Linux Audio

Check our new training course

Loading...
v3.5.6
 
   1/*
   2 * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
   3 *
   4 * This program is free software; you can redistribute it and/or modify
   5 * it under the terms of the GNU General Public License as published by
   6 * the Free Software Foundation; either version 2 of the License, or
   7 * (at your option) any later version.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write to the Free Software
  16 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  17 */
  18
  19#include <linux/init.h>
  20#include <linux/module.h>
 
 
  21#include <linux/device.h>
  22#include <linux/ioport.h>
  23#include <linux/errno.h>
 
 
 
  24#include <linux/interrupt.h>
 
 
 
 
 
 
  25#include <linux/platform_device.h>
 
 
 
  26#include <linux/spi/pxa2xx_spi.h>
  27#include <linux/dma-mapping.h>
  28#include <linux/spi/spi.h>
  29#include <linux/workqueue.h>
  30#include <linux/delay.h>
  31#include <linux/gpio.h>
  32#include <linux/slab.h>
  33
  34#include <asm/io.h>
  35#include <asm/irq.h>
  36#include <asm/delay.h>
  37
 
  38
  39MODULE_AUTHOR("Stephen Street");
  40MODULE_DESCRIPTION("PXA2xx SSP SPI Controller");
  41MODULE_LICENSE("GPL");
  42MODULE_ALIAS("platform:pxa2xx-spi");
  43
  44#define MAX_BUSES 3
  45
  46#define TIMOUT_DFLT		1000
  47
  48#define DMA_INT_MASK		(DCSR_ENDINTR | DCSR_STARTINTR | DCSR_BUSERR)
  49#define RESET_DMA_CHANNEL	(DCSR_NODESC | DMA_INT_MASK)
  50#define IS_DMA_ALIGNED(x)	((((u32)(x)) & 0x07) == 0)
  51#define MAX_DMA_LEN		8191
  52#define DMA_ALIGNMENT		8
  53
  54/*
  55 * for testing SSCR1 changes that require SSP restart, basically
  56 * everything except the service and interrupt enables, the pxa270 developer
  57 * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this
  58 * list, but the PXA255 dev man says all bits without really meaning the
  59 * service and interrupt enables
  60 */
  61#define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
  62				| SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
  63				| SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
  64				| SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
  65				| SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \
  66				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
  67
  68#define DEFINE_SSP_REG(reg, off) \
  69static inline u32 read_##reg(void const __iomem *p) \
  70{ return __raw_readl(p + (off)); } \
  71\
  72static inline void write_##reg(u32 v, void __iomem *p) \
  73{ __raw_writel(v, p + (off)); }
  74
  75DEFINE_SSP_REG(SSCR0, 0x00)
  76DEFINE_SSP_REG(SSCR1, 0x04)
  77DEFINE_SSP_REG(SSSR, 0x08)
  78DEFINE_SSP_REG(SSITR, 0x0c)
  79DEFINE_SSP_REG(SSDR, 0x10)
  80DEFINE_SSP_REG(SSTO, 0x28)
  81DEFINE_SSP_REG(SSPSP, 0x2c)
  82
  83#define START_STATE ((void*)0)
  84#define RUNNING_STATE ((void*)1)
  85#define DONE_STATE ((void*)2)
  86#define ERROR_STATE ((void*)-1)
  87
  88#define QUEUE_RUNNING 0
  89#define QUEUE_STOPPED 1
  90
  91struct driver_data {
  92	/* Driver model hookup */
  93	struct platform_device *pdev;
  94
  95	/* SSP Info */
  96	struct ssp_device *ssp;
 
 
 
 
  97
  98	/* SPI framework hookup */
  99	enum pxa_ssp_type ssp_type;
 100	struct spi_master *master;
 101
 102	/* PXA hookup */
 103	struct pxa2xx_spi_master *master_info;
 104
 105	/* DMA setup stuff */
 106	int rx_channel;
 107	int tx_channel;
 108	u32 *null_dma_buf;
 109
 110	/* SSP register addresses */
 111	void __iomem *ioaddr;
 112	u32 ssdr_physical;
 113
 114	/* SSP masks*/
 115	u32 dma_cr1;
 116	u32 int_cr1;
 117	u32 clear_sr;
 118	u32 mask_sr;
 119
 120	/* Driver message queue */
 121	struct workqueue_struct	*workqueue;
 122	struct work_struct pump_messages;
 123	spinlock_t lock;
 124	struct list_head queue;
 125	int busy;
 126	int run;
 127
 128	/* Message Transfer pump */
 129	struct tasklet_struct pump_transfers;
 130
 131	/* Current message transfer state info */
 132	struct spi_message* cur_msg;
 133	struct spi_transfer* cur_transfer;
 134	struct chip_data *cur_chip;
 135	size_t len;
 136	void *tx;
 137	void *tx_end;
 138	void *rx;
 139	void *rx_end;
 140	int dma_mapped;
 141	dma_addr_t rx_dma;
 142	dma_addr_t tx_dma;
 143	size_t rx_map_len;
 144	size_t tx_map_len;
 145	u8 n_bytes;
 146	u32 dma_width;
 147	int (*write)(struct driver_data *drv_data);
 148	int (*read)(struct driver_data *drv_data);
 149	irqreturn_t (*transfer_handler)(struct driver_data *drv_data);
 150	void (*cs_control)(u32 command);
 151};
 152
 153struct chip_data {
 154	u32 cr0;
 155	u32 cr1;
 156	u32 psp;
 157	u32 timeout;
 158	u8 n_bytes;
 159	u32 dma_width;
 160	u32 dma_burst_size;
 161	u32 threshold;
 162	u32 dma_threshold;
 163	u8 enable_dma;
 164	u8 bits_per_word;
 165	u32 speed_hz;
 166	union {
 167		int gpio_cs;
 168		unsigned int frm;
 169	};
 170	int gpio_cs_inverted;
 171	int (*write)(struct driver_data *drv_data);
 172	int (*read)(struct driver_data *drv_data);
 173	void (*cs_control)(u32 command);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 174};
 175
 176static void pump_messages(struct work_struct *work);
 177
 178static void cs_assert(struct driver_data *drv_data)
 179{
 180	struct chip_data *chip = drv_data->cur_chip;
 181
 182	if (drv_data->ssp_type == CE4100_SSP) {
 183		write_SSSR(drv_data->cur_chip->frm, drv_data->ioaddr);
 184		return;
 185	}
 186
 187	if (chip->cs_control) {
 188		chip->cs_control(PXA2XX_CS_ASSERT);
 189		return;
 190	}
 191
 192	if (gpio_is_valid(chip->gpio_cs))
 193		gpio_set_value(chip->gpio_cs, chip->gpio_cs_inverted);
 194}
 195
 196static void cs_deassert(struct driver_data *drv_data)
 197{
 198	struct chip_data *chip = drv_data->cur_chip;
 199
 200	if (drv_data->ssp_type == CE4100_SSP)
 201		return;
 202
 203	if (chip->cs_control) {
 204		chip->cs_control(PXA2XX_CS_DEASSERT);
 205		return;
 
 
 206	}
 207
 208	if (gpio_is_valid(chip->gpio_cs))
 209		gpio_set_value(chip->gpio_cs, !chip->gpio_cs_inverted);
 210}
 211
 212static void write_SSSR_CS(struct driver_data *drv_data, u32 val)
 213{
 214	void __iomem *reg = drv_data->ioaddr;
 215
 216	if (drv_data->ssp_type == CE4100_SSP)
 217		val |= read_SSSR(reg) & SSSR_ALT_FRM_MASK;
 218
 219	write_SSSR(val, reg);
 220}
 221
 222static int pxa25x_ssp_comp(struct driver_data *drv_data)
 223{
 224	if (drv_data->ssp_type == PXA25x_SSP)
 225		return 1;
 226	if (drv_data->ssp_type == CE4100_SSP)
 227		return 1;
 228	return 0;
 229}
 230
 231static int flush(struct driver_data *drv_data)
 232{
 233	unsigned long limit = loops_per_jiffy << 1;
 234
 235	void __iomem *reg = drv_data->ioaddr;
 236
 237	do {
 238		while (read_SSSR(reg) & SSSR_RNE) {
 239			read_SSDR(reg);
 240		}
 241	} while ((read_SSSR(reg) & SSSR_BSY) && --limit);
 242	write_SSSR_CS(drv_data, SSSR_ROR);
 243
 244	return limit;
 245}
 246
 247static int null_writer(struct driver_data *drv_data)
 
 248{
 249	void __iomem *reg = drv_data->ioaddr;
 250	u8 n_bytes = drv_data->n_bytes;
 251
 252	if (((read_SSSR(reg) & SSSR_TFL_MASK) == SSSR_TFL_MASK)
 253		|| (drv_data->tx == drv_data->tx_end))
 254		return 0;
 255
 256	write_SSDR(0, reg);
 257	drv_data->tx += n_bytes;
 258
 259	return 1;
 260}
 261
 262static int null_reader(struct driver_data *drv_data)
 263{
 264	void __iomem *reg = drv_data->ioaddr;
 265	u8 n_bytes = drv_data->n_bytes;
 266
 267	while ((read_SSSR(reg) & SSSR_RNE)
 268		&& (drv_data->rx < drv_data->rx_end)) {
 269		read_SSDR(reg);
 270		drv_data->rx += n_bytes;
 
 
 
 
 
 
 271	}
 272
 273	return drv_data->rx == drv_data->rx_end;
 274}
 275
 276static int u8_writer(struct driver_data *drv_data)
 
 277{
 278	void __iomem *reg = drv_data->ioaddr;
 279
 280	if (((read_SSSR(reg) & SSSR_TFL_MASK) == SSSR_TFL_MASK)
 281		|| (drv_data->tx == drv_data->tx_end))
 282		return 0;
 283
 284	write_SSDR(*(u8 *)(drv_data->tx), reg);
 285	++drv_data->tx;
 286
 287	return 1;
 
 
 
 
 288}
 289
 290static int u8_reader(struct driver_data *drv_data)
 
 291{
 292	void __iomem *reg = drv_data->ioaddr;
 293
 294	while ((read_SSSR(reg) & SSSR_RNE)
 295		&& (drv_data->rx < drv_data->rx_end)) {
 296		*(u8 *)(drv_data->rx) = read_SSDR(reg);
 297		++drv_data->rx;
 
 
 
 
 298	}
 299
 300	return drv_data->rx == drv_data->rx_end;
 301}
 302
 303static int u16_writer(struct driver_data *drv_data)
 
 304{
 305	void __iomem *reg = drv_data->ioaddr;
 306
 307	if (((read_SSSR(reg) & SSSR_TFL_MASK) == SSSR_TFL_MASK)
 308		|| (drv_data->tx == drv_data->tx_end))
 309		return 0;
 310
 311	write_SSDR(*(u16 *)(drv_data->tx), reg);
 312	drv_data->tx += 2;
 313
 314	return 1;
 
 
 
 315}
 316
 317static int u16_reader(struct driver_data *drv_data)
 
 
 
 
 318{
 319	void __iomem *reg = drv_data->ioaddr;
 320
 321	while ((read_SSSR(reg) & SSSR_RNE)
 322		&& (drv_data->rx < drv_data->rx_end)) {
 323		*(u16 *)(drv_data->rx) = read_SSDR(reg);
 324		drv_data->rx += 2;
 325	}
 326
 327	return drv_data->rx == drv_data->rx_end;
 328}
 329
 330static int u32_writer(struct driver_data *drv_data)
 
 331{
 332	void __iomem *reg = drv_data->ioaddr;
 333
 334	if (((read_SSSR(reg) & SSSR_TFL_MASK) == SSSR_TFL_MASK)
 335		|| (drv_data->tx == drv_data->tx_end))
 336		return 0;
 337
 338	write_SSDR(*(u32 *)(drv_data->tx), reg);
 339	drv_data->tx += 4;
 340
 341	return 1;
 342}
 343
 344static int u32_reader(struct driver_data *drv_data)
 
 
 
 
 
 
 
 345{
 346	void __iomem *reg = drv_data->ioaddr;
 
 347
 348	while ((read_SSSR(reg) & SSSR_RNE)
 349		&& (drv_data->rx < drv_data->rx_end)) {
 350		*(u32 *)(drv_data->rx) = read_SSDR(reg);
 351		drv_data->rx += 4;
 352	}
 353
 354	return drv_data->rx == drv_data->rx_end;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 355}
 356
 357static void *next_transfer(struct driver_data *drv_data)
 
 358{
 359	struct spi_message *msg = drv_data->cur_msg;
 360	struct spi_transfer *trans = drv_data->cur_transfer;
 
 361
 362	/* Move to next transfer */
 363	if (trans->transfer_list.next != &msg->transfers) {
 364		drv_data->cur_transfer =
 365			list_entry(trans->transfer_list.next,
 366					struct spi_transfer,
 367					transfer_list);
 368		return RUNNING_STATE;
 369	} else
 370		return DONE_STATE;
 371}
 372
 373static int map_dma_buffers(struct driver_data *drv_data)
 374{
 375	struct spi_message *msg = drv_data->cur_msg;
 376	struct device *dev = &msg->spi->dev;
 377
 378	if (!drv_data->cur_chip->enable_dma)
 379		return 0;
 380
 381	if (msg->is_dma_mapped)
 382		return  drv_data->rx_dma && drv_data->tx_dma;
 
 
 
 
 
 
 
 
 
 
 
 
 
 383
 384	if (!IS_DMA_ALIGNED(drv_data->rx) || !IS_DMA_ALIGNED(drv_data->tx))
 385		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 386
 387	/* Modify setup if rx buffer is null */
 388	if (drv_data->rx == NULL) {
 389		*drv_data->null_dma_buf = 0;
 390		drv_data->rx = drv_data->null_dma_buf;
 391		drv_data->rx_map_len = 4;
 392	} else
 393		drv_data->rx_map_len = drv_data->len;
 394
 395
 396	/* Modify setup if tx buffer is null */
 397	if (drv_data->tx == NULL) {
 398		*drv_data->null_dma_buf = 0;
 399		drv_data->tx = drv_data->null_dma_buf;
 400		drv_data->tx_map_len = 4;
 401	} else
 402		drv_data->tx_map_len = drv_data->len;
 403
 404	/* Stream map the tx buffer. Always do DMA_TO_DEVICE first
 405	 * so we flush the cache *before* invalidating it, in case
 406	 * the tx and rx buffers overlap.
 407	 */
 408	drv_data->tx_dma = dma_map_single(dev, drv_data->tx,
 409					drv_data->tx_map_len, DMA_TO_DEVICE);
 410	if (dma_mapping_error(dev, drv_data->tx_dma))
 411		return 0;
 412
 413	/* Stream map the rx buffer */
 414	drv_data->rx_dma = dma_map_single(dev, drv_data->rx,
 415					drv_data->rx_map_len, DMA_FROM_DEVICE);
 416	if (dma_mapping_error(dev, drv_data->rx_dma)) {
 417		dma_unmap_single(dev, drv_data->tx_dma,
 418					drv_data->tx_map_len, DMA_TO_DEVICE);
 419		return 0;
 420	}
 421
 422	return 1;
 423}
 424
 425static void unmap_dma_buffers(struct driver_data *drv_data)
 426{
 427	struct device *dev;
 
 
 
 
 
 
 
 428
 429	if (!drv_data->dma_mapped)
 
 430		return;
 
 431
 432	if (!drv_data->cur_msg->is_dma_mapped) {
 433		dev = &drv_data->cur_msg->spi->dev;
 434		dma_unmap_single(dev, drv_data->rx_dma,
 435					drv_data->rx_map_len, DMA_FROM_DEVICE);
 436		dma_unmap_single(dev, drv_data->tx_dma,
 437					drv_data->tx_map_len, DMA_TO_DEVICE);
 438	}
 439
 440	drv_data->dma_mapped = 0;
 
 441}
 442
 443/* caller already set message->status; dma and pio irqs are blocked */
 444static void giveback(struct driver_data *drv_data)
 445{
 446	struct spi_transfer* last_transfer;
 447	unsigned long flags;
 448	struct spi_message *msg;
 449
 450	spin_lock_irqsave(&drv_data->lock, flags);
 451	msg = drv_data->cur_msg;
 452	drv_data->cur_msg = NULL;
 453	drv_data->cur_transfer = NULL;
 454	queue_work(drv_data->workqueue, &drv_data->pump_messages);
 455	spin_unlock_irqrestore(&drv_data->lock, flags);
 456
 457	last_transfer = list_entry(msg->transfers.prev,
 458					struct spi_transfer,
 459					transfer_list);
 460
 461	/* Delay if requested before any change in chip select */
 462	if (last_transfer->delay_usecs)
 463		udelay(last_transfer->delay_usecs);
 464
 465	/* Drop chip select UNLESS cs_change is true or we are returning
 466	 * a message with an error, or next message is for another chip
 467	 */
 468	if (!last_transfer->cs_change)
 469		cs_deassert(drv_data);
 470	else {
 471		struct spi_message *next_msg;
 472
 473		/* Holding of cs was hinted, but we need to make sure
 474		 * the next message is for the same chip.  Don't waste
 475		 * time with the following tests unless this was hinted.
 476		 *
 477		 * We cannot postpone this until pump_messages, because
 478		 * after calling msg->complete (below) the driver that
 479		 * sent the current message could be unloaded, which
 480		 * could invalidate the cs_control() callback...
 481		 */
 482
 483		/* get a pointer to the next message, if any */
 484		spin_lock_irqsave(&drv_data->lock, flags);
 485		if (list_empty(&drv_data->queue))
 486			next_msg = NULL;
 487		else
 488			next_msg = list_entry(drv_data->queue.next,
 489					struct spi_message, queue);
 490		spin_unlock_irqrestore(&drv_data->lock, flags);
 491
 492		/* see if the next and current messages point
 493		 * to the same chip
 494		 */
 495		if (next_msg && next_msg->spi != msg->spi)
 496			next_msg = NULL;
 497		if (!next_msg || msg->state == ERROR_STATE)
 498			cs_deassert(drv_data);
 499	}
 500
 501	msg->state = NULL;
 502	if (msg->complete)
 503		msg->complete(msg->context);
 504
 505	drv_data->cur_chip = NULL;
 
 
 
 
 
 506}
 507
 508static int wait_ssp_rx_stall(void const __iomem *ioaddr)
 509{
 510	unsigned long limit = loops_per_jiffy << 1;
 511
 512	while ((read_SSSR(ioaddr) & SSSR_BSY) && --limit)
 513		cpu_relax();
 
 
 
 514
 515	return limit;
 516}
 517
 518static int wait_dma_channel_stop(int channel)
 519{
 520	unsigned long limit = loops_per_jiffy << 1;
 521
 522	while (!(DCSR(channel) & DCSR_STOPSTATE) && --limit)
 523		cpu_relax();
 524
 525	return limit;
 
 526}
 527
 528static void dma_error_stop(struct driver_data *drv_data, const char *msg)
 529{
 530	void __iomem *reg = drv_data->ioaddr;
 531
 532	/* Stop and reset */
 533	DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL;
 534	DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL;
 535	write_SSSR_CS(drv_data, drv_data->clear_sr);
 536	write_SSCR1(read_SSCR1(reg) & ~drv_data->dma_cr1, reg);
 537	if (!pxa25x_ssp_comp(drv_data))
 538		write_SSTO(0, reg);
 539	flush(drv_data);
 540	write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
 541
 542	unmap_dma_buffers(drv_data);
 
 
 543
 544	dev_err(&drv_data->pdev->dev, "%s\n", msg);
 
 545
 546	drv_data->cur_msg->state = ERROR_STATE;
 547	tasklet_schedule(&drv_data->pump_transfers);
 548}
 549
 550static void dma_transfer_complete(struct driver_data *drv_data)
 551{
 552	void __iomem *reg = drv_data->ioaddr;
 553	struct spi_message *msg = drv_data->cur_msg;
 554
 555	/* Clear and disable interrupts on SSP and DMA channels*/
 556	write_SSCR1(read_SSCR1(reg) & ~drv_data->dma_cr1, reg);
 557	write_SSSR_CS(drv_data, drv_data->clear_sr);
 558	DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL;
 559	DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL;
 560
 561	if (wait_dma_channel_stop(drv_data->rx_channel) == 0)
 562		dev_err(&drv_data->pdev->dev,
 563			"dma_handler: dma rx channel stop failed\n");
 564
 565	if (wait_ssp_rx_stall(drv_data->ioaddr) == 0)
 566		dev_err(&drv_data->pdev->dev,
 567			"dma_transfer: ssp rx stall failed\n");
 568
 569	unmap_dma_buffers(drv_data);
 570
 571	/* update the buffer pointer for the amount completed in dma */
 572	drv_data->rx += drv_data->len -
 573			(DCMD(drv_data->rx_channel) & DCMD_LENGTH);
 574
 575	/* read trailing data from fifo, it does not matter how many
 576	 * bytes are in the fifo just read until buffer is full
 577	 * or fifo is empty, which ever occurs first */
 578	drv_data->read(drv_data);
 579
 580	/* return count of what was actually read */
 581	msg->actual_length += drv_data->len -
 582				(drv_data->rx_end - drv_data->rx);
 583
 584	/* Transfer delays and chip select release are
 585	 * handled in pump_transfers or giveback
 586	 */
 
 
 587
 588	/* Move to next transfer */
 589	msg->state = next_transfer(drv_data);
 590
 591	/* Schedule transfer tasklet */
 592	tasklet_schedule(&drv_data->pump_transfers);
 593}
 594
 595static void dma_handler(int channel, void *data)
 596{
 597	struct driver_data *drv_data = data;
 598	u32 irq_status = DCSR(channel) & DMA_INT_MASK;
 599
 600	if (irq_status & DCSR_BUSERR) {
 601
 602		if (channel == drv_data->tx_channel)
 603			dma_error_stop(drv_data,
 604					"dma_handler: "
 605					"bad bus address on tx channel");
 606		else
 607			dma_error_stop(drv_data,
 608					"dma_handler: "
 609					"bad bus address on rx channel");
 610		return;
 611	}
 612
 613	/* PXA255x_SSP has no timeout interrupt, wait for tailing bytes */
 614	if ((channel == drv_data->tx_channel)
 615		&& (irq_status & DCSR_ENDINTR)
 616		&& (drv_data->ssp_type == PXA25x_SSP)) {
 
 
 
 
 617
 618		/* Wait for rx to stall */
 619		if (wait_ssp_rx_stall(drv_data->ioaddr) == 0)
 620			dev_err(&drv_data->pdev->dev,
 621				"dma_handler: ssp rx stall failed\n");
 622
 623		/* finish this transfer, start the next */
 624		dma_transfer_complete(drv_data);
 625	}
 626}
 627
 628static irqreturn_t dma_transfer(struct driver_data *drv_data)
 629{
 630	u32 irq_status;
 631	void __iomem *reg = drv_data->ioaddr;
 632
 633	irq_status = read_SSSR(reg) & drv_data->mask_sr;
 634	if (irq_status & SSSR_ROR) {
 635		dma_error_stop(drv_data, "dma_transfer: fifo overrun");
 636		return IRQ_HANDLED;
 637	}
 638
 639	/* Check for false positive timeout */
 640	if ((irq_status & SSSR_TINT)
 641		&& (DCSR(drv_data->tx_channel) & DCSR_RUN)) {
 642		write_SSSR(SSSR_TINT, reg);
 643		return IRQ_HANDLED;
 644	}
 645
 646	if (irq_status & SSSR_TINT || drv_data->rx == drv_data->rx_end) {
 
 
 
 
 647
 648		/* Clear and disable timeout interrupt, do the rest in
 649		 * dma_transfer_complete */
 650		if (!pxa25x_ssp_comp(drv_data))
 651			write_SSTO(0, reg);
 652
 653		/* finish this transfer, start the next */
 654		dma_transfer_complete(drv_data);
 655
 656		return IRQ_HANDLED;
 
 
 
 
 
 657	}
 658
 659	/* Opps problem detected */
 660	return IRQ_NONE;
 661}
 662
 663static void reset_sccr1(struct driver_data *drv_data)
 664{
 665	void __iomem *reg = drv_data->ioaddr;
 666	struct chip_data *chip = drv_data->cur_chip;
 667	u32 sccr1_reg;
 668
 669	sccr1_reg = read_SSCR1(reg) & ~drv_data->int_cr1;
 670	sccr1_reg &= ~SSCR1_RFT;
 
 
 
 
 
 
 
 
 
 
 671	sccr1_reg |= chip->threshold;
 672	write_SSCR1(sccr1_reg, reg);
 673}
 674
 675static void int_error_stop(struct driver_data *drv_data, const char* msg)
 676{
 677	void __iomem *reg = drv_data->ioaddr;
 678
 679	/* Stop and reset SSP */
 680	write_SSSR_CS(drv_data, drv_data->clear_sr);
 681	reset_sccr1(drv_data);
 682	if (!pxa25x_ssp_comp(drv_data))
 683		write_SSTO(0, reg);
 684	flush(drv_data);
 685	write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
 686
 687	dev_err(&drv_data->pdev->dev, "%s\n", msg);
 688
 689	drv_data->cur_msg->state = ERROR_STATE;
 690	tasklet_schedule(&drv_data->pump_transfers);
 691}
 692
 693static void int_transfer_complete(struct driver_data *drv_data)
 694{
 695	void __iomem *reg = drv_data->ioaddr;
 696
 697	/* Stop SSP */
 698	write_SSSR_CS(drv_data, drv_data->clear_sr);
 699	reset_sccr1(drv_data);
 700	if (!pxa25x_ssp_comp(drv_data))
 701		write_SSTO(0, reg);
 702
 703	/* Update total byte transferred return count actual bytes read */
 704	drv_data->cur_msg->actual_length += drv_data->len -
 705				(drv_data->rx_end - drv_data->rx);
 706
 707	/* Transfer delays and chip select release are
 708	 * handled in pump_transfers or giveback
 709	 */
 710
 711	/* Move to next transfer */
 712	drv_data->cur_msg->state = next_transfer(drv_data);
 713
 714	/* Schedule transfer tasklet */
 715	tasklet_schedule(&drv_data->pump_transfers);
 716}
 717
 718static irqreturn_t interrupt_transfer(struct driver_data *drv_data)
 719{
 720	void __iomem *reg = drv_data->ioaddr;
 
 721
 722	u32 irq_mask = (read_SSCR1(reg) & SSCR1_TIE) ?
 723			drv_data->mask_sr : drv_data->mask_sr & ~SSSR_TFS;
 724
 725	u32 irq_status = read_SSSR(reg) & irq_mask;
 726
 727	if (irq_status & SSSR_ROR) {
 728		int_error_stop(drv_data, "interrupt_transfer: fifo overrun");
 729		return IRQ_HANDLED;
 730	}
 731
 
 
 
 
 
 732	if (irq_status & SSSR_TINT) {
 733		write_SSSR(SSSR_TINT, reg);
 734		if (drv_data->read(drv_data)) {
 735			int_transfer_complete(drv_data);
 736			return IRQ_HANDLED;
 737		}
 738	}
 739
 740	/* Drain rx fifo, Fill tx fifo and prevent overruns */
 741	do {
 742		if (drv_data->read(drv_data)) {
 743			int_transfer_complete(drv_data);
 744			return IRQ_HANDLED;
 745		}
 746	} while (drv_data->write(drv_data));
 747
 748	if (drv_data->read(drv_data)) {
 749		int_transfer_complete(drv_data);
 750		return IRQ_HANDLED;
 751	}
 752
 753	if (drv_data->tx == drv_data->tx_end) {
 754		u32 bytes_left;
 755		u32 sccr1_reg;
 756
 757		sccr1_reg = read_SSCR1(reg);
 758		sccr1_reg &= ~SSCR1_TIE;
 759
 760		/*
 761		 * PXA25x_SSP has no timeout, set up rx threshould for the
 762		 * remaining RX bytes.
 763		 */
 764		if (pxa25x_ssp_comp(drv_data)) {
 
 765
 766			sccr1_reg &= ~SSCR1_RFT;
 767
 768			bytes_left = drv_data->rx_end - drv_data->rx;
 769			switch (drv_data->n_bytes) {
 770			case 4:
 771				bytes_left >>= 1;
 
 772			case 2:
 773				bytes_left >>= 1;
 
 774			}
 775
 776			if (bytes_left > RX_THRESH_DFLT)
 777				bytes_left = RX_THRESH_DFLT;
 
 778
 779			sccr1_reg |= SSCR1_RxTresh(bytes_left);
 780		}
 781		write_SSCR1(sccr1_reg, reg);
 782	}
 783
 784	/* We did something */
 785	return IRQ_HANDLED;
 786}
 787
 
 
 
 
 
 
 
 
 
 
 
 
 
 788static irqreturn_t ssp_int(int irq, void *dev_id)
 789{
 790	struct driver_data *drv_data = dev_id;
 791	void __iomem *reg = drv_data->ioaddr;
 792	u32 sccr1_reg = read_SSCR1(reg);
 793	u32 mask = drv_data->mask_sr;
 794	u32 status;
 795
 796	status = read_SSSR(reg);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 797
 798	/* Ignore possible writes if we don't need to write */
 799	if (!(sccr1_reg & SSCR1_TIE))
 800		mask &= ~SSSR_TFS;
 801
 
 
 
 
 802	if (!(status & mask))
 803		return IRQ_NONE;
 804
 805	if (!drv_data->cur_msg) {
 806
 807		write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
 808		write_SSCR1(read_SSCR1(reg) & ~drv_data->int_cr1, reg);
 809		if (!pxa25x_ssp_comp(drv_data))
 810			write_SSTO(0, reg);
 811		write_SSSR_CS(drv_data, drv_data->clear_sr);
 812
 813		dev_err(&drv_data->pdev->dev, "bad message state "
 814			"in interrupt handler\n");
 815
 
 
 816		/* Never fail */
 817		return IRQ_HANDLED;
 818	}
 819
 820	return drv_data->transfer_handler(drv_data);
 821}
 822
 823static int set_dma_burst_and_threshold(struct chip_data *chip,
 824				struct spi_device *spi,
 825				u8 bits_per_word, u32 *burst_code,
 826				u32 *threshold)
 827{
 828	struct pxa2xx_spi_chip *chip_info =
 829			(struct pxa2xx_spi_chip *)spi->controller_data;
 830	int bytes_per_word;
 831	int burst_bytes;
 832	int thresh_words;
 833	int req_burst_size;
 834	int retval = 0;
 835
 836	/* Set the threshold (in registers) to equal the same amount of data
 837	 * as represented by burst size (in bytes).  The computation below
 838	 * is (burst_size rounded up to nearest 8 byte, word or long word)
 839	 * divided by (bytes/register); the tx threshold is the inverse of
 840	 * the rx, so that there will always be enough data in the rx fifo
 841	 * to satisfy a burst, and there will always be enough space in the
 842	 * tx fifo to accept a burst (a tx burst will overwrite the fifo if
 843	 * there is not enough space), there must always remain enough empty
 844	 * space in the rx fifo for any data loaded to the tx fifo.
 845	 * Whenever burst_size (in bytes) equals bits/word, the fifo threshold
 846	 * will be 8, or half the fifo;
 847	 * The threshold can only be set to 2, 4 or 8, but not 16, because
 848	 * to burst 16 to the tx fifo, the fifo would have to be empty;
 849	 * however, the minimum fifo trigger level is 1, and the tx will
 850	 * request service when the fifo is at this level, with only 15 spaces.
 851	 */
 852
 853	/* find bytes/word */
 854	if (bits_per_word <= 8)
 855		bytes_per_word = 1;
 856	else if (bits_per_word <= 16)
 857		bytes_per_word = 2;
 858	else
 859		bytes_per_word = 4;
 860
 861	/* use struct pxa2xx_spi_chip->dma_burst_size if available */
 862	if (chip_info)
 863		req_burst_size = chip_info->dma_burst_size;
 864	else {
 865		switch (chip->dma_burst_size) {
 866		default:
 867			/* if the default burst size is not set,
 868			 * do it now */
 869			chip->dma_burst_size = DCMD_BURST8;
 870		case DCMD_BURST8:
 871			req_burst_size = 8;
 872			break;
 873		case DCMD_BURST16:
 874			req_burst_size = 16;
 875			break;
 876		case DCMD_BURST32:
 877			req_burst_size = 32;
 878			break;
 
 
 
 
 879		}
 
 
 
 880	}
 881	if (req_burst_size <= 8) {
 882		*burst_code = DCMD_BURST8;
 883		burst_bytes = 8;
 884	} else if (req_burst_size <= 16) {
 885		if (bytes_per_word == 1) {
 886			/* don't burst more than 1/2 the fifo */
 887			*burst_code = DCMD_BURST8;
 888			burst_bytes = 8;
 889			retval = 1;
 890		} else {
 891			*burst_code = DCMD_BURST16;
 892			burst_bytes = 16;
 893		}
 
 
 
 
 
 
 
 
 
 
 894	} else {
 895		if (bytes_per_word == 1) {
 896			/* don't burst more than 1/2 the fifo */
 897			*burst_code = DCMD_BURST8;
 898			burst_bytes = 8;
 899			retval = 1;
 900		} else if (bytes_per_word == 2) {
 901			/* don't burst more than 1/2 the fifo */
 902			*burst_code = DCMD_BURST16;
 903			burst_bytes = 16;
 904			retval = 1;
 905		} else {
 906			*burst_code = DCMD_BURST32;
 907			burst_bytes = 32;
 
 
 
 
 
 
 
 
 
 
 
 
 908		}
 909	}
 910
 911	thresh_words = burst_bytes / bytes_per_word;
 912
 913	/* thresh_words will be between 2 and 8 */
 914	*threshold = (SSCR1_RxTresh(thresh_words) & SSCR1_RFT)
 915			| (SSCR1_TxTresh(16-thresh_words) & SSCR1_TFT);
 916
 917	return retval;
 918}
 919
 920static unsigned int ssp_get_clk_div(struct ssp_device *ssp, int rate)
 921{
 922	unsigned long ssp_clk = clk_get_rate(ssp->clk);
 
 923
 
 
 
 
 
 
 924	if (ssp->type == PXA25x_SSP || ssp->type == CE4100_SSP)
 925		return ((ssp_clk / (2 * rate) - 1) & 0xff) << 8;
 926	else
 927		return ((ssp_clk / rate - 1) & 0xfff) << 8;
 928}
 929
 930static void pump_transfers(unsigned long data)
 
 931{
 932	struct driver_data *drv_data = (struct driver_data *)data;
 933	struct spi_message *message = NULL;
 934	struct spi_transfer *transfer = NULL;
 935	struct spi_transfer *previous = NULL;
 936	struct chip_data *chip = NULL;
 937	struct ssp_device *ssp = drv_data->ssp;
 938	void __iomem *reg = drv_data->ioaddr;
 939	u32 clk_div = 0;
 940	u8 bits = 0;
 941	u32 speed = 0;
 942	u32 cr0;
 943	u32 cr1;
 944	u32 dma_thresh = drv_data->cur_chip->dma_threshold;
 945	u32 dma_burst = drv_data->cur_chip->dma_burst_size;
 946
 947	/* Get current state information */
 948	message = drv_data->cur_msg;
 949	transfer = drv_data->cur_transfer;
 950	chip = drv_data->cur_chip;
 951
 952	/* Handle for abort */
 953	if (message->state == ERROR_STATE) {
 954		message->status = -EIO;
 955		giveback(drv_data);
 956		return;
 957	}
 958
 959	/* Handle end of message */
 960	if (message->state == DONE_STATE) {
 961		message->status = 0;
 962		giveback(drv_data);
 963		return;
 964	}
 965
 966	/* Delay if requested at end of transfer before CS change */
 967	if (message->state == RUNNING_STATE) {
 968		previous = list_entry(transfer->transfer_list.prev,
 969					struct spi_transfer,
 970					transfer_list);
 971		if (previous->delay_usecs)
 972			udelay(previous->delay_usecs);
 973
 974		/* Drop chip select only if cs_change is requested */
 975		if (previous->cs_change)
 976			cs_deassert(drv_data);
 977	}
 978
 979	/* Check for transfers that need multiple DMA segments */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 980	if (transfer->len > MAX_DMA_LEN && chip->enable_dma) {
 981
 982		/* reject already-mapped transfers; PIO won't always work */
 983		if (message->is_dma_mapped
 984				|| transfer->rx_dma || transfer->tx_dma) {
 985			dev_err(&drv_data->pdev->dev,
 986				"pump_transfers: mapped transfer length "
 987				"of %u is greater than %d\n",
 988				transfer->len, MAX_DMA_LEN);
 989			message->status = -EINVAL;
 990			giveback(drv_data);
 991			return;
 992		}
 993
 994		/* warn ... we force this to PIO mode */
 995		if (printk_ratelimit())
 996			dev_warn(&message->spi->dev, "pump_transfers: "
 997				"DMA disabled for transfer length %ld "
 998				"greater than %d\n",
 999				(long)drv_data->len, MAX_DMA_LEN);
1000	}
1001
1002	/* Setup the transfer state based on the type of transfer */
1003	if (flush(drv_data) == 0) {
1004		dev_err(&drv_data->pdev->dev, "pump_transfers: flush failed\n");
1005		message->status = -EIO;
1006		giveback(drv_data);
1007		return;
1008	}
1009	drv_data->n_bytes = chip->n_bytes;
1010	drv_data->dma_width = chip->dma_width;
1011	drv_data->tx = (void *)transfer->tx_buf;
1012	drv_data->tx_end = drv_data->tx + transfer->len;
1013	drv_data->rx = transfer->rx_buf;
1014	drv_data->rx_end = drv_data->rx + transfer->len;
1015	drv_data->rx_dma = transfer->rx_dma;
1016	drv_data->tx_dma = transfer->tx_dma;
1017	drv_data->len = transfer->len & DCMD_LENGTH;
1018	drv_data->write = drv_data->tx ? chip->write : null_writer;
1019	drv_data->read = drv_data->rx ? chip->read : null_reader;
1020
1021	/* Change speed and bit per word on a per transfer */
1022	cr0 = chip->cr0;
1023	if (transfer->speed_hz || transfer->bits_per_word) {
1024
1025		bits = chip->bits_per_word;
1026		speed = chip->speed_hz;
1027
1028		if (transfer->speed_hz)
1029			speed = transfer->speed_hz;
1030
1031		if (transfer->bits_per_word)
1032			bits = transfer->bits_per_word;
1033
1034		clk_div = ssp_get_clk_div(ssp, speed);
1035
1036		if (bits <= 8) {
1037			drv_data->n_bytes = 1;
1038			drv_data->dma_width = DCMD_WIDTH1;
1039			drv_data->read = drv_data->read != null_reader ?
1040						u8_reader : null_reader;
1041			drv_data->write = drv_data->write != null_writer ?
1042						u8_writer : null_writer;
1043		} else if (bits <= 16) {
1044			drv_data->n_bytes = 2;
1045			drv_data->dma_width = DCMD_WIDTH2;
1046			drv_data->read = drv_data->read != null_reader ?
1047						u16_reader : null_reader;
1048			drv_data->write = drv_data->write != null_writer ?
1049						u16_writer : null_writer;
1050		} else if (bits <= 32) {
1051			drv_data->n_bytes = 4;
1052			drv_data->dma_width = DCMD_WIDTH4;
1053			drv_data->read = drv_data->read != null_reader ?
1054						u32_reader : null_reader;
1055			drv_data->write = drv_data->write != null_writer ?
1056						u32_writer : null_writer;
1057		}
1058		/* if bits/word is changed in dma mode, then must check the
1059		 * thresholds and burst also */
1060		if (chip->enable_dma) {
1061			if (set_dma_burst_and_threshold(chip, message->spi,
1062							bits, &dma_burst,
1063							&dma_thresh))
1064				if (printk_ratelimit())
1065					dev_warn(&message->spi->dev,
1066						"pump_transfers: "
1067						"DMA burst size reduced to "
1068						"match bits_per_word\n");
1069		}
1070
1071		cr0 = clk_div
1072			| SSCR0_Motorola
1073			| SSCR0_DataSize(bits > 16 ? bits - 16 : bits)
1074			| SSCR0_SSE
1075			| (bits > 16 ? SSCR0_EDSS : 0);
1076	}
1077
1078	message->state = RUNNING_STATE;
1079
1080	/* Try to map dma buffer and do a dma transfer if successful, but
1081	 * only if the length is non-zero and less than MAX_DMA_LEN.
1082	 *
1083	 * Zero-length non-descriptor DMA is illegal on PXA2xx; force use
1084	 * of PIO instead.  Care is needed above because the transfer may
1085	 * have have been passed with buffers that are already dma mapped.
1086	 * A zero-length transfer in PIO mode will not try to write/read
1087	 * to/from the buffers
1088	 *
1089	 * REVISIT large transfers are exactly where we most want to be
1090	 * using DMA.  If this happens much, split those transfers into
1091	 * multiple DMA segments rather than forcing PIO.
1092	 */
1093	drv_data->dma_mapped = 0;
1094	if (drv_data->len > 0 && drv_data->len <= MAX_DMA_LEN)
1095		drv_data->dma_mapped = map_dma_buffers(drv_data);
1096	if (drv_data->dma_mapped) {
1097
1098		/* Ensure we have the correct interrupt handler */
1099		drv_data->transfer_handler = dma_transfer;
1100
1101		/* Setup rx DMA Channel */
1102		DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL;
1103		DSADR(drv_data->rx_channel) = drv_data->ssdr_physical;
1104		DTADR(drv_data->rx_channel) = drv_data->rx_dma;
1105		if (drv_data->rx == drv_data->null_dma_buf)
1106			/* No target address increment */
1107			DCMD(drv_data->rx_channel) = DCMD_FLOWSRC
1108							| drv_data->dma_width
1109							| dma_burst
1110							| drv_data->len;
1111		else
1112			DCMD(drv_data->rx_channel) = DCMD_INCTRGADDR
1113							| DCMD_FLOWSRC
1114							| drv_data->dma_width
1115							| dma_burst
1116							| drv_data->len;
1117
1118		/* Setup tx DMA Channel */
1119		DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL;
1120		DSADR(drv_data->tx_channel) = drv_data->tx_dma;
1121		DTADR(drv_data->tx_channel) = drv_data->ssdr_physical;
1122		if (drv_data->tx == drv_data->null_dma_buf)
1123			/* No source address increment */
1124			DCMD(drv_data->tx_channel) = DCMD_FLOWTRG
1125							| drv_data->dma_width
1126							| dma_burst
1127							| drv_data->len;
1128		else
1129			DCMD(drv_data->tx_channel) = DCMD_INCSRCADDR
1130							| DCMD_FLOWTRG
1131							| drv_data->dma_width
1132							| dma_burst
1133							| drv_data->len;
1134
1135		/* Enable dma end irqs on SSP to detect end of transfer */
1136		if (drv_data->ssp_type == PXA25x_SSP)
1137			DCMD(drv_data->tx_channel) |= DCMD_ENDIRQEN;
1138
1139		/* Clear status and start DMA engine */
1140		cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1;
1141		write_SSSR(drv_data->clear_sr, reg);
1142		DCSR(drv_data->rx_channel) |= DCSR_RUN;
1143		DCSR(drv_data->tx_channel) |= DCSR_RUN;
1144	} else {
1145		/* Ensure we have the correct interrupt handler	*/
1146		drv_data->transfer_handler = interrupt_transfer;
1147
1148		/* Clear status  */
1149		cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1;
1150		write_SSSR_CS(drv_data, drv_data->clear_sr);
1151	}
1152
1153	/* see if we need to reload the config registers */
1154	if ((read_SSCR0(reg) != cr0)
1155		|| (read_SSCR1(reg) & SSCR1_CHANGE_MASK) !=
1156			(cr1 & SSCR1_CHANGE_MASK)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1157
 
 
 
 
1158		/* stop the SSP, and update the other bits */
1159		write_SSCR0(cr0 & ~SSCR0_SSE, reg);
 
1160		if (!pxa25x_ssp_comp(drv_data))
1161			write_SSTO(chip->timeout, reg);
1162		/* first set CR1 without interrupt and service enables */
1163		write_SSCR1(cr1 & SSCR1_CHANGE_MASK, reg);
1164		/* restart the SSP */
1165		write_SSCR0(cr0, reg);
1166
1167	} else {
1168		if (!pxa25x_ssp_comp(drv_data))
1169			write_SSTO(chip->timeout, reg);
1170	}
1171
1172	cs_assert(drv_data);
1173
1174	/* after chip select, release the data by enabling service
1175	 * requests and interrupts, without changing any mode bits */
1176	write_SSCR1(cr1, reg);
1177}
1178
1179static void pump_messages(struct work_struct *work)
1180{
1181	struct driver_data *drv_data =
1182		container_of(work, struct driver_data, pump_messages);
1183	unsigned long flags;
1184
1185	/* Lock queue and check for queue work */
1186	spin_lock_irqsave(&drv_data->lock, flags);
1187	if (list_empty(&drv_data->queue) || drv_data->run == QUEUE_STOPPED) {
1188		drv_data->busy = 0;
1189		spin_unlock_irqrestore(&drv_data->lock, flags);
1190		return;
1191	}
1192
1193	/* Make sure we are not already running a message */
1194	if (drv_data->cur_msg) {
1195		spin_unlock_irqrestore(&drv_data->lock, flags);
1196		return;
 
 
 
 
1197	}
1198
1199	/* Extract head of queue */
1200	drv_data->cur_msg = list_entry(drv_data->queue.next,
1201					struct spi_message, queue);
1202	list_del_init(&drv_data->cur_msg->queue);
 
 
 
 
1203
1204	/* Initial message state*/
1205	drv_data->cur_msg->state = START_STATE;
1206	drv_data->cur_transfer = list_entry(drv_data->cur_msg->transfers.next,
1207						struct spi_transfer,
1208						transfer_list);
 
 
 
 
 
 
1209
1210	/* prepare to setup the SSP, in pump_transfers, using the per
1211	 * chip configuration */
1212	drv_data->cur_chip = spi_get_ctldata(drv_data->cur_msg->spi);
1213
1214	/* Mark as busy and launch transfers */
1215	tasklet_schedule(&drv_data->pump_transfers);
1216
1217	drv_data->busy = 1;
1218	spin_unlock_irqrestore(&drv_data->lock, flags);
1219}
1220
1221static int transfer(struct spi_device *spi, struct spi_message *msg)
 
1222{
1223	struct driver_data *drv_data = spi_master_get_devdata(spi->master);
1224	unsigned long flags;
1225
1226	spin_lock_irqsave(&drv_data->lock, flags);
1227
1228	if (drv_data->run == QUEUE_STOPPED) {
1229		spin_unlock_irqrestore(&drv_data->lock, flags);
1230		return -ESHUTDOWN;
1231	}
1232
1233	msg->actual_length = 0;
1234	msg->status = -EINPROGRESS;
1235	msg->state = START_STATE;
 
1236
1237	list_add_tail(&msg->queue, &drv_data->queue);
 
 
 
 
 
 
 
 
 
1238
1239	if (drv_data->run == QUEUE_RUNNING && !drv_data->busy)
1240		queue_work(drv_data->workqueue, &drv_data->pump_messages);
 
1241
1242	spin_unlock_irqrestore(&drv_data->lock, flags);
 
1243
1244	return 0;
1245}
1246
1247static int setup_cs(struct spi_device *spi, struct chip_data *chip,
1248		    struct pxa2xx_spi_chip *chip_info)
1249{
 
 
 
1250	int err = 0;
1251
1252	if (chip == NULL || chip_info == NULL)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1253		return 0;
1254
1255	/* NOTE: setup() can be called multiple times, possibly with
1256	 * different chip_info, release previously requested GPIO
1257	 */
1258	if (gpio_is_valid(chip->gpio_cs))
1259		gpio_free(chip->gpio_cs);
 
 
1260
1261	/* If (*cs_control) is provided, ignore GPIO chip select */
1262	if (chip_info->cs_control) {
1263		chip->cs_control = chip_info->cs_control;
1264		return 0;
1265	}
1266
1267	if (gpio_is_valid(chip_info->gpio_cs)) {
1268		err = gpio_request(chip_info->gpio_cs, "SPI_CS");
1269		if (err) {
1270			dev_err(&spi->dev, "failed to request chip select "
1271					"GPIO%d\n", chip_info->gpio_cs);
1272			return err;
1273		}
1274
1275		chip->gpio_cs = chip_info->gpio_cs;
 
1276		chip->gpio_cs_inverted = spi->mode & SPI_CS_HIGH;
1277
1278		err = gpio_direction_output(chip->gpio_cs,
1279					!chip->gpio_cs_inverted);
1280	}
1281
1282	return err;
1283}
1284
1285static int setup(struct spi_device *spi)
1286{
1287	struct pxa2xx_spi_chip *chip_info = NULL;
1288	struct chip_data *chip;
1289	struct driver_data *drv_data = spi_master_get_devdata(spi->master);
1290	struct ssp_device *ssp = drv_data->ssp;
1291	unsigned int clk_div;
1292	uint tx_thres = TX_THRESH_DFLT;
1293	uint rx_thres = RX_THRESH_DFLT;
1294
1295	if (!pxa25x_ssp_comp(drv_data)
1296		&& (spi->bits_per_word < 4 || spi->bits_per_word > 32)) {
1297		dev_err(&spi->dev, "failed setup: ssp_type=%d, bits/wrd=%d "
1298				"b/w not 4-32 for type non-PXA25x_SSP\n",
1299				drv_data->ssp_type, spi->bits_per_word);
1300		return -EINVAL;
1301	} else if (pxa25x_ssp_comp(drv_data)
1302			&& (spi->bits_per_word < 4
1303				|| spi->bits_per_word > 16)) {
1304		dev_err(&spi->dev, "failed setup: ssp_type=%d, bits/wrd=%d "
1305				"b/w not 4-16 for type PXA25x_SSP\n",
1306				drv_data->ssp_type, spi->bits_per_word);
1307		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1308	}
1309
1310	/* Only alloc on first setup */
1311	chip = spi_get_ctldata(spi);
1312	if (!chip) {
1313		chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1314		if (!chip) {
1315			dev_err(&spi->dev,
1316				"failed setup: can't allocate chip data\n");
1317			return -ENOMEM;
1318		}
1319
1320		if (drv_data->ssp_type == CE4100_SSP) {
1321			if (spi->chip_select > 4) {
1322				dev_err(&spi->dev, "failed setup: "
1323				"cs number must not be > 4.\n");
1324				kfree(chip);
1325				return -EINVAL;
1326			}
1327
1328			chip->frm = spi->chip_select;
1329		} else
1330			chip->gpio_cs = -1;
1331		chip->enable_dma = 0;
1332		chip->timeout = TIMOUT_DFLT;
1333		chip->dma_burst_size = drv_data->master_info->enable_dma ?
1334					DCMD_BURST8 : 0;
1335	}
1336
1337	/* protocol drivers may change the chip settings, so...
1338	 * if chip_info exists, use it */
1339	chip_info = spi->controller_data;
1340
1341	/* chip_info isn't always needed */
1342	chip->cr1 = 0;
1343	if (chip_info) {
1344		if (chip_info->timeout)
1345			chip->timeout = chip_info->timeout;
1346		if (chip_info->tx_threshold)
1347			tx_thres = chip_info->tx_threshold;
 
 
1348		if (chip_info->rx_threshold)
1349			rx_thres = chip_info->rx_threshold;
1350		chip->enable_dma = drv_data->master_info->enable_dma;
1351		chip->dma_threshold = 0;
1352		if (chip_info->enable_loopback)
1353			chip->cr1 = SSCR1_LBM;
1354	}
 
 
 
 
 
 
1355
1356	chip->threshold = (SSCR1_RxTresh(rx_thres) & SSCR1_RFT) |
1357			(SSCR1_TxTresh(tx_thres) & SSCR1_TFT);
 
1358
1359	/* set dma burst and threshold outside of chip_info path so that if
1360	 * chip_info goes away after setting chip->enable_dma, the
1361	 * burst and threshold can still respond to changes in bits_per_word */
1362	if (chip->enable_dma) {
1363		/* set up legal burst and threshold for dma */
1364		if (set_dma_burst_and_threshold(chip, spi, spi->bits_per_word,
 
1365						&chip->dma_burst_size,
1366						&chip->dma_threshold)) {
1367			dev_warn(&spi->dev, "in setup: DMA burst size reduced "
1368					"to match bits_per_word\n");
1369		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1370	}
1371
1372	clk_div = ssp_get_clk_div(ssp, spi->max_speed_hz);
1373	chip->speed_hz = spi->max_speed_hz;
1374
1375	chip->cr0 = clk_div
1376			| SSCR0_Motorola
1377			| SSCR0_DataSize(spi->bits_per_word > 16 ?
1378				spi->bits_per_word - 16 : spi->bits_per_word)
1379			| SSCR0_SSE
1380			| (spi->bits_per_word > 16 ? SSCR0_EDSS : 0);
1381	chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH);
1382	chip->cr1 |= (((spi->mode & SPI_CPHA) != 0) ? SSCR1_SPH : 0)
1383			| (((spi->mode & SPI_CPOL) != 0) ? SSCR1_SPO : 0);
1384
1385	/* NOTE:  PXA25x_SSP _could_ use external clocking ... */
1386	if (!pxa25x_ssp_comp(drv_data))
1387		dev_dbg(&spi->dev, "%ld Hz actual, %s\n",
1388			clk_get_rate(ssp->clk)
1389				/ (1 + ((chip->cr0 & SSCR0_SCR(0xfff)) >> 8)),
1390			chip->enable_dma ? "DMA" : "PIO");
1391	else
1392		dev_dbg(&spi->dev, "%ld Hz actual, %s\n",
1393			clk_get_rate(ssp->clk) / 2
1394				/ (1 + ((chip->cr0 & SSCR0_SCR(0x0ff)) >> 8)),
1395			chip->enable_dma ? "DMA" : "PIO");
1396
1397	if (spi->bits_per_word <= 8) {
1398		chip->n_bytes = 1;
1399		chip->dma_width = DCMD_WIDTH1;
1400		chip->read = u8_reader;
1401		chip->write = u8_writer;
1402	} else if (spi->bits_per_word <= 16) {
1403		chip->n_bytes = 2;
1404		chip->dma_width = DCMD_WIDTH2;
1405		chip->read = u16_reader;
1406		chip->write = u16_writer;
1407	} else if (spi->bits_per_word <= 32) {
1408		chip->cr0 |= SSCR0_EDSS;
1409		chip->n_bytes = 4;
1410		chip->dma_width = DCMD_WIDTH4;
1411		chip->read = u32_reader;
1412		chip->write = u32_writer;
1413	} else {
1414		dev_err(&spi->dev, "invalid wordsize\n");
1415		return -ENODEV;
1416	}
1417	chip->bits_per_word = spi->bits_per_word;
1418
1419	spi_set_ctldata(spi, chip);
1420
1421	if (drv_data->ssp_type == CE4100_SSP)
1422		return 0;
1423
1424	return setup_cs(spi, chip, chip_info);
1425}
1426
1427static void cleanup(struct spi_device *spi)
1428{
1429	struct chip_data *chip = spi_get_ctldata(spi);
1430	struct driver_data *drv_data = spi_master_get_devdata(spi->master);
 
1431
1432	if (!chip)
1433		return;
1434
1435	if (drv_data->ssp_type != CE4100_SSP && gpio_is_valid(chip->gpio_cs))
1436		gpio_free(chip->gpio_cs);
 
1437
1438	kfree(chip);
1439}
1440
1441static int __devinit init_queue(struct driver_data *drv_data)
1442{
1443	INIT_LIST_HEAD(&drv_data->queue);
1444	spin_lock_init(&drv_data->lock);
 
 
 
 
 
 
 
 
1445
1446	drv_data->run = QUEUE_STOPPED;
1447	drv_data->busy = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1448
1449	tasklet_init(&drv_data->pump_transfers,
1450			pump_transfers,	(unsigned long)drv_data);
1451
1452	INIT_WORK(&drv_data->pump_messages, pump_messages);
1453	drv_data->workqueue = create_singlethread_workqueue(
1454				dev_name(drv_data->master->dev.parent));
1455	if (drv_data->workqueue == NULL)
1456		return -EBUSY;
1457
1458	return 0;
1459}
1460
1461static int start_queue(struct driver_data *drv_data)
1462{
1463	unsigned long flags;
 
 
1464
1465	spin_lock_irqsave(&drv_data->lock, flags);
 
 
 
 
 
1466
1467	if (drv_data->run == QUEUE_RUNNING || drv_data->busy) {
1468		spin_unlock_irqrestore(&drv_data->lock, flags);
1469		return -EBUSY;
1470	}
 
 
1471
1472	drv_data->run = QUEUE_RUNNING;
1473	drv_data->cur_msg = NULL;
1474	drv_data->cur_transfer = NULL;
1475	drv_data->cur_chip = NULL;
1476	spin_unlock_irqrestore(&drv_data->lock, flags);
1477
1478	queue_work(drv_data->workqueue, &drv_data->pump_messages);
1479
1480	return 0;
1481}
1482
1483static int stop_queue(struct driver_data *drv_data)
1484{
1485	unsigned long flags;
1486	unsigned limit = 500;
1487	int status = 0;
1488
1489	spin_lock_irqsave(&drv_data->lock, flags);
1490
1491	/* This is a bit lame, but is optimized for the common execution path.
1492	 * A wait_queue on the drv_data->busy could be used, but then the common
1493	 * execution path (pump_messages) would be required to call wake_up or
1494	 * friends on every SPI message. Do this instead */
1495	drv_data->run = QUEUE_STOPPED;
1496	while ((!list_empty(&drv_data->queue) || drv_data->busy) && limit--) {
1497		spin_unlock_irqrestore(&drv_data->lock, flags);
1498		msleep(10);
1499		spin_lock_irqsave(&drv_data->lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1500	}
 
1501
1502	if (!list_empty(&drv_data->queue) || drv_data->busy)
1503		status = -EBUSY;
 
1504
1505	spin_unlock_irqrestore(&drv_data->lock, flags);
 
 
1506
1507	return status;
 
 
 
 
 
 
 
 
 
1508}
1509
1510static int destroy_queue(struct driver_data *drv_data)
 
1511{
1512	int status;
1513
1514	status = stop_queue(drv_data);
1515	/* we are unloading the module or failing to load (only two calls
1516	 * to this routine), and neither call can handle a return value.
1517	 * However, destroy_workqueue calls flush_workqueue, and that will
1518	 * block until all work is done.  If the reason that stop_queue
1519	 * timed out is that the work will never finish, then it does no
1520	 * good to call destroy_workqueue, so return anyway. */
1521	if (status != 0)
1522		return status;
 
 
 
 
 
 
1523
1524	destroy_workqueue(drv_data->workqueue);
 
1525
1526	return 0;
 
 
1527}
1528
1529static int __devinit pxa2xx_spi_probe(struct platform_device *pdev)
1530{
1531	struct device *dev = &pdev->dev;
1532	struct pxa2xx_spi_master *platform_info;
1533	struct spi_master *master;
1534	struct driver_data *drv_data;
1535	struct ssp_device *ssp;
1536	int status;
1537
1538	platform_info = dev->platform_data;
 
 
 
 
 
 
 
 
 
1539
1540	ssp = pxa_ssp_request(pdev->id, pdev->name);
1541	if (ssp == NULL) {
1542		dev_err(&pdev->dev, "failed to request SSP%d\n", pdev->id);
 
 
 
1543		return -ENODEV;
1544	}
1545
1546	/* Allocate master with space for drv_data and null dma buffer */
1547	master = spi_alloc_master(dev, sizeof(struct driver_data) + 16);
1548	if (!master) {
1549		dev_err(&pdev->dev, "cannot alloc spi_master\n");
 
 
 
1550		pxa_ssp_free(ssp);
1551		return -ENOMEM;
1552	}
1553	drv_data = spi_master_get_devdata(master);
1554	drv_data->master = master;
1555	drv_data->master_info = platform_info;
1556	drv_data->pdev = pdev;
1557	drv_data->ssp = ssp;
1558
1559	master->dev.parent = &pdev->dev;
1560	master->dev.of_node = pdev->dev.of_node;
1561	/* the spi->mode bits understood by this driver: */
1562	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1563
1564	master->bus_num = pdev->id;
1565	master->num_chipselect = platform_info->num_chipselect;
1566	master->dma_alignment = DMA_ALIGNMENT;
1567	master->cleanup = cleanup;
1568	master->setup = setup;
1569	master->transfer = transfer;
 
 
 
 
 
 
1570
1571	drv_data->ssp_type = ssp->type;
1572	drv_data->null_dma_buf = (u32 *)ALIGN((u32)(drv_data +
1573						sizeof(struct driver_data)), 8);
1574
1575	drv_data->ioaddr = ssp->mmio_base;
1576	drv_data->ssdr_physical = ssp->phys_base + SSDR;
1577	if (pxa25x_ssp_comp(drv_data)) {
 
 
 
 
 
 
 
 
 
1578		drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE;
1579		drv_data->dma_cr1 = 0;
1580		drv_data->clear_sr = SSSR_ROR;
1581		drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR;
1582	} else {
 
1583		drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE;
1584		drv_data->dma_cr1 = SSCR1_TSRE | SSCR1_RSRE | SSCR1_TINTE;
1585		drv_data->clear_sr = SSSR_ROR | SSSR_TINT;
1586		drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS | SSSR_ROR;
 
1587	}
1588
1589	status = request_irq(ssp->irq, ssp_int, IRQF_SHARED, dev_name(dev),
1590			drv_data);
1591	if (status < 0) {
1592		dev_err(&pdev->dev, "cannot get IRQ %d\n", ssp->irq);
1593		goto out_error_master_alloc;
1594	}
1595
1596	/* Setup DMA if requested */
1597	drv_data->tx_channel = -1;
1598	drv_data->rx_channel = -1;
1599	if (platform_info->enable_dma) {
1600
1601		/* Get two DMA channels	(rx and tx) */
1602		drv_data->rx_channel = pxa_request_dma("pxa2xx_spi_ssp_rx",
1603							DMA_PRIO_HIGH,
1604							dma_handler,
1605							drv_data);
1606		if (drv_data->rx_channel < 0) {
1607			dev_err(dev, "problem (%d) requesting rx channel\n",
1608				drv_data->rx_channel);
1609			status = -ENODEV;
1610			goto out_error_irq_alloc;
1611		}
1612		drv_data->tx_channel = pxa_request_dma("pxa2xx_spi_ssp_tx",
1613							DMA_PRIO_MEDIUM,
1614							dma_handler,
1615							drv_data);
1616		if (drv_data->tx_channel < 0) {
1617			dev_err(dev, "problem (%d) requesting tx channel\n",
1618				drv_data->tx_channel);
1619			status = -ENODEV;
1620			goto out_error_dma_alloc;
1621		}
1622
1623		DRCMR(ssp->drcmr_rx) = DRCMR_MAPVLD | drv_data->rx_channel;
1624		DRCMR(ssp->drcmr_tx) = DRCMR_MAPVLD | drv_data->tx_channel;
1625	}
1626
1627	/* Enable SOC clock */
1628	clk_enable(ssp->clk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1629
1630	/* Load default SSP configuration */
1631	write_SSCR0(0, drv_data->ioaddr);
1632	write_SSCR1(SSCR1_RxTresh(RX_THRESH_DFLT) |
1633				SSCR1_TxTresh(TX_THRESH_DFLT),
1634				drv_data->ioaddr);
1635	write_SSCR0(SSCR0_SCR(2)
1636			| SSCR0_Motorola
1637			| SSCR0_DataSize(8),
1638			drv_data->ioaddr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1639	if (!pxa25x_ssp_comp(drv_data))
1640		write_SSTO(0, drv_data->ioaddr);
1641	write_SSPSP(0, drv_data->ioaddr);
1642
1643	/* Initial and start queue */
1644	status = init_queue(drv_data);
1645	if (status != 0) {
1646		dev_err(&pdev->dev, "problem initializing queue\n");
1647		goto out_error_clock_enabled;
 
 
 
 
 
 
 
 
 
 
1648	}
1649	status = start_queue(drv_data);
1650	if (status != 0) {
1651		dev_err(&pdev->dev, "problem starting queue\n");
1652		goto out_error_clock_enabled;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1653	}
1654
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1655	/* Register with the SPI framework */
1656	platform_set_drvdata(pdev, drv_data);
1657	status = spi_register_master(master);
1658	if (status != 0) {
1659		dev_err(&pdev->dev, "problem registering spi master\n");
1660		goto out_error_queue_alloc;
1661	}
1662
1663	return status;
1664
1665out_error_queue_alloc:
1666	destroy_queue(drv_data);
1667
1668out_error_clock_enabled:
1669	clk_disable(ssp->clk);
1670
1671out_error_dma_alloc:
1672	if (drv_data->tx_channel != -1)
1673		pxa_free_dma(drv_data->tx_channel);
1674	if (drv_data->rx_channel != -1)
1675		pxa_free_dma(drv_data->rx_channel);
1676
1677out_error_irq_alloc:
1678	free_irq(ssp->irq, drv_data);
1679
1680out_error_master_alloc:
1681	spi_master_put(master);
1682	pxa_ssp_free(ssp);
1683	return status;
1684}
1685
1686static int pxa2xx_spi_remove(struct platform_device *pdev)
1687{
1688	struct driver_data *drv_data = platform_get_drvdata(pdev);
1689	struct ssp_device *ssp;
1690	int status = 0;
1691
1692	if (!drv_data)
1693		return 0;
1694	ssp = drv_data->ssp;
1695
1696	/* Remove the queue */
1697	status = destroy_queue(drv_data);
1698	if (status != 0)
1699		/* the kernel does not check the return status of this
1700		 * this routine (mod->exit, within the kernel).  Therefore
1701		 * nothing is gained by returning from here, the module is
1702		 * going away regardless, and we should not leave any more
1703		 * resources allocated than necessary.  We cannot free the
1704		 * message memory in drv_data->queue, but we can release the
1705		 * resources below.  I think the kernel should honor -EBUSY
1706		 * returns but... */
1707		dev_err(&pdev->dev, "pxa2xx_spi_remove: workqueue will not "
1708			"complete, message memory not freed\n");
1709
1710	/* Disable the SSP at the peripheral and SOC level */
1711	write_SSCR0(0, drv_data->ioaddr);
1712	clk_disable(ssp->clk);
1713
1714	/* Release DMA */
1715	if (drv_data->master_info->enable_dma) {
1716		DRCMR(ssp->drcmr_rx) = 0;
1717		DRCMR(ssp->drcmr_tx) = 0;
1718		pxa_free_dma(drv_data->tx_channel);
1719		pxa_free_dma(drv_data->rx_channel);
1720	}
1721
1722	/* Release IRQ */
1723	free_irq(ssp->irq, drv_data);
1724
1725	/* Release SSP */
1726	pxa_ssp_free(ssp);
1727
1728	/* Disconnect from the SPI framework */
1729	spi_unregister_master(drv_data->master);
1730
1731	/* Prevent double remove */
1732	platform_set_drvdata(pdev, NULL);
1733
1734	return 0;
1735}
1736
1737static void pxa2xx_spi_shutdown(struct platform_device *pdev)
1738{
1739	int status = 0;
1740
1741	if ((status = pxa2xx_spi_remove(pdev)) != 0)
1742		dev_err(&pdev->dev, "shutdown failed with %d\n", status);
1743}
1744
1745#ifdef CONFIG_PM
1746static int pxa2xx_spi_suspend(struct device *dev)
1747{
1748	struct driver_data *drv_data = dev_get_drvdata(dev);
1749	struct ssp_device *ssp = drv_data->ssp;
1750	int status = 0;
1751
1752	status = stop_queue(drv_data);
1753	if (status != 0)
1754		return status;
1755	write_SSCR0(0, drv_data->ioaddr);
1756	clk_disable(ssp->clk);
 
 
1757
1758	return 0;
1759}
1760
1761static int pxa2xx_spi_resume(struct device *dev)
1762{
1763	struct driver_data *drv_data = dev_get_drvdata(dev);
1764	struct ssp_device *ssp = drv_data->ssp;
1765	int status = 0;
1766
1767	if (drv_data->rx_channel != -1)
1768		DRCMR(drv_data->ssp->drcmr_rx) =
1769			DRCMR_MAPVLD | drv_data->rx_channel;
1770	if (drv_data->tx_channel != -1)
1771		DRCMR(drv_data->ssp->drcmr_tx) =
1772			DRCMR_MAPVLD | drv_data->tx_channel;
1773
1774	/* Enable the SSP clock */
1775	clk_enable(ssp->clk);
 
 
 
 
1776
1777	/* Start the queue running */
1778	status = start_queue(drv_data);
1779	if (status != 0) {
1780		dev_err(dev, "problem starting queue (%d)\n", status);
1781		return status;
1782	}
1783
 
 
 
 
 
 
1784	return 0;
1785}
1786
 
 
 
 
 
 
 
 
 
 
1787static const struct dev_pm_ops pxa2xx_spi_pm_ops = {
1788	.suspend	= pxa2xx_spi_suspend,
1789	.resume		= pxa2xx_spi_resume,
 
1790};
1791#endif
1792
1793static struct platform_driver driver = {
1794	.driver = {
1795		.name	= "pxa2xx-spi",
1796		.owner	= THIS_MODULE,
1797#ifdef CONFIG_PM
1798		.pm	= &pxa2xx_spi_pm_ops,
1799#endif
 
1800	},
1801	.probe = pxa2xx_spi_probe,
1802	.remove = pxa2xx_spi_remove,
1803	.shutdown = pxa2xx_spi_shutdown,
1804};
1805
1806static int __init pxa2xx_spi_init(void)
1807{
1808	return platform_driver_register(&driver);
1809}
1810subsys_initcall(pxa2xx_spi_init);
1811
1812static void __exit pxa2xx_spi_exit(void)
1813{
1814	platform_driver_unregister(&driver);
1815}
1816module_exit(pxa2xx_spi_exit);
v5.9
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
   4 * Copyright (C) 2013, Intel Corporation
 
 
 
 
 
 
 
 
 
 
 
 
 
   5 */
   6
   7#include <linux/acpi.h>
   8#include <linux/bitops.h>
   9#include <linux/clk.h>
  10#include <linux/delay.h>
  11#include <linux/device.h>
  12#include <linux/err.h>
  13#include <linux/errno.h>
  14#include <linux/gpio/consumer.h>
  15#include <linux/gpio.h>
  16#include <linux/init.h>
  17#include <linux/interrupt.h>
  18#include <linux/ioport.h>
  19#include <linux/kernel.h>
  20#include <linux/module.h>
  21#include <linux/mod_devicetable.h>
  22#include <linux/of.h>
  23#include <linux/pci.h>
  24#include <linux/platform_device.h>
  25#include <linux/pm_runtime.h>
  26#include <linux/property.h>
  27#include <linux/slab.h>
  28#include <linux/spi/pxa2xx_spi.h>
 
  29#include <linux/spi/spi.h>
 
 
 
 
 
 
 
 
  30
  31#include "spi-pxa2xx.h"
  32
  33MODULE_AUTHOR("Stephen Street");
  34MODULE_DESCRIPTION("PXA2xx SSP SPI Controller");
  35MODULE_LICENSE("GPL");
  36MODULE_ALIAS("platform:pxa2xx-spi");
  37
 
 
  38#define TIMOUT_DFLT		1000
  39
 
 
 
 
 
 
  40/*
  41 * for testing SSCR1 changes that require SSP restart, basically
  42 * everything except the service and interrupt enables, the pxa270 developer
  43 * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this
  44 * list, but the PXA255 dev man says all bits without really meaning the
  45 * service and interrupt enables
  46 */
  47#define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
  48				| SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
  49				| SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
  50				| SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
  51				| SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \
  52				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
  53
  54#define QUARK_X1000_SSCR1_CHANGE_MASK (QUARK_X1000_SSCR1_STRF	\
  55				| QUARK_X1000_SSCR1_EFWR	\
  56				| QUARK_X1000_SSCR1_RFT		\
  57				| QUARK_X1000_SSCR1_TFT		\
  58				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  59
  60#define CE4100_SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
  61				| SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
  62				| SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
  63				| SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
  64				| CE4100_SSCR1_RFT | CE4100_SSCR1_TFT | SSCR1_MWDS \
  65				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
  66
  67#define LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE	BIT(24)
  68#define LPSS_CS_CONTROL_SW_MODE			BIT(0)
  69#define LPSS_CS_CONTROL_CS_HIGH			BIT(1)
  70#define LPSS_CAPS_CS_EN_SHIFT			9
  71#define LPSS_CAPS_CS_EN_MASK			(0xf << LPSS_CAPS_CS_EN_SHIFT)
  72
  73#define LPSS_PRIV_CLOCK_GATE 0x38
  74#define LPSS_PRIV_CLOCK_GATE_CLK_CTL_MASK 0x3
  75#define LPSS_PRIV_CLOCK_GATE_CLK_CTL_FORCE_ON 0x3
  76
  77struct lpss_config {
  78	/* LPSS offset from drv_data->ioaddr */
  79	unsigned offset;
  80	/* Register offsets from drv_data->lpss_base or -1 */
  81	int reg_general;
  82	int reg_ssp;
  83	int reg_cs_ctrl;
  84	int reg_capabilities;
  85	/* FIFO thresholds */
  86	u32 rx_threshold;
  87	u32 tx_threshold_lo;
  88	u32 tx_threshold_hi;
  89	/* Chip select control */
  90	unsigned cs_sel_shift;
  91	unsigned cs_sel_mask;
  92	unsigned cs_num;
  93	/* Quirks */
  94	unsigned cs_clk_stays_gated : 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  95};
  96
  97/* Keep these sorted with enum pxa_ssp_type */
  98static const struct lpss_config lpss_platforms[] = {
  99	{	/* LPSS_LPT_SSP */
 100		.offset = 0x800,
 101		.reg_general = 0x08,
 102		.reg_ssp = 0x0c,
 103		.reg_cs_ctrl = 0x18,
 104		.reg_capabilities = -1,
 105		.rx_threshold = 64,
 106		.tx_threshold_lo = 160,
 107		.tx_threshold_hi = 224,
 108	},
 109	{	/* LPSS_BYT_SSP */
 110		.offset = 0x400,
 111		.reg_general = 0x08,
 112		.reg_ssp = 0x0c,
 113		.reg_cs_ctrl = 0x18,
 114		.reg_capabilities = -1,
 115		.rx_threshold = 64,
 116		.tx_threshold_lo = 160,
 117		.tx_threshold_hi = 224,
 118	},
 119	{	/* LPSS_BSW_SSP */
 120		.offset = 0x400,
 121		.reg_general = 0x08,
 122		.reg_ssp = 0x0c,
 123		.reg_cs_ctrl = 0x18,
 124		.reg_capabilities = -1,
 125		.rx_threshold = 64,
 126		.tx_threshold_lo = 160,
 127		.tx_threshold_hi = 224,
 128		.cs_sel_shift = 2,
 129		.cs_sel_mask = 1 << 2,
 130		.cs_num = 2,
 131	},
 132	{	/* LPSS_SPT_SSP */
 133		.offset = 0x200,
 134		.reg_general = -1,
 135		.reg_ssp = 0x20,
 136		.reg_cs_ctrl = 0x24,
 137		.reg_capabilities = -1,
 138		.rx_threshold = 1,
 139		.tx_threshold_lo = 32,
 140		.tx_threshold_hi = 56,
 141	},
 142	{	/* LPSS_BXT_SSP */
 143		.offset = 0x200,
 144		.reg_general = -1,
 145		.reg_ssp = 0x20,
 146		.reg_cs_ctrl = 0x24,
 147		.reg_capabilities = 0xfc,
 148		.rx_threshold = 1,
 149		.tx_threshold_lo = 16,
 150		.tx_threshold_hi = 48,
 151		.cs_sel_shift = 8,
 152		.cs_sel_mask = 3 << 8,
 153		.cs_clk_stays_gated = true,
 154	},
 155	{	/* LPSS_CNL_SSP */
 156		.offset = 0x200,
 157		.reg_general = -1,
 158		.reg_ssp = 0x20,
 159		.reg_cs_ctrl = 0x24,
 160		.reg_capabilities = 0xfc,
 161		.rx_threshold = 1,
 162		.tx_threshold_lo = 32,
 163		.tx_threshold_hi = 56,
 164		.cs_sel_shift = 8,
 165		.cs_sel_mask = 3 << 8,
 166		.cs_clk_stays_gated = true,
 167	},
 168};
 169
 170static inline const struct lpss_config
 171*lpss_get_config(const struct driver_data *drv_data)
 
 172{
 173	return &lpss_platforms[drv_data->ssp_type - LPSS_LPT_SSP];
 
 
 
 
 
 
 
 
 
 
 
 
 
 174}
 175
 176static bool is_lpss_ssp(const struct driver_data *drv_data)
 177{
 178	switch (drv_data->ssp_type) {
 179	case LPSS_LPT_SSP:
 180	case LPSS_BYT_SSP:
 181	case LPSS_BSW_SSP:
 182	case LPSS_SPT_SSP:
 183	case LPSS_BXT_SSP:
 184	case LPSS_CNL_SSP:
 185		return true;
 186	default:
 187		return false;
 188	}
 
 
 
 189}
 190
 191static bool is_quark_x1000_ssp(const struct driver_data *drv_data)
 192{
 193	return drv_data->ssp_type == QUARK_X1000_SSP;
 
 
 
 
 
 194}
 195
 196static bool is_mmp2_ssp(const struct driver_data *drv_data)
 197{
 198	return drv_data->ssp_type == MMP2_SSP;
 
 
 
 
 199}
 200
 201static u32 pxa2xx_spi_get_ssrc1_change_mask(const struct driver_data *drv_data)
 202{
 203	switch (drv_data->ssp_type) {
 204	case QUARK_X1000_SSP:
 205		return QUARK_X1000_SSCR1_CHANGE_MASK;
 206	case CE4100_SSP:
 207		return CE4100_SSCR1_CHANGE_MASK;
 208	default:
 209		return SSCR1_CHANGE_MASK;
 210	}
 
 
 
 
 211}
 212
 213static u32
 214pxa2xx_spi_get_rx_default_thre(const struct driver_data *drv_data)
 215{
 216	switch (drv_data->ssp_type) {
 217	case QUARK_X1000_SSP:
 218		return RX_THRESH_QUARK_X1000_DFLT;
 219	case CE4100_SSP:
 220		return RX_THRESH_CE4100_DFLT;
 221	default:
 222		return RX_THRESH_DFLT;
 223	}
 
 
 
 224}
 225
 226static bool pxa2xx_spi_txfifo_full(const struct driver_data *drv_data)
 227{
 228	u32 mask;
 
 229
 230	switch (drv_data->ssp_type) {
 231	case QUARK_X1000_SSP:
 232		mask = QUARK_X1000_SSSR_TFL_MASK;
 233		break;
 234	case CE4100_SSP:
 235		mask = CE4100_SSSR_TFL_MASK;
 236		break;
 237	default:
 238		mask = SSSR_TFL_MASK;
 239		break;
 240	}
 241
 242	return (pxa2xx_spi_read(drv_data, SSSR) & mask) == mask;
 243}
 244
 245static void pxa2xx_spi_clear_rx_thre(const struct driver_data *drv_data,
 246				     u32 *sccr1_reg)
 247{
 248	u32 mask;
 249
 250	switch (drv_data->ssp_type) {
 251	case QUARK_X1000_SSP:
 252		mask = QUARK_X1000_SSCR1_RFT;
 253		break;
 254	case CE4100_SSP:
 255		mask = CE4100_SSCR1_RFT;
 256		break;
 257	default:
 258		mask = SSCR1_RFT;
 259		break;
 260	}
 261	*sccr1_reg &= ~mask;
 262}
 263
 264static void pxa2xx_spi_set_rx_thre(const struct driver_data *drv_data,
 265				   u32 *sccr1_reg, u32 threshold)
 266{
 267	switch (drv_data->ssp_type) {
 268	case QUARK_X1000_SSP:
 269		*sccr1_reg |= QUARK_X1000_SSCR1_RxTresh(threshold);
 270		break;
 271	case CE4100_SSP:
 272		*sccr1_reg |= CE4100_SSCR1_RxTresh(threshold);
 273		break;
 274	default:
 275		*sccr1_reg |= SSCR1_RxTresh(threshold);
 276		break;
 277	}
 
 
 278}
 279
 280static u32 pxa2xx_configure_sscr0(const struct driver_data *drv_data,
 281				  u32 clk_div, u8 bits)
 282{
 283	switch (drv_data->ssp_type) {
 284	case QUARK_X1000_SSP:
 285		return clk_div
 286			| QUARK_X1000_SSCR0_Motorola
 287			| QUARK_X1000_SSCR0_DataSize(bits > 32 ? 8 : bits)
 288			| SSCR0_SSE;
 289	default:
 290		return clk_div
 291			| SSCR0_Motorola
 292			| SSCR0_DataSize(bits > 16 ? bits - 16 : bits)
 293			| SSCR0_SSE
 294			| (bits > 16 ? SSCR0_EDSS : 0);
 295	}
 296}
 297
 298/*
 299 * Read and write LPSS SSP private registers. Caller must first check that
 300 * is_lpss_ssp() returns true before these can be called.
 301 */
 302static u32 __lpss_ssp_read_priv(struct driver_data *drv_data, unsigned offset)
 303{
 304	WARN_ON(!drv_data->lpss_base);
 305	return readl(drv_data->lpss_base + offset);
 
 
 
 
 
 
 
 306}
 307
 308static void __lpss_ssp_write_priv(struct driver_data *drv_data,
 309				  unsigned offset, u32 value)
 310{
 311	WARN_ON(!drv_data->lpss_base);
 312	writel(value, drv_data->lpss_base + offset);
 
 
 
 
 
 
 
 
 313}
 314
 315/*
 316 * lpss_ssp_setup - perform LPSS SSP specific setup
 317 * @drv_data: pointer to the driver private data
 318 *
 319 * Perform LPSS SSP specific setup. This function must be called first if
 320 * one is going to use LPSS SSP private registers.
 321 */
 322static void lpss_ssp_setup(struct driver_data *drv_data)
 323{
 324	const struct lpss_config *config;
 325	u32 value;
 326
 327	config = lpss_get_config(drv_data);
 328	drv_data->lpss_base = drv_data->ioaddr + config->offset;
 
 
 
 329
 330	/* Enable software chip select control */
 331	value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
 332	value &= ~(LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH);
 333	value |= LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH;
 334	__lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
 335
 336	/* Enable multiblock DMA transfers */
 337	if (drv_data->controller_info->enable_dma) {
 338		__lpss_ssp_write_priv(drv_data, config->reg_ssp, 1);
 339
 340		if (config->reg_general >= 0) {
 341			value = __lpss_ssp_read_priv(drv_data,
 342						     config->reg_general);
 343			value |= LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE;
 344			__lpss_ssp_write_priv(drv_data,
 345					      config->reg_general, value);
 346		}
 347	}
 348}
 349
 350static void lpss_ssp_select_cs(struct spi_device *spi,
 351			       const struct lpss_config *config)
 352{
 353	struct driver_data *drv_data =
 354		spi_controller_get_devdata(spi->controller);
 355	u32 value, cs;
 356
 357	if (!config->cs_sel_mask)
 358		return;
 
 
 
 
 
 
 
 
 359
 360	value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
 
 
 
 361
 362	cs = spi->chip_select;
 363	cs <<= config->cs_sel_shift;
 364	if (cs != (value & config->cs_sel_mask)) {
 365		/*
 366		 * When switching another chip select output active the
 367		 * output must be selected first and wait 2 ssp_clk cycles
 368		 * before changing state to active. Otherwise a short
 369		 * glitch will occur on the previous chip select since
 370		 * output select is latched but state control is not.
 371		 */
 372		value &= ~config->cs_sel_mask;
 373		value |= cs;
 374		__lpss_ssp_write_priv(drv_data,
 375				      config->reg_cs_ctrl, value);
 376		ndelay(1000000000 /
 377		       (drv_data->controller->max_speed_hz / 2));
 378	}
 379}
 380
 381static void lpss_ssp_cs_control(struct spi_device *spi, bool enable)
 382{
 383	struct driver_data *drv_data =
 384		spi_controller_get_devdata(spi->controller);
 385	const struct lpss_config *config;
 386	u32 value;
 387
 388	config = lpss_get_config(drv_data);
 389
 390	if (enable)
 391		lpss_ssp_select_cs(spi, config);
 392
 393	value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
 394	if (enable)
 395		value &= ~LPSS_CS_CONTROL_CS_HIGH;
 396	else
 397		value |= LPSS_CS_CONTROL_CS_HIGH;
 398	__lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
 399	if (config->cs_clk_stays_gated) {
 400		u32 clkgate;
 401
 402		/*
 403		 * Changing CS alone when dynamic clock gating is on won't
 404		 * actually flip CS at that time. This ruins SPI transfers
 405		 * that specify delays, or have no data. Toggle the clock mode
 406		 * to force on briefly to poke the CS pin to move.
 407		 */
 408		clkgate = __lpss_ssp_read_priv(drv_data, LPSS_PRIV_CLOCK_GATE);
 409		value = (clkgate & ~LPSS_PRIV_CLOCK_GATE_CLK_CTL_MASK) |
 410			LPSS_PRIV_CLOCK_GATE_CLK_CTL_FORCE_ON;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 411
 412		__lpss_ssp_write_priv(drv_data, LPSS_PRIV_CLOCK_GATE, value);
 413		__lpss_ssp_write_priv(drv_data, LPSS_PRIV_CLOCK_GATE, clkgate);
 
 
 
 
 
 414	}
 
 
 415}
 416
 417static void cs_assert(struct spi_device *spi)
 418{
 419	struct chip_data *chip = spi_get_ctldata(spi);
 420	struct driver_data *drv_data =
 421		spi_controller_get_devdata(spi->controller);
 422
 423	if (drv_data->ssp_type == CE4100_SSP) {
 424		pxa2xx_spi_write(drv_data, SSSR, chip->frm);
 425		return;
 426	}
 427
 428	if (chip->cs_control) {
 429		chip->cs_control(PXA2XX_CS_ASSERT);
 430		return;
 431	}
 432
 433	if (chip->gpiod_cs) {
 434		gpiod_set_value(chip->gpiod_cs, chip->gpio_cs_inverted);
 435		return;
 
 
 
 436	}
 437
 438	if (is_lpss_ssp(drv_data))
 439		lpss_ssp_cs_control(spi, true);
 440}
 441
 442static void cs_deassert(struct spi_device *spi)
 
 443{
 444	struct chip_data *chip = spi_get_ctldata(spi);
 445	struct driver_data *drv_data =
 446		spi_controller_get_devdata(spi->controller);
 447	unsigned long timeout;
 
 
 
 
 
 
 
 
 
 
 448
 449	if (drv_data->ssp_type == CE4100_SSP)
 450		return;
 
 451
 452	/* Wait until SSP becomes idle before deasserting the CS */
 453	timeout = jiffies + msecs_to_jiffies(10);
 454	while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY &&
 455	       !time_after(jiffies, timeout))
 456		cpu_relax();
 
 
 
 
 
 
 
 
 
 
 
 
 457
 458	if (chip->cs_control) {
 459		chip->cs_control(PXA2XX_CS_DEASSERT);
 460		return;
 461	}
 
 
 
 
 462
 463	if (chip->gpiod_cs) {
 464		gpiod_set_value(chip->gpiod_cs, !chip->gpio_cs_inverted);
 465		return;
 
 
 
 
 466	}
 467
 468	if (is_lpss_ssp(drv_data))
 469		lpss_ssp_cs_control(spi, false);
 470}
 471
 472static void pxa2xx_spi_set_cs(struct spi_device *spi, bool level)
 473{
 474	if (level)
 475		cs_deassert(spi);
 476	else
 477		cs_assert(spi);
 478}
 479
 480int pxa2xx_spi_flush(struct driver_data *drv_data)
 481{
 482	unsigned long limit = loops_per_jiffy << 1;
 483
 484	do {
 485		while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
 486			pxa2xx_spi_read(drv_data, SSDR);
 487	} while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY) && --limit);
 488	write_SSSR_CS(drv_data, SSSR_ROR);
 489
 490	return limit;
 491}
 492
 493static void pxa2xx_spi_off(struct driver_data *drv_data)
 494{
 495	/* On MMP, disabling SSE seems to corrupt the Rx FIFO */
 496	if (is_mmp2_ssp(drv_data))
 497		return;
 
 498
 499	pxa2xx_spi_write(drv_data, SSCR0,
 500			 pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
 501}
 502
 503static int null_writer(struct driver_data *drv_data)
 504{
 505	u8 n_bytes = drv_data->n_bytes;
 
 
 
 
 
 
 
 
 
 
 506
 507	if (pxa2xx_spi_txfifo_full(drv_data)
 508		|| (drv_data->tx == drv_data->tx_end))
 509		return 0;
 510
 511	pxa2xx_spi_write(drv_data, SSDR, 0);
 512	drv_data->tx += n_bytes;
 513
 514	return 1;
 
 515}
 516
 517static int null_reader(struct driver_data *drv_data)
 518{
 519	u8 n_bytes = drv_data->n_bytes;
 
 520
 521	while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
 522	       && (drv_data->rx < drv_data->rx_end)) {
 523		pxa2xx_spi_read(drv_data, SSDR);
 524		drv_data->rx += n_bytes;
 525	}
 526
 527	return drv_data->rx == drv_data->rx_end;
 528}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 529
 530static int u8_writer(struct driver_data *drv_data)
 531{
 532	if (pxa2xx_spi_txfifo_full(drv_data)
 533		|| (drv_data->tx == drv_data->tx_end))
 534		return 0;
 535
 536	pxa2xx_spi_write(drv_data, SSDR, *(u8 *)(drv_data->tx));
 537	++drv_data->tx;
 538
 539	return 1;
 
 540}
 541
 542static int u8_reader(struct driver_data *drv_data)
 543{
 544	while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
 545	       && (drv_data->rx < drv_data->rx_end)) {
 546		*(u8 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
 547		++drv_data->rx;
 
 
 
 
 
 
 
 
 
 
 548	}
 549
 550	return drv_data->rx == drv_data->rx_end;
 551}
 552
 553static int u16_writer(struct driver_data *drv_data)
 554{
 555	if (pxa2xx_spi_txfifo_full(drv_data)
 556		|| (drv_data->tx == drv_data->tx_end))
 557		return 0;
 558
 559	pxa2xx_spi_write(drv_data, SSDR, *(u16 *)(drv_data->tx));
 560	drv_data->tx += 2;
 
 
 561
 562	return 1;
 
 
 563}
 564
 565static int u16_reader(struct driver_data *drv_data)
 566{
 567	while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
 568	       && (drv_data->rx < drv_data->rx_end)) {
 569		*(u16 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
 570		drv_data->rx += 2;
 
 
 
 571	}
 572
 573	return drv_data->rx == drv_data->rx_end;
 574}
 
 
 
 
 575
 576static int u32_writer(struct driver_data *drv_data)
 577{
 578	if (pxa2xx_spi_txfifo_full(drv_data)
 579		|| (drv_data->tx == drv_data->tx_end))
 580		return 0;
 581
 582	pxa2xx_spi_write(drv_data, SSDR, *(u32 *)(drv_data->tx));
 583	drv_data->tx += 4;
 
 
 584
 585	return 1;
 586}
 587
 588static int u32_reader(struct driver_data *drv_data)
 589{
 590	while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
 591	       && (drv_data->rx < drv_data->rx_end)) {
 592		*(u32 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
 593		drv_data->rx += 4;
 594	}
 595
 596	return drv_data->rx == drv_data->rx_end;
 
 597}
 598
 599static void reset_sccr1(struct driver_data *drv_data)
 600{
 601	struct chip_data *chip =
 602		spi_get_ctldata(drv_data->controller->cur_msg->spi);
 603	u32 sccr1_reg;
 604
 605	sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1) & ~drv_data->int_cr1;
 606	switch (drv_data->ssp_type) {
 607	case QUARK_X1000_SSP:
 608		sccr1_reg &= ~QUARK_X1000_SSCR1_RFT;
 609		break;
 610	case CE4100_SSP:
 611		sccr1_reg &= ~CE4100_SSCR1_RFT;
 612		break;
 613	default:
 614		sccr1_reg &= ~SSCR1_RFT;
 615		break;
 616	}
 617	sccr1_reg |= chip->threshold;
 618	pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
 619}
 620
 621static void int_error_stop(struct driver_data *drv_data, const char* msg)
 622{
 
 
 623	/* Stop and reset SSP */
 624	write_SSSR_CS(drv_data, drv_data->clear_sr);
 625	reset_sccr1(drv_data);
 626	if (!pxa25x_ssp_comp(drv_data))
 627		pxa2xx_spi_write(drv_data, SSTO, 0);
 628	pxa2xx_spi_flush(drv_data);
 629	pxa2xx_spi_off(drv_data);
 630
 631	dev_err(&drv_data->pdev->dev, "%s\n", msg);
 632
 633	drv_data->controller->cur_msg->status = -EIO;
 634	spi_finalize_current_transfer(drv_data->controller);
 635}
 636
 637static void int_transfer_complete(struct driver_data *drv_data)
 638{
 639	/* Clear and disable interrupts */
 
 
 640	write_SSSR_CS(drv_data, drv_data->clear_sr);
 641	reset_sccr1(drv_data);
 642	if (!pxa25x_ssp_comp(drv_data))
 643		pxa2xx_spi_write(drv_data, SSTO, 0);
 
 
 
 
 
 
 
 
 
 
 
 644
 645	spi_finalize_current_transfer(drv_data->controller);
 
 646}
 647
 648static irqreturn_t interrupt_transfer(struct driver_data *drv_data)
 649{
 650	u32 irq_mask = (pxa2xx_spi_read(drv_data, SSCR1) & SSCR1_TIE) ?
 651		       drv_data->mask_sr : drv_data->mask_sr & ~SSSR_TFS;
 652
 653	u32 irq_status = pxa2xx_spi_read(drv_data, SSSR) & irq_mask;
 
 
 
 654
 655	if (irq_status & SSSR_ROR) {
 656		int_error_stop(drv_data, "interrupt_transfer: fifo overrun");
 657		return IRQ_HANDLED;
 658	}
 659
 660	if (irq_status & SSSR_TUR) {
 661		int_error_stop(drv_data, "interrupt_transfer: fifo underrun");
 662		return IRQ_HANDLED;
 663	}
 664
 665	if (irq_status & SSSR_TINT) {
 666		pxa2xx_spi_write(drv_data, SSSR, SSSR_TINT);
 667		if (drv_data->read(drv_data)) {
 668			int_transfer_complete(drv_data);
 669			return IRQ_HANDLED;
 670		}
 671	}
 672
 673	/* Drain rx fifo, Fill tx fifo and prevent overruns */
 674	do {
 675		if (drv_data->read(drv_data)) {
 676			int_transfer_complete(drv_data);
 677			return IRQ_HANDLED;
 678		}
 679	} while (drv_data->write(drv_data));
 680
 681	if (drv_data->read(drv_data)) {
 682		int_transfer_complete(drv_data);
 683		return IRQ_HANDLED;
 684	}
 685
 686	if (drv_data->tx == drv_data->tx_end) {
 687		u32 bytes_left;
 688		u32 sccr1_reg;
 689
 690		sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
 691		sccr1_reg &= ~SSCR1_TIE;
 692
 693		/*
 694		 * PXA25x_SSP has no timeout, set up rx threshould for the
 695		 * remaining RX bytes.
 696		 */
 697		if (pxa25x_ssp_comp(drv_data)) {
 698			u32 rx_thre;
 699
 700			pxa2xx_spi_clear_rx_thre(drv_data, &sccr1_reg);
 701
 702			bytes_left = drv_data->rx_end - drv_data->rx;
 703			switch (drv_data->n_bytes) {
 704			case 4:
 705				bytes_left >>= 2;
 706				break;
 707			case 2:
 708				bytes_left >>= 1;
 709				break;
 710			}
 711
 712			rx_thre = pxa2xx_spi_get_rx_default_thre(drv_data);
 713			if (rx_thre > bytes_left)
 714				rx_thre = bytes_left;
 715
 716			pxa2xx_spi_set_rx_thre(drv_data, &sccr1_reg, rx_thre);
 717		}
 718		pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
 719	}
 720
 721	/* We did something */
 722	return IRQ_HANDLED;
 723}
 724
 725static void handle_bad_msg(struct driver_data *drv_data)
 726{
 727	pxa2xx_spi_off(drv_data);
 728	pxa2xx_spi_write(drv_data, SSCR1,
 729			 pxa2xx_spi_read(drv_data, SSCR1) & ~drv_data->int_cr1);
 730	if (!pxa25x_ssp_comp(drv_data))
 731		pxa2xx_spi_write(drv_data, SSTO, 0);
 732	write_SSSR_CS(drv_data, drv_data->clear_sr);
 733
 734	dev_err(&drv_data->pdev->dev,
 735		"bad message state in interrupt handler\n");
 736}
 737
 738static irqreturn_t ssp_int(int irq, void *dev_id)
 739{
 740	struct driver_data *drv_data = dev_id;
 741	u32 sccr1_reg;
 
 742	u32 mask = drv_data->mask_sr;
 743	u32 status;
 744
 745	/*
 746	 * The IRQ might be shared with other peripherals so we must first
 747	 * check that are we RPM suspended or not. If we are we assume that
 748	 * the IRQ was not for us (we shouldn't be RPM suspended when the
 749	 * interrupt is enabled).
 750	 */
 751	if (pm_runtime_suspended(&drv_data->pdev->dev))
 752		return IRQ_NONE;
 753
 754	/*
 755	 * If the device is not yet in RPM suspended state and we get an
 756	 * interrupt that is meant for another device, check if status bits
 757	 * are all set to one. That means that the device is already
 758	 * powered off.
 759	 */
 760	status = pxa2xx_spi_read(drv_data, SSSR);
 761	if (status == ~0)
 762		return IRQ_NONE;
 763
 764	sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
 765
 766	/* Ignore possible writes if we don't need to write */
 767	if (!(sccr1_reg & SSCR1_TIE))
 768		mask &= ~SSSR_TFS;
 769
 770	/* Ignore RX timeout interrupt if it is disabled */
 771	if (!(sccr1_reg & SSCR1_TINTE))
 772		mask &= ~SSSR_TINT;
 773
 774	if (!(status & mask))
 775		return IRQ_NONE;
 776
 777	pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg & ~drv_data->int_cr1);
 778	pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
 
 
 
 
 
 
 
 
 779
 780	if (!drv_data->controller->cur_msg) {
 781		handle_bad_msg(drv_data);
 782		/* Never fail */
 783		return IRQ_HANDLED;
 784	}
 785
 786	return drv_data->transfer_handler(drv_data);
 787}
 788
 789/*
 790 * The Quark SPI has an additional 24 bit register (DDS_CLK_RATE) to multiply
 791 * input frequency by fractions of 2^24. It also has a divider by 5.
 792 *
 793 * There are formulas to get baud rate value for given input frequency and
 794 * divider parameters, such as DDS_CLK_RATE and SCR:
 795 *
 796 * Fsys = 200MHz
 797 *
 798 * Fssp = Fsys * DDS_CLK_RATE / 2^24			(1)
 799 * Baud rate = Fsclk = Fssp / (2 * (SCR + 1))		(2)
 800 *
 801 * DDS_CLK_RATE either 2^n or 2^n / 5.
 802 * SCR is in range 0 .. 255
 803 *
 804 * Divisor = 5^i * 2^j * 2 * k
 805 *       i = [0, 1]      i = 1 iff j = 0 or j > 3
 806 *       j = [0, 23]     j = 0 iff i = 1
 807 *       k = [1, 256]
 808 * Special case: j = 0, i = 1: Divisor = 2 / 5
 809 *
 810 * Accordingly to the specification the recommended values for DDS_CLK_RATE
 811 * are:
 812 *	Case 1:		2^n, n = [0, 23]
 813 *	Case 2:		2^24 * 2 / 5 (0x666666)
 814 *	Case 3:		less than or equal to 2^24 / 5 / 16 (0x33333)
 815 *
 816 * In all cases the lowest possible value is better.
 817 *
 818 * The function calculates parameters for all cases and chooses the one closest
 819 * to the asked baud rate.
 820 */
 821static unsigned int quark_x1000_get_clk_div(int rate, u32 *dds)
 822{
 823	unsigned long xtal = 200000000;
 824	unsigned long fref = xtal / 2;		/* mandatory division by 2,
 825						   see (2) */
 826						/* case 3 */
 827	unsigned long fref1 = fref / 2;		/* case 1 */
 828	unsigned long fref2 = fref * 2 / 5;	/* case 2 */
 829	unsigned long scale;
 830	unsigned long q, q1, q2;
 831	long r, r1, r2;
 832	u32 mul;
 833
 834	/* Case 1 */
 835
 836	/* Set initial value for DDS_CLK_RATE */
 837	mul = (1 << 24) >> 1;
 838
 839	/* Calculate initial quot */
 840	q1 = DIV_ROUND_UP(fref1, rate);
 841
 842	/* Scale q1 if it's too big */
 843	if (q1 > 256) {
 844		/* Scale q1 to range [1, 512] */
 845		scale = fls_long(q1 - 1);
 846		if (scale > 9) {
 847			q1 >>= scale - 9;
 848			mul >>= scale - 9;
 849		}
 850
 851		/* Round the result if we have a remainder */
 852		q1 += q1 & 1;
 853	}
 854
 855	/* Decrease DDS_CLK_RATE as much as we can without loss in precision */
 856	scale = __ffs(q1);
 857	q1 >>= scale;
 858	mul >>= scale;
 859
 860	/* Get the remainder */
 861	r1 = abs(fref1 / (1 << (24 - fls_long(mul))) / q1 - rate);
 862
 863	/* Case 2 */
 864
 865	q2 = DIV_ROUND_UP(fref2, rate);
 866	r2 = abs(fref2 / q2 - rate);
 867
 868	/*
 869	 * Choose the best between two: less remainder we have the better. We
 870	 * can't go case 2 if q2 is greater than 256 since SCR register can
 871	 * hold only values 0 .. 255.
 872	 */
 873	if (r2 >= r1 || q2 > 256) {
 874		/* case 1 is better */
 875		r = r1;
 876		q = q1;
 877	} else {
 878		/* case 2 is better */
 879		r = r2;
 880		q = q2;
 881		mul = (1 << 24) * 2 / 5;
 882	}
 883
 884	/* Check case 3 only if the divisor is big enough */
 885	if (fref / rate >= 80) {
 886		u64 fssp;
 887		u32 m;
 888
 889		/* Calculate initial quot */
 890		q1 = DIV_ROUND_UP(fref, rate);
 891		m = (1 << 24) / q1;
 892
 893		/* Get the remainder */
 894		fssp = (u64)fref * m;
 895		do_div(fssp, 1 << 24);
 896		r1 = abs(fssp - rate);
 897
 898		/* Choose this one if it suits better */
 899		if (r1 < r) {
 900			/* case 3 is better */
 901			q = 1;
 902			mul = m;
 903		}
 904	}
 905
 906	*dds = mul;
 907	return q - 1;
 
 
 
 
 
 908}
 909
 910static unsigned int ssp_get_clk_div(struct driver_data *drv_data, int rate)
 911{
 912	unsigned long ssp_clk = drv_data->controller->max_speed_hz;
 913	const struct ssp_device *ssp = drv_data->ssp;
 914
 915	rate = min_t(int, ssp_clk, rate);
 916
 917	/*
 918	 * Calculate the divisor for the SCR (Serial Clock Rate), avoiding
 919	 * that the SSP transmission rate can be greater than the device rate
 920	 */
 921	if (ssp->type == PXA25x_SSP || ssp->type == CE4100_SSP)
 922		return (DIV_ROUND_UP(ssp_clk, 2 * rate) - 1) & 0xff;
 923	else
 924		return (DIV_ROUND_UP(ssp_clk, rate) - 1)  & 0xfff;
 925}
 926
 927static unsigned int pxa2xx_ssp_get_clk_div(struct driver_data *drv_data,
 928					   int rate)
 929{
 930	struct chip_data *chip =
 931		spi_get_ctldata(drv_data->controller->cur_msg->spi);
 932	unsigned int clk_div;
 
 
 
 
 
 
 
 
 
 
 
 933
 934	switch (drv_data->ssp_type) {
 935	case QUARK_X1000_SSP:
 936		clk_div = quark_x1000_get_clk_div(rate, &chip->dds_rate);
 937		break;
 938	default:
 939		clk_div = ssp_get_clk_div(drv_data, rate);
 940		break;
 941	}
 942	return clk_div << 8;
 943}
 
 944
 945static bool pxa2xx_spi_can_dma(struct spi_controller *controller,
 946			       struct spi_device *spi,
 947			       struct spi_transfer *xfer)
 948{
 949	struct chip_data *chip = spi_get_ctldata(spi);
 
 950
 951	return chip->enable_dma &&
 952	       xfer->len <= MAX_DMA_LEN &&
 953	       xfer->len >= chip->dma_burst_size;
 954}
 
 
 
 
 
 
 
 
 955
 956static int pxa2xx_spi_transfer_one(struct spi_controller *controller,
 957				   struct spi_device *spi,
 958				   struct spi_transfer *transfer)
 959{
 960	struct driver_data *drv_data = spi_controller_get_devdata(controller);
 961	struct spi_message *message = controller->cur_msg;
 962	struct chip_data *chip = spi_get_ctldata(spi);
 963	u32 dma_thresh = chip->dma_threshold;
 964	u32 dma_burst = chip->dma_burst_size;
 965	u32 change_mask = pxa2xx_spi_get_ssrc1_change_mask(drv_data);
 966	u32 clk_div;
 967	u8 bits;
 968	u32 speed;
 969	u32 cr0;
 970	u32 cr1;
 971	int err;
 972	int dma_mapped;
 973
 974	/* Check if we can DMA this transfer */
 975	if (transfer->len > MAX_DMA_LEN && chip->enable_dma) {
 976
 977		/* reject already-mapped transfers; PIO won't always work */
 978		if (message->is_dma_mapped
 979				|| transfer->rx_dma || transfer->tx_dma) {
 980			dev_err(&spi->dev,
 981				"Mapped transfer length of %u is greater than %d\n",
 
 982				transfer->len, MAX_DMA_LEN);
 983			return -EINVAL;
 
 
 984		}
 985
 986		/* warn ... we force this to PIO mode */
 987		dev_warn_ratelimited(&spi->dev,
 988				     "DMA disabled for transfer length %ld greater than %d\n",
 989				     (long)transfer->len, MAX_DMA_LEN);
 
 
 990	}
 991
 992	/* Setup the transfer state based on the type of transfer */
 993	if (pxa2xx_spi_flush(drv_data) == 0) {
 994		dev_err(&spi->dev, "Flush failed\n");
 995		return -EIO;
 
 
 996	}
 997	drv_data->n_bytes = chip->n_bytes;
 
 998	drv_data->tx = (void *)transfer->tx_buf;
 999	drv_data->tx_end = drv_data->tx + transfer->len;
1000	drv_data->rx = transfer->rx_buf;
1001	drv_data->rx_end = drv_data->rx + transfer->len;
 
 
 
1002	drv_data->write = drv_data->tx ? chip->write : null_writer;
1003	drv_data->read = drv_data->rx ? chip->read : null_reader;
1004
1005	/* Change speed and bit per word on a per transfer */
1006	bits = transfer->bits_per_word;
1007	speed = transfer->speed_hz;
1008
1009	clk_div = pxa2xx_ssp_get_clk_div(drv_data, speed);
 
1010
1011	if (bits <= 8) {
1012		drv_data->n_bytes = 1;
1013		drv_data->read = drv_data->read != null_reader ?
1014					u8_reader : null_reader;
1015		drv_data->write = drv_data->write != null_writer ?
1016					u8_writer : null_writer;
1017	} else if (bits <= 16) {
1018		drv_data->n_bytes = 2;
1019		drv_data->read = drv_data->read != null_reader ?
1020					u16_reader : null_reader;
1021		drv_data->write = drv_data->write != null_writer ?
1022					u16_writer : null_writer;
1023	} else if (bits <= 32) {
1024		drv_data->n_bytes = 4;
1025		drv_data->read = drv_data->read != null_reader ?
1026					u32_reader : null_reader;
1027		drv_data->write = drv_data->write != null_writer ?
1028					u32_writer : null_writer;
1029	}
1030	/*
1031	 * if bits/word is changed in dma mode, then must check the
1032	 * thresholds and burst also
1033	 */
1034	if (chip->enable_dma) {
1035		if (pxa2xx_spi_set_dma_burst_and_threshold(chip,
1036						spi,
1037						bits, &dma_burst,
1038						&dma_thresh))
1039			dev_warn_ratelimited(&spi->dev,
1040					     "DMA burst size reduced to match bits_per_word\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1041	}
1042
1043	dma_mapped = controller->can_dma &&
1044		     controller->can_dma(controller, spi, transfer) &&
1045		     controller->cur_msg_mapped;
1046	if (dma_mapped) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1047
1048		/* Ensure we have the correct interrupt handler */
1049		drv_data->transfer_handler = pxa2xx_spi_dma_transfer;
1050
1051		err = pxa2xx_spi_dma_prepare(drv_data, transfer);
1052		if (err)
1053			return err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1054
1055		/* Clear status and start DMA engine */
1056		cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1;
1057		pxa2xx_spi_write(drv_data, SSSR, drv_data->clear_sr);
1058
1059		pxa2xx_spi_dma_start(drv_data);
1060	} else {
1061		/* Ensure we have the correct interrupt handler	*/
1062		drv_data->transfer_handler = interrupt_transfer;
1063
1064		/* Clear status  */
1065		cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1;
1066		write_SSSR_CS(drv_data, drv_data->clear_sr);
1067	}
1068
1069	/* NOTE:  PXA25x_SSP _could_ use external clocking ... */
1070	cr0 = pxa2xx_configure_sscr0(drv_data, clk_div, bits);
1071	if (!pxa25x_ssp_comp(drv_data))
1072		dev_dbg(&spi->dev, "%u Hz actual, %s\n",
1073			controller->max_speed_hz
1074				/ (1 + ((cr0 & SSCR0_SCR(0xfff)) >> 8)),
1075			dma_mapped ? "DMA" : "PIO");
1076	else
1077		dev_dbg(&spi->dev, "%u Hz actual, %s\n",
1078			controller->max_speed_hz / 2
1079				/ (1 + ((cr0 & SSCR0_SCR(0x0ff)) >> 8)),
1080			dma_mapped ? "DMA" : "PIO");
1081
1082	if (is_lpss_ssp(drv_data)) {
1083		if ((pxa2xx_spi_read(drv_data, SSIRF) & 0xff)
1084		    != chip->lpss_rx_threshold)
1085			pxa2xx_spi_write(drv_data, SSIRF,
1086					 chip->lpss_rx_threshold);
1087		if ((pxa2xx_spi_read(drv_data, SSITF) & 0xffff)
1088		    != chip->lpss_tx_threshold)
1089			pxa2xx_spi_write(drv_data, SSITF,
1090					 chip->lpss_tx_threshold);
1091	}
1092
1093	if (is_quark_x1000_ssp(drv_data) &&
1094	    (pxa2xx_spi_read(drv_data, DDS_RATE) != chip->dds_rate))
1095		pxa2xx_spi_write(drv_data, DDS_RATE, chip->dds_rate);
1096
1097	/* see if we need to reload the config registers */
1098	if ((pxa2xx_spi_read(drv_data, SSCR0) != cr0)
1099	    || (pxa2xx_spi_read(drv_data, SSCR1) & change_mask)
1100	    != (cr1 & change_mask)) {
1101		/* stop the SSP, and update the other bits */
1102		if (!is_mmp2_ssp(drv_data))
1103			pxa2xx_spi_write(drv_data, SSCR0, cr0 & ~SSCR0_SSE);
1104		if (!pxa25x_ssp_comp(drv_data))
1105			pxa2xx_spi_write(drv_data, SSTO, chip->timeout);
1106		/* first set CR1 without interrupt and service enables */
1107		pxa2xx_spi_write(drv_data, SSCR1, cr1 & change_mask);
1108		/* restart the SSP */
1109		pxa2xx_spi_write(drv_data, SSCR0, cr0);
1110
1111	} else {
1112		if (!pxa25x_ssp_comp(drv_data))
1113			pxa2xx_spi_write(drv_data, SSTO, chip->timeout);
1114	}
1115
1116	if (is_mmp2_ssp(drv_data)) {
1117		u8 tx_level = (pxa2xx_spi_read(drv_data, SSSR)
1118					& SSSR_TFL_MASK) >> 8;
1119
1120		if (tx_level) {
1121			/* On MMP2, flipping SSE doesn't to empty TXFIFO. */
1122			dev_warn(&spi->dev, "%d bytes of garbage in TXFIFO!\n",
1123								tx_level);
1124			if (tx_level > transfer->len)
1125				tx_level = transfer->len;
1126			drv_data->tx += tx_level;
1127		}
 
 
 
 
 
 
 
1128	}
1129
1130	if (spi_controller_is_slave(controller)) {
1131		while (drv_data->write(drv_data))
1132			;
1133		if (drv_data->gpiod_ready) {
1134			gpiod_set_value(drv_data->gpiod_ready, 1);
1135			udelay(1);
1136			gpiod_set_value(drv_data->gpiod_ready, 0);
1137		}
1138	}
1139
1140	/*
1141	 * Release the data by enabling service requests and interrupts,
1142	 * without changing any mode bits
1143	 */
1144	pxa2xx_spi_write(drv_data, SSCR1, cr1);
1145
1146	return 1;
1147}
1148
1149static int pxa2xx_spi_slave_abort(struct spi_controller *controller)
1150{
1151	struct driver_data *drv_data = spi_controller_get_devdata(controller);
1152
1153	/* Stop and reset SSP */
1154	write_SSSR_CS(drv_data, drv_data->clear_sr);
1155	reset_sccr1(drv_data);
1156	if (!pxa25x_ssp_comp(drv_data))
1157		pxa2xx_spi_write(drv_data, SSTO, 0);
1158	pxa2xx_spi_flush(drv_data);
1159	pxa2xx_spi_off(drv_data);
1160
1161	dev_dbg(&drv_data->pdev->dev, "transfer aborted\n");
 
 
1162
1163	drv_data->controller->cur_msg->status = -EINTR;
1164	spi_finalize_current_transfer(drv_data->controller);
1165
1166	return 0;
 
1167}
1168
1169static void pxa2xx_spi_handle_err(struct spi_controller *controller,
1170				 struct spi_message *msg)
1171{
1172	struct driver_data *drv_data = spi_controller_get_devdata(controller);
 
 
 
1173
1174	/* Disable the SSP */
1175	pxa2xx_spi_off(drv_data);
1176	/* Clear and disable interrupts and service requests */
1177	write_SSSR_CS(drv_data, drv_data->clear_sr);
1178	pxa2xx_spi_write(drv_data, SSCR1,
1179			 pxa2xx_spi_read(drv_data, SSCR1)
1180			 & ~(drv_data->int_cr1 | drv_data->dma_cr1));
1181	if (!pxa25x_ssp_comp(drv_data))
1182		pxa2xx_spi_write(drv_data, SSTO, 0);
1183
1184	/*
1185	 * Stop the DMA if running. Note DMA callback handler may have unset
1186	 * the dma_running already, which is fine as stopping is not needed
1187	 * then but we shouldn't rely this flag for anything else than
1188	 * stopping. For instance to differentiate between PIO and DMA
1189	 * transfers.
1190	 */
1191	if (atomic_read(&drv_data->dma_running))
1192		pxa2xx_spi_dma_stop(drv_data);
1193}
1194
1195static int pxa2xx_spi_unprepare_transfer(struct spi_controller *controller)
1196{
1197	struct driver_data *drv_data = spi_controller_get_devdata(controller);
1198
1199	/* Disable the SSP now */
1200	pxa2xx_spi_off(drv_data);
1201
1202	return 0;
1203}
1204
1205static int setup_cs(struct spi_device *spi, struct chip_data *chip,
1206		    struct pxa2xx_spi_chip *chip_info)
1207{
1208	struct driver_data *drv_data =
1209		spi_controller_get_devdata(spi->controller);
1210	struct gpio_desc *gpiod;
1211	int err = 0;
1212
1213	if (chip == NULL)
1214		return 0;
1215
1216	if (drv_data->cs_gpiods) {
1217		gpiod = drv_data->cs_gpiods[spi->chip_select];
1218		if (gpiod) {
1219			chip->gpiod_cs = gpiod;
1220			chip->gpio_cs_inverted = spi->mode & SPI_CS_HIGH;
1221			gpiod_set_value(gpiod, chip->gpio_cs_inverted);
1222		}
1223
1224		return 0;
1225	}
1226
1227	if (chip_info == NULL)
1228		return 0;
1229
1230	/* NOTE: setup() can be called multiple times, possibly with
1231	 * different chip_info, release previously requested GPIO
1232	 */
1233	if (chip->gpiod_cs) {
1234		gpiod_put(chip->gpiod_cs);
1235		chip->gpiod_cs = NULL;
1236	}
1237
1238	/* If (*cs_control) is provided, ignore GPIO chip select */
1239	if (chip_info->cs_control) {
1240		chip->cs_control = chip_info->cs_control;
1241		return 0;
1242	}
1243
1244	if (gpio_is_valid(chip_info->gpio_cs)) {
1245		err = gpio_request(chip_info->gpio_cs, "SPI_CS");
1246		if (err) {
1247			dev_err(&spi->dev, "failed to request chip select GPIO%d\n",
1248				chip_info->gpio_cs);
1249			return err;
1250		}
1251
1252		gpiod = gpio_to_desc(chip_info->gpio_cs);
1253		chip->gpiod_cs = gpiod;
1254		chip->gpio_cs_inverted = spi->mode & SPI_CS_HIGH;
1255
1256		err = gpiod_direction_output(gpiod, !chip->gpio_cs_inverted);
 
1257	}
1258
1259	return err;
1260}
1261
1262static int setup(struct spi_device *spi)
1263{
1264	struct pxa2xx_spi_chip *chip_info;
1265	struct chip_data *chip;
1266	const struct lpss_config *config;
1267	struct driver_data *drv_data =
1268		spi_controller_get_devdata(spi->controller);
1269	uint tx_thres, tx_hi_thres, rx_thres;
 
1270
1271	switch (drv_data->ssp_type) {
1272	case QUARK_X1000_SSP:
1273		tx_thres = TX_THRESH_QUARK_X1000_DFLT;
1274		tx_hi_thres = 0;
1275		rx_thres = RX_THRESH_QUARK_X1000_DFLT;
1276		break;
1277	case CE4100_SSP:
1278		tx_thres = TX_THRESH_CE4100_DFLT;
1279		tx_hi_thres = 0;
1280		rx_thres = RX_THRESH_CE4100_DFLT;
1281		break;
1282	case LPSS_LPT_SSP:
1283	case LPSS_BYT_SSP:
1284	case LPSS_BSW_SSP:
1285	case LPSS_SPT_SSP:
1286	case LPSS_BXT_SSP:
1287	case LPSS_CNL_SSP:
1288		config = lpss_get_config(drv_data);
1289		tx_thres = config->tx_threshold_lo;
1290		tx_hi_thres = config->tx_threshold_hi;
1291		rx_thres = config->rx_threshold;
1292		break;
1293	default:
1294		tx_hi_thres = 0;
1295		if (spi_controller_is_slave(drv_data->controller)) {
1296			tx_thres = 1;
1297			rx_thres = 2;
1298		} else {
1299			tx_thres = TX_THRESH_DFLT;
1300			rx_thres = RX_THRESH_DFLT;
1301		}
1302		break;
1303	}
1304
1305	/* Only alloc on first setup */
1306	chip = spi_get_ctldata(spi);
1307	if (!chip) {
1308		chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1309		if (!chip)
 
 
1310			return -ENOMEM;
 
1311
1312		if (drv_data->ssp_type == CE4100_SSP) {
1313			if (spi->chip_select > 4) {
1314				dev_err(&spi->dev,
1315					"failed setup: cs number must not be > 4.\n");
1316				kfree(chip);
1317				return -EINVAL;
1318			}
1319
1320			chip->frm = spi->chip_select;
1321		}
1322		chip->enable_dma = drv_data->controller_info->enable_dma;
 
1323		chip->timeout = TIMOUT_DFLT;
 
 
1324	}
1325
1326	/* protocol drivers may change the chip settings, so...
1327	 * if chip_info exists, use it */
1328	chip_info = spi->controller_data;
1329
1330	/* chip_info isn't always needed */
1331	chip->cr1 = 0;
1332	if (chip_info) {
1333		if (chip_info->timeout)
1334			chip->timeout = chip_info->timeout;
1335		if (chip_info->tx_threshold)
1336			tx_thres = chip_info->tx_threshold;
1337		if (chip_info->tx_hi_threshold)
1338			tx_hi_thres = chip_info->tx_hi_threshold;
1339		if (chip_info->rx_threshold)
1340			rx_thres = chip_info->rx_threshold;
 
1341		chip->dma_threshold = 0;
1342		if (chip_info->enable_loopback)
1343			chip->cr1 = SSCR1_LBM;
1344	}
1345	if (spi_controller_is_slave(drv_data->controller)) {
1346		chip->cr1 |= SSCR1_SCFR;
1347		chip->cr1 |= SSCR1_SCLKDIR;
1348		chip->cr1 |= SSCR1_SFRMDIR;
1349		chip->cr1 |= SSCR1_SPH;
1350	}
1351
1352	chip->lpss_rx_threshold = SSIRF_RxThresh(rx_thres);
1353	chip->lpss_tx_threshold = SSITF_TxLoThresh(tx_thres)
1354				| SSITF_TxHiThresh(tx_hi_thres);
1355
1356	/* set dma burst and threshold outside of chip_info path so that if
1357	 * chip_info goes away after setting chip->enable_dma, the
1358	 * burst and threshold can still respond to changes in bits_per_word */
1359	if (chip->enable_dma) {
1360		/* set up legal burst and threshold for dma */
1361		if (pxa2xx_spi_set_dma_burst_and_threshold(chip, spi,
1362						spi->bits_per_word,
1363						&chip->dma_burst_size,
1364						&chip->dma_threshold)) {
1365			dev_warn(&spi->dev,
1366				 "in setup: DMA burst size reduced to match bits_per_word\n");
1367		}
1368		dev_dbg(&spi->dev,
1369			"in setup: DMA burst size set to %u\n",
1370			chip->dma_burst_size);
1371	}
1372
1373	switch (drv_data->ssp_type) {
1374	case QUARK_X1000_SSP:
1375		chip->threshold = (QUARK_X1000_SSCR1_RxTresh(rx_thres)
1376				   & QUARK_X1000_SSCR1_RFT)
1377				   | (QUARK_X1000_SSCR1_TxTresh(tx_thres)
1378				   & QUARK_X1000_SSCR1_TFT);
1379		break;
1380	case CE4100_SSP:
1381		chip->threshold = (CE4100_SSCR1_RxTresh(rx_thres) & CE4100_SSCR1_RFT) |
1382			(CE4100_SSCR1_TxTresh(tx_thres) & CE4100_SSCR1_TFT);
1383		break;
1384	default:
1385		chip->threshold = (SSCR1_RxTresh(rx_thres) & SSCR1_RFT) |
1386			(SSCR1_TxTresh(tx_thres) & SSCR1_TFT);
1387		break;
1388	}
1389
 
 
 
 
 
 
 
 
 
1390	chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH);
1391	chip->cr1 |= (((spi->mode & SPI_CPHA) != 0) ? SSCR1_SPH : 0)
1392			| (((spi->mode & SPI_CPOL) != 0) ? SSCR1_SPO : 0);
1393
1394	if (spi->mode & SPI_LOOP)
1395		chip->cr1 |= SSCR1_LBM;
 
 
 
 
 
 
 
 
 
1396
1397	if (spi->bits_per_word <= 8) {
1398		chip->n_bytes = 1;
 
1399		chip->read = u8_reader;
1400		chip->write = u8_writer;
1401	} else if (spi->bits_per_word <= 16) {
1402		chip->n_bytes = 2;
 
1403		chip->read = u16_reader;
1404		chip->write = u16_writer;
1405	} else if (spi->bits_per_word <= 32) {
 
1406		chip->n_bytes = 4;
 
1407		chip->read = u32_reader;
1408		chip->write = u32_writer;
 
 
 
1409	}
 
1410
1411	spi_set_ctldata(spi, chip);
1412
1413	if (drv_data->ssp_type == CE4100_SSP)
1414		return 0;
1415
1416	return setup_cs(spi, chip, chip_info);
1417}
1418
1419static void cleanup(struct spi_device *spi)
1420{
1421	struct chip_data *chip = spi_get_ctldata(spi);
1422	struct driver_data *drv_data =
1423		spi_controller_get_devdata(spi->controller);
1424
1425	if (!chip)
1426		return;
1427
1428	if (drv_data->ssp_type != CE4100_SSP && !drv_data->cs_gpiods &&
1429	    chip->gpiod_cs)
1430		gpiod_put(chip->gpiod_cs);
1431
1432	kfree(chip);
1433}
1434
1435#ifdef CONFIG_ACPI
1436static const struct acpi_device_id pxa2xx_spi_acpi_match[] = {
1437	{ "INT33C0", LPSS_LPT_SSP },
1438	{ "INT33C1", LPSS_LPT_SSP },
1439	{ "INT3430", LPSS_LPT_SSP },
1440	{ "INT3431", LPSS_LPT_SSP },
1441	{ "80860F0E", LPSS_BYT_SSP },
1442	{ "8086228E", LPSS_BSW_SSP },
1443	{ },
1444};
1445MODULE_DEVICE_TABLE(acpi, pxa2xx_spi_acpi_match);
1446#endif
1447
1448/*
1449 * PCI IDs of compound devices that integrate both host controller and private
1450 * integrated DMA engine. Please note these are not used in module
1451 * autoloading and probing in this module but matching the LPSS SSP type.
1452 */
1453static const struct pci_device_id pxa2xx_spi_pci_compound_match[] = {
1454	/* SPT-LP */
1455	{ PCI_VDEVICE(INTEL, 0x9d29), LPSS_SPT_SSP },
1456	{ PCI_VDEVICE(INTEL, 0x9d2a), LPSS_SPT_SSP },
1457	/* SPT-H */
1458	{ PCI_VDEVICE(INTEL, 0xa129), LPSS_SPT_SSP },
1459	{ PCI_VDEVICE(INTEL, 0xa12a), LPSS_SPT_SSP },
1460	/* KBL-H */
1461	{ PCI_VDEVICE(INTEL, 0xa2a9), LPSS_SPT_SSP },
1462	{ PCI_VDEVICE(INTEL, 0xa2aa), LPSS_SPT_SSP },
1463	/* CML-V */
1464	{ PCI_VDEVICE(INTEL, 0xa3a9), LPSS_SPT_SSP },
1465	{ PCI_VDEVICE(INTEL, 0xa3aa), LPSS_SPT_SSP },
1466	/* BXT A-Step */
1467	{ PCI_VDEVICE(INTEL, 0x0ac2), LPSS_BXT_SSP },
1468	{ PCI_VDEVICE(INTEL, 0x0ac4), LPSS_BXT_SSP },
1469	{ PCI_VDEVICE(INTEL, 0x0ac6), LPSS_BXT_SSP },
1470	/* BXT B-Step */
1471	{ PCI_VDEVICE(INTEL, 0x1ac2), LPSS_BXT_SSP },
1472	{ PCI_VDEVICE(INTEL, 0x1ac4), LPSS_BXT_SSP },
1473	{ PCI_VDEVICE(INTEL, 0x1ac6), LPSS_BXT_SSP },
1474	/* GLK */
1475	{ PCI_VDEVICE(INTEL, 0x31c2), LPSS_BXT_SSP },
1476	{ PCI_VDEVICE(INTEL, 0x31c4), LPSS_BXT_SSP },
1477	{ PCI_VDEVICE(INTEL, 0x31c6), LPSS_BXT_SSP },
1478	/* ICL-LP */
1479	{ PCI_VDEVICE(INTEL, 0x34aa), LPSS_CNL_SSP },
1480	{ PCI_VDEVICE(INTEL, 0x34ab), LPSS_CNL_SSP },
1481	{ PCI_VDEVICE(INTEL, 0x34fb), LPSS_CNL_SSP },
1482	/* EHL */
1483	{ PCI_VDEVICE(INTEL, 0x4b2a), LPSS_BXT_SSP },
1484	{ PCI_VDEVICE(INTEL, 0x4b2b), LPSS_BXT_SSP },
1485	{ PCI_VDEVICE(INTEL, 0x4b37), LPSS_BXT_SSP },
1486	/* JSL */
1487	{ PCI_VDEVICE(INTEL, 0x4daa), LPSS_CNL_SSP },
1488	{ PCI_VDEVICE(INTEL, 0x4dab), LPSS_CNL_SSP },
1489	{ PCI_VDEVICE(INTEL, 0x4dfb), LPSS_CNL_SSP },
1490	/* TGL-H */
1491	{ PCI_VDEVICE(INTEL, 0x43aa), LPSS_CNL_SSP },
1492	{ PCI_VDEVICE(INTEL, 0x43ab), LPSS_CNL_SSP },
1493	{ PCI_VDEVICE(INTEL, 0x43fb), LPSS_CNL_SSP },
1494	{ PCI_VDEVICE(INTEL, 0x43fd), LPSS_CNL_SSP },
1495	/* APL */
1496	{ PCI_VDEVICE(INTEL, 0x5ac2), LPSS_BXT_SSP },
1497	{ PCI_VDEVICE(INTEL, 0x5ac4), LPSS_BXT_SSP },
1498	{ PCI_VDEVICE(INTEL, 0x5ac6), LPSS_BXT_SSP },
1499	/* CNL-LP */
1500	{ PCI_VDEVICE(INTEL, 0x9daa), LPSS_CNL_SSP },
1501	{ PCI_VDEVICE(INTEL, 0x9dab), LPSS_CNL_SSP },
1502	{ PCI_VDEVICE(INTEL, 0x9dfb), LPSS_CNL_SSP },
1503	/* CNL-H */
1504	{ PCI_VDEVICE(INTEL, 0xa32a), LPSS_CNL_SSP },
1505	{ PCI_VDEVICE(INTEL, 0xa32b), LPSS_CNL_SSP },
1506	{ PCI_VDEVICE(INTEL, 0xa37b), LPSS_CNL_SSP },
1507	/* CML-LP */
1508	{ PCI_VDEVICE(INTEL, 0x02aa), LPSS_CNL_SSP },
1509	{ PCI_VDEVICE(INTEL, 0x02ab), LPSS_CNL_SSP },
1510	{ PCI_VDEVICE(INTEL, 0x02fb), LPSS_CNL_SSP },
1511	/* CML-H */
1512	{ PCI_VDEVICE(INTEL, 0x06aa), LPSS_CNL_SSP },
1513	{ PCI_VDEVICE(INTEL, 0x06ab), LPSS_CNL_SSP },
1514	{ PCI_VDEVICE(INTEL, 0x06fb), LPSS_CNL_SSP },
1515	/* TGL-LP */
1516	{ PCI_VDEVICE(INTEL, 0xa0aa), LPSS_CNL_SSP },
1517	{ PCI_VDEVICE(INTEL, 0xa0ab), LPSS_CNL_SSP },
1518	{ PCI_VDEVICE(INTEL, 0xa0de), LPSS_CNL_SSP },
1519	{ PCI_VDEVICE(INTEL, 0xa0df), LPSS_CNL_SSP },
1520	{ PCI_VDEVICE(INTEL, 0xa0fb), LPSS_CNL_SSP },
1521	{ PCI_VDEVICE(INTEL, 0xa0fd), LPSS_CNL_SSP },
1522	{ PCI_VDEVICE(INTEL, 0xa0fe), LPSS_CNL_SSP },
1523	{ },
1524};
1525
1526static const struct of_device_id pxa2xx_spi_of_match[] = {
1527	{ .compatible = "marvell,mmp2-ssp", .data = (void *)MMP2_SSP },
1528	{},
1529};
1530MODULE_DEVICE_TABLE(of, pxa2xx_spi_of_match);
 
 
 
1531
1532#ifdef CONFIG_ACPI
 
1533
1534static int pxa2xx_spi_get_port_id(struct device *dev)
1535{
1536	struct acpi_device *adev;
1537	unsigned int devid;
1538	int port_id = -1;
1539
1540	adev = ACPI_COMPANION(dev);
1541	if (adev && adev->pnp.unique_id &&
1542	    !kstrtouint(adev->pnp.unique_id, 0, &devid))
1543		port_id = devid;
1544	return port_id;
1545}
1546
1547#else /* !CONFIG_ACPI */
1548
1549static int pxa2xx_spi_get_port_id(struct device *dev)
1550{
1551	return -1;
1552}
1553
1554#endif /* CONFIG_ACPI */
 
 
 
 
1555
 
1556
1557#ifdef CONFIG_PCI
 
1558
1559static bool pxa2xx_spi_idma_filter(struct dma_chan *chan, void *param)
1560{
1561	return param == chan->device->dev;
1562}
 
1563
1564#endif /* CONFIG_PCI */
1565
1566static struct pxa2xx_spi_controller *
1567pxa2xx_spi_init_pdata(struct platform_device *pdev)
1568{
1569	struct pxa2xx_spi_controller *pdata;
1570	struct ssp_device *ssp;
1571	struct resource *res;
1572	struct device *parent = pdev->dev.parent;
1573	struct pci_dev *pcidev = dev_is_pci(parent) ? to_pci_dev(parent) : NULL;
1574	const struct pci_device_id *pcidev_id = NULL;
1575	enum pxa_ssp_type type;
1576	const void *match;
1577
1578	if (pcidev)
1579		pcidev_id = pci_match_id(pxa2xx_spi_pci_compound_match, pcidev);
1580
1581	match = device_get_match_data(&pdev->dev);
1582	if (match)
1583		type = (enum pxa_ssp_type)match;
1584	else if (pcidev_id)
1585		type = (enum pxa_ssp_type)pcidev_id->driver_data;
1586	else
1587		return ERR_PTR(-EINVAL);
1588
1589	pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
1590	if (!pdata)
1591		return ERR_PTR(-ENOMEM);
1592
1593	ssp = &pdata->ssp;
1594
1595	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1596	ssp->mmio_base = devm_ioremap_resource(&pdev->dev, res);
1597	if (IS_ERR(ssp->mmio_base))
1598		return ERR_CAST(ssp->mmio_base);
1599
1600	ssp->phys_base = res->start;
1601
1602#ifdef CONFIG_PCI
1603	if (pcidev_id) {
1604		pdata->tx_param = parent;
1605		pdata->rx_param = parent;
1606		pdata->dma_filter = pxa2xx_spi_idma_filter;
1607	}
1608#endif
1609
1610	ssp->clk = devm_clk_get(&pdev->dev, NULL);
1611	if (IS_ERR(ssp->clk))
1612		return ERR_CAST(ssp->clk);
1613
1614	ssp->irq = platform_get_irq(pdev, 0);
1615	if (ssp->irq < 0)
1616		return ERR_PTR(ssp->irq);
1617
1618	ssp->type = type;
1619	ssp->dev = &pdev->dev;
1620	ssp->port_id = pxa2xx_spi_get_port_id(&pdev->dev);
1621
1622	pdata->is_slave = device_property_read_bool(&pdev->dev, "spi-slave");
1623	pdata->num_chipselect = 1;
1624	pdata->enable_dma = true;
1625	pdata->dma_burst_size = 1;
1626
1627	return pdata;
1628}
1629
1630static int pxa2xx_spi_fw_translate_cs(struct spi_controller *controller,
1631				      unsigned int cs)
1632{
1633	struct driver_data *drv_data = spi_controller_get_devdata(controller);
1634
1635	if (has_acpi_companion(&drv_data->pdev->dev)) {
1636		switch (drv_data->ssp_type) {
1637		/*
1638		 * For Atoms the ACPI DeviceSelection used by the Windows
1639		 * driver starts from 1 instead of 0 so translate it here
1640		 * to match what Linux expects.
1641		 */
1642		case LPSS_BYT_SSP:
1643		case LPSS_BSW_SSP:
1644			return cs - 1;
1645
1646		default:
1647			break;
1648		}
1649	}
1650
1651	return cs;
1652}
1653
1654static size_t pxa2xx_spi_max_dma_transfer_size(struct spi_device *spi)
1655{
1656	return MAX_DMA_LEN;
1657}
1658
1659static int pxa2xx_spi_probe(struct platform_device *pdev)
1660{
1661	struct device *dev = &pdev->dev;
1662	struct pxa2xx_spi_controller *platform_info;
1663	struct spi_controller *controller;
1664	struct driver_data *drv_data;
1665	struct ssp_device *ssp;
1666	const struct lpss_config *config;
1667	int status, count;
1668	u32 tmp;
1669
1670	platform_info = dev_get_platdata(dev);
1671	if (!platform_info) {
1672		platform_info = pxa2xx_spi_init_pdata(pdev);
1673		if (IS_ERR(platform_info)) {
1674			dev_err(&pdev->dev, "missing platform data\n");
1675			return PTR_ERR(platform_info);
1676		}
1677	}
1678
1679	ssp = pxa_ssp_request(pdev->id, pdev->name);
1680	if (!ssp)
1681		ssp = &platform_info->ssp;
1682
1683	if (!ssp->mmio_base) {
1684		dev_err(&pdev->dev, "failed to get ssp\n");
1685		return -ENODEV;
1686	}
1687
1688	if (platform_info->is_slave)
1689		controller = spi_alloc_slave(dev, sizeof(struct driver_data));
1690	else
1691		controller = spi_alloc_master(dev, sizeof(struct driver_data));
1692
1693	if (!controller) {
1694		dev_err(&pdev->dev, "cannot alloc spi_controller\n");
1695		pxa_ssp_free(ssp);
1696		return -ENOMEM;
1697	}
1698	drv_data = spi_controller_get_devdata(controller);
1699	drv_data->controller = controller;
1700	drv_data->controller_info = platform_info;
1701	drv_data->pdev = pdev;
1702	drv_data->ssp = ssp;
1703
1704	controller->dev.of_node = pdev->dev.of_node;
 
1705	/* the spi->mode bits understood by this driver: */
1706	controller->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
1707
1708	controller->bus_num = ssp->port_id;
1709	controller->dma_alignment = DMA_ALIGNMENT;
1710	controller->cleanup = cleanup;
1711	controller->setup = setup;
1712	controller->set_cs = pxa2xx_spi_set_cs;
1713	controller->transfer_one = pxa2xx_spi_transfer_one;
1714	controller->slave_abort = pxa2xx_spi_slave_abort;
1715	controller->handle_err = pxa2xx_spi_handle_err;
1716	controller->unprepare_transfer_hardware = pxa2xx_spi_unprepare_transfer;
1717	controller->fw_translate_cs = pxa2xx_spi_fw_translate_cs;
1718	controller->auto_runtime_pm = true;
1719	controller->flags = SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX;
1720
1721	drv_data->ssp_type = ssp->type;
 
 
1722
1723	drv_data->ioaddr = ssp->mmio_base;
1724	drv_data->ssdr_physical = ssp->phys_base + SSDR;
1725	if (pxa25x_ssp_comp(drv_data)) {
1726		switch (drv_data->ssp_type) {
1727		case QUARK_X1000_SSP:
1728			controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1729			break;
1730		default:
1731			controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
1732			break;
1733		}
1734
1735		drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE;
1736		drv_data->dma_cr1 = 0;
1737		drv_data->clear_sr = SSSR_ROR;
1738		drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR;
1739	} else {
1740		controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1741		drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE;
1742		drv_data->dma_cr1 = DEFAULT_DMA_CR1;
1743		drv_data->clear_sr = SSSR_ROR | SSSR_TINT;
1744		drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS
1745						| SSSR_ROR | SSSR_TUR;
1746	}
1747
1748	status = request_irq(ssp->irq, ssp_int, IRQF_SHARED, dev_name(dev),
1749			drv_data);
1750	if (status < 0) {
1751		dev_err(&pdev->dev, "cannot get IRQ %d\n", ssp->irq);
1752		goto out_error_controller_alloc;
1753	}
1754
1755	/* Setup DMA if requested */
 
 
1756	if (platform_info->enable_dma) {
1757		status = pxa2xx_spi_dma_setup(drv_data);
1758		if (status) {
1759			dev_warn(dev, "no DMA channels available, using PIO\n");
1760			platform_info->enable_dma = false;
1761		} else {
1762			controller->can_dma = pxa2xx_spi_can_dma;
1763			controller->max_dma_len = MAX_DMA_LEN;
1764			controller->max_transfer_size =
1765				pxa2xx_spi_max_dma_transfer_size;
 
 
 
 
 
 
 
 
 
 
 
 
1766		}
 
 
 
1767	}
1768
1769	/* Enable SOC clock */
1770	status = clk_prepare_enable(ssp->clk);
1771	if (status)
1772		goto out_error_dma_irq_alloc;
1773
1774	controller->max_speed_hz = clk_get_rate(ssp->clk);
1775	/*
1776	 * Set minimum speed for all other platforms than Intel Quark which is
1777	 * able do under 1 Hz transfers.
1778	 */
1779	if (!pxa25x_ssp_comp(drv_data))
1780		controller->min_speed_hz =
1781			DIV_ROUND_UP(controller->max_speed_hz, 4096);
1782	else if (!is_quark_x1000_ssp(drv_data))
1783		controller->min_speed_hz =
1784			DIV_ROUND_UP(controller->max_speed_hz, 512);
1785
1786	/* Load default SSP configuration */
1787	pxa2xx_spi_write(drv_data, SSCR0, 0);
1788	switch (drv_data->ssp_type) {
1789	case QUARK_X1000_SSP:
1790		tmp = QUARK_X1000_SSCR1_RxTresh(RX_THRESH_QUARK_X1000_DFLT) |
1791		      QUARK_X1000_SSCR1_TxTresh(TX_THRESH_QUARK_X1000_DFLT);
1792		pxa2xx_spi_write(drv_data, SSCR1, tmp);
1793
1794		/* using the Motorola SPI protocol and use 8 bit frame */
1795		tmp = QUARK_X1000_SSCR0_Motorola | QUARK_X1000_SSCR0_DataSize(8);
1796		pxa2xx_spi_write(drv_data, SSCR0, tmp);
1797		break;
1798	case CE4100_SSP:
1799		tmp = CE4100_SSCR1_RxTresh(RX_THRESH_CE4100_DFLT) |
1800		      CE4100_SSCR1_TxTresh(TX_THRESH_CE4100_DFLT);
1801		pxa2xx_spi_write(drv_data, SSCR1, tmp);
1802		tmp = SSCR0_SCR(2) | SSCR0_Motorola | SSCR0_DataSize(8);
1803		pxa2xx_spi_write(drv_data, SSCR0, tmp);
1804		break;
1805	default:
1806
1807		if (spi_controller_is_slave(controller)) {
1808			tmp = SSCR1_SCFR |
1809			      SSCR1_SCLKDIR |
1810			      SSCR1_SFRMDIR |
1811			      SSCR1_RxTresh(2) |
1812			      SSCR1_TxTresh(1) |
1813			      SSCR1_SPH;
1814		} else {
1815			tmp = SSCR1_RxTresh(RX_THRESH_DFLT) |
1816			      SSCR1_TxTresh(TX_THRESH_DFLT);
1817		}
1818		pxa2xx_spi_write(drv_data, SSCR1, tmp);
1819		tmp = SSCR0_Motorola | SSCR0_DataSize(8);
1820		if (!spi_controller_is_slave(controller))
1821			tmp |= SSCR0_SCR(2);
1822		pxa2xx_spi_write(drv_data, SSCR0, tmp);
1823		break;
1824	}
1825
1826	if (!pxa25x_ssp_comp(drv_data))
1827		pxa2xx_spi_write(drv_data, SSTO, 0);
 
1828
1829	if (!is_quark_x1000_ssp(drv_data))
1830		pxa2xx_spi_write(drv_data, SSPSP, 0);
1831
1832	if (is_lpss_ssp(drv_data)) {
1833		lpss_ssp_setup(drv_data);
1834		config = lpss_get_config(drv_data);
1835		if (config->reg_capabilities >= 0) {
1836			tmp = __lpss_ssp_read_priv(drv_data,
1837						   config->reg_capabilities);
1838			tmp &= LPSS_CAPS_CS_EN_MASK;
1839			tmp >>= LPSS_CAPS_CS_EN_SHIFT;
1840			platform_info->num_chipselect = ffz(tmp);
1841		} else if (config->cs_num) {
1842			platform_info->num_chipselect = config->cs_num;
1843		}
1844	}
1845	controller->num_chipselect = platform_info->num_chipselect;
1846
1847	count = gpiod_count(&pdev->dev, "cs");
1848	if (count > 0) {
1849		int i;
1850
1851		controller->num_chipselect = max_t(int, count,
1852			controller->num_chipselect);
1853
1854		drv_data->cs_gpiods = devm_kcalloc(&pdev->dev,
1855			controller->num_chipselect, sizeof(struct gpio_desc *),
1856			GFP_KERNEL);
1857		if (!drv_data->cs_gpiods) {
1858			status = -ENOMEM;
1859			goto out_error_clock_enabled;
1860		}
1861
1862		for (i = 0; i < controller->num_chipselect; i++) {
1863			struct gpio_desc *gpiod;
1864
1865			gpiod = devm_gpiod_get_index(dev, "cs", i, GPIOD_ASIS);
1866			if (IS_ERR(gpiod)) {
1867				/* Means use native chip select */
1868				if (PTR_ERR(gpiod) == -ENOENT)
1869					continue;
1870
1871				status = PTR_ERR(gpiod);
1872				goto out_error_clock_enabled;
1873			} else {
1874				drv_data->cs_gpiods[i] = gpiod;
1875			}
1876		}
1877	}
1878
1879	if (platform_info->is_slave) {
1880		drv_data->gpiod_ready = devm_gpiod_get_optional(dev,
1881						"ready", GPIOD_OUT_LOW);
1882		if (IS_ERR(drv_data->gpiod_ready)) {
1883			status = PTR_ERR(drv_data->gpiod_ready);
1884			goto out_error_clock_enabled;
1885		}
1886	}
1887
1888	pm_runtime_set_autosuspend_delay(&pdev->dev, 50);
1889	pm_runtime_use_autosuspend(&pdev->dev);
1890	pm_runtime_set_active(&pdev->dev);
1891	pm_runtime_enable(&pdev->dev);
1892
1893	/* Register with the SPI framework */
1894	platform_set_drvdata(pdev, drv_data);
1895	status = spi_register_controller(controller);
1896	if (status != 0) {
1897		dev_err(&pdev->dev, "problem registering spi controller\n");
1898		goto out_error_pm_runtime_enabled;
1899	}
1900
1901	return status;
1902
1903out_error_pm_runtime_enabled:
1904	pm_runtime_disable(&pdev->dev);
1905
1906out_error_clock_enabled:
1907	clk_disable_unprepare(ssp->clk);
1908
1909out_error_dma_irq_alloc:
1910	pxa2xx_spi_dma_release(drv_data);
 
 
 
 
 
1911	free_irq(ssp->irq, drv_data);
1912
1913out_error_controller_alloc:
1914	spi_controller_put(controller);
1915	pxa_ssp_free(ssp);
1916	return status;
1917}
1918
1919static int pxa2xx_spi_remove(struct platform_device *pdev)
1920{
1921	struct driver_data *drv_data = platform_get_drvdata(pdev);
1922	struct ssp_device *ssp = drv_data->ssp;
 
1923
1924	pm_runtime_get_sync(&pdev->dev);
 
 
1925
1926	spi_unregister_controller(drv_data->controller);
 
 
 
 
 
 
 
 
 
 
 
 
1927
1928	/* Disable the SSP at the peripheral and SOC level */
1929	pxa2xx_spi_write(drv_data, SSCR0, 0);
1930	clk_disable_unprepare(ssp->clk);
1931
1932	/* Release DMA */
1933	if (drv_data->controller_info->enable_dma)
1934		pxa2xx_spi_dma_release(drv_data);
1935
1936	pm_runtime_put_noidle(&pdev->dev);
1937	pm_runtime_disable(&pdev->dev);
 
1938
1939	/* Release IRQ */
1940	free_irq(ssp->irq, drv_data);
1941
1942	/* Release SSP */
1943	pxa_ssp_free(ssp);
1944
 
 
 
 
 
 
1945	return 0;
1946}
1947
1948#ifdef CONFIG_PM_SLEEP
 
 
 
 
 
 
 
 
1949static int pxa2xx_spi_suspend(struct device *dev)
1950{
1951	struct driver_data *drv_data = dev_get_drvdata(dev);
1952	struct ssp_device *ssp = drv_data->ssp;
1953	int status;
1954
1955	status = spi_controller_suspend(drv_data->controller);
1956	if (status != 0)
1957		return status;
1958	pxa2xx_spi_write(drv_data, SSCR0, 0);
1959
1960	if (!pm_runtime_suspended(dev))
1961		clk_disable_unprepare(ssp->clk);
1962
1963	return 0;
1964}
1965
1966static int pxa2xx_spi_resume(struct device *dev)
1967{
1968	struct driver_data *drv_data = dev_get_drvdata(dev);
1969	struct ssp_device *ssp = drv_data->ssp;
1970	int status;
 
 
 
 
 
 
 
1971
1972	/* Enable the SSP clock */
1973	if (!pm_runtime_suspended(dev)) {
1974		status = clk_prepare_enable(ssp->clk);
1975		if (status)
1976			return status;
1977	}
1978
1979	/* Start the queue running */
1980	return spi_controller_resume(drv_data->controller);
1981}
1982#endif
 
 
1983
1984#ifdef CONFIG_PM
1985static int pxa2xx_spi_runtime_suspend(struct device *dev)
1986{
1987	struct driver_data *drv_data = dev_get_drvdata(dev);
1988
1989	clk_disable_unprepare(drv_data->ssp->clk);
1990	return 0;
1991}
1992
1993static int pxa2xx_spi_runtime_resume(struct device *dev)
1994{
1995	struct driver_data *drv_data = dev_get_drvdata(dev);
1996	int status;
1997
1998	status = clk_prepare_enable(drv_data->ssp->clk);
1999	return status;
2000}
2001#endif
2002
2003static const struct dev_pm_ops pxa2xx_spi_pm_ops = {
2004	SET_SYSTEM_SLEEP_PM_OPS(pxa2xx_spi_suspend, pxa2xx_spi_resume)
2005	SET_RUNTIME_PM_OPS(pxa2xx_spi_runtime_suspend,
2006			   pxa2xx_spi_runtime_resume, NULL)
2007};
 
2008
2009static struct platform_driver driver = {
2010	.driver = {
2011		.name	= "pxa2xx-spi",
 
 
2012		.pm	= &pxa2xx_spi_pm_ops,
2013		.acpi_match_table = ACPI_PTR(pxa2xx_spi_acpi_match),
2014		.of_match_table = of_match_ptr(pxa2xx_spi_of_match),
2015	},
2016	.probe = pxa2xx_spi_probe,
2017	.remove = pxa2xx_spi_remove,
 
2018};
2019
2020static int __init pxa2xx_spi_init(void)
2021{
2022	return platform_driver_register(&driver);
2023}
2024subsys_initcall(pxa2xx_spi_init);
2025
2026static void __exit pxa2xx_spi_exit(void)
2027{
2028	platform_driver_unregister(&driver);
2029}
2030module_exit(pxa2xx_spi_exit);
2031
2032MODULE_SOFTDEP("pre: dw_dmac");