Linux Audio

Check our new training course

Loading...
v3.5.6
  1/*
  2 * Copyright 2004-2008 Freescale Semiconductor, Inc. All Rights Reserved.
  3 *
  4 * The code contained herein is licensed under the GNU General Public
  5 * License. You may obtain a copy of the GNU General Public License
  6 * Version 2 or later at the following locations:
  7 *
  8 * http://www.opensource.org/licenses/gpl-license.html
  9 * http://www.gnu.org/copyleft/gpl.html
 10 */
 11
 12#include <linux/io.h>
 13#include <linux/rtc.h>
 14#include <linux/module.h>
 15#include <linux/slab.h>
 16#include <linux/interrupt.h>
 17#include <linux/platform_device.h>
 18#include <linux/clk.h>
 19
 20#include <mach/hardware.h>
 21
 22#define RTC_INPUT_CLK_32768HZ	(0x00 << 5)
 23#define RTC_INPUT_CLK_32000HZ	(0x01 << 5)
 24#define RTC_INPUT_CLK_38400HZ	(0x02 << 5)
 25
 26#define RTC_SW_BIT      (1 << 0)
 27#define RTC_ALM_BIT     (1 << 2)
 28#define RTC_1HZ_BIT     (1 << 4)
 29#define RTC_2HZ_BIT     (1 << 7)
 30#define RTC_SAM0_BIT    (1 << 8)
 31#define RTC_SAM1_BIT    (1 << 9)
 32#define RTC_SAM2_BIT    (1 << 10)
 33#define RTC_SAM3_BIT    (1 << 11)
 34#define RTC_SAM4_BIT    (1 << 12)
 35#define RTC_SAM5_BIT    (1 << 13)
 36#define RTC_SAM6_BIT    (1 << 14)
 37#define RTC_SAM7_BIT    (1 << 15)
 38#define PIT_ALL_ON      (RTC_2HZ_BIT | RTC_SAM0_BIT | RTC_SAM1_BIT | \
 39			 RTC_SAM2_BIT | RTC_SAM3_BIT | RTC_SAM4_BIT | \
 40			 RTC_SAM5_BIT | RTC_SAM6_BIT | RTC_SAM7_BIT)
 41
 42#define RTC_ENABLE_BIT  (1 << 7)
 43
 44#define MAX_PIE_NUM     9
 45#define MAX_PIE_FREQ    512
 46static const u32 PIE_BIT_DEF[MAX_PIE_NUM][2] = {
 47	{ 2,		RTC_2HZ_BIT },
 48	{ 4,		RTC_SAM0_BIT },
 49	{ 8,		RTC_SAM1_BIT },
 50	{ 16,		RTC_SAM2_BIT },
 51	{ 32,		RTC_SAM3_BIT },
 52	{ 64,		RTC_SAM4_BIT },
 53	{ 128,		RTC_SAM5_BIT },
 54	{ 256,		RTC_SAM6_BIT },
 55	{ MAX_PIE_FREQ,	RTC_SAM7_BIT },
 56};
 57
 58#define MXC_RTC_TIME	0
 59#define MXC_RTC_ALARM	1
 60
 61#define RTC_HOURMIN	0x00	/*  32bit rtc hour/min counter reg */
 62#define RTC_SECOND	0x04	/*  32bit rtc seconds counter reg */
 63#define RTC_ALRM_HM	0x08	/*  32bit rtc alarm hour/min reg */
 64#define RTC_ALRM_SEC	0x0C	/*  32bit rtc alarm seconds reg */
 65#define RTC_RTCCTL	0x10	/*  32bit rtc control reg */
 66#define RTC_RTCISR	0x14	/*  32bit rtc interrupt status reg */
 67#define RTC_RTCIENR	0x18	/*  32bit rtc interrupt enable reg */
 68#define RTC_STPWCH	0x1C	/*  32bit rtc stopwatch min reg */
 69#define RTC_DAYR	0x20	/*  32bit rtc days counter reg */
 70#define RTC_DAYALARM	0x24	/*  32bit rtc day alarm reg */
 71#define RTC_TEST1	0x28	/*  32bit rtc test reg 1 */
 72#define RTC_TEST2	0x2C	/*  32bit rtc test reg 2 */
 73#define RTC_TEST3	0x30	/*  32bit rtc test reg 3 */
 74
 
 
 
 
 
 75struct rtc_plat_data {
 76	struct rtc_device *rtc;
 77	void __iomem *ioaddr;
 78	int irq;
 79	struct clk *clk;
 
 80	struct rtc_time g_rtc_alarm;
 
 81};
 82
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 83/*
 84 * This function is used to obtain the RTC time or the alarm value in
 85 * second.
 86 */
 87static u32 get_alarm_or_time(struct device *dev, int time_alarm)
 88{
 89	struct platform_device *pdev = to_platform_device(dev);
 90	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
 91	void __iomem *ioaddr = pdata->ioaddr;
 92	u32 day = 0, hr = 0, min = 0, sec = 0, hr_min = 0;
 93
 94	switch (time_alarm) {
 95	case MXC_RTC_TIME:
 96		day = readw(ioaddr + RTC_DAYR);
 97		hr_min = readw(ioaddr + RTC_HOURMIN);
 98		sec = readw(ioaddr + RTC_SECOND);
 99		break;
100	case MXC_RTC_ALARM:
101		day = readw(ioaddr + RTC_DAYALARM);
102		hr_min = readw(ioaddr + RTC_ALRM_HM) & 0xffff;
103		sec = readw(ioaddr + RTC_ALRM_SEC);
104		break;
105	}
106
107	hr = hr_min >> 8;
108	min = hr_min & 0xff;
109
110	return (((day * 24 + hr) * 60) + min) * 60 + sec;
111}
112
113/*
114 * This function sets the RTC alarm value or the time value.
115 */
116static void set_alarm_or_time(struct device *dev, int time_alarm, u32 time)
117{
118	u32 day, hr, min, sec, temp;
119	struct platform_device *pdev = to_platform_device(dev);
120	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
121	void __iomem *ioaddr = pdata->ioaddr;
122
123	day = time / 86400;
124	time -= day * 86400;
125
126	/* time is within a day now */
127	hr = time / 3600;
128	time -= hr * 3600;
129
130	/* time is within an hour now */
131	min = time / 60;
132	sec = time - min * 60;
133
134	temp = (hr << 8) + min;
135
136	switch (time_alarm) {
137	case MXC_RTC_TIME:
138		writew(day, ioaddr + RTC_DAYR);
139		writew(sec, ioaddr + RTC_SECOND);
140		writew(temp, ioaddr + RTC_HOURMIN);
141		break;
142	case MXC_RTC_ALARM:
143		writew(day, ioaddr + RTC_DAYALARM);
144		writew(sec, ioaddr + RTC_ALRM_SEC);
145		writew(temp, ioaddr + RTC_ALRM_HM);
146		break;
147	}
148}
149
150/*
151 * This function updates the RTC alarm registers and then clears all the
152 * interrupt status bits.
153 */
154static int rtc_update_alarm(struct device *dev, struct rtc_time *alrm)
155{
156	struct rtc_time alarm_tm, now_tm;
157	unsigned long now, time;
158	struct platform_device *pdev = to_platform_device(dev);
159	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
160	void __iomem *ioaddr = pdata->ioaddr;
161
162	now = get_alarm_or_time(dev, MXC_RTC_TIME);
163	rtc_time_to_tm(now, &now_tm);
164	alarm_tm.tm_year = now_tm.tm_year;
165	alarm_tm.tm_mon = now_tm.tm_mon;
166	alarm_tm.tm_mday = now_tm.tm_mday;
167	alarm_tm.tm_hour = alrm->tm_hour;
168	alarm_tm.tm_min = alrm->tm_min;
169	alarm_tm.tm_sec = alrm->tm_sec;
170	rtc_tm_to_time(&alarm_tm, &time);
171
172	/* clear all the interrupt status bits */
173	writew(readw(ioaddr + RTC_RTCISR), ioaddr + RTC_RTCISR);
174	set_alarm_or_time(dev, MXC_RTC_ALARM, time);
175
176	return 0;
177}
178
179static void mxc_rtc_irq_enable(struct device *dev, unsigned int bit,
180				unsigned int enabled)
181{
182	struct platform_device *pdev = to_platform_device(dev);
183	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
184	void __iomem *ioaddr = pdata->ioaddr;
185	u32 reg;
186
187	spin_lock_irq(&pdata->rtc->irq_lock);
188	reg = readw(ioaddr + RTC_RTCIENR);
189
190	if (enabled)
191		reg |= bit;
192	else
193		reg &= ~bit;
194
195	writew(reg, ioaddr + RTC_RTCIENR);
196	spin_unlock_irq(&pdata->rtc->irq_lock);
197}
198
199/* This function is the RTC interrupt service routine. */
200static irqreturn_t mxc_rtc_interrupt(int irq, void *dev_id)
201{
202	struct platform_device *pdev = dev_id;
203	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
204	void __iomem *ioaddr = pdata->ioaddr;
205	unsigned long flags;
206	u32 status;
207	u32 events = 0;
208
209	spin_lock_irqsave(&pdata->rtc->irq_lock, flags);
210	status = readw(ioaddr + RTC_RTCISR) & readw(ioaddr + RTC_RTCIENR);
211	/* clear interrupt sources */
212	writew(status, ioaddr + RTC_RTCISR);
213
214	/* update irq data & counter */
215	if (status & RTC_ALM_BIT) {
216		events |= (RTC_AF | RTC_IRQF);
217		/* RTC alarm should be one-shot */
218		mxc_rtc_irq_enable(&pdev->dev, RTC_ALM_BIT, 0);
219	}
220
221	if (status & RTC_1HZ_BIT)
222		events |= (RTC_UF | RTC_IRQF);
223
224	if (status & PIT_ALL_ON)
225		events |= (RTC_PF | RTC_IRQF);
226
227	rtc_update_irq(pdata->rtc, 1, events);
228	spin_unlock_irqrestore(&pdata->rtc->irq_lock, flags);
229
230	return IRQ_HANDLED;
231}
232
233/*
234 * Clear all interrupts and release the IRQ
235 */
236static void mxc_rtc_release(struct device *dev)
237{
238	struct platform_device *pdev = to_platform_device(dev);
239	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
240	void __iomem *ioaddr = pdata->ioaddr;
241
242	spin_lock_irq(&pdata->rtc->irq_lock);
243
244	/* Disable all rtc interrupts */
245	writew(0, ioaddr + RTC_RTCIENR);
246
247	/* Clear all interrupt status */
248	writew(0xffffffff, ioaddr + RTC_RTCISR);
249
250	spin_unlock_irq(&pdata->rtc->irq_lock);
251}
252
253static int mxc_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
254{
255	mxc_rtc_irq_enable(dev, RTC_ALM_BIT, enabled);
256	return 0;
257}
258
259/*
260 * This function reads the current RTC time into tm in Gregorian date.
261 */
262static int mxc_rtc_read_time(struct device *dev, struct rtc_time *tm)
263{
264	u32 val;
265
266	/* Avoid roll-over from reading the different registers */
267	do {
268		val = get_alarm_or_time(dev, MXC_RTC_TIME);
269	} while (val != get_alarm_or_time(dev, MXC_RTC_TIME));
270
271	rtc_time_to_tm(val, tm);
272
273	return 0;
274}
275
276/*
277 * This function sets the internal RTC time based on tm in Gregorian date.
278 */
279static int mxc_rtc_set_mmss(struct device *dev, unsigned long time)
280{
 
 
 
281	/*
282	 * TTC_DAYR register is 9-bit in MX1 SoC, save time and day of year only
283	 */
284	if (cpu_is_mx1()) {
285		struct rtc_time tm;
286
287		rtc_time_to_tm(time, &tm);
288		tm.tm_year = 70;
289		rtc_tm_to_time(&tm, &time);
290	}
291
292	/* Avoid roll-over from reading the different registers */
293	do {
294		set_alarm_or_time(dev, MXC_RTC_TIME, time);
295	} while (time != get_alarm_or_time(dev, MXC_RTC_TIME));
296
297	return 0;
298}
299
300/*
301 * This function reads the current alarm value into the passed in 'alrm'
302 * argument. It updates the alrm's pending field value based on the whether
303 * an alarm interrupt occurs or not.
304 */
305static int mxc_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
306{
307	struct platform_device *pdev = to_platform_device(dev);
308	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
309	void __iomem *ioaddr = pdata->ioaddr;
310
311	rtc_time_to_tm(get_alarm_or_time(dev, MXC_RTC_ALARM), &alrm->time);
312	alrm->pending = ((readw(ioaddr + RTC_RTCISR) & RTC_ALM_BIT)) ? 1 : 0;
313
314	return 0;
315}
316
317/*
318 * This function sets the RTC alarm based on passed in alrm.
319 */
320static int mxc_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
321{
322	struct platform_device *pdev = to_platform_device(dev);
323	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
324	int ret;
325
326	ret = rtc_update_alarm(dev, &alrm->time);
327	if (ret)
328		return ret;
329
330	memcpy(&pdata->g_rtc_alarm, &alrm->time, sizeof(struct rtc_time));
331	mxc_rtc_irq_enable(dev, RTC_ALM_BIT, alrm->enabled);
332
333	return 0;
334}
335
336/* RTC layer */
337static struct rtc_class_ops mxc_rtc_ops = {
338	.release		= mxc_rtc_release,
339	.read_time		= mxc_rtc_read_time,
340	.set_mmss		= mxc_rtc_set_mmss,
341	.read_alarm		= mxc_rtc_read_alarm,
342	.set_alarm		= mxc_rtc_set_alarm,
343	.alarm_irq_enable	= mxc_rtc_alarm_irq_enable,
344};
345
346static int __init mxc_rtc_probe(struct platform_device *pdev)
347{
348	struct resource *res;
349	struct rtc_device *rtc;
350	struct rtc_plat_data *pdata = NULL;
351	u32 reg;
352	unsigned long rate;
353	int ret;
354
355	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
356	if (!res)
357		return -ENODEV;
358
359	pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
360	if (!pdata)
361		return -ENOMEM;
362
363	if (!devm_request_mem_region(&pdev->dev, res->start,
364				     resource_size(res), pdev->name))
365		return -EBUSY;
366
367	pdata->ioaddr = devm_ioremap(&pdev->dev, res->start,
368				     resource_size(res));
369
370	pdata->clk = clk_get(&pdev->dev, "rtc");
371	if (IS_ERR(pdata->clk)) {
372		dev_err(&pdev->dev, "unable to get clock!\n");
373		ret = PTR_ERR(pdata->clk);
374		goto exit_free_pdata;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
375	}
376
377	clk_enable(pdata->clk);
378	rate = clk_get_rate(pdata->clk);
 
 
 
379
380	if (rate == 32768)
381		reg = RTC_INPUT_CLK_32768HZ;
382	else if (rate == 32000)
383		reg = RTC_INPUT_CLK_32000HZ;
384	else if (rate == 38400)
385		reg = RTC_INPUT_CLK_38400HZ;
386	else {
387		dev_err(&pdev->dev, "rtc clock is not valid (%lu)\n", rate);
388		ret = -EINVAL;
389		goto exit_put_clk;
390	}
391
392	reg |= RTC_ENABLE_BIT;
393	writew(reg, (pdata->ioaddr + RTC_RTCCTL));
394	if (((readw(pdata->ioaddr + RTC_RTCCTL)) & RTC_ENABLE_BIT) == 0) {
395		dev_err(&pdev->dev, "hardware module can't be enabled!\n");
396		ret = -EIO;
397		goto exit_put_clk;
398	}
399
400	platform_set_drvdata(pdev, pdata);
401
402	/* Configure and enable the RTC */
403	pdata->irq = platform_get_irq(pdev, 0);
404
405	if (pdata->irq >= 0 &&
406	    devm_request_irq(&pdev->dev, pdata->irq, mxc_rtc_interrupt,
407			     IRQF_SHARED, pdev->name, pdev) < 0) {
408		dev_warn(&pdev->dev, "interrupt not available.\n");
409		pdata->irq = -1;
410	}
411
412	if (pdata->irq >=0)
413		device_init_wakeup(&pdev->dev, 1);
414
415	rtc = rtc_device_register(pdev->name, &pdev->dev, &mxc_rtc_ops,
416				  THIS_MODULE);
417	if (IS_ERR(rtc)) {
418		ret = PTR_ERR(rtc);
419		goto exit_clr_drvdata;
420	}
421
422	pdata->rtc = rtc;
423
424	return 0;
425
426exit_clr_drvdata:
427	platform_set_drvdata(pdev, NULL);
428exit_put_clk:
429	clk_disable(pdata->clk);
430	clk_put(pdata->clk);
431
432exit_free_pdata:
433
434	return ret;
435}
436
437static int __exit mxc_rtc_remove(struct platform_device *pdev)
438{
439	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
440
441	rtc_device_unregister(pdata->rtc);
442
443	clk_disable(pdata->clk);
444	clk_put(pdata->clk);
445	platform_set_drvdata(pdev, NULL);
446
447	return 0;
448}
449
450#ifdef CONFIG_PM
451static int mxc_rtc_suspend(struct device *dev)
452{
453	struct rtc_plat_data *pdata = dev_get_drvdata(dev);
454
455	if (device_may_wakeup(dev))
456		enable_irq_wake(pdata->irq);
457
458	return 0;
459}
460
461static int mxc_rtc_resume(struct device *dev)
462{
463	struct rtc_plat_data *pdata = dev_get_drvdata(dev);
464
465	if (device_may_wakeup(dev))
466		disable_irq_wake(pdata->irq);
467
468	return 0;
469}
470
471static struct dev_pm_ops mxc_rtc_pm_ops = {
472	.suspend	= mxc_rtc_suspend,
473	.resume		= mxc_rtc_resume,
474};
475#endif
476
 
 
477static struct platform_driver mxc_rtc_driver = {
478	.driver = {
479		   .name	= "mxc_rtc",
480#ifdef CONFIG_PM
481		   .pm		= &mxc_rtc_pm_ops,
482#endif
483		   .owner	= THIS_MODULE,
484	},
485	.remove		= __exit_p(mxc_rtc_remove),
 
 
486};
487
488static int __init mxc_rtc_init(void)
489{
490	return platform_driver_probe(&mxc_rtc_driver, mxc_rtc_probe);
491}
492
493static void __exit mxc_rtc_exit(void)
494{
495	platform_driver_unregister(&mxc_rtc_driver);
496}
497
498module_init(mxc_rtc_init);
499module_exit(mxc_rtc_exit);
500
501MODULE_AUTHOR("Daniel Mack <daniel@caiaq.de>");
502MODULE_DESCRIPTION("RTC driver for Freescale MXC");
503MODULE_LICENSE("GPL");
504
v4.17
  1/*
  2 * Copyright 2004-2008 Freescale Semiconductor, Inc. All Rights Reserved.
  3 *
  4 * The code contained herein is licensed under the GNU General Public
  5 * License. You may obtain a copy of the GNU General Public License
  6 * Version 2 or later at the following locations:
  7 *
  8 * http://www.opensource.org/licenses/gpl-license.html
  9 * http://www.gnu.org/copyleft/gpl.html
 10 */
 11
 12#include <linux/io.h>
 13#include <linux/rtc.h>
 14#include <linux/module.h>
 15#include <linux/slab.h>
 16#include <linux/interrupt.h>
 17#include <linux/platform_device.h>
 18#include <linux/clk.h>
 19#include <linux/of.h>
 20#include <linux/of_device.h>
 21
 22#define RTC_INPUT_CLK_32768HZ	(0x00 << 5)
 23#define RTC_INPUT_CLK_32000HZ	(0x01 << 5)
 24#define RTC_INPUT_CLK_38400HZ	(0x02 << 5)
 25
 26#define RTC_SW_BIT      (1 << 0)
 27#define RTC_ALM_BIT     (1 << 2)
 28#define RTC_1HZ_BIT     (1 << 4)
 29#define RTC_2HZ_BIT     (1 << 7)
 30#define RTC_SAM0_BIT    (1 << 8)
 31#define RTC_SAM1_BIT    (1 << 9)
 32#define RTC_SAM2_BIT    (1 << 10)
 33#define RTC_SAM3_BIT    (1 << 11)
 34#define RTC_SAM4_BIT    (1 << 12)
 35#define RTC_SAM5_BIT    (1 << 13)
 36#define RTC_SAM6_BIT    (1 << 14)
 37#define RTC_SAM7_BIT    (1 << 15)
 38#define PIT_ALL_ON      (RTC_2HZ_BIT | RTC_SAM0_BIT | RTC_SAM1_BIT | \
 39			 RTC_SAM2_BIT | RTC_SAM3_BIT | RTC_SAM4_BIT | \
 40			 RTC_SAM5_BIT | RTC_SAM6_BIT | RTC_SAM7_BIT)
 41
 42#define RTC_ENABLE_BIT  (1 << 7)
 43
 44#define MAX_PIE_NUM     9
 45#define MAX_PIE_FREQ    512
 
 
 
 
 
 
 
 
 
 
 
 46
 47#define MXC_RTC_TIME	0
 48#define MXC_RTC_ALARM	1
 49
 50#define RTC_HOURMIN	0x00	/*  32bit rtc hour/min counter reg */
 51#define RTC_SECOND	0x04	/*  32bit rtc seconds counter reg */
 52#define RTC_ALRM_HM	0x08	/*  32bit rtc alarm hour/min reg */
 53#define RTC_ALRM_SEC	0x0C	/*  32bit rtc alarm seconds reg */
 54#define RTC_RTCCTL	0x10	/*  32bit rtc control reg */
 55#define RTC_RTCISR	0x14	/*  32bit rtc interrupt status reg */
 56#define RTC_RTCIENR	0x18	/*  32bit rtc interrupt enable reg */
 57#define RTC_STPWCH	0x1C	/*  32bit rtc stopwatch min reg */
 58#define RTC_DAYR	0x20	/*  32bit rtc days counter reg */
 59#define RTC_DAYALARM	0x24	/*  32bit rtc day alarm reg */
 60#define RTC_TEST1	0x28	/*  32bit rtc test reg 1 */
 61#define RTC_TEST2	0x2C	/*  32bit rtc test reg 2 */
 62#define RTC_TEST3	0x30	/*  32bit rtc test reg 3 */
 63
 64enum imx_rtc_type {
 65	IMX1_RTC,
 66	IMX21_RTC,
 67};
 68
 69struct rtc_plat_data {
 70	struct rtc_device *rtc;
 71	void __iomem *ioaddr;
 72	int irq;
 73	struct clk *clk_ref;
 74	struct clk *clk_ipg;
 75	struct rtc_time g_rtc_alarm;
 76	enum imx_rtc_type devtype;
 77};
 78
 79static const struct platform_device_id imx_rtc_devtype[] = {
 80	{
 81		.name = "imx1-rtc",
 82		.driver_data = IMX1_RTC,
 83	}, {
 84		.name = "imx21-rtc",
 85		.driver_data = IMX21_RTC,
 86	}, {
 87		/* sentinel */
 88	}
 89};
 90MODULE_DEVICE_TABLE(platform, imx_rtc_devtype);
 91
 92#ifdef CONFIG_OF
 93static const struct of_device_id imx_rtc_dt_ids[] = {
 94	{ .compatible = "fsl,imx1-rtc", .data = (const void *)IMX1_RTC },
 95	{ .compatible = "fsl,imx21-rtc", .data = (const void *)IMX21_RTC },
 96	{}
 97};
 98MODULE_DEVICE_TABLE(of, imx_rtc_dt_ids);
 99#endif
100
101static inline int is_imx1_rtc(struct rtc_plat_data *data)
102{
103	return data->devtype == IMX1_RTC;
104}
105
106/*
107 * This function is used to obtain the RTC time or the alarm value in
108 * second.
109 */
110static time64_t get_alarm_or_time(struct device *dev, int time_alarm)
111{
112	struct platform_device *pdev = to_platform_device(dev);
113	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
114	void __iomem *ioaddr = pdata->ioaddr;
115	u32 day = 0, hr = 0, min = 0, sec = 0, hr_min = 0;
116
117	switch (time_alarm) {
118	case MXC_RTC_TIME:
119		day = readw(ioaddr + RTC_DAYR);
120		hr_min = readw(ioaddr + RTC_HOURMIN);
121		sec = readw(ioaddr + RTC_SECOND);
122		break;
123	case MXC_RTC_ALARM:
124		day = readw(ioaddr + RTC_DAYALARM);
125		hr_min = readw(ioaddr + RTC_ALRM_HM) & 0xffff;
126		sec = readw(ioaddr + RTC_ALRM_SEC);
127		break;
128	}
129
130	hr = hr_min >> 8;
131	min = hr_min & 0xff;
132
133	return ((((time64_t)day * 24 + hr) * 60) + min) * 60 + sec;
134}
135
136/*
137 * This function sets the RTC alarm value or the time value.
138 */
139static void set_alarm_or_time(struct device *dev, int time_alarm, time64_t time)
140{
141	u32 tod, day, hr, min, sec, temp;
142	struct platform_device *pdev = to_platform_device(dev);
143	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
144	void __iomem *ioaddr = pdata->ioaddr;
145
146	day = div_s64_rem(time, 86400, &tod);
 
147
148	/* time is within a day now */
149	hr = tod / 3600;
150	tod -= hr * 3600;
151
152	/* time is within an hour now */
153	min = tod / 60;
154	sec = tod - min * 60;
155
156	temp = (hr << 8) + min;
157
158	switch (time_alarm) {
159	case MXC_RTC_TIME:
160		writew(day, ioaddr + RTC_DAYR);
161		writew(sec, ioaddr + RTC_SECOND);
162		writew(temp, ioaddr + RTC_HOURMIN);
163		break;
164	case MXC_RTC_ALARM:
165		writew(day, ioaddr + RTC_DAYALARM);
166		writew(sec, ioaddr + RTC_ALRM_SEC);
167		writew(temp, ioaddr + RTC_ALRM_HM);
168		break;
169	}
170}
171
172/*
173 * This function updates the RTC alarm registers and then clears all the
174 * interrupt status bits.
175 */
176static void rtc_update_alarm(struct device *dev, struct rtc_time *alrm)
177{
178	time64_t time;
 
179	struct platform_device *pdev = to_platform_device(dev);
180	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
181	void __iomem *ioaddr = pdata->ioaddr;
182
183	time = rtc_tm_to_time64(alrm);
 
 
 
 
 
 
 
 
184
185	/* clear all the interrupt status bits */
186	writew(readw(ioaddr + RTC_RTCISR), ioaddr + RTC_RTCISR);
187	set_alarm_or_time(dev, MXC_RTC_ALARM, time);
 
 
188}
189
190static void mxc_rtc_irq_enable(struct device *dev, unsigned int bit,
191				unsigned int enabled)
192{
193	struct platform_device *pdev = to_platform_device(dev);
194	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
195	void __iomem *ioaddr = pdata->ioaddr;
196	u32 reg;
197
198	spin_lock_irq(&pdata->rtc->irq_lock);
199	reg = readw(ioaddr + RTC_RTCIENR);
200
201	if (enabled)
202		reg |= bit;
203	else
204		reg &= ~bit;
205
206	writew(reg, ioaddr + RTC_RTCIENR);
207	spin_unlock_irq(&pdata->rtc->irq_lock);
208}
209
210/* This function is the RTC interrupt service routine. */
211static irqreturn_t mxc_rtc_interrupt(int irq, void *dev_id)
212{
213	struct platform_device *pdev = dev_id;
214	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
215	void __iomem *ioaddr = pdata->ioaddr;
216	unsigned long flags;
217	u32 status;
218	u32 events = 0;
219
220	spin_lock_irqsave(&pdata->rtc->irq_lock, flags);
221	status = readw(ioaddr + RTC_RTCISR) & readw(ioaddr + RTC_RTCIENR);
222	/* clear interrupt sources */
223	writew(status, ioaddr + RTC_RTCISR);
224
225	/* update irq data & counter */
226	if (status & RTC_ALM_BIT) {
227		events |= (RTC_AF | RTC_IRQF);
228		/* RTC alarm should be one-shot */
229		mxc_rtc_irq_enable(&pdev->dev, RTC_ALM_BIT, 0);
230	}
231
 
 
 
232	if (status & PIT_ALL_ON)
233		events |= (RTC_PF | RTC_IRQF);
234
235	rtc_update_irq(pdata->rtc, 1, events);
236	spin_unlock_irqrestore(&pdata->rtc->irq_lock, flags);
237
238	return IRQ_HANDLED;
239}
240
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
241static int mxc_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
242{
243	mxc_rtc_irq_enable(dev, RTC_ALM_BIT, enabled);
244	return 0;
245}
246
247/*
248 * This function reads the current RTC time into tm in Gregorian date.
249 */
250static int mxc_rtc_read_time(struct device *dev, struct rtc_time *tm)
251{
252	time64_t val;
253
254	/* Avoid roll-over from reading the different registers */
255	do {
256		val = get_alarm_or_time(dev, MXC_RTC_TIME);
257	} while (val != get_alarm_or_time(dev, MXC_RTC_TIME));
258
259	rtc_time64_to_tm(val, tm);
260
261	return 0;
262}
263
264/*
265 * This function sets the internal RTC time based on tm in Gregorian date.
266 */
267static int mxc_rtc_set_mmss(struct device *dev, time64_t time)
268{
269	struct platform_device *pdev = to_platform_device(dev);
270	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
271
272	/*
273	 * TTC_DAYR register is 9-bit in MX1 SoC, save time and day of year only
274	 */
275	if (is_imx1_rtc(pdata)) {
276		struct rtc_time tm;
277
278		rtc_time64_to_tm(time, &tm);
279		tm.tm_year = 70;
280		time = rtc_tm_to_time64(&tm);
281	}
282
283	/* Avoid roll-over from reading the different registers */
284	do {
285		set_alarm_or_time(dev, MXC_RTC_TIME, time);
286	} while (time != get_alarm_or_time(dev, MXC_RTC_TIME));
287
288	return 0;
289}
290
291/*
292 * This function reads the current alarm value into the passed in 'alrm'
293 * argument. It updates the alrm's pending field value based on the whether
294 * an alarm interrupt occurs or not.
295 */
296static int mxc_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
297{
298	struct platform_device *pdev = to_platform_device(dev);
299	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
300	void __iomem *ioaddr = pdata->ioaddr;
301
302	rtc_time64_to_tm(get_alarm_or_time(dev, MXC_RTC_ALARM), &alrm->time);
303	alrm->pending = ((readw(ioaddr + RTC_RTCISR) & RTC_ALM_BIT)) ? 1 : 0;
304
305	return 0;
306}
307
308/*
309 * This function sets the RTC alarm based on passed in alrm.
310 */
311static int mxc_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
312{
313	struct platform_device *pdev = to_platform_device(dev);
314	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
 
315
316	rtc_update_alarm(dev, &alrm->time);
 
 
317
318	memcpy(&pdata->g_rtc_alarm, &alrm->time, sizeof(struct rtc_time));
319	mxc_rtc_irq_enable(dev, RTC_ALM_BIT, alrm->enabled);
320
321	return 0;
322}
323
324/* RTC layer */
325static const struct rtc_class_ops mxc_rtc_ops = {
 
326	.read_time		= mxc_rtc_read_time,
327	.set_mmss64		= mxc_rtc_set_mmss,
328	.read_alarm		= mxc_rtc_read_alarm,
329	.set_alarm		= mxc_rtc_set_alarm,
330	.alarm_irq_enable	= mxc_rtc_alarm_irq_enable,
331};
332
333static int mxc_rtc_probe(struct platform_device *pdev)
334{
335	struct resource *res;
336	struct rtc_device *rtc;
337	struct rtc_plat_data *pdata = NULL;
338	u32 reg;
339	unsigned long rate;
340	int ret;
341	const struct of_device_id *of_id;
 
 
 
342
343	pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
344	if (!pdata)
345		return -ENOMEM;
346
347	of_id = of_match_device(imx_rtc_dt_ids, &pdev->dev);
348	if (of_id)
349		pdata->devtype = (enum imx_rtc_type)of_id->data;
350	else
351		pdata->devtype = pdev->id_entry->driver_data;
352
353	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
354	pdata->ioaddr = devm_ioremap_resource(&pdev->dev, res);
355	if (IS_ERR(pdata->ioaddr))
356		return PTR_ERR(pdata->ioaddr);
357
358	pdata->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
359	if (IS_ERR(pdata->clk_ipg)) {
360		dev_err(&pdev->dev, "unable to get ipg clock!\n");
361		return PTR_ERR(pdata->clk_ipg);
362	}
363
364	ret = clk_prepare_enable(pdata->clk_ipg);
365	if (ret)
366		return ret;
367
368	pdata->clk_ref = devm_clk_get(&pdev->dev, "ref");
369	if (IS_ERR(pdata->clk_ref)) {
370		dev_err(&pdev->dev, "unable to get ref clock!\n");
371		ret = PTR_ERR(pdata->clk_ref);
372		goto exit_put_clk_ipg;
373	}
374
375	ret = clk_prepare_enable(pdata->clk_ref);
376	if (ret)
377		goto exit_put_clk_ipg;
378
379	rate = clk_get_rate(pdata->clk_ref);
380
381	if (rate == 32768)
382		reg = RTC_INPUT_CLK_32768HZ;
383	else if (rate == 32000)
384		reg = RTC_INPUT_CLK_32000HZ;
385	else if (rate == 38400)
386		reg = RTC_INPUT_CLK_38400HZ;
387	else {
388		dev_err(&pdev->dev, "rtc clock is not valid (%lu)\n", rate);
389		ret = -EINVAL;
390		goto exit_put_clk_ref;
391	}
392
393	reg |= RTC_ENABLE_BIT;
394	writew(reg, (pdata->ioaddr + RTC_RTCCTL));
395	if (((readw(pdata->ioaddr + RTC_RTCCTL)) & RTC_ENABLE_BIT) == 0) {
396		dev_err(&pdev->dev, "hardware module can't be enabled!\n");
397		ret = -EIO;
398		goto exit_put_clk_ref;
399	}
400
401	platform_set_drvdata(pdev, pdata);
402
403	/* Configure and enable the RTC */
404	pdata->irq = platform_get_irq(pdev, 0);
405
406	if (pdata->irq >= 0 &&
407	    devm_request_irq(&pdev->dev, pdata->irq, mxc_rtc_interrupt,
408			     IRQF_SHARED, pdev->name, pdev) < 0) {
409		dev_warn(&pdev->dev, "interrupt not available.\n");
410		pdata->irq = -1;
411	}
412
413	if (pdata->irq >= 0)
414		device_init_wakeup(&pdev->dev, 1);
415
416	rtc = devm_rtc_device_register(&pdev->dev, pdev->name, &mxc_rtc_ops,
417				  THIS_MODULE);
418	if (IS_ERR(rtc)) {
419		ret = PTR_ERR(rtc);
420		goto exit_put_clk_ref;
421	}
422
423	pdata->rtc = rtc;
424
425	return 0;
426
427exit_put_clk_ref:
428	clk_disable_unprepare(pdata->clk_ref);
429exit_put_clk_ipg:
430	clk_disable_unprepare(pdata->clk_ipg);
 
 
 
431
432	return ret;
433}
434
435static int mxc_rtc_remove(struct platform_device *pdev)
436{
437	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
438
439	clk_disable_unprepare(pdata->clk_ref);
440	clk_disable_unprepare(pdata->clk_ipg);
 
 
 
441
442	return 0;
443}
444
445#ifdef CONFIG_PM_SLEEP
446static int mxc_rtc_suspend(struct device *dev)
447{
448	struct rtc_plat_data *pdata = dev_get_drvdata(dev);
449
450	if (device_may_wakeup(dev))
451		enable_irq_wake(pdata->irq);
452
453	return 0;
454}
455
456static int mxc_rtc_resume(struct device *dev)
457{
458	struct rtc_plat_data *pdata = dev_get_drvdata(dev);
459
460	if (device_may_wakeup(dev))
461		disable_irq_wake(pdata->irq);
462
463	return 0;
464}
 
 
 
 
 
465#endif
466
467static SIMPLE_DEV_PM_OPS(mxc_rtc_pm_ops, mxc_rtc_suspend, mxc_rtc_resume);
468
469static struct platform_driver mxc_rtc_driver = {
470	.driver = {
471		   .name	= "mxc_rtc",
472		   .of_match_table = of_match_ptr(imx_rtc_dt_ids),
473		   .pm		= &mxc_rtc_pm_ops,
 
 
474	},
475	.id_table = imx_rtc_devtype,
476	.probe = mxc_rtc_probe,
477	.remove = mxc_rtc_remove,
478};
479
480module_platform_driver(mxc_rtc_driver)
 
 
 
 
 
 
 
 
 
 
 
481
482MODULE_AUTHOR("Daniel Mack <daniel@caiaq.de>");
483MODULE_DESCRIPTION("RTC driver for Freescale MXC");
484MODULE_LICENSE("GPL");
485