Linux Audio

Check our new training course

Loading...
v3.5.6
   1/*
   2 * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
 
   3 *
   4 * This program is free software; you can redistribute it and/or modify
   5 * it under the terms of the GNU General Public License as published by
   6 * the Free Software Foundation; either version 2 of the License, or
   7 * (at your option) any later version.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write to the Free Software
  16 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  17 */
  18
 
  19#include <linux/init.h>
  20#include <linux/module.h>
  21#include <linux/device.h>
  22#include <linux/ioport.h>
  23#include <linux/errno.h>
 
  24#include <linux/interrupt.h>
 
 
  25#include <linux/platform_device.h>
  26#include <linux/spi/pxa2xx_spi.h>
  27#include <linux/dma-mapping.h>
  28#include <linux/spi/spi.h>
  29#include <linux/workqueue.h>
  30#include <linux/delay.h>
  31#include <linux/gpio.h>
 
  32#include <linux/slab.h>
 
 
 
  33
  34#include <asm/io.h>
  35#include <asm/irq.h>
  36#include <asm/delay.h>
  37
  38
  39MODULE_AUTHOR("Stephen Street");
  40MODULE_DESCRIPTION("PXA2xx SSP SPI Controller");
  41MODULE_LICENSE("GPL");
  42MODULE_ALIAS("platform:pxa2xx-spi");
  43
  44#define MAX_BUSES 3
  45
  46#define TIMOUT_DFLT		1000
  47
  48#define DMA_INT_MASK		(DCSR_ENDINTR | DCSR_STARTINTR | DCSR_BUSERR)
  49#define RESET_DMA_CHANNEL	(DCSR_NODESC | DMA_INT_MASK)
  50#define IS_DMA_ALIGNED(x)	((((u32)(x)) & 0x07) == 0)
  51#define MAX_DMA_LEN		8191
  52#define DMA_ALIGNMENT		8
  53
  54/*
  55 * for testing SSCR1 changes that require SSP restart, basically
  56 * everything except the service and interrupt enables, the pxa270 developer
  57 * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this
  58 * list, but the PXA255 dev man says all bits without really meaning the
  59 * service and interrupt enables
  60 */
  61#define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
  62				| SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
  63				| SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
  64				| SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
  65				| SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \
  66				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
  67
  68#define DEFINE_SSP_REG(reg, off) \
  69static inline u32 read_##reg(void const __iomem *p) \
  70{ return __raw_readl(p + (off)); } \
  71\
  72static inline void write_##reg(u32 v, void __iomem *p) \
  73{ __raw_writel(v, p + (off)); }
  74
  75DEFINE_SSP_REG(SSCR0, 0x00)
  76DEFINE_SSP_REG(SSCR1, 0x04)
  77DEFINE_SSP_REG(SSSR, 0x08)
  78DEFINE_SSP_REG(SSITR, 0x0c)
  79DEFINE_SSP_REG(SSDR, 0x10)
  80DEFINE_SSP_REG(SSTO, 0x28)
  81DEFINE_SSP_REG(SSPSP, 0x2c)
  82
  83#define START_STATE ((void*)0)
  84#define RUNNING_STATE ((void*)1)
  85#define DONE_STATE ((void*)2)
  86#define ERROR_STATE ((void*)-1)
  87
  88#define QUEUE_RUNNING 0
  89#define QUEUE_STOPPED 1
  90
  91struct driver_data {
  92	/* Driver model hookup */
  93	struct platform_device *pdev;
  94
  95	/* SSP Info */
  96	struct ssp_device *ssp;
 
 
 
 
  97
  98	/* SPI framework hookup */
  99	enum pxa_ssp_type ssp_type;
 100	struct spi_master *master;
 101
 102	/* PXA hookup */
 103	struct pxa2xx_spi_master *master_info;
 104
 105	/* DMA setup stuff */
 106	int rx_channel;
 107	int tx_channel;
 108	u32 *null_dma_buf;
 109
 110	/* SSP register addresses */
 111	void __iomem *ioaddr;
 112	u32 ssdr_physical;
 113
 114	/* SSP masks*/
 115	u32 dma_cr1;
 116	u32 int_cr1;
 117	u32 clear_sr;
 118	u32 mask_sr;
 119
 120	/* Driver message queue */
 121	struct workqueue_struct	*workqueue;
 122	struct work_struct pump_messages;
 123	spinlock_t lock;
 124	struct list_head queue;
 125	int busy;
 126	int run;
 127
 128	/* Message Transfer pump */
 129	struct tasklet_struct pump_transfers;
 130
 131	/* Current message transfer state info */
 132	struct spi_message* cur_msg;
 133	struct spi_transfer* cur_transfer;
 134	struct chip_data *cur_chip;
 135	size_t len;
 136	void *tx;
 137	void *tx_end;
 138	void *rx;
 139	void *rx_end;
 140	int dma_mapped;
 141	dma_addr_t rx_dma;
 142	dma_addr_t tx_dma;
 143	size_t rx_map_len;
 144	size_t tx_map_len;
 145	u8 n_bytes;
 146	u32 dma_width;
 147	int (*write)(struct driver_data *drv_data);
 148	int (*read)(struct driver_data *drv_data);
 149	irqreturn_t (*transfer_handler)(struct driver_data *drv_data);
 150	void (*cs_control)(u32 command);
 151};
 152
 153struct chip_data {
 154	u32 cr0;
 155	u32 cr1;
 156	u32 psp;
 157	u32 timeout;
 158	u8 n_bytes;
 159	u32 dma_width;
 160	u32 dma_burst_size;
 161	u32 threshold;
 162	u32 dma_threshold;
 163	u8 enable_dma;
 164	u8 bits_per_word;
 165	u32 speed_hz;
 166	union {
 167		int gpio_cs;
 168		unsigned int frm;
 169	};
 170	int gpio_cs_inverted;
 171	int (*write)(struct driver_data *drv_data);
 172	int (*read)(struct driver_data *drv_data);
 173	void (*cs_control)(u32 command);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 174};
 175
 176static void pump_messages(struct work_struct *work);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 177
 178static void cs_assert(struct driver_data *drv_data)
 179{
 180	struct chip_data *chip = drv_data->cur_chip;
 
 181
 182	if (drv_data->ssp_type == CE4100_SSP) {
 183		write_SSSR(drv_data->cur_chip->frm, drv_data->ioaddr);
 184		return;
 185	}
 186
 187	if (chip->cs_control) {
 188		chip->cs_control(PXA2XX_CS_ASSERT);
 189		return;
 190	}
 191
 192	if (gpio_is_valid(chip->gpio_cs))
 193		gpio_set_value(chip->gpio_cs, chip->gpio_cs_inverted);
 
 
 
 
 
 194}
 195
 196static void cs_deassert(struct driver_data *drv_data)
 197{
 198	struct chip_data *chip = drv_data->cur_chip;
 
 
 199
 200	if (drv_data->ssp_type == CE4100_SSP)
 201		return;
 202
 
 
 
 
 
 
 203	if (chip->cs_control) {
 204		chip->cs_control(PXA2XX_CS_DEASSERT);
 205		return;
 206	}
 207
 208	if (gpio_is_valid(chip->gpio_cs))
 209		gpio_set_value(chip->gpio_cs, !chip->gpio_cs_inverted);
 210}
 211
 212static void write_SSSR_CS(struct driver_data *drv_data, u32 val)
 213{
 214	void __iomem *reg = drv_data->ioaddr;
 215
 216	if (drv_data->ssp_type == CE4100_SSP)
 217		val |= read_SSSR(reg) & SSSR_ALT_FRM_MASK;
 218
 219	write_SSSR(val, reg);
 220}
 221
 222static int pxa25x_ssp_comp(struct driver_data *drv_data)
 223{
 224	if (drv_data->ssp_type == PXA25x_SSP)
 225		return 1;
 226	if (drv_data->ssp_type == CE4100_SSP)
 227		return 1;
 228	return 0;
 229}
 230
 231static int flush(struct driver_data *drv_data)
 232{
 233	unsigned long limit = loops_per_jiffy << 1;
 234
 235	void __iomem *reg = drv_data->ioaddr;
 236
 237	do {
 238		while (read_SSSR(reg) & SSSR_RNE) {
 239			read_SSDR(reg);
 240		}
 241	} while ((read_SSSR(reg) & SSSR_BSY) && --limit);
 242	write_SSSR_CS(drv_data, SSSR_ROR);
 243
 244	return limit;
 245}
 246
 247static int null_writer(struct driver_data *drv_data)
 248{
 249	void __iomem *reg = drv_data->ioaddr;
 250	u8 n_bytes = drv_data->n_bytes;
 251
 252	if (((read_SSSR(reg) & SSSR_TFL_MASK) == SSSR_TFL_MASK)
 253		|| (drv_data->tx == drv_data->tx_end))
 254		return 0;
 255
 256	write_SSDR(0, reg);
 257	drv_data->tx += n_bytes;
 258
 259	return 1;
 260}
 261
 262static int null_reader(struct driver_data *drv_data)
 263{
 264	void __iomem *reg = drv_data->ioaddr;
 265	u8 n_bytes = drv_data->n_bytes;
 266
 267	while ((read_SSSR(reg) & SSSR_RNE)
 268		&& (drv_data->rx < drv_data->rx_end)) {
 269		read_SSDR(reg);
 270		drv_data->rx += n_bytes;
 271	}
 272
 273	return drv_data->rx == drv_data->rx_end;
 274}
 275
 276static int u8_writer(struct driver_data *drv_data)
 277{
 278	void __iomem *reg = drv_data->ioaddr;
 279
 280	if (((read_SSSR(reg) & SSSR_TFL_MASK) == SSSR_TFL_MASK)
 281		|| (drv_data->tx == drv_data->tx_end))
 282		return 0;
 283
 284	write_SSDR(*(u8 *)(drv_data->tx), reg);
 285	++drv_data->tx;
 286
 287	return 1;
 288}
 289
 290static int u8_reader(struct driver_data *drv_data)
 291{
 292	void __iomem *reg = drv_data->ioaddr;
 293
 294	while ((read_SSSR(reg) & SSSR_RNE)
 295		&& (drv_data->rx < drv_data->rx_end)) {
 296		*(u8 *)(drv_data->rx) = read_SSDR(reg);
 297		++drv_data->rx;
 298	}
 299
 300	return drv_data->rx == drv_data->rx_end;
 301}
 302
 303static int u16_writer(struct driver_data *drv_data)
 304{
 305	void __iomem *reg = drv_data->ioaddr;
 306
 307	if (((read_SSSR(reg) & SSSR_TFL_MASK) == SSSR_TFL_MASK)
 308		|| (drv_data->tx == drv_data->tx_end))
 309		return 0;
 310
 311	write_SSDR(*(u16 *)(drv_data->tx), reg);
 312	drv_data->tx += 2;
 313
 314	return 1;
 315}
 316
 317static int u16_reader(struct driver_data *drv_data)
 318{
 319	void __iomem *reg = drv_data->ioaddr;
 320
 321	while ((read_SSSR(reg) & SSSR_RNE)
 322		&& (drv_data->rx < drv_data->rx_end)) {
 323		*(u16 *)(drv_data->rx) = read_SSDR(reg);
 324		drv_data->rx += 2;
 325	}
 326
 327	return drv_data->rx == drv_data->rx_end;
 328}
 329
 330static int u32_writer(struct driver_data *drv_data)
 331{
 332	void __iomem *reg = drv_data->ioaddr;
 333
 334	if (((read_SSSR(reg) & SSSR_TFL_MASK) == SSSR_TFL_MASK)
 335		|| (drv_data->tx == drv_data->tx_end))
 336		return 0;
 337
 338	write_SSDR(*(u32 *)(drv_data->tx), reg);
 339	drv_data->tx += 4;
 340
 341	return 1;
 342}
 343
 344static int u32_reader(struct driver_data *drv_data)
 345{
 346	void __iomem *reg = drv_data->ioaddr;
 347
 348	while ((read_SSSR(reg) & SSSR_RNE)
 349		&& (drv_data->rx < drv_data->rx_end)) {
 350		*(u32 *)(drv_data->rx) = read_SSDR(reg);
 351		drv_data->rx += 4;
 352	}
 353
 354	return drv_data->rx == drv_data->rx_end;
 355}
 356
 357static void *next_transfer(struct driver_data *drv_data)
 358{
 359	struct spi_message *msg = drv_data->cur_msg;
 360	struct spi_transfer *trans = drv_data->cur_transfer;
 361
 362	/* Move to next transfer */
 363	if (trans->transfer_list.next != &msg->transfers) {
 364		drv_data->cur_transfer =
 365			list_entry(trans->transfer_list.next,
 366					struct spi_transfer,
 367					transfer_list);
 368		return RUNNING_STATE;
 369	} else
 370		return DONE_STATE;
 371}
 372
 373static int map_dma_buffers(struct driver_data *drv_data)
 374{
 375	struct spi_message *msg = drv_data->cur_msg;
 376	struct device *dev = &msg->spi->dev;
 377
 378	if (!drv_data->cur_chip->enable_dma)
 379		return 0;
 380
 381	if (msg->is_dma_mapped)
 382		return  drv_data->rx_dma && drv_data->tx_dma;
 383
 384	if (!IS_DMA_ALIGNED(drv_data->rx) || !IS_DMA_ALIGNED(drv_data->tx))
 385		return 0;
 386
 387	/* Modify setup if rx buffer is null */
 388	if (drv_data->rx == NULL) {
 389		*drv_data->null_dma_buf = 0;
 390		drv_data->rx = drv_data->null_dma_buf;
 391		drv_data->rx_map_len = 4;
 392	} else
 393		drv_data->rx_map_len = drv_data->len;
 394
 395
 396	/* Modify setup if tx buffer is null */
 397	if (drv_data->tx == NULL) {
 398		*drv_data->null_dma_buf = 0;
 399		drv_data->tx = drv_data->null_dma_buf;
 400		drv_data->tx_map_len = 4;
 401	} else
 402		drv_data->tx_map_len = drv_data->len;
 403
 404	/* Stream map the tx buffer. Always do DMA_TO_DEVICE first
 405	 * so we flush the cache *before* invalidating it, in case
 406	 * the tx and rx buffers overlap.
 407	 */
 408	drv_data->tx_dma = dma_map_single(dev, drv_data->tx,
 409					drv_data->tx_map_len, DMA_TO_DEVICE);
 410	if (dma_mapping_error(dev, drv_data->tx_dma))
 411		return 0;
 412
 413	/* Stream map the rx buffer */
 414	drv_data->rx_dma = dma_map_single(dev, drv_data->rx,
 415					drv_data->rx_map_len, DMA_FROM_DEVICE);
 416	if (dma_mapping_error(dev, drv_data->rx_dma)) {
 417		dma_unmap_single(dev, drv_data->tx_dma,
 418					drv_data->tx_map_len, DMA_TO_DEVICE);
 419		return 0;
 420	}
 421
 422	return 1;
 423}
 424
 425static void unmap_dma_buffers(struct driver_data *drv_data)
 426{
 427	struct device *dev;
 428
 429	if (!drv_data->dma_mapped)
 430		return;
 431
 432	if (!drv_data->cur_msg->is_dma_mapped) {
 433		dev = &drv_data->cur_msg->spi->dev;
 434		dma_unmap_single(dev, drv_data->rx_dma,
 435					drv_data->rx_map_len, DMA_FROM_DEVICE);
 436		dma_unmap_single(dev, drv_data->tx_dma,
 437					drv_data->tx_map_len, DMA_TO_DEVICE);
 438	}
 439
 440	drv_data->dma_mapped = 0;
 441}
 442
 443/* caller already set message->status; dma and pio irqs are blocked */
 444static void giveback(struct driver_data *drv_data)
 445{
 446	struct spi_transfer* last_transfer;
 447	unsigned long flags;
 448	struct spi_message *msg;
 449
 450	spin_lock_irqsave(&drv_data->lock, flags);
 451	msg = drv_data->cur_msg;
 452	drv_data->cur_msg = NULL;
 453	drv_data->cur_transfer = NULL;
 454	queue_work(drv_data->workqueue, &drv_data->pump_messages);
 455	spin_unlock_irqrestore(&drv_data->lock, flags);
 456
 457	last_transfer = list_entry(msg->transfers.prev,
 458					struct spi_transfer,
 459					transfer_list);
 460
 461	/* Delay if requested before any change in chip select */
 462	if (last_transfer->delay_usecs)
 463		udelay(last_transfer->delay_usecs);
 464
 465	/* Drop chip select UNLESS cs_change is true or we are returning
 466	 * a message with an error, or next message is for another chip
 467	 */
 468	if (!last_transfer->cs_change)
 469		cs_deassert(drv_data);
 470	else {
 471		struct spi_message *next_msg;
 472
 473		/* Holding of cs was hinted, but we need to make sure
 474		 * the next message is for the same chip.  Don't waste
 475		 * time with the following tests unless this was hinted.
 476		 *
 477		 * We cannot postpone this until pump_messages, because
 478		 * after calling msg->complete (below) the driver that
 479		 * sent the current message could be unloaded, which
 480		 * could invalidate the cs_control() callback...
 481		 */
 482
 483		/* get a pointer to the next message, if any */
 484		spin_lock_irqsave(&drv_data->lock, flags);
 485		if (list_empty(&drv_data->queue))
 486			next_msg = NULL;
 487		else
 488			next_msg = list_entry(drv_data->queue.next,
 489					struct spi_message, queue);
 490		spin_unlock_irqrestore(&drv_data->lock, flags);
 491
 492		/* see if the next and current messages point
 493		 * to the same chip
 494		 */
 495		if (next_msg && next_msg->spi != msg->spi)
 496			next_msg = NULL;
 497		if (!next_msg || msg->state == ERROR_STATE)
 498			cs_deassert(drv_data);
 499	}
 500
 501	msg->state = NULL;
 502	if (msg->complete)
 503		msg->complete(msg->context);
 504
 505	drv_data->cur_chip = NULL;
 506}
 507
 508static int wait_ssp_rx_stall(void const __iomem *ioaddr)
 509{
 510	unsigned long limit = loops_per_jiffy << 1;
 511
 512	while ((read_SSSR(ioaddr) & SSSR_BSY) && --limit)
 513		cpu_relax();
 514
 515	return limit;
 516}
 517
 518static int wait_dma_channel_stop(int channel)
 519{
 520	unsigned long limit = loops_per_jiffy << 1;
 521
 522	while (!(DCSR(channel) & DCSR_STOPSTATE) && --limit)
 523		cpu_relax();
 524
 525	return limit;
 526}
 527
 528static void dma_error_stop(struct driver_data *drv_data, const char *msg)
 529{
 530	void __iomem *reg = drv_data->ioaddr;
 531
 532	/* Stop and reset */
 533	DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL;
 534	DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL;
 535	write_SSSR_CS(drv_data, drv_data->clear_sr);
 536	write_SSCR1(read_SSCR1(reg) & ~drv_data->dma_cr1, reg);
 537	if (!pxa25x_ssp_comp(drv_data))
 538		write_SSTO(0, reg);
 539	flush(drv_data);
 540	write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
 541
 542	unmap_dma_buffers(drv_data);
 543
 544	dev_err(&drv_data->pdev->dev, "%s\n", msg);
 545
 546	drv_data->cur_msg->state = ERROR_STATE;
 547	tasklet_schedule(&drv_data->pump_transfers);
 548}
 549
 550static void dma_transfer_complete(struct driver_data *drv_data)
 551{
 552	void __iomem *reg = drv_data->ioaddr;
 553	struct spi_message *msg = drv_data->cur_msg;
 554
 555	/* Clear and disable interrupts on SSP and DMA channels*/
 556	write_SSCR1(read_SSCR1(reg) & ~drv_data->dma_cr1, reg);
 557	write_SSSR_CS(drv_data, drv_data->clear_sr);
 558	DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL;
 559	DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL;
 560
 561	if (wait_dma_channel_stop(drv_data->rx_channel) == 0)
 562		dev_err(&drv_data->pdev->dev,
 563			"dma_handler: dma rx channel stop failed\n");
 564
 565	if (wait_ssp_rx_stall(drv_data->ioaddr) == 0)
 566		dev_err(&drv_data->pdev->dev,
 567			"dma_transfer: ssp rx stall failed\n");
 568
 569	unmap_dma_buffers(drv_data);
 570
 571	/* update the buffer pointer for the amount completed in dma */
 572	drv_data->rx += drv_data->len -
 573			(DCMD(drv_data->rx_channel) & DCMD_LENGTH);
 574
 575	/* read trailing data from fifo, it does not matter how many
 576	 * bytes are in the fifo just read until buffer is full
 577	 * or fifo is empty, which ever occurs first */
 578	drv_data->read(drv_data);
 579
 580	/* return count of what was actually read */
 581	msg->actual_length += drv_data->len -
 582				(drv_data->rx_end - drv_data->rx);
 583
 584	/* Transfer delays and chip select release are
 585	 * handled in pump_transfers or giveback
 586	 */
 587
 588	/* Move to next transfer */
 589	msg->state = next_transfer(drv_data);
 590
 591	/* Schedule transfer tasklet */
 592	tasklet_schedule(&drv_data->pump_transfers);
 593}
 594
 595static void dma_handler(int channel, void *data)
 596{
 597	struct driver_data *drv_data = data;
 598	u32 irq_status = DCSR(channel) & DMA_INT_MASK;
 599
 600	if (irq_status & DCSR_BUSERR) {
 601
 602		if (channel == drv_data->tx_channel)
 603			dma_error_stop(drv_data,
 604					"dma_handler: "
 605					"bad bus address on tx channel");
 606		else
 607			dma_error_stop(drv_data,
 608					"dma_handler: "
 609					"bad bus address on rx channel");
 610		return;
 611	}
 612
 613	/* PXA255x_SSP has no timeout interrupt, wait for tailing bytes */
 614	if ((channel == drv_data->tx_channel)
 615		&& (irq_status & DCSR_ENDINTR)
 616		&& (drv_data->ssp_type == PXA25x_SSP)) {
 617
 618		/* Wait for rx to stall */
 619		if (wait_ssp_rx_stall(drv_data->ioaddr) == 0)
 620			dev_err(&drv_data->pdev->dev,
 621				"dma_handler: ssp rx stall failed\n");
 622
 623		/* finish this transfer, start the next */
 624		dma_transfer_complete(drv_data);
 625	}
 626}
 627
 628static irqreturn_t dma_transfer(struct driver_data *drv_data)
 629{
 630	u32 irq_status;
 631	void __iomem *reg = drv_data->ioaddr;
 632
 633	irq_status = read_SSSR(reg) & drv_data->mask_sr;
 634	if (irq_status & SSSR_ROR) {
 635		dma_error_stop(drv_data, "dma_transfer: fifo overrun");
 636		return IRQ_HANDLED;
 637	}
 638
 639	/* Check for false positive timeout */
 640	if ((irq_status & SSSR_TINT)
 641		&& (DCSR(drv_data->tx_channel) & DCSR_RUN)) {
 642		write_SSSR(SSSR_TINT, reg);
 643		return IRQ_HANDLED;
 644	}
 645
 646	if (irq_status & SSSR_TINT || drv_data->rx == drv_data->rx_end) {
 647
 648		/* Clear and disable timeout interrupt, do the rest in
 649		 * dma_transfer_complete */
 650		if (!pxa25x_ssp_comp(drv_data))
 651			write_SSTO(0, reg);
 652
 653		/* finish this transfer, start the next */
 654		dma_transfer_complete(drv_data);
 655
 656		return IRQ_HANDLED;
 657	}
 658
 659	/* Opps problem detected */
 660	return IRQ_NONE;
 661}
 662
 663static void reset_sccr1(struct driver_data *drv_data)
 664{
 665	void __iomem *reg = drv_data->ioaddr;
 666	struct chip_data *chip = drv_data->cur_chip;
 667	u32 sccr1_reg;
 668
 669	sccr1_reg = read_SSCR1(reg) & ~drv_data->int_cr1;
 670	sccr1_reg &= ~SSCR1_RFT;
 
 
 
 
 
 
 
 
 
 
 671	sccr1_reg |= chip->threshold;
 672	write_SSCR1(sccr1_reg, reg);
 673}
 674
 675static void int_error_stop(struct driver_data *drv_data, const char* msg)
 676{
 677	void __iomem *reg = drv_data->ioaddr;
 678
 679	/* Stop and reset SSP */
 680	write_SSSR_CS(drv_data, drv_data->clear_sr);
 681	reset_sccr1(drv_data);
 682	if (!pxa25x_ssp_comp(drv_data))
 683		write_SSTO(0, reg);
 684	flush(drv_data);
 685	write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
 
 686
 687	dev_err(&drv_data->pdev->dev, "%s\n", msg);
 688
 689	drv_data->cur_msg->state = ERROR_STATE;
 690	tasklet_schedule(&drv_data->pump_transfers);
 691}
 692
 693static void int_transfer_complete(struct driver_data *drv_data)
 694{
 695	void __iomem *reg = drv_data->ioaddr;
 696
 697	/* Stop SSP */
 698	write_SSSR_CS(drv_data, drv_data->clear_sr);
 699	reset_sccr1(drv_data);
 700	if (!pxa25x_ssp_comp(drv_data))
 701		write_SSTO(0, reg);
 702
 703	/* Update total byte transferred return count actual bytes read */
 704	drv_data->cur_msg->actual_length += drv_data->len -
 705				(drv_data->rx_end - drv_data->rx);
 706
 707	/* Transfer delays and chip select release are
 708	 * handled in pump_transfers or giveback
 709	 */
 710
 711	/* Move to next transfer */
 712	drv_data->cur_msg->state = next_transfer(drv_data);
 713
 714	/* Schedule transfer tasklet */
 715	tasklet_schedule(&drv_data->pump_transfers);
 716}
 717
 718static irqreturn_t interrupt_transfer(struct driver_data *drv_data)
 719{
 720	void __iomem *reg = drv_data->ioaddr;
 721
 722	u32 irq_mask = (read_SSCR1(reg) & SSCR1_TIE) ?
 723			drv_data->mask_sr : drv_data->mask_sr & ~SSSR_TFS;
 724
 725	u32 irq_status = read_SSSR(reg) & irq_mask;
 726
 727	if (irq_status & SSSR_ROR) {
 728		int_error_stop(drv_data, "interrupt_transfer: fifo overrun");
 729		return IRQ_HANDLED;
 730	}
 731
 732	if (irq_status & SSSR_TINT) {
 733		write_SSSR(SSSR_TINT, reg);
 734		if (drv_data->read(drv_data)) {
 735			int_transfer_complete(drv_data);
 736			return IRQ_HANDLED;
 737		}
 738	}
 739
 740	/* Drain rx fifo, Fill tx fifo and prevent overruns */
 741	do {
 742		if (drv_data->read(drv_data)) {
 743			int_transfer_complete(drv_data);
 744			return IRQ_HANDLED;
 745		}
 746	} while (drv_data->write(drv_data));
 747
 748	if (drv_data->read(drv_data)) {
 749		int_transfer_complete(drv_data);
 750		return IRQ_HANDLED;
 751	}
 752
 753	if (drv_data->tx == drv_data->tx_end) {
 754		u32 bytes_left;
 755		u32 sccr1_reg;
 756
 757		sccr1_reg = read_SSCR1(reg);
 758		sccr1_reg &= ~SSCR1_TIE;
 759
 760		/*
 761		 * PXA25x_SSP has no timeout, set up rx threshould for the
 762		 * remaining RX bytes.
 763		 */
 764		if (pxa25x_ssp_comp(drv_data)) {
 
 765
 766			sccr1_reg &= ~SSCR1_RFT;
 767
 768			bytes_left = drv_data->rx_end - drv_data->rx;
 769			switch (drv_data->n_bytes) {
 770			case 4:
 771				bytes_left >>= 1;
 772			case 2:
 773				bytes_left >>= 1;
 774			}
 775
 776			if (bytes_left > RX_THRESH_DFLT)
 777				bytes_left = RX_THRESH_DFLT;
 
 778
 779			sccr1_reg |= SSCR1_RxTresh(bytes_left);
 780		}
 781		write_SSCR1(sccr1_reg, reg);
 782	}
 783
 784	/* We did something */
 785	return IRQ_HANDLED;
 786}
 787
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 788static irqreturn_t ssp_int(int irq, void *dev_id)
 789{
 790	struct driver_data *drv_data = dev_id;
 791	void __iomem *reg = drv_data->ioaddr;
 792	u32 sccr1_reg = read_SSCR1(reg);
 793	u32 mask = drv_data->mask_sr;
 794	u32 status;
 795
 796	status = read_SSSR(reg);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 797
 798	/* Ignore possible writes if we don't need to write */
 799	if (!(sccr1_reg & SSCR1_TIE))
 800		mask &= ~SSSR_TFS;
 801
 
 
 
 
 802	if (!(status & mask))
 803		return IRQ_NONE;
 804
 805	if (!drv_data->cur_msg) {
 806
 807		write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
 808		write_SSCR1(read_SSCR1(reg) & ~drv_data->int_cr1, reg);
 809		if (!pxa25x_ssp_comp(drv_data))
 810			write_SSTO(0, reg);
 811		write_SSSR_CS(drv_data, drv_data->clear_sr);
 812
 813		dev_err(&drv_data->pdev->dev, "bad message state "
 814			"in interrupt handler\n");
 815
 
 
 816		/* Never fail */
 817		return IRQ_HANDLED;
 818	}
 819
 820	return drv_data->transfer_handler(drv_data);
 821}
 822
 823static int set_dma_burst_and_threshold(struct chip_data *chip,
 824				struct spi_device *spi,
 825				u8 bits_per_word, u32 *burst_code,
 826				u32 *threshold)
 827{
 828	struct pxa2xx_spi_chip *chip_info =
 829			(struct pxa2xx_spi_chip *)spi->controller_data;
 830	int bytes_per_word;
 831	int burst_bytes;
 832	int thresh_words;
 833	int req_burst_size;
 834	int retval = 0;
 835
 836	/* Set the threshold (in registers) to equal the same amount of data
 837	 * as represented by burst size (in bytes).  The computation below
 838	 * is (burst_size rounded up to nearest 8 byte, word or long word)
 839	 * divided by (bytes/register); the tx threshold is the inverse of
 840	 * the rx, so that there will always be enough data in the rx fifo
 841	 * to satisfy a burst, and there will always be enough space in the
 842	 * tx fifo to accept a burst (a tx burst will overwrite the fifo if
 843	 * there is not enough space), there must always remain enough empty
 844	 * space in the rx fifo for any data loaded to the tx fifo.
 845	 * Whenever burst_size (in bytes) equals bits/word, the fifo threshold
 846	 * will be 8, or half the fifo;
 847	 * The threshold can only be set to 2, 4 or 8, but not 16, because
 848	 * to burst 16 to the tx fifo, the fifo would have to be empty;
 849	 * however, the minimum fifo trigger level is 1, and the tx will
 850	 * request service when the fifo is at this level, with only 15 spaces.
 851	 */
 852
 853	/* find bytes/word */
 854	if (bits_per_word <= 8)
 855		bytes_per_word = 1;
 856	else if (bits_per_word <= 16)
 857		bytes_per_word = 2;
 858	else
 859		bytes_per_word = 4;
 860
 861	/* use struct pxa2xx_spi_chip->dma_burst_size if available */
 862	if (chip_info)
 863		req_burst_size = chip_info->dma_burst_size;
 864	else {
 865		switch (chip->dma_burst_size) {
 866		default:
 867			/* if the default burst size is not set,
 868			 * do it now */
 869			chip->dma_burst_size = DCMD_BURST8;
 870		case DCMD_BURST8:
 871			req_burst_size = 8;
 872			break;
 873		case DCMD_BURST16:
 874			req_burst_size = 16;
 875			break;
 876		case DCMD_BURST32:
 877			req_burst_size = 32;
 878			break;
 
 
 
 
 879		}
 
 
 
 880	}
 881	if (req_burst_size <= 8) {
 882		*burst_code = DCMD_BURST8;
 883		burst_bytes = 8;
 884	} else if (req_burst_size <= 16) {
 885		if (bytes_per_word == 1) {
 886			/* don't burst more than 1/2 the fifo */
 887			*burst_code = DCMD_BURST8;
 888			burst_bytes = 8;
 889			retval = 1;
 890		} else {
 891			*burst_code = DCMD_BURST16;
 892			burst_bytes = 16;
 893		}
 
 
 
 
 
 
 
 
 
 
 894	} else {
 895		if (bytes_per_word == 1) {
 896			/* don't burst more than 1/2 the fifo */
 897			*burst_code = DCMD_BURST8;
 898			burst_bytes = 8;
 899			retval = 1;
 900		} else if (bytes_per_word == 2) {
 901			/* don't burst more than 1/2 the fifo */
 902			*burst_code = DCMD_BURST16;
 903			burst_bytes = 16;
 904			retval = 1;
 905		} else {
 906			*burst_code = DCMD_BURST32;
 907			burst_bytes = 32;
 
 
 
 
 
 
 
 
 
 
 
 
 908		}
 909	}
 910
 911	thresh_words = burst_bytes / bytes_per_word;
 912
 913	/* thresh_words will be between 2 and 8 */
 914	*threshold = (SSCR1_RxTresh(thresh_words) & SSCR1_RFT)
 915			| (SSCR1_TxTresh(16-thresh_words) & SSCR1_TFT);
 916
 917	return retval;
 918}
 919
 920static unsigned int ssp_get_clk_div(struct ssp_device *ssp, int rate)
 921{
 922	unsigned long ssp_clk = clk_get_rate(ssp->clk);
 
 
 
 923
 924	if (ssp->type == PXA25x_SSP || ssp->type == CE4100_SSP)
 925		return ((ssp_clk / (2 * rate) - 1) & 0xff) << 8;
 926	else
 927		return ((ssp_clk / rate - 1) & 0xfff) << 8;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 928}
 929
 930static void pump_transfers(unsigned long data)
 931{
 932	struct driver_data *drv_data = (struct driver_data *)data;
 933	struct spi_message *message = NULL;
 934	struct spi_transfer *transfer = NULL;
 935	struct spi_transfer *previous = NULL;
 936	struct chip_data *chip = NULL;
 937	struct ssp_device *ssp = drv_data->ssp;
 938	void __iomem *reg = drv_data->ioaddr;
 939	u32 clk_div = 0;
 940	u8 bits = 0;
 941	u32 speed = 0;
 
 
 942	u32 cr0;
 943	u32 cr1;
 944	u32 dma_thresh = drv_data->cur_chip->dma_threshold;
 945	u32 dma_burst = drv_data->cur_chip->dma_burst_size;
 946
 947	/* Get current state information */
 948	message = drv_data->cur_msg;
 949	transfer = drv_data->cur_transfer;
 950	chip = drv_data->cur_chip;
 951
 952	/* Handle for abort */
 953	if (message->state == ERROR_STATE) {
 954		message->status = -EIO;
 955		giveback(drv_data);
 956		return;
 957	}
 958
 959	/* Handle end of message */
 960	if (message->state == DONE_STATE) {
 961		message->status = 0;
 962		giveback(drv_data);
 963		return;
 964	}
 965
 966	/* Delay if requested at end of transfer before CS change */
 967	if (message->state == RUNNING_STATE) {
 968		previous = list_entry(transfer->transfer_list.prev,
 969					struct spi_transfer,
 970					transfer_list);
 971		if (previous->delay_usecs)
 972			udelay(previous->delay_usecs);
 973
 974		/* Drop chip select only if cs_change is requested */
 975		if (previous->cs_change)
 976			cs_deassert(drv_data);
 977	}
 978
 979	/* Check for transfers that need multiple DMA segments */
 980	if (transfer->len > MAX_DMA_LEN && chip->enable_dma) {
 981
 982		/* reject already-mapped transfers; PIO won't always work */
 983		if (message->is_dma_mapped
 984				|| transfer->rx_dma || transfer->tx_dma) {
 985			dev_err(&drv_data->pdev->dev,
 986				"pump_transfers: mapped transfer length "
 987				"of %u is greater than %d\n",
 988				transfer->len, MAX_DMA_LEN);
 989			message->status = -EINVAL;
 990			giveback(drv_data);
 991			return;
 992		}
 993
 994		/* warn ... we force this to PIO mode */
 995		if (printk_ratelimit())
 996			dev_warn(&message->spi->dev, "pump_transfers: "
 997				"DMA disabled for transfer length %ld "
 998				"greater than %d\n",
 999				(long)drv_data->len, MAX_DMA_LEN);
1000	}
1001
1002	/* Setup the transfer state based on the type of transfer */
1003	if (flush(drv_data) == 0) {
1004		dev_err(&drv_data->pdev->dev, "pump_transfers: flush failed\n");
1005		message->status = -EIO;
1006		giveback(drv_data);
1007		return;
1008	}
1009	drv_data->n_bytes = chip->n_bytes;
1010	drv_data->dma_width = chip->dma_width;
1011	drv_data->tx = (void *)transfer->tx_buf;
1012	drv_data->tx_end = drv_data->tx + transfer->len;
1013	drv_data->rx = transfer->rx_buf;
1014	drv_data->rx_end = drv_data->rx + transfer->len;
1015	drv_data->rx_dma = transfer->rx_dma;
1016	drv_data->tx_dma = transfer->tx_dma;
1017	drv_data->len = transfer->len & DCMD_LENGTH;
1018	drv_data->write = drv_data->tx ? chip->write : null_writer;
1019	drv_data->read = drv_data->rx ? chip->read : null_reader;
1020
1021	/* Change speed and bit per word on a per transfer */
1022	cr0 = chip->cr0;
1023	if (transfer->speed_hz || transfer->bits_per_word) {
1024
1025		bits = chip->bits_per_word;
1026		speed = chip->speed_hz;
1027
1028		if (transfer->speed_hz)
1029			speed = transfer->speed_hz;
1030
1031		if (transfer->bits_per_word)
1032			bits = transfer->bits_per_word;
1033
1034		clk_div = ssp_get_clk_div(ssp, speed);
1035
1036		if (bits <= 8) {
1037			drv_data->n_bytes = 1;
1038			drv_data->dma_width = DCMD_WIDTH1;
1039			drv_data->read = drv_data->read != null_reader ?
1040						u8_reader : null_reader;
1041			drv_data->write = drv_data->write != null_writer ?
1042						u8_writer : null_writer;
1043		} else if (bits <= 16) {
1044			drv_data->n_bytes = 2;
1045			drv_data->dma_width = DCMD_WIDTH2;
1046			drv_data->read = drv_data->read != null_reader ?
1047						u16_reader : null_reader;
1048			drv_data->write = drv_data->write != null_writer ?
1049						u16_writer : null_writer;
1050		} else if (bits <= 32) {
1051			drv_data->n_bytes = 4;
1052			drv_data->dma_width = DCMD_WIDTH4;
1053			drv_data->read = drv_data->read != null_reader ?
1054						u32_reader : null_reader;
1055			drv_data->write = drv_data->write != null_writer ?
1056						u32_writer : null_writer;
1057		}
1058		/* if bits/word is changed in dma mode, then must check the
1059		 * thresholds and burst also */
1060		if (chip->enable_dma) {
1061			if (set_dma_burst_and_threshold(chip, message->spi,
1062							bits, &dma_burst,
1063							&dma_thresh))
1064				if (printk_ratelimit())
1065					dev_warn(&message->spi->dev,
1066						"pump_transfers: "
1067						"DMA burst size reduced to "
1068						"match bits_per_word\n");
1069		}
1070
1071		cr0 = clk_div
1072			| SSCR0_Motorola
1073			| SSCR0_DataSize(bits > 16 ? bits - 16 : bits)
1074			| SSCR0_SSE
1075			| (bits > 16 ? SSCR0_EDSS : 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1076	}
1077
1078	message->state = RUNNING_STATE;
1079
1080	/* Try to map dma buffer and do a dma transfer if successful, but
1081	 * only if the length is non-zero and less than MAX_DMA_LEN.
1082	 *
1083	 * Zero-length non-descriptor DMA is illegal on PXA2xx; force use
1084	 * of PIO instead.  Care is needed above because the transfer may
1085	 * have have been passed with buffers that are already dma mapped.
1086	 * A zero-length transfer in PIO mode will not try to write/read
1087	 * to/from the buffers
1088	 *
1089	 * REVISIT large transfers are exactly where we most want to be
1090	 * using DMA.  If this happens much, split those transfers into
1091	 * multiple DMA segments rather than forcing PIO.
1092	 */
1093	drv_data->dma_mapped = 0;
1094	if (drv_data->len > 0 && drv_data->len <= MAX_DMA_LEN)
1095		drv_data->dma_mapped = map_dma_buffers(drv_data);
1096	if (drv_data->dma_mapped) {
1097
1098		/* Ensure we have the correct interrupt handler */
1099		drv_data->transfer_handler = dma_transfer;
1100
1101		/* Setup rx DMA Channel */
1102		DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL;
1103		DSADR(drv_data->rx_channel) = drv_data->ssdr_physical;
1104		DTADR(drv_data->rx_channel) = drv_data->rx_dma;
1105		if (drv_data->rx == drv_data->null_dma_buf)
1106			/* No target address increment */
1107			DCMD(drv_data->rx_channel) = DCMD_FLOWSRC
1108							| drv_data->dma_width
1109							| dma_burst
1110							| drv_data->len;
1111		else
1112			DCMD(drv_data->rx_channel) = DCMD_INCTRGADDR
1113							| DCMD_FLOWSRC
1114							| drv_data->dma_width
1115							| dma_burst
1116							| drv_data->len;
1117
1118		/* Setup tx DMA Channel */
1119		DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL;
1120		DSADR(drv_data->tx_channel) = drv_data->tx_dma;
1121		DTADR(drv_data->tx_channel) = drv_data->ssdr_physical;
1122		if (drv_data->tx == drv_data->null_dma_buf)
1123			/* No source address increment */
1124			DCMD(drv_data->tx_channel) = DCMD_FLOWTRG
1125							| drv_data->dma_width
1126							| dma_burst
1127							| drv_data->len;
1128		else
1129			DCMD(drv_data->tx_channel) = DCMD_INCSRCADDR
1130							| DCMD_FLOWTRG
1131							| drv_data->dma_width
1132							| dma_burst
1133							| drv_data->len;
1134
1135		/* Enable dma end irqs on SSP to detect end of transfer */
1136		if (drv_data->ssp_type == PXA25x_SSP)
1137			DCMD(drv_data->tx_channel) |= DCMD_ENDIRQEN;
1138
1139		/* Clear status and start DMA engine */
1140		cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1;
1141		write_SSSR(drv_data->clear_sr, reg);
1142		DCSR(drv_data->rx_channel) |= DCSR_RUN;
1143		DCSR(drv_data->tx_channel) |= DCSR_RUN;
1144	} else {
1145		/* Ensure we have the correct interrupt handler	*/
1146		drv_data->transfer_handler = interrupt_transfer;
1147
1148		/* Clear status  */
1149		cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1;
1150		write_SSSR_CS(drv_data, drv_data->clear_sr);
1151	}
1152
1153	/* see if we need to reload the config registers */
1154	if ((read_SSCR0(reg) != cr0)
1155		|| (read_SSCR1(reg) & SSCR1_CHANGE_MASK) !=
1156			(cr1 & SSCR1_CHANGE_MASK)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1157
 
 
 
 
1158		/* stop the SSP, and update the other bits */
1159		write_SSCR0(cr0 & ~SSCR0_SSE, reg);
1160		if (!pxa25x_ssp_comp(drv_data))
1161			write_SSTO(chip->timeout, reg);
1162		/* first set CR1 without interrupt and service enables */
1163		write_SSCR1(cr1 & SSCR1_CHANGE_MASK, reg);
1164		/* restart the SSP */
1165		write_SSCR0(cr0, reg);
1166
1167	} else {
1168		if (!pxa25x_ssp_comp(drv_data))
1169			write_SSTO(chip->timeout, reg);
1170	}
1171
1172	cs_assert(drv_data);
1173
1174	/* after chip select, release the data by enabling service
1175	 * requests and interrupts, without changing any mode bits */
1176	write_SSCR1(cr1, reg);
1177}
1178
1179static void pump_messages(struct work_struct *work)
 
1180{
1181	struct driver_data *drv_data =
1182		container_of(work, struct driver_data, pump_messages);
1183	unsigned long flags;
1184
1185	/* Lock queue and check for queue work */
1186	spin_lock_irqsave(&drv_data->lock, flags);
1187	if (list_empty(&drv_data->queue) || drv_data->run == QUEUE_STOPPED) {
1188		drv_data->busy = 0;
1189		spin_unlock_irqrestore(&drv_data->lock, flags);
1190		return;
1191	}
1192
1193	/* Make sure we are not already running a message */
1194	if (drv_data->cur_msg) {
1195		spin_unlock_irqrestore(&drv_data->lock, flags);
1196		return;
1197	}
1198
1199	/* Extract head of queue */
1200	drv_data->cur_msg = list_entry(drv_data->queue.next,
1201					struct spi_message, queue);
1202	list_del_init(&drv_data->cur_msg->queue);
1203
1204	/* Initial message state*/
1205	drv_data->cur_msg->state = START_STATE;
1206	drv_data->cur_transfer = list_entry(drv_data->cur_msg->transfers.next,
1207						struct spi_transfer,
1208						transfer_list);
1209
1210	/* prepare to setup the SSP, in pump_transfers, using the per
1211	 * chip configuration */
1212	drv_data->cur_chip = spi_get_ctldata(drv_data->cur_msg->spi);
1213
1214	/* Mark as busy and launch transfers */
1215	tasklet_schedule(&drv_data->pump_transfers);
1216
1217	drv_data->busy = 1;
1218	spin_unlock_irqrestore(&drv_data->lock, flags);
1219}
1220
1221static int transfer(struct spi_device *spi, struct spi_message *msg)
1222{
1223	struct driver_data *drv_data = spi_master_get_devdata(spi->master);
1224	unsigned long flags;
1225
1226	spin_lock_irqsave(&drv_data->lock, flags);
1227
1228	if (drv_data->run == QUEUE_STOPPED) {
1229		spin_unlock_irqrestore(&drv_data->lock, flags);
1230		return -ESHUTDOWN;
1231	}
1232
1233	msg->actual_length = 0;
1234	msg->status = -EINPROGRESS;
1235	msg->state = START_STATE;
1236
1237	list_add_tail(&msg->queue, &drv_data->queue);
1238
1239	if (drv_data->run == QUEUE_RUNNING && !drv_data->busy)
1240		queue_work(drv_data->workqueue, &drv_data->pump_messages);
1241
1242	spin_unlock_irqrestore(&drv_data->lock, flags);
1243
1244	return 0;
1245}
1246
1247static int setup_cs(struct spi_device *spi, struct chip_data *chip,
1248		    struct pxa2xx_spi_chip *chip_info)
1249{
 
 
 
1250	int err = 0;
1251
1252	if (chip == NULL || chip_info == NULL)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1253		return 0;
1254
1255	/* NOTE: setup() can be called multiple times, possibly with
1256	 * different chip_info, release previously requested GPIO
1257	 */
1258	if (gpio_is_valid(chip->gpio_cs))
1259		gpio_free(chip->gpio_cs);
 
 
1260
1261	/* If (*cs_control) is provided, ignore GPIO chip select */
1262	if (chip_info->cs_control) {
1263		chip->cs_control = chip_info->cs_control;
1264		return 0;
1265	}
1266
1267	if (gpio_is_valid(chip_info->gpio_cs)) {
1268		err = gpio_request(chip_info->gpio_cs, "SPI_CS");
1269		if (err) {
1270			dev_err(&spi->dev, "failed to request chip select "
1271					"GPIO%d\n", chip_info->gpio_cs);
1272			return err;
1273		}
1274
1275		chip->gpio_cs = chip_info->gpio_cs;
 
1276		chip->gpio_cs_inverted = spi->mode & SPI_CS_HIGH;
1277
1278		err = gpio_direction_output(chip->gpio_cs,
1279					!chip->gpio_cs_inverted);
1280	}
1281
1282	return err;
1283}
1284
1285static int setup(struct spi_device *spi)
1286{
1287	struct pxa2xx_spi_chip *chip_info = NULL;
1288	struct chip_data *chip;
1289	struct driver_data *drv_data = spi_master_get_devdata(spi->master);
1290	struct ssp_device *ssp = drv_data->ssp;
1291	unsigned int clk_div;
1292	uint tx_thres = TX_THRESH_DFLT;
1293	uint rx_thres = RX_THRESH_DFLT;
1294
1295	if (!pxa25x_ssp_comp(drv_data)
1296		&& (spi->bits_per_word < 4 || spi->bits_per_word > 32)) {
1297		dev_err(&spi->dev, "failed setup: ssp_type=%d, bits/wrd=%d "
1298				"b/w not 4-32 for type non-PXA25x_SSP\n",
1299				drv_data->ssp_type, spi->bits_per_word);
1300		return -EINVAL;
1301	} else if (pxa25x_ssp_comp(drv_data)
1302			&& (spi->bits_per_word < 4
1303				|| spi->bits_per_word > 16)) {
1304		dev_err(&spi->dev, "failed setup: ssp_type=%d, bits/wrd=%d "
1305				"b/w not 4-16 for type PXA25x_SSP\n",
1306				drv_data->ssp_type, spi->bits_per_word);
1307		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1308	}
1309
1310	/* Only alloc on first setup */
1311	chip = spi_get_ctldata(spi);
1312	if (!chip) {
1313		chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1314		if (!chip) {
1315			dev_err(&spi->dev,
1316				"failed setup: can't allocate chip data\n");
1317			return -ENOMEM;
1318		}
1319
1320		if (drv_data->ssp_type == CE4100_SSP) {
1321			if (spi->chip_select > 4) {
1322				dev_err(&spi->dev, "failed setup: "
1323				"cs number must not be > 4.\n");
1324				kfree(chip);
1325				return -EINVAL;
1326			}
1327
1328			chip->frm = spi->chip_select;
1329		} else
1330			chip->gpio_cs = -1;
1331		chip->enable_dma = 0;
1332		chip->timeout = TIMOUT_DFLT;
1333		chip->dma_burst_size = drv_data->master_info->enable_dma ?
1334					DCMD_BURST8 : 0;
1335	}
1336
1337	/* protocol drivers may change the chip settings, so...
1338	 * if chip_info exists, use it */
1339	chip_info = spi->controller_data;
1340
1341	/* chip_info isn't always needed */
1342	chip->cr1 = 0;
1343	if (chip_info) {
1344		if (chip_info->timeout)
1345			chip->timeout = chip_info->timeout;
1346		if (chip_info->tx_threshold)
1347			tx_thres = chip_info->tx_threshold;
 
 
1348		if (chip_info->rx_threshold)
1349			rx_thres = chip_info->rx_threshold;
1350		chip->enable_dma = drv_data->master_info->enable_dma;
1351		chip->dma_threshold = 0;
1352		if (chip_info->enable_loopback)
1353			chip->cr1 = SSCR1_LBM;
1354	}
1355
1356	chip->threshold = (SSCR1_RxTresh(rx_thres) & SSCR1_RFT) |
1357			(SSCR1_TxTresh(tx_thres) & SSCR1_TFT);
 
1358
1359	/* set dma burst and threshold outside of chip_info path so that if
1360	 * chip_info goes away after setting chip->enable_dma, the
1361	 * burst and threshold can still respond to changes in bits_per_word */
1362	if (chip->enable_dma) {
1363		/* set up legal burst and threshold for dma */
1364		if (set_dma_burst_and_threshold(chip, spi, spi->bits_per_word,
 
1365						&chip->dma_burst_size,
1366						&chip->dma_threshold)) {
1367			dev_warn(&spi->dev, "in setup: DMA burst size reduced "
1368					"to match bits_per_word\n");
1369		}
1370	}
1371
1372	clk_div = ssp_get_clk_div(ssp, spi->max_speed_hz);
1373	chip->speed_hz = spi->max_speed_hz;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1374
1375	chip->cr0 = clk_div
1376			| SSCR0_Motorola
1377			| SSCR0_DataSize(spi->bits_per_word > 16 ?
1378				spi->bits_per_word - 16 : spi->bits_per_word)
1379			| SSCR0_SSE
1380			| (spi->bits_per_word > 16 ? SSCR0_EDSS : 0);
1381	chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH);
1382	chip->cr1 |= (((spi->mode & SPI_CPHA) != 0) ? SSCR1_SPH : 0)
1383			| (((spi->mode & SPI_CPOL) != 0) ? SSCR1_SPO : 0);
1384
1385	/* NOTE:  PXA25x_SSP _could_ use external clocking ... */
1386	if (!pxa25x_ssp_comp(drv_data))
1387		dev_dbg(&spi->dev, "%ld Hz actual, %s\n",
1388			clk_get_rate(ssp->clk)
1389				/ (1 + ((chip->cr0 & SSCR0_SCR(0xfff)) >> 8)),
1390			chip->enable_dma ? "DMA" : "PIO");
1391	else
1392		dev_dbg(&spi->dev, "%ld Hz actual, %s\n",
1393			clk_get_rate(ssp->clk) / 2
1394				/ (1 + ((chip->cr0 & SSCR0_SCR(0x0ff)) >> 8)),
1395			chip->enable_dma ? "DMA" : "PIO");
1396
1397	if (spi->bits_per_word <= 8) {
1398		chip->n_bytes = 1;
1399		chip->dma_width = DCMD_WIDTH1;
1400		chip->read = u8_reader;
1401		chip->write = u8_writer;
1402	} else if (spi->bits_per_word <= 16) {
1403		chip->n_bytes = 2;
1404		chip->dma_width = DCMD_WIDTH2;
1405		chip->read = u16_reader;
1406		chip->write = u16_writer;
1407	} else if (spi->bits_per_word <= 32) {
1408		chip->cr0 |= SSCR0_EDSS;
1409		chip->n_bytes = 4;
1410		chip->dma_width = DCMD_WIDTH4;
1411		chip->read = u32_reader;
1412		chip->write = u32_writer;
1413	} else {
1414		dev_err(&spi->dev, "invalid wordsize\n");
1415		return -ENODEV;
1416	}
1417	chip->bits_per_word = spi->bits_per_word;
1418
1419	spi_set_ctldata(spi, chip);
1420
1421	if (drv_data->ssp_type == CE4100_SSP)
1422		return 0;
1423
1424	return setup_cs(spi, chip, chip_info);
1425}
1426
1427static void cleanup(struct spi_device *spi)
1428{
1429	struct chip_data *chip = spi_get_ctldata(spi);
1430	struct driver_data *drv_data = spi_master_get_devdata(spi->master);
 
1431
1432	if (!chip)
1433		return;
1434
1435	if (drv_data->ssp_type != CE4100_SSP && gpio_is_valid(chip->gpio_cs))
1436		gpio_free(chip->gpio_cs);
 
1437
1438	kfree(chip);
1439}
1440
1441static int __devinit init_queue(struct driver_data *drv_data)
1442{
1443	INIT_LIST_HEAD(&drv_data->queue);
1444	spin_lock_init(&drv_data->lock);
1445
1446	drv_data->run = QUEUE_STOPPED;
1447	drv_data->busy = 0;
 
 
 
 
 
 
 
 
1448
1449	tasklet_init(&drv_data->pump_transfers,
1450			pump_transfers,	(unsigned long)drv_data);
1451
1452	INIT_WORK(&drv_data->pump_messages, pump_messages);
1453	drv_data->workqueue = create_singlethread_workqueue(
1454				dev_name(drv_data->master->dev.parent));
1455	if (drv_data->workqueue == NULL)
1456		return -EBUSY;
1457
1458	return 0;
 
 
 
1459}
1460
1461static int start_queue(struct driver_data *drv_data)
1462{
1463	unsigned long flags;
1464
1465	spin_lock_irqsave(&drv_data->lock, flags);
1466
1467	if (drv_data->run == QUEUE_RUNNING || drv_data->busy) {
1468		spin_unlock_irqrestore(&drv_data->lock, flags);
1469		return -EBUSY;
1470	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1471
1472	drv_data->run = QUEUE_RUNNING;
1473	drv_data->cur_msg = NULL;
1474	drv_data->cur_transfer = NULL;
1475	drv_data->cur_chip = NULL;
1476	spin_unlock_irqrestore(&drv_data->lock, flags);
1477
1478	queue_work(drv_data->workqueue, &drv_data->pump_messages);
 
1479
1480	return 0;
1481}
1482
1483static int stop_queue(struct driver_data *drv_data)
 
1484{
1485	unsigned long flags;
1486	unsigned limit = 500;
1487	int status = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1488
1489	spin_lock_irqsave(&drv_data->lock, flags);
1490
1491	/* This is a bit lame, but is optimized for the common execution path.
1492	 * A wait_queue on the drv_data->busy could be used, but then the common
1493	 * execution path (pump_messages) would be required to call wake_up or
1494	 * friends on every SPI message. Do this instead */
1495	drv_data->run = QUEUE_STOPPED;
1496	while ((!list_empty(&drv_data->queue) || drv_data->busy) && limit--) {
1497		spin_unlock_irqrestore(&drv_data->lock, flags);
1498		msleep(10);
1499		spin_lock_irqsave(&drv_data->lock, flags);
1500	}
1501
1502	if (!list_empty(&drv_data->queue) || drv_data->busy)
1503		status = -EBUSY;
 
 
 
1504
1505	spin_unlock_irqrestore(&drv_data->lock, flags);
 
1506
1507	return status;
1508}
1509
1510static int destroy_queue(struct driver_data *drv_data)
 
 
1511{
1512	int status;
 
 
1513
1514	status = stop_queue(drv_data);
1515	/* we are unloading the module or failing to load (only two calls
1516	 * to this routine), and neither call can handle a return value.
1517	 * However, destroy_workqueue calls flush_workqueue, and that will
1518	 * block until all work is done.  If the reason that stop_queue
1519	 * timed out is that the work will never finish, then it does no
1520	 * good to call destroy_workqueue, so return anyway. */
1521	if (status != 0)
1522		return status;
1523
1524	destroy_workqueue(drv_data->workqueue);
 
 
 
 
 
 
 
 
 
1525
1526	return 0;
 
 
 
 
 
1527}
1528
1529static int __devinit pxa2xx_spi_probe(struct platform_device *pdev)
1530{
1531	struct device *dev = &pdev->dev;
1532	struct pxa2xx_spi_master *platform_info;
1533	struct spi_master *master;
1534	struct driver_data *drv_data;
1535	struct ssp_device *ssp;
1536	int status;
1537
1538	platform_info = dev->platform_data;
 
 
 
 
 
 
 
 
 
1539
1540	ssp = pxa_ssp_request(pdev->id, pdev->name);
1541	if (ssp == NULL) {
1542		dev_err(&pdev->dev, "failed to request SSP%d\n", pdev->id);
 
 
 
1543		return -ENODEV;
1544	}
1545
1546	/* Allocate master with space for drv_data and null dma buffer */
1547	master = spi_alloc_master(dev, sizeof(struct driver_data) + 16);
1548	if (!master) {
1549		dev_err(&pdev->dev, "cannot alloc spi_master\n");
1550		pxa_ssp_free(ssp);
1551		return -ENOMEM;
1552	}
1553	drv_data = spi_master_get_devdata(master);
1554	drv_data->master = master;
1555	drv_data->master_info = platform_info;
1556	drv_data->pdev = pdev;
1557	drv_data->ssp = ssp;
1558
1559	master->dev.parent = &pdev->dev;
1560	master->dev.of_node = pdev->dev.of_node;
1561	/* the spi->mode bits understood by this driver: */
1562	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1563
1564	master->bus_num = pdev->id;
1565	master->num_chipselect = platform_info->num_chipselect;
1566	master->dma_alignment = DMA_ALIGNMENT;
1567	master->cleanup = cleanup;
1568	master->setup = setup;
1569	master->transfer = transfer;
 
 
 
 
1570
1571	drv_data->ssp_type = ssp->type;
1572	drv_data->null_dma_buf = (u32 *)ALIGN((u32)(drv_data +
1573						sizeof(struct driver_data)), 8);
1574
1575	drv_data->ioaddr = ssp->mmio_base;
1576	drv_data->ssdr_physical = ssp->phys_base + SSDR;
1577	if (pxa25x_ssp_comp(drv_data)) {
 
 
 
 
 
 
 
 
 
1578		drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE;
1579		drv_data->dma_cr1 = 0;
1580		drv_data->clear_sr = SSSR_ROR;
1581		drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR;
1582	} else {
 
1583		drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE;
1584		drv_data->dma_cr1 = SSCR1_TSRE | SSCR1_RSRE | SSCR1_TINTE;
1585		drv_data->clear_sr = SSSR_ROR | SSSR_TINT;
1586		drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS | SSSR_ROR;
1587	}
1588
1589	status = request_irq(ssp->irq, ssp_int, IRQF_SHARED, dev_name(dev),
1590			drv_data);
1591	if (status < 0) {
1592		dev_err(&pdev->dev, "cannot get IRQ %d\n", ssp->irq);
1593		goto out_error_master_alloc;
1594	}
1595
1596	/* Setup DMA if requested */
1597	drv_data->tx_channel = -1;
1598	drv_data->rx_channel = -1;
1599	if (platform_info->enable_dma) {
1600
1601		/* Get two DMA channels	(rx and tx) */
1602		drv_data->rx_channel = pxa_request_dma("pxa2xx_spi_ssp_rx",
1603							DMA_PRIO_HIGH,
1604							dma_handler,
1605							drv_data);
1606		if (drv_data->rx_channel < 0) {
1607			dev_err(dev, "problem (%d) requesting rx channel\n",
1608				drv_data->rx_channel);
1609			status = -ENODEV;
1610			goto out_error_irq_alloc;
1611		}
1612		drv_data->tx_channel = pxa_request_dma("pxa2xx_spi_ssp_tx",
1613							DMA_PRIO_MEDIUM,
1614							dma_handler,
1615							drv_data);
1616		if (drv_data->tx_channel < 0) {
1617			dev_err(dev, "problem (%d) requesting tx channel\n",
1618				drv_data->tx_channel);
1619			status = -ENODEV;
1620			goto out_error_dma_alloc;
1621		}
1622
1623		DRCMR(ssp->drcmr_rx) = DRCMR_MAPVLD | drv_data->rx_channel;
1624		DRCMR(ssp->drcmr_tx) = DRCMR_MAPVLD | drv_data->tx_channel;
1625	}
1626
1627	/* Enable SOC clock */
1628	clk_enable(ssp->clk);
 
 
1629
1630	/* Load default SSP configuration */
1631	write_SSCR0(0, drv_data->ioaddr);
1632	write_SSCR1(SSCR1_RxTresh(RX_THRESH_DFLT) |
1633				SSCR1_TxTresh(TX_THRESH_DFLT),
1634				drv_data->ioaddr);
1635	write_SSCR0(SSCR0_SCR(2)
1636			| SSCR0_Motorola
1637			| SSCR0_DataSize(8),
1638			drv_data->ioaddr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1639	if (!pxa25x_ssp_comp(drv_data))
1640		write_SSTO(0, drv_data->ioaddr);
1641	write_SSPSP(0, drv_data->ioaddr);
1642
1643	/* Initial and start queue */
1644	status = init_queue(drv_data);
1645	if (status != 0) {
1646		dev_err(&pdev->dev, "problem initializing queue\n");
1647		goto out_error_clock_enabled;
 
 
 
 
 
 
 
 
 
 
1648	}
1649	status = start_queue(drv_data);
1650	if (status != 0) {
1651		dev_err(&pdev->dev, "problem starting queue\n");
1652		goto out_error_clock_enabled;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1653	}
1654
 
 
 
 
 
 
 
 
1655	/* Register with the SPI framework */
1656	platform_set_drvdata(pdev, drv_data);
1657	status = spi_register_master(master);
1658	if (status != 0) {
1659		dev_err(&pdev->dev, "problem registering spi master\n");
1660		goto out_error_queue_alloc;
1661	}
1662
1663	return status;
1664
1665out_error_queue_alloc:
1666	destroy_queue(drv_data);
1667
1668out_error_clock_enabled:
1669	clk_disable(ssp->clk);
1670
1671out_error_dma_alloc:
1672	if (drv_data->tx_channel != -1)
1673		pxa_free_dma(drv_data->tx_channel);
1674	if (drv_data->rx_channel != -1)
1675		pxa_free_dma(drv_data->rx_channel);
1676
1677out_error_irq_alloc:
1678	free_irq(ssp->irq, drv_data);
1679
1680out_error_master_alloc:
1681	spi_master_put(master);
1682	pxa_ssp_free(ssp);
1683	return status;
1684}
1685
1686static int pxa2xx_spi_remove(struct platform_device *pdev)
1687{
1688	struct driver_data *drv_data = platform_get_drvdata(pdev);
1689	struct ssp_device *ssp;
1690	int status = 0;
1691
1692	if (!drv_data)
1693		return 0;
1694	ssp = drv_data->ssp;
1695
1696	/* Remove the queue */
1697	status = destroy_queue(drv_data);
1698	if (status != 0)
1699		/* the kernel does not check the return status of this
1700		 * this routine (mod->exit, within the kernel).  Therefore
1701		 * nothing is gained by returning from here, the module is
1702		 * going away regardless, and we should not leave any more
1703		 * resources allocated than necessary.  We cannot free the
1704		 * message memory in drv_data->queue, but we can release the
1705		 * resources below.  I think the kernel should honor -EBUSY
1706		 * returns but... */
1707		dev_err(&pdev->dev, "pxa2xx_spi_remove: workqueue will not "
1708			"complete, message memory not freed\n");
1709
1710	/* Disable the SSP at the peripheral and SOC level */
1711	write_SSCR0(0, drv_data->ioaddr);
1712	clk_disable(ssp->clk);
1713
1714	/* Release DMA */
1715	if (drv_data->master_info->enable_dma) {
1716		DRCMR(ssp->drcmr_rx) = 0;
1717		DRCMR(ssp->drcmr_tx) = 0;
1718		pxa_free_dma(drv_data->tx_channel);
1719		pxa_free_dma(drv_data->rx_channel);
1720	}
1721
1722	/* Release IRQ */
1723	free_irq(ssp->irq, drv_data);
1724
1725	/* Release SSP */
1726	pxa_ssp_free(ssp);
1727
1728	/* Disconnect from the SPI framework */
1729	spi_unregister_master(drv_data->master);
1730
1731	/* Prevent double remove */
1732	platform_set_drvdata(pdev, NULL);
1733
1734	return 0;
1735}
1736
1737static void pxa2xx_spi_shutdown(struct platform_device *pdev)
1738{
1739	int status = 0;
1740
1741	if ((status = pxa2xx_spi_remove(pdev)) != 0)
1742		dev_err(&pdev->dev, "shutdown failed with %d\n", status);
1743}
1744
1745#ifdef CONFIG_PM
1746static int pxa2xx_spi_suspend(struct device *dev)
1747{
1748	struct driver_data *drv_data = dev_get_drvdata(dev);
1749	struct ssp_device *ssp = drv_data->ssp;
1750	int status = 0;
1751
1752	status = stop_queue(drv_data);
1753	if (status != 0)
1754		return status;
1755	write_SSCR0(0, drv_data->ioaddr);
1756	clk_disable(ssp->clk);
 
 
1757
1758	return 0;
1759}
1760
1761static int pxa2xx_spi_resume(struct device *dev)
1762{
1763	struct driver_data *drv_data = dev_get_drvdata(dev);
1764	struct ssp_device *ssp = drv_data->ssp;
1765	int status = 0;
1766
1767	if (drv_data->rx_channel != -1)
1768		DRCMR(drv_data->ssp->drcmr_rx) =
1769			DRCMR_MAPVLD | drv_data->rx_channel;
1770	if (drv_data->tx_channel != -1)
1771		DRCMR(drv_data->ssp->drcmr_tx) =
1772			DRCMR_MAPVLD | drv_data->tx_channel;
1773
1774	/* Enable the SSP clock */
1775	clk_enable(ssp->clk);
 
 
 
 
 
1776
1777	/* Start the queue running */
1778	status = start_queue(drv_data);
1779	if (status != 0) {
1780		dev_err(dev, "problem starting queue (%d)\n", status);
1781		return status;
1782	}
1783
1784	return 0;
1785}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1786
1787static const struct dev_pm_ops pxa2xx_spi_pm_ops = {
1788	.suspend	= pxa2xx_spi_suspend,
1789	.resume		= pxa2xx_spi_resume,
 
1790};
1791#endif
1792
1793static struct platform_driver driver = {
1794	.driver = {
1795		.name	= "pxa2xx-spi",
1796		.owner	= THIS_MODULE,
1797#ifdef CONFIG_PM
1798		.pm	= &pxa2xx_spi_pm_ops,
1799#endif
1800	},
1801	.probe = pxa2xx_spi_probe,
1802	.remove = pxa2xx_spi_remove,
1803	.shutdown = pxa2xx_spi_shutdown,
1804};
1805
1806static int __init pxa2xx_spi_init(void)
1807{
1808	return platform_driver_register(&driver);
1809}
1810subsys_initcall(pxa2xx_spi_init);
1811
1812static void __exit pxa2xx_spi_exit(void)
1813{
1814	platform_driver_unregister(&driver);
1815}
1816module_exit(pxa2xx_spi_exit);
v4.17
   1/*
   2 * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
   3 * Copyright (C) 2013, Intel Corporation
   4 *
   5 * This program is free software; you can redistribute it and/or modify
   6 * it under the terms of the GNU General Public License as published by
   7 * the Free Software Foundation; either version 2 of the License, or
   8 * (at your option) any later version.
   9 *
  10 * This program is distributed in the hope that it will be useful,
  11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  13 * GNU General Public License for more details.
 
 
 
 
  14 */
  15
  16#include <linux/bitops.h>
  17#include <linux/init.h>
  18#include <linux/module.h>
  19#include <linux/device.h>
  20#include <linux/ioport.h>
  21#include <linux/errno.h>
  22#include <linux/err.h>
  23#include <linux/interrupt.h>
  24#include <linux/kernel.h>
  25#include <linux/pci.h>
  26#include <linux/platform_device.h>
  27#include <linux/spi/pxa2xx_spi.h>
 
  28#include <linux/spi/spi.h>
 
  29#include <linux/delay.h>
  30#include <linux/gpio.h>
  31#include <linux/gpio/consumer.h>
  32#include <linux/slab.h>
  33#include <linux/clk.h>
  34#include <linux/pm_runtime.h>
  35#include <linux/acpi.h>
  36
  37#include "spi-pxa2xx.h"
 
 
 
  38
  39MODULE_AUTHOR("Stephen Street");
  40MODULE_DESCRIPTION("PXA2xx SSP SPI Controller");
  41MODULE_LICENSE("GPL");
  42MODULE_ALIAS("platform:pxa2xx-spi");
  43
 
 
  44#define TIMOUT_DFLT		1000
  45
 
 
 
 
 
 
  46/*
  47 * for testing SSCR1 changes that require SSP restart, basically
  48 * everything except the service and interrupt enables, the pxa270 developer
  49 * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this
  50 * list, but the PXA255 dev man says all bits without really meaning the
  51 * service and interrupt enables
  52 */
  53#define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
  54				| SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
  55				| SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
  56				| SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
  57				| SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \
  58				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
  59
  60#define QUARK_X1000_SSCR1_CHANGE_MASK (QUARK_X1000_SSCR1_STRF	\
  61				| QUARK_X1000_SSCR1_EFWR	\
  62				| QUARK_X1000_SSCR1_RFT		\
  63				| QUARK_X1000_SSCR1_TFT		\
  64				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  65
  66#define CE4100_SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
  67				| SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
  68				| SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
  69				| SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
  70				| CE4100_SSCR1_RFT | CE4100_SSCR1_TFT | SSCR1_MWDS \
  71				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
  72
  73#define LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE	BIT(24)
  74#define LPSS_CS_CONTROL_SW_MODE			BIT(0)
  75#define LPSS_CS_CONTROL_CS_HIGH			BIT(1)
  76#define LPSS_CAPS_CS_EN_SHIFT			9
  77#define LPSS_CAPS_CS_EN_MASK			(0xf << LPSS_CAPS_CS_EN_SHIFT)
  78
  79struct lpss_config {
  80	/* LPSS offset from drv_data->ioaddr */
  81	unsigned offset;
  82	/* Register offsets from drv_data->lpss_base or -1 */
  83	int reg_general;
  84	int reg_ssp;
  85	int reg_cs_ctrl;
  86	int reg_capabilities;
  87	/* FIFO thresholds */
  88	u32 rx_threshold;
  89	u32 tx_threshold_lo;
  90	u32 tx_threshold_hi;
  91	/* Chip select control */
  92	unsigned cs_sel_shift;
  93	unsigned cs_sel_mask;
  94	unsigned cs_num;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  95};
  96
  97/* Keep these sorted with enum pxa_ssp_type */
  98static const struct lpss_config lpss_platforms[] = {
  99	{	/* LPSS_LPT_SSP */
 100		.offset = 0x800,
 101		.reg_general = 0x08,
 102		.reg_ssp = 0x0c,
 103		.reg_cs_ctrl = 0x18,
 104		.reg_capabilities = -1,
 105		.rx_threshold = 64,
 106		.tx_threshold_lo = 160,
 107		.tx_threshold_hi = 224,
 108	},
 109	{	/* LPSS_BYT_SSP */
 110		.offset = 0x400,
 111		.reg_general = 0x08,
 112		.reg_ssp = 0x0c,
 113		.reg_cs_ctrl = 0x18,
 114		.reg_capabilities = -1,
 115		.rx_threshold = 64,
 116		.tx_threshold_lo = 160,
 117		.tx_threshold_hi = 224,
 118	},
 119	{	/* LPSS_BSW_SSP */
 120		.offset = 0x400,
 121		.reg_general = 0x08,
 122		.reg_ssp = 0x0c,
 123		.reg_cs_ctrl = 0x18,
 124		.reg_capabilities = -1,
 125		.rx_threshold = 64,
 126		.tx_threshold_lo = 160,
 127		.tx_threshold_hi = 224,
 128		.cs_sel_shift = 2,
 129		.cs_sel_mask = 1 << 2,
 130		.cs_num = 2,
 131	},
 132	{	/* LPSS_SPT_SSP */
 133		.offset = 0x200,
 134		.reg_general = -1,
 135		.reg_ssp = 0x20,
 136		.reg_cs_ctrl = 0x24,
 137		.reg_capabilities = -1,
 138		.rx_threshold = 1,
 139		.tx_threshold_lo = 32,
 140		.tx_threshold_hi = 56,
 141	},
 142	{	/* LPSS_BXT_SSP */
 143		.offset = 0x200,
 144		.reg_general = -1,
 145		.reg_ssp = 0x20,
 146		.reg_cs_ctrl = 0x24,
 147		.reg_capabilities = 0xfc,
 148		.rx_threshold = 1,
 149		.tx_threshold_lo = 16,
 150		.tx_threshold_hi = 48,
 151		.cs_sel_shift = 8,
 152		.cs_sel_mask = 3 << 8,
 153	},
 154	{	/* LPSS_CNL_SSP */
 155		.offset = 0x200,
 156		.reg_general = -1,
 157		.reg_ssp = 0x20,
 158		.reg_cs_ctrl = 0x24,
 159		.reg_capabilities = 0xfc,
 160		.rx_threshold = 1,
 161		.tx_threshold_lo = 32,
 162		.tx_threshold_hi = 56,
 163		.cs_sel_shift = 8,
 164		.cs_sel_mask = 3 << 8,
 165	},
 166};
 167
 168static inline const struct lpss_config
 169*lpss_get_config(const struct driver_data *drv_data)
 170{
 171	return &lpss_platforms[drv_data->ssp_type - LPSS_LPT_SSP];
 172}
 173
 174static bool is_lpss_ssp(const struct driver_data *drv_data)
 175{
 176	switch (drv_data->ssp_type) {
 177	case LPSS_LPT_SSP:
 178	case LPSS_BYT_SSP:
 179	case LPSS_BSW_SSP:
 180	case LPSS_SPT_SSP:
 181	case LPSS_BXT_SSP:
 182	case LPSS_CNL_SSP:
 183		return true;
 184	default:
 185		return false;
 186	}
 187}
 188
 189static bool is_quark_x1000_ssp(const struct driver_data *drv_data)
 190{
 191	return drv_data->ssp_type == QUARK_X1000_SSP;
 192}
 193
 194static u32 pxa2xx_spi_get_ssrc1_change_mask(const struct driver_data *drv_data)
 195{
 196	switch (drv_data->ssp_type) {
 197	case QUARK_X1000_SSP:
 198		return QUARK_X1000_SSCR1_CHANGE_MASK;
 199	case CE4100_SSP:
 200		return CE4100_SSCR1_CHANGE_MASK;
 201	default:
 202		return SSCR1_CHANGE_MASK;
 203	}
 204}
 205
 206static u32
 207pxa2xx_spi_get_rx_default_thre(const struct driver_data *drv_data)
 208{
 209	switch (drv_data->ssp_type) {
 210	case QUARK_X1000_SSP:
 211		return RX_THRESH_QUARK_X1000_DFLT;
 212	case CE4100_SSP:
 213		return RX_THRESH_CE4100_DFLT;
 214	default:
 215		return RX_THRESH_DFLT;
 216	}
 217}
 218
 219static bool pxa2xx_spi_txfifo_full(const struct driver_data *drv_data)
 220{
 221	u32 mask;
 222
 223	switch (drv_data->ssp_type) {
 224	case QUARK_X1000_SSP:
 225		mask = QUARK_X1000_SSSR_TFL_MASK;
 226		break;
 227	case CE4100_SSP:
 228		mask = CE4100_SSSR_TFL_MASK;
 229		break;
 230	default:
 231		mask = SSSR_TFL_MASK;
 232		break;
 233	}
 234
 235	return (pxa2xx_spi_read(drv_data, SSSR) & mask) == mask;
 236}
 237
 238static void pxa2xx_spi_clear_rx_thre(const struct driver_data *drv_data,
 239				     u32 *sccr1_reg)
 240{
 241	u32 mask;
 242
 243	switch (drv_data->ssp_type) {
 244	case QUARK_X1000_SSP:
 245		mask = QUARK_X1000_SSCR1_RFT;
 246		break;
 247	case CE4100_SSP:
 248		mask = CE4100_SSCR1_RFT;
 249		break;
 250	default:
 251		mask = SSCR1_RFT;
 252		break;
 253	}
 254	*sccr1_reg &= ~mask;
 255}
 256
 257static void pxa2xx_spi_set_rx_thre(const struct driver_data *drv_data,
 258				   u32 *sccr1_reg, u32 threshold)
 259{
 260	switch (drv_data->ssp_type) {
 261	case QUARK_X1000_SSP:
 262		*sccr1_reg |= QUARK_X1000_SSCR1_RxTresh(threshold);
 263		break;
 264	case CE4100_SSP:
 265		*sccr1_reg |= CE4100_SSCR1_RxTresh(threshold);
 266		break;
 267	default:
 268		*sccr1_reg |= SSCR1_RxTresh(threshold);
 269		break;
 270	}
 271}
 272
 273static u32 pxa2xx_configure_sscr0(const struct driver_data *drv_data,
 274				  u32 clk_div, u8 bits)
 275{
 276	switch (drv_data->ssp_type) {
 277	case QUARK_X1000_SSP:
 278		return clk_div
 279			| QUARK_X1000_SSCR0_Motorola
 280			| QUARK_X1000_SSCR0_DataSize(bits > 32 ? 8 : bits)
 281			| SSCR0_SSE;
 282	default:
 283		return clk_div
 284			| SSCR0_Motorola
 285			| SSCR0_DataSize(bits > 16 ? bits - 16 : bits)
 286			| SSCR0_SSE
 287			| (bits > 16 ? SSCR0_EDSS : 0);
 288	}
 289}
 290
 291/*
 292 * Read and write LPSS SSP private registers. Caller must first check that
 293 * is_lpss_ssp() returns true before these can be called.
 294 */
 295static u32 __lpss_ssp_read_priv(struct driver_data *drv_data, unsigned offset)
 296{
 297	WARN_ON(!drv_data->lpss_base);
 298	return readl(drv_data->lpss_base + offset);
 299}
 300
 301static void __lpss_ssp_write_priv(struct driver_data *drv_data,
 302				  unsigned offset, u32 value)
 303{
 304	WARN_ON(!drv_data->lpss_base);
 305	writel(value, drv_data->lpss_base + offset);
 306}
 307
 308/*
 309 * lpss_ssp_setup - perform LPSS SSP specific setup
 310 * @drv_data: pointer to the driver private data
 311 *
 312 * Perform LPSS SSP specific setup. This function must be called first if
 313 * one is going to use LPSS SSP private registers.
 314 */
 315static void lpss_ssp_setup(struct driver_data *drv_data)
 316{
 317	const struct lpss_config *config;
 318	u32 value;
 319
 320	config = lpss_get_config(drv_data);
 321	drv_data->lpss_base = drv_data->ioaddr + config->offset;
 322
 323	/* Enable software chip select control */
 324	value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
 325	value &= ~(LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH);
 326	value |= LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH;
 327	__lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
 328
 329	/* Enable multiblock DMA transfers */
 330	if (drv_data->master_info->enable_dma) {
 331		__lpss_ssp_write_priv(drv_data, config->reg_ssp, 1);
 332
 333		if (config->reg_general >= 0) {
 334			value = __lpss_ssp_read_priv(drv_data,
 335						     config->reg_general);
 336			value |= LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE;
 337			__lpss_ssp_write_priv(drv_data,
 338					      config->reg_general, value);
 339		}
 340	}
 341}
 342
 343static void lpss_ssp_select_cs(struct driver_data *drv_data,
 344			       const struct lpss_config *config)
 345{
 346	u32 value, cs;
 347
 348	if (!config->cs_sel_mask)
 349		return;
 350
 351	value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
 352
 353	cs = drv_data->master->cur_msg->spi->chip_select;
 354	cs <<= config->cs_sel_shift;
 355	if (cs != (value & config->cs_sel_mask)) {
 356		/*
 357		 * When switching another chip select output active the
 358		 * output must be selected first and wait 2 ssp_clk cycles
 359		 * before changing state to active. Otherwise a short
 360		 * glitch will occur on the previous chip select since
 361		 * output select is latched but state control is not.
 362		 */
 363		value &= ~config->cs_sel_mask;
 364		value |= cs;
 365		__lpss_ssp_write_priv(drv_data,
 366				      config->reg_cs_ctrl, value);
 367		ndelay(1000000000 /
 368		       (drv_data->master->max_speed_hz / 2));
 369	}
 370}
 371
 372static void lpss_ssp_cs_control(struct driver_data *drv_data, bool enable)
 373{
 374	const struct lpss_config *config;
 375	u32 value;
 376
 377	config = lpss_get_config(drv_data);
 378
 379	if (enable)
 380		lpss_ssp_select_cs(drv_data, config);
 381
 382	value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
 383	if (enable)
 384		value &= ~LPSS_CS_CONTROL_CS_HIGH;
 385	else
 386		value |= LPSS_CS_CONTROL_CS_HIGH;
 387	__lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
 388}
 389
 390static void cs_assert(struct driver_data *drv_data)
 391{
 392	struct chip_data *chip =
 393		spi_get_ctldata(drv_data->master->cur_msg->spi);
 394
 395	if (drv_data->ssp_type == CE4100_SSP) {
 396		pxa2xx_spi_write(drv_data, SSSR, chip->frm);
 397		return;
 398	}
 399
 400	if (chip->cs_control) {
 401		chip->cs_control(PXA2XX_CS_ASSERT);
 402		return;
 403	}
 404
 405	if (chip->gpiod_cs) {
 406		gpiod_set_value(chip->gpiod_cs, chip->gpio_cs_inverted);
 407		return;
 408	}
 409
 410	if (is_lpss_ssp(drv_data))
 411		lpss_ssp_cs_control(drv_data, true);
 412}
 413
 414static void cs_deassert(struct driver_data *drv_data)
 415{
 416	struct chip_data *chip =
 417		spi_get_ctldata(drv_data->master->cur_msg->spi);
 418	unsigned long timeout;
 419
 420	if (drv_data->ssp_type == CE4100_SSP)
 421		return;
 422
 423	/* Wait until SSP becomes idle before deasserting the CS */
 424	timeout = jiffies + msecs_to_jiffies(10);
 425	while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY &&
 426	       !time_after(jiffies, timeout))
 427		cpu_relax();
 428
 429	if (chip->cs_control) {
 430		chip->cs_control(PXA2XX_CS_DEASSERT);
 431		return;
 432	}
 433
 434	if (chip->gpiod_cs) {
 435		gpiod_set_value(chip->gpiod_cs, !chip->gpio_cs_inverted);
 436		return;
 437	}
 
 
 
 
 
 
 
 
 
 438
 439	if (is_lpss_ssp(drv_data))
 440		lpss_ssp_cs_control(drv_data, false);
 
 
 
 
 
 441}
 442
 443int pxa2xx_spi_flush(struct driver_data *drv_data)
 444{
 445	unsigned long limit = loops_per_jiffy << 1;
 446
 
 
 447	do {
 448		while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
 449			pxa2xx_spi_read(drv_data, SSDR);
 450	} while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY) && --limit);
 
 451	write_SSSR_CS(drv_data, SSSR_ROR);
 452
 453	return limit;
 454}
 455
 456static int null_writer(struct driver_data *drv_data)
 457{
 
 458	u8 n_bytes = drv_data->n_bytes;
 459
 460	if (pxa2xx_spi_txfifo_full(drv_data)
 461		|| (drv_data->tx == drv_data->tx_end))
 462		return 0;
 463
 464	pxa2xx_spi_write(drv_data, SSDR, 0);
 465	drv_data->tx += n_bytes;
 466
 467	return 1;
 468}
 469
 470static int null_reader(struct driver_data *drv_data)
 471{
 
 472	u8 n_bytes = drv_data->n_bytes;
 473
 474	while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
 475	       && (drv_data->rx < drv_data->rx_end)) {
 476		pxa2xx_spi_read(drv_data, SSDR);
 477		drv_data->rx += n_bytes;
 478	}
 479
 480	return drv_data->rx == drv_data->rx_end;
 481}
 482
 483static int u8_writer(struct driver_data *drv_data)
 484{
 485	if (pxa2xx_spi_txfifo_full(drv_data)
 
 
 486		|| (drv_data->tx == drv_data->tx_end))
 487		return 0;
 488
 489	pxa2xx_spi_write(drv_data, SSDR, *(u8 *)(drv_data->tx));
 490	++drv_data->tx;
 491
 492	return 1;
 493}
 494
 495static int u8_reader(struct driver_data *drv_data)
 496{
 497	while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
 498	       && (drv_data->rx < drv_data->rx_end)) {
 499		*(u8 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
 
 
 500		++drv_data->rx;
 501	}
 502
 503	return drv_data->rx == drv_data->rx_end;
 504}
 505
 506static int u16_writer(struct driver_data *drv_data)
 507{
 508	if (pxa2xx_spi_txfifo_full(drv_data)
 
 
 509		|| (drv_data->tx == drv_data->tx_end))
 510		return 0;
 511
 512	pxa2xx_spi_write(drv_data, SSDR, *(u16 *)(drv_data->tx));
 513	drv_data->tx += 2;
 514
 515	return 1;
 516}
 517
 518static int u16_reader(struct driver_data *drv_data)
 519{
 520	while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
 521	       && (drv_data->rx < drv_data->rx_end)) {
 522		*(u16 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
 
 
 523		drv_data->rx += 2;
 524	}
 525
 526	return drv_data->rx == drv_data->rx_end;
 527}
 528
 529static int u32_writer(struct driver_data *drv_data)
 530{
 531	if (pxa2xx_spi_txfifo_full(drv_data)
 
 
 532		|| (drv_data->tx == drv_data->tx_end))
 533		return 0;
 534
 535	pxa2xx_spi_write(drv_data, SSDR, *(u32 *)(drv_data->tx));
 536	drv_data->tx += 4;
 537
 538	return 1;
 539}
 540
 541static int u32_reader(struct driver_data *drv_data)
 542{
 543	while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
 544	       && (drv_data->rx < drv_data->rx_end)) {
 545		*(u32 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
 
 
 546		drv_data->rx += 4;
 547	}
 548
 549	return drv_data->rx == drv_data->rx_end;
 550}
 551
 552void *pxa2xx_spi_next_transfer(struct driver_data *drv_data)
 553{
 554	struct spi_message *msg = drv_data->master->cur_msg;
 555	struct spi_transfer *trans = drv_data->cur_transfer;
 556
 557	/* Move to next transfer */
 558	if (trans->transfer_list.next != &msg->transfers) {
 559		drv_data->cur_transfer =
 560			list_entry(trans->transfer_list.next,
 561					struct spi_transfer,
 562					transfer_list);
 563		return RUNNING_STATE;
 564	} else
 565		return DONE_STATE;
 566}
 567
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 568/* caller already set message->status; dma and pio irqs are blocked */
 569static void giveback(struct driver_data *drv_data)
 570{
 571	struct spi_transfer* last_transfer;
 
 572	struct spi_message *msg;
 573
 574	msg = drv_data->master->cur_msg;
 
 
 575	drv_data->cur_transfer = NULL;
 
 
 576
 577	last_transfer = list_last_entry(&msg->transfers, struct spi_transfer,
 
 578					transfer_list);
 579
 580	/* Delay if requested before any change in chip select */
 581	if (last_transfer->delay_usecs)
 582		udelay(last_transfer->delay_usecs);
 583
 584	/* Drop chip select UNLESS cs_change is true or we are returning
 585	 * a message with an error, or next message is for another chip
 586	 */
 587	if (!last_transfer->cs_change)
 588		cs_deassert(drv_data);
 589	else {
 590		struct spi_message *next_msg;
 591
 592		/* Holding of cs was hinted, but we need to make sure
 593		 * the next message is for the same chip.  Don't waste
 594		 * time with the following tests unless this was hinted.
 595		 *
 596		 * We cannot postpone this until pump_messages, because
 597		 * after calling msg->complete (below) the driver that
 598		 * sent the current message could be unloaded, which
 599		 * could invalidate the cs_control() callback...
 600		 */
 601
 602		/* get a pointer to the next message, if any */
 603		next_msg = spi_get_next_queued_message(drv_data->master);
 
 
 
 
 
 
 604
 605		/* see if the next and current messages point
 606		 * to the same chip
 607		 */
 608		if ((next_msg && next_msg->spi != msg->spi) ||
 609		    msg->state == ERROR_STATE)
 
 610			cs_deassert(drv_data);
 611	}
 612
 613	spi_finalize_current_message(drv_data->master);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 614}
 615
 616static void reset_sccr1(struct driver_data *drv_data)
 617{
 618	struct chip_data *chip =
 619		spi_get_ctldata(drv_data->master->cur_msg->spi);
 620	u32 sccr1_reg;
 621
 622	sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1) & ~drv_data->int_cr1;
 623	switch (drv_data->ssp_type) {
 624	case QUARK_X1000_SSP:
 625		sccr1_reg &= ~QUARK_X1000_SSCR1_RFT;
 626		break;
 627	case CE4100_SSP:
 628		sccr1_reg &= ~CE4100_SSCR1_RFT;
 629		break;
 630	default:
 631		sccr1_reg &= ~SSCR1_RFT;
 632		break;
 633	}
 634	sccr1_reg |= chip->threshold;
 635	pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
 636}
 637
 638static void int_error_stop(struct driver_data *drv_data, const char* msg)
 639{
 
 
 640	/* Stop and reset SSP */
 641	write_SSSR_CS(drv_data, drv_data->clear_sr);
 642	reset_sccr1(drv_data);
 643	if (!pxa25x_ssp_comp(drv_data))
 644		pxa2xx_spi_write(drv_data, SSTO, 0);
 645	pxa2xx_spi_flush(drv_data);
 646	pxa2xx_spi_write(drv_data, SSCR0,
 647			 pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
 648
 649	dev_err(&drv_data->pdev->dev, "%s\n", msg);
 650
 651	drv_data->master->cur_msg->state = ERROR_STATE;
 652	tasklet_schedule(&drv_data->pump_transfers);
 653}
 654
 655static void int_transfer_complete(struct driver_data *drv_data)
 656{
 657	/* Clear and disable interrupts */
 
 
 658	write_SSSR_CS(drv_data, drv_data->clear_sr);
 659	reset_sccr1(drv_data);
 660	if (!pxa25x_ssp_comp(drv_data))
 661		pxa2xx_spi_write(drv_data, SSTO, 0);
 662
 663	/* Update total byte transferred return count actual bytes read */
 664	drv_data->master->cur_msg->actual_length += drv_data->len -
 665				(drv_data->rx_end - drv_data->rx);
 666
 667	/* Transfer delays and chip select release are
 668	 * handled in pump_transfers or giveback
 669	 */
 670
 671	/* Move to next transfer */
 672	drv_data->master->cur_msg->state = pxa2xx_spi_next_transfer(drv_data);
 673
 674	/* Schedule transfer tasklet */
 675	tasklet_schedule(&drv_data->pump_transfers);
 676}
 677
 678static irqreturn_t interrupt_transfer(struct driver_data *drv_data)
 679{
 680	u32 irq_mask = (pxa2xx_spi_read(drv_data, SSCR1) & SSCR1_TIE) ?
 681		       drv_data->mask_sr : drv_data->mask_sr & ~SSSR_TFS;
 
 
 682
 683	u32 irq_status = pxa2xx_spi_read(drv_data, SSSR) & irq_mask;
 684
 685	if (irq_status & SSSR_ROR) {
 686		int_error_stop(drv_data, "interrupt_transfer: fifo overrun");
 687		return IRQ_HANDLED;
 688	}
 689
 690	if (irq_status & SSSR_TINT) {
 691		pxa2xx_spi_write(drv_data, SSSR, SSSR_TINT);
 692		if (drv_data->read(drv_data)) {
 693			int_transfer_complete(drv_data);
 694			return IRQ_HANDLED;
 695		}
 696	}
 697
 698	/* Drain rx fifo, Fill tx fifo and prevent overruns */
 699	do {
 700		if (drv_data->read(drv_data)) {
 701			int_transfer_complete(drv_data);
 702			return IRQ_HANDLED;
 703		}
 704	} while (drv_data->write(drv_data));
 705
 706	if (drv_data->read(drv_data)) {
 707		int_transfer_complete(drv_data);
 708		return IRQ_HANDLED;
 709	}
 710
 711	if (drv_data->tx == drv_data->tx_end) {
 712		u32 bytes_left;
 713		u32 sccr1_reg;
 714
 715		sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
 716		sccr1_reg &= ~SSCR1_TIE;
 717
 718		/*
 719		 * PXA25x_SSP has no timeout, set up rx threshould for the
 720		 * remaining RX bytes.
 721		 */
 722		if (pxa25x_ssp_comp(drv_data)) {
 723			u32 rx_thre;
 724
 725			pxa2xx_spi_clear_rx_thre(drv_data, &sccr1_reg);
 726
 727			bytes_left = drv_data->rx_end - drv_data->rx;
 728			switch (drv_data->n_bytes) {
 729			case 4:
 730				bytes_left >>= 1;
 731			case 2:
 732				bytes_left >>= 1;
 733			}
 734
 735			rx_thre = pxa2xx_spi_get_rx_default_thre(drv_data);
 736			if (rx_thre > bytes_left)
 737				rx_thre = bytes_left;
 738
 739			pxa2xx_spi_set_rx_thre(drv_data, &sccr1_reg, rx_thre);
 740		}
 741		pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
 742	}
 743
 744	/* We did something */
 745	return IRQ_HANDLED;
 746}
 747
 748static void handle_bad_msg(struct driver_data *drv_data)
 749{
 750	pxa2xx_spi_write(drv_data, SSCR0,
 751			 pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
 752	pxa2xx_spi_write(drv_data, SSCR1,
 753			 pxa2xx_spi_read(drv_data, SSCR1) & ~drv_data->int_cr1);
 754	if (!pxa25x_ssp_comp(drv_data))
 755		pxa2xx_spi_write(drv_data, SSTO, 0);
 756	write_SSSR_CS(drv_data, drv_data->clear_sr);
 757
 758	dev_err(&drv_data->pdev->dev,
 759		"bad message state in interrupt handler\n");
 760}
 761
 762static irqreturn_t ssp_int(int irq, void *dev_id)
 763{
 764	struct driver_data *drv_data = dev_id;
 765	u32 sccr1_reg;
 
 766	u32 mask = drv_data->mask_sr;
 767	u32 status;
 768
 769	/*
 770	 * The IRQ might be shared with other peripherals so we must first
 771	 * check that are we RPM suspended or not. If we are we assume that
 772	 * the IRQ was not for us (we shouldn't be RPM suspended when the
 773	 * interrupt is enabled).
 774	 */
 775	if (pm_runtime_suspended(&drv_data->pdev->dev))
 776		return IRQ_NONE;
 777
 778	/*
 779	 * If the device is not yet in RPM suspended state and we get an
 780	 * interrupt that is meant for another device, check if status bits
 781	 * are all set to one. That means that the device is already
 782	 * powered off.
 783	 */
 784	status = pxa2xx_spi_read(drv_data, SSSR);
 785	if (status == ~0)
 786		return IRQ_NONE;
 787
 788	sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
 789
 790	/* Ignore possible writes if we don't need to write */
 791	if (!(sccr1_reg & SSCR1_TIE))
 792		mask &= ~SSSR_TFS;
 793
 794	/* Ignore RX timeout interrupt if it is disabled */
 795	if (!(sccr1_reg & SSCR1_TINTE))
 796		mask &= ~SSSR_TINT;
 797
 798	if (!(status & mask))
 799		return IRQ_NONE;
 800
 801	pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg & ~drv_data->int_cr1);
 802	pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
 
 
 
 
 
 
 
 
 803
 804	if (!drv_data->master->cur_msg) {
 805		handle_bad_msg(drv_data);
 806		/* Never fail */
 807		return IRQ_HANDLED;
 808	}
 809
 810	return drv_data->transfer_handler(drv_data);
 811}
 812
 813/*
 814 * The Quark SPI has an additional 24 bit register (DDS_CLK_RATE) to multiply
 815 * input frequency by fractions of 2^24. It also has a divider by 5.
 816 *
 817 * There are formulas to get baud rate value for given input frequency and
 818 * divider parameters, such as DDS_CLK_RATE and SCR:
 819 *
 820 * Fsys = 200MHz
 821 *
 822 * Fssp = Fsys * DDS_CLK_RATE / 2^24			(1)
 823 * Baud rate = Fsclk = Fssp / (2 * (SCR + 1))		(2)
 824 *
 825 * DDS_CLK_RATE either 2^n or 2^n / 5.
 826 * SCR is in range 0 .. 255
 827 *
 828 * Divisor = 5^i * 2^j * 2 * k
 829 *       i = [0, 1]      i = 1 iff j = 0 or j > 3
 830 *       j = [0, 23]     j = 0 iff i = 1
 831 *       k = [1, 256]
 832 * Special case: j = 0, i = 1: Divisor = 2 / 5
 833 *
 834 * Accordingly to the specification the recommended values for DDS_CLK_RATE
 835 * are:
 836 *	Case 1:		2^n, n = [0, 23]
 837 *	Case 2:		2^24 * 2 / 5 (0x666666)
 838 *	Case 3:		less than or equal to 2^24 / 5 / 16 (0x33333)
 839 *
 840 * In all cases the lowest possible value is better.
 841 *
 842 * The function calculates parameters for all cases and chooses the one closest
 843 * to the asked baud rate.
 844 */
 845static unsigned int quark_x1000_get_clk_div(int rate, u32 *dds)
 846{
 847	unsigned long xtal = 200000000;
 848	unsigned long fref = xtal / 2;		/* mandatory division by 2,
 849						   see (2) */
 850						/* case 3 */
 851	unsigned long fref1 = fref / 2;		/* case 1 */
 852	unsigned long fref2 = fref * 2 / 5;	/* case 2 */
 853	unsigned long scale;
 854	unsigned long q, q1, q2;
 855	long r, r1, r2;
 856	u32 mul;
 857
 858	/* Case 1 */
 859
 860	/* Set initial value for DDS_CLK_RATE */
 861	mul = (1 << 24) >> 1;
 862
 863	/* Calculate initial quot */
 864	q1 = DIV_ROUND_UP(fref1, rate);
 865
 866	/* Scale q1 if it's too big */
 867	if (q1 > 256) {
 868		/* Scale q1 to range [1, 512] */
 869		scale = fls_long(q1 - 1);
 870		if (scale > 9) {
 871			q1 >>= scale - 9;
 872			mul >>= scale - 9;
 873		}
 874
 875		/* Round the result if we have a remainder */
 876		q1 += q1 & 1;
 877	}
 878
 879	/* Decrease DDS_CLK_RATE as much as we can without loss in precision */
 880	scale = __ffs(q1);
 881	q1 >>= scale;
 882	mul >>= scale;
 883
 884	/* Get the remainder */
 885	r1 = abs(fref1 / (1 << (24 - fls_long(mul))) / q1 - rate);
 886
 887	/* Case 2 */
 888
 889	q2 = DIV_ROUND_UP(fref2, rate);
 890	r2 = abs(fref2 / q2 - rate);
 891
 892	/*
 893	 * Choose the best between two: less remainder we have the better. We
 894	 * can't go case 2 if q2 is greater than 256 since SCR register can
 895	 * hold only values 0 .. 255.
 896	 */
 897	if (r2 >= r1 || q2 > 256) {
 898		/* case 1 is better */
 899		r = r1;
 900		q = q1;
 901	} else {
 902		/* case 2 is better */
 903		r = r2;
 904		q = q2;
 905		mul = (1 << 24) * 2 / 5;
 906	}
 907
 908	/* Check case 3 only if the divisor is big enough */
 909	if (fref / rate >= 80) {
 910		u64 fssp;
 911		u32 m;
 912
 913		/* Calculate initial quot */
 914		q1 = DIV_ROUND_UP(fref, rate);
 915		m = (1 << 24) / q1;
 916
 917		/* Get the remainder */
 918		fssp = (u64)fref * m;
 919		do_div(fssp, 1 << 24);
 920		r1 = abs(fssp - rate);
 921
 922		/* Choose this one if it suits better */
 923		if (r1 < r) {
 924			/* case 3 is better */
 925			q = 1;
 926			mul = m;
 927		}
 928	}
 929
 930	*dds = mul;
 931	return q - 1;
 
 
 
 
 
 932}
 933
 934static unsigned int ssp_get_clk_div(struct driver_data *drv_data, int rate)
 935{
 936	unsigned long ssp_clk = drv_data->master->max_speed_hz;
 937	const struct ssp_device *ssp = drv_data->ssp;
 938
 939	rate = min_t(int, ssp_clk, rate);
 940
 941	if (ssp->type == PXA25x_SSP || ssp->type == CE4100_SSP)
 942		return (ssp_clk / (2 * rate) - 1) & 0xff;
 943	else
 944		return (ssp_clk / rate - 1) & 0xfff;
 945}
 946
 947static unsigned int pxa2xx_ssp_get_clk_div(struct driver_data *drv_data,
 948					   int rate)
 949{
 950	struct chip_data *chip =
 951		spi_get_ctldata(drv_data->master->cur_msg->spi);
 952	unsigned int clk_div;
 953
 954	switch (drv_data->ssp_type) {
 955	case QUARK_X1000_SSP:
 956		clk_div = quark_x1000_get_clk_div(rate, &chip->dds_rate);
 957		break;
 958	default:
 959		clk_div = ssp_get_clk_div(drv_data, rate);
 960		break;
 961	}
 962	return clk_div << 8;
 963}
 964
 965static bool pxa2xx_spi_can_dma(struct spi_controller *master,
 966			       struct spi_device *spi,
 967			       struct spi_transfer *xfer)
 968{
 969	struct chip_data *chip = spi_get_ctldata(spi);
 970
 971	return chip->enable_dma &&
 972	       xfer->len <= MAX_DMA_LEN &&
 973	       xfer->len >= chip->dma_burst_size;
 974}
 975
 976static void pump_transfers(unsigned long data)
 977{
 978	struct driver_data *drv_data = (struct driver_data *)data;
 979	struct spi_controller *master = drv_data->master;
 980	struct spi_message *message = master->cur_msg;
 981	struct chip_data *chip = spi_get_ctldata(message->spi);
 982	u32 dma_thresh = chip->dma_threshold;
 983	u32 dma_burst = chip->dma_burst_size;
 984	u32 change_mask = pxa2xx_spi_get_ssrc1_change_mask(drv_data);
 985	struct spi_transfer *transfer;
 986	struct spi_transfer *previous;
 987	u32 clk_div;
 988	u8 bits;
 989	u32 speed;
 990	u32 cr0;
 991	u32 cr1;
 992	int err;
 993	int dma_mapped;
 994
 995	/* Get current state information */
 
 996	transfer = drv_data->cur_transfer;
 
 997
 998	/* Handle for abort */
 999	if (message->state == ERROR_STATE) {
1000		message->status = -EIO;
1001		giveback(drv_data);
1002		return;
1003	}
1004
1005	/* Handle end of message */
1006	if (message->state == DONE_STATE) {
1007		message->status = 0;
1008		giveback(drv_data);
1009		return;
1010	}
1011
1012	/* Delay if requested at end of transfer before CS change */
1013	if (message->state == RUNNING_STATE) {
1014		previous = list_entry(transfer->transfer_list.prev,
1015					struct spi_transfer,
1016					transfer_list);
1017		if (previous->delay_usecs)
1018			udelay(previous->delay_usecs);
1019
1020		/* Drop chip select only if cs_change is requested */
1021		if (previous->cs_change)
1022			cs_deassert(drv_data);
1023	}
1024
1025	/* Check if we can DMA this transfer */
1026	if (transfer->len > MAX_DMA_LEN && chip->enable_dma) {
1027
1028		/* reject already-mapped transfers; PIO won't always work */
1029		if (message->is_dma_mapped
1030				|| transfer->rx_dma || transfer->tx_dma) {
1031			dev_err(&drv_data->pdev->dev,
1032				"pump_transfers: mapped transfer length of "
1033				"%u is greater than %d\n",
1034				transfer->len, MAX_DMA_LEN);
1035			message->status = -EINVAL;
1036			giveback(drv_data);
1037			return;
1038		}
1039
1040		/* warn ... we force this to PIO mode */
1041		dev_warn_ratelimited(&message->spi->dev,
1042				     "pump_transfers: DMA disabled for transfer length %ld "
1043				     "greater than %d\n",
1044				     (long)drv_data->len, MAX_DMA_LEN);
 
1045	}
1046
1047	/* Setup the transfer state based on the type of transfer */
1048	if (pxa2xx_spi_flush(drv_data) == 0) {
1049		dev_err(&drv_data->pdev->dev, "pump_transfers: flush failed\n");
1050		message->status = -EIO;
1051		giveback(drv_data);
1052		return;
1053	}
1054	drv_data->n_bytes = chip->n_bytes;
 
1055	drv_data->tx = (void *)transfer->tx_buf;
1056	drv_data->tx_end = drv_data->tx + transfer->len;
1057	drv_data->rx = transfer->rx_buf;
1058	drv_data->rx_end = drv_data->rx + transfer->len;
1059	drv_data->len = transfer->len;
 
 
1060	drv_data->write = drv_data->tx ? chip->write : null_writer;
1061	drv_data->read = drv_data->rx ? chip->read : null_reader;
1062
1063	/* Change speed and bit per word on a per transfer */
1064	bits = transfer->bits_per_word;
1065	speed = transfer->speed_hz;
 
 
 
 
 
 
1066
1067	clk_div = pxa2xx_ssp_get_clk_div(drv_data, speed);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1068
1069	if (bits <= 8) {
1070		drv_data->n_bytes = 1;
1071		drv_data->read = drv_data->read != null_reader ?
1072					u8_reader : null_reader;
1073		drv_data->write = drv_data->write != null_writer ?
1074					u8_writer : null_writer;
1075	} else if (bits <= 16) {
1076		drv_data->n_bytes = 2;
1077		drv_data->read = drv_data->read != null_reader ?
1078					u16_reader : null_reader;
1079		drv_data->write = drv_data->write != null_writer ?
1080					u16_writer : null_writer;
1081	} else if (bits <= 32) {
1082		drv_data->n_bytes = 4;
1083		drv_data->read = drv_data->read != null_reader ?
1084					u32_reader : null_reader;
1085		drv_data->write = drv_data->write != null_writer ?
1086					u32_writer : null_writer;
1087	}
1088	/*
1089	 * if bits/word is changed in dma mode, then must check the
1090	 * thresholds and burst also
1091	 */
1092	if (chip->enable_dma) {
1093		if (pxa2xx_spi_set_dma_burst_and_threshold(chip,
1094						message->spi,
1095						bits, &dma_burst,
1096						&dma_thresh))
1097			dev_warn_ratelimited(&message->spi->dev,
1098					     "pump_transfers: DMA burst size reduced to match bits_per_word\n");
1099	}
1100
1101	message->state = RUNNING_STATE;
1102
1103	dma_mapped = master->can_dma &&
1104		     master->can_dma(master, message->spi, transfer) &&
1105		     master->cur_msg_mapped;
1106	if (dma_mapped) {
 
 
 
 
 
 
 
 
 
 
 
 
 
1107
1108		/* Ensure we have the correct interrupt handler */
1109		drv_data->transfer_handler = pxa2xx_spi_dma_transfer;
1110
1111		err = pxa2xx_spi_dma_prepare(drv_data, dma_burst);
1112		if (err) {
1113			message->status = err;
1114			giveback(drv_data);
1115			return;
1116		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1117
1118		/* Clear status and start DMA engine */
1119		cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1;
1120		pxa2xx_spi_write(drv_data, SSSR, drv_data->clear_sr);
1121
1122		pxa2xx_spi_dma_start(drv_data);
1123	} else {
1124		/* Ensure we have the correct interrupt handler	*/
1125		drv_data->transfer_handler = interrupt_transfer;
1126
1127		/* Clear status  */
1128		cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1;
1129		write_SSSR_CS(drv_data, drv_data->clear_sr);
1130	}
1131
1132	/* NOTE:  PXA25x_SSP _could_ use external clocking ... */
1133	cr0 = pxa2xx_configure_sscr0(drv_data, clk_div, bits);
1134	if (!pxa25x_ssp_comp(drv_data))
1135		dev_dbg(&message->spi->dev, "%u Hz actual, %s\n",
1136			master->max_speed_hz
1137				/ (1 + ((cr0 & SSCR0_SCR(0xfff)) >> 8)),
1138			dma_mapped ? "DMA" : "PIO");
1139	else
1140		dev_dbg(&message->spi->dev, "%u Hz actual, %s\n",
1141			master->max_speed_hz / 2
1142				/ (1 + ((cr0 & SSCR0_SCR(0x0ff)) >> 8)),
1143			dma_mapped ? "DMA" : "PIO");
1144
1145	if (is_lpss_ssp(drv_data)) {
1146		if ((pxa2xx_spi_read(drv_data, SSIRF) & 0xff)
1147		    != chip->lpss_rx_threshold)
1148			pxa2xx_spi_write(drv_data, SSIRF,
1149					 chip->lpss_rx_threshold);
1150		if ((pxa2xx_spi_read(drv_data, SSITF) & 0xffff)
1151		    != chip->lpss_tx_threshold)
1152			pxa2xx_spi_write(drv_data, SSITF,
1153					 chip->lpss_tx_threshold);
1154	}
1155
1156	if (is_quark_x1000_ssp(drv_data) &&
1157	    (pxa2xx_spi_read(drv_data, DDS_RATE) != chip->dds_rate))
1158		pxa2xx_spi_write(drv_data, DDS_RATE, chip->dds_rate);
1159
1160	/* see if we need to reload the config registers */
1161	if ((pxa2xx_spi_read(drv_data, SSCR0) != cr0)
1162	    || (pxa2xx_spi_read(drv_data, SSCR1) & change_mask)
1163	    != (cr1 & change_mask)) {
1164		/* stop the SSP, and update the other bits */
1165		pxa2xx_spi_write(drv_data, SSCR0, cr0 & ~SSCR0_SSE);
1166		if (!pxa25x_ssp_comp(drv_data))
1167			pxa2xx_spi_write(drv_data, SSTO, chip->timeout);
1168		/* first set CR1 without interrupt and service enables */
1169		pxa2xx_spi_write(drv_data, SSCR1, cr1 & change_mask);
1170		/* restart the SSP */
1171		pxa2xx_spi_write(drv_data, SSCR0, cr0);
1172
1173	} else {
1174		if (!pxa25x_ssp_comp(drv_data))
1175			pxa2xx_spi_write(drv_data, SSTO, chip->timeout);
1176	}
1177
1178	cs_assert(drv_data);
1179
1180	/* after chip select, release the data by enabling service
1181	 * requests and interrupts, without changing any mode bits */
1182	pxa2xx_spi_write(drv_data, SSCR1, cr1);
1183}
1184
1185static int pxa2xx_spi_transfer_one_message(struct spi_controller *master,
1186					   struct spi_message *msg)
1187{
1188	struct driver_data *drv_data = spi_controller_get_devdata(master);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1189
1190	/* Initial message state*/
1191	msg->state = START_STATE;
1192	drv_data->cur_transfer = list_entry(msg->transfers.next,
1193						struct spi_transfer,
1194						transfer_list);
1195
 
 
 
 
1196	/* Mark as busy and launch transfers */
1197	tasklet_schedule(&drv_data->pump_transfers);
1198	return 0;
 
 
1199}
1200
1201static int pxa2xx_spi_unprepare_transfer(struct spi_controller *master)
1202{
1203	struct driver_data *drv_data = spi_controller_get_devdata(master);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1204
1205	/* Disable the SSP now */
1206	pxa2xx_spi_write(drv_data, SSCR0,
1207			 pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
 
1208
1209	return 0;
1210}
1211
1212static int setup_cs(struct spi_device *spi, struct chip_data *chip,
1213		    struct pxa2xx_spi_chip *chip_info)
1214{
1215	struct driver_data *drv_data =
1216		spi_controller_get_devdata(spi->controller);
1217	struct gpio_desc *gpiod;
1218	int err = 0;
1219
1220	if (chip == NULL)
1221		return 0;
1222
1223	if (drv_data->cs_gpiods) {
1224		gpiod = drv_data->cs_gpiods[spi->chip_select];
1225		if (gpiod) {
1226			chip->gpiod_cs = gpiod;
1227			chip->gpio_cs_inverted = spi->mode & SPI_CS_HIGH;
1228			gpiod_set_value(gpiod, chip->gpio_cs_inverted);
1229		}
1230
1231		return 0;
1232	}
1233
1234	if (chip_info == NULL)
1235		return 0;
1236
1237	/* NOTE: setup() can be called multiple times, possibly with
1238	 * different chip_info, release previously requested GPIO
1239	 */
1240	if (chip->gpiod_cs) {
1241		gpiod_put(chip->gpiod_cs);
1242		chip->gpiod_cs = NULL;
1243	}
1244
1245	/* If (*cs_control) is provided, ignore GPIO chip select */
1246	if (chip_info->cs_control) {
1247		chip->cs_control = chip_info->cs_control;
1248		return 0;
1249	}
1250
1251	if (gpio_is_valid(chip_info->gpio_cs)) {
1252		err = gpio_request(chip_info->gpio_cs, "SPI_CS");
1253		if (err) {
1254			dev_err(&spi->dev, "failed to request chip select GPIO%d\n",
1255				chip_info->gpio_cs);
1256			return err;
1257		}
1258
1259		gpiod = gpio_to_desc(chip_info->gpio_cs);
1260		chip->gpiod_cs = gpiod;
1261		chip->gpio_cs_inverted = spi->mode & SPI_CS_HIGH;
1262
1263		err = gpiod_direction_output(gpiod, !chip->gpio_cs_inverted);
 
1264	}
1265
1266	return err;
1267}
1268
1269static int setup(struct spi_device *spi)
1270{
1271	struct pxa2xx_spi_chip *chip_info;
1272	struct chip_data *chip;
1273	const struct lpss_config *config;
1274	struct driver_data *drv_data =
1275		spi_controller_get_devdata(spi->controller);
1276	uint tx_thres, tx_hi_thres, rx_thres;
 
1277
1278	switch (drv_data->ssp_type) {
1279	case QUARK_X1000_SSP:
1280		tx_thres = TX_THRESH_QUARK_X1000_DFLT;
1281		tx_hi_thres = 0;
1282		rx_thres = RX_THRESH_QUARK_X1000_DFLT;
1283		break;
1284	case CE4100_SSP:
1285		tx_thres = TX_THRESH_CE4100_DFLT;
1286		tx_hi_thres = 0;
1287		rx_thres = RX_THRESH_CE4100_DFLT;
1288		break;
1289	case LPSS_LPT_SSP:
1290	case LPSS_BYT_SSP:
1291	case LPSS_BSW_SSP:
1292	case LPSS_SPT_SSP:
1293	case LPSS_BXT_SSP:
1294	case LPSS_CNL_SSP:
1295		config = lpss_get_config(drv_data);
1296		tx_thres = config->tx_threshold_lo;
1297		tx_hi_thres = config->tx_threshold_hi;
1298		rx_thres = config->rx_threshold;
1299		break;
1300	default:
1301		tx_thres = TX_THRESH_DFLT;
1302		tx_hi_thres = 0;
1303		rx_thres = RX_THRESH_DFLT;
1304		break;
1305	}
1306
1307	/* Only alloc on first setup */
1308	chip = spi_get_ctldata(spi);
1309	if (!chip) {
1310		chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1311		if (!chip)
 
 
1312			return -ENOMEM;
 
1313
1314		if (drv_data->ssp_type == CE4100_SSP) {
1315			if (spi->chip_select > 4) {
1316				dev_err(&spi->dev,
1317					"failed setup: cs number must not be > 4.\n");
1318				kfree(chip);
1319				return -EINVAL;
1320			}
1321
1322			chip->frm = spi->chip_select;
1323		}
1324		chip->enable_dma = drv_data->master_info->enable_dma;
 
1325		chip->timeout = TIMOUT_DFLT;
 
 
1326	}
1327
1328	/* protocol drivers may change the chip settings, so...
1329	 * if chip_info exists, use it */
1330	chip_info = spi->controller_data;
1331
1332	/* chip_info isn't always needed */
1333	chip->cr1 = 0;
1334	if (chip_info) {
1335		if (chip_info->timeout)
1336			chip->timeout = chip_info->timeout;
1337		if (chip_info->tx_threshold)
1338			tx_thres = chip_info->tx_threshold;
1339		if (chip_info->tx_hi_threshold)
1340			tx_hi_thres = chip_info->tx_hi_threshold;
1341		if (chip_info->rx_threshold)
1342			rx_thres = chip_info->rx_threshold;
 
1343		chip->dma_threshold = 0;
1344		if (chip_info->enable_loopback)
1345			chip->cr1 = SSCR1_LBM;
1346	}
1347
1348	chip->lpss_rx_threshold = SSIRF_RxThresh(rx_thres);
1349	chip->lpss_tx_threshold = SSITF_TxLoThresh(tx_thres)
1350				| SSITF_TxHiThresh(tx_hi_thres);
1351
1352	/* set dma burst and threshold outside of chip_info path so that if
1353	 * chip_info goes away after setting chip->enable_dma, the
1354	 * burst and threshold can still respond to changes in bits_per_word */
1355	if (chip->enable_dma) {
1356		/* set up legal burst and threshold for dma */
1357		if (pxa2xx_spi_set_dma_burst_and_threshold(chip, spi,
1358						spi->bits_per_word,
1359						&chip->dma_burst_size,
1360						&chip->dma_threshold)) {
1361			dev_warn(&spi->dev,
1362				 "in setup: DMA burst size reduced to match bits_per_word\n");
1363		}
1364	}
1365
1366	switch (drv_data->ssp_type) {
1367	case QUARK_X1000_SSP:
1368		chip->threshold = (QUARK_X1000_SSCR1_RxTresh(rx_thres)
1369				   & QUARK_X1000_SSCR1_RFT)
1370				   | (QUARK_X1000_SSCR1_TxTresh(tx_thres)
1371				   & QUARK_X1000_SSCR1_TFT);
1372		break;
1373	case CE4100_SSP:
1374		chip->threshold = (CE4100_SSCR1_RxTresh(rx_thres) & CE4100_SSCR1_RFT) |
1375			(CE4100_SSCR1_TxTresh(tx_thres) & CE4100_SSCR1_TFT);
1376		break;
1377	default:
1378		chip->threshold = (SSCR1_RxTresh(rx_thres) & SSCR1_RFT) |
1379			(SSCR1_TxTresh(tx_thres) & SSCR1_TFT);
1380		break;
1381	}
1382
 
 
 
 
 
 
1383	chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH);
1384	chip->cr1 |= (((spi->mode & SPI_CPHA) != 0) ? SSCR1_SPH : 0)
1385			| (((spi->mode & SPI_CPOL) != 0) ? SSCR1_SPO : 0);
1386
1387	if (spi->mode & SPI_LOOP)
1388		chip->cr1 |= SSCR1_LBM;
 
 
 
 
 
 
 
 
 
1389
1390	if (spi->bits_per_word <= 8) {
1391		chip->n_bytes = 1;
 
1392		chip->read = u8_reader;
1393		chip->write = u8_writer;
1394	} else if (spi->bits_per_word <= 16) {
1395		chip->n_bytes = 2;
 
1396		chip->read = u16_reader;
1397		chip->write = u16_writer;
1398	} else if (spi->bits_per_word <= 32) {
 
1399		chip->n_bytes = 4;
 
1400		chip->read = u32_reader;
1401		chip->write = u32_writer;
 
 
 
1402	}
 
1403
1404	spi_set_ctldata(spi, chip);
1405
1406	if (drv_data->ssp_type == CE4100_SSP)
1407		return 0;
1408
1409	return setup_cs(spi, chip, chip_info);
1410}
1411
1412static void cleanup(struct spi_device *spi)
1413{
1414	struct chip_data *chip = spi_get_ctldata(spi);
1415	struct driver_data *drv_data =
1416		spi_controller_get_devdata(spi->controller);
1417
1418	if (!chip)
1419		return;
1420
1421	if (drv_data->ssp_type != CE4100_SSP && !drv_data->cs_gpiods &&
1422	    chip->gpiod_cs)
1423		gpiod_put(chip->gpiod_cs);
1424
1425	kfree(chip);
1426}
1427
1428#ifdef CONFIG_PCI
1429#ifdef CONFIG_ACPI
 
 
1430
1431static const struct acpi_device_id pxa2xx_spi_acpi_match[] = {
1432	{ "INT33C0", LPSS_LPT_SSP },
1433	{ "INT33C1", LPSS_LPT_SSP },
1434	{ "INT3430", LPSS_LPT_SSP },
1435	{ "INT3431", LPSS_LPT_SSP },
1436	{ "80860F0E", LPSS_BYT_SSP },
1437	{ "8086228E", LPSS_BSW_SSP },
1438	{ },
1439};
1440MODULE_DEVICE_TABLE(acpi, pxa2xx_spi_acpi_match);
1441
1442static int pxa2xx_spi_get_port_id(struct acpi_device *adev)
1443{
1444	unsigned int devid;
1445	int port_id = -1;
 
 
 
 
1446
1447	if (adev && adev->pnp.unique_id &&
1448	    !kstrtouint(adev->pnp.unique_id, 0, &devid))
1449		port_id = devid;
1450	return port_id;
1451}
1452#else /* !CONFIG_ACPI */
1453static int pxa2xx_spi_get_port_id(struct acpi_device *adev)
1454{
1455	return -1;
1456}
1457#endif
1458
1459/*
1460 * PCI IDs of compound devices that integrate both host controller and private
1461 * integrated DMA engine. Please note these are not used in module
1462 * autoloading and probing in this module but matching the LPSS SSP type.
1463 */
1464static const struct pci_device_id pxa2xx_spi_pci_compound_match[] = {
1465	/* SPT-LP */
1466	{ PCI_VDEVICE(INTEL, 0x9d29), LPSS_SPT_SSP },
1467	{ PCI_VDEVICE(INTEL, 0x9d2a), LPSS_SPT_SSP },
1468	/* SPT-H */
1469	{ PCI_VDEVICE(INTEL, 0xa129), LPSS_SPT_SSP },
1470	{ PCI_VDEVICE(INTEL, 0xa12a), LPSS_SPT_SSP },
1471	/* KBL-H */
1472	{ PCI_VDEVICE(INTEL, 0xa2a9), LPSS_SPT_SSP },
1473	{ PCI_VDEVICE(INTEL, 0xa2aa), LPSS_SPT_SSP },
1474	/* BXT A-Step */
1475	{ PCI_VDEVICE(INTEL, 0x0ac2), LPSS_BXT_SSP },
1476	{ PCI_VDEVICE(INTEL, 0x0ac4), LPSS_BXT_SSP },
1477	{ PCI_VDEVICE(INTEL, 0x0ac6), LPSS_BXT_SSP },
1478	/* BXT B-Step */
1479	{ PCI_VDEVICE(INTEL, 0x1ac2), LPSS_BXT_SSP },
1480	{ PCI_VDEVICE(INTEL, 0x1ac4), LPSS_BXT_SSP },
1481	{ PCI_VDEVICE(INTEL, 0x1ac6), LPSS_BXT_SSP },
1482	/* GLK */
1483	{ PCI_VDEVICE(INTEL, 0x31c2), LPSS_BXT_SSP },
1484	{ PCI_VDEVICE(INTEL, 0x31c4), LPSS_BXT_SSP },
1485	{ PCI_VDEVICE(INTEL, 0x31c6), LPSS_BXT_SSP },
1486	/* APL */
1487	{ PCI_VDEVICE(INTEL, 0x5ac2), LPSS_BXT_SSP },
1488	{ PCI_VDEVICE(INTEL, 0x5ac4), LPSS_BXT_SSP },
1489	{ PCI_VDEVICE(INTEL, 0x5ac6), LPSS_BXT_SSP },
1490	/* CNL-LP */
1491	{ PCI_VDEVICE(INTEL, 0x9daa), LPSS_CNL_SSP },
1492	{ PCI_VDEVICE(INTEL, 0x9dab), LPSS_CNL_SSP },
1493	{ PCI_VDEVICE(INTEL, 0x9dfb), LPSS_CNL_SSP },
1494	/* CNL-H */
1495	{ PCI_VDEVICE(INTEL, 0xa32a), LPSS_CNL_SSP },
1496	{ PCI_VDEVICE(INTEL, 0xa32b), LPSS_CNL_SSP },
1497	{ PCI_VDEVICE(INTEL, 0xa37b), LPSS_CNL_SSP },
1498	{ },
1499};
1500
1501static bool pxa2xx_spi_idma_filter(struct dma_chan *chan, void *param)
1502{
1503	struct device *dev = param;
 
 
1504
1505	if (dev != chan->device->dev->parent)
1506		return false;
1507
1508	return true;
1509}
1510
1511static struct pxa2xx_spi_master *
1512pxa2xx_spi_init_pdata(struct platform_device *pdev)
1513{
1514	struct pxa2xx_spi_master *pdata;
1515	struct acpi_device *adev;
1516	struct ssp_device *ssp;
1517	struct resource *res;
1518	const struct acpi_device_id *adev_id = NULL;
1519	const struct pci_device_id *pcidev_id = NULL;
1520	int type;
1521
1522	adev = ACPI_COMPANION(&pdev->dev);
1523
1524	if (dev_is_pci(pdev->dev.parent))
1525		pcidev_id = pci_match_id(pxa2xx_spi_pci_compound_match,
1526					 to_pci_dev(pdev->dev.parent));
1527	else if (adev)
1528		adev_id = acpi_match_device(pdev->dev.driver->acpi_match_table,
1529					    &pdev->dev);
1530	else
1531		return NULL;
1532
1533	if (adev_id)
1534		type = (int)adev_id->driver_data;
1535	else if (pcidev_id)
1536		type = (int)pcidev_id->driver_data;
1537	else
1538		return NULL;
1539
1540	pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
1541	if (!pdata)
1542		return NULL;
1543
1544	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1545	if (!res)
1546		return NULL;
1547
1548	ssp = &pdata->ssp;
1549
1550	ssp->phys_base = res->start;
1551	ssp->mmio_base = devm_ioremap_resource(&pdev->dev, res);
1552	if (IS_ERR(ssp->mmio_base))
1553		return NULL;
1554
1555	if (pcidev_id) {
1556		pdata->tx_param = pdev->dev.parent;
1557		pdata->rx_param = pdev->dev.parent;
1558		pdata->dma_filter = pxa2xx_spi_idma_filter;
1559	}
1560
1561	ssp->clk = devm_clk_get(&pdev->dev, NULL);
1562	ssp->irq = platform_get_irq(pdev, 0);
1563	ssp->type = type;
1564	ssp->pdev = pdev;
1565	ssp->port_id = pxa2xx_spi_get_port_id(adev);
1566
1567	pdata->num_chipselect = 1;
1568	pdata->enable_dma = true;
1569
1570	return pdata;
1571}
1572
1573#else /* !CONFIG_PCI */
1574static inline struct pxa2xx_spi_master *
1575pxa2xx_spi_init_pdata(struct platform_device *pdev)
1576{
1577	return NULL;
1578}
1579#endif
1580
1581static int pxa2xx_spi_fw_translate_cs(struct spi_controller *master,
1582				      unsigned int cs)
1583{
1584	struct driver_data *drv_data = spi_controller_get_devdata(master);
 
 
 
 
 
1585
1586	if (has_acpi_companion(&drv_data->pdev->dev)) {
1587		switch (drv_data->ssp_type) {
1588		/*
1589		 * For Atoms the ACPI DeviceSelection used by the Windows
1590		 * driver starts from 1 instead of 0 so translate it here
1591		 * to match what Linux expects.
1592		 */
1593		case LPSS_BYT_SSP:
1594		case LPSS_BSW_SSP:
1595			return cs - 1;
1596
1597		default:
1598			break;
1599		}
1600	}
1601
1602	return cs;
1603}
1604
1605static int pxa2xx_spi_probe(struct platform_device *pdev)
1606{
1607	struct device *dev = &pdev->dev;
1608	struct pxa2xx_spi_master *platform_info;
1609	struct spi_controller *master;
1610	struct driver_data *drv_data;
1611	struct ssp_device *ssp;
1612	const struct lpss_config *config;
1613	int status, count;
1614	u32 tmp;
1615
1616	platform_info = dev_get_platdata(dev);
1617	if (!platform_info) {
1618		platform_info = pxa2xx_spi_init_pdata(pdev);
1619		if (!platform_info) {
1620			dev_err(&pdev->dev, "missing platform data\n");
1621			return -ENODEV;
1622		}
1623	}
1624
1625	ssp = pxa_ssp_request(pdev->id, pdev->name);
1626	if (!ssp)
1627		ssp = &platform_info->ssp;
1628
1629	if (!ssp->mmio_base) {
1630		dev_err(&pdev->dev, "failed to get ssp\n");
1631		return -ENODEV;
1632	}
1633
1634	master = spi_alloc_master(dev, sizeof(struct driver_data));
 
1635	if (!master) {
1636		dev_err(&pdev->dev, "cannot alloc spi_master\n");
1637		pxa_ssp_free(ssp);
1638		return -ENOMEM;
1639	}
1640	drv_data = spi_controller_get_devdata(master);
1641	drv_data->master = master;
1642	drv_data->master_info = platform_info;
1643	drv_data->pdev = pdev;
1644	drv_data->ssp = ssp;
1645
 
1646	master->dev.of_node = pdev->dev.of_node;
1647	/* the spi->mode bits understood by this driver: */
1648	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
1649
1650	master->bus_num = ssp->port_id;
 
1651	master->dma_alignment = DMA_ALIGNMENT;
1652	master->cleanup = cleanup;
1653	master->setup = setup;
1654	master->transfer_one_message = pxa2xx_spi_transfer_one_message;
1655	master->unprepare_transfer_hardware = pxa2xx_spi_unprepare_transfer;
1656	master->fw_translate_cs = pxa2xx_spi_fw_translate_cs;
1657	master->auto_runtime_pm = true;
1658	master->flags = SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX;
1659
1660	drv_data->ssp_type = ssp->type;
 
 
1661
1662	drv_data->ioaddr = ssp->mmio_base;
1663	drv_data->ssdr_physical = ssp->phys_base + SSDR;
1664	if (pxa25x_ssp_comp(drv_data)) {
1665		switch (drv_data->ssp_type) {
1666		case QUARK_X1000_SSP:
1667			master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1668			break;
1669		default:
1670			master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
1671			break;
1672		}
1673
1674		drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE;
1675		drv_data->dma_cr1 = 0;
1676		drv_data->clear_sr = SSSR_ROR;
1677		drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR;
1678	} else {
1679		master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1680		drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE;
1681		drv_data->dma_cr1 = DEFAULT_DMA_CR1;
1682		drv_data->clear_sr = SSSR_ROR | SSSR_TINT;
1683		drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS | SSSR_ROR;
1684	}
1685
1686	status = request_irq(ssp->irq, ssp_int, IRQF_SHARED, dev_name(dev),
1687			drv_data);
1688	if (status < 0) {
1689		dev_err(&pdev->dev, "cannot get IRQ %d\n", ssp->irq);
1690		goto out_error_master_alloc;
1691	}
1692
1693	/* Setup DMA if requested */
 
 
1694	if (platform_info->enable_dma) {
1695		status = pxa2xx_spi_dma_setup(drv_data);
1696		if (status) {
1697			dev_dbg(dev, "no DMA channels available, using PIO\n");
1698			platform_info->enable_dma = false;
1699		} else {
1700			master->can_dma = pxa2xx_spi_can_dma;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1701		}
 
 
 
1702	}
1703
1704	/* Enable SOC clock */
1705	clk_prepare_enable(ssp->clk);
1706
1707	master->max_speed_hz = clk_get_rate(ssp->clk);
1708
1709	/* Load default SSP configuration */
1710	pxa2xx_spi_write(drv_data, SSCR0, 0);
1711	switch (drv_data->ssp_type) {
1712	case QUARK_X1000_SSP:
1713		tmp = QUARK_X1000_SSCR1_RxTresh(RX_THRESH_QUARK_X1000_DFLT) |
1714		      QUARK_X1000_SSCR1_TxTresh(TX_THRESH_QUARK_X1000_DFLT);
1715		pxa2xx_spi_write(drv_data, SSCR1, tmp);
1716
1717		/* using the Motorola SPI protocol and use 8 bit frame */
1718		tmp = QUARK_X1000_SSCR0_Motorola | QUARK_X1000_SSCR0_DataSize(8);
1719		pxa2xx_spi_write(drv_data, SSCR0, tmp);
1720		break;
1721	case CE4100_SSP:
1722		tmp = CE4100_SSCR1_RxTresh(RX_THRESH_CE4100_DFLT) |
1723		      CE4100_SSCR1_TxTresh(TX_THRESH_CE4100_DFLT);
1724		pxa2xx_spi_write(drv_data, SSCR1, tmp);
1725		tmp = SSCR0_SCR(2) | SSCR0_Motorola | SSCR0_DataSize(8);
1726		pxa2xx_spi_write(drv_data, SSCR0, tmp);
1727		break;
1728	default:
1729		tmp = SSCR1_RxTresh(RX_THRESH_DFLT) |
1730		      SSCR1_TxTresh(TX_THRESH_DFLT);
1731		pxa2xx_spi_write(drv_data, SSCR1, tmp);
1732		tmp = SSCR0_SCR(2) | SSCR0_Motorola | SSCR0_DataSize(8);
1733		pxa2xx_spi_write(drv_data, SSCR0, tmp);
1734		break;
1735	}
1736
1737	if (!pxa25x_ssp_comp(drv_data))
1738		pxa2xx_spi_write(drv_data, SSTO, 0);
 
1739
1740	if (!is_quark_x1000_ssp(drv_data))
1741		pxa2xx_spi_write(drv_data, SSPSP, 0);
1742
1743	if (is_lpss_ssp(drv_data)) {
1744		lpss_ssp_setup(drv_data);
1745		config = lpss_get_config(drv_data);
1746		if (config->reg_capabilities >= 0) {
1747			tmp = __lpss_ssp_read_priv(drv_data,
1748						   config->reg_capabilities);
1749			tmp &= LPSS_CAPS_CS_EN_MASK;
1750			tmp >>= LPSS_CAPS_CS_EN_SHIFT;
1751			platform_info->num_chipselect = ffz(tmp);
1752		} else if (config->cs_num) {
1753			platform_info->num_chipselect = config->cs_num;
1754		}
1755	}
1756	master->num_chipselect = platform_info->num_chipselect;
1757
1758	count = gpiod_count(&pdev->dev, "cs");
1759	if (count > 0) {
1760		int i;
1761
1762		master->num_chipselect = max_t(int, count,
1763			master->num_chipselect);
1764
1765		drv_data->cs_gpiods = devm_kcalloc(&pdev->dev,
1766			master->num_chipselect, sizeof(struct gpio_desc *),
1767			GFP_KERNEL);
1768		if (!drv_data->cs_gpiods) {
1769			status = -ENOMEM;
1770			goto out_error_clock_enabled;
1771		}
1772
1773		for (i = 0; i < master->num_chipselect; i++) {
1774			struct gpio_desc *gpiod;
1775
1776			gpiod = devm_gpiod_get_index(dev, "cs", i, GPIOD_ASIS);
1777			if (IS_ERR(gpiod)) {
1778				/* Means use native chip select */
1779				if (PTR_ERR(gpiod) == -ENOENT)
1780					continue;
1781
1782				status = (int)PTR_ERR(gpiod);
1783				goto out_error_clock_enabled;
1784			} else {
1785				drv_data->cs_gpiods[i] = gpiod;
1786			}
1787		}
1788	}
1789
1790	tasklet_init(&drv_data->pump_transfers, pump_transfers,
1791		     (unsigned long)drv_data);
1792
1793	pm_runtime_set_autosuspend_delay(&pdev->dev, 50);
1794	pm_runtime_use_autosuspend(&pdev->dev);
1795	pm_runtime_set_active(&pdev->dev);
1796	pm_runtime_enable(&pdev->dev);
1797
1798	/* Register with the SPI framework */
1799	platform_set_drvdata(pdev, drv_data);
1800	status = devm_spi_register_controller(&pdev->dev, master);
1801	if (status != 0) {
1802		dev_err(&pdev->dev, "problem registering spi master\n");
1803		goto out_error_clock_enabled;
1804	}
1805
1806	return status;
1807
 
 
 
1808out_error_clock_enabled:
1809	pm_runtime_put_noidle(&pdev->dev);
1810	pm_runtime_disable(&pdev->dev);
1811	clk_disable_unprepare(ssp->clk);
1812	pxa2xx_spi_dma_release(drv_data);
 
 
 
 
 
1813	free_irq(ssp->irq, drv_data);
1814
1815out_error_master_alloc:
1816	spi_controller_put(master);
1817	pxa_ssp_free(ssp);
1818	return status;
1819}
1820
1821static int pxa2xx_spi_remove(struct platform_device *pdev)
1822{
1823	struct driver_data *drv_data = platform_get_drvdata(pdev);
1824	struct ssp_device *ssp;
 
1825
1826	if (!drv_data)
1827		return 0;
1828	ssp = drv_data->ssp;
1829
1830	pm_runtime_get_sync(&pdev->dev);
 
 
 
 
 
 
 
 
 
 
 
 
1831
1832	/* Disable the SSP at the peripheral and SOC level */
1833	pxa2xx_spi_write(drv_data, SSCR0, 0);
1834	clk_disable_unprepare(ssp->clk);
1835
1836	/* Release DMA */
1837	if (drv_data->master_info->enable_dma)
1838		pxa2xx_spi_dma_release(drv_data);
1839
1840	pm_runtime_put_noidle(&pdev->dev);
1841	pm_runtime_disable(&pdev->dev);
 
1842
1843	/* Release IRQ */
1844	free_irq(ssp->irq, drv_data);
1845
1846	/* Release SSP */
1847	pxa_ssp_free(ssp);
1848
 
 
 
 
 
 
1849	return 0;
1850}
1851
1852static void pxa2xx_spi_shutdown(struct platform_device *pdev)
1853{
1854	int status = 0;
1855
1856	if ((status = pxa2xx_spi_remove(pdev)) != 0)
1857		dev_err(&pdev->dev, "shutdown failed with %d\n", status);
1858}
1859
1860#ifdef CONFIG_PM_SLEEP
1861static int pxa2xx_spi_suspend(struct device *dev)
1862{
1863	struct driver_data *drv_data = dev_get_drvdata(dev);
1864	struct ssp_device *ssp = drv_data->ssp;
1865	int status;
1866
1867	status = spi_controller_suspend(drv_data->master);
1868	if (status != 0)
1869		return status;
1870	pxa2xx_spi_write(drv_data, SSCR0, 0);
1871
1872	if (!pm_runtime_suspended(dev))
1873		clk_disable_unprepare(ssp->clk);
1874
1875	return 0;
1876}
1877
1878static int pxa2xx_spi_resume(struct device *dev)
1879{
1880	struct driver_data *drv_data = dev_get_drvdata(dev);
1881	struct ssp_device *ssp = drv_data->ssp;
1882	int status;
 
 
 
 
 
 
 
1883
1884	/* Enable the SSP clock */
1885	if (!pm_runtime_suspended(dev))
1886		clk_prepare_enable(ssp->clk);
1887
1888	/* Restore LPSS private register bits */
1889	if (is_lpss_ssp(drv_data))
1890		lpss_ssp_setup(drv_data);
1891
1892	/* Start the queue running */
1893	status = spi_controller_resume(drv_data->master);
1894	if (status != 0) {
1895		dev_err(dev, "problem starting queue (%d)\n", status);
1896		return status;
1897	}
1898
1899	return 0;
1900}
1901#endif
1902
1903#ifdef CONFIG_PM
1904static int pxa2xx_spi_runtime_suspend(struct device *dev)
1905{
1906	struct driver_data *drv_data = dev_get_drvdata(dev);
1907
1908	clk_disable_unprepare(drv_data->ssp->clk);
1909	return 0;
1910}
1911
1912static int pxa2xx_spi_runtime_resume(struct device *dev)
1913{
1914	struct driver_data *drv_data = dev_get_drvdata(dev);
1915
1916	clk_prepare_enable(drv_data->ssp->clk);
1917	return 0;
1918}
1919#endif
1920
1921static const struct dev_pm_ops pxa2xx_spi_pm_ops = {
1922	SET_SYSTEM_SLEEP_PM_OPS(pxa2xx_spi_suspend, pxa2xx_spi_resume)
1923	SET_RUNTIME_PM_OPS(pxa2xx_spi_runtime_suspend,
1924			   pxa2xx_spi_runtime_resume, NULL)
1925};
 
1926
1927static struct platform_driver driver = {
1928	.driver = {
1929		.name	= "pxa2xx-spi",
 
 
1930		.pm	= &pxa2xx_spi_pm_ops,
1931		.acpi_match_table = ACPI_PTR(pxa2xx_spi_acpi_match),
1932	},
1933	.probe = pxa2xx_spi_probe,
1934	.remove = pxa2xx_spi_remove,
1935	.shutdown = pxa2xx_spi_shutdown,
1936};
1937
1938static int __init pxa2xx_spi_init(void)
1939{
1940	return platform_driver_register(&driver);
1941}
1942subsys_initcall(pxa2xx_spi_init);
1943
1944static void __exit pxa2xx_spi_exit(void)
1945{
1946	platform_driver_unregister(&driver);
1947}
1948module_exit(pxa2xx_spi_exit);