Loading...
1/*
2 * mmc_spi.c - Access SD/MMC cards through SPI master controllers
3 *
4 * (C) Copyright 2005, Intec Automation,
5 * Mike Lavender (mike@steroidmicros)
6 * (C) Copyright 2006-2007, David Brownell
7 * (C) Copyright 2007, Axis Communications,
8 * Hans-Peter Nilsson (hp@axis.com)
9 * (C) Copyright 2007, ATRON electronic GmbH,
10 * Jan Nikitenko <jan.nikitenko@gmail.com>
11 *
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 *
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26 */
27#include <linux/sched.h>
28#include <linux/delay.h>
29#include <linux/slab.h>
30#include <linux/module.h>
31#include <linux/bio.h>
32#include <linux/dma-mapping.h>
33#include <linux/crc7.h>
34#include <linux/crc-itu-t.h>
35#include <linux/scatterlist.h>
36
37#include <linux/mmc/host.h>
38#include <linux/mmc/mmc.h> /* for R1_SPI_* bit values */
39
40#include <linux/spi/spi.h>
41#include <linux/spi/mmc_spi.h>
42
43#include <asm/unaligned.h>
44
45
46/* NOTES:
47 *
48 * - For now, we won't try to interoperate with a real mmc/sd/sdio
49 * controller, although some of them do have hardware support for
50 * SPI protocol. The main reason for such configs would be mmc-ish
51 * cards like DataFlash, which don't support that "native" protocol.
52 *
53 * We don't have a "DataFlash/MMC/SD/SDIO card slot" abstraction to
54 * switch between driver stacks, and in any case if "native" mode
55 * is available, it will be faster and hence preferable.
56 *
57 * - MMC depends on a different chipselect management policy than the
58 * SPI interface currently supports for shared bus segments: it needs
59 * to issue multiple spi_message requests with the chipselect active,
60 * using the results of one message to decide the next one to issue.
61 *
62 * Pending updates to the programming interface, this driver expects
63 * that it not share the bus with other drivers (precluding conflicts).
64 *
65 * - We tell the controller to keep the chipselect active from the
66 * beginning of an mmc_host_ops.request until the end. So beware
67 * of SPI controller drivers that mis-handle the cs_change flag!
68 *
69 * However, many cards seem OK with chipselect flapping up/down
70 * during that time ... at least on unshared bus segments.
71 */
72
73
74/*
75 * Local protocol constants, internal to data block protocols.
76 */
77
78/* Response tokens used to ack each block written: */
79#define SPI_MMC_RESPONSE_CODE(x) ((x) & 0x1f)
80#define SPI_RESPONSE_ACCEPTED ((2 << 1)|1)
81#define SPI_RESPONSE_CRC_ERR ((5 << 1)|1)
82#define SPI_RESPONSE_WRITE_ERR ((6 << 1)|1)
83
84/* Read and write blocks start with these tokens and end with crc;
85 * on error, read tokens act like a subset of R2_SPI_* values.
86 */
87#define SPI_TOKEN_SINGLE 0xfe /* single block r/w, multiblock read */
88#define SPI_TOKEN_MULTI_WRITE 0xfc /* multiblock write */
89#define SPI_TOKEN_STOP_TRAN 0xfd /* terminate multiblock write */
90
91#define MMC_SPI_BLOCKSIZE 512
92
93
94/* These fixed timeouts come from the latest SD specs, which say to ignore
95 * the CSD values. The R1B value is for card erase (e.g. the "I forgot the
96 * card's password" scenario); it's mostly applied to STOP_TRANSMISSION after
97 * reads which takes nowhere near that long. Older cards may be able to use
98 * shorter timeouts ... but why bother?
99 */
100#define r1b_timeout (HZ * 3)
101
102/* One of the critical speed parameters is the amount of data which may
103 * be transferred in one command. If this value is too low, the SD card
104 * controller has to do multiple partial block writes (argggh!). With
105 * today (2008) SD cards there is little speed gain if we transfer more
106 * than 64 KBytes at a time. So use this value until there is any indication
107 * that we should do more here.
108 */
109#define MMC_SPI_BLOCKSATONCE 128
110
111/****************************************************************************/
112
113/*
114 * Local Data Structures
115 */
116
117/* "scratch" is per-{command,block} data exchanged with the card */
118struct scratch {
119 u8 status[29];
120 u8 data_token;
121 __be16 crc_val;
122};
123
124struct mmc_spi_host {
125 struct mmc_host *mmc;
126 struct spi_device *spi;
127
128 unsigned char power_mode;
129 u16 powerup_msecs;
130
131 struct mmc_spi_platform_data *pdata;
132
133 /* for bulk data transfers */
134 struct spi_transfer token, t, crc, early_status;
135 struct spi_message m;
136
137 /* for status readback */
138 struct spi_transfer status;
139 struct spi_message readback;
140
141 /* underlying DMA-aware controller, or null */
142 struct device *dma_dev;
143
144 /* buffer used for commands and for message "overhead" */
145 struct scratch *data;
146 dma_addr_t data_dma;
147
148 /* Specs say to write ones most of the time, even when the card
149 * has no need to read its input data; and many cards won't care.
150 * This is our source of those ones.
151 */
152 void *ones;
153 dma_addr_t ones_dma;
154};
155
156
157/****************************************************************************/
158
159/*
160 * MMC-over-SPI protocol glue, used by the MMC stack interface
161 */
162
163static inline int mmc_cs_off(struct mmc_spi_host *host)
164{
165 /* chipselect will always be inactive after setup() */
166 return spi_setup(host->spi);
167}
168
169static int
170mmc_spi_readbytes(struct mmc_spi_host *host, unsigned len)
171{
172 int status;
173
174 if (len > sizeof(*host->data)) {
175 WARN_ON(1);
176 return -EIO;
177 }
178
179 host->status.len = len;
180
181 if (host->dma_dev)
182 dma_sync_single_for_device(host->dma_dev,
183 host->data_dma, sizeof(*host->data),
184 DMA_FROM_DEVICE);
185
186 status = spi_sync_locked(host->spi, &host->readback);
187
188 if (host->dma_dev)
189 dma_sync_single_for_cpu(host->dma_dev,
190 host->data_dma, sizeof(*host->data),
191 DMA_FROM_DEVICE);
192
193 return status;
194}
195
196static int mmc_spi_skip(struct mmc_spi_host *host, unsigned long timeout,
197 unsigned n, u8 byte)
198{
199 u8 *cp = host->data->status;
200 unsigned long start = jiffies;
201
202 while (1) {
203 int status;
204 unsigned i;
205
206 status = mmc_spi_readbytes(host, n);
207 if (status < 0)
208 return status;
209
210 for (i = 0; i < n; i++) {
211 if (cp[i] != byte)
212 return cp[i];
213 }
214
215 if (time_is_before_jiffies(start + timeout))
216 break;
217
218 /* If we need long timeouts, we may release the CPU.
219 * We use jiffies here because we want to have a relation
220 * between elapsed time and the blocking of the scheduler.
221 */
222 if (time_is_before_jiffies(start+1))
223 schedule();
224 }
225 return -ETIMEDOUT;
226}
227
228static inline int
229mmc_spi_wait_unbusy(struct mmc_spi_host *host, unsigned long timeout)
230{
231 return mmc_spi_skip(host, timeout, sizeof(host->data->status), 0);
232}
233
234static int mmc_spi_readtoken(struct mmc_spi_host *host, unsigned long timeout)
235{
236 return mmc_spi_skip(host, timeout, 1, 0xff);
237}
238
239
240/*
241 * Note that for SPI, cmd->resp[0] is not the same data as "native" protocol
242 * hosts return! The low byte holds R1_SPI bits. The next byte may hold
243 * R2_SPI bits ... for SEND_STATUS, or after data read errors.
244 *
245 * cmd->resp[1] holds any four-byte response, for R3 (READ_OCR) and on
246 * newer cards R7 (IF_COND).
247 */
248
249static char *maptype(struct mmc_command *cmd)
250{
251 switch (mmc_spi_resp_type(cmd)) {
252 case MMC_RSP_SPI_R1: return "R1";
253 case MMC_RSP_SPI_R1B: return "R1B";
254 case MMC_RSP_SPI_R2: return "R2/R5";
255 case MMC_RSP_SPI_R3: return "R3/R4/R7";
256 default: return "?";
257 }
258}
259
260/* return zero, else negative errno after setting cmd->error */
261static int mmc_spi_response_get(struct mmc_spi_host *host,
262 struct mmc_command *cmd, int cs_on)
263{
264 u8 *cp = host->data->status;
265 u8 *end = cp + host->t.len;
266 int value = 0;
267 int bitshift;
268 u8 leftover = 0;
269 unsigned short rotator;
270 int i;
271 char tag[32];
272
273 snprintf(tag, sizeof(tag), " ... CMD%d response SPI_%s",
274 cmd->opcode, maptype(cmd));
275
276 /* Except for data block reads, the whole response will already
277 * be stored in the scratch buffer. It's somewhere after the
278 * command and the first byte we read after it. We ignore that
279 * first byte. After STOP_TRANSMISSION command it may include
280 * two data bits, but otherwise it's all ones.
281 */
282 cp += 8;
283 while (cp < end && *cp == 0xff)
284 cp++;
285
286 /* Data block reads (R1 response types) may need more data... */
287 if (cp == end) {
288 cp = host->data->status;
289 end = cp+1;
290
291 /* Card sends N(CR) (== 1..8) bytes of all-ones then one
292 * status byte ... and we already scanned 2 bytes.
293 *
294 * REVISIT block read paths use nasty byte-at-a-time I/O
295 * so it can always DMA directly into the target buffer.
296 * It'd probably be better to memcpy() the first chunk and
297 * avoid extra i/o calls...
298 *
299 * Note we check for more than 8 bytes, because in practice,
300 * some SD cards are slow...
301 */
302 for (i = 2; i < 16; i++) {
303 value = mmc_spi_readbytes(host, 1);
304 if (value < 0)
305 goto done;
306 if (*cp != 0xff)
307 goto checkstatus;
308 }
309 value = -ETIMEDOUT;
310 goto done;
311 }
312
313checkstatus:
314 bitshift = 0;
315 if (*cp & 0x80) {
316 /* Houston, we have an ugly card with a bit-shifted response */
317 rotator = *cp++ << 8;
318 /* read the next byte */
319 if (cp == end) {
320 value = mmc_spi_readbytes(host, 1);
321 if (value < 0)
322 goto done;
323 cp = host->data->status;
324 end = cp+1;
325 }
326 rotator |= *cp++;
327 while (rotator & 0x8000) {
328 bitshift++;
329 rotator <<= 1;
330 }
331 cmd->resp[0] = rotator >> 8;
332 leftover = rotator;
333 } else {
334 cmd->resp[0] = *cp++;
335 }
336 cmd->error = 0;
337
338 /* Status byte: the entire seven-bit R1 response. */
339 if (cmd->resp[0] != 0) {
340 if ((R1_SPI_PARAMETER | R1_SPI_ADDRESS)
341 & cmd->resp[0])
342 value = -EFAULT; /* Bad address */
343 else if (R1_SPI_ILLEGAL_COMMAND & cmd->resp[0])
344 value = -ENOSYS; /* Function not implemented */
345 else if (R1_SPI_COM_CRC & cmd->resp[0])
346 value = -EILSEQ; /* Illegal byte sequence */
347 else if ((R1_SPI_ERASE_SEQ | R1_SPI_ERASE_RESET)
348 & cmd->resp[0])
349 value = -EIO; /* I/O error */
350 /* else R1_SPI_IDLE, "it's resetting" */
351 }
352
353 switch (mmc_spi_resp_type(cmd)) {
354
355 /* SPI R1B == R1 + busy; STOP_TRANSMISSION (for multiblock reads)
356 * and less-common stuff like various erase operations.
357 */
358 case MMC_RSP_SPI_R1B:
359 /* maybe we read all the busy tokens already */
360 while (cp < end && *cp == 0)
361 cp++;
362 if (cp == end)
363 mmc_spi_wait_unbusy(host, r1b_timeout);
364 break;
365
366 /* SPI R2 == R1 + second status byte; SEND_STATUS
367 * SPI R5 == R1 + data byte; IO_RW_DIRECT
368 */
369 case MMC_RSP_SPI_R2:
370 /* read the next byte */
371 if (cp == end) {
372 value = mmc_spi_readbytes(host, 1);
373 if (value < 0)
374 goto done;
375 cp = host->data->status;
376 end = cp+1;
377 }
378 if (bitshift) {
379 rotator = leftover << 8;
380 rotator |= *cp << bitshift;
381 cmd->resp[0] |= (rotator & 0xFF00);
382 } else {
383 cmd->resp[0] |= *cp << 8;
384 }
385 break;
386
387 /* SPI R3, R4, or R7 == R1 + 4 bytes */
388 case MMC_RSP_SPI_R3:
389 rotator = leftover << 8;
390 cmd->resp[1] = 0;
391 for (i = 0; i < 4; i++) {
392 cmd->resp[1] <<= 8;
393 /* read the next byte */
394 if (cp == end) {
395 value = mmc_spi_readbytes(host, 1);
396 if (value < 0)
397 goto done;
398 cp = host->data->status;
399 end = cp+1;
400 }
401 if (bitshift) {
402 rotator |= *cp++ << bitshift;
403 cmd->resp[1] |= (rotator >> 8);
404 rotator <<= 8;
405 } else {
406 cmd->resp[1] |= *cp++;
407 }
408 }
409 break;
410
411 /* SPI R1 == just one status byte */
412 case MMC_RSP_SPI_R1:
413 break;
414
415 default:
416 dev_dbg(&host->spi->dev, "bad response type %04x\n",
417 mmc_spi_resp_type(cmd));
418 if (value >= 0)
419 value = -EINVAL;
420 goto done;
421 }
422
423 if (value < 0)
424 dev_dbg(&host->spi->dev, "%s: resp %04x %08x\n",
425 tag, cmd->resp[0], cmd->resp[1]);
426
427 /* disable chipselect on errors and some success cases */
428 if (value >= 0 && cs_on)
429 return value;
430done:
431 if (value < 0)
432 cmd->error = value;
433 mmc_cs_off(host);
434 return value;
435}
436
437/* Issue command and read its response.
438 * Returns zero on success, negative for error.
439 *
440 * On error, caller must cope with mmc core retry mechanism. That
441 * means immediate low-level resubmit, which affects the bus lock...
442 */
443static int
444mmc_spi_command_send(struct mmc_spi_host *host,
445 struct mmc_request *mrq,
446 struct mmc_command *cmd, int cs_on)
447{
448 struct scratch *data = host->data;
449 u8 *cp = data->status;
450 u32 arg = cmd->arg;
451 int status;
452 struct spi_transfer *t;
453
454 /* We can handle most commands (except block reads) in one full
455 * duplex I/O operation before either starting the next transfer
456 * (data block or command) or else deselecting the card.
457 *
458 * First, write 7 bytes:
459 * - an all-ones byte to ensure the card is ready
460 * - opcode byte (plus start and transmission bits)
461 * - four bytes of big-endian argument
462 * - crc7 (plus end bit) ... always computed, it's cheap
463 *
464 * We init the whole buffer to all-ones, which is what we need
465 * to write while we're reading (later) response data.
466 */
467 memset(cp++, 0xff, sizeof(data->status));
468
469 *cp++ = 0x40 | cmd->opcode;
470 *cp++ = (u8)(arg >> 24);
471 *cp++ = (u8)(arg >> 16);
472 *cp++ = (u8)(arg >> 8);
473 *cp++ = (u8)arg;
474 *cp++ = (crc7(0, &data->status[1], 5) << 1) | 0x01;
475
476 /* Then, read up to 13 bytes (while writing all-ones):
477 * - N(CR) (== 1..8) bytes of all-ones
478 * - status byte (for all response types)
479 * - the rest of the response, either:
480 * + nothing, for R1 or R1B responses
481 * + second status byte, for R2 responses
482 * + four data bytes, for R3 and R7 responses
483 *
484 * Finally, read some more bytes ... in the nice cases we know in
485 * advance how many, and reading 1 more is always OK:
486 * - N(EC) (== 0..N) bytes of all-ones, before deselect/finish
487 * - N(RC) (== 1..N) bytes of all-ones, before next command
488 * - N(WR) (== 1..N) bytes of all-ones, before data write
489 *
490 * So in those cases one full duplex I/O of at most 21 bytes will
491 * handle the whole command, leaving the card ready to receive a
492 * data block or new command. We do that whenever we can, shaving
493 * CPU and IRQ costs (especially when using DMA or FIFOs).
494 *
495 * There are two other cases, where it's not generally practical
496 * to rely on a single I/O:
497 *
498 * - R1B responses need at least N(EC) bytes of all-zeroes.
499 *
500 * In this case we can *try* to fit it into one I/O, then
501 * maybe read more data later.
502 *
503 * - Data block reads are more troublesome, since a variable
504 * number of padding bytes precede the token and data.
505 * + N(CX) (== 0..8) bytes of all-ones, before CSD or CID
506 * + N(AC) (== 1..many) bytes of all-ones
507 *
508 * In this case we currently only have minimal speedups here:
509 * when N(CR) == 1 we can avoid I/O in response_get().
510 */
511 if (cs_on && (mrq->data->flags & MMC_DATA_READ)) {
512 cp += 2; /* min(N(CR)) + status */
513 /* R1 */
514 } else {
515 cp += 10; /* max(N(CR)) + status + min(N(RC),N(WR)) */
516 if (cmd->flags & MMC_RSP_SPI_S2) /* R2/R5 */
517 cp++;
518 else if (cmd->flags & MMC_RSP_SPI_B4) /* R3/R4/R7 */
519 cp += 4;
520 else if (cmd->flags & MMC_RSP_BUSY) /* R1B */
521 cp = data->status + sizeof(data->status);
522 /* else: R1 (most commands) */
523 }
524
525 dev_dbg(&host->spi->dev, " mmc_spi: CMD%d, resp %s\n",
526 cmd->opcode, maptype(cmd));
527
528 /* send command, leaving chipselect active */
529 spi_message_init(&host->m);
530
531 t = &host->t;
532 memset(t, 0, sizeof(*t));
533 t->tx_buf = t->rx_buf = data->status;
534 t->tx_dma = t->rx_dma = host->data_dma;
535 t->len = cp - data->status;
536 t->cs_change = 1;
537 spi_message_add_tail(t, &host->m);
538
539 if (host->dma_dev) {
540 host->m.is_dma_mapped = 1;
541 dma_sync_single_for_device(host->dma_dev,
542 host->data_dma, sizeof(*host->data),
543 DMA_BIDIRECTIONAL);
544 }
545 status = spi_sync_locked(host->spi, &host->m);
546
547 if (host->dma_dev)
548 dma_sync_single_for_cpu(host->dma_dev,
549 host->data_dma, sizeof(*host->data),
550 DMA_BIDIRECTIONAL);
551 if (status < 0) {
552 dev_dbg(&host->spi->dev, " ... write returned %d\n", status);
553 cmd->error = status;
554 return status;
555 }
556
557 /* after no-data commands and STOP_TRANSMISSION, chipselect off */
558 return mmc_spi_response_get(host, cmd, cs_on);
559}
560
561/* Build data message with up to four separate transfers. For TX, we
562 * start by writing the data token. And in most cases, we finish with
563 * a status transfer.
564 *
565 * We always provide TX data for data and CRC. The MMC/SD protocol
566 * requires us to write ones; but Linux defaults to writing zeroes;
567 * so we explicitly initialize it to all ones on RX paths.
568 *
569 * We also handle DMA mapping, so the underlying SPI controller does
570 * not need to (re)do it for each message.
571 */
572static void
573mmc_spi_setup_data_message(
574 struct mmc_spi_host *host,
575 int multiple,
576 enum dma_data_direction direction)
577{
578 struct spi_transfer *t;
579 struct scratch *scratch = host->data;
580 dma_addr_t dma = host->data_dma;
581
582 spi_message_init(&host->m);
583 if (dma)
584 host->m.is_dma_mapped = 1;
585
586 /* for reads, readblock() skips 0xff bytes before finding
587 * the token; for writes, this transfer issues that token.
588 */
589 if (direction == DMA_TO_DEVICE) {
590 t = &host->token;
591 memset(t, 0, sizeof(*t));
592 t->len = 1;
593 if (multiple)
594 scratch->data_token = SPI_TOKEN_MULTI_WRITE;
595 else
596 scratch->data_token = SPI_TOKEN_SINGLE;
597 t->tx_buf = &scratch->data_token;
598 if (dma)
599 t->tx_dma = dma + offsetof(struct scratch, data_token);
600 spi_message_add_tail(t, &host->m);
601 }
602
603 /* Body of transfer is buffer, then CRC ...
604 * either TX-only, or RX with TX-ones.
605 */
606 t = &host->t;
607 memset(t, 0, sizeof(*t));
608 t->tx_buf = host->ones;
609 t->tx_dma = host->ones_dma;
610 /* length and actual buffer info are written later */
611 spi_message_add_tail(t, &host->m);
612
613 t = &host->crc;
614 memset(t, 0, sizeof(*t));
615 t->len = 2;
616 if (direction == DMA_TO_DEVICE) {
617 /* the actual CRC may get written later */
618 t->tx_buf = &scratch->crc_val;
619 if (dma)
620 t->tx_dma = dma + offsetof(struct scratch, crc_val);
621 } else {
622 t->tx_buf = host->ones;
623 t->tx_dma = host->ones_dma;
624 t->rx_buf = &scratch->crc_val;
625 if (dma)
626 t->rx_dma = dma + offsetof(struct scratch, crc_val);
627 }
628 spi_message_add_tail(t, &host->m);
629
630 /*
631 * A single block read is followed by N(EC) [0+] all-ones bytes
632 * before deselect ... don't bother.
633 *
634 * Multiblock reads are followed by N(AC) [1+] all-ones bytes before
635 * the next block is read, or a STOP_TRANSMISSION is issued. We'll
636 * collect that single byte, so readblock() doesn't need to.
637 *
638 * For a write, the one-byte data response follows immediately, then
639 * come zero or more busy bytes, then N(WR) [1+] all-ones bytes.
640 * Then single block reads may deselect, and multiblock ones issue
641 * the next token (next data block, or STOP_TRAN). We can try to
642 * minimize I/O ops by using a single read to collect end-of-busy.
643 */
644 if (multiple || direction == DMA_TO_DEVICE) {
645 t = &host->early_status;
646 memset(t, 0, sizeof(*t));
647 t->len = (direction == DMA_TO_DEVICE)
648 ? sizeof(scratch->status)
649 : 1;
650 t->tx_buf = host->ones;
651 t->tx_dma = host->ones_dma;
652 t->rx_buf = scratch->status;
653 if (dma)
654 t->rx_dma = dma + offsetof(struct scratch, status);
655 t->cs_change = 1;
656 spi_message_add_tail(t, &host->m);
657 }
658}
659
660/*
661 * Write one block:
662 * - caller handled preceding N(WR) [1+] all-ones bytes
663 * - data block
664 * + token
665 * + data bytes
666 * + crc16
667 * - an all-ones byte ... card writes a data-response byte
668 * - followed by N(EC) [0+] all-ones bytes, card writes zero/'busy'
669 *
670 * Return negative errno, else success.
671 */
672static int
673mmc_spi_writeblock(struct mmc_spi_host *host, struct spi_transfer *t,
674 unsigned long timeout)
675{
676 struct spi_device *spi = host->spi;
677 int status, i;
678 struct scratch *scratch = host->data;
679 u32 pattern;
680
681 if (host->mmc->use_spi_crc)
682 scratch->crc_val = cpu_to_be16(
683 crc_itu_t(0, t->tx_buf, t->len));
684 if (host->dma_dev)
685 dma_sync_single_for_device(host->dma_dev,
686 host->data_dma, sizeof(*scratch),
687 DMA_BIDIRECTIONAL);
688
689 status = spi_sync_locked(spi, &host->m);
690
691 if (status != 0) {
692 dev_dbg(&spi->dev, "write error (%d)\n", status);
693 return status;
694 }
695
696 if (host->dma_dev)
697 dma_sync_single_for_cpu(host->dma_dev,
698 host->data_dma, sizeof(*scratch),
699 DMA_BIDIRECTIONAL);
700
701 /*
702 * Get the transmission data-response reply. It must follow
703 * immediately after the data block we transferred. This reply
704 * doesn't necessarily tell whether the write operation succeeded;
705 * it just says if the transmission was ok and whether *earlier*
706 * writes succeeded; see the standard.
707 *
708 * In practice, there are (even modern SDHC-)cards which are late
709 * in sending the response, and miss the time frame by a few bits,
710 * so we have to cope with this situation and check the response
711 * bit-by-bit. Arggh!!!
712 */
713 pattern = scratch->status[0] << 24;
714 pattern |= scratch->status[1] << 16;
715 pattern |= scratch->status[2] << 8;
716 pattern |= scratch->status[3];
717
718 /* First 3 bit of pattern are undefined */
719 pattern |= 0xE0000000;
720
721 /* left-adjust to leading 0 bit */
722 while (pattern & 0x80000000)
723 pattern <<= 1;
724 /* right-adjust for pattern matching. Code is in bit 4..0 now. */
725 pattern >>= 27;
726
727 switch (pattern) {
728 case SPI_RESPONSE_ACCEPTED:
729 status = 0;
730 break;
731 case SPI_RESPONSE_CRC_ERR:
732 /* host shall then issue MMC_STOP_TRANSMISSION */
733 status = -EILSEQ;
734 break;
735 case SPI_RESPONSE_WRITE_ERR:
736 /* host shall then issue MMC_STOP_TRANSMISSION,
737 * and should MMC_SEND_STATUS to sort it out
738 */
739 status = -EIO;
740 break;
741 default:
742 status = -EPROTO;
743 break;
744 }
745 if (status != 0) {
746 dev_dbg(&spi->dev, "write error %02x (%d)\n",
747 scratch->status[0], status);
748 return status;
749 }
750
751 t->tx_buf += t->len;
752 if (host->dma_dev)
753 t->tx_dma += t->len;
754
755 /* Return when not busy. If we didn't collect that status yet,
756 * we'll need some more I/O.
757 */
758 for (i = 4; i < sizeof(scratch->status); i++) {
759 /* card is non-busy if the most recent bit is 1 */
760 if (scratch->status[i] & 0x01)
761 return 0;
762 }
763 return mmc_spi_wait_unbusy(host, timeout);
764}
765
766/*
767 * Read one block:
768 * - skip leading all-ones bytes ... either
769 * + N(AC) [1..f(clock,CSD)] usually, else
770 * + N(CX) [0..8] when reading CSD or CID
771 * - data block
772 * + token ... if error token, no data or crc
773 * + data bytes
774 * + crc16
775 *
776 * After single block reads, we're done; N(EC) [0+] all-ones bytes follow
777 * before dropping chipselect.
778 *
779 * For multiblock reads, caller either reads the next block or issues a
780 * STOP_TRANSMISSION command.
781 */
782static int
783mmc_spi_readblock(struct mmc_spi_host *host, struct spi_transfer *t,
784 unsigned long timeout)
785{
786 struct spi_device *spi = host->spi;
787 int status;
788 struct scratch *scratch = host->data;
789 unsigned int bitshift;
790 u8 leftover;
791
792 /* At least one SD card sends an all-zeroes byte when N(CX)
793 * applies, before the all-ones bytes ... just cope with that.
794 */
795 status = mmc_spi_readbytes(host, 1);
796 if (status < 0)
797 return status;
798 status = scratch->status[0];
799 if (status == 0xff || status == 0)
800 status = mmc_spi_readtoken(host, timeout);
801
802 if (status < 0) {
803 dev_dbg(&spi->dev, "read error %02x (%d)\n", status, status);
804 return status;
805 }
806
807 /* The token may be bit-shifted...
808 * the first 0-bit precedes the data stream.
809 */
810 bitshift = 7;
811 while (status & 0x80) {
812 status <<= 1;
813 bitshift--;
814 }
815 leftover = status << 1;
816
817 if (host->dma_dev) {
818 dma_sync_single_for_device(host->dma_dev,
819 host->data_dma, sizeof(*scratch),
820 DMA_BIDIRECTIONAL);
821 dma_sync_single_for_device(host->dma_dev,
822 t->rx_dma, t->len,
823 DMA_FROM_DEVICE);
824 }
825
826 status = spi_sync_locked(spi, &host->m);
827
828 if (host->dma_dev) {
829 dma_sync_single_for_cpu(host->dma_dev,
830 host->data_dma, sizeof(*scratch),
831 DMA_BIDIRECTIONAL);
832 dma_sync_single_for_cpu(host->dma_dev,
833 t->rx_dma, t->len,
834 DMA_FROM_DEVICE);
835 }
836
837 if (bitshift) {
838 /* Walk through the data and the crc and do
839 * all the magic to get byte-aligned data.
840 */
841 u8 *cp = t->rx_buf;
842 unsigned int len;
843 unsigned int bitright = 8 - bitshift;
844 u8 temp;
845 for (len = t->len; len; len--) {
846 temp = *cp;
847 *cp++ = leftover | (temp >> bitshift);
848 leftover = temp << bitright;
849 }
850 cp = (u8 *) &scratch->crc_val;
851 temp = *cp;
852 *cp++ = leftover | (temp >> bitshift);
853 leftover = temp << bitright;
854 temp = *cp;
855 *cp = leftover | (temp >> bitshift);
856 }
857
858 if (host->mmc->use_spi_crc) {
859 u16 crc = crc_itu_t(0, t->rx_buf, t->len);
860
861 be16_to_cpus(&scratch->crc_val);
862 if (scratch->crc_val != crc) {
863 dev_dbg(&spi->dev, "read - crc error: crc_val=0x%04x, "
864 "computed=0x%04x len=%d\n",
865 scratch->crc_val, crc, t->len);
866 return -EILSEQ;
867 }
868 }
869
870 t->rx_buf += t->len;
871 if (host->dma_dev)
872 t->rx_dma += t->len;
873
874 return 0;
875}
876
877/*
878 * An MMC/SD data stage includes one or more blocks, optional CRCs,
879 * and inline handshaking. That handhaking makes it unlike most
880 * other SPI protocol stacks.
881 */
882static void
883mmc_spi_data_do(struct mmc_spi_host *host, struct mmc_command *cmd,
884 struct mmc_data *data, u32 blk_size)
885{
886 struct spi_device *spi = host->spi;
887 struct device *dma_dev = host->dma_dev;
888 struct spi_transfer *t;
889 enum dma_data_direction direction;
890 struct scatterlist *sg;
891 unsigned n_sg;
892 int multiple = (data->blocks > 1);
893 u32 clock_rate;
894 unsigned long timeout;
895
896 if (data->flags & MMC_DATA_READ)
897 direction = DMA_FROM_DEVICE;
898 else
899 direction = DMA_TO_DEVICE;
900 mmc_spi_setup_data_message(host, multiple, direction);
901 t = &host->t;
902
903 if (t->speed_hz)
904 clock_rate = t->speed_hz;
905 else
906 clock_rate = spi->max_speed_hz;
907
908 timeout = data->timeout_ns +
909 data->timeout_clks * 1000000 / clock_rate;
910 timeout = usecs_to_jiffies((unsigned int)(timeout / 1000)) + 1;
911
912 /* Handle scatterlist segments one at a time, with synch for
913 * each 512-byte block
914 */
915 for (sg = data->sg, n_sg = data->sg_len; n_sg; n_sg--, sg++) {
916 int status = 0;
917 dma_addr_t dma_addr = 0;
918 void *kmap_addr;
919 unsigned length = sg->length;
920 enum dma_data_direction dir = direction;
921
922 /* set up dma mapping for controller drivers that might
923 * use DMA ... though they may fall back to PIO
924 */
925 if (dma_dev) {
926 /* never invalidate whole *shared* pages ... */
927 if ((sg->offset != 0 || length != PAGE_SIZE)
928 && dir == DMA_FROM_DEVICE)
929 dir = DMA_BIDIRECTIONAL;
930
931 dma_addr = dma_map_page(dma_dev, sg_page(sg), 0,
932 PAGE_SIZE, dir);
933 if (direction == DMA_TO_DEVICE)
934 t->tx_dma = dma_addr + sg->offset;
935 else
936 t->rx_dma = dma_addr + sg->offset;
937 }
938
939 /* allow pio too; we don't allow highmem */
940 kmap_addr = kmap(sg_page(sg));
941 if (direction == DMA_TO_DEVICE)
942 t->tx_buf = kmap_addr + sg->offset;
943 else
944 t->rx_buf = kmap_addr + sg->offset;
945
946 /* transfer each block, and update request status */
947 while (length) {
948 t->len = min(length, blk_size);
949
950 dev_dbg(&host->spi->dev,
951 " mmc_spi: %s block, %d bytes\n",
952 (direction == DMA_TO_DEVICE)
953 ? "write"
954 : "read",
955 t->len);
956
957 if (direction == DMA_TO_DEVICE)
958 status = mmc_spi_writeblock(host, t, timeout);
959 else
960 status = mmc_spi_readblock(host, t, timeout);
961 if (status < 0)
962 break;
963
964 data->bytes_xfered += t->len;
965 length -= t->len;
966
967 if (!multiple)
968 break;
969 }
970
971 /* discard mappings */
972 if (direction == DMA_FROM_DEVICE)
973 flush_kernel_dcache_page(sg_page(sg));
974 kunmap(sg_page(sg));
975 if (dma_dev)
976 dma_unmap_page(dma_dev, dma_addr, PAGE_SIZE, dir);
977
978 if (status < 0) {
979 data->error = status;
980 dev_dbg(&spi->dev, "%s status %d\n",
981 (direction == DMA_TO_DEVICE)
982 ? "write" : "read",
983 status);
984 break;
985 }
986 }
987
988 /* NOTE some docs describe an MMC-only SET_BLOCK_COUNT (CMD23) that
989 * can be issued before multiblock writes. Unlike its more widely
990 * documented analogue for SD cards (SET_WR_BLK_ERASE_COUNT, ACMD23),
991 * that can affect the STOP_TRAN logic. Complete (and current)
992 * MMC specs should sort that out before Linux starts using CMD23.
993 */
994 if (direction == DMA_TO_DEVICE && multiple) {
995 struct scratch *scratch = host->data;
996 int tmp;
997 const unsigned statlen = sizeof(scratch->status);
998
999 dev_dbg(&spi->dev, " mmc_spi: STOP_TRAN\n");
1000
1001 /* Tweak the per-block message we set up earlier by morphing
1002 * it to hold single buffer with the token followed by some
1003 * all-ones bytes ... skip N(BR) (0..1), scan the rest for
1004 * "not busy any longer" status, and leave chip selected.
1005 */
1006 INIT_LIST_HEAD(&host->m.transfers);
1007 list_add(&host->early_status.transfer_list,
1008 &host->m.transfers);
1009
1010 memset(scratch->status, 0xff, statlen);
1011 scratch->status[0] = SPI_TOKEN_STOP_TRAN;
1012
1013 host->early_status.tx_buf = host->early_status.rx_buf;
1014 host->early_status.tx_dma = host->early_status.rx_dma;
1015 host->early_status.len = statlen;
1016
1017 if (host->dma_dev)
1018 dma_sync_single_for_device(host->dma_dev,
1019 host->data_dma, sizeof(*scratch),
1020 DMA_BIDIRECTIONAL);
1021
1022 tmp = spi_sync_locked(spi, &host->m);
1023
1024 if (host->dma_dev)
1025 dma_sync_single_for_cpu(host->dma_dev,
1026 host->data_dma, sizeof(*scratch),
1027 DMA_BIDIRECTIONAL);
1028
1029 if (tmp < 0) {
1030 if (!data->error)
1031 data->error = tmp;
1032 return;
1033 }
1034
1035 /* Ideally we collected "not busy" status with one I/O,
1036 * avoiding wasteful byte-at-a-time scanning... but more
1037 * I/O is often needed.
1038 */
1039 for (tmp = 2; tmp < statlen; tmp++) {
1040 if (scratch->status[tmp] != 0)
1041 return;
1042 }
1043 tmp = mmc_spi_wait_unbusy(host, timeout);
1044 if (tmp < 0 && !data->error)
1045 data->error = tmp;
1046 }
1047}
1048
1049/****************************************************************************/
1050
1051/*
1052 * MMC driver implementation -- the interface to the MMC stack
1053 */
1054
1055static void mmc_spi_request(struct mmc_host *mmc, struct mmc_request *mrq)
1056{
1057 struct mmc_spi_host *host = mmc_priv(mmc);
1058 int status = -EINVAL;
1059 int crc_retry = 5;
1060 struct mmc_command stop;
1061
1062#ifdef DEBUG
1063 /* MMC core and layered drivers *MUST* issue SPI-aware commands */
1064 {
1065 struct mmc_command *cmd;
1066 int invalid = 0;
1067
1068 cmd = mrq->cmd;
1069 if (!mmc_spi_resp_type(cmd)) {
1070 dev_dbg(&host->spi->dev, "bogus command\n");
1071 cmd->error = -EINVAL;
1072 invalid = 1;
1073 }
1074
1075 cmd = mrq->stop;
1076 if (cmd && !mmc_spi_resp_type(cmd)) {
1077 dev_dbg(&host->spi->dev, "bogus STOP command\n");
1078 cmd->error = -EINVAL;
1079 invalid = 1;
1080 }
1081
1082 if (invalid) {
1083 dump_stack();
1084 mmc_request_done(host->mmc, mrq);
1085 return;
1086 }
1087 }
1088#endif
1089
1090 /* request exclusive bus access */
1091 spi_bus_lock(host->spi->master);
1092
1093crc_recover:
1094 /* issue command; then optionally data and stop */
1095 status = mmc_spi_command_send(host, mrq, mrq->cmd, mrq->data != NULL);
1096 if (status == 0 && mrq->data) {
1097 mmc_spi_data_do(host, mrq->cmd, mrq->data, mrq->data->blksz);
1098
1099 /*
1100 * The SPI bus is not always reliable for large data transfers.
1101 * If an occasional crc error is reported by the SD device with
1102 * data read/write over SPI, it may be recovered by repeating
1103 * the last SD command again. The retry count is set to 5 to
1104 * ensure the driver passes stress tests.
1105 */
1106 if (mrq->data->error == -EILSEQ && crc_retry) {
1107 stop.opcode = MMC_STOP_TRANSMISSION;
1108 stop.arg = 0;
1109 stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1110 status = mmc_spi_command_send(host, mrq, &stop, 0);
1111 crc_retry--;
1112 mrq->data->error = 0;
1113 goto crc_recover;
1114 }
1115
1116 if (mrq->stop)
1117 status = mmc_spi_command_send(host, mrq, mrq->stop, 0);
1118 else
1119 mmc_cs_off(host);
1120 }
1121
1122 /* release the bus */
1123 spi_bus_unlock(host->spi->master);
1124
1125 mmc_request_done(host->mmc, mrq);
1126}
1127
1128/* See Section 6.4.1, in SD "Simplified Physical Layer Specification 2.0"
1129 *
1130 * NOTE that here we can't know that the card has just been powered up;
1131 * not all MMC/SD sockets support power switching.
1132 *
1133 * FIXME when the card is still in SPI mode, e.g. from a previous kernel,
1134 * this doesn't seem to do the right thing at all...
1135 */
1136static void mmc_spi_initsequence(struct mmc_spi_host *host)
1137{
1138 /* Try to be very sure any previous command has completed;
1139 * wait till not-busy, skip debris from any old commands.
1140 */
1141 mmc_spi_wait_unbusy(host, r1b_timeout);
1142 mmc_spi_readbytes(host, 10);
1143
1144 /*
1145 * Do a burst with chipselect active-high. We need to do this to
1146 * meet the requirement of 74 clock cycles with both chipselect
1147 * and CMD (MOSI) high before CMD0 ... after the card has been
1148 * powered up to Vdd(min), and so is ready to take commands.
1149 *
1150 * Some cards are particularly needy of this (e.g. Viking "SD256")
1151 * while most others don't seem to care.
1152 *
1153 * Note that this is one of the places MMC/SD plays games with the
1154 * SPI protocol. Another is that when chipselect is released while
1155 * the card returns BUSY status, the clock must issue several cycles
1156 * with chipselect high before the card will stop driving its output.
1157 */
1158 host->spi->mode |= SPI_CS_HIGH;
1159 if (spi_setup(host->spi) != 0) {
1160 /* Just warn; most cards work without it. */
1161 dev_warn(&host->spi->dev,
1162 "can't change chip-select polarity\n");
1163 host->spi->mode &= ~SPI_CS_HIGH;
1164 } else {
1165 mmc_spi_readbytes(host, 18);
1166
1167 host->spi->mode &= ~SPI_CS_HIGH;
1168 if (spi_setup(host->spi) != 0) {
1169 /* Wot, we can't get the same setup we had before? */
1170 dev_err(&host->spi->dev,
1171 "can't restore chip-select polarity\n");
1172 }
1173 }
1174}
1175
1176static char *mmc_powerstring(u8 power_mode)
1177{
1178 switch (power_mode) {
1179 case MMC_POWER_OFF: return "off";
1180 case MMC_POWER_UP: return "up";
1181 case MMC_POWER_ON: return "on";
1182 }
1183 return "?";
1184}
1185
1186static void mmc_spi_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1187{
1188 struct mmc_spi_host *host = mmc_priv(mmc);
1189
1190 if (host->power_mode != ios->power_mode) {
1191 int canpower;
1192
1193 canpower = host->pdata && host->pdata->setpower;
1194
1195 dev_dbg(&host->spi->dev, "mmc_spi: power %s (%d)%s\n",
1196 mmc_powerstring(ios->power_mode),
1197 ios->vdd,
1198 canpower ? ", can switch" : "");
1199
1200 /* switch power on/off if possible, accounting for
1201 * max 250msec powerup time if needed.
1202 */
1203 if (canpower) {
1204 switch (ios->power_mode) {
1205 case MMC_POWER_OFF:
1206 case MMC_POWER_UP:
1207 host->pdata->setpower(&host->spi->dev,
1208 ios->vdd);
1209 if (ios->power_mode == MMC_POWER_UP)
1210 msleep(host->powerup_msecs);
1211 }
1212 }
1213
1214 /* See 6.4.1 in the simplified SD card physical spec 2.0 */
1215 if (ios->power_mode == MMC_POWER_ON)
1216 mmc_spi_initsequence(host);
1217
1218 /* If powering down, ground all card inputs to avoid power
1219 * delivery from data lines! On a shared SPI bus, this
1220 * will probably be temporary; 6.4.2 of the simplified SD
1221 * spec says this must last at least 1msec.
1222 *
1223 * - Clock low means CPOL 0, e.g. mode 0
1224 * - MOSI low comes from writing zero
1225 * - Chipselect is usually active low...
1226 */
1227 if (canpower && ios->power_mode == MMC_POWER_OFF) {
1228 int mres;
1229 u8 nullbyte = 0;
1230
1231 host->spi->mode &= ~(SPI_CPOL|SPI_CPHA);
1232 mres = spi_setup(host->spi);
1233 if (mres < 0)
1234 dev_dbg(&host->spi->dev,
1235 "switch to SPI mode 0 failed\n");
1236
1237 if (spi_write(host->spi, &nullbyte, 1) < 0)
1238 dev_dbg(&host->spi->dev,
1239 "put spi signals to low failed\n");
1240
1241 /*
1242 * Now clock should be low due to spi mode 0;
1243 * MOSI should be low because of written 0x00;
1244 * chipselect should be low (it is active low)
1245 * power supply is off, so now MMC is off too!
1246 *
1247 * FIXME no, chipselect can be high since the
1248 * device is inactive and SPI_CS_HIGH is clear...
1249 */
1250 msleep(10);
1251 if (mres == 0) {
1252 host->spi->mode |= (SPI_CPOL|SPI_CPHA);
1253 mres = spi_setup(host->spi);
1254 if (mres < 0)
1255 dev_dbg(&host->spi->dev,
1256 "switch back to SPI mode 3"
1257 " failed\n");
1258 }
1259 }
1260
1261 host->power_mode = ios->power_mode;
1262 }
1263
1264 if (host->spi->max_speed_hz != ios->clock && ios->clock != 0) {
1265 int status;
1266
1267 host->spi->max_speed_hz = ios->clock;
1268 status = spi_setup(host->spi);
1269 dev_dbg(&host->spi->dev,
1270 "mmc_spi: clock to %d Hz, %d\n",
1271 host->spi->max_speed_hz, status);
1272 }
1273}
1274
1275static int mmc_spi_get_ro(struct mmc_host *mmc)
1276{
1277 struct mmc_spi_host *host = mmc_priv(mmc);
1278
1279 if (host->pdata && host->pdata->get_ro)
1280 return !!host->pdata->get_ro(mmc->parent);
1281 /*
1282 * Board doesn't support read only detection; let the mmc core
1283 * decide what to do.
1284 */
1285 return -ENOSYS;
1286}
1287
1288static int mmc_spi_get_cd(struct mmc_host *mmc)
1289{
1290 struct mmc_spi_host *host = mmc_priv(mmc);
1291
1292 if (host->pdata && host->pdata->get_cd)
1293 return !!host->pdata->get_cd(mmc->parent);
1294 return -ENOSYS;
1295}
1296
1297static const struct mmc_host_ops mmc_spi_ops = {
1298 .request = mmc_spi_request,
1299 .set_ios = mmc_spi_set_ios,
1300 .get_ro = mmc_spi_get_ro,
1301 .get_cd = mmc_spi_get_cd,
1302};
1303
1304
1305/****************************************************************************/
1306
1307/*
1308 * SPI driver implementation
1309 */
1310
1311static irqreturn_t
1312mmc_spi_detect_irq(int irq, void *mmc)
1313{
1314 struct mmc_spi_host *host = mmc_priv(mmc);
1315 u16 delay_msec = max(host->pdata->detect_delay, (u16)100);
1316
1317 mmc_detect_change(mmc, msecs_to_jiffies(delay_msec));
1318 return IRQ_HANDLED;
1319}
1320
1321static int mmc_spi_probe(struct spi_device *spi)
1322{
1323 void *ones;
1324 struct mmc_host *mmc;
1325 struct mmc_spi_host *host;
1326 int status;
1327
1328 /* We rely on full duplex transfers, mostly to reduce
1329 * per-transfer overheads (by making fewer transfers).
1330 */
1331 if (spi->master->flags & SPI_MASTER_HALF_DUPLEX)
1332 return -EINVAL;
1333
1334 /* MMC and SD specs only seem to care that sampling is on the
1335 * rising edge ... meaning SPI modes 0 or 3. So either SPI mode
1336 * should be legit. We'll use mode 0 since the steady state is 0,
1337 * which is appropriate for hotplugging, unless the platform data
1338 * specify mode 3 (if hardware is not compatible to mode 0).
1339 */
1340 if (spi->mode != SPI_MODE_3)
1341 spi->mode = SPI_MODE_0;
1342 spi->bits_per_word = 8;
1343
1344 status = spi_setup(spi);
1345 if (status < 0) {
1346 dev_dbg(&spi->dev, "needs SPI mode %02x, %d KHz; %d\n",
1347 spi->mode, spi->max_speed_hz / 1000,
1348 status);
1349 return status;
1350 }
1351
1352 /* We need a supply of ones to transmit. This is the only time
1353 * the CPU touches these, so cache coherency isn't a concern.
1354 *
1355 * NOTE if many systems use more than one MMC-over-SPI connector
1356 * it'd save some memory to share this. That's evidently rare.
1357 */
1358 status = -ENOMEM;
1359 ones = kmalloc(MMC_SPI_BLOCKSIZE, GFP_KERNEL);
1360 if (!ones)
1361 goto nomem;
1362 memset(ones, 0xff, MMC_SPI_BLOCKSIZE);
1363
1364 mmc = mmc_alloc_host(sizeof(*host), &spi->dev);
1365 if (!mmc)
1366 goto nomem;
1367
1368 mmc->ops = &mmc_spi_ops;
1369 mmc->max_blk_size = MMC_SPI_BLOCKSIZE;
1370 mmc->max_segs = MMC_SPI_BLOCKSATONCE;
1371 mmc->max_req_size = MMC_SPI_BLOCKSATONCE * MMC_SPI_BLOCKSIZE;
1372 mmc->max_blk_count = MMC_SPI_BLOCKSATONCE;
1373
1374 mmc->caps = MMC_CAP_SPI;
1375
1376 /* SPI doesn't need the lowspeed device identification thing for
1377 * MMC or SD cards, since it never comes up in open drain mode.
1378 * That's good; some SPI masters can't handle very low speeds!
1379 *
1380 * However, low speed SDIO cards need not handle over 400 KHz;
1381 * that's the only reason not to use a few MHz for f_min (until
1382 * the upper layer reads the target frequency from the CSD).
1383 */
1384 mmc->f_min = 400000;
1385 mmc->f_max = spi->max_speed_hz;
1386
1387 host = mmc_priv(mmc);
1388 host->mmc = mmc;
1389 host->spi = spi;
1390
1391 host->ones = ones;
1392
1393 /* Platform data is used to hook up things like card sensing
1394 * and power switching gpios.
1395 */
1396 host->pdata = mmc_spi_get_pdata(spi);
1397 if (host->pdata)
1398 mmc->ocr_avail = host->pdata->ocr_mask;
1399 if (!mmc->ocr_avail) {
1400 dev_warn(&spi->dev, "ASSUMING 3.2-3.4 V slot power\n");
1401 mmc->ocr_avail = MMC_VDD_32_33|MMC_VDD_33_34;
1402 }
1403 if (host->pdata && host->pdata->setpower) {
1404 host->powerup_msecs = host->pdata->powerup_msecs;
1405 if (!host->powerup_msecs || host->powerup_msecs > 250)
1406 host->powerup_msecs = 250;
1407 }
1408
1409 dev_set_drvdata(&spi->dev, mmc);
1410
1411 /* preallocate dma buffers */
1412 host->data = kmalloc(sizeof(*host->data), GFP_KERNEL);
1413 if (!host->data)
1414 goto fail_nobuf1;
1415
1416 if (spi->master->dev.parent->dma_mask) {
1417 struct device *dev = spi->master->dev.parent;
1418
1419 host->dma_dev = dev;
1420 host->ones_dma = dma_map_single(dev, ones,
1421 MMC_SPI_BLOCKSIZE, DMA_TO_DEVICE);
1422 host->data_dma = dma_map_single(dev, host->data,
1423 sizeof(*host->data), DMA_BIDIRECTIONAL);
1424
1425 /* REVISIT in theory those map operations can fail... */
1426
1427 dma_sync_single_for_cpu(host->dma_dev,
1428 host->data_dma, sizeof(*host->data),
1429 DMA_BIDIRECTIONAL);
1430 }
1431
1432 /* setup message for status/busy readback */
1433 spi_message_init(&host->readback);
1434 host->readback.is_dma_mapped = (host->dma_dev != NULL);
1435
1436 spi_message_add_tail(&host->status, &host->readback);
1437 host->status.tx_buf = host->ones;
1438 host->status.tx_dma = host->ones_dma;
1439 host->status.rx_buf = &host->data->status;
1440 host->status.rx_dma = host->data_dma + offsetof(struct scratch, status);
1441 host->status.cs_change = 1;
1442
1443 /* register card detect irq */
1444 if (host->pdata && host->pdata->init) {
1445 status = host->pdata->init(&spi->dev, mmc_spi_detect_irq, mmc);
1446 if (status != 0)
1447 goto fail_glue_init;
1448 }
1449
1450 /* pass platform capabilities, if any */
1451 if (host->pdata)
1452 mmc->caps |= host->pdata->caps;
1453
1454 status = mmc_add_host(mmc);
1455 if (status != 0)
1456 goto fail_add_host;
1457
1458 dev_info(&spi->dev, "SD/MMC host %s%s%s%s%s\n",
1459 dev_name(&mmc->class_dev),
1460 host->dma_dev ? "" : ", no DMA",
1461 (host->pdata && host->pdata->get_ro)
1462 ? "" : ", no WP",
1463 (host->pdata && host->pdata->setpower)
1464 ? "" : ", no poweroff",
1465 (mmc->caps & MMC_CAP_NEEDS_POLL)
1466 ? ", cd polling" : "");
1467 return 0;
1468
1469fail_add_host:
1470 mmc_remove_host (mmc);
1471fail_glue_init:
1472 if (host->dma_dev)
1473 dma_unmap_single(host->dma_dev, host->data_dma,
1474 sizeof(*host->data), DMA_BIDIRECTIONAL);
1475 kfree(host->data);
1476
1477fail_nobuf1:
1478 mmc_free_host(mmc);
1479 mmc_spi_put_pdata(spi);
1480 dev_set_drvdata(&spi->dev, NULL);
1481
1482nomem:
1483 kfree(ones);
1484 return status;
1485}
1486
1487
1488static int __devexit mmc_spi_remove(struct spi_device *spi)
1489{
1490 struct mmc_host *mmc = dev_get_drvdata(&spi->dev);
1491 struct mmc_spi_host *host;
1492
1493 if (mmc) {
1494 host = mmc_priv(mmc);
1495
1496 /* prevent new mmc_detect_change() calls */
1497 if (host->pdata && host->pdata->exit)
1498 host->pdata->exit(&spi->dev, mmc);
1499
1500 mmc_remove_host(mmc);
1501
1502 if (host->dma_dev) {
1503 dma_unmap_single(host->dma_dev, host->ones_dma,
1504 MMC_SPI_BLOCKSIZE, DMA_TO_DEVICE);
1505 dma_unmap_single(host->dma_dev, host->data_dma,
1506 sizeof(*host->data), DMA_BIDIRECTIONAL);
1507 }
1508
1509 kfree(host->data);
1510 kfree(host->ones);
1511
1512 spi->max_speed_hz = mmc->f_max;
1513 mmc_free_host(mmc);
1514 mmc_spi_put_pdata(spi);
1515 dev_set_drvdata(&spi->dev, NULL);
1516 }
1517 return 0;
1518}
1519
1520static struct of_device_id mmc_spi_of_match_table[] __devinitdata = {
1521 { .compatible = "mmc-spi-slot", },
1522 {},
1523};
1524
1525static struct spi_driver mmc_spi_driver = {
1526 .driver = {
1527 .name = "mmc_spi",
1528 .owner = THIS_MODULE,
1529 .of_match_table = mmc_spi_of_match_table,
1530 },
1531 .probe = mmc_spi_probe,
1532 .remove = __devexit_p(mmc_spi_remove),
1533};
1534
1535
1536static int __init mmc_spi_init(void)
1537{
1538 return spi_register_driver(&mmc_spi_driver);
1539}
1540module_init(mmc_spi_init);
1541
1542
1543static void __exit mmc_spi_exit(void)
1544{
1545 spi_unregister_driver(&mmc_spi_driver);
1546}
1547module_exit(mmc_spi_exit);
1548
1549
1550MODULE_AUTHOR("Mike Lavender, David Brownell, "
1551 "Hans-Peter Nilsson, Jan Nikitenko");
1552MODULE_DESCRIPTION("SPI SD/MMC host driver");
1553MODULE_LICENSE("GPL");
1554MODULE_ALIAS("spi:mmc_spi");
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Access SD/MMC cards through SPI master controllers
4 *
5 * (C) Copyright 2005, Intec Automation,
6 * Mike Lavender (mike@steroidmicros)
7 * (C) Copyright 2006-2007, David Brownell
8 * (C) Copyright 2007, Axis Communications,
9 * Hans-Peter Nilsson (hp@axis.com)
10 * (C) Copyright 2007, ATRON electronic GmbH,
11 * Jan Nikitenko <jan.nikitenko@gmail.com>
12 */
13#include <linux/sched.h>
14#include <linux/delay.h>
15#include <linux/slab.h>
16#include <linux/module.h>
17#include <linux/bio.h>
18#include <linux/dma-mapping.h>
19#include <linux/crc7.h>
20#include <linux/crc-itu-t.h>
21#include <linux/scatterlist.h>
22
23#include <linux/mmc/host.h>
24#include <linux/mmc/mmc.h> /* for R1_SPI_* bit values */
25#include <linux/mmc/slot-gpio.h>
26
27#include <linux/spi/spi.h>
28#include <linux/spi/mmc_spi.h>
29
30#include <asm/unaligned.h>
31
32
33/* NOTES:
34 *
35 * - For now, we won't try to interoperate with a real mmc/sd/sdio
36 * controller, although some of them do have hardware support for
37 * SPI protocol. The main reason for such configs would be mmc-ish
38 * cards like DataFlash, which don't support that "native" protocol.
39 *
40 * We don't have a "DataFlash/MMC/SD/SDIO card slot" abstraction to
41 * switch between driver stacks, and in any case if "native" mode
42 * is available, it will be faster and hence preferable.
43 *
44 * - MMC depends on a different chipselect management policy than the
45 * SPI interface currently supports for shared bus segments: it needs
46 * to issue multiple spi_message requests with the chipselect active,
47 * using the results of one message to decide the next one to issue.
48 *
49 * Pending updates to the programming interface, this driver expects
50 * that it not share the bus with other drivers (precluding conflicts).
51 *
52 * - We tell the controller to keep the chipselect active from the
53 * beginning of an mmc_host_ops.request until the end. So beware
54 * of SPI controller drivers that mis-handle the cs_change flag!
55 *
56 * However, many cards seem OK with chipselect flapping up/down
57 * during that time ... at least on unshared bus segments.
58 */
59
60
61/*
62 * Local protocol constants, internal to data block protocols.
63 */
64
65/* Response tokens used to ack each block written: */
66#define SPI_MMC_RESPONSE_CODE(x) ((x) & 0x1f)
67#define SPI_RESPONSE_ACCEPTED ((2 << 1)|1)
68#define SPI_RESPONSE_CRC_ERR ((5 << 1)|1)
69#define SPI_RESPONSE_WRITE_ERR ((6 << 1)|1)
70
71/* Read and write blocks start with these tokens and end with crc;
72 * on error, read tokens act like a subset of R2_SPI_* values.
73 */
74#define SPI_TOKEN_SINGLE 0xfe /* single block r/w, multiblock read */
75#define SPI_TOKEN_MULTI_WRITE 0xfc /* multiblock write */
76#define SPI_TOKEN_STOP_TRAN 0xfd /* terminate multiblock write */
77
78#define MMC_SPI_BLOCKSIZE 512
79
80#define MMC_SPI_R1B_TIMEOUT_MS 3000
81#define MMC_SPI_INIT_TIMEOUT_MS 3000
82
83/* One of the critical speed parameters is the amount of data which may
84 * be transferred in one command. If this value is too low, the SD card
85 * controller has to do multiple partial block writes (argggh!). With
86 * today (2008) SD cards there is little speed gain if we transfer more
87 * than 64 KBytes at a time. So use this value until there is any indication
88 * that we should do more here.
89 */
90#define MMC_SPI_BLOCKSATONCE 128
91
92/****************************************************************************/
93
94/*
95 * Local Data Structures
96 */
97
98/* "scratch" is per-{command,block} data exchanged with the card */
99struct scratch {
100 u8 status[29];
101 u8 data_token;
102 __be16 crc_val;
103};
104
105struct mmc_spi_host {
106 struct mmc_host *mmc;
107 struct spi_device *spi;
108
109 unsigned char power_mode;
110 u16 powerup_msecs;
111
112 struct mmc_spi_platform_data *pdata;
113
114 /* for bulk data transfers */
115 struct spi_transfer token, t, crc, early_status;
116 struct spi_message m;
117
118 /* for status readback */
119 struct spi_transfer status;
120 struct spi_message readback;
121
122 /* underlying DMA-aware controller, or null */
123 struct device *dma_dev;
124
125 /* buffer used for commands and for message "overhead" */
126 struct scratch *data;
127 dma_addr_t data_dma;
128
129 /* Specs say to write ones most of the time, even when the card
130 * has no need to read its input data; and many cards won't care.
131 * This is our source of those ones.
132 */
133 void *ones;
134 dma_addr_t ones_dma;
135};
136
137
138/****************************************************************************/
139
140/*
141 * MMC-over-SPI protocol glue, used by the MMC stack interface
142 */
143
144static inline int mmc_cs_off(struct mmc_spi_host *host)
145{
146 /* chipselect will always be inactive after setup() */
147 return spi_setup(host->spi);
148}
149
150static int
151mmc_spi_readbytes(struct mmc_spi_host *host, unsigned len)
152{
153 int status;
154
155 if (len > sizeof(*host->data)) {
156 WARN_ON(1);
157 return -EIO;
158 }
159
160 host->status.len = len;
161
162 if (host->dma_dev)
163 dma_sync_single_for_device(host->dma_dev,
164 host->data_dma, sizeof(*host->data),
165 DMA_FROM_DEVICE);
166
167 status = spi_sync_locked(host->spi, &host->readback);
168
169 if (host->dma_dev)
170 dma_sync_single_for_cpu(host->dma_dev,
171 host->data_dma, sizeof(*host->data),
172 DMA_FROM_DEVICE);
173
174 return status;
175}
176
177static int mmc_spi_skip(struct mmc_spi_host *host, unsigned long timeout,
178 unsigned n, u8 byte)
179{
180 u8 *cp = host->data->status;
181 unsigned long start = jiffies;
182
183 while (1) {
184 int status;
185 unsigned i;
186
187 status = mmc_spi_readbytes(host, n);
188 if (status < 0)
189 return status;
190
191 for (i = 0; i < n; i++) {
192 if (cp[i] != byte)
193 return cp[i];
194 }
195
196 if (time_is_before_jiffies(start + timeout))
197 break;
198
199 /* If we need long timeouts, we may release the CPU.
200 * We use jiffies here because we want to have a relation
201 * between elapsed time and the blocking of the scheduler.
202 */
203 if (time_is_before_jiffies(start + 1))
204 schedule();
205 }
206 return -ETIMEDOUT;
207}
208
209static inline int
210mmc_spi_wait_unbusy(struct mmc_spi_host *host, unsigned long timeout)
211{
212 return mmc_spi_skip(host, timeout, sizeof(host->data->status), 0);
213}
214
215static int mmc_spi_readtoken(struct mmc_spi_host *host, unsigned long timeout)
216{
217 return mmc_spi_skip(host, timeout, 1, 0xff);
218}
219
220
221/*
222 * Note that for SPI, cmd->resp[0] is not the same data as "native" protocol
223 * hosts return! The low byte holds R1_SPI bits. The next byte may hold
224 * R2_SPI bits ... for SEND_STATUS, or after data read errors.
225 *
226 * cmd->resp[1] holds any four-byte response, for R3 (READ_OCR) and on
227 * newer cards R7 (IF_COND).
228 */
229
230static char *maptype(struct mmc_command *cmd)
231{
232 switch (mmc_spi_resp_type(cmd)) {
233 case MMC_RSP_SPI_R1: return "R1";
234 case MMC_RSP_SPI_R1B: return "R1B";
235 case MMC_RSP_SPI_R2: return "R2/R5";
236 case MMC_RSP_SPI_R3: return "R3/R4/R7";
237 default: return "?";
238 }
239}
240
241/* return zero, else negative errno after setting cmd->error */
242static int mmc_spi_response_get(struct mmc_spi_host *host,
243 struct mmc_command *cmd, int cs_on)
244{
245 unsigned long timeout_ms;
246 u8 *cp = host->data->status;
247 u8 *end = cp + host->t.len;
248 int value = 0;
249 int bitshift;
250 u8 leftover = 0;
251 unsigned short rotator;
252 int i;
253 char tag[32];
254
255 snprintf(tag, sizeof(tag), " ... CMD%d response SPI_%s",
256 cmd->opcode, maptype(cmd));
257
258 /* Except for data block reads, the whole response will already
259 * be stored in the scratch buffer. It's somewhere after the
260 * command and the first byte we read after it. We ignore that
261 * first byte. After STOP_TRANSMISSION command it may include
262 * two data bits, but otherwise it's all ones.
263 */
264 cp += 8;
265 while (cp < end && *cp == 0xff)
266 cp++;
267
268 /* Data block reads (R1 response types) may need more data... */
269 if (cp == end) {
270 cp = host->data->status;
271 end = cp+1;
272
273 /* Card sends N(CR) (== 1..8) bytes of all-ones then one
274 * status byte ... and we already scanned 2 bytes.
275 *
276 * REVISIT block read paths use nasty byte-at-a-time I/O
277 * so it can always DMA directly into the target buffer.
278 * It'd probably be better to memcpy() the first chunk and
279 * avoid extra i/o calls...
280 *
281 * Note we check for more than 8 bytes, because in practice,
282 * some SD cards are slow...
283 */
284 for (i = 2; i < 16; i++) {
285 value = mmc_spi_readbytes(host, 1);
286 if (value < 0)
287 goto done;
288 if (*cp != 0xff)
289 goto checkstatus;
290 }
291 value = -ETIMEDOUT;
292 goto done;
293 }
294
295checkstatus:
296 bitshift = 0;
297 if (*cp & 0x80) {
298 /* Houston, we have an ugly card with a bit-shifted response */
299 rotator = *cp++ << 8;
300 /* read the next byte */
301 if (cp == end) {
302 value = mmc_spi_readbytes(host, 1);
303 if (value < 0)
304 goto done;
305 cp = host->data->status;
306 end = cp+1;
307 }
308 rotator |= *cp++;
309 while (rotator & 0x8000) {
310 bitshift++;
311 rotator <<= 1;
312 }
313 cmd->resp[0] = rotator >> 8;
314 leftover = rotator;
315 } else {
316 cmd->resp[0] = *cp++;
317 }
318 cmd->error = 0;
319
320 /* Status byte: the entire seven-bit R1 response. */
321 if (cmd->resp[0] != 0) {
322 if ((R1_SPI_PARAMETER | R1_SPI_ADDRESS)
323 & cmd->resp[0])
324 value = -EFAULT; /* Bad address */
325 else if (R1_SPI_ILLEGAL_COMMAND & cmd->resp[0])
326 value = -ENOSYS; /* Function not implemented */
327 else if (R1_SPI_COM_CRC & cmd->resp[0])
328 value = -EILSEQ; /* Illegal byte sequence */
329 else if ((R1_SPI_ERASE_SEQ | R1_SPI_ERASE_RESET)
330 & cmd->resp[0])
331 value = -EIO; /* I/O error */
332 /* else R1_SPI_IDLE, "it's resetting" */
333 }
334
335 switch (mmc_spi_resp_type(cmd)) {
336
337 /* SPI R1B == R1 + busy; STOP_TRANSMISSION (for multiblock reads)
338 * and less-common stuff like various erase operations.
339 */
340 case MMC_RSP_SPI_R1B:
341 /* maybe we read all the busy tokens already */
342 while (cp < end && *cp == 0)
343 cp++;
344 if (cp == end) {
345 timeout_ms = cmd->busy_timeout ? cmd->busy_timeout :
346 MMC_SPI_R1B_TIMEOUT_MS;
347 mmc_spi_wait_unbusy(host, msecs_to_jiffies(timeout_ms));
348 }
349 break;
350
351 /* SPI R2 == R1 + second status byte; SEND_STATUS
352 * SPI R5 == R1 + data byte; IO_RW_DIRECT
353 */
354 case MMC_RSP_SPI_R2:
355 /* read the next byte */
356 if (cp == end) {
357 value = mmc_spi_readbytes(host, 1);
358 if (value < 0)
359 goto done;
360 cp = host->data->status;
361 end = cp+1;
362 }
363 if (bitshift) {
364 rotator = leftover << 8;
365 rotator |= *cp << bitshift;
366 cmd->resp[0] |= (rotator & 0xFF00);
367 } else {
368 cmd->resp[0] |= *cp << 8;
369 }
370 break;
371
372 /* SPI R3, R4, or R7 == R1 + 4 bytes */
373 case MMC_RSP_SPI_R3:
374 rotator = leftover << 8;
375 cmd->resp[1] = 0;
376 for (i = 0; i < 4; i++) {
377 cmd->resp[1] <<= 8;
378 /* read the next byte */
379 if (cp == end) {
380 value = mmc_spi_readbytes(host, 1);
381 if (value < 0)
382 goto done;
383 cp = host->data->status;
384 end = cp+1;
385 }
386 if (bitshift) {
387 rotator |= *cp++ << bitshift;
388 cmd->resp[1] |= (rotator >> 8);
389 rotator <<= 8;
390 } else {
391 cmd->resp[1] |= *cp++;
392 }
393 }
394 break;
395
396 /* SPI R1 == just one status byte */
397 case MMC_RSP_SPI_R1:
398 break;
399
400 default:
401 dev_dbg(&host->spi->dev, "bad response type %04x\n",
402 mmc_spi_resp_type(cmd));
403 if (value >= 0)
404 value = -EINVAL;
405 goto done;
406 }
407
408 if (value < 0)
409 dev_dbg(&host->spi->dev, "%s: resp %04x %08x\n",
410 tag, cmd->resp[0], cmd->resp[1]);
411
412 /* disable chipselect on errors and some success cases */
413 if (value >= 0 && cs_on)
414 return value;
415done:
416 if (value < 0)
417 cmd->error = value;
418 mmc_cs_off(host);
419 return value;
420}
421
422/* Issue command and read its response.
423 * Returns zero on success, negative for error.
424 *
425 * On error, caller must cope with mmc core retry mechanism. That
426 * means immediate low-level resubmit, which affects the bus lock...
427 */
428static int
429mmc_spi_command_send(struct mmc_spi_host *host,
430 struct mmc_request *mrq,
431 struct mmc_command *cmd, int cs_on)
432{
433 struct scratch *data = host->data;
434 u8 *cp = data->status;
435 int status;
436 struct spi_transfer *t;
437
438 /* We can handle most commands (except block reads) in one full
439 * duplex I/O operation before either starting the next transfer
440 * (data block or command) or else deselecting the card.
441 *
442 * First, write 7 bytes:
443 * - an all-ones byte to ensure the card is ready
444 * - opcode byte (plus start and transmission bits)
445 * - four bytes of big-endian argument
446 * - crc7 (plus end bit) ... always computed, it's cheap
447 *
448 * We init the whole buffer to all-ones, which is what we need
449 * to write while we're reading (later) response data.
450 */
451 memset(cp, 0xff, sizeof(data->status));
452
453 cp[1] = 0x40 | cmd->opcode;
454 put_unaligned_be32(cmd->arg, cp + 2);
455 cp[6] = crc7_be(0, cp + 1, 5) | 0x01;
456 cp += 7;
457
458 /* Then, read up to 13 bytes (while writing all-ones):
459 * - N(CR) (== 1..8) bytes of all-ones
460 * - status byte (for all response types)
461 * - the rest of the response, either:
462 * + nothing, for R1 or R1B responses
463 * + second status byte, for R2 responses
464 * + four data bytes, for R3 and R7 responses
465 *
466 * Finally, read some more bytes ... in the nice cases we know in
467 * advance how many, and reading 1 more is always OK:
468 * - N(EC) (== 0..N) bytes of all-ones, before deselect/finish
469 * - N(RC) (== 1..N) bytes of all-ones, before next command
470 * - N(WR) (== 1..N) bytes of all-ones, before data write
471 *
472 * So in those cases one full duplex I/O of at most 21 bytes will
473 * handle the whole command, leaving the card ready to receive a
474 * data block or new command. We do that whenever we can, shaving
475 * CPU and IRQ costs (especially when using DMA or FIFOs).
476 *
477 * There are two other cases, where it's not generally practical
478 * to rely on a single I/O:
479 *
480 * - R1B responses need at least N(EC) bytes of all-zeroes.
481 *
482 * In this case we can *try* to fit it into one I/O, then
483 * maybe read more data later.
484 *
485 * - Data block reads are more troublesome, since a variable
486 * number of padding bytes precede the token and data.
487 * + N(CX) (== 0..8) bytes of all-ones, before CSD or CID
488 * + N(AC) (== 1..many) bytes of all-ones
489 *
490 * In this case we currently only have minimal speedups here:
491 * when N(CR) == 1 we can avoid I/O in response_get().
492 */
493 if (cs_on && (mrq->data->flags & MMC_DATA_READ)) {
494 cp += 2; /* min(N(CR)) + status */
495 /* R1 */
496 } else {
497 cp += 10; /* max(N(CR)) + status + min(N(RC),N(WR)) */
498 if (cmd->flags & MMC_RSP_SPI_S2) /* R2/R5 */
499 cp++;
500 else if (cmd->flags & MMC_RSP_SPI_B4) /* R3/R4/R7 */
501 cp += 4;
502 else if (cmd->flags & MMC_RSP_BUSY) /* R1B */
503 cp = data->status + sizeof(data->status);
504 /* else: R1 (most commands) */
505 }
506
507 dev_dbg(&host->spi->dev, " mmc_spi: CMD%d, resp %s\n",
508 cmd->opcode, maptype(cmd));
509
510 /* send command, leaving chipselect active */
511 spi_message_init(&host->m);
512
513 t = &host->t;
514 memset(t, 0, sizeof(*t));
515 t->tx_buf = t->rx_buf = data->status;
516 t->tx_dma = t->rx_dma = host->data_dma;
517 t->len = cp - data->status;
518 t->cs_change = 1;
519 spi_message_add_tail(t, &host->m);
520
521 if (host->dma_dev) {
522 host->m.is_dma_mapped = 1;
523 dma_sync_single_for_device(host->dma_dev,
524 host->data_dma, sizeof(*host->data),
525 DMA_BIDIRECTIONAL);
526 }
527 status = spi_sync_locked(host->spi, &host->m);
528
529 if (host->dma_dev)
530 dma_sync_single_for_cpu(host->dma_dev,
531 host->data_dma, sizeof(*host->data),
532 DMA_BIDIRECTIONAL);
533 if (status < 0) {
534 dev_dbg(&host->spi->dev, " ... write returned %d\n", status);
535 cmd->error = status;
536 return status;
537 }
538
539 /* after no-data commands and STOP_TRANSMISSION, chipselect off */
540 return mmc_spi_response_get(host, cmd, cs_on);
541}
542
543/* Build data message with up to four separate transfers. For TX, we
544 * start by writing the data token. And in most cases, we finish with
545 * a status transfer.
546 *
547 * We always provide TX data for data and CRC. The MMC/SD protocol
548 * requires us to write ones; but Linux defaults to writing zeroes;
549 * so we explicitly initialize it to all ones on RX paths.
550 *
551 * We also handle DMA mapping, so the underlying SPI controller does
552 * not need to (re)do it for each message.
553 */
554static void
555mmc_spi_setup_data_message(
556 struct mmc_spi_host *host,
557 int multiple,
558 enum dma_data_direction direction)
559{
560 struct spi_transfer *t;
561 struct scratch *scratch = host->data;
562 dma_addr_t dma = host->data_dma;
563
564 spi_message_init(&host->m);
565 if (dma)
566 host->m.is_dma_mapped = 1;
567
568 /* for reads, readblock() skips 0xff bytes before finding
569 * the token; for writes, this transfer issues that token.
570 */
571 if (direction == DMA_TO_DEVICE) {
572 t = &host->token;
573 memset(t, 0, sizeof(*t));
574 t->len = 1;
575 if (multiple)
576 scratch->data_token = SPI_TOKEN_MULTI_WRITE;
577 else
578 scratch->data_token = SPI_TOKEN_SINGLE;
579 t->tx_buf = &scratch->data_token;
580 if (dma)
581 t->tx_dma = dma + offsetof(struct scratch, data_token);
582 spi_message_add_tail(t, &host->m);
583 }
584
585 /* Body of transfer is buffer, then CRC ...
586 * either TX-only, or RX with TX-ones.
587 */
588 t = &host->t;
589 memset(t, 0, sizeof(*t));
590 t->tx_buf = host->ones;
591 t->tx_dma = host->ones_dma;
592 /* length and actual buffer info are written later */
593 spi_message_add_tail(t, &host->m);
594
595 t = &host->crc;
596 memset(t, 0, sizeof(*t));
597 t->len = 2;
598 if (direction == DMA_TO_DEVICE) {
599 /* the actual CRC may get written later */
600 t->tx_buf = &scratch->crc_val;
601 if (dma)
602 t->tx_dma = dma + offsetof(struct scratch, crc_val);
603 } else {
604 t->tx_buf = host->ones;
605 t->tx_dma = host->ones_dma;
606 t->rx_buf = &scratch->crc_val;
607 if (dma)
608 t->rx_dma = dma + offsetof(struct scratch, crc_val);
609 }
610 spi_message_add_tail(t, &host->m);
611
612 /*
613 * A single block read is followed by N(EC) [0+] all-ones bytes
614 * before deselect ... don't bother.
615 *
616 * Multiblock reads are followed by N(AC) [1+] all-ones bytes before
617 * the next block is read, or a STOP_TRANSMISSION is issued. We'll
618 * collect that single byte, so readblock() doesn't need to.
619 *
620 * For a write, the one-byte data response follows immediately, then
621 * come zero or more busy bytes, then N(WR) [1+] all-ones bytes.
622 * Then single block reads may deselect, and multiblock ones issue
623 * the next token (next data block, or STOP_TRAN). We can try to
624 * minimize I/O ops by using a single read to collect end-of-busy.
625 */
626 if (multiple || direction == DMA_TO_DEVICE) {
627 t = &host->early_status;
628 memset(t, 0, sizeof(*t));
629 t->len = (direction == DMA_TO_DEVICE) ? sizeof(scratch->status) : 1;
630 t->tx_buf = host->ones;
631 t->tx_dma = host->ones_dma;
632 t->rx_buf = scratch->status;
633 if (dma)
634 t->rx_dma = dma + offsetof(struct scratch, status);
635 t->cs_change = 1;
636 spi_message_add_tail(t, &host->m);
637 }
638}
639
640/*
641 * Write one block:
642 * - caller handled preceding N(WR) [1+] all-ones bytes
643 * - data block
644 * + token
645 * + data bytes
646 * + crc16
647 * - an all-ones byte ... card writes a data-response byte
648 * - followed by N(EC) [0+] all-ones bytes, card writes zero/'busy'
649 *
650 * Return negative errno, else success.
651 */
652static int
653mmc_spi_writeblock(struct mmc_spi_host *host, struct spi_transfer *t,
654 unsigned long timeout)
655{
656 struct spi_device *spi = host->spi;
657 int status, i;
658 struct scratch *scratch = host->data;
659 u32 pattern;
660
661 if (host->mmc->use_spi_crc)
662 scratch->crc_val = cpu_to_be16(crc_itu_t(0, t->tx_buf, t->len));
663 if (host->dma_dev)
664 dma_sync_single_for_device(host->dma_dev,
665 host->data_dma, sizeof(*scratch),
666 DMA_BIDIRECTIONAL);
667
668 status = spi_sync_locked(spi, &host->m);
669
670 if (status != 0) {
671 dev_dbg(&spi->dev, "write error (%d)\n", status);
672 return status;
673 }
674
675 if (host->dma_dev)
676 dma_sync_single_for_cpu(host->dma_dev,
677 host->data_dma, sizeof(*scratch),
678 DMA_BIDIRECTIONAL);
679
680 /*
681 * Get the transmission data-response reply. It must follow
682 * immediately after the data block we transferred. This reply
683 * doesn't necessarily tell whether the write operation succeeded;
684 * it just says if the transmission was ok and whether *earlier*
685 * writes succeeded; see the standard.
686 *
687 * In practice, there are (even modern SDHC-)cards which are late
688 * in sending the response, and miss the time frame by a few bits,
689 * so we have to cope with this situation and check the response
690 * bit-by-bit. Arggh!!!
691 */
692 pattern = get_unaligned_be32(scratch->status);
693
694 /* First 3 bit of pattern are undefined */
695 pattern |= 0xE0000000;
696
697 /* left-adjust to leading 0 bit */
698 while (pattern & 0x80000000)
699 pattern <<= 1;
700 /* right-adjust for pattern matching. Code is in bit 4..0 now. */
701 pattern >>= 27;
702
703 switch (pattern) {
704 case SPI_RESPONSE_ACCEPTED:
705 status = 0;
706 break;
707 case SPI_RESPONSE_CRC_ERR:
708 /* host shall then issue MMC_STOP_TRANSMISSION */
709 status = -EILSEQ;
710 break;
711 case SPI_RESPONSE_WRITE_ERR:
712 /* host shall then issue MMC_STOP_TRANSMISSION,
713 * and should MMC_SEND_STATUS to sort it out
714 */
715 status = -EIO;
716 break;
717 default:
718 status = -EPROTO;
719 break;
720 }
721 if (status != 0) {
722 dev_dbg(&spi->dev, "write error %02x (%d)\n",
723 scratch->status[0], status);
724 return status;
725 }
726
727 t->tx_buf += t->len;
728 if (host->dma_dev)
729 t->tx_dma += t->len;
730
731 /* Return when not busy. If we didn't collect that status yet,
732 * we'll need some more I/O.
733 */
734 for (i = 4; i < sizeof(scratch->status); i++) {
735 /* card is non-busy if the most recent bit is 1 */
736 if (scratch->status[i] & 0x01)
737 return 0;
738 }
739 return mmc_spi_wait_unbusy(host, timeout);
740}
741
742/*
743 * Read one block:
744 * - skip leading all-ones bytes ... either
745 * + N(AC) [1..f(clock,CSD)] usually, else
746 * + N(CX) [0..8] when reading CSD or CID
747 * - data block
748 * + token ... if error token, no data or crc
749 * + data bytes
750 * + crc16
751 *
752 * After single block reads, we're done; N(EC) [0+] all-ones bytes follow
753 * before dropping chipselect.
754 *
755 * For multiblock reads, caller either reads the next block or issues a
756 * STOP_TRANSMISSION command.
757 */
758static int
759mmc_spi_readblock(struct mmc_spi_host *host, struct spi_transfer *t,
760 unsigned long timeout)
761{
762 struct spi_device *spi = host->spi;
763 int status;
764 struct scratch *scratch = host->data;
765 unsigned int bitshift;
766 u8 leftover;
767
768 /* At least one SD card sends an all-zeroes byte when N(CX)
769 * applies, before the all-ones bytes ... just cope with that.
770 */
771 status = mmc_spi_readbytes(host, 1);
772 if (status < 0)
773 return status;
774 status = scratch->status[0];
775 if (status == 0xff || status == 0)
776 status = mmc_spi_readtoken(host, timeout);
777
778 if (status < 0) {
779 dev_dbg(&spi->dev, "read error %02x (%d)\n", status, status);
780 return status;
781 }
782
783 /* The token may be bit-shifted...
784 * the first 0-bit precedes the data stream.
785 */
786 bitshift = 7;
787 while (status & 0x80) {
788 status <<= 1;
789 bitshift--;
790 }
791 leftover = status << 1;
792
793 if (host->dma_dev) {
794 dma_sync_single_for_device(host->dma_dev,
795 host->data_dma, sizeof(*scratch),
796 DMA_BIDIRECTIONAL);
797 dma_sync_single_for_device(host->dma_dev,
798 t->rx_dma, t->len,
799 DMA_FROM_DEVICE);
800 }
801
802 status = spi_sync_locked(spi, &host->m);
803 if (status < 0) {
804 dev_dbg(&spi->dev, "read error %d\n", status);
805 return status;
806 }
807
808 if (host->dma_dev) {
809 dma_sync_single_for_cpu(host->dma_dev,
810 host->data_dma, sizeof(*scratch),
811 DMA_BIDIRECTIONAL);
812 dma_sync_single_for_cpu(host->dma_dev,
813 t->rx_dma, t->len,
814 DMA_FROM_DEVICE);
815 }
816
817 if (bitshift) {
818 /* Walk through the data and the crc and do
819 * all the magic to get byte-aligned data.
820 */
821 u8 *cp = t->rx_buf;
822 unsigned int len;
823 unsigned int bitright = 8 - bitshift;
824 u8 temp;
825 for (len = t->len; len; len--) {
826 temp = *cp;
827 *cp++ = leftover | (temp >> bitshift);
828 leftover = temp << bitright;
829 }
830 cp = (u8 *) &scratch->crc_val;
831 temp = *cp;
832 *cp++ = leftover | (temp >> bitshift);
833 leftover = temp << bitright;
834 temp = *cp;
835 *cp = leftover | (temp >> bitshift);
836 }
837
838 if (host->mmc->use_spi_crc) {
839 u16 crc = crc_itu_t(0, t->rx_buf, t->len);
840
841 be16_to_cpus(&scratch->crc_val);
842 if (scratch->crc_val != crc) {
843 dev_dbg(&spi->dev,
844 "read - crc error: crc_val=0x%04x, computed=0x%04x len=%d\n",
845 scratch->crc_val, crc, t->len);
846 return -EILSEQ;
847 }
848 }
849
850 t->rx_buf += t->len;
851 if (host->dma_dev)
852 t->rx_dma += t->len;
853
854 return 0;
855}
856
857/*
858 * An MMC/SD data stage includes one or more blocks, optional CRCs,
859 * and inline handshaking. That handhaking makes it unlike most
860 * other SPI protocol stacks.
861 */
862static void
863mmc_spi_data_do(struct mmc_spi_host *host, struct mmc_command *cmd,
864 struct mmc_data *data, u32 blk_size)
865{
866 struct spi_device *spi = host->spi;
867 struct device *dma_dev = host->dma_dev;
868 struct spi_transfer *t;
869 enum dma_data_direction direction;
870 struct scatterlist *sg;
871 unsigned n_sg;
872 int multiple = (data->blocks > 1);
873 u32 clock_rate;
874 unsigned long timeout;
875
876 direction = mmc_get_dma_dir(data);
877 mmc_spi_setup_data_message(host, multiple, direction);
878 t = &host->t;
879
880 if (t->speed_hz)
881 clock_rate = t->speed_hz;
882 else
883 clock_rate = spi->max_speed_hz;
884
885 timeout = data->timeout_ns +
886 data->timeout_clks * 1000000 / clock_rate;
887 timeout = usecs_to_jiffies((unsigned int)(timeout / 1000)) + 1;
888
889 /* Handle scatterlist segments one at a time, with synch for
890 * each 512-byte block
891 */
892 for_each_sg(data->sg, sg, data->sg_len, n_sg) {
893 int status = 0;
894 dma_addr_t dma_addr = 0;
895 void *kmap_addr;
896 unsigned length = sg->length;
897 enum dma_data_direction dir = direction;
898
899 /* set up dma mapping for controller drivers that might
900 * use DMA ... though they may fall back to PIO
901 */
902 if (dma_dev) {
903 /* never invalidate whole *shared* pages ... */
904 if ((sg->offset != 0 || length != PAGE_SIZE)
905 && dir == DMA_FROM_DEVICE)
906 dir = DMA_BIDIRECTIONAL;
907
908 dma_addr = dma_map_page(dma_dev, sg_page(sg), 0,
909 PAGE_SIZE, dir);
910 if (dma_mapping_error(dma_dev, dma_addr)) {
911 data->error = -EFAULT;
912 break;
913 }
914 if (direction == DMA_TO_DEVICE)
915 t->tx_dma = dma_addr + sg->offset;
916 else
917 t->rx_dma = dma_addr + sg->offset;
918 }
919
920 /* allow pio too; we don't allow highmem */
921 kmap_addr = kmap(sg_page(sg));
922 if (direction == DMA_TO_DEVICE)
923 t->tx_buf = kmap_addr + sg->offset;
924 else
925 t->rx_buf = kmap_addr + sg->offset;
926
927 /* transfer each block, and update request status */
928 while (length) {
929 t->len = min(length, blk_size);
930
931 dev_dbg(&host->spi->dev,
932 " mmc_spi: %s block, %d bytes\n",
933 (direction == DMA_TO_DEVICE) ? "write" : "read",
934 t->len);
935
936 if (direction == DMA_TO_DEVICE)
937 status = mmc_spi_writeblock(host, t, timeout);
938 else
939 status = mmc_spi_readblock(host, t, timeout);
940 if (status < 0)
941 break;
942
943 data->bytes_xfered += t->len;
944 length -= t->len;
945
946 if (!multiple)
947 break;
948 }
949
950 /* discard mappings */
951 if (direction == DMA_FROM_DEVICE)
952 flush_kernel_dcache_page(sg_page(sg));
953 kunmap(sg_page(sg));
954 if (dma_dev)
955 dma_unmap_page(dma_dev, dma_addr, PAGE_SIZE, dir);
956
957 if (status < 0) {
958 data->error = status;
959 dev_dbg(&spi->dev, "%s status %d\n",
960 (direction == DMA_TO_DEVICE) ? "write" : "read",
961 status);
962 break;
963 }
964 }
965
966 /* NOTE some docs describe an MMC-only SET_BLOCK_COUNT (CMD23) that
967 * can be issued before multiblock writes. Unlike its more widely
968 * documented analogue for SD cards (SET_WR_BLK_ERASE_COUNT, ACMD23),
969 * that can affect the STOP_TRAN logic. Complete (and current)
970 * MMC specs should sort that out before Linux starts using CMD23.
971 */
972 if (direction == DMA_TO_DEVICE && multiple) {
973 struct scratch *scratch = host->data;
974 int tmp;
975 const unsigned statlen = sizeof(scratch->status);
976
977 dev_dbg(&spi->dev, " mmc_spi: STOP_TRAN\n");
978
979 /* Tweak the per-block message we set up earlier by morphing
980 * it to hold single buffer with the token followed by some
981 * all-ones bytes ... skip N(BR) (0..1), scan the rest for
982 * "not busy any longer" status, and leave chip selected.
983 */
984 INIT_LIST_HEAD(&host->m.transfers);
985 list_add(&host->early_status.transfer_list,
986 &host->m.transfers);
987
988 memset(scratch->status, 0xff, statlen);
989 scratch->status[0] = SPI_TOKEN_STOP_TRAN;
990
991 host->early_status.tx_buf = host->early_status.rx_buf;
992 host->early_status.tx_dma = host->early_status.rx_dma;
993 host->early_status.len = statlen;
994
995 if (host->dma_dev)
996 dma_sync_single_for_device(host->dma_dev,
997 host->data_dma, sizeof(*scratch),
998 DMA_BIDIRECTIONAL);
999
1000 tmp = spi_sync_locked(spi, &host->m);
1001
1002 if (host->dma_dev)
1003 dma_sync_single_for_cpu(host->dma_dev,
1004 host->data_dma, sizeof(*scratch),
1005 DMA_BIDIRECTIONAL);
1006
1007 if (tmp < 0) {
1008 if (!data->error)
1009 data->error = tmp;
1010 return;
1011 }
1012
1013 /* Ideally we collected "not busy" status with one I/O,
1014 * avoiding wasteful byte-at-a-time scanning... but more
1015 * I/O is often needed.
1016 */
1017 for (tmp = 2; tmp < statlen; tmp++) {
1018 if (scratch->status[tmp] != 0)
1019 return;
1020 }
1021 tmp = mmc_spi_wait_unbusy(host, timeout);
1022 if (tmp < 0 && !data->error)
1023 data->error = tmp;
1024 }
1025}
1026
1027/****************************************************************************/
1028
1029/*
1030 * MMC driver implementation -- the interface to the MMC stack
1031 */
1032
1033static void mmc_spi_request(struct mmc_host *mmc, struct mmc_request *mrq)
1034{
1035 struct mmc_spi_host *host = mmc_priv(mmc);
1036 int status = -EINVAL;
1037 int crc_retry = 5;
1038 struct mmc_command stop;
1039
1040#ifdef DEBUG
1041 /* MMC core and layered drivers *MUST* issue SPI-aware commands */
1042 {
1043 struct mmc_command *cmd;
1044 int invalid = 0;
1045
1046 cmd = mrq->cmd;
1047 if (!mmc_spi_resp_type(cmd)) {
1048 dev_dbg(&host->spi->dev, "bogus command\n");
1049 cmd->error = -EINVAL;
1050 invalid = 1;
1051 }
1052
1053 cmd = mrq->stop;
1054 if (cmd && !mmc_spi_resp_type(cmd)) {
1055 dev_dbg(&host->spi->dev, "bogus STOP command\n");
1056 cmd->error = -EINVAL;
1057 invalid = 1;
1058 }
1059
1060 if (invalid) {
1061 dump_stack();
1062 mmc_request_done(host->mmc, mrq);
1063 return;
1064 }
1065 }
1066#endif
1067
1068 /* request exclusive bus access */
1069 spi_bus_lock(host->spi->master);
1070
1071crc_recover:
1072 /* issue command; then optionally data and stop */
1073 status = mmc_spi_command_send(host, mrq, mrq->cmd, mrq->data != NULL);
1074 if (status == 0 && mrq->data) {
1075 mmc_spi_data_do(host, mrq->cmd, mrq->data, mrq->data->blksz);
1076
1077 /*
1078 * The SPI bus is not always reliable for large data transfers.
1079 * If an occasional crc error is reported by the SD device with
1080 * data read/write over SPI, it may be recovered by repeating
1081 * the last SD command again. The retry count is set to 5 to
1082 * ensure the driver passes stress tests.
1083 */
1084 if (mrq->data->error == -EILSEQ && crc_retry) {
1085 stop.opcode = MMC_STOP_TRANSMISSION;
1086 stop.arg = 0;
1087 stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1088 status = mmc_spi_command_send(host, mrq, &stop, 0);
1089 crc_retry--;
1090 mrq->data->error = 0;
1091 goto crc_recover;
1092 }
1093
1094 if (mrq->stop)
1095 status = mmc_spi_command_send(host, mrq, mrq->stop, 0);
1096 else
1097 mmc_cs_off(host);
1098 }
1099
1100 /* release the bus */
1101 spi_bus_unlock(host->spi->master);
1102
1103 mmc_request_done(host->mmc, mrq);
1104}
1105
1106/* See Section 6.4.1, in SD "Simplified Physical Layer Specification 2.0"
1107 *
1108 * NOTE that here we can't know that the card has just been powered up;
1109 * not all MMC/SD sockets support power switching.
1110 *
1111 * FIXME when the card is still in SPI mode, e.g. from a previous kernel,
1112 * this doesn't seem to do the right thing at all...
1113 */
1114static void mmc_spi_initsequence(struct mmc_spi_host *host)
1115{
1116 /* Try to be very sure any previous command has completed;
1117 * wait till not-busy, skip debris from any old commands.
1118 */
1119 mmc_spi_wait_unbusy(host, msecs_to_jiffies(MMC_SPI_INIT_TIMEOUT_MS));
1120 mmc_spi_readbytes(host, 10);
1121
1122 /*
1123 * Do a burst with chipselect active-high. We need to do this to
1124 * meet the requirement of 74 clock cycles with both chipselect
1125 * and CMD (MOSI) high before CMD0 ... after the card has been
1126 * powered up to Vdd(min), and so is ready to take commands.
1127 *
1128 * Some cards are particularly needy of this (e.g. Viking "SD256")
1129 * while most others don't seem to care.
1130 *
1131 * Note that this is one of the places MMC/SD plays games with the
1132 * SPI protocol. Another is that when chipselect is released while
1133 * the card returns BUSY status, the clock must issue several cycles
1134 * with chipselect high before the card will stop driving its output.
1135 *
1136 * SPI_CS_HIGH means "asserted" here. In some cases like when using
1137 * GPIOs for chip select, SPI_CS_HIGH is set but this will be logically
1138 * inverted by gpiolib, so if we want to ascertain to drive it high
1139 * we should toggle the default with an XOR as we do here.
1140 */
1141 host->spi->mode ^= SPI_CS_HIGH;
1142 if (spi_setup(host->spi) != 0) {
1143 /* Just warn; most cards work without it. */
1144 dev_warn(&host->spi->dev,
1145 "can't change chip-select polarity\n");
1146 host->spi->mode ^= SPI_CS_HIGH;
1147 } else {
1148 mmc_spi_readbytes(host, 18);
1149
1150 host->spi->mode ^= SPI_CS_HIGH;
1151 if (spi_setup(host->spi) != 0) {
1152 /* Wot, we can't get the same setup we had before? */
1153 dev_err(&host->spi->dev,
1154 "can't restore chip-select polarity\n");
1155 }
1156 }
1157}
1158
1159static char *mmc_powerstring(u8 power_mode)
1160{
1161 switch (power_mode) {
1162 case MMC_POWER_OFF: return "off";
1163 case MMC_POWER_UP: return "up";
1164 case MMC_POWER_ON: return "on";
1165 }
1166 return "?";
1167}
1168
1169static void mmc_spi_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1170{
1171 struct mmc_spi_host *host = mmc_priv(mmc);
1172
1173 if (host->power_mode != ios->power_mode) {
1174 int canpower;
1175
1176 canpower = host->pdata && host->pdata->setpower;
1177
1178 dev_dbg(&host->spi->dev, "mmc_spi: power %s (%d)%s\n",
1179 mmc_powerstring(ios->power_mode),
1180 ios->vdd,
1181 canpower ? ", can switch" : "");
1182
1183 /* switch power on/off if possible, accounting for
1184 * max 250msec powerup time if needed.
1185 */
1186 if (canpower) {
1187 switch (ios->power_mode) {
1188 case MMC_POWER_OFF:
1189 case MMC_POWER_UP:
1190 host->pdata->setpower(&host->spi->dev,
1191 ios->vdd);
1192 if (ios->power_mode == MMC_POWER_UP)
1193 msleep(host->powerup_msecs);
1194 }
1195 }
1196
1197 /* See 6.4.1 in the simplified SD card physical spec 2.0 */
1198 if (ios->power_mode == MMC_POWER_ON)
1199 mmc_spi_initsequence(host);
1200
1201 /* If powering down, ground all card inputs to avoid power
1202 * delivery from data lines! On a shared SPI bus, this
1203 * will probably be temporary; 6.4.2 of the simplified SD
1204 * spec says this must last at least 1msec.
1205 *
1206 * - Clock low means CPOL 0, e.g. mode 0
1207 * - MOSI low comes from writing zero
1208 * - Chipselect is usually active low...
1209 */
1210 if (canpower && ios->power_mode == MMC_POWER_OFF) {
1211 int mres;
1212 u8 nullbyte = 0;
1213
1214 host->spi->mode &= ~(SPI_CPOL|SPI_CPHA);
1215 mres = spi_setup(host->spi);
1216 if (mres < 0)
1217 dev_dbg(&host->spi->dev,
1218 "switch to SPI mode 0 failed\n");
1219
1220 if (spi_write(host->spi, &nullbyte, 1) < 0)
1221 dev_dbg(&host->spi->dev,
1222 "put spi signals to low failed\n");
1223
1224 /*
1225 * Now clock should be low due to spi mode 0;
1226 * MOSI should be low because of written 0x00;
1227 * chipselect should be low (it is active low)
1228 * power supply is off, so now MMC is off too!
1229 *
1230 * FIXME no, chipselect can be high since the
1231 * device is inactive and SPI_CS_HIGH is clear...
1232 */
1233 msleep(10);
1234 if (mres == 0) {
1235 host->spi->mode |= (SPI_CPOL|SPI_CPHA);
1236 mres = spi_setup(host->spi);
1237 if (mres < 0)
1238 dev_dbg(&host->spi->dev,
1239 "switch back to SPI mode 3 failed\n");
1240 }
1241 }
1242
1243 host->power_mode = ios->power_mode;
1244 }
1245
1246 if (host->spi->max_speed_hz != ios->clock && ios->clock != 0) {
1247 int status;
1248
1249 host->spi->max_speed_hz = ios->clock;
1250 status = spi_setup(host->spi);
1251 dev_dbg(&host->spi->dev,
1252 "mmc_spi: clock to %d Hz, %d\n",
1253 host->spi->max_speed_hz, status);
1254 }
1255}
1256
1257static const struct mmc_host_ops mmc_spi_ops = {
1258 .request = mmc_spi_request,
1259 .set_ios = mmc_spi_set_ios,
1260 .get_ro = mmc_gpio_get_ro,
1261 .get_cd = mmc_gpio_get_cd,
1262};
1263
1264
1265/****************************************************************************/
1266
1267/*
1268 * SPI driver implementation
1269 */
1270
1271static irqreturn_t
1272mmc_spi_detect_irq(int irq, void *mmc)
1273{
1274 struct mmc_spi_host *host = mmc_priv(mmc);
1275 u16 delay_msec = max(host->pdata->detect_delay, (u16)100);
1276
1277 mmc_detect_change(mmc, msecs_to_jiffies(delay_msec));
1278 return IRQ_HANDLED;
1279}
1280
1281#ifdef CONFIG_HAS_DMA
1282static int mmc_spi_dma_alloc(struct mmc_spi_host *host)
1283{
1284 struct spi_device *spi = host->spi;
1285 struct device *dev;
1286
1287 if (!spi->master->dev.parent->dma_mask)
1288 return 0;
1289
1290 dev = spi->master->dev.parent;
1291
1292 host->ones_dma = dma_map_single(dev, host->ones, MMC_SPI_BLOCKSIZE,
1293 DMA_TO_DEVICE);
1294 if (dma_mapping_error(dev, host->ones_dma))
1295 return -ENOMEM;
1296
1297 host->data_dma = dma_map_single(dev, host->data, sizeof(*host->data),
1298 DMA_BIDIRECTIONAL);
1299 if (dma_mapping_error(dev, host->data_dma)) {
1300 dma_unmap_single(dev, host->ones_dma, MMC_SPI_BLOCKSIZE,
1301 DMA_TO_DEVICE);
1302 return -ENOMEM;
1303 }
1304
1305 dma_sync_single_for_cpu(dev, host->data_dma, sizeof(*host->data),
1306 DMA_BIDIRECTIONAL);
1307
1308 host->dma_dev = dev;
1309 return 0;
1310}
1311
1312static void mmc_spi_dma_free(struct mmc_spi_host *host)
1313{
1314 if (!host->dma_dev)
1315 return;
1316
1317 dma_unmap_single(host->dma_dev, host->ones_dma, MMC_SPI_BLOCKSIZE,
1318 DMA_TO_DEVICE);
1319 dma_unmap_single(host->dma_dev, host->data_dma, sizeof(*host->data),
1320 DMA_BIDIRECTIONAL);
1321}
1322#else
1323static inline int mmc_spi_dma_alloc(struct mmc_spi_host *host) { return 0; }
1324static inline void mmc_spi_dma_free(struct mmc_spi_host *host) {}
1325#endif
1326
1327static int mmc_spi_probe(struct spi_device *spi)
1328{
1329 void *ones;
1330 struct mmc_host *mmc;
1331 struct mmc_spi_host *host;
1332 int status;
1333 bool has_ro = false;
1334
1335 /* We rely on full duplex transfers, mostly to reduce
1336 * per-transfer overheads (by making fewer transfers).
1337 */
1338 if (spi->master->flags & SPI_MASTER_HALF_DUPLEX)
1339 return -EINVAL;
1340
1341 /* MMC and SD specs only seem to care that sampling is on the
1342 * rising edge ... meaning SPI modes 0 or 3. So either SPI mode
1343 * should be legit. We'll use mode 0 since the steady state is 0,
1344 * which is appropriate for hotplugging, unless the platform data
1345 * specify mode 3 (if hardware is not compatible to mode 0).
1346 */
1347 if (spi->mode != SPI_MODE_3)
1348 spi->mode = SPI_MODE_0;
1349 spi->bits_per_word = 8;
1350
1351 status = spi_setup(spi);
1352 if (status < 0) {
1353 dev_dbg(&spi->dev, "needs SPI mode %02x, %d KHz; %d\n",
1354 spi->mode, spi->max_speed_hz / 1000,
1355 status);
1356 return status;
1357 }
1358
1359 /* We need a supply of ones to transmit. This is the only time
1360 * the CPU touches these, so cache coherency isn't a concern.
1361 *
1362 * NOTE if many systems use more than one MMC-over-SPI connector
1363 * it'd save some memory to share this. That's evidently rare.
1364 */
1365 status = -ENOMEM;
1366 ones = kmalloc(MMC_SPI_BLOCKSIZE, GFP_KERNEL);
1367 if (!ones)
1368 goto nomem;
1369 memset(ones, 0xff, MMC_SPI_BLOCKSIZE);
1370
1371 mmc = mmc_alloc_host(sizeof(*host), &spi->dev);
1372 if (!mmc)
1373 goto nomem;
1374
1375 mmc->ops = &mmc_spi_ops;
1376 mmc->max_blk_size = MMC_SPI_BLOCKSIZE;
1377 mmc->max_segs = MMC_SPI_BLOCKSATONCE;
1378 mmc->max_req_size = MMC_SPI_BLOCKSATONCE * MMC_SPI_BLOCKSIZE;
1379 mmc->max_blk_count = MMC_SPI_BLOCKSATONCE;
1380
1381 mmc->caps = MMC_CAP_SPI;
1382
1383 /* SPI doesn't need the lowspeed device identification thing for
1384 * MMC or SD cards, since it never comes up in open drain mode.
1385 * That's good; some SPI masters can't handle very low speeds!
1386 *
1387 * However, low speed SDIO cards need not handle over 400 KHz;
1388 * that's the only reason not to use a few MHz for f_min (until
1389 * the upper layer reads the target frequency from the CSD).
1390 */
1391 mmc->f_min = 400000;
1392 mmc->f_max = spi->max_speed_hz;
1393
1394 host = mmc_priv(mmc);
1395 host->mmc = mmc;
1396 host->spi = spi;
1397
1398 host->ones = ones;
1399
1400 /* Platform data is used to hook up things like card sensing
1401 * and power switching gpios.
1402 */
1403 host->pdata = mmc_spi_get_pdata(spi);
1404 if (host->pdata)
1405 mmc->ocr_avail = host->pdata->ocr_mask;
1406 if (!mmc->ocr_avail) {
1407 dev_warn(&spi->dev, "ASSUMING 3.2-3.4 V slot power\n");
1408 mmc->ocr_avail = MMC_VDD_32_33|MMC_VDD_33_34;
1409 }
1410 if (host->pdata && host->pdata->setpower) {
1411 host->powerup_msecs = host->pdata->powerup_msecs;
1412 if (!host->powerup_msecs || host->powerup_msecs > 250)
1413 host->powerup_msecs = 250;
1414 }
1415
1416 dev_set_drvdata(&spi->dev, mmc);
1417
1418 /* preallocate dma buffers */
1419 host->data = kmalloc(sizeof(*host->data), GFP_KERNEL);
1420 if (!host->data)
1421 goto fail_nobuf1;
1422
1423 status = mmc_spi_dma_alloc(host);
1424 if (status)
1425 goto fail_dma;
1426
1427 /* setup message for status/busy readback */
1428 spi_message_init(&host->readback);
1429 host->readback.is_dma_mapped = (host->dma_dev != NULL);
1430
1431 spi_message_add_tail(&host->status, &host->readback);
1432 host->status.tx_buf = host->ones;
1433 host->status.tx_dma = host->ones_dma;
1434 host->status.rx_buf = &host->data->status;
1435 host->status.rx_dma = host->data_dma + offsetof(struct scratch, status);
1436 host->status.cs_change = 1;
1437
1438 /* register card detect irq */
1439 if (host->pdata && host->pdata->init) {
1440 status = host->pdata->init(&spi->dev, mmc_spi_detect_irq, mmc);
1441 if (status != 0)
1442 goto fail_glue_init;
1443 }
1444
1445 /* pass platform capabilities, if any */
1446 if (host->pdata) {
1447 mmc->caps |= host->pdata->caps;
1448 mmc->caps2 |= host->pdata->caps2;
1449 }
1450
1451 status = mmc_add_host(mmc);
1452 if (status != 0)
1453 goto fail_add_host;
1454
1455 /*
1456 * Index 0 is card detect
1457 * Old boardfiles were specifying 1 ms as debounce
1458 */
1459 status = mmc_gpiod_request_cd(mmc, NULL, 0, false, 1000);
1460 if (status == -EPROBE_DEFER)
1461 goto fail_add_host;
1462 if (!status) {
1463 /*
1464 * The platform has a CD GPIO signal that may support
1465 * interrupts, so let mmc_gpiod_request_cd_irq() decide
1466 * if polling is needed or not.
1467 */
1468 mmc->caps &= ~MMC_CAP_NEEDS_POLL;
1469 mmc_gpiod_request_cd_irq(mmc);
1470 }
1471 mmc_detect_change(mmc, 0);
1472
1473 /* Index 1 is write protect/read only */
1474 status = mmc_gpiod_request_ro(mmc, NULL, 1, 0);
1475 if (status == -EPROBE_DEFER)
1476 goto fail_add_host;
1477 if (!status)
1478 has_ro = true;
1479
1480 dev_info(&spi->dev, "SD/MMC host %s%s%s%s%s\n",
1481 dev_name(&mmc->class_dev),
1482 host->dma_dev ? "" : ", no DMA",
1483 has_ro ? "" : ", no WP",
1484 (host->pdata && host->pdata->setpower)
1485 ? "" : ", no poweroff",
1486 (mmc->caps & MMC_CAP_NEEDS_POLL)
1487 ? ", cd polling" : "");
1488 return 0;
1489
1490fail_add_host:
1491 mmc_remove_host(mmc);
1492fail_glue_init:
1493 mmc_spi_dma_free(host);
1494fail_dma:
1495 kfree(host->data);
1496fail_nobuf1:
1497 mmc_free_host(mmc);
1498 mmc_spi_put_pdata(spi);
1499nomem:
1500 kfree(ones);
1501 return status;
1502}
1503
1504
1505static int mmc_spi_remove(struct spi_device *spi)
1506{
1507 struct mmc_host *mmc = dev_get_drvdata(&spi->dev);
1508 struct mmc_spi_host *host = mmc_priv(mmc);
1509
1510 /* prevent new mmc_detect_change() calls */
1511 if (host->pdata && host->pdata->exit)
1512 host->pdata->exit(&spi->dev, mmc);
1513
1514 mmc_remove_host(mmc);
1515
1516 mmc_spi_dma_free(host);
1517 kfree(host->data);
1518 kfree(host->ones);
1519
1520 spi->max_speed_hz = mmc->f_max;
1521 mmc_free_host(mmc);
1522 mmc_spi_put_pdata(spi);
1523 return 0;
1524}
1525
1526static const struct of_device_id mmc_spi_of_match_table[] = {
1527 { .compatible = "mmc-spi-slot", },
1528 {},
1529};
1530MODULE_DEVICE_TABLE(of, mmc_spi_of_match_table);
1531
1532static struct spi_driver mmc_spi_driver = {
1533 .driver = {
1534 .name = "mmc_spi",
1535 .of_match_table = mmc_spi_of_match_table,
1536 },
1537 .probe = mmc_spi_probe,
1538 .remove = mmc_spi_remove,
1539};
1540
1541module_spi_driver(mmc_spi_driver);
1542
1543MODULE_AUTHOR("Mike Lavender, David Brownell, Hans-Peter Nilsson, Jan Nikitenko");
1544MODULE_DESCRIPTION("SPI SD/MMC host driver");
1545MODULE_LICENSE("GPL");
1546MODULE_ALIAS("spi:mmc_spi");