Loading...
1/*
2 * Copyright 2004-2008 Freescale Semiconductor, Inc. All Rights Reserved.
3 *
4 * The code contained herein is licensed under the GNU General Public
5 * License. You may obtain a copy of the GNU General Public License
6 * Version 2 or later at the following locations:
7 *
8 * http://www.opensource.org/licenses/gpl-license.html
9 * http://www.gnu.org/copyleft/gpl.html
10 */
11
12#include <linux/io.h>
13#include <linux/rtc.h>
14#include <linux/module.h>
15#include <linux/slab.h>
16#include <linux/interrupt.h>
17#include <linux/platform_device.h>
18#include <linux/clk.h>
19
20#include <mach/hardware.h>
21
22#define RTC_INPUT_CLK_32768HZ (0x00 << 5)
23#define RTC_INPUT_CLK_32000HZ (0x01 << 5)
24#define RTC_INPUT_CLK_38400HZ (0x02 << 5)
25
26#define RTC_SW_BIT (1 << 0)
27#define RTC_ALM_BIT (1 << 2)
28#define RTC_1HZ_BIT (1 << 4)
29#define RTC_2HZ_BIT (1 << 7)
30#define RTC_SAM0_BIT (1 << 8)
31#define RTC_SAM1_BIT (1 << 9)
32#define RTC_SAM2_BIT (1 << 10)
33#define RTC_SAM3_BIT (1 << 11)
34#define RTC_SAM4_BIT (1 << 12)
35#define RTC_SAM5_BIT (1 << 13)
36#define RTC_SAM6_BIT (1 << 14)
37#define RTC_SAM7_BIT (1 << 15)
38#define PIT_ALL_ON (RTC_2HZ_BIT | RTC_SAM0_BIT | RTC_SAM1_BIT | \
39 RTC_SAM2_BIT | RTC_SAM3_BIT | RTC_SAM4_BIT | \
40 RTC_SAM5_BIT | RTC_SAM6_BIT | RTC_SAM7_BIT)
41
42#define RTC_ENABLE_BIT (1 << 7)
43
44#define MAX_PIE_NUM 9
45#define MAX_PIE_FREQ 512
46static const u32 PIE_BIT_DEF[MAX_PIE_NUM][2] = {
47 { 2, RTC_2HZ_BIT },
48 { 4, RTC_SAM0_BIT },
49 { 8, RTC_SAM1_BIT },
50 { 16, RTC_SAM2_BIT },
51 { 32, RTC_SAM3_BIT },
52 { 64, RTC_SAM4_BIT },
53 { 128, RTC_SAM5_BIT },
54 { 256, RTC_SAM6_BIT },
55 { MAX_PIE_FREQ, RTC_SAM7_BIT },
56};
57
58#define MXC_RTC_TIME 0
59#define MXC_RTC_ALARM 1
60
61#define RTC_HOURMIN 0x00 /* 32bit rtc hour/min counter reg */
62#define RTC_SECOND 0x04 /* 32bit rtc seconds counter reg */
63#define RTC_ALRM_HM 0x08 /* 32bit rtc alarm hour/min reg */
64#define RTC_ALRM_SEC 0x0C /* 32bit rtc alarm seconds reg */
65#define RTC_RTCCTL 0x10 /* 32bit rtc control reg */
66#define RTC_RTCISR 0x14 /* 32bit rtc interrupt status reg */
67#define RTC_RTCIENR 0x18 /* 32bit rtc interrupt enable reg */
68#define RTC_STPWCH 0x1C /* 32bit rtc stopwatch min reg */
69#define RTC_DAYR 0x20 /* 32bit rtc days counter reg */
70#define RTC_DAYALARM 0x24 /* 32bit rtc day alarm reg */
71#define RTC_TEST1 0x28 /* 32bit rtc test reg 1 */
72#define RTC_TEST2 0x2C /* 32bit rtc test reg 2 */
73#define RTC_TEST3 0x30 /* 32bit rtc test reg 3 */
74
75struct rtc_plat_data {
76 struct rtc_device *rtc;
77 void __iomem *ioaddr;
78 int irq;
79 struct clk *clk;
80 struct rtc_time g_rtc_alarm;
81};
82
83/*
84 * This function is used to obtain the RTC time or the alarm value in
85 * second.
86 */
87static u32 get_alarm_or_time(struct device *dev, int time_alarm)
88{
89 struct platform_device *pdev = to_platform_device(dev);
90 struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
91 void __iomem *ioaddr = pdata->ioaddr;
92 u32 day = 0, hr = 0, min = 0, sec = 0, hr_min = 0;
93
94 switch (time_alarm) {
95 case MXC_RTC_TIME:
96 day = readw(ioaddr + RTC_DAYR);
97 hr_min = readw(ioaddr + RTC_HOURMIN);
98 sec = readw(ioaddr + RTC_SECOND);
99 break;
100 case MXC_RTC_ALARM:
101 day = readw(ioaddr + RTC_DAYALARM);
102 hr_min = readw(ioaddr + RTC_ALRM_HM) & 0xffff;
103 sec = readw(ioaddr + RTC_ALRM_SEC);
104 break;
105 }
106
107 hr = hr_min >> 8;
108 min = hr_min & 0xff;
109
110 return (((day * 24 + hr) * 60) + min) * 60 + sec;
111}
112
113/*
114 * This function sets the RTC alarm value or the time value.
115 */
116static void set_alarm_or_time(struct device *dev, int time_alarm, u32 time)
117{
118 u32 day, hr, min, sec, temp;
119 struct platform_device *pdev = to_platform_device(dev);
120 struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
121 void __iomem *ioaddr = pdata->ioaddr;
122
123 day = time / 86400;
124 time -= day * 86400;
125
126 /* time is within a day now */
127 hr = time / 3600;
128 time -= hr * 3600;
129
130 /* time is within an hour now */
131 min = time / 60;
132 sec = time - min * 60;
133
134 temp = (hr << 8) + min;
135
136 switch (time_alarm) {
137 case MXC_RTC_TIME:
138 writew(day, ioaddr + RTC_DAYR);
139 writew(sec, ioaddr + RTC_SECOND);
140 writew(temp, ioaddr + RTC_HOURMIN);
141 break;
142 case MXC_RTC_ALARM:
143 writew(day, ioaddr + RTC_DAYALARM);
144 writew(sec, ioaddr + RTC_ALRM_SEC);
145 writew(temp, ioaddr + RTC_ALRM_HM);
146 break;
147 }
148}
149
150/*
151 * This function updates the RTC alarm registers and then clears all the
152 * interrupt status bits.
153 */
154static int rtc_update_alarm(struct device *dev, struct rtc_time *alrm)
155{
156 struct rtc_time alarm_tm, now_tm;
157 unsigned long now, time;
158 struct platform_device *pdev = to_platform_device(dev);
159 struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
160 void __iomem *ioaddr = pdata->ioaddr;
161
162 now = get_alarm_or_time(dev, MXC_RTC_TIME);
163 rtc_time_to_tm(now, &now_tm);
164 alarm_tm.tm_year = now_tm.tm_year;
165 alarm_tm.tm_mon = now_tm.tm_mon;
166 alarm_tm.tm_mday = now_tm.tm_mday;
167 alarm_tm.tm_hour = alrm->tm_hour;
168 alarm_tm.tm_min = alrm->tm_min;
169 alarm_tm.tm_sec = alrm->tm_sec;
170 rtc_tm_to_time(&alarm_tm, &time);
171
172 /* clear all the interrupt status bits */
173 writew(readw(ioaddr + RTC_RTCISR), ioaddr + RTC_RTCISR);
174 set_alarm_or_time(dev, MXC_RTC_ALARM, time);
175
176 return 0;
177}
178
179static void mxc_rtc_irq_enable(struct device *dev, unsigned int bit,
180 unsigned int enabled)
181{
182 struct platform_device *pdev = to_platform_device(dev);
183 struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
184 void __iomem *ioaddr = pdata->ioaddr;
185 u32 reg;
186
187 spin_lock_irq(&pdata->rtc->irq_lock);
188 reg = readw(ioaddr + RTC_RTCIENR);
189
190 if (enabled)
191 reg |= bit;
192 else
193 reg &= ~bit;
194
195 writew(reg, ioaddr + RTC_RTCIENR);
196 spin_unlock_irq(&pdata->rtc->irq_lock);
197}
198
199/* This function is the RTC interrupt service routine. */
200static irqreturn_t mxc_rtc_interrupt(int irq, void *dev_id)
201{
202 struct platform_device *pdev = dev_id;
203 struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
204 void __iomem *ioaddr = pdata->ioaddr;
205 unsigned long flags;
206 u32 status;
207 u32 events = 0;
208
209 spin_lock_irqsave(&pdata->rtc->irq_lock, flags);
210 status = readw(ioaddr + RTC_RTCISR) & readw(ioaddr + RTC_RTCIENR);
211 /* clear interrupt sources */
212 writew(status, ioaddr + RTC_RTCISR);
213
214 /* update irq data & counter */
215 if (status & RTC_ALM_BIT) {
216 events |= (RTC_AF | RTC_IRQF);
217 /* RTC alarm should be one-shot */
218 mxc_rtc_irq_enable(&pdev->dev, RTC_ALM_BIT, 0);
219 }
220
221 if (status & RTC_1HZ_BIT)
222 events |= (RTC_UF | RTC_IRQF);
223
224 if (status & PIT_ALL_ON)
225 events |= (RTC_PF | RTC_IRQF);
226
227 rtc_update_irq(pdata->rtc, 1, events);
228 spin_unlock_irqrestore(&pdata->rtc->irq_lock, flags);
229
230 return IRQ_HANDLED;
231}
232
233/*
234 * Clear all interrupts and release the IRQ
235 */
236static void mxc_rtc_release(struct device *dev)
237{
238 struct platform_device *pdev = to_platform_device(dev);
239 struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
240 void __iomem *ioaddr = pdata->ioaddr;
241
242 spin_lock_irq(&pdata->rtc->irq_lock);
243
244 /* Disable all rtc interrupts */
245 writew(0, ioaddr + RTC_RTCIENR);
246
247 /* Clear all interrupt status */
248 writew(0xffffffff, ioaddr + RTC_RTCISR);
249
250 spin_unlock_irq(&pdata->rtc->irq_lock);
251}
252
253static int mxc_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
254{
255 mxc_rtc_irq_enable(dev, RTC_ALM_BIT, enabled);
256 return 0;
257}
258
259/*
260 * This function reads the current RTC time into tm in Gregorian date.
261 */
262static int mxc_rtc_read_time(struct device *dev, struct rtc_time *tm)
263{
264 u32 val;
265
266 /* Avoid roll-over from reading the different registers */
267 do {
268 val = get_alarm_or_time(dev, MXC_RTC_TIME);
269 } while (val != get_alarm_or_time(dev, MXC_RTC_TIME));
270
271 rtc_time_to_tm(val, tm);
272
273 return 0;
274}
275
276/*
277 * This function sets the internal RTC time based on tm in Gregorian date.
278 */
279static int mxc_rtc_set_mmss(struct device *dev, unsigned long time)
280{
281 /*
282 * TTC_DAYR register is 9-bit in MX1 SoC, save time and day of year only
283 */
284 if (cpu_is_mx1()) {
285 struct rtc_time tm;
286
287 rtc_time_to_tm(time, &tm);
288 tm.tm_year = 70;
289 rtc_tm_to_time(&tm, &time);
290 }
291
292 /* Avoid roll-over from reading the different registers */
293 do {
294 set_alarm_or_time(dev, MXC_RTC_TIME, time);
295 } while (time != get_alarm_or_time(dev, MXC_RTC_TIME));
296
297 return 0;
298}
299
300/*
301 * This function reads the current alarm value into the passed in 'alrm'
302 * argument. It updates the alrm's pending field value based on the whether
303 * an alarm interrupt occurs or not.
304 */
305static int mxc_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
306{
307 struct platform_device *pdev = to_platform_device(dev);
308 struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
309 void __iomem *ioaddr = pdata->ioaddr;
310
311 rtc_time_to_tm(get_alarm_or_time(dev, MXC_RTC_ALARM), &alrm->time);
312 alrm->pending = ((readw(ioaddr + RTC_RTCISR) & RTC_ALM_BIT)) ? 1 : 0;
313
314 return 0;
315}
316
317/*
318 * This function sets the RTC alarm based on passed in alrm.
319 */
320static int mxc_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
321{
322 struct platform_device *pdev = to_platform_device(dev);
323 struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
324 int ret;
325
326 ret = rtc_update_alarm(dev, &alrm->time);
327 if (ret)
328 return ret;
329
330 memcpy(&pdata->g_rtc_alarm, &alrm->time, sizeof(struct rtc_time));
331 mxc_rtc_irq_enable(dev, RTC_ALM_BIT, alrm->enabled);
332
333 return 0;
334}
335
336/* RTC layer */
337static struct rtc_class_ops mxc_rtc_ops = {
338 .release = mxc_rtc_release,
339 .read_time = mxc_rtc_read_time,
340 .set_mmss = mxc_rtc_set_mmss,
341 .read_alarm = mxc_rtc_read_alarm,
342 .set_alarm = mxc_rtc_set_alarm,
343 .alarm_irq_enable = mxc_rtc_alarm_irq_enable,
344};
345
346static int __init mxc_rtc_probe(struct platform_device *pdev)
347{
348 struct resource *res;
349 struct rtc_device *rtc;
350 struct rtc_plat_data *pdata = NULL;
351 u32 reg;
352 unsigned long rate;
353 int ret;
354
355 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
356 if (!res)
357 return -ENODEV;
358
359 pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
360 if (!pdata)
361 return -ENOMEM;
362
363 if (!devm_request_mem_region(&pdev->dev, res->start,
364 resource_size(res), pdev->name))
365 return -EBUSY;
366
367 pdata->ioaddr = devm_ioremap(&pdev->dev, res->start,
368 resource_size(res));
369
370 pdata->clk = clk_get(&pdev->dev, "rtc");
371 if (IS_ERR(pdata->clk)) {
372 dev_err(&pdev->dev, "unable to get clock!\n");
373 ret = PTR_ERR(pdata->clk);
374 goto exit_free_pdata;
375 }
376
377 clk_enable(pdata->clk);
378 rate = clk_get_rate(pdata->clk);
379
380 if (rate == 32768)
381 reg = RTC_INPUT_CLK_32768HZ;
382 else if (rate == 32000)
383 reg = RTC_INPUT_CLK_32000HZ;
384 else if (rate == 38400)
385 reg = RTC_INPUT_CLK_38400HZ;
386 else {
387 dev_err(&pdev->dev, "rtc clock is not valid (%lu)\n", rate);
388 ret = -EINVAL;
389 goto exit_put_clk;
390 }
391
392 reg |= RTC_ENABLE_BIT;
393 writew(reg, (pdata->ioaddr + RTC_RTCCTL));
394 if (((readw(pdata->ioaddr + RTC_RTCCTL)) & RTC_ENABLE_BIT) == 0) {
395 dev_err(&pdev->dev, "hardware module can't be enabled!\n");
396 ret = -EIO;
397 goto exit_put_clk;
398 }
399
400 platform_set_drvdata(pdev, pdata);
401
402 /* Configure and enable the RTC */
403 pdata->irq = platform_get_irq(pdev, 0);
404
405 if (pdata->irq >= 0 &&
406 devm_request_irq(&pdev->dev, pdata->irq, mxc_rtc_interrupt,
407 IRQF_SHARED, pdev->name, pdev) < 0) {
408 dev_warn(&pdev->dev, "interrupt not available.\n");
409 pdata->irq = -1;
410 }
411
412 if (pdata->irq >=0)
413 device_init_wakeup(&pdev->dev, 1);
414
415 rtc = rtc_device_register(pdev->name, &pdev->dev, &mxc_rtc_ops,
416 THIS_MODULE);
417 if (IS_ERR(rtc)) {
418 ret = PTR_ERR(rtc);
419 goto exit_clr_drvdata;
420 }
421
422 pdata->rtc = rtc;
423
424 return 0;
425
426exit_clr_drvdata:
427 platform_set_drvdata(pdev, NULL);
428exit_put_clk:
429 clk_disable(pdata->clk);
430 clk_put(pdata->clk);
431
432exit_free_pdata:
433
434 return ret;
435}
436
437static int __exit mxc_rtc_remove(struct platform_device *pdev)
438{
439 struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
440
441 rtc_device_unregister(pdata->rtc);
442
443 clk_disable(pdata->clk);
444 clk_put(pdata->clk);
445 platform_set_drvdata(pdev, NULL);
446
447 return 0;
448}
449
450#ifdef CONFIG_PM
451static int mxc_rtc_suspend(struct device *dev)
452{
453 struct rtc_plat_data *pdata = dev_get_drvdata(dev);
454
455 if (device_may_wakeup(dev))
456 enable_irq_wake(pdata->irq);
457
458 return 0;
459}
460
461static int mxc_rtc_resume(struct device *dev)
462{
463 struct rtc_plat_data *pdata = dev_get_drvdata(dev);
464
465 if (device_may_wakeup(dev))
466 disable_irq_wake(pdata->irq);
467
468 return 0;
469}
470
471static struct dev_pm_ops mxc_rtc_pm_ops = {
472 .suspend = mxc_rtc_suspend,
473 .resume = mxc_rtc_resume,
474};
475#endif
476
477static struct platform_driver mxc_rtc_driver = {
478 .driver = {
479 .name = "mxc_rtc",
480#ifdef CONFIG_PM
481 .pm = &mxc_rtc_pm_ops,
482#endif
483 .owner = THIS_MODULE,
484 },
485 .remove = __exit_p(mxc_rtc_remove),
486};
487
488static int __init mxc_rtc_init(void)
489{
490 return platform_driver_probe(&mxc_rtc_driver, mxc_rtc_probe);
491}
492
493static void __exit mxc_rtc_exit(void)
494{
495 platform_driver_unregister(&mxc_rtc_driver);
496}
497
498module_init(mxc_rtc_init);
499module_exit(mxc_rtc_exit);
500
501MODULE_AUTHOR("Daniel Mack <daniel@caiaq.de>");
502MODULE_DESCRIPTION("RTC driver for Freescale MXC");
503MODULE_LICENSE("GPL");
504
1// SPDX-License-Identifier: GPL-2.0+
2//
3// Copyright 2004-2008 Freescale Semiconductor, Inc. All Rights Reserved.
4
5#include <linux/io.h>
6#include <linux/rtc.h>
7#include <linux/module.h>
8#include <linux/slab.h>
9#include <linux/interrupt.h>
10#include <linux/platform_device.h>
11#include <linux/pm_wakeirq.h>
12#include <linux/clk.h>
13#include <linux/of.h>
14#include <linux/of_device.h>
15
16#define RTC_INPUT_CLK_32768HZ (0x00 << 5)
17#define RTC_INPUT_CLK_32000HZ (0x01 << 5)
18#define RTC_INPUT_CLK_38400HZ (0x02 << 5)
19
20#define RTC_SW_BIT (1 << 0)
21#define RTC_ALM_BIT (1 << 2)
22#define RTC_1HZ_BIT (1 << 4)
23#define RTC_2HZ_BIT (1 << 7)
24#define RTC_SAM0_BIT (1 << 8)
25#define RTC_SAM1_BIT (1 << 9)
26#define RTC_SAM2_BIT (1 << 10)
27#define RTC_SAM3_BIT (1 << 11)
28#define RTC_SAM4_BIT (1 << 12)
29#define RTC_SAM5_BIT (1 << 13)
30#define RTC_SAM6_BIT (1 << 14)
31#define RTC_SAM7_BIT (1 << 15)
32#define PIT_ALL_ON (RTC_2HZ_BIT | RTC_SAM0_BIT | RTC_SAM1_BIT | \
33 RTC_SAM2_BIT | RTC_SAM3_BIT | RTC_SAM4_BIT | \
34 RTC_SAM5_BIT | RTC_SAM6_BIT | RTC_SAM7_BIT)
35
36#define RTC_ENABLE_BIT (1 << 7)
37
38#define MAX_PIE_NUM 9
39#define MAX_PIE_FREQ 512
40
41#define MXC_RTC_TIME 0
42#define MXC_RTC_ALARM 1
43
44#define RTC_HOURMIN 0x00 /* 32bit rtc hour/min counter reg */
45#define RTC_SECOND 0x04 /* 32bit rtc seconds counter reg */
46#define RTC_ALRM_HM 0x08 /* 32bit rtc alarm hour/min reg */
47#define RTC_ALRM_SEC 0x0C /* 32bit rtc alarm seconds reg */
48#define RTC_RTCCTL 0x10 /* 32bit rtc control reg */
49#define RTC_RTCISR 0x14 /* 32bit rtc interrupt status reg */
50#define RTC_RTCIENR 0x18 /* 32bit rtc interrupt enable reg */
51#define RTC_STPWCH 0x1C /* 32bit rtc stopwatch min reg */
52#define RTC_DAYR 0x20 /* 32bit rtc days counter reg */
53#define RTC_DAYALARM 0x24 /* 32bit rtc day alarm reg */
54#define RTC_TEST1 0x28 /* 32bit rtc test reg 1 */
55#define RTC_TEST2 0x2C /* 32bit rtc test reg 2 */
56#define RTC_TEST3 0x30 /* 32bit rtc test reg 3 */
57
58enum imx_rtc_type {
59 IMX1_RTC,
60 IMX21_RTC,
61};
62
63struct rtc_plat_data {
64 struct rtc_device *rtc;
65 void __iomem *ioaddr;
66 int irq;
67 struct clk *clk_ref;
68 struct clk *clk_ipg;
69 struct rtc_time g_rtc_alarm;
70 enum imx_rtc_type devtype;
71};
72
73static const struct platform_device_id imx_rtc_devtype[] = {
74 {
75 .name = "imx1-rtc",
76 .driver_data = IMX1_RTC,
77 }, {
78 .name = "imx21-rtc",
79 .driver_data = IMX21_RTC,
80 }, {
81 /* sentinel */
82 }
83};
84MODULE_DEVICE_TABLE(platform, imx_rtc_devtype);
85
86#ifdef CONFIG_OF
87static const struct of_device_id imx_rtc_dt_ids[] = {
88 { .compatible = "fsl,imx1-rtc", .data = (const void *)IMX1_RTC },
89 { .compatible = "fsl,imx21-rtc", .data = (const void *)IMX21_RTC },
90 {}
91};
92MODULE_DEVICE_TABLE(of, imx_rtc_dt_ids);
93#endif
94
95static inline int is_imx1_rtc(struct rtc_plat_data *data)
96{
97 return data->devtype == IMX1_RTC;
98}
99
100/*
101 * This function is used to obtain the RTC time or the alarm value in
102 * second.
103 */
104static time64_t get_alarm_or_time(struct device *dev, int time_alarm)
105{
106 struct rtc_plat_data *pdata = dev_get_drvdata(dev);
107 void __iomem *ioaddr = pdata->ioaddr;
108 u32 day = 0, hr = 0, min = 0, sec = 0, hr_min = 0;
109
110 switch (time_alarm) {
111 case MXC_RTC_TIME:
112 day = readw(ioaddr + RTC_DAYR);
113 hr_min = readw(ioaddr + RTC_HOURMIN);
114 sec = readw(ioaddr + RTC_SECOND);
115 break;
116 case MXC_RTC_ALARM:
117 day = readw(ioaddr + RTC_DAYALARM);
118 hr_min = readw(ioaddr + RTC_ALRM_HM) & 0xffff;
119 sec = readw(ioaddr + RTC_ALRM_SEC);
120 break;
121 }
122
123 hr = hr_min >> 8;
124 min = hr_min & 0xff;
125
126 return ((((time64_t)day * 24 + hr) * 60) + min) * 60 + sec;
127}
128
129/*
130 * This function sets the RTC alarm value or the time value.
131 */
132static void set_alarm_or_time(struct device *dev, int time_alarm, time64_t time)
133{
134 u32 tod, day, hr, min, sec, temp;
135 struct rtc_plat_data *pdata = dev_get_drvdata(dev);
136 void __iomem *ioaddr = pdata->ioaddr;
137
138 day = div_s64_rem(time, 86400, &tod);
139
140 /* time is within a day now */
141 hr = tod / 3600;
142 tod -= hr * 3600;
143
144 /* time is within an hour now */
145 min = tod / 60;
146 sec = tod - min * 60;
147
148 temp = (hr << 8) + min;
149
150 switch (time_alarm) {
151 case MXC_RTC_TIME:
152 writew(day, ioaddr + RTC_DAYR);
153 writew(sec, ioaddr + RTC_SECOND);
154 writew(temp, ioaddr + RTC_HOURMIN);
155 break;
156 case MXC_RTC_ALARM:
157 writew(day, ioaddr + RTC_DAYALARM);
158 writew(sec, ioaddr + RTC_ALRM_SEC);
159 writew(temp, ioaddr + RTC_ALRM_HM);
160 break;
161 }
162}
163
164/*
165 * This function updates the RTC alarm registers and then clears all the
166 * interrupt status bits.
167 */
168static void rtc_update_alarm(struct device *dev, struct rtc_time *alrm)
169{
170 time64_t time;
171 struct rtc_plat_data *pdata = dev_get_drvdata(dev);
172 void __iomem *ioaddr = pdata->ioaddr;
173
174 time = rtc_tm_to_time64(alrm);
175
176 /* clear all the interrupt status bits */
177 writew(readw(ioaddr + RTC_RTCISR), ioaddr + RTC_RTCISR);
178 set_alarm_or_time(dev, MXC_RTC_ALARM, time);
179}
180
181static void mxc_rtc_irq_enable(struct device *dev, unsigned int bit,
182 unsigned int enabled)
183{
184 struct rtc_plat_data *pdata = dev_get_drvdata(dev);
185 void __iomem *ioaddr = pdata->ioaddr;
186 u32 reg;
187 unsigned long flags;
188
189 spin_lock_irqsave(&pdata->rtc->irq_lock, flags);
190 reg = readw(ioaddr + RTC_RTCIENR);
191
192 if (enabled)
193 reg |= bit;
194 else
195 reg &= ~bit;
196
197 writew(reg, ioaddr + RTC_RTCIENR);
198 spin_unlock_irqrestore(&pdata->rtc->irq_lock, flags);
199}
200
201/* This function is the RTC interrupt service routine. */
202static irqreturn_t mxc_rtc_interrupt(int irq, void *dev_id)
203{
204 struct platform_device *pdev = dev_id;
205 struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
206 void __iomem *ioaddr = pdata->ioaddr;
207 unsigned long flags;
208 u32 status;
209 u32 events = 0;
210
211 spin_lock_irqsave(&pdata->rtc->irq_lock, flags);
212 status = readw(ioaddr + RTC_RTCISR) & readw(ioaddr + RTC_RTCIENR);
213 /* clear interrupt sources */
214 writew(status, ioaddr + RTC_RTCISR);
215
216 /* update irq data & counter */
217 if (status & RTC_ALM_BIT) {
218 events |= (RTC_AF | RTC_IRQF);
219 /* RTC alarm should be one-shot */
220 mxc_rtc_irq_enable(&pdev->dev, RTC_ALM_BIT, 0);
221 }
222
223 if (status & PIT_ALL_ON)
224 events |= (RTC_PF | RTC_IRQF);
225
226 rtc_update_irq(pdata->rtc, 1, events);
227 spin_unlock_irqrestore(&pdata->rtc->irq_lock, flags);
228
229 return IRQ_HANDLED;
230}
231
232static int mxc_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
233{
234 mxc_rtc_irq_enable(dev, RTC_ALM_BIT, enabled);
235 return 0;
236}
237
238/*
239 * This function reads the current RTC time into tm in Gregorian date.
240 */
241static int mxc_rtc_read_time(struct device *dev, struct rtc_time *tm)
242{
243 time64_t val;
244
245 /* Avoid roll-over from reading the different registers */
246 do {
247 val = get_alarm_or_time(dev, MXC_RTC_TIME);
248 } while (val != get_alarm_or_time(dev, MXC_RTC_TIME));
249
250 rtc_time64_to_tm(val, tm);
251
252 return 0;
253}
254
255/*
256 * This function sets the internal RTC time based on tm in Gregorian date.
257 */
258static int mxc_rtc_set_time(struct device *dev, struct rtc_time *tm)
259{
260 time64_t time = rtc_tm_to_time64(tm);
261
262 /* Avoid roll-over from reading the different registers */
263 do {
264 set_alarm_or_time(dev, MXC_RTC_TIME, time);
265 } while (time != get_alarm_or_time(dev, MXC_RTC_TIME));
266
267 return 0;
268}
269
270/*
271 * This function reads the current alarm value into the passed in 'alrm'
272 * argument. It updates the alrm's pending field value based on the whether
273 * an alarm interrupt occurs or not.
274 */
275static int mxc_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
276{
277 struct rtc_plat_data *pdata = dev_get_drvdata(dev);
278 void __iomem *ioaddr = pdata->ioaddr;
279
280 rtc_time64_to_tm(get_alarm_or_time(dev, MXC_RTC_ALARM), &alrm->time);
281 alrm->pending = ((readw(ioaddr + RTC_RTCISR) & RTC_ALM_BIT)) ? 1 : 0;
282
283 return 0;
284}
285
286/*
287 * This function sets the RTC alarm based on passed in alrm.
288 */
289static int mxc_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
290{
291 struct rtc_plat_data *pdata = dev_get_drvdata(dev);
292
293 rtc_update_alarm(dev, &alrm->time);
294
295 memcpy(&pdata->g_rtc_alarm, &alrm->time, sizeof(struct rtc_time));
296 mxc_rtc_irq_enable(dev, RTC_ALM_BIT, alrm->enabled);
297
298 return 0;
299}
300
301/* RTC layer */
302static const struct rtc_class_ops mxc_rtc_ops = {
303 .read_time = mxc_rtc_read_time,
304 .set_time = mxc_rtc_set_time,
305 .read_alarm = mxc_rtc_read_alarm,
306 .set_alarm = mxc_rtc_set_alarm,
307 .alarm_irq_enable = mxc_rtc_alarm_irq_enable,
308};
309
310static void mxc_rtc_action(void *p)
311{
312 struct rtc_plat_data *pdata = p;
313
314 clk_disable_unprepare(pdata->clk_ref);
315 clk_disable_unprepare(pdata->clk_ipg);
316}
317
318static int mxc_rtc_probe(struct platform_device *pdev)
319{
320 struct rtc_device *rtc;
321 struct rtc_plat_data *pdata = NULL;
322 u32 reg;
323 unsigned long rate;
324 int ret;
325 const struct of_device_id *of_id;
326
327 pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
328 if (!pdata)
329 return -ENOMEM;
330
331 of_id = of_match_device(imx_rtc_dt_ids, &pdev->dev);
332 if (of_id)
333 pdata->devtype = (enum imx_rtc_type)of_id->data;
334 else
335 pdata->devtype = pdev->id_entry->driver_data;
336
337 pdata->ioaddr = devm_platform_ioremap_resource(pdev, 0);
338 if (IS_ERR(pdata->ioaddr))
339 return PTR_ERR(pdata->ioaddr);
340
341 rtc = devm_rtc_allocate_device(&pdev->dev);
342 if (IS_ERR(rtc))
343 return PTR_ERR(rtc);
344
345 pdata->rtc = rtc;
346 rtc->ops = &mxc_rtc_ops;
347 if (is_imx1_rtc(pdata)) {
348 struct rtc_time tm;
349
350 /* 9bit days + hours minutes seconds */
351 rtc->range_max = (1 << 9) * 86400 - 1;
352
353 /*
354 * Set the start date as beginning of the current year. This can
355 * be overridden using device tree.
356 */
357 rtc_time64_to_tm(ktime_get_real_seconds(), &tm);
358 rtc->start_secs = mktime64(tm.tm_year, 1, 1, 0, 0, 0);
359 rtc->set_start_time = true;
360 } else {
361 /* 16bit days + hours minutes seconds */
362 rtc->range_max = (1 << 16) * 86400ULL - 1;
363 }
364
365 pdata->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
366 if (IS_ERR(pdata->clk_ipg)) {
367 dev_err(&pdev->dev, "unable to get ipg clock!\n");
368 return PTR_ERR(pdata->clk_ipg);
369 }
370
371 ret = clk_prepare_enable(pdata->clk_ipg);
372 if (ret)
373 return ret;
374
375 pdata->clk_ref = devm_clk_get(&pdev->dev, "ref");
376 if (IS_ERR(pdata->clk_ref)) {
377 clk_disable_unprepare(pdata->clk_ipg);
378 dev_err(&pdev->dev, "unable to get ref clock!\n");
379 return PTR_ERR(pdata->clk_ref);
380 }
381
382 ret = clk_prepare_enable(pdata->clk_ref);
383 if (ret) {
384 clk_disable_unprepare(pdata->clk_ipg);
385 return ret;
386 }
387
388 ret = devm_add_action_or_reset(&pdev->dev, mxc_rtc_action, pdata);
389 if (ret)
390 return ret;
391
392 rate = clk_get_rate(pdata->clk_ref);
393
394 if (rate == 32768)
395 reg = RTC_INPUT_CLK_32768HZ;
396 else if (rate == 32000)
397 reg = RTC_INPUT_CLK_32000HZ;
398 else if (rate == 38400)
399 reg = RTC_INPUT_CLK_38400HZ;
400 else {
401 dev_err(&pdev->dev, "rtc clock is not valid (%lu)\n", rate);
402 return -EINVAL;
403 }
404
405 reg |= RTC_ENABLE_BIT;
406 writew(reg, (pdata->ioaddr + RTC_RTCCTL));
407 if (((readw(pdata->ioaddr + RTC_RTCCTL)) & RTC_ENABLE_BIT) == 0) {
408 dev_err(&pdev->dev, "hardware module can't be enabled!\n");
409 return -EIO;
410 }
411
412 platform_set_drvdata(pdev, pdata);
413
414 /* Configure and enable the RTC */
415 pdata->irq = platform_get_irq(pdev, 0);
416
417 if (pdata->irq >= 0 &&
418 devm_request_irq(&pdev->dev, pdata->irq, mxc_rtc_interrupt,
419 IRQF_SHARED, pdev->name, pdev) < 0) {
420 dev_warn(&pdev->dev, "interrupt not available.\n");
421 pdata->irq = -1;
422 }
423
424 if (pdata->irq >= 0) {
425 device_init_wakeup(&pdev->dev, 1);
426 ret = dev_pm_set_wake_irq(&pdev->dev, pdata->irq);
427 if (ret)
428 dev_err(&pdev->dev, "failed to enable irq wake\n");
429 }
430
431 ret = rtc_register_device(rtc);
432
433 return ret;
434}
435
436static struct platform_driver mxc_rtc_driver = {
437 .driver = {
438 .name = "mxc_rtc",
439 .of_match_table = of_match_ptr(imx_rtc_dt_ids),
440 },
441 .id_table = imx_rtc_devtype,
442 .probe = mxc_rtc_probe,
443};
444
445module_platform_driver(mxc_rtc_driver)
446
447MODULE_AUTHOR("Daniel Mack <daniel@caiaq.de>");
448MODULE_DESCRIPTION("RTC driver for Freescale MXC");
449MODULE_LICENSE("GPL");
450