Loading...
1/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the AF_INET socket handler.
7 *
8 * Version: @(#)sock.h 1.0.4 05/13/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche <flla@stud.uni-sb.de>
14 *
15 * Fixes:
16 * Alan Cox : Volatiles in skbuff pointers. See
17 * skbuff comments. May be overdone,
18 * better to prove they can be removed
19 * than the reverse.
20 * Alan Cox : Added a zapped field for tcp to note
21 * a socket is reset and must stay shut up
22 * Alan Cox : New fields for options
23 * Pauline Middelink : identd support
24 * Alan Cox : Eliminate low level recv/recvfrom
25 * David S. Miller : New socket lookup architecture.
26 * Steve Whitehouse: Default routines for sock_ops
27 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made
28 * protinfo be just a void pointer, as the
29 * protocol specific parts were moved to
30 * respective headers and ipv4/v6, etc now
31 * use private slabcaches for its socks
32 * Pedro Hortas : New flags field for socket options
33 *
34 *
35 * This program is free software; you can redistribute it and/or
36 * modify it under the terms of the GNU General Public License
37 * as published by the Free Software Foundation; either version
38 * 2 of the License, or (at your option) any later version.
39 */
40#ifndef _SOCK_H
41#define _SOCK_H
42
43#include <linux/hardirq.h>
44#include <linux/kernel.h>
45#include <linux/list.h>
46#include <linux/list_nulls.h>
47#include <linux/timer.h>
48#include <linux/cache.h>
49#include <linux/bitops.h>
50#include <linux/lockdep.h>
51#include <linux/netdevice.h>
52#include <linux/skbuff.h> /* struct sk_buff */
53#include <linux/mm.h>
54#include <linux/security.h>
55#include <linux/slab.h>
56#include <linux/uaccess.h>
57#include <linux/memcontrol.h>
58#include <linux/res_counter.h>
59#include <linux/static_key.h>
60#include <linux/aio.h>
61#include <linux/sched.h>
62
63#include <linux/filter.h>
64#include <linux/rculist_nulls.h>
65#include <linux/poll.h>
66
67#include <linux/atomic.h>
68#include <net/dst.h>
69#include <net/checksum.h>
70
71struct cgroup;
72struct cgroup_subsys;
73#ifdef CONFIG_NET
74int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss);
75void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg);
76#else
77static inline
78int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
79{
80 return 0;
81}
82static inline
83void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg)
84{
85}
86#endif
87/*
88 * This structure really needs to be cleaned up.
89 * Most of it is for TCP, and not used by any of
90 * the other protocols.
91 */
92
93/* Define this to get the SOCK_DBG debugging facility. */
94#define SOCK_DEBUGGING
95#ifdef SOCK_DEBUGGING
96#define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
97 printk(KERN_DEBUG msg); } while (0)
98#else
99/* Validate arguments and do nothing */
100static inline __printf(2, 3)
101void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
102{
103}
104#endif
105
106/* This is the per-socket lock. The spinlock provides a synchronization
107 * between user contexts and software interrupt processing, whereas the
108 * mini-semaphore synchronizes multiple users amongst themselves.
109 */
110typedef struct {
111 spinlock_t slock;
112 int owned;
113 wait_queue_head_t wq;
114 /*
115 * We express the mutex-alike socket_lock semantics
116 * to the lock validator by explicitly managing
117 * the slock as a lock variant (in addition to
118 * the slock itself):
119 */
120#ifdef CONFIG_DEBUG_LOCK_ALLOC
121 struct lockdep_map dep_map;
122#endif
123} socket_lock_t;
124
125struct sock;
126struct proto;
127struct net;
128
129/**
130 * struct sock_common - minimal network layer representation of sockets
131 * @skc_daddr: Foreign IPv4 addr
132 * @skc_rcv_saddr: Bound local IPv4 addr
133 * @skc_hash: hash value used with various protocol lookup tables
134 * @skc_u16hashes: two u16 hash values used by UDP lookup tables
135 * @skc_family: network address family
136 * @skc_state: Connection state
137 * @skc_reuse: %SO_REUSEADDR setting
138 * @skc_bound_dev_if: bound device index if != 0
139 * @skc_bind_node: bind hash linkage for various protocol lookup tables
140 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
141 * @skc_prot: protocol handlers inside a network family
142 * @skc_net: reference to the network namespace of this socket
143 * @skc_node: main hash linkage for various protocol lookup tables
144 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
145 * @skc_tx_queue_mapping: tx queue number for this connection
146 * @skc_refcnt: reference count
147 *
148 * This is the minimal network layer representation of sockets, the header
149 * for struct sock and struct inet_timewait_sock.
150 */
151struct sock_common {
152 /* skc_daddr and skc_rcv_saddr must be grouped :
153 * cf INET_MATCH() and INET_TW_MATCH()
154 */
155 __be32 skc_daddr;
156 __be32 skc_rcv_saddr;
157
158 union {
159 unsigned int skc_hash;
160 __u16 skc_u16hashes[2];
161 };
162 unsigned short skc_family;
163 volatile unsigned char skc_state;
164 unsigned char skc_reuse;
165 int skc_bound_dev_if;
166 union {
167 struct hlist_node skc_bind_node;
168 struct hlist_nulls_node skc_portaddr_node;
169 };
170 struct proto *skc_prot;
171#ifdef CONFIG_NET_NS
172 struct net *skc_net;
173#endif
174 /*
175 * fields between dontcopy_begin/dontcopy_end
176 * are not copied in sock_copy()
177 */
178 /* private: */
179 int skc_dontcopy_begin[0];
180 /* public: */
181 union {
182 struct hlist_node skc_node;
183 struct hlist_nulls_node skc_nulls_node;
184 };
185 int skc_tx_queue_mapping;
186 atomic_t skc_refcnt;
187 /* private: */
188 int skc_dontcopy_end[0];
189 /* public: */
190};
191
192struct cg_proto;
193/**
194 * struct sock - network layer representation of sockets
195 * @__sk_common: shared layout with inet_timewait_sock
196 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
197 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
198 * @sk_lock: synchronizer
199 * @sk_rcvbuf: size of receive buffer in bytes
200 * @sk_wq: sock wait queue and async head
201 * @sk_dst_cache: destination cache
202 * @sk_dst_lock: destination cache lock
203 * @sk_policy: flow policy
204 * @sk_receive_queue: incoming packets
205 * @sk_wmem_alloc: transmit queue bytes committed
206 * @sk_write_queue: Packet sending queue
207 * @sk_async_wait_queue: DMA copied packets
208 * @sk_omem_alloc: "o" is "option" or "other"
209 * @sk_wmem_queued: persistent queue size
210 * @sk_forward_alloc: space allocated forward
211 * @sk_allocation: allocation mode
212 * @sk_sndbuf: size of send buffer in bytes
213 * @sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
214 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
215 * @sk_no_check: %SO_NO_CHECK setting, wether or not checkup packets
216 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
217 * @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
218 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
219 * @sk_gso_max_size: Maximum GSO segment size to build
220 * @sk_gso_max_segs: Maximum number of GSO segments
221 * @sk_lingertime: %SO_LINGER l_linger setting
222 * @sk_backlog: always used with the per-socket spinlock held
223 * @sk_callback_lock: used with the callbacks in the end of this struct
224 * @sk_error_queue: rarely used
225 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
226 * IPV6_ADDRFORM for instance)
227 * @sk_err: last error
228 * @sk_err_soft: errors that don't cause failure but are the cause of a
229 * persistent failure not just 'timed out'
230 * @sk_drops: raw/udp drops counter
231 * @sk_ack_backlog: current listen backlog
232 * @sk_max_ack_backlog: listen backlog set in listen()
233 * @sk_priority: %SO_PRIORITY setting
234 * @sk_cgrp_prioidx: socket group's priority map index
235 * @sk_type: socket type (%SOCK_STREAM, etc)
236 * @sk_protocol: which protocol this socket belongs in this network family
237 * @sk_peer_pid: &struct pid for this socket's peer
238 * @sk_peer_cred: %SO_PEERCRED setting
239 * @sk_rcvlowat: %SO_RCVLOWAT setting
240 * @sk_rcvtimeo: %SO_RCVTIMEO setting
241 * @sk_sndtimeo: %SO_SNDTIMEO setting
242 * @sk_rxhash: flow hash received from netif layer
243 * @sk_filter: socket filtering instructions
244 * @sk_protinfo: private area, net family specific, when not using slab
245 * @sk_timer: sock cleanup timer
246 * @sk_stamp: time stamp of last packet received
247 * @sk_socket: Identd and reporting IO signals
248 * @sk_user_data: RPC layer private data
249 * @sk_sndmsg_page: cached page for sendmsg
250 * @sk_sndmsg_off: cached offset for sendmsg
251 * @sk_peek_off: current peek_offset value
252 * @sk_send_head: front of stuff to transmit
253 * @sk_security: used by security modules
254 * @sk_mark: generic packet mark
255 * @sk_classid: this socket's cgroup classid
256 * @sk_cgrp: this socket's cgroup-specific proto data
257 * @sk_write_pending: a write to stream socket waits to start
258 * @sk_state_change: callback to indicate change in the state of the sock
259 * @sk_data_ready: callback to indicate there is data to be processed
260 * @sk_write_space: callback to indicate there is bf sending space available
261 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
262 * @sk_backlog_rcv: callback to process the backlog
263 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
264 */
265struct sock {
266 /*
267 * Now struct inet_timewait_sock also uses sock_common, so please just
268 * don't add nothing before this first member (__sk_common) --acme
269 */
270 struct sock_common __sk_common;
271#define sk_node __sk_common.skc_node
272#define sk_nulls_node __sk_common.skc_nulls_node
273#define sk_refcnt __sk_common.skc_refcnt
274#define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping
275
276#define sk_dontcopy_begin __sk_common.skc_dontcopy_begin
277#define sk_dontcopy_end __sk_common.skc_dontcopy_end
278#define sk_hash __sk_common.skc_hash
279#define sk_family __sk_common.skc_family
280#define sk_state __sk_common.skc_state
281#define sk_reuse __sk_common.skc_reuse
282#define sk_bound_dev_if __sk_common.skc_bound_dev_if
283#define sk_bind_node __sk_common.skc_bind_node
284#define sk_prot __sk_common.skc_prot
285#define sk_net __sk_common.skc_net
286 socket_lock_t sk_lock;
287 struct sk_buff_head sk_receive_queue;
288 /*
289 * The backlog queue is special, it is always used with
290 * the per-socket spinlock held and requires low latency
291 * access. Therefore we special case it's implementation.
292 * Note : rmem_alloc is in this structure to fill a hole
293 * on 64bit arches, not because its logically part of
294 * backlog.
295 */
296 struct {
297 atomic_t rmem_alloc;
298 int len;
299 struct sk_buff *head;
300 struct sk_buff *tail;
301 } sk_backlog;
302#define sk_rmem_alloc sk_backlog.rmem_alloc
303 int sk_forward_alloc;
304#ifdef CONFIG_RPS
305 __u32 sk_rxhash;
306#endif
307 atomic_t sk_drops;
308 int sk_rcvbuf;
309
310 struct sk_filter __rcu *sk_filter;
311 struct socket_wq __rcu *sk_wq;
312
313#ifdef CONFIG_NET_DMA
314 struct sk_buff_head sk_async_wait_queue;
315#endif
316
317#ifdef CONFIG_XFRM
318 struct xfrm_policy *sk_policy[2];
319#endif
320 unsigned long sk_flags;
321 struct dst_entry *sk_dst_cache;
322 spinlock_t sk_dst_lock;
323 atomic_t sk_wmem_alloc;
324 atomic_t sk_omem_alloc;
325 int sk_sndbuf;
326 struct sk_buff_head sk_write_queue;
327 kmemcheck_bitfield_begin(flags);
328 unsigned int sk_shutdown : 2,
329 sk_no_check : 2,
330 sk_userlocks : 4,
331 sk_protocol : 8,
332 sk_type : 16;
333 kmemcheck_bitfield_end(flags);
334 int sk_wmem_queued;
335 gfp_t sk_allocation;
336 netdev_features_t sk_route_caps;
337 netdev_features_t sk_route_nocaps;
338 int sk_gso_type;
339 unsigned int sk_gso_max_size;
340 u16 sk_gso_max_segs;
341 int sk_rcvlowat;
342 unsigned long sk_lingertime;
343 struct sk_buff_head sk_error_queue;
344 struct proto *sk_prot_creator;
345 rwlock_t sk_callback_lock;
346 int sk_err,
347 sk_err_soft;
348 unsigned short sk_ack_backlog;
349 unsigned short sk_max_ack_backlog;
350 __u32 sk_priority;
351#ifdef CONFIG_CGROUPS
352 __u32 sk_cgrp_prioidx;
353#endif
354 struct pid *sk_peer_pid;
355 const struct cred *sk_peer_cred;
356 long sk_rcvtimeo;
357 long sk_sndtimeo;
358 void *sk_protinfo;
359 struct timer_list sk_timer;
360 ktime_t sk_stamp;
361 struct socket *sk_socket;
362 void *sk_user_data;
363 struct page *sk_sndmsg_page;
364 struct sk_buff *sk_send_head;
365 __u32 sk_sndmsg_off;
366 __s32 sk_peek_off;
367 int sk_write_pending;
368#ifdef CONFIG_SECURITY
369 void *sk_security;
370#endif
371 __u32 sk_mark;
372 u32 sk_classid;
373 struct cg_proto *sk_cgrp;
374 void (*sk_state_change)(struct sock *sk);
375 void (*sk_data_ready)(struct sock *sk, int bytes);
376 void (*sk_write_space)(struct sock *sk);
377 void (*sk_error_report)(struct sock *sk);
378 int (*sk_backlog_rcv)(struct sock *sk,
379 struct sk_buff *skb);
380 void (*sk_destruct)(struct sock *sk);
381};
382
383/*
384 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
385 * or not whether his port will be reused by someone else. SK_FORCE_REUSE
386 * on a socket means that the socket will reuse everybody else's port
387 * without looking at the other's sk_reuse value.
388 */
389
390#define SK_NO_REUSE 0
391#define SK_CAN_REUSE 1
392#define SK_FORCE_REUSE 2
393
394static inline int sk_peek_offset(struct sock *sk, int flags)
395{
396 if ((flags & MSG_PEEK) && (sk->sk_peek_off >= 0))
397 return sk->sk_peek_off;
398 else
399 return 0;
400}
401
402static inline void sk_peek_offset_bwd(struct sock *sk, int val)
403{
404 if (sk->sk_peek_off >= 0) {
405 if (sk->sk_peek_off >= val)
406 sk->sk_peek_off -= val;
407 else
408 sk->sk_peek_off = 0;
409 }
410}
411
412static inline void sk_peek_offset_fwd(struct sock *sk, int val)
413{
414 if (sk->sk_peek_off >= 0)
415 sk->sk_peek_off += val;
416}
417
418/*
419 * Hashed lists helper routines
420 */
421static inline struct sock *sk_entry(const struct hlist_node *node)
422{
423 return hlist_entry(node, struct sock, sk_node);
424}
425
426static inline struct sock *__sk_head(const struct hlist_head *head)
427{
428 return hlist_entry(head->first, struct sock, sk_node);
429}
430
431static inline struct sock *sk_head(const struct hlist_head *head)
432{
433 return hlist_empty(head) ? NULL : __sk_head(head);
434}
435
436static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
437{
438 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
439}
440
441static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
442{
443 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
444}
445
446static inline struct sock *sk_next(const struct sock *sk)
447{
448 return sk->sk_node.next ?
449 hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
450}
451
452static inline struct sock *sk_nulls_next(const struct sock *sk)
453{
454 return (!is_a_nulls(sk->sk_nulls_node.next)) ?
455 hlist_nulls_entry(sk->sk_nulls_node.next,
456 struct sock, sk_nulls_node) :
457 NULL;
458}
459
460static inline bool sk_unhashed(const struct sock *sk)
461{
462 return hlist_unhashed(&sk->sk_node);
463}
464
465static inline bool sk_hashed(const struct sock *sk)
466{
467 return !sk_unhashed(sk);
468}
469
470static inline void sk_node_init(struct hlist_node *node)
471{
472 node->pprev = NULL;
473}
474
475static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
476{
477 node->pprev = NULL;
478}
479
480static inline void __sk_del_node(struct sock *sk)
481{
482 __hlist_del(&sk->sk_node);
483}
484
485/* NB: equivalent to hlist_del_init_rcu */
486static inline bool __sk_del_node_init(struct sock *sk)
487{
488 if (sk_hashed(sk)) {
489 __sk_del_node(sk);
490 sk_node_init(&sk->sk_node);
491 return true;
492 }
493 return false;
494}
495
496/* Grab socket reference count. This operation is valid only
497 when sk is ALREADY grabbed f.e. it is found in hash table
498 or a list and the lookup is made under lock preventing hash table
499 modifications.
500 */
501
502static inline void sock_hold(struct sock *sk)
503{
504 atomic_inc(&sk->sk_refcnt);
505}
506
507/* Ungrab socket in the context, which assumes that socket refcnt
508 cannot hit zero, f.e. it is true in context of any socketcall.
509 */
510static inline void __sock_put(struct sock *sk)
511{
512 atomic_dec(&sk->sk_refcnt);
513}
514
515static inline bool sk_del_node_init(struct sock *sk)
516{
517 bool rc = __sk_del_node_init(sk);
518
519 if (rc) {
520 /* paranoid for a while -acme */
521 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
522 __sock_put(sk);
523 }
524 return rc;
525}
526#define sk_del_node_init_rcu(sk) sk_del_node_init(sk)
527
528static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
529{
530 if (sk_hashed(sk)) {
531 hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
532 return true;
533 }
534 return false;
535}
536
537static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
538{
539 bool rc = __sk_nulls_del_node_init_rcu(sk);
540
541 if (rc) {
542 /* paranoid for a while -acme */
543 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
544 __sock_put(sk);
545 }
546 return rc;
547}
548
549static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
550{
551 hlist_add_head(&sk->sk_node, list);
552}
553
554static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
555{
556 sock_hold(sk);
557 __sk_add_node(sk, list);
558}
559
560static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
561{
562 sock_hold(sk);
563 hlist_add_head_rcu(&sk->sk_node, list);
564}
565
566static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
567{
568 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
569}
570
571static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
572{
573 sock_hold(sk);
574 __sk_nulls_add_node_rcu(sk, list);
575}
576
577static inline void __sk_del_bind_node(struct sock *sk)
578{
579 __hlist_del(&sk->sk_bind_node);
580}
581
582static inline void sk_add_bind_node(struct sock *sk,
583 struct hlist_head *list)
584{
585 hlist_add_head(&sk->sk_bind_node, list);
586}
587
588#define sk_for_each(__sk, node, list) \
589 hlist_for_each_entry(__sk, node, list, sk_node)
590#define sk_for_each_rcu(__sk, node, list) \
591 hlist_for_each_entry_rcu(__sk, node, list, sk_node)
592#define sk_nulls_for_each(__sk, node, list) \
593 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
594#define sk_nulls_for_each_rcu(__sk, node, list) \
595 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
596#define sk_for_each_from(__sk, node) \
597 if (__sk && ({ node = &(__sk)->sk_node; 1; })) \
598 hlist_for_each_entry_from(__sk, node, sk_node)
599#define sk_nulls_for_each_from(__sk, node) \
600 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
601 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
602#define sk_for_each_safe(__sk, node, tmp, list) \
603 hlist_for_each_entry_safe(__sk, node, tmp, list, sk_node)
604#define sk_for_each_bound(__sk, node, list) \
605 hlist_for_each_entry(__sk, node, list, sk_bind_node)
606
607/* Sock flags */
608enum sock_flags {
609 SOCK_DEAD,
610 SOCK_DONE,
611 SOCK_URGINLINE,
612 SOCK_KEEPOPEN,
613 SOCK_LINGER,
614 SOCK_DESTROY,
615 SOCK_BROADCAST,
616 SOCK_TIMESTAMP,
617 SOCK_ZAPPED,
618 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
619 SOCK_DBG, /* %SO_DEBUG setting */
620 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
621 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
622 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
623 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
624 SOCK_TIMESTAMPING_TX_HARDWARE, /* %SOF_TIMESTAMPING_TX_HARDWARE */
625 SOCK_TIMESTAMPING_TX_SOFTWARE, /* %SOF_TIMESTAMPING_TX_SOFTWARE */
626 SOCK_TIMESTAMPING_RX_HARDWARE, /* %SOF_TIMESTAMPING_RX_HARDWARE */
627 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */
628 SOCK_TIMESTAMPING_SOFTWARE, /* %SOF_TIMESTAMPING_SOFTWARE */
629 SOCK_TIMESTAMPING_RAW_HARDWARE, /* %SOF_TIMESTAMPING_RAW_HARDWARE */
630 SOCK_TIMESTAMPING_SYS_HARDWARE, /* %SOF_TIMESTAMPING_SYS_HARDWARE */
631 SOCK_FASYNC, /* fasync() active */
632 SOCK_RXQ_OVFL,
633 SOCK_ZEROCOPY, /* buffers from userspace */
634 SOCK_WIFI_STATUS, /* push wifi status to userspace */
635 SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
636 * Will use last 4 bytes of packet sent from
637 * user-space instead.
638 */
639};
640
641static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
642{
643 nsk->sk_flags = osk->sk_flags;
644}
645
646static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
647{
648 __set_bit(flag, &sk->sk_flags);
649}
650
651static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
652{
653 __clear_bit(flag, &sk->sk_flags);
654}
655
656static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
657{
658 return test_bit(flag, &sk->sk_flags);
659}
660
661static inline void sk_acceptq_removed(struct sock *sk)
662{
663 sk->sk_ack_backlog--;
664}
665
666static inline void sk_acceptq_added(struct sock *sk)
667{
668 sk->sk_ack_backlog++;
669}
670
671static inline bool sk_acceptq_is_full(const struct sock *sk)
672{
673 return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
674}
675
676/*
677 * Compute minimal free write space needed to queue new packets.
678 */
679static inline int sk_stream_min_wspace(const struct sock *sk)
680{
681 return sk->sk_wmem_queued >> 1;
682}
683
684static inline int sk_stream_wspace(const struct sock *sk)
685{
686 return sk->sk_sndbuf - sk->sk_wmem_queued;
687}
688
689extern void sk_stream_write_space(struct sock *sk);
690
691static inline bool sk_stream_memory_free(const struct sock *sk)
692{
693 return sk->sk_wmem_queued < sk->sk_sndbuf;
694}
695
696/* OOB backlog add */
697static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
698{
699 /* dont let skb dst not refcounted, we are going to leave rcu lock */
700 skb_dst_force(skb);
701
702 if (!sk->sk_backlog.tail)
703 sk->sk_backlog.head = skb;
704 else
705 sk->sk_backlog.tail->next = skb;
706
707 sk->sk_backlog.tail = skb;
708 skb->next = NULL;
709}
710
711/*
712 * Take into account size of receive queue and backlog queue
713 * Do not take into account this skb truesize,
714 * to allow even a single big packet to come.
715 */
716static inline bool sk_rcvqueues_full(const struct sock *sk, const struct sk_buff *skb,
717 unsigned int limit)
718{
719 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
720
721 return qsize > limit;
722}
723
724/* The per-socket spinlock must be held here. */
725static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
726 unsigned int limit)
727{
728 if (sk_rcvqueues_full(sk, skb, limit))
729 return -ENOBUFS;
730
731 __sk_add_backlog(sk, skb);
732 sk->sk_backlog.len += skb->truesize;
733 return 0;
734}
735
736static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
737{
738 return sk->sk_backlog_rcv(sk, skb);
739}
740
741static inline void sock_rps_record_flow(const struct sock *sk)
742{
743#ifdef CONFIG_RPS
744 struct rps_sock_flow_table *sock_flow_table;
745
746 rcu_read_lock();
747 sock_flow_table = rcu_dereference(rps_sock_flow_table);
748 rps_record_sock_flow(sock_flow_table, sk->sk_rxhash);
749 rcu_read_unlock();
750#endif
751}
752
753static inline void sock_rps_reset_flow(const struct sock *sk)
754{
755#ifdef CONFIG_RPS
756 struct rps_sock_flow_table *sock_flow_table;
757
758 rcu_read_lock();
759 sock_flow_table = rcu_dereference(rps_sock_flow_table);
760 rps_reset_sock_flow(sock_flow_table, sk->sk_rxhash);
761 rcu_read_unlock();
762#endif
763}
764
765static inline void sock_rps_save_rxhash(struct sock *sk,
766 const struct sk_buff *skb)
767{
768#ifdef CONFIG_RPS
769 if (unlikely(sk->sk_rxhash != skb->rxhash)) {
770 sock_rps_reset_flow(sk);
771 sk->sk_rxhash = skb->rxhash;
772 }
773#endif
774}
775
776static inline void sock_rps_reset_rxhash(struct sock *sk)
777{
778#ifdef CONFIG_RPS
779 sock_rps_reset_flow(sk);
780 sk->sk_rxhash = 0;
781#endif
782}
783
784#define sk_wait_event(__sk, __timeo, __condition) \
785 ({ int __rc; \
786 release_sock(__sk); \
787 __rc = __condition; \
788 if (!__rc) { \
789 *(__timeo) = schedule_timeout(*(__timeo)); \
790 } \
791 lock_sock(__sk); \
792 __rc = __condition; \
793 __rc; \
794 })
795
796extern int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
797extern int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
798extern void sk_stream_wait_close(struct sock *sk, long timeo_p);
799extern int sk_stream_error(struct sock *sk, int flags, int err);
800extern void sk_stream_kill_queues(struct sock *sk);
801
802extern int sk_wait_data(struct sock *sk, long *timeo);
803
804struct request_sock_ops;
805struct timewait_sock_ops;
806struct inet_hashinfo;
807struct raw_hashinfo;
808struct module;
809
810/* Networking protocol blocks we attach to sockets.
811 * socket layer -> transport layer interface
812 * transport -> network interface is defined by struct inet_proto
813 */
814struct proto {
815 void (*close)(struct sock *sk,
816 long timeout);
817 int (*connect)(struct sock *sk,
818 struct sockaddr *uaddr,
819 int addr_len);
820 int (*disconnect)(struct sock *sk, int flags);
821
822 struct sock * (*accept)(struct sock *sk, int flags, int *err);
823
824 int (*ioctl)(struct sock *sk, int cmd,
825 unsigned long arg);
826 int (*init)(struct sock *sk);
827 void (*destroy)(struct sock *sk);
828 void (*shutdown)(struct sock *sk, int how);
829 int (*setsockopt)(struct sock *sk, int level,
830 int optname, char __user *optval,
831 unsigned int optlen);
832 int (*getsockopt)(struct sock *sk, int level,
833 int optname, char __user *optval,
834 int __user *option);
835#ifdef CONFIG_COMPAT
836 int (*compat_setsockopt)(struct sock *sk,
837 int level,
838 int optname, char __user *optval,
839 unsigned int optlen);
840 int (*compat_getsockopt)(struct sock *sk,
841 int level,
842 int optname, char __user *optval,
843 int __user *option);
844 int (*compat_ioctl)(struct sock *sk,
845 unsigned int cmd, unsigned long arg);
846#endif
847 int (*sendmsg)(struct kiocb *iocb, struct sock *sk,
848 struct msghdr *msg, size_t len);
849 int (*recvmsg)(struct kiocb *iocb, struct sock *sk,
850 struct msghdr *msg,
851 size_t len, int noblock, int flags,
852 int *addr_len);
853 int (*sendpage)(struct sock *sk, struct page *page,
854 int offset, size_t size, int flags);
855 int (*bind)(struct sock *sk,
856 struct sockaddr *uaddr, int addr_len);
857
858 int (*backlog_rcv) (struct sock *sk,
859 struct sk_buff *skb);
860
861 /* Keeping track of sk's, looking them up, and port selection methods. */
862 void (*hash)(struct sock *sk);
863 void (*unhash)(struct sock *sk);
864 void (*rehash)(struct sock *sk);
865 int (*get_port)(struct sock *sk, unsigned short snum);
866 void (*clear_sk)(struct sock *sk, int size);
867
868 /* Keeping track of sockets in use */
869#ifdef CONFIG_PROC_FS
870 unsigned int inuse_idx;
871#endif
872
873 /* Memory pressure */
874 void (*enter_memory_pressure)(struct sock *sk);
875 atomic_long_t *memory_allocated; /* Current allocated memory. */
876 struct percpu_counter *sockets_allocated; /* Current number of sockets. */
877 /*
878 * Pressure flag: try to collapse.
879 * Technical note: it is used by multiple contexts non atomically.
880 * All the __sk_mem_schedule() is of this nature: accounting
881 * is strict, actions are advisory and have some latency.
882 */
883 int *memory_pressure;
884 long *sysctl_mem;
885 int *sysctl_wmem;
886 int *sysctl_rmem;
887 int max_header;
888 bool no_autobind;
889
890 struct kmem_cache *slab;
891 unsigned int obj_size;
892 int slab_flags;
893
894 struct percpu_counter *orphan_count;
895
896 struct request_sock_ops *rsk_prot;
897 struct timewait_sock_ops *twsk_prot;
898
899 union {
900 struct inet_hashinfo *hashinfo;
901 struct udp_table *udp_table;
902 struct raw_hashinfo *raw_hash;
903 } h;
904
905 struct module *owner;
906
907 char name[32];
908
909 struct list_head node;
910#ifdef SOCK_REFCNT_DEBUG
911 atomic_t socks;
912#endif
913#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
914 /*
915 * cgroup specific init/deinit functions. Called once for all
916 * protocols that implement it, from cgroups populate function.
917 * This function has to setup any files the protocol want to
918 * appear in the kmem cgroup filesystem.
919 */
920 int (*init_cgroup)(struct mem_cgroup *memcg,
921 struct cgroup_subsys *ss);
922 void (*destroy_cgroup)(struct mem_cgroup *memcg);
923 struct cg_proto *(*proto_cgroup)(struct mem_cgroup *memcg);
924#endif
925};
926
927/*
928 * Bits in struct cg_proto.flags
929 */
930enum cg_proto_flags {
931 /* Currently active and new sockets should be assigned to cgroups */
932 MEMCG_SOCK_ACTIVE,
933 /* It was ever activated; we must disarm static keys on destruction */
934 MEMCG_SOCK_ACTIVATED,
935};
936
937struct cg_proto {
938 void (*enter_memory_pressure)(struct sock *sk);
939 struct res_counter *memory_allocated; /* Current allocated memory. */
940 struct percpu_counter *sockets_allocated; /* Current number of sockets. */
941 int *memory_pressure;
942 long *sysctl_mem;
943 unsigned long flags;
944 /*
945 * memcg field is used to find which memcg we belong directly
946 * Each memcg struct can hold more than one cg_proto, so container_of
947 * won't really cut.
948 *
949 * The elegant solution would be having an inverse function to
950 * proto_cgroup in struct proto, but that means polluting the structure
951 * for everybody, instead of just for memcg users.
952 */
953 struct mem_cgroup *memcg;
954};
955
956extern int proto_register(struct proto *prot, int alloc_slab);
957extern void proto_unregister(struct proto *prot);
958
959static inline bool memcg_proto_active(struct cg_proto *cg_proto)
960{
961 return test_bit(MEMCG_SOCK_ACTIVE, &cg_proto->flags);
962}
963
964static inline bool memcg_proto_activated(struct cg_proto *cg_proto)
965{
966 return test_bit(MEMCG_SOCK_ACTIVATED, &cg_proto->flags);
967}
968
969#ifdef SOCK_REFCNT_DEBUG
970static inline void sk_refcnt_debug_inc(struct sock *sk)
971{
972 atomic_inc(&sk->sk_prot->socks);
973}
974
975static inline void sk_refcnt_debug_dec(struct sock *sk)
976{
977 atomic_dec(&sk->sk_prot->socks);
978 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
979 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
980}
981
982inline void sk_refcnt_debug_release(const struct sock *sk)
983{
984 if (atomic_read(&sk->sk_refcnt) != 1)
985 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
986 sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
987}
988#else /* SOCK_REFCNT_DEBUG */
989#define sk_refcnt_debug_inc(sk) do { } while (0)
990#define sk_refcnt_debug_dec(sk) do { } while (0)
991#define sk_refcnt_debug_release(sk) do { } while (0)
992#endif /* SOCK_REFCNT_DEBUG */
993
994#if defined(CONFIG_CGROUP_MEM_RES_CTLR_KMEM) && defined(CONFIG_NET)
995extern struct static_key memcg_socket_limit_enabled;
996static inline struct cg_proto *parent_cg_proto(struct proto *proto,
997 struct cg_proto *cg_proto)
998{
999 return proto->proto_cgroup(parent_mem_cgroup(cg_proto->memcg));
1000}
1001#define mem_cgroup_sockets_enabled static_key_false(&memcg_socket_limit_enabled)
1002#else
1003#define mem_cgroup_sockets_enabled 0
1004static inline struct cg_proto *parent_cg_proto(struct proto *proto,
1005 struct cg_proto *cg_proto)
1006{
1007 return NULL;
1008}
1009#endif
1010
1011
1012static inline bool sk_has_memory_pressure(const struct sock *sk)
1013{
1014 return sk->sk_prot->memory_pressure != NULL;
1015}
1016
1017static inline bool sk_under_memory_pressure(const struct sock *sk)
1018{
1019 if (!sk->sk_prot->memory_pressure)
1020 return false;
1021
1022 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1023 return !!*sk->sk_cgrp->memory_pressure;
1024
1025 return !!*sk->sk_prot->memory_pressure;
1026}
1027
1028static inline void sk_leave_memory_pressure(struct sock *sk)
1029{
1030 int *memory_pressure = sk->sk_prot->memory_pressure;
1031
1032 if (!memory_pressure)
1033 return;
1034
1035 if (*memory_pressure)
1036 *memory_pressure = 0;
1037
1038 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1039 struct cg_proto *cg_proto = sk->sk_cgrp;
1040 struct proto *prot = sk->sk_prot;
1041
1042 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1043 if (*cg_proto->memory_pressure)
1044 *cg_proto->memory_pressure = 0;
1045 }
1046
1047}
1048
1049static inline void sk_enter_memory_pressure(struct sock *sk)
1050{
1051 if (!sk->sk_prot->enter_memory_pressure)
1052 return;
1053
1054 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1055 struct cg_proto *cg_proto = sk->sk_cgrp;
1056 struct proto *prot = sk->sk_prot;
1057
1058 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1059 cg_proto->enter_memory_pressure(sk);
1060 }
1061
1062 sk->sk_prot->enter_memory_pressure(sk);
1063}
1064
1065static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1066{
1067 long *prot = sk->sk_prot->sysctl_mem;
1068 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1069 prot = sk->sk_cgrp->sysctl_mem;
1070 return prot[index];
1071}
1072
1073static inline void memcg_memory_allocated_add(struct cg_proto *prot,
1074 unsigned long amt,
1075 int *parent_status)
1076{
1077 struct res_counter *fail;
1078 int ret;
1079
1080 ret = res_counter_charge_nofail(prot->memory_allocated,
1081 amt << PAGE_SHIFT, &fail);
1082 if (ret < 0)
1083 *parent_status = OVER_LIMIT;
1084}
1085
1086static inline void memcg_memory_allocated_sub(struct cg_proto *prot,
1087 unsigned long amt)
1088{
1089 res_counter_uncharge(prot->memory_allocated, amt << PAGE_SHIFT);
1090}
1091
1092static inline u64 memcg_memory_allocated_read(struct cg_proto *prot)
1093{
1094 u64 ret;
1095 ret = res_counter_read_u64(prot->memory_allocated, RES_USAGE);
1096 return ret >> PAGE_SHIFT;
1097}
1098
1099static inline long
1100sk_memory_allocated(const struct sock *sk)
1101{
1102 struct proto *prot = sk->sk_prot;
1103 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1104 return memcg_memory_allocated_read(sk->sk_cgrp);
1105
1106 return atomic_long_read(prot->memory_allocated);
1107}
1108
1109static inline long
1110sk_memory_allocated_add(struct sock *sk, int amt, int *parent_status)
1111{
1112 struct proto *prot = sk->sk_prot;
1113
1114 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1115 memcg_memory_allocated_add(sk->sk_cgrp, amt, parent_status);
1116 /* update the root cgroup regardless */
1117 atomic_long_add_return(amt, prot->memory_allocated);
1118 return memcg_memory_allocated_read(sk->sk_cgrp);
1119 }
1120
1121 return atomic_long_add_return(amt, prot->memory_allocated);
1122}
1123
1124static inline void
1125sk_memory_allocated_sub(struct sock *sk, int amt)
1126{
1127 struct proto *prot = sk->sk_prot;
1128
1129 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1130 memcg_memory_allocated_sub(sk->sk_cgrp, amt);
1131
1132 atomic_long_sub(amt, prot->memory_allocated);
1133}
1134
1135static inline void sk_sockets_allocated_dec(struct sock *sk)
1136{
1137 struct proto *prot = sk->sk_prot;
1138
1139 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1140 struct cg_proto *cg_proto = sk->sk_cgrp;
1141
1142 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1143 percpu_counter_dec(cg_proto->sockets_allocated);
1144 }
1145
1146 percpu_counter_dec(prot->sockets_allocated);
1147}
1148
1149static inline void sk_sockets_allocated_inc(struct sock *sk)
1150{
1151 struct proto *prot = sk->sk_prot;
1152
1153 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1154 struct cg_proto *cg_proto = sk->sk_cgrp;
1155
1156 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1157 percpu_counter_inc(cg_proto->sockets_allocated);
1158 }
1159
1160 percpu_counter_inc(prot->sockets_allocated);
1161}
1162
1163static inline int
1164sk_sockets_allocated_read_positive(struct sock *sk)
1165{
1166 struct proto *prot = sk->sk_prot;
1167
1168 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1169 return percpu_counter_read_positive(sk->sk_cgrp->sockets_allocated);
1170
1171 return percpu_counter_read_positive(prot->sockets_allocated);
1172}
1173
1174static inline int
1175proto_sockets_allocated_sum_positive(struct proto *prot)
1176{
1177 return percpu_counter_sum_positive(prot->sockets_allocated);
1178}
1179
1180static inline long
1181proto_memory_allocated(struct proto *prot)
1182{
1183 return atomic_long_read(prot->memory_allocated);
1184}
1185
1186static inline bool
1187proto_memory_pressure(struct proto *prot)
1188{
1189 if (!prot->memory_pressure)
1190 return false;
1191 return !!*prot->memory_pressure;
1192}
1193
1194
1195#ifdef CONFIG_PROC_FS
1196/* Called with local bh disabled */
1197extern void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1198extern int sock_prot_inuse_get(struct net *net, struct proto *proto);
1199#else
1200static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1201 int inc)
1202{
1203}
1204#endif
1205
1206
1207/* With per-bucket locks this operation is not-atomic, so that
1208 * this version is not worse.
1209 */
1210static inline void __sk_prot_rehash(struct sock *sk)
1211{
1212 sk->sk_prot->unhash(sk);
1213 sk->sk_prot->hash(sk);
1214}
1215
1216void sk_prot_clear_portaddr_nulls(struct sock *sk, int size);
1217
1218/* About 10 seconds */
1219#define SOCK_DESTROY_TIME (10*HZ)
1220
1221/* Sockets 0-1023 can't be bound to unless you are superuser */
1222#define PROT_SOCK 1024
1223
1224#define SHUTDOWN_MASK 3
1225#define RCV_SHUTDOWN 1
1226#define SEND_SHUTDOWN 2
1227
1228#define SOCK_SNDBUF_LOCK 1
1229#define SOCK_RCVBUF_LOCK 2
1230#define SOCK_BINDADDR_LOCK 4
1231#define SOCK_BINDPORT_LOCK 8
1232
1233/* sock_iocb: used to kick off async processing of socket ios */
1234struct sock_iocb {
1235 struct list_head list;
1236
1237 int flags;
1238 int size;
1239 struct socket *sock;
1240 struct sock *sk;
1241 struct scm_cookie *scm;
1242 struct msghdr *msg, async_msg;
1243 struct kiocb *kiocb;
1244};
1245
1246static inline struct sock_iocb *kiocb_to_siocb(struct kiocb *iocb)
1247{
1248 return (struct sock_iocb *)iocb->private;
1249}
1250
1251static inline struct kiocb *siocb_to_kiocb(struct sock_iocb *si)
1252{
1253 return si->kiocb;
1254}
1255
1256struct socket_alloc {
1257 struct socket socket;
1258 struct inode vfs_inode;
1259};
1260
1261static inline struct socket *SOCKET_I(struct inode *inode)
1262{
1263 return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1264}
1265
1266static inline struct inode *SOCK_INODE(struct socket *socket)
1267{
1268 return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1269}
1270
1271/*
1272 * Functions for memory accounting
1273 */
1274extern int __sk_mem_schedule(struct sock *sk, int size, int kind);
1275extern void __sk_mem_reclaim(struct sock *sk);
1276
1277#define SK_MEM_QUANTUM ((int)PAGE_SIZE)
1278#define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1279#define SK_MEM_SEND 0
1280#define SK_MEM_RECV 1
1281
1282static inline int sk_mem_pages(int amt)
1283{
1284 return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1285}
1286
1287static inline bool sk_has_account(struct sock *sk)
1288{
1289 /* return true if protocol supports memory accounting */
1290 return !!sk->sk_prot->memory_allocated;
1291}
1292
1293static inline bool sk_wmem_schedule(struct sock *sk, int size)
1294{
1295 if (!sk_has_account(sk))
1296 return true;
1297 return size <= sk->sk_forward_alloc ||
1298 __sk_mem_schedule(sk, size, SK_MEM_SEND);
1299}
1300
1301static inline bool sk_rmem_schedule(struct sock *sk, int size)
1302{
1303 if (!sk_has_account(sk))
1304 return true;
1305 return size <= sk->sk_forward_alloc ||
1306 __sk_mem_schedule(sk, size, SK_MEM_RECV);
1307}
1308
1309static inline void sk_mem_reclaim(struct sock *sk)
1310{
1311 if (!sk_has_account(sk))
1312 return;
1313 if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1314 __sk_mem_reclaim(sk);
1315}
1316
1317static inline void sk_mem_reclaim_partial(struct sock *sk)
1318{
1319 if (!sk_has_account(sk))
1320 return;
1321 if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1322 __sk_mem_reclaim(sk);
1323}
1324
1325static inline void sk_mem_charge(struct sock *sk, int size)
1326{
1327 if (!sk_has_account(sk))
1328 return;
1329 sk->sk_forward_alloc -= size;
1330}
1331
1332static inline void sk_mem_uncharge(struct sock *sk, int size)
1333{
1334 if (!sk_has_account(sk))
1335 return;
1336 sk->sk_forward_alloc += size;
1337}
1338
1339static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1340{
1341 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1342 sk->sk_wmem_queued -= skb->truesize;
1343 sk_mem_uncharge(sk, skb->truesize);
1344 __kfree_skb(skb);
1345}
1346
1347/* Used by processes to "lock" a socket state, so that
1348 * interrupts and bottom half handlers won't change it
1349 * from under us. It essentially blocks any incoming
1350 * packets, so that we won't get any new data or any
1351 * packets that change the state of the socket.
1352 *
1353 * While locked, BH processing will add new packets to
1354 * the backlog queue. This queue is processed by the
1355 * owner of the socket lock right before it is released.
1356 *
1357 * Since ~2.3.5 it is also exclusive sleep lock serializing
1358 * accesses from user process context.
1359 */
1360#define sock_owned_by_user(sk) ((sk)->sk_lock.owned)
1361
1362/*
1363 * Macro so as to not evaluate some arguments when
1364 * lockdep is not enabled.
1365 *
1366 * Mark both the sk_lock and the sk_lock.slock as a
1367 * per-address-family lock class.
1368 */
1369#define sock_lock_init_class_and_name(sk, sname, skey, name, key) \
1370do { \
1371 sk->sk_lock.owned = 0; \
1372 init_waitqueue_head(&sk->sk_lock.wq); \
1373 spin_lock_init(&(sk)->sk_lock.slock); \
1374 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \
1375 sizeof((sk)->sk_lock)); \
1376 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \
1377 (skey), (sname)); \
1378 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \
1379} while (0)
1380
1381extern void lock_sock_nested(struct sock *sk, int subclass);
1382
1383static inline void lock_sock(struct sock *sk)
1384{
1385 lock_sock_nested(sk, 0);
1386}
1387
1388extern void release_sock(struct sock *sk);
1389
1390/* BH context may only use the following locking interface. */
1391#define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock))
1392#define bh_lock_sock_nested(__sk) \
1393 spin_lock_nested(&((__sk)->sk_lock.slock), \
1394 SINGLE_DEPTH_NESTING)
1395#define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock))
1396
1397extern bool lock_sock_fast(struct sock *sk);
1398/**
1399 * unlock_sock_fast - complement of lock_sock_fast
1400 * @sk: socket
1401 * @slow: slow mode
1402 *
1403 * fast unlock socket for user context.
1404 * If slow mode is on, we call regular release_sock()
1405 */
1406static inline void unlock_sock_fast(struct sock *sk, bool slow)
1407{
1408 if (slow)
1409 release_sock(sk);
1410 else
1411 spin_unlock_bh(&sk->sk_lock.slock);
1412}
1413
1414
1415extern struct sock *sk_alloc(struct net *net, int family,
1416 gfp_t priority,
1417 struct proto *prot);
1418extern void sk_free(struct sock *sk);
1419extern void sk_release_kernel(struct sock *sk);
1420extern struct sock *sk_clone_lock(const struct sock *sk,
1421 const gfp_t priority);
1422
1423extern struct sk_buff *sock_wmalloc(struct sock *sk,
1424 unsigned long size, int force,
1425 gfp_t priority);
1426extern struct sk_buff *sock_rmalloc(struct sock *sk,
1427 unsigned long size, int force,
1428 gfp_t priority);
1429extern void sock_wfree(struct sk_buff *skb);
1430extern void sock_rfree(struct sk_buff *skb);
1431
1432extern int sock_setsockopt(struct socket *sock, int level,
1433 int op, char __user *optval,
1434 unsigned int optlen);
1435
1436extern int sock_getsockopt(struct socket *sock, int level,
1437 int op, char __user *optval,
1438 int __user *optlen);
1439extern struct sk_buff *sock_alloc_send_skb(struct sock *sk,
1440 unsigned long size,
1441 int noblock,
1442 int *errcode);
1443extern struct sk_buff *sock_alloc_send_pskb(struct sock *sk,
1444 unsigned long header_len,
1445 unsigned long data_len,
1446 int noblock,
1447 int *errcode);
1448extern void *sock_kmalloc(struct sock *sk, int size,
1449 gfp_t priority);
1450extern void sock_kfree_s(struct sock *sk, void *mem, int size);
1451extern void sk_send_sigurg(struct sock *sk);
1452
1453#ifdef CONFIG_CGROUPS
1454extern void sock_update_classid(struct sock *sk);
1455#else
1456static inline void sock_update_classid(struct sock *sk)
1457{
1458}
1459#endif
1460
1461/*
1462 * Functions to fill in entries in struct proto_ops when a protocol
1463 * does not implement a particular function.
1464 */
1465extern int sock_no_bind(struct socket *,
1466 struct sockaddr *, int);
1467extern int sock_no_connect(struct socket *,
1468 struct sockaddr *, int, int);
1469extern int sock_no_socketpair(struct socket *,
1470 struct socket *);
1471extern int sock_no_accept(struct socket *,
1472 struct socket *, int);
1473extern int sock_no_getname(struct socket *,
1474 struct sockaddr *, int *, int);
1475extern unsigned int sock_no_poll(struct file *, struct socket *,
1476 struct poll_table_struct *);
1477extern int sock_no_ioctl(struct socket *, unsigned int,
1478 unsigned long);
1479extern int sock_no_listen(struct socket *, int);
1480extern int sock_no_shutdown(struct socket *, int);
1481extern int sock_no_getsockopt(struct socket *, int , int,
1482 char __user *, int __user *);
1483extern int sock_no_setsockopt(struct socket *, int, int,
1484 char __user *, unsigned int);
1485extern int sock_no_sendmsg(struct kiocb *, struct socket *,
1486 struct msghdr *, size_t);
1487extern int sock_no_recvmsg(struct kiocb *, struct socket *,
1488 struct msghdr *, size_t, int);
1489extern int sock_no_mmap(struct file *file,
1490 struct socket *sock,
1491 struct vm_area_struct *vma);
1492extern ssize_t sock_no_sendpage(struct socket *sock,
1493 struct page *page,
1494 int offset, size_t size,
1495 int flags);
1496
1497/*
1498 * Functions to fill in entries in struct proto_ops when a protocol
1499 * uses the inet style.
1500 */
1501extern int sock_common_getsockopt(struct socket *sock, int level, int optname,
1502 char __user *optval, int __user *optlen);
1503extern int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
1504 struct msghdr *msg, size_t size, int flags);
1505extern int sock_common_setsockopt(struct socket *sock, int level, int optname,
1506 char __user *optval, unsigned int optlen);
1507extern int compat_sock_common_getsockopt(struct socket *sock, int level,
1508 int optname, char __user *optval, int __user *optlen);
1509extern int compat_sock_common_setsockopt(struct socket *sock, int level,
1510 int optname, char __user *optval, unsigned int optlen);
1511
1512extern void sk_common_release(struct sock *sk);
1513
1514/*
1515 * Default socket callbacks and setup code
1516 */
1517
1518/* Initialise core socket variables */
1519extern void sock_init_data(struct socket *sock, struct sock *sk);
1520
1521extern void sk_filter_release_rcu(struct rcu_head *rcu);
1522
1523/**
1524 * sk_filter_release - release a socket filter
1525 * @fp: filter to remove
1526 *
1527 * Remove a filter from a socket and release its resources.
1528 */
1529
1530static inline void sk_filter_release(struct sk_filter *fp)
1531{
1532 if (atomic_dec_and_test(&fp->refcnt))
1533 call_rcu(&fp->rcu, sk_filter_release_rcu);
1534}
1535
1536static inline void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1537{
1538 unsigned int size = sk_filter_len(fp);
1539
1540 atomic_sub(size, &sk->sk_omem_alloc);
1541 sk_filter_release(fp);
1542}
1543
1544static inline void sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1545{
1546 atomic_inc(&fp->refcnt);
1547 atomic_add(sk_filter_len(fp), &sk->sk_omem_alloc);
1548}
1549
1550/*
1551 * Socket reference counting postulates.
1552 *
1553 * * Each user of socket SHOULD hold a reference count.
1554 * * Each access point to socket (an hash table bucket, reference from a list,
1555 * running timer, skb in flight MUST hold a reference count.
1556 * * When reference count hits 0, it means it will never increase back.
1557 * * When reference count hits 0, it means that no references from
1558 * outside exist to this socket and current process on current CPU
1559 * is last user and may/should destroy this socket.
1560 * * sk_free is called from any context: process, BH, IRQ. When
1561 * it is called, socket has no references from outside -> sk_free
1562 * may release descendant resources allocated by the socket, but
1563 * to the time when it is called, socket is NOT referenced by any
1564 * hash tables, lists etc.
1565 * * Packets, delivered from outside (from network or from another process)
1566 * and enqueued on receive/error queues SHOULD NOT grab reference count,
1567 * when they sit in queue. Otherwise, packets will leak to hole, when
1568 * socket is looked up by one cpu and unhasing is made by another CPU.
1569 * It is true for udp/raw, netlink (leak to receive and error queues), tcp
1570 * (leak to backlog). Packet socket does all the processing inside
1571 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1572 * use separate SMP lock, so that they are prone too.
1573 */
1574
1575/* Ungrab socket and destroy it, if it was the last reference. */
1576static inline void sock_put(struct sock *sk)
1577{
1578 if (atomic_dec_and_test(&sk->sk_refcnt))
1579 sk_free(sk);
1580}
1581
1582extern int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1583 const int nested);
1584
1585static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1586{
1587 sk->sk_tx_queue_mapping = tx_queue;
1588}
1589
1590static inline void sk_tx_queue_clear(struct sock *sk)
1591{
1592 sk->sk_tx_queue_mapping = -1;
1593}
1594
1595static inline int sk_tx_queue_get(const struct sock *sk)
1596{
1597 return sk ? sk->sk_tx_queue_mapping : -1;
1598}
1599
1600static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1601{
1602 sk_tx_queue_clear(sk);
1603 sk->sk_socket = sock;
1604}
1605
1606static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1607{
1608 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1609 return &rcu_dereference_raw(sk->sk_wq)->wait;
1610}
1611/* Detach socket from process context.
1612 * Announce socket dead, detach it from wait queue and inode.
1613 * Note that parent inode held reference count on this struct sock,
1614 * we do not release it in this function, because protocol
1615 * probably wants some additional cleanups or even continuing
1616 * to work with this socket (TCP).
1617 */
1618static inline void sock_orphan(struct sock *sk)
1619{
1620 write_lock_bh(&sk->sk_callback_lock);
1621 sock_set_flag(sk, SOCK_DEAD);
1622 sk_set_socket(sk, NULL);
1623 sk->sk_wq = NULL;
1624 write_unlock_bh(&sk->sk_callback_lock);
1625}
1626
1627static inline void sock_graft(struct sock *sk, struct socket *parent)
1628{
1629 write_lock_bh(&sk->sk_callback_lock);
1630 sk->sk_wq = parent->wq;
1631 parent->sk = sk;
1632 sk_set_socket(sk, parent);
1633 security_sock_graft(sk, parent);
1634 write_unlock_bh(&sk->sk_callback_lock);
1635}
1636
1637extern int sock_i_uid(struct sock *sk);
1638extern unsigned long sock_i_ino(struct sock *sk);
1639
1640static inline struct dst_entry *
1641__sk_dst_get(struct sock *sk)
1642{
1643 return rcu_dereference_check(sk->sk_dst_cache, sock_owned_by_user(sk) ||
1644 lockdep_is_held(&sk->sk_lock.slock));
1645}
1646
1647static inline struct dst_entry *
1648sk_dst_get(struct sock *sk)
1649{
1650 struct dst_entry *dst;
1651
1652 rcu_read_lock();
1653 dst = rcu_dereference(sk->sk_dst_cache);
1654 if (dst)
1655 dst_hold(dst);
1656 rcu_read_unlock();
1657 return dst;
1658}
1659
1660extern void sk_reset_txq(struct sock *sk);
1661
1662static inline void dst_negative_advice(struct sock *sk)
1663{
1664 struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1665
1666 if (dst && dst->ops->negative_advice) {
1667 ndst = dst->ops->negative_advice(dst);
1668
1669 if (ndst != dst) {
1670 rcu_assign_pointer(sk->sk_dst_cache, ndst);
1671 sk_reset_txq(sk);
1672 }
1673 }
1674}
1675
1676static inline void
1677__sk_dst_set(struct sock *sk, struct dst_entry *dst)
1678{
1679 struct dst_entry *old_dst;
1680
1681 sk_tx_queue_clear(sk);
1682 /*
1683 * This can be called while sk is owned by the caller only,
1684 * with no state that can be checked in a rcu_dereference_check() cond
1685 */
1686 old_dst = rcu_dereference_raw(sk->sk_dst_cache);
1687 rcu_assign_pointer(sk->sk_dst_cache, dst);
1688 dst_release(old_dst);
1689}
1690
1691static inline void
1692sk_dst_set(struct sock *sk, struct dst_entry *dst)
1693{
1694 spin_lock(&sk->sk_dst_lock);
1695 __sk_dst_set(sk, dst);
1696 spin_unlock(&sk->sk_dst_lock);
1697}
1698
1699static inline void
1700__sk_dst_reset(struct sock *sk)
1701{
1702 __sk_dst_set(sk, NULL);
1703}
1704
1705static inline void
1706sk_dst_reset(struct sock *sk)
1707{
1708 spin_lock(&sk->sk_dst_lock);
1709 __sk_dst_reset(sk);
1710 spin_unlock(&sk->sk_dst_lock);
1711}
1712
1713extern struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1714
1715extern struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1716
1717static inline bool sk_can_gso(const struct sock *sk)
1718{
1719 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1720}
1721
1722extern void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1723
1724static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
1725{
1726 sk->sk_route_nocaps |= flags;
1727 sk->sk_route_caps &= ~flags;
1728}
1729
1730static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
1731 char __user *from, char *to,
1732 int copy, int offset)
1733{
1734 if (skb->ip_summed == CHECKSUM_NONE) {
1735 int err = 0;
1736 __wsum csum = csum_and_copy_from_user(from, to, copy, 0, &err);
1737 if (err)
1738 return err;
1739 skb->csum = csum_block_add(skb->csum, csum, offset);
1740 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1741 if (!access_ok(VERIFY_READ, from, copy) ||
1742 __copy_from_user_nocache(to, from, copy))
1743 return -EFAULT;
1744 } else if (copy_from_user(to, from, copy))
1745 return -EFAULT;
1746
1747 return 0;
1748}
1749
1750static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
1751 char __user *from, int copy)
1752{
1753 int err, offset = skb->len;
1754
1755 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
1756 copy, offset);
1757 if (err)
1758 __skb_trim(skb, offset);
1759
1760 return err;
1761}
1762
1763static inline int skb_copy_to_page_nocache(struct sock *sk, char __user *from,
1764 struct sk_buff *skb,
1765 struct page *page,
1766 int off, int copy)
1767{
1768 int err;
1769
1770 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
1771 copy, skb->len);
1772 if (err)
1773 return err;
1774
1775 skb->len += copy;
1776 skb->data_len += copy;
1777 skb->truesize += copy;
1778 sk->sk_wmem_queued += copy;
1779 sk_mem_charge(sk, copy);
1780 return 0;
1781}
1782
1783static inline int skb_copy_to_page(struct sock *sk, char __user *from,
1784 struct sk_buff *skb, struct page *page,
1785 int off, int copy)
1786{
1787 if (skb->ip_summed == CHECKSUM_NONE) {
1788 int err = 0;
1789 __wsum csum = csum_and_copy_from_user(from,
1790 page_address(page) + off,
1791 copy, 0, &err);
1792 if (err)
1793 return err;
1794 skb->csum = csum_block_add(skb->csum, csum, skb->len);
1795 } else if (copy_from_user(page_address(page) + off, from, copy))
1796 return -EFAULT;
1797
1798 skb->len += copy;
1799 skb->data_len += copy;
1800 skb->truesize += copy;
1801 sk->sk_wmem_queued += copy;
1802 sk_mem_charge(sk, copy);
1803 return 0;
1804}
1805
1806/**
1807 * sk_wmem_alloc_get - returns write allocations
1808 * @sk: socket
1809 *
1810 * Returns sk_wmem_alloc minus initial offset of one
1811 */
1812static inline int sk_wmem_alloc_get(const struct sock *sk)
1813{
1814 return atomic_read(&sk->sk_wmem_alloc) - 1;
1815}
1816
1817/**
1818 * sk_rmem_alloc_get - returns read allocations
1819 * @sk: socket
1820 *
1821 * Returns sk_rmem_alloc
1822 */
1823static inline int sk_rmem_alloc_get(const struct sock *sk)
1824{
1825 return atomic_read(&sk->sk_rmem_alloc);
1826}
1827
1828/**
1829 * sk_has_allocations - check if allocations are outstanding
1830 * @sk: socket
1831 *
1832 * Returns true if socket has write or read allocations
1833 */
1834static inline bool sk_has_allocations(const struct sock *sk)
1835{
1836 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
1837}
1838
1839/**
1840 * wq_has_sleeper - check if there are any waiting processes
1841 * @wq: struct socket_wq
1842 *
1843 * Returns true if socket_wq has waiting processes
1844 *
1845 * The purpose of the wq_has_sleeper and sock_poll_wait is to wrap the memory
1846 * barrier call. They were added due to the race found within the tcp code.
1847 *
1848 * Consider following tcp code paths:
1849 *
1850 * CPU1 CPU2
1851 *
1852 * sys_select receive packet
1853 * ... ...
1854 * __add_wait_queue update tp->rcv_nxt
1855 * ... ...
1856 * tp->rcv_nxt check sock_def_readable
1857 * ... {
1858 * schedule rcu_read_lock();
1859 * wq = rcu_dereference(sk->sk_wq);
1860 * if (wq && waitqueue_active(&wq->wait))
1861 * wake_up_interruptible(&wq->wait)
1862 * ...
1863 * }
1864 *
1865 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
1866 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1
1867 * could then endup calling schedule and sleep forever if there are no more
1868 * data on the socket.
1869 *
1870 */
1871static inline bool wq_has_sleeper(struct socket_wq *wq)
1872{
1873 /* We need to be sure we are in sync with the
1874 * add_wait_queue modifications to the wait queue.
1875 *
1876 * This memory barrier is paired in the sock_poll_wait.
1877 */
1878 smp_mb();
1879 return wq && waitqueue_active(&wq->wait);
1880}
1881
1882/**
1883 * sock_poll_wait - place memory barrier behind the poll_wait call.
1884 * @filp: file
1885 * @wait_address: socket wait queue
1886 * @p: poll_table
1887 *
1888 * See the comments in the wq_has_sleeper function.
1889 */
1890static inline void sock_poll_wait(struct file *filp,
1891 wait_queue_head_t *wait_address, poll_table *p)
1892{
1893 if (!poll_does_not_wait(p) && wait_address) {
1894 poll_wait(filp, wait_address, p);
1895 /* We need to be sure we are in sync with the
1896 * socket flags modification.
1897 *
1898 * This memory barrier is paired in the wq_has_sleeper.
1899 */
1900 smp_mb();
1901 }
1902}
1903
1904/*
1905 * Queue a received datagram if it will fit. Stream and sequenced
1906 * protocols can't normally use this as they need to fit buffers in
1907 * and play with them.
1908 *
1909 * Inlined as it's very short and called for pretty much every
1910 * packet ever received.
1911 */
1912
1913static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1914{
1915 skb_orphan(skb);
1916 skb->sk = sk;
1917 skb->destructor = sock_wfree;
1918 /*
1919 * We used to take a refcount on sk, but following operation
1920 * is enough to guarantee sk_free() wont free this sock until
1921 * all in-flight packets are completed
1922 */
1923 atomic_add(skb->truesize, &sk->sk_wmem_alloc);
1924}
1925
1926static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
1927{
1928 skb_orphan(skb);
1929 skb->sk = sk;
1930 skb->destructor = sock_rfree;
1931 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
1932 sk_mem_charge(sk, skb->truesize);
1933}
1934
1935extern void sk_reset_timer(struct sock *sk, struct timer_list *timer,
1936 unsigned long expires);
1937
1938extern void sk_stop_timer(struct sock *sk, struct timer_list *timer);
1939
1940extern int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
1941
1942extern int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
1943
1944/*
1945 * Recover an error report and clear atomically
1946 */
1947
1948static inline int sock_error(struct sock *sk)
1949{
1950 int err;
1951 if (likely(!sk->sk_err))
1952 return 0;
1953 err = xchg(&sk->sk_err, 0);
1954 return -err;
1955}
1956
1957static inline unsigned long sock_wspace(struct sock *sk)
1958{
1959 int amt = 0;
1960
1961 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1962 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
1963 if (amt < 0)
1964 amt = 0;
1965 }
1966 return amt;
1967}
1968
1969static inline void sk_wake_async(struct sock *sk, int how, int band)
1970{
1971 if (sock_flag(sk, SOCK_FASYNC))
1972 sock_wake_async(sk->sk_socket, how, band);
1973}
1974
1975#define SOCK_MIN_SNDBUF 2048
1976/*
1977 * Since sk_rmem_alloc sums skb->truesize, even a small frame might need
1978 * sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak
1979 */
1980#define SOCK_MIN_RCVBUF (2048 + sizeof(struct sk_buff))
1981
1982static inline void sk_stream_moderate_sndbuf(struct sock *sk)
1983{
1984 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
1985 sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
1986 sk->sk_sndbuf = max(sk->sk_sndbuf, SOCK_MIN_SNDBUF);
1987 }
1988}
1989
1990struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp);
1991
1992static inline struct page *sk_stream_alloc_page(struct sock *sk)
1993{
1994 struct page *page = NULL;
1995
1996 page = alloc_pages(sk->sk_allocation, 0);
1997 if (!page) {
1998 sk_enter_memory_pressure(sk);
1999 sk_stream_moderate_sndbuf(sk);
2000 }
2001 return page;
2002}
2003
2004/*
2005 * Default write policy as shown to user space via poll/select/SIGIO
2006 */
2007static inline bool sock_writeable(const struct sock *sk)
2008{
2009 return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
2010}
2011
2012static inline gfp_t gfp_any(void)
2013{
2014 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2015}
2016
2017static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2018{
2019 return noblock ? 0 : sk->sk_rcvtimeo;
2020}
2021
2022static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2023{
2024 return noblock ? 0 : sk->sk_sndtimeo;
2025}
2026
2027static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2028{
2029 return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
2030}
2031
2032/* Alas, with timeout socket operations are not restartable.
2033 * Compare this to poll().
2034 */
2035static inline int sock_intr_errno(long timeo)
2036{
2037 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2038}
2039
2040extern void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2041 struct sk_buff *skb);
2042extern void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2043 struct sk_buff *skb);
2044
2045static inline void
2046sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2047{
2048 ktime_t kt = skb->tstamp;
2049 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2050
2051 /*
2052 * generate control messages if
2053 * - receive time stamping in software requested (SOCK_RCVTSTAMP
2054 * or SOCK_TIMESTAMPING_RX_SOFTWARE)
2055 * - software time stamp available and wanted
2056 * (SOCK_TIMESTAMPING_SOFTWARE)
2057 * - hardware time stamps available and wanted
2058 * (SOCK_TIMESTAMPING_SYS_HARDWARE or
2059 * SOCK_TIMESTAMPING_RAW_HARDWARE)
2060 */
2061 if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2062 sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE) ||
2063 (kt.tv64 && sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) ||
2064 (hwtstamps->hwtstamp.tv64 &&
2065 sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE)) ||
2066 (hwtstamps->syststamp.tv64 &&
2067 sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE)))
2068 __sock_recv_timestamp(msg, sk, skb);
2069 else
2070 sk->sk_stamp = kt;
2071
2072 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2073 __sock_recv_wifi_status(msg, sk, skb);
2074}
2075
2076extern void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2077 struct sk_buff *skb);
2078
2079static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2080 struct sk_buff *skb)
2081{
2082#define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL) | \
2083 (1UL << SOCK_RCVTSTAMP) | \
2084 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE) | \
2085 (1UL << SOCK_TIMESTAMPING_SOFTWARE) | \
2086 (1UL << SOCK_TIMESTAMPING_RAW_HARDWARE) | \
2087 (1UL << SOCK_TIMESTAMPING_SYS_HARDWARE))
2088
2089 if (sk->sk_flags & FLAGS_TS_OR_DROPS)
2090 __sock_recv_ts_and_drops(msg, sk, skb);
2091 else
2092 sk->sk_stamp = skb->tstamp;
2093}
2094
2095/**
2096 * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2097 * @sk: socket sending this packet
2098 * @tx_flags: filled with instructions for time stamping
2099 *
2100 * Currently only depends on SOCK_TIMESTAMPING* flags. Returns error code if
2101 * parameters are invalid.
2102 */
2103extern int sock_tx_timestamp(struct sock *sk, __u8 *tx_flags);
2104
2105/**
2106 * sk_eat_skb - Release a skb if it is no longer needed
2107 * @sk: socket to eat this skb from
2108 * @skb: socket buffer to eat
2109 * @copied_early: flag indicating whether DMA operations copied this data early
2110 *
2111 * This routine must be called with interrupts disabled or with the socket
2112 * locked so that the sk_buff queue operation is ok.
2113*/
2114#ifdef CONFIG_NET_DMA
2115static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, bool copied_early)
2116{
2117 __skb_unlink(skb, &sk->sk_receive_queue);
2118 if (!copied_early)
2119 __kfree_skb(skb);
2120 else
2121 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
2122}
2123#else
2124static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, bool copied_early)
2125{
2126 __skb_unlink(skb, &sk->sk_receive_queue);
2127 __kfree_skb(skb);
2128}
2129#endif
2130
2131static inline
2132struct net *sock_net(const struct sock *sk)
2133{
2134 return read_pnet(&sk->sk_net);
2135}
2136
2137static inline
2138void sock_net_set(struct sock *sk, struct net *net)
2139{
2140 write_pnet(&sk->sk_net, net);
2141}
2142
2143/*
2144 * Kernel sockets, f.e. rtnl or icmp_socket, are a part of a namespace.
2145 * They should not hold a reference to a namespace in order to allow
2146 * to stop it.
2147 * Sockets after sk_change_net should be released using sk_release_kernel
2148 */
2149static inline void sk_change_net(struct sock *sk, struct net *net)
2150{
2151 put_net(sock_net(sk));
2152 sock_net_set(sk, hold_net(net));
2153}
2154
2155static inline struct sock *skb_steal_sock(struct sk_buff *skb)
2156{
2157 if (unlikely(skb->sk)) {
2158 struct sock *sk = skb->sk;
2159
2160 skb->destructor = NULL;
2161 skb->sk = NULL;
2162 return sk;
2163 }
2164 return NULL;
2165}
2166
2167extern void sock_enable_timestamp(struct sock *sk, int flag);
2168extern int sock_get_timestamp(struct sock *, struct timeval __user *);
2169extern int sock_get_timestampns(struct sock *, struct timespec __user *);
2170
2171/*
2172 * Enable debug/info messages
2173 */
2174extern int net_msg_warn;
2175#define NETDEBUG(fmt, args...) \
2176 do { if (net_msg_warn) printk(fmt,##args); } while (0)
2177
2178#define LIMIT_NETDEBUG(fmt, args...) \
2179 do { if (net_msg_warn && net_ratelimit()) printk(fmt,##args); } while(0)
2180
2181extern __u32 sysctl_wmem_max;
2182extern __u32 sysctl_rmem_max;
2183
2184extern void sk_init(void);
2185
2186extern int sysctl_optmem_max;
2187
2188extern __u32 sysctl_wmem_default;
2189extern __u32 sysctl_rmem_default;
2190
2191#endif /* _SOCK_H */
1/* SPDX-License-Identifier: GPL-2.0-or-later */
2/*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Definitions for the AF_INET socket handler.
8 *
9 * Version: @(#)sock.h 1.0.4 05/13/93
10 *
11 * Authors: Ross Biro
12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Florian La Roche <flla@stud.uni-sb.de>
15 *
16 * Fixes:
17 * Alan Cox : Volatiles in skbuff pointers. See
18 * skbuff comments. May be overdone,
19 * better to prove they can be removed
20 * than the reverse.
21 * Alan Cox : Added a zapped field for tcp to note
22 * a socket is reset and must stay shut up
23 * Alan Cox : New fields for options
24 * Pauline Middelink : identd support
25 * Alan Cox : Eliminate low level recv/recvfrom
26 * David S. Miller : New socket lookup architecture.
27 * Steve Whitehouse: Default routines for sock_ops
28 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made
29 * protinfo be just a void pointer, as the
30 * protocol specific parts were moved to
31 * respective headers and ipv4/v6, etc now
32 * use private slabcaches for its socks
33 * Pedro Hortas : New flags field for socket options
34 */
35#ifndef _SOCK_H
36#define _SOCK_H
37
38#include <linux/hardirq.h>
39#include <linux/kernel.h>
40#include <linux/list.h>
41#include <linux/list_nulls.h>
42#include <linux/timer.h>
43#include <linux/cache.h>
44#include <linux/bitops.h>
45#include <linux/lockdep.h>
46#include <linux/netdevice.h>
47#include <linux/skbuff.h> /* struct sk_buff */
48#include <linux/mm.h>
49#include <linux/security.h>
50#include <linux/slab.h>
51#include <linux/uaccess.h>
52#include <linux/page_counter.h>
53#include <linux/memcontrol.h>
54#include <linux/static_key.h>
55#include <linux/sched.h>
56#include <linux/wait.h>
57#include <linux/cgroup-defs.h>
58#include <linux/rbtree.h>
59#include <linux/rculist_nulls.h>
60#include <linux/poll.h>
61#include <linux/sockptr.h>
62#include <linux/indirect_call_wrapper.h>
63#include <linux/atomic.h>
64#include <linux/refcount.h>
65#include <linux/llist.h>
66#include <net/dst.h>
67#include <net/checksum.h>
68#include <net/tcp_states.h>
69#include <linux/net_tstamp.h>
70#include <net/l3mdev.h>
71#include <uapi/linux/socket.h>
72
73/*
74 * This structure really needs to be cleaned up.
75 * Most of it is for TCP, and not used by any of
76 * the other protocols.
77 */
78
79/* This is the per-socket lock. The spinlock provides a synchronization
80 * between user contexts and software interrupt processing, whereas the
81 * mini-semaphore synchronizes multiple users amongst themselves.
82 */
83typedef struct {
84 spinlock_t slock;
85 int owned;
86 wait_queue_head_t wq;
87 /*
88 * We express the mutex-alike socket_lock semantics
89 * to the lock validator by explicitly managing
90 * the slock as a lock variant (in addition to
91 * the slock itself):
92 */
93#ifdef CONFIG_DEBUG_LOCK_ALLOC
94 struct lockdep_map dep_map;
95#endif
96} socket_lock_t;
97
98struct sock;
99struct proto;
100struct net;
101
102typedef __u32 __bitwise __portpair;
103typedef __u64 __bitwise __addrpair;
104
105/**
106 * struct sock_common - minimal network layer representation of sockets
107 * @skc_daddr: Foreign IPv4 addr
108 * @skc_rcv_saddr: Bound local IPv4 addr
109 * @skc_addrpair: 8-byte-aligned __u64 union of @skc_daddr & @skc_rcv_saddr
110 * @skc_hash: hash value used with various protocol lookup tables
111 * @skc_u16hashes: two u16 hash values used by UDP lookup tables
112 * @skc_dport: placeholder for inet_dport/tw_dport
113 * @skc_num: placeholder for inet_num/tw_num
114 * @skc_portpair: __u32 union of @skc_dport & @skc_num
115 * @skc_family: network address family
116 * @skc_state: Connection state
117 * @skc_reuse: %SO_REUSEADDR setting
118 * @skc_reuseport: %SO_REUSEPORT setting
119 * @skc_ipv6only: socket is IPV6 only
120 * @skc_net_refcnt: socket is using net ref counting
121 * @skc_bound_dev_if: bound device index if != 0
122 * @skc_bind_node: bind hash linkage for various protocol lookup tables
123 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
124 * @skc_prot: protocol handlers inside a network family
125 * @skc_net: reference to the network namespace of this socket
126 * @skc_v6_daddr: IPV6 destination address
127 * @skc_v6_rcv_saddr: IPV6 source address
128 * @skc_cookie: socket's cookie value
129 * @skc_node: main hash linkage for various protocol lookup tables
130 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
131 * @skc_tx_queue_mapping: tx queue number for this connection
132 * @skc_rx_queue_mapping: rx queue number for this connection
133 * @skc_flags: place holder for sk_flags
134 * %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
135 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
136 * @skc_listener: connection request listener socket (aka rsk_listener)
137 * [union with @skc_flags]
138 * @skc_tw_dr: (aka tw_dr) ptr to &struct inet_timewait_death_row
139 * [union with @skc_flags]
140 * @skc_incoming_cpu: record/match cpu processing incoming packets
141 * @skc_rcv_wnd: (aka rsk_rcv_wnd) TCP receive window size (possibly scaled)
142 * [union with @skc_incoming_cpu]
143 * @skc_tw_rcv_nxt: (aka tw_rcv_nxt) TCP window next expected seq number
144 * [union with @skc_incoming_cpu]
145 * @skc_refcnt: reference count
146 *
147 * This is the minimal network layer representation of sockets, the header
148 * for struct sock and struct inet_timewait_sock.
149 */
150struct sock_common {
151 union {
152 __addrpair skc_addrpair;
153 struct {
154 __be32 skc_daddr;
155 __be32 skc_rcv_saddr;
156 };
157 };
158 union {
159 unsigned int skc_hash;
160 __u16 skc_u16hashes[2];
161 };
162 /* skc_dport && skc_num must be grouped as well */
163 union {
164 __portpair skc_portpair;
165 struct {
166 __be16 skc_dport;
167 __u16 skc_num;
168 };
169 };
170
171 unsigned short skc_family;
172 volatile unsigned char skc_state;
173 unsigned char skc_reuse:4;
174 unsigned char skc_reuseport:1;
175 unsigned char skc_ipv6only:1;
176 unsigned char skc_net_refcnt:1;
177 int skc_bound_dev_if;
178 union {
179 struct hlist_node skc_bind_node;
180 struct hlist_node skc_portaddr_node;
181 };
182 struct proto *skc_prot;
183 possible_net_t skc_net;
184
185#if IS_ENABLED(CONFIG_IPV6)
186 struct in6_addr skc_v6_daddr;
187 struct in6_addr skc_v6_rcv_saddr;
188#endif
189
190 atomic64_t skc_cookie;
191
192 /* following fields are padding to force
193 * offset(struct sock, sk_refcnt) == 128 on 64bit arches
194 * assuming IPV6 is enabled. We use this padding differently
195 * for different kind of 'sockets'
196 */
197 union {
198 unsigned long skc_flags;
199 struct sock *skc_listener; /* request_sock */
200 struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
201 };
202 /*
203 * fields between dontcopy_begin/dontcopy_end
204 * are not copied in sock_copy()
205 */
206 /* private: */
207 int skc_dontcopy_begin[0];
208 /* public: */
209 union {
210 struct hlist_node skc_node;
211 struct hlist_nulls_node skc_nulls_node;
212 };
213 unsigned short skc_tx_queue_mapping;
214#ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
215 unsigned short skc_rx_queue_mapping;
216#endif
217 union {
218 int skc_incoming_cpu;
219 u32 skc_rcv_wnd;
220 u32 skc_tw_rcv_nxt; /* struct tcp_timewait_sock */
221 };
222
223 refcount_t skc_refcnt;
224 /* private: */
225 int skc_dontcopy_end[0];
226 union {
227 u32 skc_rxhash;
228 u32 skc_window_clamp;
229 u32 skc_tw_snd_nxt; /* struct tcp_timewait_sock */
230 };
231 /* public: */
232};
233
234struct bpf_local_storage;
235struct sk_filter;
236
237/**
238 * struct sock - network layer representation of sockets
239 * @__sk_common: shared layout with inet_timewait_sock
240 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
241 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
242 * @sk_lock: synchronizer
243 * @sk_kern_sock: True if sock is using kernel lock classes
244 * @sk_rcvbuf: size of receive buffer in bytes
245 * @sk_wq: sock wait queue and async head
246 * @sk_rx_dst: receive input route used by early demux
247 * @sk_rx_dst_ifindex: ifindex for @sk_rx_dst
248 * @sk_rx_dst_cookie: cookie for @sk_rx_dst
249 * @sk_dst_cache: destination cache
250 * @sk_dst_pending_confirm: need to confirm neighbour
251 * @sk_policy: flow policy
252 * @sk_receive_queue: incoming packets
253 * @sk_wmem_alloc: transmit queue bytes committed
254 * @sk_tsq_flags: TCP Small Queues flags
255 * @sk_write_queue: Packet sending queue
256 * @sk_omem_alloc: "o" is "option" or "other"
257 * @sk_wmem_queued: persistent queue size
258 * @sk_forward_alloc: space allocated forward
259 * @sk_reserved_mem: space reserved and non-reclaimable for the socket
260 * @sk_napi_id: id of the last napi context to receive data for sk
261 * @sk_ll_usec: usecs to busypoll when there is no data
262 * @sk_allocation: allocation mode
263 * @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
264 * @sk_pacing_status: Pacing status (requested, handled by sch_fq)
265 * @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
266 * @sk_sndbuf: size of send buffer in bytes
267 * @sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
268 * @sk_no_check_rx: allow zero checksum in RX packets
269 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
270 * @sk_gso_disabled: if set, NETIF_F_GSO_MASK is forbidden.
271 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
272 * @sk_gso_max_size: Maximum GSO segment size to build
273 * @sk_gso_max_segs: Maximum number of GSO segments
274 * @sk_pacing_shift: scaling factor for TCP Small Queues
275 * @sk_lingertime: %SO_LINGER l_linger setting
276 * @sk_backlog: always used with the per-socket spinlock held
277 * @sk_callback_lock: used with the callbacks in the end of this struct
278 * @sk_error_queue: rarely used
279 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
280 * IPV6_ADDRFORM for instance)
281 * @sk_err: last error
282 * @sk_err_soft: errors that don't cause failure but are the cause of a
283 * persistent failure not just 'timed out'
284 * @sk_drops: raw/udp drops counter
285 * @sk_ack_backlog: current listen backlog
286 * @sk_max_ack_backlog: listen backlog set in listen()
287 * @sk_uid: user id of owner
288 * @sk_prefer_busy_poll: prefer busypolling over softirq processing
289 * @sk_busy_poll_budget: napi processing budget when busypolling
290 * @sk_priority: %SO_PRIORITY setting
291 * @sk_type: socket type (%SOCK_STREAM, etc)
292 * @sk_protocol: which protocol this socket belongs in this network family
293 * @sk_peer_lock: lock protecting @sk_peer_pid and @sk_peer_cred
294 * @sk_peer_pid: &struct pid for this socket's peer
295 * @sk_peer_cred: %SO_PEERCRED setting
296 * @sk_rcvlowat: %SO_RCVLOWAT setting
297 * @sk_rcvtimeo: %SO_RCVTIMEO setting
298 * @sk_sndtimeo: %SO_SNDTIMEO setting
299 * @sk_txhash: computed flow hash for use on transmit
300 * @sk_txrehash: enable TX hash rethink
301 * @sk_filter: socket filtering instructions
302 * @sk_timer: sock cleanup timer
303 * @sk_stamp: time stamp of last packet received
304 * @sk_stamp_seq: lock for accessing sk_stamp on 32 bit architectures only
305 * @sk_tsflags: SO_TIMESTAMPING flags
306 * @sk_use_task_frag: allow sk_page_frag() to use current->task_frag.
307 * Sockets that can be used under memory reclaim should
308 * set this to false.
309 * @sk_bind_phc: SO_TIMESTAMPING bind PHC index of PTP virtual clock
310 * for timestamping
311 * @sk_tskey: counter to disambiguate concurrent tstamp requests
312 * @sk_zckey: counter to order MSG_ZEROCOPY notifications
313 * @sk_socket: Identd and reporting IO signals
314 * @sk_user_data: RPC layer private data. Write-protected by @sk_callback_lock.
315 * @sk_frag: cached page frag
316 * @sk_peek_off: current peek_offset value
317 * @sk_send_head: front of stuff to transmit
318 * @tcp_rtx_queue: TCP re-transmit queue [union with @sk_send_head]
319 * @sk_security: used by security modules
320 * @sk_mark: generic packet mark
321 * @sk_cgrp_data: cgroup data for this cgroup
322 * @sk_memcg: this socket's memory cgroup association
323 * @sk_write_pending: a write to stream socket waits to start
324 * @sk_disconnects: number of disconnect operations performed on this sock
325 * @sk_state_change: callback to indicate change in the state of the sock
326 * @sk_data_ready: callback to indicate there is data to be processed
327 * @sk_write_space: callback to indicate there is bf sending space available
328 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
329 * @sk_backlog_rcv: callback to process the backlog
330 * @sk_validate_xmit_skb: ptr to an optional validate function
331 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
332 * @sk_reuseport_cb: reuseport group container
333 * @sk_bpf_storage: ptr to cache and control for bpf_sk_storage
334 * @sk_rcu: used during RCU grace period
335 * @sk_clockid: clockid used by time-based scheduling (SO_TXTIME)
336 * @sk_txtime_deadline_mode: set deadline mode for SO_TXTIME
337 * @sk_txtime_report_errors: set report errors mode for SO_TXTIME
338 * @sk_txtime_unused: unused txtime flags
339 * @ns_tracker: tracker for netns reference
340 */
341struct sock {
342 /*
343 * Now struct inet_timewait_sock also uses sock_common, so please just
344 * don't add nothing before this first member (__sk_common) --acme
345 */
346 struct sock_common __sk_common;
347#define sk_node __sk_common.skc_node
348#define sk_nulls_node __sk_common.skc_nulls_node
349#define sk_refcnt __sk_common.skc_refcnt
350#define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping
351#ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
352#define sk_rx_queue_mapping __sk_common.skc_rx_queue_mapping
353#endif
354
355#define sk_dontcopy_begin __sk_common.skc_dontcopy_begin
356#define sk_dontcopy_end __sk_common.skc_dontcopy_end
357#define sk_hash __sk_common.skc_hash
358#define sk_portpair __sk_common.skc_portpair
359#define sk_num __sk_common.skc_num
360#define sk_dport __sk_common.skc_dport
361#define sk_addrpair __sk_common.skc_addrpair
362#define sk_daddr __sk_common.skc_daddr
363#define sk_rcv_saddr __sk_common.skc_rcv_saddr
364#define sk_family __sk_common.skc_family
365#define sk_state __sk_common.skc_state
366#define sk_reuse __sk_common.skc_reuse
367#define sk_reuseport __sk_common.skc_reuseport
368#define sk_ipv6only __sk_common.skc_ipv6only
369#define sk_net_refcnt __sk_common.skc_net_refcnt
370#define sk_bound_dev_if __sk_common.skc_bound_dev_if
371#define sk_bind_node __sk_common.skc_bind_node
372#define sk_prot __sk_common.skc_prot
373#define sk_net __sk_common.skc_net
374#define sk_v6_daddr __sk_common.skc_v6_daddr
375#define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr
376#define sk_cookie __sk_common.skc_cookie
377#define sk_incoming_cpu __sk_common.skc_incoming_cpu
378#define sk_flags __sk_common.skc_flags
379#define sk_rxhash __sk_common.skc_rxhash
380
381 __cacheline_group_begin(sock_write_rx);
382
383 atomic_t sk_drops;
384 __s32 sk_peek_off;
385 struct sk_buff_head sk_error_queue;
386 struct sk_buff_head sk_receive_queue;
387 /*
388 * The backlog queue is special, it is always used with
389 * the per-socket spinlock held and requires low latency
390 * access. Therefore we special case it's implementation.
391 * Note : rmem_alloc is in this structure to fill a hole
392 * on 64bit arches, not because its logically part of
393 * backlog.
394 */
395 struct {
396 atomic_t rmem_alloc;
397 int len;
398 struct sk_buff *head;
399 struct sk_buff *tail;
400 } sk_backlog;
401#define sk_rmem_alloc sk_backlog.rmem_alloc
402
403 __cacheline_group_end(sock_write_rx);
404
405 __cacheline_group_begin(sock_read_rx);
406 /* early demux fields */
407 struct dst_entry __rcu *sk_rx_dst;
408 int sk_rx_dst_ifindex;
409 u32 sk_rx_dst_cookie;
410
411#ifdef CONFIG_NET_RX_BUSY_POLL
412 unsigned int sk_ll_usec;
413 unsigned int sk_napi_id;
414 u16 sk_busy_poll_budget;
415 u8 sk_prefer_busy_poll;
416#endif
417 u8 sk_userlocks;
418 int sk_rcvbuf;
419
420 struct sk_filter __rcu *sk_filter;
421 union {
422 struct socket_wq __rcu *sk_wq;
423 /* private: */
424 struct socket_wq *sk_wq_raw;
425 /* public: */
426 };
427
428 void (*sk_data_ready)(struct sock *sk);
429 long sk_rcvtimeo;
430 int sk_rcvlowat;
431 __cacheline_group_end(sock_read_rx);
432
433 __cacheline_group_begin(sock_read_rxtx);
434 int sk_err;
435 struct socket *sk_socket;
436 struct mem_cgroup *sk_memcg;
437#ifdef CONFIG_XFRM
438 struct xfrm_policy __rcu *sk_policy[2];
439#endif
440 __cacheline_group_end(sock_read_rxtx);
441
442 __cacheline_group_begin(sock_write_rxtx);
443 socket_lock_t sk_lock;
444 u32 sk_reserved_mem;
445 int sk_forward_alloc;
446 u32 sk_tsflags;
447 __cacheline_group_end(sock_write_rxtx);
448
449 __cacheline_group_begin(sock_write_tx);
450 int sk_write_pending;
451 atomic_t sk_omem_alloc;
452 int sk_sndbuf;
453
454 int sk_wmem_queued;
455 refcount_t sk_wmem_alloc;
456 unsigned long sk_tsq_flags;
457 union {
458 struct sk_buff *sk_send_head;
459 struct rb_root tcp_rtx_queue;
460 };
461 struct sk_buff_head sk_write_queue;
462 u32 sk_dst_pending_confirm;
463 u32 sk_pacing_status; /* see enum sk_pacing */
464 struct page_frag sk_frag;
465 struct timer_list sk_timer;
466
467 unsigned long sk_pacing_rate; /* bytes per second */
468 atomic_t sk_zckey;
469 atomic_t sk_tskey;
470 __cacheline_group_end(sock_write_tx);
471
472 __cacheline_group_begin(sock_read_tx);
473 unsigned long sk_max_pacing_rate;
474 long sk_sndtimeo;
475 u32 sk_priority;
476 u32 sk_mark;
477 struct dst_entry __rcu *sk_dst_cache;
478 netdev_features_t sk_route_caps;
479#ifdef CONFIG_SOCK_VALIDATE_XMIT
480 struct sk_buff* (*sk_validate_xmit_skb)(struct sock *sk,
481 struct net_device *dev,
482 struct sk_buff *skb);
483#endif
484 u16 sk_gso_type;
485 u16 sk_gso_max_segs;
486 unsigned int sk_gso_max_size;
487 gfp_t sk_allocation;
488 u32 sk_txhash;
489 u8 sk_pacing_shift;
490 bool sk_use_task_frag;
491 __cacheline_group_end(sock_read_tx);
492
493 /*
494 * Because of non atomicity rules, all
495 * changes are protected by socket lock.
496 */
497 u8 sk_gso_disabled : 1,
498 sk_kern_sock : 1,
499 sk_no_check_tx : 1,
500 sk_no_check_rx : 1;
501 u8 sk_shutdown;
502 u16 sk_type;
503 u16 sk_protocol;
504 unsigned long sk_lingertime;
505 struct proto *sk_prot_creator;
506 rwlock_t sk_callback_lock;
507 int sk_err_soft;
508 u32 sk_ack_backlog;
509 u32 sk_max_ack_backlog;
510 kuid_t sk_uid;
511 spinlock_t sk_peer_lock;
512 int sk_bind_phc;
513 struct pid *sk_peer_pid;
514 const struct cred *sk_peer_cred;
515
516 ktime_t sk_stamp;
517#if BITS_PER_LONG==32
518 seqlock_t sk_stamp_seq;
519#endif
520 int sk_disconnects;
521
522 u8 sk_txrehash;
523 u8 sk_clockid;
524 u8 sk_txtime_deadline_mode : 1,
525 sk_txtime_report_errors : 1,
526 sk_txtime_unused : 6;
527
528 void *sk_user_data;
529#ifdef CONFIG_SECURITY
530 void *sk_security;
531#endif
532 struct sock_cgroup_data sk_cgrp_data;
533 void (*sk_state_change)(struct sock *sk);
534 void (*sk_write_space)(struct sock *sk);
535 void (*sk_error_report)(struct sock *sk);
536 int (*sk_backlog_rcv)(struct sock *sk,
537 struct sk_buff *skb);
538 void (*sk_destruct)(struct sock *sk);
539 struct sock_reuseport __rcu *sk_reuseport_cb;
540#ifdef CONFIG_BPF_SYSCALL
541 struct bpf_local_storage __rcu *sk_bpf_storage;
542#endif
543 struct rcu_head sk_rcu;
544 netns_tracker ns_tracker;
545};
546
547enum sk_pacing {
548 SK_PACING_NONE = 0,
549 SK_PACING_NEEDED = 1,
550 SK_PACING_FQ = 2,
551};
552
553/* flag bits in sk_user_data
554 *
555 * - SK_USER_DATA_NOCOPY: Pointer stored in sk_user_data might
556 * not be suitable for copying when cloning the socket. For instance,
557 * it can point to a reference counted object. sk_user_data bottom
558 * bit is set if pointer must not be copied.
559 *
560 * - SK_USER_DATA_BPF: Mark whether sk_user_data field is
561 * managed/owned by a BPF reuseport array. This bit should be set
562 * when sk_user_data's sk is added to the bpf's reuseport_array.
563 *
564 * - SK_USER_DATA_PSOCK: Mark whether pointer stored in
565 * sk_user_data points to psock type. This bit should be set
566 * when sk_user_data is assigned to a psock object.
567 */
568#define SK_USER_DATA_NOCOPY 1UL
569#define SK_USER_DATA_BPF 2UL
570#define SK_USER_DATA_PSOCK 4UL
571#define SK_USER_DATA_PTRMASK ~(SK_USER_DATA_NOCOPY | SK_USER_DATA_BPF |\
572 SK_USER_DATA_PSOCK)
573
574/**
575 * sk_user_data_is_nocopy - Test if sk_user_data pointer must not be copied
576 * @sk: socket
577 */
578static inline bool sk_user_data_is_nocopy(const struct sock *sk)
579{
580 return ((uintptr_t)sk->sk_user_data & SK_USER_DATA_NOCOPY);
581}
582
583#define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
584
585/**
586 * __locked_read_sk_user_data_with_flags - return the pointer
587 * only if argument flags all has been set in sk_user_data. Otherwise
588 * return NULL
589 *
590 * @sk: socket
591 * @flags: flag bits
592 *
593 * The caller must be holding sk->sk_callback_lock.
594 */
595static inline void *
596__locked_read_sk_user_data_with_flags(const struct sock *sk,
597 uintptr_t flags)
598{
599 uintptr_t sk_user_data =
600 (uintptr_t)rcu_dereference_check(__sk_user_data(sk),
601 lockdep_is_held(&sk->sk_callback_lock));
602
603 WARN_ON_ONCE(flags & SK_USER_DATA_PTRMASK);
604
605 if ((sk_user_data & flags) == flags)
606 return (void *)(sk_user_data & SK_USER_DATA_PTRMASK);
607 return NULL;
608}
609
610/**
611 * __rcu_dereference_sk_user_data_with_flags - return the pointer
612 * only if argument flags all has been set in sk_user_data. Otherwise
613 * return NULL
614 *
615 * @sk: socket
616 * @flags: flag bits
617 */
618static inline void *
619__rcu_dereference_sk_user_data_with_flags(const struct sock *sk,
620 uintptr_t flags)
621{
622 uintptr_t sk_user_data = (uintptr_t)rcu_dereference(__sk_user_data(sk));
623
624 WARN_ON_ONCE(flags & SK_USER_DATA_PTRMASK);
625
626 if ((sk_user_data & flags) == flags)
627 return (void *)(sk_user_data & SK_USER_DATA_PTRMASK);
628 return NULL;
629}
630
631#define rcu_dereference_sk_user_data(sk) \
632 __rcu_dereference_sk_user_data_with_flags(sk, 0)
633#define __rcu_assign_sk_user_data_with_flags(sk, ptr, flags) \
634({ \
635 uintptr_t __tmp1 = (uintptr_t)(ptr), \
636 __tmp2 = (uintptr_t)(flags); \
637 WARN_ON_ONCE(__tmp1 & ~SK_USER_DATA_PTRMASK); \
638 WARN_ON_ONCE(__tmp2 & SK_USER_DATA_PTRMASK); \
639 rcu_assign_pointer(__sk_user_data((sk)), \
640 __tmp1 | __tmp2); \
641})
642#define rcu_assign_sk_user_data(sk, ptr) \
643 __rcu_assign_sk_user_data_with_flags(sk, ptr, 0)
644
645static inline
646struct net *sock_net(const struct sock *sk)
647{
648 return read_pnet(&sk->sk_net);
649}
650
651static inline
652void sock_net_set(struct sock *sk, struct net *net)
653{
654 write_pnet(&sk->sk_net, net);
655}
656
657/*
658 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
659 * or not whether his port will be reused by someone else. SK_FORCE_REUSE
660 * on a socket means that the socket will reuse everybody else's port
661 * without looking at the other's sk_reuse value.
662 */
663
664#define SK_NO_REUSE 0
665#define SK_CAN_REUSE 1
666#define SK_FORCE_REUSE 2
667
668int sk_set_peek_off(struct sock *sk, int val);
669
670static inline int sk_peek_offset(const struct sock *sk, int flags)
671{
672 if (unlikely(flags & MSG_PEEK)) {
673 return READ_ONCE(sk->sk_peek_off);
674 }
675
676 return 0;
677}
678
679static inline void sk_peek_offset_bwd(struct sock *sk, int val)
680{
681 s32 off = READ_ONCE(sk->sk_peek_off);
682
683 if (unlikely(off >= 0)) {
684 off = max_t(s32, off - val, 0);
685 WRITE_ONCE(sk->sk_peek_off, off);
686 }
687}
688
689static inline void sk_peek_offset_fwd(struct sock *sk, int val)
690{
691 sk_peek_offset_bwd(sk, -val);
692}
693
694/*
695 * Hashed lists helper routines
696 */
697static inline struct sock *sk_entry(const struct hlist_node *node)
698{
699 return hlist_entry(node, struct sock, sk_node);
700}
701
702static inline struct sock *__sk_head(const struct hlist_head *head)
703{
704 return hlist_entry(head->first, struct sock, sk_node);
705}
706
707static inline struct sock *sk_head(const struct hlist_head *head)
708{
709 return hlist_empty(head) ? NULL : __sk_head(head);
710}
711
712static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
713{
714 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
715}
716
717static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
718{
719 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
720}
721
722static inline struct sock *sk_next(const struct sock *sk)
723{
724 return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node);
725}
726
727static inline struct sock *sk_nulls_next(const struct sock *sk)
728{
729 return (!is_a_nulls(sk->sk_nulls_node.next)) ?
730 hlist_nulls_entry(sk->sk_nulls_node.next,
731 struct sock, sk_nulls_node) :
732 NULL;
733}
734
735static inline bool sk_unhashed(const struct sock *sk)
736{
737 return hlist_unhashed(&sk->sk_node);
738}
739
740static inline bool sk_hashed(const struct sock *sk)
741{
742 return !sk_unhashed(sk);
743}
744
745static inline void sk_node_init(struct hlist_node *node)
746{
747 node->pprev = NULL;
748}
749
750static inline void __sk_del_node(struct sock *sk)
751{
752 __hlist_del(&sk->sk_node);
753}
754
755/* NB: equivalent to hlist_del_init_rcu */
756static inline bool __sk_del_node_init(struct sock *sk)
757{
758 if (sk_hashed(sk)) {
759 __sk_del_node(sk);
760 sk_node_init(&sk->sk_node);
761 return true;
762 }
763 return false;
764}
765
766/* Grab socket reference count. This operation is valid only
767 when sk is ALREADY grabbed f.e. it is found in hash table
768 or a list and the lookup is made under lock preventing hash table
769 modifications.
770 */
771
772static __always_inline void sock_hold(struct sock *sk)
773{
774 refcount_inc(&sk->sk_refcnt);
775}
776
777/* Ungrab socket in the context, which assumes that socket refcnt
778 cannot hit zero, f.e. it is true in context of any socketcall.
779 */
780static __always_inline void __sock_put(struct sock *sk)
781{
782 refcount_dec(&sk->sk_refcnt);
783}
784
785static inline bool sk_del_node_init(struct sock *sk)
786{
787 bool rc = __sk_del_node_init(sk);
788
789 if (rc) {
790 /* paranoid for a while -acme */
791 WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
792 __sock_put(sk);
793 }
794 return rc;
795}
796#define sk_del_node_init_rcu(sk) sk_del_node_init(sk)
797
798static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
799{
800 if (sk_hashed(sk)) {
801 hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
802 return true;
803 }
804 return false;
805}
806
807static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
808{
809 bool rc = __sk_nulls_del_node_init_rcu(sk);
810
811 if (rc) {
812 /* paranoid for a while -acme */
813 WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
814 __sock_put(sk);
815 }
816 return rc;
817}
818
819static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
820{
821 hlist_add_head(&sk->sk_node, list);
822}
823
824static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
825{
826 sock_hold(sk);
827 __sk_add_node(sk, list);
828}
829
830static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
831{
832 sock_hold(sk);
833 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
834 sk->sk_family == AF_INET6)
835 hlist_add_tail_rcu(&sk->sk_node, list);
836 else
837 hlist_add_head_rcu(&sk->sk_node, list);
838}
839
840static inline void sk_add_node_tail_rcu(struct sock *sk, struct hlist_head *list)
841{
842 sock_hold(sk);
843 hlist_add_tail_rcu(&sk->sk_node, list);
844}
845
846static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
847{
848 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
849}
850
851static inline void __sk_nulls_add_node_tail_rcu(struct sock *sk, struct hlist_nulls_head *list)
852{
853 hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list);
854}
855
856static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
857{
858 sock_hold(sk);
859 __sk_nulls_add_node_rcu(sk, list);
860}
861
862static inline void __sk_del_bind_node(struct sock *sk)
863{
864 __hlist_del(&sk->sk_bind_node);
865}
866
867static inline void sk_add_bind_node(struct sock *sk,
868 struct hlist_head *list)
869{
870 hlist_add_head(&sk->sk_bind_node, list);
871}
872
873#define sk_for_each(__sk, list) \
874 hlist_for_each_entry(__sk, list, sk_node)
875#define sk_for_each_rcu(__sk, list) \
876 hlist_for_each_entry_rcu(__sk, list, sk_node)
877#define sk_nulls_for_each(__sk, node, list) \
878 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
879#define sk_nulls_for_each_rcu(__sk, node, list) \
880 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
881#define sk_for_each_from(__sk) \
882 hlist_for_each_entry_from(__sk, sk_node)
883#define sk_nulls_for_each_from(__sk, node) \
884 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
885 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
886#define sk_for_each_safe(__sk, tmp, list) \
887 hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
888#define sk_for_each_bound(__sk, list) \
889 hlist_for_each_entry(__sk, list, sk_bind_node)
890
891/**
892 * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
893 * @tpos: the type * to use as a loop cursor.
894 * @pos: the &struct hlist_node to use as a loop cursor.
895 * @head: the head for your list.
896 * @offset: offset of hlist_node within the struct.
897 *
898 */
899#define sk_for_each_entry_offset_rcu(tpos, pos, head, offset) \
900 for (pos = rcu_dereference(hlist_first_rcu(head)); \
901 pos != NULL && \
902 ({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;}); \
903 pos = rcu_dereference(hlist_next_rcu(pos)))
904
905static inline struct user_namespace *sk_user_ns(const struct sock *sk)
906{
907 /* Careful only use this in a context where these parameters
908 * can not change and must all be valid, such as recvmsg from
909 * userspace.
910 */
911 return sk->sk_socket->file->f_cred->user_ns;
912}
913
914/* Sock flags */
915enum sock_flags {
916 SOCK_DEAD,
917 SOCK_DONE,
918 SOCK_URGINLINE,
919 SOCK_KEEPOPEN,
920 SOCK_LINGER,
921 SOCK_DESTROY,
922 SOCK_BROADCAST,
923 SOCK_TIMESTAMP,
924 SOCK_ZAPPED,
925 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
926 SOCK_DBG, /* %SO_DEBUG setting */
927 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
928 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
929 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
930 SOCK_MEMALLOC, /* VM depends on this socket for swapping */
931 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */
932 SOCK_FASYNC, /* fasync() active */
933 SOCK_RXQ_OVFL,
934 SOCK_ZEROCOPY, /* buffers from userspace */
935 SOCK_WIFI_STATUS, /* push wifi status to userspace */
936 SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
937 * Will use last 4 bytes of packet sent from
938 * user-space instead.
939 */
940 SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
941 SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
942 SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */
943 SOCK_TXTIME,
944 SOCK_XDP, /* XDP is attached */
945 SOCK_TSTAMP_NEW, /* Indicates 64 bit timestamps always */
946 SOCK_RCVMARK, /* Receive SO_MARK ancillary data with packet */
947};
948
949#define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
950
951static inline void sock_copy_flags(struct sock *nsk, const struct sock *osk)
952{
953 nsk->sk_flags = osk->sk_flags;
954}
955
956static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
957{
958 __set_bit(flag, &sk->sk_flags);
959}
960
961static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
962{
963 __clear_bit(flag, &sk->sk_flags);
964}
965
966static inline void sock_valbool_flag(struct sock *sk, enum sock_flags bit,
967 int valbool)
968{
969 if (valbool)
970 sock_set_flag(sk, bit);
971 else
972 sock_reset_flag(sk, bit);
973}
974
975static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
976{
977 return test_bit(flag, &sk->sk_flags);
978}
979
980#ifdef CONFIG_NET
981DECLARE_STATIC_KEY_FALSE(memalloc_socks_key);
982static inline int sk_memalloc_socks(void)
983{
984 return static_branch_unlikely(&memalloc_socks_key);
985}
986
987void __receive_sock(struct file *file);
988#else
989
990static inline int sk_memalloc_socks(void)
991{
992 return 0;
993}
994
995static inline void __receive_sock(struct file *file)
996{ }
997#endif
998
999static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
1000{
1001 return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
1002}
1003
1004static inline void sk_acceptq_removed(struct sock *sk)
1005{
1006 WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog - 1);
1007}
1008
1009static inline void sk_acceptq_added(struct sock *sk)
1010{
1011 WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog + 1);
1012}
1013
1014/* Note: If you think the test should be:
1015 * return READ_ONCE(sk->sk_ack_backlog) >= READ_ONCE(sk->sk_max_ack_backlog);
1016 * Then please take a look at commit 64a146513f8f ("[NET]: Revert incorrect accept queue backlog changes.")
1017 */
1018static inline bool sk_acceptq_is_full(const struct sock *sk)
1019{
1020 return READ_ONCE(sk->sk_ack_backlog) > READ_ONCE(sk->sk_max_ack_backlog);
1021}
1022
1023/*
1024 * Compute minimal free write space needed to queue new packets.
1025 */
1026static inline int sk_stream_min_wspace(const struct sock *sk)
1027{
1028 return READ_ONCE(sk->sk_wmem_queued) >> 1;
1029}
1030
1031static inline int sk_stream_wspace(const struct sock *sk)
1032{
1033 return READ_ONCE(sk->sk_sndbuf) - READ_ONCE(sk->sk_wmem_queued);
1034}
1035
1036static inline void sk_wmem_queued_add(struct sock *sk, int val)
1037{
1038 WRITE_ONCE(sk->sk_wmem_queued, sk->sk_wmem_queued + val);
1039}
1040
1041static inline void sk_forward_alloc_add(struct sock *sk, int val)
1042{
1043 /* Paired with lockless reads of sk->sk_forward_alloc */
1044 WRITE_ONCE(sk->sk_forward_alloc, sk->sk_forward_alloc + val);
1045}
1046
1047void sk_stream_write_space(struct sock *sk);
1048
1049/* OOB backlog add */
1050static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
1051{
1052 /* dont let skb dst not refcounted, we are going to leave rcu lock */
1053 skb_dst_force(skb);
1054
1055 if (!sk->sk_backlog.tail)
1056 WRITE_ONCE(sk->sk_backlog.head, skb);
1057 else
1058 sk->sk_backlog.tail->next = skb;
1059
1060 WRITE_ONCE(sk->sk_backlog.tail, skb);
1061 skb->next = NULL;
1062}
1063
1064/*
1065 * Take into account size of receive queue and backlog queue
1066 * Do not take into account this skb truesize,
1067 * to allow even a single big packet to come.
1068 */
1069static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
1070{
1071 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
1072
1073 return qsize > limit;
1074}
1075
1076/* The per-socket spinlock must be held here. */
1077static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
1078 unsigned int limit)
1079{
1080 if (sk_rcvqueues_full(sk, limit))
1081 return -ENOBUFS;
1082
1083 /*
1084 * If the skb was allocated from pfmemalloc reserves, only
1085 * allow SOCK_MEMALLOC sockets to use it as this socket is
1086 * helping free memory
1087 */
1088 if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
1089 return -ENOMEM;
1090
1091 __sk_add_backlog(sk, skb);
1092 sk->sk_backlog.len += skb->truesize;
1093 return 0;
1094}
1095
1096int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
1097
1098INDIRECT_CALLABLE_DECLARE(int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb));
1099INDIRECT_CALLABLE_DECLARE(int tcp_v6_do_rcv(struct sock *sk, struct sk_buff *skb));
1100
1101static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
1102{
1103 if (sk_memalloc_socks() && skb_pfmemalloc(skb))
1104 return __sk_backlog_rcv(sk, skb);
1105
1106 return INDIRECT_CALL_INET(sk->sk_backlog_rcv,
1107 tcp_v6_do_rcv,
1108 tcp_v4_do_rcv,
1109 sk, skb);
1110}
1111
1112static inline void sk_incoming_cpu_update(struct sock *sk)
1113{
1114 int cpu = raw_smp_processor_id();
1115
1116 if (unlikely(READ_ONCE(sk->sk_incoming_cpu) != cpu))
1117 WRITE_ONCE(sk->sk_incoming_cpu, cpu);
1118}
1119
1120
1121static inline void sock_rps_save_rxhash(struct sock *sk,
1122 const struct sk_buff *skb)
1123{
1124#ifdef CONFIG_RPS
1125 /* The following WRITE_ONCE() is paired with the READ_ONCE()
1126 * here, and another one in sock_rps_record_flow().
1127 */
1128 if (unlikely(READ_ONCE(sk->sk_rxhash) != skb->hash))
1129 WRITE_ONCE(sk->sk_rxhash, skb->hash);
1130#endif
1131}
1132
1133static inline void sock_rps_reset_rxhash(struct sock *sk)
1134{
1135#ifdef CONFIG_RPS
1136 /* Paired with READ_ONCE() in sock_rps_record_flow() */
1137 WRITE_ONCE(sk->sk_rxhash, 0);
1138#endif
1139}
1140
1141#define sk_wait_event(__sk, __timeo, __condition, __wait) \
1142 ({ int __rc, __dis = __sk->sk_disconnects; \
1143 release_sock(__sk); \
1144 __rc = __condition; \
1145 if (!__rc) { \
1146 *(__timeo) = wait_woken(__wait, \
1147 TASK_INTERRUPTIBLE, \
1148 *(__timeo)); \
1149 } \
1150 sched_annotate_sleep(); \
1151 lock_sock(__sk); \
1152 __rc = __dis == __sk->sk_disconnects ? __condition : -EPIPE; \
1153 __rc; \
1154 })
1155
1156int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
1157int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
1158void sk_stream_wait_close(struct sock *sk, long timeo_p);
1159int sk_stream_error(struct sock *sk, int flags, int err);
1160void sk_stream_kill_queues(struct sock *sk);
1161void sk_set_memalloc(struct sock *sk);
1162void sk_clear_memalloc(struct sock *sk);
1163
1164void __sk_flush_backlog(struct sock *sk);
1165
1166static inline bool sk_flush_backlog(struct sock *sk)
1167{
1168 if (unlikely(READ_ONCE(sk->sk_backlog.tail))) {
1169 __sk_flush_backlog(sk);
1170 return true;
1171 }
1172 return false;
1173}
1174
1175int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
1176
1177struct request_sock_ops;
1178struct timewait_sock_ops;
1179struct inet_hashinfo;
1180struct raw_hashinfo;
1181struct smc_hashinfo;
1182struct module;
1183struct sk_psock;
1184
1185/*
1186 * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes
1187 * un-modified. Special care is taken when initializing object to zero.
1188 */
1189static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1190{
1191 if (offsetof(struct sock, sk_node.next) != 0)
1192 memset(sk, 0, offsetof(struct sock, sk_node.next));
1193 memset(&sk->sk_node.pprev, 0,
1194 size - offsetof(struct sock, sk_node.pprev));
1195}
1196
1197/* Networking protocol blocks we attach to sockets.
1198 * socket layer -> transport layer interface
1199 */
1200struct proto {
1201 void (*close)(struct sock *sk,
1202 long timeout);
1203 int (*pre_connect)(struct sock *sk,
1204 struct sockaddr *uaddr,
1205 int addr_len);
1206 int (*connect)(struct sock *sk,
1207 struct sockaddr *uaddr,
1208 int addr_len);
1209 int (*disconnect)(struct sock *sk, int flags);
1210
1211 struct sock * (*accept)(struct sock *sk, int flags, int *err,
1212 bool kern);
1213
1214 int (*ioctl)(struct sock *sk, int cmd,
1215 int *karg);
1216 int (*init)(struct sock *sk);
1217 void (*destroy)(struct sock *sk);
1218 void (*shutdown)(struct sock *sk, int how);
1219 int (*setsockopt)(struct sock *sk, int level,
1220 int optname, sockptr_t optval,
1221 unsigned int optlen);
1222 int (*getsockopt)(struct sock *sk, int level,
1223 int optname, char __user *optval,
1224 int __user *option);
1225 void (*keepalive)(struct sock *sk, int valbool);
1226#ifdef CONFIG_COMPAT
1227 int (*compat_ioctl)(struct sock *sk,
1228 unsigned int cmd, unsigned long arg);
1229#endif
1230 int (*sendmsg)(struct sock *sk, struct msghdr *msg,
1231 size_t len);
1232 int (*recvmsg)(struct sock *sk, struct msghdr *msg,
1233 size_t len, int flags, int *addr_len);
1234 void (*splice_eof)(struct socket *sock);
1235 int (*bind)(struct sock *sk,
1236 struct sockaddr *addr, int addr_len);
1237 int (*bind_add)(struct sock *sk,
1238 struct sockaddr *addr, int addr_len);
1239
1240 int (*backlog_rcv) (struct sock *sk,
1241 struct sk_buff *skb);
1242 bool (*bpf_bypass_getsockopt)(int level,
1243 int optname);
1244
1245 void (*release_cb)(struct sock *sk);
1246
1247 /* Keeping track of sk's, looking them up, and port selection methods. */
1248 int (*hash)(struct sock *sk);
1249 void (*unhash)(struct sock *sk);
1250 void (*rehash)(struct sock *sk);
1251 int (*get_port)(struct sock *sk, unsigned short snum);
1252 void (*put_port)(struct sock *sk);
1253#ifdef CONFIG_BPF_SYSCALL
1254 int (*psock_update_sk_prot)(struct sock *sk,
1255 struct sk_psock *psock,
1256 bool restore);
1257#endif
1258
1259 /* Keeping track of sockets in use */
1260#ifdef CONFIG_PROC_FS
1261 unsigned int inuse_idx;
1262#endif
1263
1264#if IS_ENABLED(CONFIG_MPTCP)
1265 int (*forward_alloc_get)(const struct sock *sk);
1266#endif
1267
1268 bool (*stream_memory_free)(const struct sock *sk, int wake);
1269 bool (*sock_is_readable)(struct sock *sk);
1270 /* Memory pressure */
1271 void (*enter_memory_pressure)(struct sock *sk);
1272 void (*leave_memory_pressure)(struct sock *sk);
1273 atomic_long_t *memory_allocated; /* Current allocated memory. */
1274 int __percpu *per_cpu_fw_alloc;
1275 struct percpu_counter *sockets_allocated; /* Current number of sockets. */
1276
1277 /*
1278 * Pressure flag: try to collapse.
1279 * Technical note: it is used by multiple contexts non atomically.
1280 * Make sure to use READ_ONCE()/WRITE_ONCE() for all reads/writes.
1281 * All the __sk_mem_schedule() is of this nature: accounting
1282 * is strict, actions are advisory and have some latency.
1283 */
1284 unsigned long *memory_pressure;
1285 long *sysctl_mem;
1286
1287 int *sysctl_wmem;
1288 int *sysctl_rmem;
1289 u32 sysctl_wmem_offset;
1290 u32 sysctl_rmem_offset;
1291
1292 int max_header;
1293 bool no_autobind;
1294
1295 struct kmem_cache *slab;
1296 unsigned int obj_size;
1297 unsigned int ipv6_pinfo_offset;
1298 slab_flags_t slab_flags;
1299 unsigned int useroffset; /* Usercopy region offset */
1300 unsigned int usersize; /* Usercopy region size */
1301
1302 unsigned int __percpu *orphan_count;
1303
1304 struct request_sock_ops *rsk_prot;
1305 struct timewait_sock_ops *twsk_prot;
1306
1307 union {
1308 struct inet_hashinfo *hashinfo;
1309 struct udp_table *udp_table;
1310 struct raw_hashinfo *raw_hash;
1311 struct smc_hashinfo *smc_hash;
1312 } h;
1313
1314 struct module *owner;
1315
1316 char name[32];
1317
1318 struct list_head node;
1319 int (*diag_destroy)(struct sock *sk, int err);
1320} __randomize_layout;
1321
1322int proto_register(struct proto *prot, int alloc_slab);
1323void proto_unregister(struct proto *prot);
1324int sock_load_diag_module(int family, int protocol);
1325
1326INDIRECT_CALLABLE_DECLARE(bool tcp_stream_memory_free(const struct sock *sk, int wake));
1327
1328static inline int sk_forward_alloc_get(const struct sock *sk)
1329{
1330#if IS_ENABLED(CONFIG_MPTCP)
1331 if (sk->sk_prot->forward_alloc_get)
1332 return sk->sk_prot->forward_alloc_get(sk);
1333#endif
1334 return READ_ONCE(sk->sk_forward_alloc);
1335}
1336
1337static inline bool __sk_stream_memory_free(const struct sock *sk, int wake)
1338{
1339 if (READ_ONCE(sk->sk_wmem_queued) >= READ_ONCE(sk->sk_sndbuf))
1340 return false;
1341
1342 return sk->sk_prot->stream_memory_free ?
1343 INDIRECT_CALL_INET_1(sk->sk_prot->stream_memory_free,
1344 tcp_stream_memory_free, sk, wake) : true;
1345}
1346
1347static inline bool sk_stream_memory_free(const struct sock *sk)
1348{
1349 return __sk_stream_memory_free(sk, 0);
1350}
1351
1352static inline bool __sk_stream_is_writeable(const struct sock *sk, int wake)
1353{
1354 return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1355 __sk_stream_memory_free(sk, wake);
1356}
1357
1358static inline bool sk_stream_is_writeable(const struct sock *sk)
1359{
1360 return __sk_stream_is_writeable(sk, 0);
1361}
1362
1363static inline int sk_under_cgroup_hierarchy(struct sock *sk,
1364 struct cgroup *ancestor)
1365{
1366#ifdef CONFIG_SOCK_CGROUP_DATA
1367 return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data),
1368 ancestor);
1369#else
1370 return -ENOTSUPP;
1371#endif
1372}
1373
1374static inline bool sk_has_memory_pressure(const struct sock *sk)
1375{
1376 return sk->sk_prot->memory_pressure != NULL;
1377}
1378
1379static inline bool sk_under_global_memory_pressure(const struct sock *sk)
1380{
1381 return sk->sk_prot->memory_pressure &&
1382 !!READ_ONCE(*sk->sk_prot->memory_pressure);
1383}
1384
1385static inline bool sk_under_memory_pressure(const struct sock *sk)
1386{
1387 if (!sk->sk_prot->memory_pressure)
1388 return false;
1389
1390 if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
1391 mem_cgroup_under_socket_pressure(sk->sk_memcg))
1392 return true;
1393
1394 return !!READ_ONCE(*sk->sk_prot->memory_pressure);
1395}
1396
1397static inline long
1398proto_memory_allocated(const struct proto *prot)
1399{
1400 return max(0L, atomic_long_read(prot->memory_allocated));
1401}
1402
1403static inline long
1404sk_memory_allocated(const struct sock *sk)
1405{
1406 return proto_memory_allocated(sk->sk_prot);
1407}
1408
1409/* 1 MB per cpu, in page units */
1410#define SK_MEMORY_PCPU_RESERVE (1 << (20 - PAGE_SHIFT))
1411extern int sysctl_mem_pcpu_rsv;
1412
1413static inline void proto_memory_pcpu_drain(struct proto *proto)
1414{
1415 int val = this_cpu_xchg(*proto->per_cpu_fw_alloc, 0);
1416
1417 if (val)
1418 atomic_long_add(val, proto->memory_allocated);
1419}
1420
1421static inline void
1422sk_memory_allocated_add(const struct sock *sk, int val)
1423{
1424 struct proto *proto = sk->sk_prot;
1425
1426 val = this_cpu_add_return(*proto->per_cpu_fw_alloc, val);
1427
1428 if (unlikely(val >= READ_ONCE(sysctl_mem_pcpu_rsv)))
1429 proto_memory_pcpu_drain(proto);
1430}
1431
1432static inline void
1433sk_memory_allocated_sub(const struct sock *sk, int val)
1434{
1435 struct proto *proto = sk->sk_prot;
1436
1437 val = this_cpu_sub_return(*proto->per_cpu_fw_alloc, val);
1438
1439 if (unlikely(val <= -READ_ONCE(sysctl_mem_pcpu_rsv)))
1440 proto_memory_pcpu_drain(proto);
1441}
1442
1443#define SK_ALLOC_PERCPU_COUNTER_BATCH 16
1444
1445static inline void sk_sockets_allocated_dec(struct sock *sk)
1446{
1447 percpu_counter_add_batch(sk->sk_prot->sockets_allocated, -1,
1448 SK_ALLOC_PERCPU_COUNTER_BATCH);
1449}
1450
1451static inline void sk_sockets_allocated_inc(struct sock *sk)
1452{
1453 percpu_counter_add_batch(sk->sk_prot->sockets_allocated, 1,
1454 SK_ALLOC_PERCPU_COUNTER_BATCH);
1455}
1456
1457static inline u64
1458sk_sockets_allocated_read_positive(struct sock *sk)
1459{
1460 return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
1461}
1462
1463static inline int
1464proto_sockets_allocated_sum_positive(struct proto *prot)
1465{
1466 return percpu_counter_sum_positive(prot->sockets_allocated);
1467}
1468
1469static inline bool
1470proto_memory_pressure(struct proto *prot)
1471{
1472 if (!prot->memory_pressure)
1473 return false;
1474 return !!READ_ONCE(*prot->memory_pressure);
1475}
1476
1477
1478#ifdef CONFIG_PROC_FS
1479#define PROTO_INUSE_NR 64 /* should be enough for the first time */
1480struct prot_inuse {
1481 int all;
1482 int val[PROTO_INUSE_NR];
1483};
1484
1485static inline void sock_prot_inuse_add(const struct net *net,
1486 const struct proto *prot, int val)
1487{
1488 this_cpu_add(net->core.prot_inuse->val[prot->inuse_idx], val);
1489}
1490
1491static inline void sock_inuse_add(const struct net *net, int val)
1492{
1493 this_cpu_add(net->core.prot_inuse->all, val);
1494}
1495
1496int sock_prot_inuse_get(struct net *net, struct proto *proto);
1497int sock_inuse_get(struct net *net);
1498#else
1499static inline void sock_prot_inuse_add(const struct net *net,
1500 const struct proto *prot, int val)
1501{
1502}
1503
1504static inline void sock_inuse_add(const struct net *net, int val)
1505{
1506}
1507#endif
1508
1509
1510/* With per-bucket locks this operation is not-atomic, so that
1511 * this version is not worse.
1512 */
1513static inline int __sk_prot_rehash(struct sock *sk)
1514{
1515 sk->sk_prot->unhash(sk);
1516 return sk->sk_prot->hash(sk);
1517}
1518
1519/* About 10 seconds */
1520#define SOCK_DESTROY_TIME (10*HZ)
1521
1522/* Sockets 0-1023 can't be bound to unless you are superuser */
1523#define PROT_SOCK 1024
1524
1525#define SHUTDOWN_MASK 3
1526#define RCV_SHUTDOWN 1
1527#define SEND_SHUTDOWN 2
1528
1529#define SOCK_BINDADDR_LOCK 4
1530#define SOCK_BINDPORT_LOCK 8
1531
1532struct socket_alloc {
1533 struct socket socket;
1534 struct inode vfs_inode;
1535};
1536
1537static inline struct socket *SOCKET_I(struct inode *inode)
1538{
1539 return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1540}
1541
1542static inline struct inode *SOCK_INODE(struct socket *socket)
1543{
1544 return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1545}
1546
1547/*
1548 * Functions for memory accounting
1549 */
1550int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind);
1551int __sk_mem_schedule(struct sock *sk, int size, int kind);
1552void __sk_mem_reduce_allocated(struct sock *sk, int amount);
1553void __sk_mem_reclaim(struct sock *sk, int amount);
1554
1555#define SK_MEM_SEND 0
1556#define SK_MEM_RECV 1
1557
1558/* sysctl_mem values are in pages */
1559static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1560{
1561 return READ_ONCE(sk->sk_prot->sysctl_mem[index]);
1562}
1563
1564static inline int sk_mem_pages(int amt)
1565{
1566 return (amt + PAGE_SIZE - 1) >> PAGE_SHIFT;
1567}
1568
1569static inline bool sk_has_account(struct sock *sk)
1570{
1571 /* return true if protocol supports memory accounting */
1572 return !!sk->sk_prot->memory_allocated;
1573}
1574
1575static inline bool sk_wmem_schedule(struct sock *sk, int size)
1576{
1577 int delta;
1578
1579 if (!sk_has_account(sk))
1580 return true;
1581 delta = size - sk->sk_forward_alloc;
1582 return delta <= 0 || __sk_mem_schedule(sk, delta, SK_MEM_SEND);
1583}
1584
1585static inline bool
1586sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1587{
1588 int delta;
1589
1590 if (!sk_has_account(sk))
1591 return true;
1592 delta = size - sk->sk_forward_alloc;
1593 return delta <= 0 || __sk_mem_schedule(sk, delta, SK_MEM_RECV) ||
1594 skb_pfmemalloc(skb);
1595}
1596
1597static inline int sk_unused_reserved_mem(const struct sock *sk)
1598{
1599 int unused_mem;
1600
1601 if (likely(!sk->sk_reserved_mem))
1602 return 0;
1603
1604 unused_mem = sk->sk_reserved_mem - sk->sk_wmem_queued -
1605 atomic_read(&sk->sk_rmem_alloc);
1606
1607 return unused_mem > 0 ? unused_mem : 0;
1608}
1609
1610static inline void sk_mem_reclaim(struct sock *sk)
1611{
1612 int reclaimable;
1613
1614 if (!sk_has_account(sk))
1615 return;
1616
1617 reclaimable = sk->sk_forward_alloc - sk_unused_reserved_mem(sk);
1618
1619 if (reclaimable >= (int)PAGE_SIZE)
1620 __sk_mem_reclaim(sk, reclaimable);
1621}
1622
1623static inline void sk_mem_reclaim_final(struct sock *sk)
1624{
1625 sk->sk_reserved_mem = 0;
1626 sk_mem_reclaim(sk);
1627}
1628
1629static inline void sk_mem_charge(struct sock *sk, int size)
1630{
1631 if (!sk_has_account(sk))
1632 return;
1633 sk_forward_alloc_add(sk, -size);
1634}
1635
1636static inline void sk_mem_uncharge(struct sock *sk, int size)
1637{
1638 if (!sk_has_account(sk))
1639 return;
1640 sk_forward_alloc_add(sk, size);
1641 sk_mem_reclaim(sk);
1642}
1643
1644/*
1645 * Macro so as to not evaluate some arguments when
1646 * lockdep is not enabled.
1647 *
1648 * Mark both the sk_lock and the sk_lock.slock as a
1649 * per-address-family lock class.
1650 */
1651#define sock_lock_init_class_and_name(sk, sname, skey, name, key) \
1652do { \
1653 sk->sk_lock.owned = 0; \
1654 init_waitqueue_head(&sk->sk_lock.wq); \
1655 spin_lock_init(&(sk)->sk_lock.slock); \
1656 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \
1657 sizeof((sk)->sk_lock)); \
1658 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \
1659 (skey), (sname)); \
1660 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \
1661} while (0)
1662
1663static inline bool lockdep_sock_is_held(const struct sock *sk)
1664{
1665 return lockdep_is_held(&sk->sk_lock) ||
1666 lockdep_is_held(&sk->sk_lock.slock);
1667}
1668
1669void lock_sock_nested(struct sock *sk, int subclass);
1670
1671static inline void lock_sock(struct sock *sk)
1672{
1673 lock_sock_nested(sk, 0);
1674}
1675
1676void __lock_sock(struct sock *sk);
1677void __release_sock(struct sock *sk);
1678void release_sock(struct sock *sk);
1679
1680/* BH context may only use the following locking interface. */
1681#define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock))
1682#define bh_lock_sock_nested(__sk) \
1683 spin_lock_nested(&((__sk)->sk_lock.slock), \
1684 SINGLE_DEPTH_NESTING)
1685#define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock))
1686
1687bool __lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock);
1688
1689/**
1690 * lock_sock_fast - fast version of lock_sock
1691 * @sk: socket
1692 *
1693 * This version should be used for very small section, where process wont block
1694 * return false if fast path is taken:
1695 *
1696 * sk_lock.slock locked, owned = 0, BH disabled
1697 *
1698 * return true if slow path is taken:
1699 *
1700 * sk_lock.slock unlocked, owned = 1, BH enabled
1701 */
1702static inline bool lock_sock_fast(struct sock *sk)
1703{
1704 /* The sk_lock has mutex_lock() semantics here. */
1705 mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
1706
1707 return __lock_sock_fast(sk);
1708}
1709
1710/* fast socket lock variant for caller already holding a [different] socket lock */
1711static inline bool lock_sock_fast_nested(struct sock *sk)
1712{
1713 mutex_acquire(&sk->sk_lock.dep_map, SINGLE_DEPTH_NESTING, 0, _RET_IP_);
1714
1715 return __lock_sock_fast(sk);
1716}
1717
1718/**
1719 * unlock_sock_fast - complement of lock_sock_fast
1720 * @sk: socket
1721 * @slow: slow mode
1722 *
1723 * fast unlock socket for user context.
1724 * If slow mode is on, we call regular release_sock()
1725 */
1726static inline void unlock_sock_fast(struct sock *sk, bool slow)
1727 __releases(&sk->sk_lock.slock)
1728{
1729 if (slow) {
1730 release_sock(sk);
1731 __release(&sk->sk_lock.slock);
1732 } else {
1733 mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
1734 spin_unlock_bh(&sk->sk_lock.slock);
1735 }
1736}
1737
1738void sockopt_lock_sock(struct sock *sk);
1739void sockopt_release_sock(struct sock *sk);
1740bool sockopt_ns_capable(struct user_namespace *ns, int cap);
1741bool sockopt_capable(int cap);
1742
1743/* Used by processes to "lock" a socket state, so that
1744 * interrupts and bottom half handlers won't change it
1745 * from under us. It essentially blocks any incoming
1746 * packets, so that we won't get any new data or any
1747 * packets that change the state of the socket.
1748 *
1749 * While locked, BH processing will add new packets to
1750 * the backlog queue. This queue is processed by the
1751 * owner of the socket lock right before it is released.
1752 *
1753 * Since ~2.3.5 it is also exclusive sleep lock serializing
1754 * accesses from user process context.
1755 */
1756
1757static inline void sock_owned_by_me(const struct sock *sk)
1758{
1759#ifdef CONFIG_LOCKDEP
1760 WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks);
1761#endif
1762}
1763
1764static inline void sock_not_owned_by_me(const struct sock *sk)
1765{
1766#ifdef CONFIG_LOCKDEP
1767 WARN_ON_ONCE(lockdep_sock_is_held(sk) && debug_locks);
1768#endif
1769}
1770
1771static inline bool sock_owned_by_user(const struct sock *sk)
1772{
1773 sock_owned_by_me(sk);
1774 return sk->sk_lock.owned;
1775}
1776
1777static inline bool sock_owned_by_user_nocheck(const struct sock *sk)
1778{
1779 return sk->sk_lock.owned;
1780}
1781
1782static inline void sock_release_ownership(struct sock *sk)
1783{
1784 DEBUG_NET_WARN_ON_ONCE(!sock_owned_by_user_nocheck(sk));
1785 sk->sk_lock.owned = 0;
1786
1787 /* The sk_lock has mutex_unlock() semantics: */
1788 mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
1789}
1790
1791/* no reclassification while locks are held */
1792static inline bool sock_allow_reclassification(const struct sock *csk)
1793{
1794 struct sock *sk = (struct sock *)csk;
1795
1796 return !sock_owned_by_user_nocheck(sk) &&
1797 !spin_is_locked(&sk->sk_lock.slock);
1798}
1799
1800struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1801 struct proto *prot, int kern);
1802void sk_free(struct sock *sk);
1803void sk_destruct(struct sock *sk);
1804struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1805void sk_free_unlock_clone(struct sock *sk);
1806
1807struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1808 gfp_t priority);
1809void __sock_wfree(struct sk_buff *skb);
1810void sock_wfree(struct sk_buff *skb);
1811struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
1812 gfp_t priority);
1813void skb_orphan_partial(struct sk_buff *skb);
1814void sock_rfree(struct sk_buff *skb);
1815void sock_efree(struct sk_buff *skb);
1816#ifdef CONFIG_INET
1817void sock_edemux(struct sk_buff *skb);
1818void sock_pfree(struct sk_buff *skb);
1819#else
1820#define sock_edemux sock_efree
1821#endif
1822
1823int sk_setsockopt(struct sock *sk, int level, int optname,
1824 sockptr_t optval, unsigned int optlen);
1825int sock_setsockopt(struct socket *sock, int level, int op,
1826 sockptr_t optval, unsigned int optlen);
1827int do_sock_setsockopt(struct socket *sock, bool compat, int level,
1828 int optname, sockptr_t optval, int optlen);
1829int do_sock_getsockopt(struct socket *sock, bool compat, int level,
1830 int optname, sockptr_t optval, sockptr_t optlen);
1831
1832int sk_getsockopt(struct sock *sk, int level, int optname,
1833 sockptr_t optval, sockptr_t optlen);
1834int sock_gettstamp(struct socket *sock, void __user *userstamp,
1835 bool timeval, bool time32);
1836struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1837 unsigned long data_len, int noblock,
1838 int *errcode, int max_page_order);
1839
1840static inline struct sk_buff *sock_alloc_send_skb(struct sock *sk,
1841 unsigned long size,
1842 int noblock, int *errcode)
1843{
1844 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
1845}
1846
1847void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1848void sock_kfree_s(struct sock *sk, void *mem, int size);
1849void sock_kzfree_s(struct sock *sk, void *mem, int size);
1850void sk_send_sigurg(struct sock *sk);
1851
1852static inline void sock_replace_proto(struct sock *sk, struct proto *proto)
1853{
1854 if (sk->sk_socket)
1855 clear_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
1856 WRITE_ONCE(sk->sk_prot, proto);
1857}
1858
1859struct sockcm_cookie {
1860 u64 transmit_time;
1861 u32 mark;
1862 u32 tsflags;
1863};
1864
1865static inline void sockcm_init(struct sockcm_cookie *sockc,
1866 const struct sock *sk)
1867{
1868 *sockc = (struct sockcm_cookie) {
1869 .tsflags = READ_ONCE(sk->sk_tsflags)
1870 };
1871}
1872
1873int __sock_cmsg_send(struct sock *sk, struct cmsghdr *cmsg,
1874 struct sockcm_cookie *sockc);
1875int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1876 struct sockcm_cookie *sockc);
1877
1878/*
1879 * Functions to fill in entries in struct proto_ops when a protocol
1880 * does not implement a particular function.
1881 */
1882int sock_no_bind(struct socket *, struct sockaddr *, int);
1883int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1884int sock_no_socketpair(struct socket *, struct socket *);
1885int sock_no_accept(struct socket *, struct socket *, int, bool);
1886int sock_no_getname(struct socket *, struct sockaddr *, int);
1887int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1888int sock_no_listen(struct socket *, int);
1889int sock_no_shutdown(struct socket *, int);
1890int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1891int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len);
1892int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1893int sock_no_mmap(struct file *file, struct socket *sock,
1894 struct vm_area_struct *vma);
1895
1896/*
1897 * Functions to fill in entries in struct proto_ops when a protocol
1898 * uses the inet style.
1899 */
1900int sock_common_getsockopt(struct socket *sock, int level, int optname,
1901 char __user *optval, int __user *optlen);
1902int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1903 int flags);
1904int sock_common_setsockopt(struct socket *sock, int level, int optname,
1905 sockptr_t optval, unsigned int optlen);
1906
1907void sk_common_release(struct sock *sk);
1908
1909/*
1910 * Default socket callbacks and setup code
1911 */
1912
1913/* Initialise core socket variables using an explicit uid. */
1914void sock_init_data_uid(struct socket *sock, struct sock *sk, kuid_t uid);
1915
1916/* Initialise core socket variables.
1917 * Assumes struct socket *sock is embedded in a struct socket_alloc.
1918 */
1919void sock_init_data(struct socket *sock, struct sock *sk);
1920
1921/*
1922 * Socket reference counting postulates.
1923 *
1924 * * Each user of socket SHOULD hold a reference count.
1925 * * Each access point to socket (an hash table bucket, reference from a list,
1926 * running timer, skb in flight MUST hold a reference count.
1927 * * When reference count hits 0, it means it will never increase back.
1928 * * When reference count hits 0, it means that no references from
1929 * outside exist to this socket and current process on current CPU
1930 * is last user and may/should destroy this socket.
1931 * * sk_free is called from any context: process, BH, IRQ. When
1932 * it is called, socket has no references from outside -> sk_free
1933 * may release descendant resources allocated by the socket, but
1934 * to the time when it is called, socket is NOT referenced by any
1935 * hash tables, lists etc.
1936 * * Packets, delivered from outside (from network or from another process)
1937 * and enqueued on receive/error queues SHOULD NOT grab reference count,
1938 * when they sit in queue. Otherwise, packets will leak to hole, when
1939 * socket is looked up by one cpu and unhasing is made by another CPU.
1940 * It is true for udp/raw, netlink (leak to receive and error queues), tcp
1941 * (leak to backlog). Packet socket does all the processing inside
1942 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1943 * use separate SMP lock, so that they are prone too.
1944 */
1945
1946/* Ungrab socket and destroy it, if it was the last reference. */
1947static inline void sock_put(struct sock *sk)
1948{
1949 if (refcount_dec_and_test(&sk->sk_refcnt))
1950 sk_free(sk);
1951}
1952/* Generic version of sock_put(), dealing with all sockets
1953 * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1954 */
1955void sock_gen_put(struct sock *sk);
1956
1957int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested,
1958 unsigned int trim_cap, bool refcounted);
1959static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1960 const int nested)
1961{
1962 return __sk_receive_skb(sk, skb, nested, 1, true);
1963}
1964
1965static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1966{
1967 /* sk_tx_queue_mapping accept only upto a 16-bit value */
1968 if (WARN_ON_ONCE((unsigned short)tx_queue >= USHRT_MAX))
1969 return;
1970 /* Paired with READ_ONCE() in sk_tx_queue_get() and
1971 * other WRITE_ONCE() because socket lock might be not held.
1972 */
1973 WRITE_ONCE(sk->sk_tx_queue_mapping, tx_queue);
1974}
1975
1976#define NO_QUEUE_MAPPING USHRT_MAX
1977
1978static inline void sk_tx_queue_clear(struct sock *sk)
1979{
1980 /* Paired with READ_ONCE() in sk_tx_queue_get() and
1981 * other WRITE_ONCE() because socket lock might be not held.
1982 */
1983 WRITE_ONCE(sk->sk_tx_queue_mapping, NO_QUEUE_MAPPING);
1984}
1985
1986static inline int sk_tx_queue_get(const struct sock *sk)
1987{
1988 if (sk) {
1989 /* Paired with WRITE_ONCE() in sk_tx_queue_clear()
1990 * and sk_tx_queue_set().
1991 */
1992 int val = READ_ONCE(sk->sk_tx_queue_mapping);
1993
1994 if (val != NO_QUEUE_MAPPING)
1995 return val;
1996 }
1997 return -1;
1998}
1999
2000static inline void __sk_rx_queue_set(struct sock *sk,
2001 const struct sk_buff *skb,
2002 bool force_set)
2003{
2004#ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
2005 if (skb_rx_queue_recorded(skb)) {
2006 u16 rx_queue = skb_get_rx_queue(skb);
2007
2008 if (force_set ||
2009 unlikely(READ_ONCE(sk->sk_rx_queue_mapping) != rx_queue))
2010 WRITE_ONCE(sk->sk_rx_queue_mapping, rx_queue);
2011 }
2012#endif
2013}
2014
2015static inline void sk_rx_queue_set(struct sock *sk, const struct sk_buff *skb)
2016{
2017 __sk_rx_queue_set(sk, skb, true);
2018}
2019
2020static inline void sk_rx_queue_update(struct sock *sk, const struct sk_buff *skb)
2021{
2022 __sk_rx_queue_set(sk, skb, false);
2023}
2024
2025static inline void sk_rx_queue_clear(struct sock *sk)
2026{
2027#ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
2028 WRITE_ONCE(sk->sk_rx_queue_mapping, NO_QUEUE_MAPPING);
2029#endif
2030}
2031
2032static inline int sk_rx_queue_get(const struct sock *sk)
2033{
2034#ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
2035 if (sk) {
2036 int res = READ_ONCE(sk->sk_rx_queue_mapping);
2037
2038 if (res != NO_QUEUE_MAPPING)
2039 return res;
2040 }
2041#endif
2042
2043 return -1;
2044}
2045
2046static inline void sk_set_socket(struct sock *sk, struct socket *sock)
2047{
2048 sk->sk_socket = sock;
2049}
2050
2051static inline wait_queue_head_t *sk_sleep(struct sock *sk)
2052{
2053 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
2054 return &rcu_dereference_raw(sk->sk_wq)->wait;
2055}
2056/* Detach socket from process context.
2057 * Announce socket dead, detach it from wait queue and inode.
2058 * Note that parent inode held reference count on this struct sock,
2059 * we do not release it in this function, because protocol
2060 * probably wants some additional cleanups or even continuing
2061 * to work with this socket (TCP).
2062 */
2063static inline void sock_orphan(struct sock *sk)
2064{
2065 write_lock_bh(&sk->sk_callback_lock);
2066 sock_set_flag(sk, SOCK_DEAD);
2067 sk_set_socket(sk, NULL);
2068 sk->sk_wq = NULL;
2069 write_unlock_bh(&sk->sk_callback_lock);
2070}
2071
2072static inline void sock_graft(struct sock *sk, struct socket *parent)
2073{
2074 WARN_ON(parent->sk);
2075 write_lock_bh(&sk->sk_callback_lock);
2076 rcu_assign_pointer(sk->sk_wq, &parent->wq);
2077 parent->sk = sk;
2078 sk_set_socket(sk, parent);
2079 sk->sk_uid = SOCK_INODE(parent)->i_uid;
2080 security_sock_graft(sk, parent);
2081 write_unlock_bh(&sk->sk_callback_lock);
2082}
2083
2084kuid_t sock_i_uid(struct sock *sk);
2085unsigned long __sock_i_ino(struct sock *sk);
2086unsigned long sock_i_ino(struct sock *sk);
2087
2088static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk)
2089{
2090 return sk ? sk->sk_uid : make_kuid(net->user_ns, 0);
2091}
2092
2093static inline u32 net_tx_rndhash(void)
2094{
2095 u32 v = get_random_u32();
2096
2097 return v ?: 1;
2098}
2099
2100static inline void sk_set_txhash(struct sock *sk)
2101{
2102 /* This pairs with READ_ONCE() in skb_set_hash_from_sk() */
2103 WRITE_ONCE(sk->sk_txhash, net_tx_rndhash());
2104}
2105
2106static inline bool sk_rethink_txhash(struct sock *sk)
2107{
2108 if (sk->sk_txhash && sk->sk_txrehash == SOCK_TXREHASH_ENABLED) {
2109 sk_set_txhash(sk);
2110 return true;
2111 }
2112 return false;
2113}
2114
2115static inline struct dst_entry *
2116__sk_dst_get(const struct sock *sk)
2117{
2118 return rcu_dereference_check(sk->sk_dst_cache,
2119 lockdep_sock_is_held(sk));
2120}
2121
2122static inline struct dst_entry *
2123sk_dst_get(const struct sock *sk)
2124{
2125 struct dst_entry *dst;
2126
2127 rcu_read_lock();
2128 dst = rcu_dereference(sk->sk_dst_cache);
2129 if (dst && !rcuref_get(&dst->__rcuref))
2130 dst = NULL;
2131 rcu_read_unlock();
2132 return dst;
2133}
2134
2135static inline void __dst_negative_advice(struct sock *sk)
2136{
2137 struct dst_entry *dst = __sk_dst_get(sk);
2138
2139 if (dst && dst->ops->negative_advice)
2140 dst->ops->negative_advice(sk, dst);
2141}
2142
2143static inline void dst_negative_advice(struct sock *sk)
2144{
2145 sk_rethink_txhash(sk);
2146 __dst_negative_advice(sk);
2147}
2148
2149static inline void
2150__sk_dst_set(struct sock *sk, struct dst_entry *dst)
2151{
2152 struct dst_entry *old_dst;
2153
2154 sk_tx_queue_clear(sk);
2155 WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2156 old_dst = rcu_dereference_protected(sk->sk_dst_cache,
2157 lockdep_sock_is_held(sk));
2158 rcu_assign_pointer(sk->sk_dst_cache, dst);
2159 dst_release(old_dst);
2160}
2161
2162static inline void
2163sk_dst_set(struct sock *sk, struct dst_entry *dst)
2164{
2165 struct dst_entry *old_dst;
2166
2167 sk_tx_queue_clear(sk);
2168 WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2169 old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
2170 dst_release(old_dst);
2171}
2172
2173static inline void
2174__sk_dst_reset(struct sock *sk)
2175{
2176 __sk_dst_set(sk, NULL);
2177}
2178
2179static inline void
2180sk_dst_reset(struct sock *sk)
2181{
2182 sk_dst_set(sk, NULL);
2183}
2184
2185struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
2186
2187struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
2188
2189static inline void sk_dst_confirm(struct sock *sk)
2190{
2191 if (!READ_ONCE(sk->sk_dst_pending_confirm))
2192 WRITE_ONCE(sk->sk_dst_pending_confirm, 1);
2193}
2194
2195static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n)
2196{
2197 if (skb_get_dst_pending_confirm(skb)) {
2198 struct sock *sk = skb->sk;
2199
2200 if (sk && READ_ONCE(sk->sk_dst_pending_confirm))
2201 WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2202 neigh_confirm(n);
2203 }
2204}
2205
2206bool sk_mc_loop(const struct sock *sk);
2207
2208static inline bool sk_can_gso(const struct sock *sk)
2209{
2210 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
2211}
2212
2213void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
2214
2215static inline void sk_gso_disable(struct sock *sk)
2216{
2217 sk->sk_gso_disabled = 1;
2218 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
2219}
2220
2221static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
2222 struct iov_iter *from, char *to,
2223 int copy, int offset)
2224{
2225 if (skb->ip_summed == CHECKSUM_NONE) {
2226 __wsum csum = 0;
2227 if (!csum_and_copy_from_iter_full(to, copy, &csum, from))
2228 return -EFAULT;
2229 skb->csum = csum_block_add(skb->csum, csum, offset);
2230 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
2231 if (!copy_from_iter_full_nocache(to, copy, from))
2232 return -EFAULT;
2233 } else if (!copy_from_iter_full(to, copy, from))
2234 return -EFAULT;
2235
2236 return 0;
2237}
2238
2239static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
2240 struct iov_iter *from, int copy)
2241{
2242 int err, offset = skb->len;
2243
2244 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
2245 copy, offset);
2246 if (err)
2247 __skb_trim(skb, offset);
2248
2249 return err;
2250}
2251
2252static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
2253 struct sk_buff *skb,
2254 struct page *page,
2255 int off, int copy)
2256{
2257 int err;
2258
2259 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
2260 copy, skb->len);
2261 if (err)
2262 return err;
2263
2264 skb_len_add(skb, copy);
2265 sk_wmem_queued_add(sk, copy);
2266 sk_mem_charge(sk, copy);
2267 return 0;
2268}
2269
2270/**
2271 * sk_wmem_alloc_get - returns write allocations
2272 * @sk: socket
2273 *
2274 * Return: sk_wmem_alloc minus initial offset of one
2275 */
2276static inline int sk_wmem_alloc_get(const struct sock *sk)
2277{
2278 return refcount_read(&sk->sk_wmem_alloc) - 1;
2279}
2280
2281/**
2282 * sk_rmem_alloc_get - returns read allocations
2283 * @sk: socket
2284 *
2285 * Return: sk_rmem_alloc
2286 */
2287static inline int sk_rmem_alloc_get(const struct sock *sk)
2288{
2289 return atomic_read(&sk->sk_rmem_alloc);
2290}
2291
2292/**
2293 * sk_has_allocations - check if allocations are outstanding
2294 * @sk: socket
2295 *
2296 * Return: true if socket has write or read allocations
2297 */
2298static inline bool sk_has_allocations(const struct sock *sk)
2299{
2300 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
2301}
2302
2303/**
2304 * skwq_has_sleeper - check if there are any waiting processes
2305 * @wq: struct socket_wq
2306 *
2307 * Return: true if socket_wq has waiting processes
2308 *
2309 * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
2310 * barrier call. They were added due to the race found within the tcp code.
2311 *
2312 * Consider following tcp code paths::
2313 *
2314 * CPU1 CPU2
2315 * sys_select receive packet
2316 * ... ...
2317 * __add_wait_queue update tp->rcv_nxt
2318 * ... ...
2319 * tp->rcv_nxt check sock_def_readable
2320 * ... {
2321 * schedule rcu_read_lock();
2322 * wq = rcu_dereference(sk->sk_wq);
2323 * if (wq && waitqueue_active(&wq->wait))
2324 * wake_up_interruptible(&wq->wait)
2325 * ...
2326 * }
2327 *
2328 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
2329 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1
2330 * could then endup calling schedule and sleep forever if there are no more
2331 * data on the socket.
2332 *
2333 */
2334static inline bool skwq_has_sleeper(struct socket_wq *wq)
2335{
2336 return wq && wq_has_sleeper(&wq->wait);
2337}
2338
2339/**
2340 * sock_poll_wait - place memory barrier behind the poll_wait call.
2341 * @filp: file
2342 * @sock: socket to wait on
2343 * @p: poll_table
2344 *
2345 * See the comments in the wq_has_sleeper function.
2346 */
2347static inline void sock_poll_wait(struct file *filp, struct socket *sock,
2348 poll_table *p)
2349{
2350 if (!poll_does_not_wait(p)) {
2351 poll_wait(filp, &sock->wq.wait, p);
2352 /* We need to be sure we are in sync with the
2353 * socket flags modification.
2354 *
2355 * This memory barrier is paired in the wq_has_sleeper.
2356 */
2357 smp_mb();
2358 }
2359}
2360
2361static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
2362{
2363 /* This pairs with WRITE_ONCE() in sk_set_txhash() */
2364 u32 txhash = READ_ONCE(sk->sk_txhash);
2365
2366 if (txhash) {
2367 skb->l4_hash = 1;
2368 skb->hash = txhash;
2369 }
2370}
2371
2372void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
2373
2374/*
2375 * Queue a received datagram if it will fit. Stream and sequenced
2376 * protocols can't normally use this as they need to fit buffers in
2377 * and play with them.
2378 *
2379 * Inlined as it's very short and called for pretty much every
2380 * packet ever received.
2381 */
2382static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2383{
2384 skb_orphan(skb);
2385 skb->sk = sk;
2386 skb->destructor = sock_rfree;
2387 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2388 sk_mem_charge(sk, skb->truesize);
2389}
2390
2391static inline __must_check bool skb_set_owner_sk_safe(struct sk_buff *skb, struct sock *sk)
2392{
2393 if (sk && refcount_inc_not_zero(&sk->sk_refcnt)) {
2394 skb_orphan(skb);
2395 skb->destructor = sock_efree;
2396 skb->sk = sk;
2397 return true;
2398 }
2399 return false;
2400}
2401
2402static inline struct sk_buff *skb_clone_and_charge_r(struct sk_buff *skb, struct sock *sk)
2403{
2404 skb = skb_clone(skb, sk_gfp_mask(sk, GFP_ATOMIC));
2405 if (skb) {
2406 if (sk_rmem_schedule(sk, skb, skb->truesize)) {
2407 skb_set_owner_r(skb, sk);
2408 return skb;
2409 }
2410 __kfree_skb(skb);
2411 }
2412 return NULL;
2413}
2414
2415static inline void skb_prepare_for_gro(struct sk_buff *skb)
2416{
2417 if (skb->destructor != sock_wfree) {
2418 skb_orphan(skb);
2419 return;
2420 }
2421 skb->slow_gro = 1;
2422}
2423
2424void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2425 unsigned long expires);
2426
2427void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2428
2429void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer);
2430
2431int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue,
2432 struct sk_buff *skb, unsigned int flags,
2433 void (*destructor)(struct sock *sk,
2434 struct sk_buff *skb));
2435int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2436
2437int sock_queue_rcv_skb_reason(struct sock *sk, struct sk_buff *skb,
2438 enum skb_drop_reason *reason);
2439
2440static inline int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2441{
2442 return sock_queue_rcv_skb_reason(sk, skb, NULL);
2443}
2444
2445int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2446struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
2447
2448/*
2449 * Recover an error report and clear atomically
2450 */
2451
2452static inline int sock_error(struct sock *sk)
2453{
2454 int err;
2455
2456 /* Avoid an atomic operation for the common case.
2457 * This is racy since another cpu/thread can change sk_err under us.
2458 */
2459 if (likely(data_race(!sk->sk_err)))
2460 return 0;
2461
2462 err = xchg(&sk->sk_err, 0);
2463 return -err;
2464}
2465
2466void sk_error_report(struct sock *sk);
2467
2468static inline unsigned long sock_wspace(struct sock *sk)
2469{
2470 int amt = 0;
2471
2472 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2473 amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc);
2474 if (amt < 0)
2475 amt = 0;
2476 }
2477 return amt;
2478}
2479
2480/* Note:
2481 * We use sk->sk_wq_raw, from contexts knowing this
2482 * pointer is not NULL and cannot disappear/change.
2483 */
2484static inline void sk_set_bit(int nr, struct sock *sk)
2485{
2486 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2487 !sock_flag(sk, SOCK_FASYNC))
2488 return;
2489
2490 set_bit(nr, &sk->sk_wq_raw->flags);
2491}
2492
2493static inline void sk_clear_bit(int nr, struct sock *sk)
2494{
2495 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2496 !sock_flag(sk, SOCK_FASYNC))
2497 return;
2498
2499 clear_bit(nr, &sk->sk_wq_raw->flags);
2500}
2501
2502static inline void sk_wake_async(const struct sock *sk, int how, int band)
2503{
2504 if (sock_flag(sk, SOCK_FASYNC)) {
2505 rcu_read_lock();
2506 sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2507 rcu_read_unlock();
2508 }
2509}
2510
2511/* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2512 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2513 * Note: for send buffers, TCP works better if we can build two skbs at
2514 * minimum.
2515 */
2516#define TCP_SKB_MIN_TRUESIZE (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2517
2518#define SOCK_MIN_SNDBUF (TCP_SKB_MIN_TRUESIZE * 2)
2519#define SOCK_MIN_RCVBUF TCP_SKB_MIN_TRUESIZE
2520
2521static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2522{
2523 u32 val;
2524
2525 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
2526 return;
2527
2528 val = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2529 val = max_t(u32, val, sk_unused_reserved_mem(sk));
2530
2531 WRITE_ONCE(sk->sk_sndbuf, max_t(u32, val, SOCK_MIN_SNDBUF));
2532}
2533
2534/**
2535 * sk_page_frag - return an appropriate page_frag
2536 * @sk: socket
2537 *
2538 * Use the per task page_frag instead of the per socket one for
2539 * optimization when we know that we're in process context and own
2540 * everything that's associated with %current.
2541 *
2542 * Both direct reclaim and page faults can nest inside other
2543 * socket operations and end up recursing into sk_page_frag()
2544 * while it's already in use: explicitly avoid task page_frag
2545 * when users disable sk_use_task_frag.
2546 *
2547 * Return: a per task page_frag if context allows that,
2548 * otherwise a per socket one.
2549 */
2550static inline struct page_frag *sk_page_frag(struct sock *sk)
2551{
2552 if (sk->sk_use_task_frag)
2553 return ¤t->task_frag;
2554
2555 return &sk->sk_frag;
2556}
2557
2558bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2559
2560/*
2561 * Default write policy as shown to user space via poll/select/SIGIO
2562 */
2563static inline bool sock_writeable(const struct sock *sk)
2564{
2565 return refcount_read(&sk->sk_wmem_alloc) < (READ_ONCE(sk->sk_sndbuf) >> 1);
2566}
2567
2568static inline gfp_t gfp_any(void)
2569{
2570 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2571}
2572
2573static inline gfp_t gfp_memcg_charge(void)
2574{
2575 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2576}
2577
2578static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2579{
2580 return noblock ? 0 : sk->sk_rcvtimeo;
2581}
2582
2583static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2584{
2585 return noblock ? 0 : sk->sk_sndtimeo;
2586}
2587
2588static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2589{
2590 int v = waitall ? len : min_t(int, READ_ONCE(sk->sk_rcvlowat), len);
2591
2592 return v ?: 1;
2593}
2594
2595/* Alas, with timeout socket operations are not restartable.
2596 * Compare this to poll().
2597 */
2598static inline int sock_intr_errno(long timeo)
2599{
2600 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2601}
2602
2603struct sock_skb_cb {
2604 u32 dropcount;
2605};
2606
2607/* Store sock_skb_cb at the end of skb->cb[] so protocol families
2608 * using skb->cb[] would keep using it directly and utilize its
2609 * alignement guarantee.
2610 */
2611#define SOCK_SKB_CB_OFFSET ((sizeof_field(struct sk_buff, cb) - \
2612 sizeof(struct sock_skb_cb)))
2613
2614#define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2615 SOCK_SKB_CB_OFFSET))
2616
2617#define sock_skb_cb_check_size(size) \
2618 BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2619
2620static inline void
2621sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2622{
2623 SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ?
2624 atomic_read(&sk->sk_drops) : 0;
2625}
2626
2627static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb)
2628{
2629 int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2630
2631 atomic_add(segs, &sk->sk_drops);
2632}
2633
2634static inline ktime_t sock_read_timestamp(struct sock *sk)
2635{
2636#if BITS_PER_LONG==32
2637 unsigned int seq;
2638 ktime_t kt;
2639
2640 do {
2641 seq = read_seqbegin(&sk->sk_stamp_seq);
2642 kt = sk->sk_stamp;
2643 } while (read_seqretry(&sk->sk_stamp_seq, seq));
2644
2645 return kt;
2646#else
2647 return READ_ONCE(sk->sk_stamp);
2648#endif
2649}
2650
2651static inline void sock_write_timestamp(struct sock *sk, ktime_t kt)
2652{
2653#if BITS_PER_LONG==32
2654 write_seqlock(&sk->sk_stamp_seq);
2655 sk->sk_stamp = kt;
2656 write_sequnlock(&sk->sk_stamp_seq);
2657#else
2658 WRITE_ONCE(sk->sk_stamp, kt);
2659#endif
2660}
2661
2662void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2663 struct sk_buff *skb);
2664void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2665 struct sk_buff *skb);
2666
2667static inline void
2668sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2669{
2670 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2671 u32 tsflags = READ_ONCE(sk->sk_tsflags);
2672 ktime_t kt = skb->tstamp;
2673 /*
2674 * generate control messages if
2675 * - receive time stamping in software requested
2676 * - software time stamp available and wanted
2677 * - hardware time stamps available and wanted
2678 */
2679 if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2680 (tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2681 (kt && tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2682 (hwtstamps->hwtstamp &&
2683 (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2684 __sock_recv_timestamp(msg, sk, skb);
2685 else
2686 sock_write_timestamp(sk, kt);
2687
2688 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb_wifi_acked_valid(skb))
2689 __sock_recv_wifi_status(msg, sk, skb);
2690}
2691
2692void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
2693 struct sk_buff *skb);
2694
2695#define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC)
2696static inline void sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
2697 struct sk_buff *skb)
2698{
2699#define FLAGS_RECV_CMSGS ((1UL << SOCK_RXQ_OVFL) | \
2700 (1UL << SOCK_RCVTSTAMP) | \
2701 (1UL << SOCK_RCVMARK))
2702#define TSFLAGS_ANY (SOF_TIMESTAMPING_SOFTWARE | \
2703 SOF_TIMESTAMPING_RAW_HARDWARE)
2704
2705 if (sk->sk_flags & FLAGS_RECV_CMSGS ||
2706 READ_ONCE(sk->sk_tsflags) & TSFLAGS_ANY)
2707 __sock_recv_cmsgs(msg, sk, skb);
2708 else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP)))
2709 sock_write_timestamp(sk, skb->tstamp);
2710 else if (unlikely(sock_read_timestamp(sk) == SK_DEFAULT_STAMP))
2711 sock_write_timestamp(sk, 0);
2712}
2713
2714void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags);
2715
2716/**
2717 * _sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2718 * @sk: socket sending this packet
2719 * @tsflags: timestamping flags to use
2720 * @tx_flags: completed with instructions for time stamping
2721 * @tskey: filled in with next sk_tskey (not for TCP, which uses seqno)
2722 *
2723 * Note: callers should take care of initial ``*tx_flags`` value (usually 0)
2724 */
2725static inline void _sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2726 __u8 *tx_flags, __u32 *tskey)
2727{
2728 if (unlikely(tsflags)) {
2729 __sock_tx_timestamp(tsflags, tx_flags);
2730 if (tsflags & SOF_TIMESTAMPING_OPT_ID && tskey &&
2731 tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
2732 *tskey = atomic_inc_return(&sk->sk_tskey) - 1;
2733 }
2734 if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2735 *tx_flags |= SKBTX_WIFI_STATUS;
2736}
2737
2738static inline void sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2739 __u8 *tx_flags)
2740{
2741 _sock_tx_timestamp(sk, tsflags, tx_flags, NULL);
2742}
2743
2744static inline void skb_setup_tx_timestamp(struct sk_buff *skb, __u16 tsflags)
2745{
2746 _sock_tx_timestamp(skb->sk, tsflags, &skb_shinfo(skb)->tx_flags,
2747 &skb_shinfo(skb)->tskey);
2748}
2749
2750static inline bool sk_is_inet(const struct sock *sk)
2751{
2752 int family = READ_ONCE(sk->sk_family);
2753
2754 return family == AF_INET || family == AF_INET6;
2755}
2756
2757static inline bool sk_is_tcp(const struct sock *sk)
2758{
2759 return sk_is_inet(sk) &&
2760 sk->sk_type == SOCK_STREAM &&
2761 sk->sk_protocol == IPPROTO_TCP;
2762}
2763
2764static inline bool sk_is_udp(const struct sock *sk)
2765{
2766 return sk_is_inet(sk) &&
2767 sk->sk_type == SOCK_DGRAM &&
2768 sk->sk_protocol == IPPROTO_UDP;
2769}
2770
2771static inline bool sk_is_stream_unix(const struct sock *sk)
2772{
2773 return sk->sk_family == AF_UNIX && sk->sk_type == SOCK_STREAM;
2774}
2775
2776/**
2777 * sk_eat_skb - Release a skb if it is no longer needed
2778 * @sk: socket to eat this skb from
2779 * @skb: socket buffer to eat
2780 *
2781 * This routine must be called with interrupts disabled or with the socket
2782 * locked so that the sk_buff queue operation is ok.
2783*/
2784static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2785{
2786 __skb_unlink(skb, &sk->sk_receive_queue);
2787 __kfree_skb(skb);
2788}
2789
2790static inline bool
2791skb_sk_is_prefetched(struct sk_buff *skb)
2792{
2793#ifdef CONFIG_INET
2794 return skb->destructor == sock_pfree;
2795#else
2796 return false;
2797#endif /* CONFIG_INET */
2798}
2799
2800/* This helper checks if a socket is a full socket,
2801 * ie _not_ a timewait or request socket.
2802 */
2803static inline bool sk_fullsock(const struct sock *sk)
2804{
2805 return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2806}
2807
2808static inline bool
2809sk_is_refcounted(struct sock *sk)
2810{
2811 /* Only full sockets have sk->sk_flags. */
2812 return !sk_fullsock(sk) || !sock_flag(sk, SOCK_RCU_FREE);
2813}
2814
2815/* Checks if this SKB belongs to an HW offloaded socket
2816 * and whether any SW fallbacks are required based on dev.
2817 * Check decrypted mark in case skb_orphan() cleared socket.
2818 */
2819static inline struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb,
2820 struct net_device *dev)
2821{
2822#ifdef CONFIG_SOCK_VALIDATE_XMIT
2823 struct sock *sk = skb->sk;
2824
2825 if (sk && sk_fullsock(sk) && sk->sk_validate_xmit_skb) {
2826 skb = sk->sk_validate_xmit_skb(sk, dev, skb);
2827#ifdef CONFIG_TLS_DEVICE
2828 } else if (unlikely(skb->decrypted)) {
2829 pr_warn_ratelimited("unencrypted skb with no associated socket - dropping\n");
2830 kfree_skb(skb);
2831 skb = NULL;
2832#endif
2833 }
2834#endif
2835
2836 return skb;
2837}
2838
2839/* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2840 * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2841 */
2842static inline bool sk_listener(const struct sock *sk)
2843{
2844 return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2845}
2846
2847void sock_enable_timestamp(struct sock *sk, enum sock_flags flag);
2848int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2849 int type);
2850
2851bool sk_ns_capable(const struct sock *sk,
2852 struct user_namespace *user_ns, int cap);
2853bool sk_capable(const struct sock *sk, int cap);
2854bool sk_net_capable(const struct sock *sk, int cap);
2855
2856void sk_get_meminfo(const struct sock *sk, u32 *meminfo);
2857
2858/* Take into consideration the size of the struct sk_buff overhead in the
2859 * determination of these values, since that is non-constant across
2860 * platforms. This makes socket queueing behavior and performance
2861 * not depend upon such differences.
2862 */
2863#define _SK_MEM_PACKETS 256
2864#define _SK_MEM_OVERHEAD SKB_TRUESIZE(256)
2865#define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2866#define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2867
2868extern __u32 sysctl_wmem_max;
2869extern __u32 sysctl_rmem_max;
2870
2871extern int sysctl_tstamp_allow_data;
2872
2873extern __u32 sysctl_wmem_default;
2874extern __u32 sysctl_rmem_default;
2875
2876#define SKB_FRAG_PAGE_ORDER get_order(32768)
2877DECLARE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2878
2879static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto)
2880{
2881 /* Does this proto have per netns sysctl_wmem ? */
2882 if (proto->sysctl_wmem_offset)
2883 return READ_ONCE(*(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset));
2884
2885 return READ_ONCE(*proto->sysctl_wmem);
2886}
2887
2888static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto)
2889{
2890 /* Does this proto have per netns sysctl_rmem ? */
2891 if (proto->sysctl_rmem_offset)
2892 return READ_ONCE(*(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset));
2893
2894 return READ_ONCE(*proto->sysctl_rmem);
2895}
2896
2897/* Default TCP Small queue budget is ~1 ms of data (1sec >> 10)
2898 * Some wifi drivers need to tweak it to get more chunks.
2899 * They can use this helper from their ndo_start_xmit()
2900 */
2901static inline void sk_pacing_shift_update(struct sock *sk, int val)
2902{
2903 if (!sk || !sk_fullsock(sk) || READ_ONCE(sk->sk_pacing_shift) == val)
2904 return;
2905 WRITE_ONCE(sk->sk_pacing_shift, val);
2906}
2907
2908/* if a socket is bound to a device, check that the given device
2909 * index is either the same or that the socket is bound to an L3
2910 * master device and the given device index is also enslaved to
2911 * that L3 master
2912 */
2913static inline bool sk_dev_equal_l3scope(struct sock *sk, int dif)
2914{
2915 int bound_dev_if = READ_ONCE(sk->sk_bound_dev_if);
2916 int mdif;
2917
2918 if (!bound_dev_if || bound_dev_if == dif)
2919 return true;
2920
2921 mdif = l3mdev_master_ifindex_by_index(sock_net(sk), dif);
2922 if (mdif && mdif == bound_dev_if)
2923 return true;
2924
2925 return false;
2926}
2927
2928void sock_def_readable(struct sock *sk);
2929
2930int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk);
2931void sock_set_timestamp(struct sock *sk, int optname, bool valbool);
2932int sock_set_timestamping(struct sock *sk, int optname,
2933 struct so_timestamping timestamping);
2934
2935void sock_enable_timestamps(struct sock *sk);
2936void sock_no_linger(struct sock *sk);
2937void sock_set_keepalive(struct sock *sk);
2938void sock_set_priority(struct sock *sk, u32 priority);
2939void sock_set_rcvbuf(struct sock *sk, int val);
2940void sock_set_mark(struct sock *sk, u32 val);
2941void sock_set_reuseaddr(struct sock *sk);
2942void sock_set_reuseport(struct sock *sk);
2943void sock_set_sndtimeo(struct sock *sk, s64 secs);
2944
2945int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len);
2946
2947int sock_get_timeout(long timeo, void *optval, bool old_timeval);
2948int sock_copy_user_timeval(struct __kernel_sock_timeval *tv,
2949 sockptr_t optval, int optlen, bool old_timeval);
2950
2951int sock_ioctl_inout(struct sock *sk, unsigned int cmd,
2952 void __user *arg, void *karg, size_t size);
2953int sk_ioctl(struct sock *sk, unsigned int cmd, void __user *arg);
2954static inline bool sk_is_readable(struct sock *sk)
2955{
2956 if (sk->sk_prot->sock_is_readable)
2957 return sk->sk_prot->sock_is_readable(sk);
2958 return false;
2959}
2960#endif /* _SOCK_H */