				     unsigned long data_len, int noblock,
1687				     int *errcode, int max_page_order);
1688void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1689void sock_kfree_s(struct sock *sk, void *mem, int size);
1690void sock_kzfree_s(struct sock *sk, void *mem, int size);
1691void sk_send_sigurg(struct sock *sk);
1692
1693struct sockcm_cookie {
1694	u64 transmit_time;
1695	u32 mark;
1696	u16 tsflags;
1697};
1698
1699static inline void sockcm_init(struct sockcm_cookie *sockc,
1700			       const struct sock *sk)
1701{
1702	*sockc = (struct sockcm_cookie) { .tsflags = sk->sk_tsflags };
1703}
1704
1705int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
1706		     struct sockcm_cookie *sockc);
1707int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1708		   struct sockcm_cookie *sockc);
1709
1710/*
1711 * Functions to fill in entries in struct proto_ops when a protocol
1712 * does not implement a particular function.
1713 */
1714int sock_no_bind(struct socket *, struct sockaddr *, int);
1715int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1716int sock_no_socketpair(struct socket *, struct socket *);
1717int sock_no_accept(struct socket *, struct socket *, int, bool);
1718int sock_no_getname(struct socket *, struct sockaddr *, int);
1719int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1720int sock_no_listen(struct socket *, int);
1721int sock_no_shutdown(struct socket *, int);
1722int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1723int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len);
1724int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1725int sock_no_mmap(struct file *file, struct socket *sock,
1726		 struct vm_area_struct *vma);
1727ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1728			 size_t size, int flags);
1729ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
1730				int offset, size_t size, int flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1731
1732/*
1733 * Functions to fill in entries in struct proto_ops when a protocol
1734 * uses the inet style.
1735 */
1736int sock_common_getsockopt(struct socket *sock, int level, int optname,
1737				  char __user *optval, int __user *optlen);
1738int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1739			int flags);
1740int sock_common_setsockopt(struct socket *sock, int level, int optname,
1741			   sockptr_t optval, unsigned int optlen);
 
 
 
 
1742
1743void sk_common_release(struct sock *sk);
1744
1745/*
1746 *	Default socket callbacks and setup code
1747 */
1748
1749/* Initialise core socket variables */
1750void sock_init_data(struct socket *sock, struct sock *sk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1751
1752/*
1753 * Socket reference counting postulates.
1754 *
1755 * * Each user of socket SHOULD hold a reference count.
1756 * * Each access point to socket (an hash table bucket, reference from a list,
1757 *   running timer, skb in flight MUST hold a reference count.
1758 * * When reference count hits 0, it means it will never increase back.
1759 * * When reference count hits 0, it means that no references from
1760 *   outside exist to this socket and current process on current CPU
1761 *   is last user and may/should destroy this socket.
1762 * * sk_free is called from any context: process, BH, IRQ. When
1763 *   it is called, socket has no references from outside -> sk_free
1764 *   may release descendant resources allocated by the socket, but
1765 *   to the time when it is called, socket is NOT referenced by any
1766 *   hash tables, lists etc.
1767 * * Packets, delivered from outside (from network or from another process)
1768 *   and enqueued on receive/error queues SHOULD NOT grab reference count,
1769 *   when they sit in queue. Otherwise, packets will leak to hole, when
1770 *   socket is looked up by one cpu and unhasing is made by another CPU.
1771 *   It is true for udp/raw, netlink (leak to receive and error queues), tcp
1772 *   (leak to backlog). Packet socket does all the processing inside
1773 *   BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1774 *   use separate SMP lock, so that they are prone too.
1775 */
1776
1777/* Ungrab socket and destroy it, if it was the last reference. */
1778static inline void sock_put(struct sock *sk)
1779{
1780	if (refcount_dec_and_test(&sk->sk_refcnt))
1781		sk_free(sk);
1782}
1783/* Generic version of sock_put(), dealing with all sockets
1784 * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1785 */
1786void sock_gen_put(struct sock *sk);
1787
1788int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested,
1789		     unsigned int trim_cap, bool refcounted);
1790static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1791				 const int nested)
1792{
1793	return __sk_receive_skb(sk, skb, nested, 1, true);
1794}
1795
1796static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1797{
1798	/* sk_tx_queue_mapping accept only upto a 16-bit value */
1799	if (WARN_ON_ONCE((unsigned short)tx_queue >= USHRT_MAX))
1800		return;
1801	sk->sk_tx_queue_mapping = tx_queue;
1802}
1803
1804#define NO_QUEUE_MAPPING	USHRT_MAX
1805
1806static inline void sk_tx_queue_clear(struct sock *sk)
1807{
1808	sk->sk_tx_queue_mapping = NO_QUEUE_MAPPING;
1809}
1810
1811static inline int sk_tx_queue_get(const struct sock *sk)
1812{
1813	if (sk && sk->sk_tx_queue_mapping != NO_QUEUE_MAPPING)
1814		return sk->sk_tx_queue_mapping;
1815
1816	return -1;
1817}
1818
1819static inline void sk_rx_queue_set(struct sock *sk, const struct sk_buff *skb)
1820{
1821#ifdef CONFIG_XPS
1822	if (skb_rx_queue_recorded(skb)) {
1823		u16 rx_queue = skb_get_rx_queue(skb);
1824
1825		if (WARN_ON_ONCE(rx_queue == NO_QUEUE_MAPPING))
1826			return;
1827
1828		sk->sk_rx_queue_mapping = rx_queue;
1829	}
1830#endif
1831}
1832
1833static inline void sk_rx_queue_clear(struct sock *sk)
1834{
1835#ifdef CONFIG_XPS
1836	sk->sk_rx_queue_mapping = NO_QUEUE_MAPPING;
1837#endif
1838}
1839
1840#ifdef CONFIG_XPS
1841static inline int sk_rx_queue_get(const struct sock *sk)
1842{
1843	if (sk && sk->sk_rx_queue_mapping != NO_QUEUE_MAPPING)
1844		return sk->sk_rx_queue_mapping;
1845
1846	return -1;
1847}
1848#endif
1849
1850static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1851{
 
1852	sk->sk_socket = sock;
1853}
1854
1855static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1856{
1857	BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1858	return &rcu_dereference_raw(sk->sk_wq)->wait;
1859}
1860/* Detach socket from process context.
1861 * Announce socket dead, detach it from wait queue and inode.
1862 * Note that parent inode held reference count on this struct sock,
1863 * we do not release it in this function, because protocol
1864 * probably wants some additional cleanups or even continuing
1865 * to work with this socket (TCP).
1866 */
1867static inline void sock_orphan(struct sock *sk)
1868{
1869	write_lock_bh(&sk->sk_callback_lock);
1870	sock_set_flag(sk, SOCK_DEAD);
1871	sk_set_socket(sk, NULL);
1872	sk->sk_wq  = NULL;
1873	write_unlock_bh(&sk->sk_callback_lock);
1874}
1875
1876static inline void sock_graft(struct sock *sk, struct socket *parent)
1877{
1878	WARN_ON(parent->sk);
1879	write_lock_bh(&sk->sk_callback_lock);
1880	rcu_assign_pointer(sk->sk_wq, &parent->wq);
1881	parent->sk = sk;
1882	sk_set_socket(sk, parent);
1883	sk->sk_uid = SOCK_INODE(parent)->i_uid;
1884	security_sock_graft(sk, parent);
1885	write_unlock_bh(&sk->sk_callback_lock);
1886}
1887
1888kuid_t sock_i_uid(struct sock *sk);
1889unsigned long sock_i_ino(struct sock *sk);
1890
1891static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk)
1892{
1893	return sk ? sk->sk_uid : make_kuid(net->user_ns, 0);
1894}
1895
1896static inline u32 net_tx_rndhash(void)
1897{
1898	u32 v = prandom_u32();
1899
1900	return v ?: 1;
1901}
1902
1903static inline void sk_set_txhash(struct sock *sk)
1904{
1905	sk->sk_txhash = net_tx_rndhash();
1906}
1907
1908static inline void sk_rethink_txhash(struct sock *sk)
1909{
1910	if (sk->sk_txhash)
1911		sk_set_txhash(sk);
1912}
1913
1914static inline struct dst_entry *
1915__sk_dst_get(struct sock *sk)
1916{
1917	return rcu_dereference_check(sk->sk_dst_cache,
1918				     lockdep_sock_is_held(sk));
1919}
1920
1921static inline struct dst_entry *
1922sk_dst_get(struct sock *sk)
1923{
1924	struct dst_entry *dst;
1925
1926	rcu_read_lock();
1927	dst = rcu_dereference(sk->sk_dst_cache);
1928	if (dst && !atomic_inc_not_zero(&dst->__refcnt))
1929		dst = NULL;
1930	rcu_read_unlock();
1931	return dst;
1932}
1933
 
 
1934static inline void dst_negative_advice(struct sock *sk)
1935{
1936	struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1937
1938	sk_rethink_txhash(sk);
1939
1940	if (dst && dst->ops->negative_advice) {
1941		ndst = dst->ops->negative_advice(dst);
1942
1943		if (ndst != dst) {
1944			rcu_assign_pointer(sk->sk_dst_cache, ndst);
1945			sk_tx_queue_clear(sk);
1946			sk->sk_dst_pending_confirm = 0;
1947		}
1948	}
1949}
1950
1951static inline void
1952__sk_dst_set(struct sock *sk, struct dst_entry *dst)
1953{
1954	struct dst_entry *old_dst;
1955
1956	sk_tx_queue_clear(sk);
1957	sk->sk_dst_pending_confirm = 0;
1958	old_dst = rcu_dereference_protected(sk->sk_dst_cache,
1959					    lockdep_sock_is_held(sk));
 
 
1960	rcu_assign_pointer(sk->sk_dst_cache, dst);
1961	dst_release(old_dst);
1962}
1963
1964static inline void
1965sk_dst_set(struct sock *sk, struct dst_entry *dst)
1966{
1967	struct dst_entry *old_dst;
1968
1969	sk_tx_queue_clear(sk);
1970	sk->sk_dst_pending_confirm = 0;
1971	old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
1972	dst_release(old_dst);
1973}
1974
1975static inline void
1976__sk_dst_reset(struct sock *sk)
1977{
1978	__sk_dst_set(sk, NULL);
1979}
1980
1981static inline void
1982sk_dst_reset(struct sock *sk)
1983{
1984	sk_dst_set(sk, NULL);
 
 
1985}
1986
1987struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1988
1989struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1990
1991static inline void sk_dst_confirm(struct sock *sk)
1992{
1993	if (!READ_ONCE(sk->sk_dst_pending_confirm))
1994		WRITE_ONCE(sk->sk_dst_pending_confirm, 1);
1995}
1996
1997static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n)
1998{
1999	if (skb_get_dst_pending_confirm(skb)) {
2000		struct sock *sk = skb->sk;
2001		unsigned long now = jiffies;
2002
2003		/* avoid dirtying neighbour */
2004		if (READ_ONCE(n->confirmed) != now)
2005			WRITE_ONCE(n->confirmed, now);
2006		if (sk && READ_ONCE(sk->sk_dst_pending_confirm))
2007			WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2008	}
2009}
2010
2011bool sk_mc_loop(struct sock *sk);
2012
2013static inline bool sk_can_gso(const struct sock *sk)
2014{
2015	return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
2016}
2017
2018void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
2019
2020static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
2021{
2022	sk->sk_route_nocaps |= flags;
2023	sk->sk_route_caps &= ~flags;
2024}
2025
2026static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
2027					   struct iov_iter *from, char *to,
2028					   int copy, int offset)
2029{
2030	if (skb->ip_summed == CHECKSUM_NONE) {
2031		__wsum csum = 0;
2032		if (!csum_and_copy_from_iter_full(to, copy, &csum, from))
2033			return -EFAULT;
 
2034		skb->csum = csum_block_add(skb->csum, csum, offset);
2035	} else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
2036		if (!copy_from_iter_full_nocache(to, copy, from))
 
2037			return -EFAULT;
2038	} else if (!copy_from_iter_full(to, copy, from))
2039		return -EFAULT;
2040
2041	return 0;
2042}
2043
2044static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
2045				       struct iov_iter *from, int copy)
2046{
2047	int err, offset = skb->len;
2048
2049	err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
2050				       copy, offset);
2051	if (err)
2052		__skb_trim(skb, offset);
2053
2054	return err;
2055}
2056
2057static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
2058					   struct sk_buff *skb,
2059					   struct page *page,
2060					   int off, int copy)
2061{
2062	int err;
2063
2064	err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
2065				       copy, skb->len);
2066	if (err)
2067		return err;
2068
2069	skb->len	     += copy;
2070	skb->data_len	     += copy;
2071	skb->truesize	     += copy;
2072	sk_wmem_queued_add(sk, copy);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2073	sk_mem_charge(sk, copy);
2074	return 0;
2075}
2076
2077/**
2078 * sk_wmem_alloc_get - returns write allocations
2079 * @sk: socket
2080 *
2081 * Return: sk_wmem_alloc minus initial offset of one
2082 */
2083static inline int sk_wmem_alloc_get(const struct sock *sk)
2084{
2085	return refcount_read(&sk->sk_wmem_alloc) - 1;
2086}
2087
2088/**
2089 * sk_rmem_alloc_get - returns read allocations
2090 * @sk: socket
2091 *
2092 * Return: sk_rmem_alloc
2093 */
2094static inline int sk_rmem_alloc_get(const struct sock *sk)
2095{
2096	return atomic_read(&sk->sk_rmem_alloc);
2097}
2098
2099/**
2100 * sk_has_allocations - check if allocations are outstanding
2101 * @sk: socket
2102 *
2103 * Return: true if socket has write or read allocations
2104 */
2105static inline bool sk_has_allocations(const struct sock *sk)
2106{
2107	return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
2108}
2109
2110/**
2111 * skwq_has_sleeper - check if there are any waiting processes
2112 * @wq: struct socket_wq
2113 *
2114 * Return: true if socket_wq has waiting processes
2115 *
2116 * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
2117 * barrier call. They were added due to the race found within the tcp code.
2118 *
2119 * Consider following tcp code paths::
2120 *
2121 *   CPU1                CPU2
2122 *   sys_select          receive packet
 
2123 *   ...                 ...
2124 *   __add_wait_queue    update tp->rcv_nxt
2125 *   ...                 ...
2126 *   tp->rcv_nxt check   sock_def_readable
2127 *   ...                 {
2128 *   schedule               rcu_read_lock();
2129 *                          wq = rcu_dereference(sk->sk_wq);
2130 *                          if (wq && waitqueue_active(&wq->wait))
2131 *                              wake_up_interruptible(&wq->wait)
2132 *                          ...
2133 *                       }
2134 *
2135 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
2136 * in its cache, and so does the tp->rcv_nxt update on CPU2 side.  The CPU1
2137 * could then endup calling schedule and sleep forever if there are no more
2138 * data on the socket.
2139 *
2140 */
2141static inline bool skwq_has_sleeper(struct socket_wq *wq)
2142{
2143	return wq && wq_has_sleeper(&wq->wait);
 
 
 
 
 
 
2144}
2145
2146/**
2147 * sock_poll_wait - place memory barrier behind the poll_wait call.
2148 * @filp:           file
2149 * @sock:           socket to wait on
2150 * @p:              poll_table
2151 *
2152 * See the comments in the wq_has_sleeper function.
2153 */
2154static inline void sock_poll_wait(struct file *filp, struct socket *sock,
2155				  poll_table *p)
2156{
2157	if (!poll_does_not_wait(p)) {
2158		poll_wait(filp, &sock->wq.wait, p);
2159		/* We need to be sure we are in sync with the
2160		 * socket flags modification.
2161		 *
2162		 * This memory barrier is paired in the wq_has_sleeper.
2163		 */
2164		smp_mb();
2165	}
2166}
2167
2168static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
2169{
2170	if (sk->sk_txhash) {
2171		skb->l4_hash = 1;
2172		skb->hash = sk->sk_txhash;
2173	}
2174}
2175
2176void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
2177
2178/*
2179 *	Queue a received datagram if it will fit. Stream and sequenced
2180 *	protocols can't normally use this as they need to fit buffers in
2181 *	and play with them.
2182 *
2183 *	Inlined as it's very short and called for pretty much every
2184 *	packet ever received.
2185 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2186static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2187{
2188	skb_orphan(skb);
2189	skb->sk = sk;
2190	skb->destructor = sock_rfree;
2191	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2192	sk_mem_charge(sk, skb->truesize);
2193}
2194
2195void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2196		    unsigned long expires);
2197
2198void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2199
2200int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue,
2201			struct sk_buff *skb, unsigned int flags,
2202			void (*destructor)(struct sock *sk,
2203					   struct sk_buff *skb));
2204int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2205int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2206
2207int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2208struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
2209
2210/*
2211 *	Recover an error report and clear atomically
2212 */
2213
2214static inline int sock_error(struct sock *sk)
2215{
2216	int err;
2217	if (likely(!sk->sk_err))
2218		return 0;
2219	err = xchg(&sk->sk_err, 0);
2220	return -err;
2221}
2222
2223static inline unsigned long sock_wspace(struct sock *sk)
2224{
2225	int amt = 0;
2226
2227	if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2228		amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc);
2229		if (amt < 0)
2230			amt = 0;
2231	}
2232	return amt;
2233}
2234
2235/* Note:
2236 *  We use sk->sk_wq_raw, from contexts knowing this
2237 *  pointer is not NULL and cannot disappear/change.
2238 */
2239static inline void sk_set_bit(int nr, struct sock *sk)
2240{
2241	if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2242	    !sock_flag(sk, SOCK_FASYNC))
2243		return;
2244
2245	set_bit(nr, &sk->sk_wq_raw->flags);
2246}
2247
2248static inline void sk_clear_bit(int nr, struct sock *sk)
2249{
2250	if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2251	    !sock_flag(sk, SOCK_FASYNC))
2252		return;
2253
2254	clear_bit(nr, &sk->sk_wq_raw->flags);
2255}
2256
2257static inline void sk_wake_async(const struct sock *sk, int how, int band)
2258{
2259	if (sock_flag(sk, SOCK_FASYNC)) {
2260		rcu_read_lock();
2261		sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2262		rcu_read_unlock();
2263	}
2264}
2265
2266/* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2267 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2268 * Note: for send buffers, TCP works better if we can build two skbs at
2269 * minimum.
2270 */
2271#define TCP_SKB_MIN_TRUESIZE	(2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2272
2273#define SOCK_MIN_SNDBUF		(TCP_SKB_MIN_TRUESIZE * 2)
2274#define SOCK_MIN_RCVBUF		 TCP_SKB_MIN_TRUESIZE
2275
2276static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2277{
2278	u32 val;
2279
2280	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
2281		return;
2282
2283	val = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2284
2285	WRITE_ONCE(sk->sk_sndbuf, max_t(u32, val, SOCK_MIN_SNDBUF));
2286}
2287
2288struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
2289				    bool force_schedule);
2290
2291/**
2292 * sk_page_frag - return an appropriate page_frag
2293 * @sk: socket
2294 *
2295 * Use the per task page_frag instead of the per socket one for
2296 * optimization when we know that we're in the normal context and owns
2297 * everything that's associated with %current.
2298 *
2299 * gfpflags_allow_blocking() isn't enough here as direct reclaim may nest
2300 * inside other socket operations and end up recursing into sk_page_frag()
2301 * while it's already in use.
2302 *
2303 * Return: a per task page_frag if context allows that,
2304 * otherwise a per socket one.
2305 */
2306static inline struct page_frag *sk_page_frag(struct sock *sk)
2307{
2308	if (gfpflags_normal_context(sk->sk_allocation))
2309		return &current->task_frag;
2310
2311	return &sk->sk_frag;
 
 
 
 
 
2312}
2313
2314bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2315
2316/*
2317 *	Default write policy as shown to user space via poll/select/SIGIO
2318 */
2319static inline bool sock_writeable(const struct sock *sk)
2320{
2321	return refcount_read(&sk->sk_wmem_alloc) < (READ_ONCE(sk->sk_sndbuf) >> 1);
2322}
2323
2324static inline gfp_t gfp_any(void)
2325{
2326	return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2327}
2328
2329static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2330{
2331	return noblock ? 0 : sk->sk_rcvtimeo;
2332}
2333
2334static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2335{
2336	return noblock ? 0 : sk->sk_sndtimeo;
2337}
2338
2339static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2340{
2341	int v = waitall ? len : min_t(int, READ_ONCE(sk->sk_rcvlowat), len);
2342
2343	return v ?: 1;
2344}
2345
2346/* Alas, with timeout socket operations are not restartable.
2347 * Compare this to poll().
2348 */
2349static inline int sock_intr_errno(long timeo)
2350{
2351	return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2352}
2353
2354struct sock_skb_cb {
2355	u32 dropcount;
2356};
2357
2358/* Store sock_skb_cb at the end of skb->cb[] so protocol families
2359 * using skb->cb[] would keep using it directly and utilize its
2360 * alignement guarantee.
2361 */
2362#define SOCK_SKB_CB_OFFSET ((sizeof_field(struct sk_buff, cb) - \
2363			    sizeof(struct sock_skb_cb)))
2364
2365#define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2366			    SOCK_SKB_CB_OFFSET))
2367
2368#define sock_skb_cb_check_size(size) \
2369	BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2370
2371static inline void
2372sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2373{
2374	SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ?
2375						atomic_read(&sk->sk_drops) : 0;
2376}
2377
2378static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb)
2379{
2380	int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2381
2382	atomic_add(segs, &sk->sk_drops);
2383}
2384
2385static inline ktime_t sock_read_timestamp(struct sock *sk)
2386{
2387#if BITS_PER_LONG==32
2388	unsigned int seq;
2389	ktime_t kt;
2390
2391	do {
2392		seq = read_seqbegin(&sk->sk_stamp_seq);
2393		kt = sk->sk_stamp;
2394	} while (read_seqretry(&sk->sk_stamp_seq, seq));
2395
2396	return kt;
2397#else
2398	return READ_ONCE(sk->sk_stamp);
2399#endif
2400}
2401
2402static inline void sock_write_timestamp(struct sock *sk, ktime_t kt)
2403{
2404#if BITS_PER_LONG==32
2405	write_seqlock(&sk->sk_stamp_seq);
2406	sk->sk_stamp = kt;
2407	write_sequnlock(&sk->sk_stamp_seq);
2408#else
2409	WRITE_ONCE(sk->sk_stamp, kt);
2410#endif
2411}
2412
2413void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2414			   struct sk_buff *skb);
2415void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2416			     struct sk_buff *skb);
2417
2418static inline void
2419sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2420{
2421	ktime_t kt = skb->tstamp;
2422	struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2423
2424	/*
2425	 * generate control messages if
2426	 * - receive time stamping in software requested
 
2427	 * - software time stamp available and wanted
 
2428	 * - hardware time stamps available and wanted
 
 
2429	 */
2430	if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2431	    (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2432	    (kt && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2433	    (hwtstamps->hwtstamp &&
2434	     (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
 
 
2435		__sock_recv_timestamp(msg, sk, skb);
2436	else
2437		sock_write_timestamp(sk, kt);
2438
2439	if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2440		__sock_recv_wifi_status(msg, sk, skb);
2441}
2442
2443void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2444			      struct sk_buff *skb);
2445
2446#define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC)
2447static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2448					  struct sk_buff *skb)
2449{
2450#define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL)			| \
2451			   (1UL << SOCK_RCVTSTAMP))
2452#define TSFLAGS_ANY	  (SOF_TIMESTAMPING_SOFTWARE			| \
2453			   SOF_TIMESTAMPING_RAW_HARDWARE)
 
 
2454
2455	if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY)
2456		__sock_recv_ts_and_drops(msg, sk, skb);
2457	else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP)))
2458		sock_write_timestamp(sk, skb->tstamp);
2459	else if (unlikely(sk->sk_stamp == SK_DEFAULT_STAMP))
2460		sock_write_timestamp(sk, 0);
2461}
2462
2463void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags);
2464
2465/**
2466 * _sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2467 * @sk:		socket sending this packet
2468 * @tsflags:	timestamping flags to use
2469 * @tx_flags:	completed with instructions for time stamping
2470 * @tskey:      filled in with next sk_tskey (not for TCP, which uses seqno)
2471 *
2472 * Note: callers should take care of initial ``*tx_flags`` value (usually 0)
2473 */
2474static inline void _sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2475				      __u8 *tx_flags, __u32 *tskey)
2476{
2477	if (unlikely(tsflags)) {
2478		__sock_tx_timestamp(tsflags, tx_flags);
2479		if (tsflags & SOF_TIMESTAMPING_OPT_ID && tskey &&
2480		    tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
2481			*tskey = sk->sk_tskey++;
2482	}
2483	if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2484		*tx_flags |= SKBTX_WIFI_STATUS;
2485}
2486
2487static inline void sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2488				     __u8 *tx_flags)
2489{
2490	_sock_tx_timestamp(sk, tsflags, tx_flags, NULL);
2491}
2492
2493static inline void skb_setup_tx_timestamp(struct sk_buff *skb, __u16 tsflags)
2494{
2495	_sock_tx_timestamp(skb->sk, tsflags, &skb_shinfo(skb)->tx_flags,
2496			   &skb_shinfo(skb)->tskey);
2497}
2498
2499DECLARE_STATIC_KEY_FALSE(tcp_rx_skb_cache_key);
2500/**
2501 * sk_eat_skb - Release a skb if it is no longer needed
2502 * @sk: socket to eat this skb from
2503 * @skb: socket buffer to eat
 
2504 *
2505 * This routine must be called with interrupts disabled or with the socket
2506 * locked so that the sk_buff queue operation is ok.
2507*/
2508static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
 
 
 
 
 
 
 
 
 
 
2509{
2510	__skb_unlink(skb, &sk->sk_receive_queue);
2511	if (static_branch_unlikely(&tcp_rx_skb_cache_key) &&
2512	    !sk->sk_rx_skb_cache) {
2513		sk->sk_rx_skb_cache = skb;
2514		skb_orphan(skb);
2515		return;
2516	}
2517	__kfree_skb(skb);
2518}
 
2519
2520static inline
2521struct net *sock_net(const struct sock *sk)
2522{
2523	return read_pnet(&sk->sk_net);
2524}
2525
2526static inline
2527void sock_net_set(struct sock *sk, struct net *net)
2528{
2529	write_pnet(&sk->sk_net, net);
2530}
2531
2532static inline bool
2533skb_sk_is_prefetched(struct sk_buff *skb)
2534{
2535#ifdef CONFIG_INET
2536	return skb->destructor == sock_pfree;
2537#else
2538	return false;
2539#endif /* CONFIG_INET */
2540}
2541
2542/* This helper checks if a socket is a full socket,
2543 * ie _not_ a timewait or request socket.
2544 */
2545static inline bool sk_fullsock(const struct sock *sk)
2546{
2547	return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
 
2548}
2549
2550static inline bool
2551sk_is_refcounted(struct sock *sk)
2552{
2553	/* Only full sockets have sk->sk_flags. */
2554	return !sk_fullsock(sk) || !sock_flag(sk, SOCK_RCU_FREE);
2555}
2556
2557/**
2558 * skb_steal_sock - steal a socket from an sk_buff
2559 * @skb: sk_buff to steal the socket from
2560 * @refcounted: is set to true if the socket is reference-counted
2561 */
2562static inline struct sock *
2563skb_steal_sock(struct sk_buff *skb, bool *refcounted)
2564{
2565	if (skb->sk) {
2566		struct sock *sk = skb->sk;
2567
2568		*refcounted = true;
2569		if (skb_sk_is_prefetched(skb))
2570			*refcounted = sk_is_refcounted(sk);
2571		skb->destructor = NULL;
2572		skb->sk = NULL;
2573		return sk;
2574	}
2575	*refcounted = false;
2576	return NULL;
2577}
2578
2579/* Checks if this SKB belongs to an HW offloaded socket
2580 * and whether any SW fallbacks are required based on dev.
2581 * Check decrypted mark in case skb_orphan() cleared socket.
2582 */
2583static inline struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb,
2584						   struct net_device *dev)
2585{
2586#ifdef CONFIG_SOCK_VALIDATE_XMIT
2587	struct sock *sk = skb->sk;
2588
2589	if (sk && sk_fullsock(sk) && sk->sk_validate_xmit_skb) {
2590		skb = sk->sk_validate_xmit_skb(sk, dev, skb);
2591#ifdef CONFIG_TLS_DEVICE
2592	} else if (unlikely(skb->decrypted)) {
2593		pr_warn_ratelimited("unencrypted skb with no associated socket - dropping\n");
2594		kfree_skb(skb);
2595		skb = NULL;
2596#endif
2597	}
2598#endif
2599
2600	return skb;
2601}
2602
2603/* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2604 * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2605 */
2606static inline bool sk_listener(const struct sock *sk)
2607{
2608	return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2609}
2610
2611void sock_enable_timestamp(struct sock *sk, enum sock_flags flag);
2612int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2613		       int type);
2614
2615bool sk_ns_capable(const struct sock *sk,
2616		   struct user_namespace *user_ns, int cap);
2617bool sk_capable(const struct sock *sk, int cap);
2618bool sk_net_capable(const struct sock *sk, int cap);
2619
2620void sk_get_meminfo(const struct sock *sk, u32 *meminfo);
2621
2622/* Take into consideration the size of the struct sk_buff overhead in the
2623 * determination of these values, since that is non-constant across
2624 * platforms.  This makes socket queueing behavior and performance
2625 * not depend upon such differences.
2626 */
2627#define _SK_MEM_PACKETS		256
2628#define _SK_MEM_OVERHEAD	SKB_TRUESIZE(256)
2629#define SK_WMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2630#define SK_RMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2631
2632extern __u32 sysctl_wmem_max;
2633extern __u32 sysctl_rmem_max;
2634
2635extern int sysctl_tstamp_allow_data;
 
2636extern int sysctl_optmem_max;
2637
2638extern __u32 sysctl_wmem_default;
2639extern __u32 sysctl_rmem_default;
2640
2641DECLARE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2642
2643static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto)
2644{
2645	/* Does this proto have per netns sysctl_wmem ? */
2646	if (proto->sysctl_wmem_offset)
2647		return *(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset);
2648
2649	return *proto->sysctl_wmem;
2650}
2651
2652static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto)
2653{
2654	/* Does this proto have per netns sysctl_rmem ? */
2655	if (proto->sysctl_rmem_offset)
2656		return *(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset);
2657
2658	return *proto->sysctl_rmem;
2659}
2660
2661/* Default TCP Small queue budget is ~1 ms of data (1sec >> 10)
2662 * Some wifi drivers need to tweak it to get more chunks.
2663 * They can use this helper from their ndo_start_xmit()
2664 */
2665static inline void sk_pacing_shift_update(struct sock *sk, int val)
2666{
2667	if (!sk || !sk_fullsock(sk) || READ_ONCE(sk->sk_pacing_shift) == val)
2668		return;
2669	WRITE_ONCE(sk->sk_pacing_shift, val);
2670}
2671
2672/* if a socket is bound to a device, check that the given device
2673 * index is either the same or that the socket is bound to an L3
2674 * master device and the given device index is also enslaved to
2675 * that L3 master
2676 */
2677static inline bool sk_dev_equal_l3scope(struct sock *sk, int dif)
2678{
2679	int mdif;
2680
2681	if (!sk->sk_bound_dev_if || sk->sk_bound_dev_if == dif)
2682		return true;
2683
2684	mdif = l3mdev_master_ifindex_by_index(sock_net(sk), dif);
2685	if (mdif && mdif == sk->sk_bound_dev_if)
2686		return true;
2687
2688	return false;
2689}
2690
2691void sock_def_readable(struct sock *sk);
2692
2693int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk);
2694void sock_enable_timestamps(struct sock *sk);
2695void sock_no_linger(struct sock *sk);
2696void sock_set_keepalive(struct sock *sk);
2697void sock_set_priority(struct sock *sk, u32 priority);
2698void sock_set_rcvbuf(struct sock *sk, int val);
2699void sock_set_mark(struct sock *sk, u32 val);
2700void sock_set_reuseaddr(struct sock *sk);
2701void sock_set_reuseport(struct sock *sk);
2702void sock_set_sndtimeo(struct sock *sk, s64 secs);
2703
2704int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len);
2705
2706#endif	/* _SOCK_H */