Linux Audio

Check our new training course

Loading...
v3.5.6
 
   1/*
   2 * mmc_spi.c - Access SD/MMC cards through SPI master controllers
   3 *
   4 * (C) Copyright 2005, Intec Automation,
   5 *		Mike Lavender (mike@steroidmicros)
   6 * (C) Copyright 2006-2007, David Brownell
   7 * (C) Copyright 2007, Axis Communications,
   8 *		Hans-Peter Nilsson (hp@axis.com)
   9 * (C) Copyright 2007, ATRON electronic GmbH,
  10 *		Jan Nikitenko <jan.nikitenko@gmail.com>
  11 *
  12 *
  13 * This program is free software; you can redistribute it and/or modify
  14 * it under the terms of the GNU General Public License as published by
  15 * the Free Software Foundation; either version 2 of the License, or
  16 * (at your option) any later version.
  17 *
  18 * This program is distributed in the hope that it will be useful,
  19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  21 * GNU General Public License for more details.
  22 *
  23 * You should have received a copy of the GNU General Public License
  24 * along with this program; if not, write to the Free Software
  25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  26 */
  27#include <linux/sched.h>
  28#include <linux/delay.h>
  29#include <linux/slab.h>
  30#include <linux/module.h>
  31#include <linux/bio.h>
  32#include <linux/dma-mapping.h>
  33#include <linux/crc7.h>
  34#include <linux/crc-itu-t.h>
  35#include <linux/scatterlist.h>
  36
  37#include <linux/mmc/host.h>
  38#include <linux/mmc/mmc.h>		/* for R1_SPI_* bit values */
 
  39
  40#include <linux/spi/spi.h>
  41#include <linux/spi/mmc_spi.h>
  42
  43#include <asm/unaligned.h>
  44
  45
  46/* NOTES:
  47 *
  48 * - For now, we won't try to interoperate with a real mmc/sd/sdio
  49 *   controller, although some of them do have hardware support for
  50 *   SPI protocol.  The main reason for such configs would be mmc-ish
  51 *   cards like DataFlash, which don't support that "native" protocol.
  52 *
  53 *   We don't have a "DataFlash/MMC/SD/SDIO card slot" abstraction to
  54 *   switch between driver stacks, and in any case if "native" mode
  55 *   is available, it will be faster and hence preferable.
  56 *
  57 * - MMC depends on a different chipselect management policy than the
  58 *   SPI interface currently supports for shared bus segments:  it needs
  59 *   to issue multiple spi_message requests with the chipselect active,
  60 *   using the results of one message to decide the next one to issue.
  61 *
  62 *   Pending updates to the programming interface, this driver expects
  63 *   that it not share the bus with other drivers (precluding conflicts).
  64 *
  65 * - We tell the controller to keep the chipselect active from the
  66 *   beginning of an mmc_host_ops.request until the end.  So beware
  67 *   of SPI controller drivers that mis-handle the cs_change flag!
  68 *
  69 *   However, many cards seem OK with chipselect flapping up/down
  70 *   during that time ... at least on unshared bus segments.
  71 */
  72
  73
  74/*
  75 * Local protocol constants, internal to data block protocols.
  76 */
  77
  78/* Response tokens used to ack each block written: */
  79#define SPI_MMC_RESPONSE_CODE(x)	((x) & 0x1f)
  80#define SPI_RESPONSE_ACCEPTED		((2 << 1)|1)
  81#define SPI_RESPONSE_CRC_ERR		((5 << 1)|1)
  82#define SPI_RESPONSE_WRITE_ERR		((6 << 1)|1)
  83
  84/* Read and write blocks start with these tokens and end with crc;
  85 * on error, read tokens act like a subset of R2_SPI_* values.
  86 */
  87#define SPI_TOKEN_SINGLE	0xfe	/* single block r/w, multiblock read */
  88#define SPI_TOKEN_MULTI_WRITE	0xfc	/* multiblock write */
  89#define SPI_TOKEN_STOP_TRAN	0xfd	/* terminate multiblock write */
  90
  91#define MMC_SPI_BLOCKSIZE	512
  92
  93
  94/* These fixed timeouts come from the latest SD specs, which say to ignore
  95 * the CSD values.  The R1B value is for card erase (e.g. the "I forgot the
  96 * card's password" scenario); it's mostly applied to STOP_TRANSMISSION after
  97 * reads which takes nowhere near that long.  Older cards may be able to use
  98 * shorter timeouts ... but why bother?
  99 */
 100#define r1b_timeout		(HZ * 3)
 101
 102/* One of the critical speed parameters is the amount of data which may
 103 * be transferred in one command. If this value is too low, the SD card
 104 * controller has to do multiple partial block writes (argggh!). With
 105 * today (2008) SD cards there is little speed gain if we transfer more
 106 * than 64 KBytes at a time. So use this value until there is any indication
 107 * that we should do more here.
 108 */
 109#define MMC_SPI_BLOCKSATONCE	128
 110
 111/****************************************************************************/
 112
 113/*
 114 * Local Data Structures
 115 */
 116
 117/* "scratch" is per-{command,block} data exchanged with the card */
 118struct scratch {
 119	u8			status[29];
 120	u8			data_token;
 121	__be16			crc_val;
 122};
 123
 124struct mmc_spi_host {
 125	struct mmc_host		*mmc;
 126	struct spi_device	*spi;
 127
 128	unsigned char		power_mode;
 129	u16			powerup_msecs;
 130
 131	struct mmc_spi_platform_data	*pdata;
 132
 133	/* for bulk data transfers */
 134	struct spi_transfer	token, t, crc, early_status;
 135	struct spi_message	m;
 136
 137	/* for status readback */
 138	struct spi_transfer	status;
 139	struct spi_message	readback;
 140
 141	/* underlying DMA-aware controller, or null */
 142	struct device		*dma_dev;
 143
 144	/* buffer used for commands and for message "overhead" */
 145	struct scratch		*data;
 146	dma_addr_t		data_dma;
 147
 148	/* Specs say to write ones most of the time, even when the card
 149	 * has no need to read its input data; and many cards won't care.
 150	 * This is our source of those ones.
 151	 */
 152	void			*ones;
 153	dma_addr_t		ones_dma;
 154};
 155
 156
 157/****************************************************************************/
 158
 159/*
 160 * MMC-over-SPI protocol glue, used by the MMC stack interface
 161 */
 162
 163static inline int mmc_cs_off(struct mmc_spi_host *host)
 164{
 165	/* chipselect will always be inactive after setup() */
 166	return spi_setup(host->spi);
 167}
 168
 169static int
 170mmc_spi_readbytes(struct mmc_spi_host *host, unsigned len)
 171{
 172	int status;
 173
 174	if (len > sizeof(*host->data)) {
 175		WARN_ON(1);
 176		return -EIO;
 177	}
 178
 179	host->status.len = len;
 180
 181	if (host->dma_dev)
 182		dma_sync_single_for_device(host->dma_dev,
 183				host->data_dma, sizeof(*host->data),
 184				DMA_FROM_DEVICE);
 185
 186	status = spi_sync_locked(host->spi, &host->readback);
 187
 188	if (host->dma_dev)
 189		dma_sync_single_for_cpu(host->dma_dev,
 190				host->data_dma, sizeof(*host->data),
 191				DMA_FROM_DEVICE);
 192
 193	return status;
 194}
 195
 196static int mmc_spi_skip(struct mmc_spi_host *host, unsigned long timeout,
 197			unsigned n, u8 byte)
 198{
 199	u8		*cp = host->data->status;
 200	unsigned long start = jiffies;
 201
 202	while (1) {
 203		int		status;
 204		unsigned	i;
 205
 206		status = mmc_spi_readbytes(host, n);
 207		if (status < 0)
 208			return status;
 209
 210		for (i = 0; i < n; i++) {
 211			if (cp[i] != byte)
 212				return cp[i];
 213		}
 214
 215		if (time_is_before_jiffies(start + timeout))
 216			break;
 217
 218		/* If we need long timeouts, we may release the CPU.
 219		 * We use jiffies here because we want to have a relation
 220		 * between elapsed time and the blocking of the scheduler.
 221		 */
 222		if (time_is_before_jiffies(start+1))
 223			schedule();
 224	}
 225	return -ETIMEDOUT;
 226}
 227
 228static inline int
 229mmc_spi_wait_unbusy(struct mmc_spi_host *host, unsigned long timeout)
 230{
 231	return mmc_spi_skip(host, timeout, sizeof(host->data->status), 0);
 232}
 233
 234static int mmc_spi_readtoken(struct mmc_spi_host *host, unsigned long timeout)
 235{
 236	return mmc_spi_skip(host, timeout, 1, 0xff);
 237}
 238
 239
 240/*
 241 * Note that for SPI, cmd->resp[0] is not the same data as "native" protocol
 242 * hosts return!  The low byte holds R1_SPI bits.  The next byte may hold
 243 * R2_SPI bits ... for SEND_STATUS, or after data read errors.
 244 *
 245 * cmd->resp[1] holds any four-byte response, for R3 (READ_OCR) and on
 246 * newer cards R7 (IF_COND).
 247 */
 248
 249static char *maptype(struct mmc_command *cmd)
 250{
 251	switch (mmc_spi_resp_type(cmd)) {
 252	case MMC_RSP_SPI_R1:	return "R1";
 253	case MMC_RSP_SPI_R1B:	return "R1B";
 254	case MMC_RSP_SPI_R2:	return "R2/R5";
 255	case MMC_RSP_SPI_R3:	return "R3/R4/R7";
 256	default:		return "?";
 257	}
 258}
 259
 260/* return zero, else negative errno after setting cmd->error */
 261static int mmc_spi_response_get(struct mmc_spi_host *host,
 262		struct mmc_command *cmd, int cs_on)
 263{
 264	u8	*cp = host->data->status;
 265	u8	*end = cp + host->t.len;
 266	int	value = 0;
 267	int	bitshift;
 268	u8 	leftover = 0;
 269	unsigned short rotator;
 270	int 	i;
 271	char	tag[32];
 272
 273	snprintf(tag, sizeof(tag), "  ... CMD%d response SPI_%s",
 274		cmd->opcode, maptype(cmd));
 275
 276	/* Except for data block reads, the whole response will already
 277	 * be stored in the scratch buffer.  It's somewhere after the
 278	 * command and the first byte we read after it.  We ignore that
 279	 * first byte.  After STOP_TRANSMISSION command it may include
 280	 * two data bits, but otherwise it's all ones.
 281	 */
 282	cp += 8;
 283	while (cp < end && *cp == 0xff)
 284		cp++;
 285
 286	/* Data block reads (R1 response types) may need more data... */
 287	if (cp == end) {
 288		cp = host->data->status;
 289		end = cp+1;
 290
 291		/* Card sends N(CR) (== 1..8) bytes of all-ones then one
 292		 * status byte ... and we already scanned 2 bytes.
 293		 *
 294		 * REVISIT block read paths use nasty byte-at-a-time I/O
 295		 * so it can always DMA directly into the target buffer.
 296		 * It'd probably be better to memcpy() the first chunk and
 297		 * avoid extra i/o calls...
 298		 *
 299		 * Note we check for more than 8 bytes, because in practice,
 300		 * some SD cards are slow...
 301		 */
 302		for (i = 2; i < 16; i++) {
 303			value = mmc_spi_readbytes(host, 1);
 304			if (value < 0)
 305				goto done;
 306			if (*cp != 0xff)
 307				goto checkstatus;
 308		}
 309		value = -ETIMEDOUT;
 310		goto done;
 311	}
 312
 313checkstatus:
 314	bitshift = 0;
 315	if (*cp & 0x80)	{
 316		/* Houston, we have an ugly card with a bit-shifted response */
 317		rotator = *cp++ << 8;
 318		/* read the next byte */
 319		if (cp == end) {
 320			value = mmc_spi_readbytes(host, 1);
 321			if (value < 0)
 322				goto done;
 323			cp = host->data->status;
 324			end = cp+1;
 325		}
 326		rotator |= *cp++;
 327		while (rotator & 0x8000) {
 328			bitshift++;
 329			rotator <<= 1;
 330		}
 331		cmd->resp[0] = rotator >> 8;
 332		leftover = rotator;
 333	} else {
 334		cmd->resp[0] = *cp++;
 335	}
 336	cmd->error = 0;
 337
 338	/* Status byte: the entire seven-bit R1 response.  */
 339	if (cmd->resp[0] != 0) {
 340		if ((R1_SPI_PARAMETER | R1_SPI_ADDRESS)
 341				& cmd->resp[0])
 342			value = -EFAULT; /* Bad address */
 343		else if (R1_SPI_ILLEGAL_COMMAND & cmd->resp[0])
 344			value = -ENOSYS; /* Function not implemented */
 345		else if (R1_SPI_COM_CRC & cmd->resp[0])
 346			value = -EILSEQ; /* Illegal byte sequence */
 347		else if ((R1_SPI_ERASE_SEQ | R1_SPI_ERASE_RESET)
 348				& cmd->resp[0])
 349			value = -EIO;    /* I/O error */
 350		/* else R1_SPI_IDLE, "it's resetting" */
 351	}
 352
 353	switch (mmc_spi_resp_type(cmd)) {
 354
 355	/* SPI R1B == R1 + busy; STOP_TRANSMISSION (for multiblock reads)
 356	 * and less-common stuff like various erase operations.
 357	 */
 358	case MMC_RSP_SPI_R1B:
 359		/* maybe we read all the busy tokens already */
 360		while (cp < end && *cp == 0)
 361			cp++;
 362		if (cp == end)
 363			mmc_spi_wait_unbusy(host, r1b_timeout);
 364		break;
 365
 366	/* SPI R2 == R1 + second status byte; SEND_STATUS
 367	 * SPI R5 == R1 + data byte; IO_RW_DIRECT
 368	 */
 369	case MMC_RSP_SPI_R2:
 370		/* read the next byte */
 371		if (cp == end) {
 372			value = mmc_spi_readbytes(host, 1);
 373			if (value < 0)
 374				goto done;
 375			cp = host->data->status;
 376			end = cp+1;
 377		}
 378		if (bitshift) {
 379			rotator = leftover << 8;
 380			rotator |= *cp << bitshift;
 381			cmd->resp[0] |= (rotator & 0xFF00);
 382		} else {
 383			cmd->resp[0] |= *cp << 8;
 384		}
 385		break;
 386
 387	/* SPI R3, R4, or R7 == R1 + 4 bytes */
 388	case MMC_RSP_SPI_R3:
 389		rotator = leftover << 8;
 390		cmd->resp[1] = 0;
 391		for (i = 0; i < 4; i++) {
 392			cmd->resp[1] <<= 8;
 393			/* read the next byte */
 394			if (cp == end) {
 395				value = mmc_spi_readbytes(host, 1);
 396				if (value < 0)
 397					goto done;
 398				cp = host->data->status;
 399				end = cp+1;
 400			}
 401			if (bitshift) {
 402				rotator |= *cp++ << bitshift;
 403				cmd->resp[1] |= (rotator >> 8);
 404				rotator <<= 8;
 405			} else {
 406				cmd->resp[1] |= *cp++;
 407			}
 408		}
 409		break;
 410
 411	/* SPI R1 == just one status byte */
 412	case MMC_RSP_SPI_R1:
 413		break;
 414
 415	default:
 416		dev_dbg(&host->spi->dev, "bad response type %04x\n",
 417				mmc_spi_resp_type(cmd));
 418		if (value >= 0)
 419			value = -EINVAL;
 420		goto done;
 421	}
 422
 423	if (value < 0)
 424		dev_dbg(&host->spi->dev, "%s: resp %04x %08x\n",
 425			tag, cmd->resp[0], cmd->resp[1]);
 426
 427	/* disable chipselect on errors and some success cases */
 428	if (value >= 0 && cs_on)
 429		return value;
 430done:
 431	if (value < 0)
 432		cmd->error = value;
 433	mmc_cs_off(host);
 434	return value;
 435}
 436
 437/* Issue command and read its response.
 438 * Returns zero on success, negative for error.
 439 *
 440 * On error, caller must cope with mmc core retry mechanism.  That
 441 * means immediate low-level resubmit, which affects the bus lock...
 442 */
 443static int
 444mmc_spi_command_send(struct mmc_spi_host *host,
 445		struct mmc_request *mrq,
 446		struct mmc_command *cmd, int cs_on)
 447{
 448	struct scratch		*data = host->data;
 449	u8			*cp = data->status;
 450	u32			arg = cmd->arg;
 451	int			status;
 452	struct spi_transfer	*t;
 453
 454	/* We can handle most commands (except block reads) in one full
 455	 * duplex I/O operation before either starting the next transfer
 456	 * (data block or command) or else deselecting the card.
 457	 *
 458	 * First, write 7 bytes:
 459	 *  - an all-ones byte to ensure the card is ready
 460	 *  - opcode byte (plus start and transmission bits)
 461	 *  - four bytes of big-endian argument
 462	 *  - crc7 (plus end bit) ... always computed, it's cheap
 463	 *
 464	 * We init the whole buffer to all-ones, which is what we need
 465	 * to write while we're reading (later) response data.
 466	 */
 467	memset(cp++, 0xff, sizeof(data->status));
 468
 469	*cp++ = 0x40 | cmd->opcode;
 470	*cp++ = (u8)(arg >> 24);
 471	*cp++ = (u8)(arg >> 16);
 472	*cp++ = (u8)(arg >> 8);
 473	*cp++ = (u8)arg;
 474	*cp++ = (crc7(0, &data->status[1], 5) << 1) | 0x01;
 475
 476	/* Then, read up to 13 bytes (while writing all-ones):
 477	 *  - N(CR) (== 1..8) bytes of all-ones
 478	 *  - status byte (for all response types)
 479	 *  - the rest of the response, either:
 480	 *      + nothing, for R1 or R1B responses
 481	 *	+ second status byte, for R2 responses
 482	 *	+ four data bytes, for R3 and R7 responses
 483	 *
 484	 * Finally, read some more bytes ... in the nice cases we know in
 485	 * advance how many, and reading 1 more is always OK:
 486	 *  - N(EC) (== 0..N) bytes of all-ones, before deselect/finish
 487	 *  - N(RC) (== 1..N) bytes of all-ones, before next command
 488	 *  - N(WR) (== 1..N) bytes of all-ones, before data write
 489	 *
 490	 * So in those cases one full duplex I/O of at most 21 bytes will
 491	 * handle the whole command, leaving the card ready to receive a
 492	 * data block or new command.  We do that whenever we can, shaving
 493	 * CPU and IRQ costs (especially when using DMA or FIFOs).
 494	 *
 495	 * There are two other cases, where it's not generally practical
 496	 * to rely on a single I/O:
 497	 *
 498	 *  - R1B responses need at least N(EC) bytes of all-zeroes.
 499	 *
 500	 *    In this case we can *try* to fit it into one I/O, then
 501	 *    maybe read more data later.
 502	 *
 503	 *  - Data block reads are more troublesome, since a variable
 504	 *    number of padding bytes precede the token and data.
 505	 *      + N(CX) (== 0..8) bytes of all-ones, before CSD or CID
 506	 *      + N(AC) (== 1..many) bytes of all-ones
 507	 *
 508	 *    In this case we currently only have minimal speedups here:
 509	 *    when N(CR) == 1 we can avoid I/O in response_get().
 510	 */
 511	if (cs_on && (mrq->data->flags & MMC_DATA_READ)) {
 512		cp += 2;	/* min(N(CR)) + status */
 513		/* R1 */
 514	} else {
 515		cp += 10;	/* max(N(CR)) + status + min(N(RC),N(WR)) */
 516		if (cmd->flags & MMC_RSP_SPI_S2)	/* R2/R5 */
 517			cp++;
 518		else if (cmd->flags & MMC_RSP_SPI_B4)	/* R3/R4/R7 */
 519			cp += 4;
 520		else if (cmd->flags & MMC_RSP_BUSY)	/* R1B */
 521			cp = data->status + sizeof(data->status);
 522		/* else:  R1 (most commands) */
 523	}
 524
 525	dev_dbg(&host->spi->dev, "  mmc_spi: CMD%d, resp %s\n",
 526		cmd->opcode, maptype(cmd));
 527
 528	/* send command, leaving chipselect active */
 529	spi_message_init(&host->m);
 530
 531	t = &host->t;
 532	memset(t, 0, sizeof(*t));
 533	t->tx_buf = t->rx_buf = data->status;
 534	t->tx_dma = t->rx_dma = host->data_dma;
 535	t->len = cp - data->status;
 536	t->cs_change = 1;
 537	spi_message_add_tail(t, &host->m);
 538
 539	if (host->dma_dev) {
 540		host->m.is_dma_mapped = 1;
 541		dma_sync_single_for_device(host->dma_dev,
 542				host->data_dma, sizeof(*host->data),
 543				DMA_BIDIRECTIONAL);
 544	}
 545	status = spi_sync_locked(host->spi, &host->m);
 546
 547	if (host->dma_dev)
 548		dma_sync_single_for_cpu(host->dma_dev,
 549				host->data_dma, sizeof(*host->data),
 550				DMA_BIDIRECTIONAL);
 551	if (status < 0) {
 552		dev_dbg(&host->spi->dev, "  ... write returned %d\n", status);
 553		cmd->error = status;
 554		return status;
 555	}
 556
 557	/* after no-data commands and STOP_TRANSMISSION, chipselect off */
 558	return mmc_spi_response_get(host, cmd, cs_on);
 559}
 560
 561/* Build data message with up to four separate transfers.  For TX, we
 562 * start by writing the data token.  And in most cases, we finish with
 563 * a status transfer.
 564 *
 565 * We always provide TX data for data and CRC.  The MMC/SD protocol
 566 * requires us to write ones; but Linux defaults to writing zeroes;
 567 * so we explicitly initialize it to all ones on RX paths.
 568 *
 569 * We also handle DMA mapping, so the underlying SPI controller does
 570 * not need to (re)do it for each message.
 571 */
 572static void
 573mmc_spi_setup_data_message(
 574	struct mmc_spi_host	*host,
 575	int			multiple,
 576	enum dma_data_direction	direction)
 577{
 578	struct spi_transfer	*t;
 579	struct scratch		*scratch = host->data;
 580	dma_addr_t		dma = host->data_dma;
 581
 582	spi_message_init(&host->m);
 583	if (dma)
 584		host->m.is_dma_mapped = 1;
 585
 586	/* for reads, readblock() skips 0xff bytes before finding
 587	 * the token; for writes, this transfer issues that token.
 588	 */
 589	if (direction == DMA_TO_DEVICE) {
 590		t = &host->token;
 591		memset(t, 0, sizeof(*t));
 592		t->len = 1;
 593		if (multiple)
 594			scratch->data_token = SPI_TOKEN_MULTI_WRITE;
 595		else
 596			scratch->data_token = SPI_TOKEN_SINGLE;
 597		t->tx_buf = &scratch->data_token;
 598		if (dma)
 599			t->tx_dma = dma + offsetof(struct scratch, data_token);
 600		spi_message_add_tail(t, &host->m);
 601	}
 602
 603	/* Body of transfer is buffer, then CRC ...
 604	 * either TX-only, or RX with TX-ones.
 605	 */
 606	t = &host->t;
 607	memset(t, 0, sizeof(*t));
 608	t->tx_buf = host->ones;
 609	t->tx_dma = host->ones_dma;
 610	/* length and actual buffer info are written later */
 611	spi_message_add_tail(t, &host->m);
 612
 613	t = &host->crc;
 614	memset(t, 0, sizeof(*t));
 615	t->len = 2;
 616	if (direction == DMA_TO_DEVICE) {
 617		/* the actual CRC may get written later */
 618		t->tx_buf = &scratch->crc_val;
 619		if (dma)
 620			t->tx_dma = dma + offsetof(struct scratch, crc_val);
 621	} else {
 622		t->tx_buf = host->ones;
 623		t->tx_dma = host->ones_dma;
 624		t->rx_buf = &scratch->crc_val;
 625		if (dma)
 626			t->rx_dma = dma + offsetof(struct scratch, crc_val);
 627	}
 628	spi_message_add_tail(t, &host->m);
 629
 630	/*
 631	 * A single block read is followed by N(EC) [0+] all-ones bytes
 632	 * before deselect ... don't bother.
 633	 *
 634	 * Multiblock reads are followed by N(AC) [1+] all-ones bytes before
 635	 * the next block is read, or a STOP_TRANSMISSION is issued.  We'll
 636	 * collect that single byte, so readblock() doesn't need to.
 637	 *
 638	 * For a write, the one-byte data response follows immediately, then
 639	 * come zero or more busy bytes, then N(WR) [1+] all-ones bytes.
 640	 * Then single block reads may deselect, and multiblock ones issue
 641	 * the next token (next data block, or STOP_TRAN).  We can try to
 642	 * minimize I/O ops by using a single read to collect end-of-busy.
 643	 */
 644	if (multiple || direction == DMA_TO_DEVICE) {
 645		t = &host->early_status;
 646		memset(t, 0, sizeof(*t));
 647		t->len = (direction == DMA_TO_DEVICE)
 648				? sizeof(scratch->status)
 649				: 1;
 650		t->tx_buf = host->ones;
 651		t->tx_dma = host->ones_dma;
 652		t->rx_buf = scratch->status;
 653		if (dma)
 654			t->rx_dma = dma + offsetof(struct scratch, status);
 655		t->cs_change = 1;
 656		spi_message_add_tail(t, &host->m);
 657	}
 658}
 659
 660/*
 661 * Write one block:
 662 *  - caller handled preceding N(WR) [1+] all-ones bytes
 663 *  - data block
 664 *	+ token
 665 *	+ data bytes
 666 *	+ crc16
 667 *  - an all-ones byte ... card writes a data-response byte
 668 *  - followed by N(EC) [0+] all-ones bytes, card writes zero/'busy'
 669 *
 670 * Return negative errno, else success.
 671 */
 672static int
 673mmc_spi_writeblock(struct mmc_spi_host *host, struct spi_transfer *t,
 674	unsigned long timeout)
 675{
 676	struct spi_device	*spi = host->spi;
 677	int			status, i;
 678	struct scratch		*scratch = host->data;
 679	u32			pattern;
 680
 681	if (host->mmc->use_spi_crc)
 682		scratch->crc_val = cpu_to_be16(
 683				crc_itu_t(0, t->tx_buf, t->len));
 684	if (host->dma_dev)
 685		dma_sync_single_for_device(host->dma_dev,
 686				host->data_dma, sizeof(*scratch),
 687				DMA_BIDIRECTIONAL);
 688
 689	status = spi_sync_locked(spi, &host->m);
 690
 691	if (status != 0) {
 692		dev_dbg(&spi->dev, "write error (%d)\n", status);
 693		return status;
 694	}
 695
 696	if (host->dma_dev)
 697		dma_sync_single_for_cpu(host->dma_dev,
 698				host->data_dma, sizeof(*scratch),
 699				DMA_BIDIRECTIONAL);
 700
 701	/*
 702	 * Get the transmission data-response reply.  It must follow
 703	 * immediately after the data block we transferred.  This reply
 704	 * doesn't necessarily tell whether the write operation succeeded;
 705	 * it just says if the transmission was ok and whether *earlier*
 706	 * writes succeeded; see the standard.
 707	 *
 708	 * In practice, there are (even modern SDHC-)cards which are late
 709	 * in sending the response, and miss the time frame by a few bits,
 710	 * so we have to cope with this situation and check the response
 711	 * bit-by-bit. Arggh!!!
 712	 */
 713	pattern  = scratch->status[0] << 24;
 714	pattern |= scratch->status[1] << 16;
 715	pattern |= scratch->status[2] << 8;
 716	pattern |= scratch->status[3];
 717
 718	/* First 3 bit of pattern are undefined */
 719	pattern |= 0xE0000000;
 720
 721	/* left-adjust to leading 0 bit */
 722	while (pattern & 0x80000000)
 723		pattern <<= 1;
 724	/* right-adjust for pattern matching. Code is in bit 4..0 now. */
 725	pattern >>= 27;
 726
 727	switch (pattern) {
 728	case SPI_RESPONSE_ACCEPTED:
 729		status = 0;
 730		break;
 731	case SPI_RESPONSE_CRC_ERR:
 732		/* host shall then issue MMC_STOP_TRANSMISSION */
 733		status = -EILSEQ;
 734		break;
 735	case SPI_RESPONSE_WRITE_ERR:
 736		/* host shall then issue MMC_STOP_TRANSMISSION,
 737		 * and should MMC_SEND_STATUS to sort it out
 738		 */
 739		status = -EIO;
 740		break;
 741	default:
 742		status = -EPROTO;
 743		break;
 744	}
 745	if (status != 0) {
 746		dev_dbg(&spi->dev, "write error %02x (%d)\n",
 747			scratch->status[0], status);
 748		return status;
 749	}
 750
 751	t->tx_buf += t->len;
 752	if (host->dma_dev)
 753		t->tx_dma += t->len;
 754
 755	/* Return when not busy.  If we didn't collect that status yet,
 756	 * we'll need some more I/O.
 757	 */
 758	for (i = 4; i < sizeof(scratch->status); i++) {
 759		/* card is non-busy if the most recent bit is 1 */
 760		if (scratch->status[i] & 0x01)
 761			return 0;
 762	}
 763	return mmc_spi_wait_unbusy(host, timeout);
 764}
 765
 766/*
 767 * Read one block:
 768 *  - skip leading all-ones bytes ... either
 769 *      + N(AC) [1..f(clock,CSD)] usually, else
 770 *      + N(CX) [0..8] when reading CSD or CID
 771 *  - data block
 772 *	+ token ... if error token, no data or crc
 773 *	+ data bytes
 774 *	+ crc16
 775 *
 776 * After single block reads, we're done; N(EC) [0+] all-ones bytes follow
 777 * before dropping chipselect.
 778 *
 779 * For multiblock reads, caller either reads the next block or issues a
 780 * STOP_TRANSMISSION command.
 781 */
 782static int
 783mmc_spi_readblock(struct mmc_spi_host *host, struct spi_transfer *t,
 784	unsigned long timeout)
 785{
 786	struct spi_device	*spi = host->spi;
 787	int			status;
 788	struct scratch		*scratch = host->data;
 789	unsigned int 		bitshift;
 790	u8			leftover;
 791
 792	/* At least one SD card sends an all-zeroes byte when N(CX)
 793	 * applies, before the all-ones bytes ... just cope with that.
 794	 */
 795	status = mmc_spi_readbytes(host, 1);
 796	if (status < 0)
 797		return status;
 798	status = scratch->status[0];
 799	if (status == 0xff || status == 0)
 800		status = mmc_spi_readtoken(host, timeout);
 801
 802	if (status < 0) {
 803		dev_dbg(&spi->dev, "read error %02x (%d)\n", status, status);
 804		return status;
 805	}
 806
 807	/* The token may be bit-shifted...
 808	 * the first 0-bit precedes the data stream.
 809	 */
 810	bitshift = 7;
 811	while (status & 0x80) {
 812		status <<= 1;
 813		bitshift--;
 814	}
 815	leftover = status << 1;
 816
 817	if (host->dma_dev) {
 818		dma_sync_single_for_device(host->dma_dev,
 819				host->data_dma, sizeof(*scratch),
 820				DMA_BIDIRECTIONAL);
 821		dma_sync_single_for_device(host->dma_dev,
 822				t->rx_dma, t->len,
 823				DMA_FROM_DEVICE);
 824	}
 825
 826	status = spi_sync_locked(spi, &host->m);
 
 
 
 
 827
 828	if (host->dma_dev) {
 829		dma_sync_single_for_cpu(host->dma_dev,
 830				host->data_dma, sizeof(*scratch),
 831				DMA_BIDIRECTIONAL);
 832		dma_sync_single_for_cpu(host->dma_dev,
 833				t->rx_dma, t->len,
 834				DMA_FROM_DEVICE);
 835	}
 836
 837	if (bitshift) {
 838		/* Walk through the data and the crc and do
 839		 * all the magic to get byte-aligned data.
 840		 */
 841		u8 *cp = t->rx_buf;
 842		unsigned int len;
 843		unsigned int bitright = 8 - bitshift;
 844		u8 temp;
 845		for (len = t->len; len; len--) {
 846			temp = *cp;
 847			*cp++ = leftover | (temp >> bitshift);
 848			leftover = temp << bitright;
 849		}
 850		cp = (u8 *) &scratch->crc_val;
 851		temp = *cp;
 852		*cp++ = leftover | (temp >> bitshift);
 853		leftover = temp << bitright;
 854		temp = *cp;
 855		*cp = leftover | (temp >> bitshift);
 856	}
 857
 858	if (host->mmc->use_spi_crc) {
 859		u16 crc = crc_itu_t(0, t->rx_buf, t->len);
 860
 861		be16_to_cpus(&scratch->crc_val);
 862		if (scratch->crc_val != crc) {
 863			dev_dbg(&spi->dev, "read - crc error: crc_val=0x%04x, "
 864					"computed=0x%04x len=%d\n",
 865					scratch->crc_val, crc, t->len);
 866			return -EILSEQ;
 867		}
 868	}
 869
 870	t->rx_buf += t->len;
 871	if (host->dma_dev)
 872		t->rx_dma += t->len;
 873
 874	return 0;
 875}
 876
 877/*
 878 * An MMC/SD data stage includes one or more blocks, optional CRCs,
 879 * and inline handshaking.  That handhaking makes it unlike most
 880 * other SPI protocol stacks.
 881 */
 882static void
 883mmc_spi_data_do(struct mmc_spi_host *host, struct mmc_command *cmd,
 884		struct mmc_data *data, u32 blk_size)
 885{
 886	struct spi_device	*spi = host->spi;
 887	struct device		*dma_dev = host->dma_dev;
 888	struct spi_transfer	*t;
 889	enum dma_data_direction	direction;
 890	struct scatterlist	*sg;
 891	unsigned		n_sg;
 892	int			multiple = (data->blocks > 1);
 893	u32			clock_rate;
 894	unsigned long		timeout;
 895
 896	if (data->flags & MMC_DATA_READ)
 897		direction = DMA_FROM_DEVICE;
 898	else
 899		direction = DMA_TO_DEVICE;
 900	mmc_spi_setup_data_message(host, multiple, direction);
 901	t = &host->t;
 902
 903	if (t->speed_hz)
 904		clock_rate = t->speed_hz;
 905	else
 906		clock_rate = spi->max_speed_hz;
 907
 908	timeout = data->timeout_ns +
 909		  data->timeout_clks * 1000000 / clock_rate;
 910	timeout = usecs_to_jiffies((unsigned int)(timeout / 1000)) + 1;
 911
 912	/* Handle scatterlist segments one at a time, with synch for
 913	 * each 512-byte block
 914	 */
 915	for (sg = data->sg, n_sg = data->sg_len; n_sg; n_sg--, sg++) {
 916		int			status = 0;
 917		dma_addr_t		dma_addr = 0;
 918		void			*kmap_addr;
 919		unsigned		length = sg->length;
 920		enum dma_data_direction	dir = direction;
 921
 922		/* set up dma mapping for controller drivers that might
 923		 * use DMA ... though they may fall back to PIO
 924		 */
 925		if (dma_dev) {
 926			/* never invalidate whole *shared* pages ... */
 927			if ((sg->offset != 0 || length != PAGE_SIZE)
 928					&& dir == DMA_FROM_DEVICE)
 929				dir = DMA_BIDIRECTIONAL;
 930
 931			dma_addr = dma_map_page(dma_dev, sg_page(sg), 0,
 932						PAGE_SIZE, dir);
 
 
 
 
 933			if (direction == DMA_TO_DEVICE)
 934				t->tx_dma = dma_addr + sg->offset;
 935			else
 936				t->rx_dma = dma_addr + sg->offset;
 937		}
 938
 939		/* allow pio too; we don't allow highmem */
 940		kmap_addr = kmap(sg_page(sg));
 941		if (direction == DMA_TO_DEVICE)
 942			t->tx_buf = kmap_addr + sg->offset;
 943		else
 944			t->rx_buf = kmap_addr + sg->offset;
 945
 946		/* transfer each block, and update request status */
 947		while (length) {
 948			t->len = min(length, blk_size);
 949
 950			dev_dbg(&host->spi->dev,
 951				"    mmc_spi: %s block, %d bytes\n",
 952				(direction == DMA_TO_DEVICE)
 953				? "write"
 954				: "read",
 955				t->len);
 956
 957			if (direction == DMA_TO_DEVICE)
 958				status = mmc_spi_writeblock(host, t, timeout);
 959			else
 960				status = mmc_spi_readblock(host, t, timeout);
 961			if (status < 0)
 962				break;
 963
 964			data->bytes_xfered += t->len;
 965			length -= t->len;
 966
 967			if (!multiple)
 968				break;
 969		}
 970
 971		/* discard mappings */
 972		if (direction == DMA_FROM_DEVICE)
 973			flush_kernel_dcache_page(sg_page(sg));
 974		kunmap(sg_page(sg));
 975		if (dma_dev)
 976			dma_unmap_page(dma_dev, dma_addr, PAGE_SIZE, dir);
 977
 978		if (status < 0) {
 979			data->error = status;
 980			dev_dbg(&spi->dev, "%s status %d\n",
 981				(direction == DMA_TO_DEVICE)
 982					? "write" : "read",
 983				status);
 984			break;
 985		}
 986	}
 987
 988	/* NOTE some docs describe an MMC-only SET_BLOCK_COUNT (CMD23) that
 989	 * can be issued before multiblock writes.  Unlike its more widely
 990	 * documented analogue for SD cards (SET_WR_BLK_ERASE_COUNT, ACMD23),
 991	 * that can affect the STOP_TRAN logic.   Complete (and current)
 992	 * MMC specs should sort that out before Linux starts using CMD23.
 993	 */
 994	if (direction == DMA_TO_DEVICE && multiple) {
 995		struct scratch	*scratch = host->data;
 996		int		tmp;
 997		const unsigned	statlen = sizeof(scratch->status);
 998
 999		dev_dbg(&spi->dev, "    mmc_spi: STOP_TRAN\n");
1000
1001		/* Tweak the per-block message we set up earlier by morphing
1002		 * it to hold single buffer with the token followed by some
1003		 * all-ones bytes ... skip N(BR) (0..1), scan the rest for
1004		 * "not busy any longer" status, and leave chip selected.
1005		 */
1006		INIT_LIST_HEAD(&host->m.transfers);
1007		list_add(&host->early_status.transfer_list,
1008				&host->m.transfers);
1009
1010		memset(scratch->status, 0xff, statlen);
1011		scratch->status[0] = SPI_TOKEN_STOP_TRAN;
1012
1013		host->early_status.tx_buf = host->early_status.rx_buf;
1014		host->early_status.tx_dma = host->early_status.rx_dma;
1015		host->early_status.len = statlen;
1016
1017		if (host->dma_dev)
1018			dma_sync_single_for_device(host->dma_dev,
1019					host->data_dma, sizeof(*scratch),
1020					DMA_BIDIRECTIONAL);
1021
1022		tmp = spi_sync_locked(spi, &host->m);
1023
1024		if (host->dma_dev)
1025			dma_sync_single_for_cpu(host->dma_dev,
1026					host->data_dma, sizeof(*scratch),
1027					DMA_BIDIRECTIONAL);
1028
1029		if (tmp < 0) {
1030			if (!data->error)
1031				data->error = tmp;
1032			return;
1033		}
1034
1035		/* Ideally we collected "not busy" status with one I/O,
1036		 * avoiding wasteful byte-at-a-time scanning... but more
1037		 * I/O is often needed.
1038		 */
1039		for (tmp = 2; tmp < statlen; tmp++) {
1040			if (scratch->status[tmp] != 0)
1041				return;
1042		}
1043		tmp = mmc_spi_wait_unbusy(host, timeout);
1044		if (tmp < 0 && !data->error)
1045			data->error = tmp;
1046	}
1047}
1048
1049/****************************************************************************/
1050
1051/*
1052 * MMC driver implementation -- the interface to the MMC stack
1053 */
1054
1055static void mmc_spi_request(struct mmc_host *mmc, struct mmc_request *mrq)
1056{
1057	struct mmc_spi_host	*host = mmc_priv(mmc);
1058	int			status = -EINVAL;
1059	int			crc_retry = 5;
1060	struct mmc_command	stop;
1061
1062#ifdef DEBUG
1063	/* MMC core and layered drivers *MUST* issue SPI-aware commands */
1064	{
1065		struct mmc_command	*cmd;
1066		int			invalid = 0;
1067
1068		cmd = mrq->cmd;
1069		if (!mmc_spi_resp_type(cmd)) {
1070			dev_dbg(&host->spi->dev, "bogus command\n");
1071			cmd->error = -EINVAL;
1072			invalid = 1;
1073		}
1074
1075		cmd = mrq->stop;
1076		if (cmd && !mmc_spi_resp_type(cmd)) {
1077			dev_dbg(&host->spi->dev, "bogus STOP command\n");
1078			cmd->error = -EINVAL;
1079			invalid = 1;
1080		}
1081
1082		if (invalid) {
1083			dump_stack();
1084			mmc_request_done(host->mmc, mrq);
1085			return;
1086		}
1087	}
1088#endif
1089
1090	/* request exclusive bus access */
1091	spi_bus_lock(host->spi->master);
1092
1093crc_recover:
1094	/* issue command; then optionally data and stop */
1095	status = mmc_spi_command_send(host, mrq, mrq->cmd, mrq->data != NULL);
1096	if (status == 0 && mrq->data) {
1097		mmc_spi_data_do(host, mrq->cmd, mrq->data, mrq->data->blksz);
1098
1099		/*
1100		 * The SPI bus is not always reliable for large data transfers.
1101		 * If an occasional crc error is reported by the SD device with
1102		 * data read/write over SPI, it may be recovered by repeating
1103		 * the last SD command again. The retry count is set to 5 to
1104		 * ensure the driver passes stress tests.
1105		 */
1106		if (mrq->data->error == -EILSEQ && crc_retry) {
1107			stop.opcode = MMC_STOP_TRANSMISSION;
1108			stop.arg = 0;
1109			stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1110			status = mmc_spi_command_send(host, mrq, &stop, 0);
1111			crc_retry--;
1112			mrq->data->error = 0;
1113			goto crc_recover;
1114		}
1115
1116		if (mrq->stop)
1117			status = mmc_spi_command_send(host, mrq, mrq->stop, 0);
1118		else
1119			mmc_cs_off(host);
1120	}
1121
1122	/* release the bus */
1123	spi_bus_unlock(host->spi->master);
1124
1125	mmc_request_done(host->mmc, mrq);
1126}
1127
1128/* See Section 6.4.1, in SD "Simplified Physical Layer Specification 2.0"
1129 *
1130 * NOTE that here we can't know that the card has just been powered up;
1131 * not all MMC/SD sockets support power switching.
1132 *
1133 * FIXME when the card is still in SPI mode, e.g. from a previous kernel,
1134 * this doesn't seem to do the right thing at all...
1135 */
1136static void mmc_spi_initsequence(struct mmc_spi_host *host)
1137{
1138	/* Try to be very sure any previous command has completed;
1139	 * wait till not-busy, skip debris from any old commands.
1140	 */
1141	mmc_spi_wait_unbusy(host, r1b_timeout);
1142	mmc_spi_readbytes(host, 10);
1143
1144	/*
1145	 * Do a burst with chipselect active-high.  We need to do this to
1146	 * meet the requirement of 74 clock cycles with both chipselect
1147	 * and CMD (MOSI) high before CMD0 ... after the card has been
1148	 * powered up to Vdd(min), and so is ready to take commands.
1149	 *
1150	 * Some cards are particularly needy of this (e.g. Viking "SD256")
1151	 * while most others don't seem to care.
1152	 *
1153	 * Note that this is one of the places MMC/SD plays games with the
1154	 * SPI protocol.  Another is that when chipselect is released while
1155	 * the card returns BUSY status, the clock must issue several cycles
1156	 * with chipselect high before the card will stop driving its output.
1157	 */
1158	host->spi->mode |= SPI_CS_HIGH;
1159	if (spi_setup(host->spi) != 0) {
1160		/* Just warn; most cards work without it. */
1161		dev_warn(&host->spi->dev,
1162				"can't change chip-select polarity\n");
1163		host->spi->mode &= ~SPI_CS_HIGH;
1164	} else {
1165		mmc_spi_readbytes(host, 18);
1166
1167		host->spi->mode &= ~SPI_CS_HIGH;
1168		if (spi_setup(host->spi) != 0) {
1169			/* Wot, we can't get the same setup we had before? */
1170			dev_err(&host->spi->dev,
1171					"can't restore chip-select polarity\n");
1172		}
1173	}
1174}
1175
1176static char *mmc_powerstring(u8 power_mode)
1177{
1178	switch (power_mode) {
1179	case MMC_POWER_OFF: return "off";
1180	case MMC_POWER_UP:  return "up";
1181	case MMC_POWER_ON:  return "on";
1182	}
1183	return "?";
1184}
1185
1186static void mmc_spi_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1187{
1188	struct mmc_spi_host *host = mmc_priv(mmc);
1189
1190	if (host->power_mode != ios->power_mode) {
1191		int		canpower;
1192
1193		canpower = host->pdata && host->pdata->setpower;
1194
1195		dev_dbg(&host->spi->dev, "mmc_spi: power %s (%d)%s\n",
1196				mmc_powerstring(ios->power_mode),
1197				ios->vdd,
1198				canpower ? ", can switch" : "");
1199
1200		/* switch power on/off if possible, accounting for
1201		 * max 250msec powerup time if needed.
1202		 */
1203		if (canpower) {
1204			switch (ios->power_mode) {
1205			case MMC_POWER_OFF:
1206			case MMC_POWER_UP:
1207				host->pdata->setpower(&host->spi->dev,
1208						ios->vdd);
1209				if (ios->power_mode == MMC_POWER_UP)
1210					msleep(host->powerup_msecs);
1211			}
1212		}
1213
1214		/* See 6.4.1 in the simplified SD card physical spec 2.0 */
1215		if (ios->power_mode == MMC_POWER_ON)
1216			mmc_spi_initsequence(host);
1217
1218		/* If powering down, ground all card inputs to avoid power
1219		 * delivery from data lines!  On a shared SPI bus, this
1220		 * will probably be temporary; 6.4.2 of the simplified SD
1221		 * spec says this must last at least 1msec.
1222		 *
1223		 *   - Clock low means CPOL 0, e.g. mode 0
1224		 *   - MOSI low comes from writing zero
1225		 *   - Chipselect is usually active low...
1226		 */
1227		if (canpower && ios->power_mode == MMC_POWER_OFF) {
1228			int mres;
1229			u8 nullbyte = 0;
1230
1231			host->spi->mode &= ~(SPI_CPOL|SPI_CPHA);
1232			mres = spi_setup(host->spi);
1233			if (mres < 0)
1234				dev_dbg(&host->spi->dev,
1235					"switch to SPI mode 0 failed\n");
1236
1237			if (spi_write(host->spi, &nullbyte, 1) < 0)
1238				dev_dbg(&host->spi->dev,
1239					"put spi signals to low failed\n");
1240
1241			/*
1242			 * Now clock should be low due to spi mode 0;
1243			 * MOSI should be low because of written 0x00;
1244			 * chipselect should be low (it is active low)
1245			 * power supply is off, so now MMC is off too!
1246			 *
1247			 * FIXME no, chipselect can be high since the
1248			 * device is inactive and SPI_CS_HIGH is clear...
1249			 */
1250			msleep(10);
1251			if (mres == 0) {
1252				host->spi->mode |= (SPI_CPOL|SPI_CPHA);
1253				mres = spi_setup(host->spi);
1254				if (mres < 0)
1255					dev_dbg(&host->spi->dev,
1256						"switch back to SPI mode 3"
1257						" failed\n");
1258			}
1259		}
1260
1261		host->power_mode = ios->power_mode;
1262	}
1263
1264	if (host->spi->max_speed_hz != ios->clock && ios->clock != 0) {
1265		int		status;
1266
1267		host->spi->max_speed_hz = ios->clock;
1268		status = spi_setup(host->spi);
1269		dev_dbg(&host->spi->dev,
1270			"mmc_spi:  clock to %d Hz, %d\n",
1271			host->spi->max_speed_hz, status);
1272	}
1273}
1274
1275static int mmc_spi_get_ro(struct mmc_host *mmc)
1276{
1277	struct mmc_spi_host *host = mmc_priv(mmc);
1278
1279	if (host->pdata && host->pdata->get_ro)
1280		return !!host->pdata->get_ro(mmc->parent);
1281	/*
1282	 * Board doesn't support read only detection; let the mmc core
1283	 * decide what to do.
1284	 */
1285	return -ENOSYS;
1286}
1287
1288static int mmc_spi_get_cd(struct mmc_host *mmc)
1289{
1290	struct mmc_spi_host *host = mmc_priv(mmc);
1291
1292	if (host->pdata && host->pdata->get_cd)
1293		return !!host->pdata->get_cd(mmc->parent);
1294	return -ENOSYS;
1295}
1296
1297static const struct mmc_host_ops mmc_spi_ops = {
1298	.request	= mmc_spi_request,
1299	.set_ios	= mmc_spi_set_ios,
1300	.get_ro		= mmc_spi_get_ro,
1301	.get_cd		= mmc_spi_get_cd,
1302};
1303
1304
1305/****************************************************************************/
1306
1307/*
1308 * SPI driver implementation
1309 */
1310
1311static irqreturn_t
1312mmc_spi_detect_irq(int irq, void *mmc)
1313{
1314	struct mmc_spi_host *host = mmc_priv(mmc);
1315	u16 delay_msec = max(host->pdata->detect_delay, (u16)100);
1316
1317	mmc_detect_change(mmc, msecs_to_jiffies(delay_msec));
1318	return IRQ_HANDLED;
1319}
1320
1321static int mmc_spi_probe(struct spi_device *spi)
1322{
1323	void			*ones;
1324	struct mmc_host		*mmc;
1325	struct mmc_spi_host	*host;
1326	int			status;
 
1327
1328	/* We rely on full duplex transfers, mostly to reduce
1329	 * per-transfer overheads (by making fewer transfers).
1330	 */
1331	if (spi->master->flags & SPI_MASTER_HALF_DUPLEX)
1332		return -EINVAL;
1333
1334	/* MMC and SD specs only seem to care that sampling is on the
1335	 * rising edge ... meaning SPI modes 0 or 3.  So either SPI mode
1336	 * should be legit.  We'll use mode 0 since the steady state is 0,
1337	 * which is appropriate for hotplugging, unless the platform data
1338	 * specify mode 3 (if hardware is not compatible to mode 0).
1339	 */
1340	if (spi->mode != SPI_MODE_3)
1341		spi->mode = SPI_MODE_0;
1342	spi->bits_per_word = 8;
1343
1344	status = spi_setup(spi);
1345	if (status < 0) {
1346		dev_dbg(&spi->dev, "needs SPI mode %02x, %d KHz; %d\n",
1347				spi->mode, spi->max_speed_hz / 1000,
1348				status);
1349		return status;
1350	}
1351
1352	/* We need a supply of ones to transmit.  This is the only time
1353	 * the CPU touches these, so cache coherency isn't a concern.
1354	 *
1355	 * NOTE if many systems use more than one MMC-over-SPI connector
1356	 * it'd save some memory to share this.  That's evidently rare.
1357	 */
1358	status = -ENOMEM;
1359	ones = kmalloc(MMC_SPI_BLOCKSIZE, GFP_KERNEL);
1360	if (!ones)
1361		goto nomem;
1362	memset(ones, 0xff, MMC_SPI_BLOCKSIZE);
1363
1364	mmc = mmc_alloc_host(sizeof(*host), &spi->dev);
1365	if (!mmc)
1366		goto nomem;
1367
1368	mmc->ops = &mmc_spi_ops;
1369	mmc->max_blk_size = MMC_SPI_BLOCKSIZE;
1370	mmc->max_segs = MMC_SPI_BLOCKSATONCE;
1371	mmc->max_req_size = MMC_SPI_BLOCKSATONCE * MMC_SPI_BLOCKSIZE;
1372	mmc->max_blk_count = MMC_SPI_BLOCKSATONCE;
1373
1374	mmc->caps = MMC_CAP_SPI;
1375
1376	/* SPI doesn't need the lowspeed device identification thing for
1377	 * MMC or SD cards, since it never comes up in open drain mode.
1378	 * That's good; some SPI masters can't handle very low speeds!
1379	 *
1380	 * However, low speed SDIO cards need not handle over 400 KHz;
1381	 * that's the only reason not to use a few MHz for f_min (until
1382	 * the upper layer reads the target frequency from the CSD).
1383	 */
1384	mmc->f_min = 400000;
1385	mmc->f_max = spi->max_speed_hz;
1386
1387	host = mmc_priv(mmc);
1388	host->mmc = mmc;
1389	host->spi = spi;
1390
1391	host->ones = ones;
1392
1393	/* Platform data is used to hook up things like card sensing
1394	 * and power switching gpios.
1395	 */
1396	host->pdata = mmc_spi_get_pdata(spi);
1397	if (host->pdata)
1398		mmc->ocr_avail = host->pdata->ocr_mask;
1399	if (!mmc->ocr_avail) {
1400		dev_warn(&spi->dev, "ASSUMING 3.2-3.4 V slot power\n");
1401		mmc->ocr_avail = MMC_VDD_32_33|MMC_VDD_33_34;
1402	}
1403	if (host->pdata && host->pdata->setpower) {
1404		host->powerup_msecs = host->pdata->powerup_msecs;
1405		if (!host->powerup_msecs || host->powerup_msecs > 250)
1406			host->powerup_msecs = 250;
1407	}
1408
1409	dev_set_drvdata(&spi->dev, mmc);
1410
1411	/* preallocate dma buffers */
1412	host->data = kmalloc(sizeof(*host->data), GFP_KERNEL);
1413	if (!host->data)
1414		goto fail_nobuf1;
1415
1416	if (spi->master->dev.parent->dma_mask) {
1417		struct device	*dev = spi->master->dev.parent;
1418
1419		host->dma_dev = dev;
1420		host->ones_dma = dma_map_single(dev, ones,
1421				MMC_SPI_BLOCKSIZE, DMA_TO_DEVICE);
 
 
1422		host->data_dma = dma_map_single(dev, host->data,
1423				sizeof(*host->data), DMA_BIDIRECTIONAL);
1424
1425		/* REVISIT in theory those map operations can fail... */
1426
1427		dma_sync_single_for_cpu(host->dma_dev,
1428				host->data_dma, sizeof(*host->data),
1429				DMA_BIDIRECTIONAL);
1430	}
1431
1432	/* setup message for status/busy readback */
1433	spi_message_init(&host->readback);
1434	host->readback.is_dma_mapped = (host->dma_dev != NULL);
1435
1436	spi_message_add_tail(&host->status, &host->readback);
1437	host->status.tx_buf = host->ones;
1438	host->status.tx_dma = host->ones_dma;
1439	host->status.rx_buf = &host->data->status;
1440	host->status.rx_dma = host->data_dma + offsetof(struct scratch, status);
1441	host->status.cs_change = 1;
1442
1443	/* register card detect irq */
1444	if (host->pdata && host->pdata->init) {
1445		status = host->pdata->init(&spi->dev, mmc_spi_detect_irq, mmc);
1446		if (status != 0)
1447			goto fail_glue_init;
1448	}
1449
1450	/* pass platform capabilities, if any */
1451	if (host->pdata)
1452		mmc->caps |= host->pdata->caps;
 
 
1453
1454	status = mmc_add_host(mmc);
1455	if (status != 0)
1456		goto fail_add_host;
1457
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1458	dev_info(&spi->dev, "SD/MMC host %s%s%s%s%s\n",
1459			dev_name(&mmc->class_dev),
1460			host->dma_dev ? "" : ", no DMA",
1461			(host->pdata && host->pdata->get_ro)
1462				? "" : ", no WP",
1463			(host->pdata && host->pdata->setpower)
1464				? "" : ", no poweroff",
1465			(mmc->caps & MMC_CAP_NEEDS_POLL)
1466				? ", cd polling" : "");
1467	return 0;
1468
1469fail_add_host:
1470	mmc_remove_host (mmc);
1471fail_glue_init:
1472	if (host->dma_dev)
1473		dma_unmap_single(host->dma_dev, host->data_dma,
1474				sizeof(*host->data), DMA_BIDIRECTIONAL);
 
 
 
 
 
1475	kfree(host->data);
1476
1477fail_nobuf1:
1478	mmc_free_host(mmc);
1479	mmc_spi_put_pdata(spi);
1480	dev_set_drvdata(&spi->dev, NULL);
1481
1482nomem:
1483	kfree(ones);
1484	return status;
1485}
1486
1487
1488static int __devexit mmc_spi_remove(struct spi_device *spi)
1489{
1490	struct mmc_host		*mmc = dev_get_drvdata(&spi->dev);
1491	struct mmc_spi_host	*host;
1492
1493	if (mmc) {
1494		host = mmc_priv(mmc);
1495
1496		/* prevent new mmc_detect_change() calls */
1497		if (host->pdata && host->pdata->exit)
1498			host->pdata->exit(&spi->dev, mmc);
1499
1500		mmc_remove_host(mmc);
1501
1502		if (host->dma_dev) {
1503			dma_unmap_single(host->dma_dev, host->ones_dma,
1504				MMC_SPI_BLOCKSIZE, DMA_TO_DEVICE);
1505			dma_unmap_single(host->dma_dev, host->data_dma,
1506				sizeof(*host->data), DMA_BIDIRECTIONAL);
1507		}
1508
1509		kfree(host->data);
1510		kfree(host->ones);
1511
1512		spi->max_speed_hz = mmc->f_max;
1513		mmc_free_host(mmc);
1514		mmc_spi_put_pdata(spi);
1515		dev_set_drvdata(&spi->dev, NULL);
1516	}
1517	return 0;
1518}
1519
1520static struct of_device_id mmc_spi_of_match_table[] __devinitdata = {
1521	{ .compatible = "mmc-spi-slot", },
1522	{},
1523};
 
1524
1525static struct spi_driver mmc_spi_driver = {
1526	.driver = {
1527		.name =		"mmc_spi",
1528		.owner =	THIS_MODULE,
1529		.of_match_table = mmc_spi_of_match_table,
1530	},
1531	.probe =	mmc_spi_probe,
1532	.remove =	__devexit_p(mmc_spi_remove),
1533};
1534
 
1535
1536static int __init mmc_spi_init(void)
1537{
1538	return spi_register_driver(&mmc_spi_driver);
1539}
1540module_init(mmc_spi_init);
1541
1542
1543static void __exit mmc_spi_exit(void)
1544{
1545	spi_unregister_driver(&mmc_spi_driver);
1546}
1547module_exit(mmc_spi_exit);
1548
1549
1550MODULE_AUTHOR("Mike Lavender, David Brownell, "
1551		"Hans-Peter Nilsson, Jan Nikitenko");
1552MODULE_DESCRIPTION("SPI SD/MMC host driver");
1553MODULE_LICENSE("GPL");
1554MODULE_ALIAS("spi:mmc_spi");
v5.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Access SD/MMC cards through SPI master controllers
   4 *
   5 * (C) Copyright 2005, Intec Automation,
   6 *		Mike Lavender (mike@steroidmicros)
   7 * (C) Copyright 2006-2007, David Brownell
   8 * (C) Copyright 2007, Axis Communications,
   9 *		Hans-Peter Nilsson (hp@axis.com)
  10 * (C) Copyright 2007, ATRON electronic GmbH,
  11 *		Jan Nikitenko <jan.nikitenko@gmail.com>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  12 */
  13#include <linux/sched.h>
  14#include <linux/delay.h>
  15#include <linux/slab.h>
  16#include <linux/module.h>
  17#include <linux/bio.h>
  18#include <linux/dma-mapping.h>
  19#include <linux/crc7.h>
  20#include <linux/crc-itu-t.h>
  21#include <linux/scatterlist.h>
  22
  23#include <linux/mmc/host.h>
  24#include <linux/mmc/mmc.h>		/* for R1_SPI_* bit values */
  25#include <linux/mmc/slot-gpio.h>
  26
  27#include <linux/spi/spi.h>
  28#include <linux/spi/mmc_spi.h>
  29
  30#include <asm/unaligned.h>
  31
  32
  33/* NOTES:
  34 *
  35 * - For now, we won't try to interoperate with a real mmc/sd/sdio
  36 *   controller, although some of them do have hardware support for
  37 *   SPI protocol.  The main reason for such configs would be mmc-ish
  38 *   cards like DataFlash, which don't support that "native" protocol.
  39 *
  40 *   We don't have a "DataFlash/MMC/SD/SDIO card slot" abstraction to
  41 *   switch between driver stacks, and in any case if "native" mode
  42 *   is available, it will be faster and hence preferable.
  43 *
  44 * - MMC depends on a different chipselect management policy than the
  45 *   SPI interface currently supports for shared bus segments:  it needs
  46 *   to issue multiple spi_message requests with the chipselect active,
  47 *   using the results of one message to decide the next one to issue.
  48 *
  49 *   Pending updates to the programming interface, this driver expects
  50 *   that it not share the bus with other drivers (precluding conflicts).
  51 *
  52 * - We tell the controller to keep the chipselect active from the
  53 *   beginning of an mmc_host_ops.request until the end.  So beware
  54 *   of SPI controller drivers that mis-handle the cs_change flag!
  55 *
  56 *   However, many cards seem OK with chipselect flapping up/down
  57 *   during that time ... at least on unshared bus segments.
  58 */
  59
  60
  61/*
  62 * Local protocol constants, internal to data block protocols.
  63 */
  64
  65/* Response tokens used to ack each block written: */
  66#define SPI_MMC_RESPONSE_CODE(x)	((x) & 0x1f)
  67#define SPI_RESPONSE_ACCEPTED		((2 << 1)|1)
  68#define SPI_RESPONSE_CRC_ERR		((5 << 1)|1)
  69#define SPI_RESPONSE_WRITE_ERR		((6 << 1)|1)
  70
  71/* Read and write blocks start with these tokens and end with crc;
  72 * on error, read tokens act like a subset of R2_SPI_* values.
  73 */
  74#define SPI_TOKEN_SINGLE	0xfe	/* single block r/w, multiblock read */
  75#define SPI_TOKEN_MULTI_WRITE	0xfc	/* multiblock write */
  76#define SPI_TOKEN_STOP_TRAN	0xfd	/* terminate multiblock write */
  77
  78#define MMC_SPI_BLOCKSIZE	512
  79
  80
  81/* These fixed timeouts come from the latest SD specs, which say to ignore
  82 * the CSD values.  The R1B value is for card erase (e.g. the "I forgot the
  83 * card's password" scenario); it's mostly applied to STOP_TRANSMISSION after
  84 * reads which takes nowhere near that long.  Older cards may be able to use
  85 * shorter timeouts ... but why bother?
  86 */
  87#define r1b_timeout		(HZ * 3)
  88
  89/* One of the critical speed parameters is the amount of data which may
  90 * be transferred in one command. If this value is too low, the SD card
  91 * controller has to do multiple partial block writes (argggh!). With
  92 * today (2008) SD cards there is little speed gain if we transfer more
  93 * than 64 KBytes at a time. So use this value until there is any indication
  94 * that we should do more here.
  95 */
  96#define MMC_SPI_BLOCKSATONCE	128
  97
  98/****************************************************************************/
  99
 100/*
 101 * Local Data Structures
 102 */
 103
 104/* "scratch" is per-{command,block} data exchanged with the card */
 105struct scratch {
 106	u8			status[29];
 107	u8			data_token;
 108	__be16			crc_val;
 109};
 110
 111struct mmc_spi_host {
 112	struct mmc_host		*mmc;
 113	struct spi_device	*spi;
 114
 115	unsigned char		power_mode;
 116	u16			powerup_msecs;
 117
 118	struct mmc_spi_platform_data	*pdata;
 119
 120	/* for bulk data transfers */
 121	struct spi_transfer	token, t, crc, early_status;
 122	struct spi_message	m;
 123
 124	/* for status readback */
 125	struct spi_transfer	status;
 126	struct spi_message	readback;
 127
 128	/* underlying DMA-aware controller, or null */
 129	struct device		*dma_dev;
 130
 131	/* buffer used for commands and for message "overhead" */
 132	struct scratch		*data;
 133	dma_addr_t		data_dma;
 134
 135	/* Specs say to write ones most of the time, even when the card
 136	 * has no need to read its input data; and many cards won't care.
 137	 * This is our source of those ones.
 138	 */
 139	void			*ones;
 140	dma_addr_t		ones_dma;
 141};
 142
 143
 144/****************************************************************************/
 145
 146/*
 147 * MMC-over-SPI protocol glue, used by the MMC stack interface
 148 */
 149
 150static inline int mmc_cs_off(struct mmc_spi_host *host)
 151{
 152	/* chipselect will always be inactive after setup() */
 153	return spi_setup(host->spi);
 154}
 155
 156static int
 157mmc_spi_readbytes(struct mmc_spi_host *host, unsigned len)
 158{
 159	int status;
 160
 161	if (len > sizeof(*host->data)) {
 162		WARN_ON(1);
 163		return -EIO;
 164	}
 165
 166	host->status.len = len;
 167
 168	if (host->dma_dev)
 169		dma_sync_single_for_device(host->dma_dev,
 170				host->data_dma, sizeof(*host->data),
 171				DMA_FROM_DEVICE);
 172
 173	status = spi_sync_locked(host->spi, &host->readback);
 174
 175	if (host->dma_dev)
 176		dma_sync_single_for_cpu(host->dma_dev,
 177				host->data_dma, sizeof(*host->data),
 178				DMA_FROM_DEVICE);
 179
 180	return status;
 181}
 182
 183static int mmc_spi_skip(struct mmc_spi_host *host, unsigned long timeout,
 184			unsigned n, u8 byte)
 185{
 186	u8 *cp = host->data->status;
 187	unsigned long start = jiffies;
 188
 189	while (1) {
 190		int		status;
 191		unsigned	i;
 192
 193		status = mmc_spi_readbytes(host, n);
 194		if (status < 0)
 195			return status;
 196
 197		for (i = 0; i < n; i++) {
 198			if (cp[i] != byte)
 199				return cp[i];
 200		}
 201
 202		if (time_is_before_jiffies(start + timeout))
 203			break;
 204
 205		/* If we need long timeouts, we may release the CPU.
 206		 * We use jiffies here because we want to have a relation
 207		 * between elapsed time and the blocking of the scheduler.
 208		 */
 209		if (time_is_before_jiffies(start + 1))
 210			schedule();
 211	}
 212	return -ETIMEDOUT;
 213}
 214
 215static inline int
 216mmc_spi_wait_unbusy(struct mmc_spi_host *host, unsigned long timeout)
 217{
 218	return mmc_spi_skip(host, timeout, sizeof(host->data->status), 0);
 219}
 220
 221static int mmc_spi_readtoken(struct mmc_spi_host *host, unsigned long timeout)
 222{
 223	return mmc_spi_skip(host, timeout, 1, 0xff);
 224}
 225
 226
 227/*
 228 * Note that for SPI, cmd->resp[0] is not the same data as "native" protocol
 229 * hosts return!  The low byte holds R1_SPI bits.  The next byte may hold
 230 * R2_SPI bits ... for SEND_STATUS, or after data read errors.
 231 *
 232 * cmd->resp[1] holds any four-byte response, for R3 (READ_OCR) and on
 233 * newer cards R7 (IF_COND).
 234 */
 235
 236static char *maptype(struct mmc_command *cmd)
 237{
 238	switch (mmc_spi_resp_type(cmd)) {
 239	case MMC_RSP_SPI_R1:	return "R1";
 240	case MMC_RSP_SPI_R1B:	return "R1B";
 241	case MMC_RSP_SPI_R2:	return "R2/R5";
 242	case MMC_RSP_SPI_R3:	return "R3/R4/R7";
 243	default:		return "?";
 244	}
 245}
 246
 247/* return zero, else negative errno after setting cmd->error */
 248static int mmc_spi_response_get(struct mmc_spi_host *host,
 249		struct mmc_command *cmd, int cs_on)
 250{
 251	u8	*cp = host->data->status;
 252	u8	*end = cp + host->t.len;
 253	int	value = 0;
 254	int	bitshift;
 255	u8 	leftover = 0;
 256	unsigned short rotator;
 257	int 	i;
 258	char	tag[32];
 259
 260	snprintf(tag, sizeof(tag), "  ... CMD%d response SPI_%s",
 261		cmd->opcode, maptype(cmd));
 262
 263	/* Except for data block reads, the whole response will already
 264	 * be stored in the scratch buffer.  It's somewhere after the
 265	 * command and the first byte we read after it.  We ignore that
 266	 * first byte.  After STOP_TRANSMISSION command it may include
 267	 * two data bits, but otherwise it's all ones.
 268	 */
 269	cp += 8;
 270	while (cp < end && *cp == 0xff)
 271		cp++;
 272
 273	/* Data block reads (R1 response types) may need more data... */
 274	if (cp == end) {
 275		cp = host->data->status;
 276		end = cp+1;
 277
 278		/* Card sends N(CR) (== 1..8) bytes of all-ones then one
 279		 * status byte ... and we already scanned 2 bytes.
 280		 *
 281		 * REVISIT block read paths use nasty byte-at-a-time I/O
 282		 * so it can always DMA directly into the target buffer.
 283		 * It'd probably be better to memcpy() the first chunk and
 284		 * avoid extra i/o calls...
 285		 *
 286		 * Note we check for more than 8 bytes, because in practice,
 287		 * some SD cards are slow...
 288		 */
 289		for (i = 2; i < 16; i++) {
 290			value = mmc_spi_readbytes(host, 1);
 291			if (value < 0)
 292				goto done;
 293			if (*cp != 0xff)
 294				goto checkstatus;
 295		}
 296		value = -ETIMEDOUT;
 297		goto done;
 298	}
 299
 300checkstatus:
 301	bitshift = 0;
 302	if (*cp & 0x80)	{
 303		/* Houston, we have an ugly card with a bit-shifted response */
 304		rotator = *cp++ << 8;
 305		/* read the next byte */
 306		if (cp == end) {
 307			value = mmc_spi_readbytes(host, 1);
 308			if (value < 0)
 309				goto done;
 310			cp = host->data->status;
 311			end = cp+1;
 312		}
 313		rotator |= *cp++;
 314		while (rotator & 0x8000) {
 315			bitshift++;
 316			rotator <<= 1;
 317		}
 318		cmd->resp[0] = rotator >> 8;
 319		leftover = rotator;
 320	} else {
 321		cmd->resp[0] = *cp++;
 322	}
 323	cmd->error = 0;
 324
 325	/* Status byte: the entire seven-bit R1 response.  */
 326	if (cmd->resp[0] != 0) {
 327		if ((R1_SPI_PARAMETER | R1_SPI_ADDRESS)
 328				& cmd->resp[0])
 329			value = -EFAULT; /* Bad address */
 330		else if (R1_SPI_ILLEGAL_COMMAND & cmd->resp[0])
 331			value = -ENOSYS; /* Function not implemented */
 332		else if (R1_SPI_COM_CRC & cmd->resp[0])
 333			value = -EILSEQ; /* Illegal byte sequence */
 334		else if ((R1_SPI_ERASE_SEQ | R1_SPI_ERASE_RESET)
 335				& cmd->resp[0])
 336			value = -EIO;    /* I/O error */
 337		/* else R1_SPI_IDLE, "it's resetting" */
 338	}
 339
 340	switch (mmc_spi_resp_type(cmd)) {
 341
 342	/* SPI R1B == R1 + busy; STOP_TRANSMISSION (for multiblock reads)
 343	 * and less-common stuff like various erase operations.
 344	 */
 345	case MMC_RSP_SPI_R1B:
 346		/* maybe we read all the busy tokens already */
 347		while (cp < end && *cp == 0)
 348			cp++;
 349		if (cp == end)
 350			mmc_spi_wait_unbusy(host, r1b_timeout);
 351		break;
 352
 353	/* SPI R2 == R1 + second status byte; SEND_STATUS
 354	 * SPI R5 == R1 + data byte; IO_RW_DIRECT
 355	 */
 356	case MMC_RSP_SPI_R2:
 357		/* read the next byte */
 358		if (cp == end) {
 359			value = mmc_spi_readbytes(host, 1);
 360			if (value < 0)
 361				goto done;
 362			cp = host->data->status;
 363			end = cp+1;
 364		}
 365		if (bitshift) {
 366			rotator = leftover << 8;
 367			rotator |= *cp << bitshift;
 368			cmd->resp[0] |= (rotator & 0xFF00);
 369		} else {
 370			cmd->resp[0] |= *cp << 8;
 371		}
 372		break;
 373
 374	/* SPI R3, R4, or R7 == R1 + 4 bytes */
 375	case MMC_RSP_SPI_R3:
 376		rotator = leftover << 8;
 377		cmd->resp[1] = 0;
 378		for (i = 0; i < 4; i++) {
 379			cmd->resp[1] <<= 8;
 380			/* read the next byte */
 381			if (cp == end) {
 382				value = mmc_spi_readbytes(host, 1);
 383				if (value < 0)
 384					goto done;
 385				cp = host->data->status;
 386				end = cp+1;
 387			}
 388			if (bitshift) {
 389				rotator |= *cp++ << bitshift;
 390				cmd->resp[1] |= (rotator >> 8);
 391				rotator <<= 8;
 392			} else {
 393				cmd->resp[1] |= *cp++;
 394			}
 395		}
 396		break;
 397
 398	/* SPI R1 == just one status byte */
 399	case MMC_RSP_SPI_R1:
 400		break;
 401
 402	default:
 403		dev_dbg(&host->spi->dev, "bad response type %04x\n",
 404			mmc_spi_resp_type(cmd));
 405		if (value >= 0)
 406			value = -EINVAL;
 407		goto done;
 408	}
 409
 410	if (value < 0)
 411		dev_dbg(&host->spi->dev, "%s: resp %04x %08x\n",
 412			tag, cmd->resp[0], cmd->resp[1]);
 413
 414	/* disable chipselect on errors and some success cases */
 415	if (value >= 0 && cs_on)
 416		return value;
 417done:
 418	if (value < 0)
 419		cmd->error = value;
 420	mmc_cs_off(host);
 421	return value;
 422}
 423
 424/* Issue command and read its response.
 425 * Returns zero on success, negative for error.
 426 *
 427 * On error, caller must cope with mmc core retry mechanism.  That
 428 * means immediate low-level resubmit, which affects the bus lock...
 429 */
 430static int
 431mmc_spi_command_send(struct mmc_spi_host *host,
 432		struct mmc_request *mrq,
 433		struct mmc_command *cmd, int cs_on)
 434{
 435	struct scratch		*data = host->data;
 436	u8			*cp = data->status;
 
 437	int			status;
 438	struct spi_transfer	*t;
 439
 440	/* We can handle most commands (except block reads) in one full
 441	 * duplex I/O operation before either starting the next transfer
 442	 * (data block or command) or else deselecting the card.
 443	 *
 444	 * First, write 7 bytes:
 445	 *  - an all-ones byte to ensure the card is ready
 446	 *  - opcode byte (plus start and transmission bits)
 447	 *  - four bytes of big-endian argument
 448	 *  - crc7 (plus end bit) ... always computed, it's cheap
 449	 *
 450	 * We init the whole buffer to all-ones, which is what we need
 451	 * to write while we're reading (later) response data.
 452	 */
 453	memset(cp, 0xff, sizeof(data->status));
 454
 455	cp[1] = 0x40 | cmd->opcode;
 456	put_unaligned_be32(cmd->arg, cp + 2);
 457	cp[6] = crc7_be(0, cp + 1, 5) | 0x01;
 458	cp += 7;
 
 
 459
 460	/* Then, read up to 13 bytes (while writing all-ones):
 461	 *  - N(CR) (== 1..8) bytes of all-ones
 462	 *  - status byte (for all response types)
 463	 *  - the rest of the response, either:
 464	 *      + nothing, for R1 or R1B responses
 465	 *	+ second status byte, for R2 responses
 466	 *	+ four data bytes, for R3 and R7 responses
 467	 *
 468	 * Finally, read some more bytes ... in the nice cases we know in
 469	 * advance how many, and reading 1 more is always OK:
 470	 *  - N(EC) (== 0..N) bytes of all-ones, before deselect/finish
 471	 *  - N(RC) (== 1..N) bytes of all-ones, before next command
 472	 *  - N(WR) (== 1..N) bytes of all-ones, before data write
 473	 *
 474	 * So in those cases one full duplex I/O of at most 21 bytes will
 475	 * handle the whole command, leaving the card ready to receive a
 476	 * data block or new command.  We do that whenever we can, shaving
 477	 * CPU and IRQ costs (especially when using DMA or FIFOs).
 478	 *
 479	 * There are two other cases, where it's not generally practical
 480	 * to rely on a single I/O:
 481	 *
 482	 *  - R1B responses need at least N(EC) bytes of all-zeroes.
 483	 *
 484	 *    In this case we can *try* to fit it into one I/O, then
 485	 *    maybe read more data later.
 486	 *
 487	 *  - Data block reads are more troublesome, since a variable
 488	 *    number of padding bytes precede the token and data.
 489	 *      + N(CX) (== 0..8) bytes of all-ones, before CSD or CID
 490	 *      + N(AC) (== 1..many) bytes of all-ones
 491	 *
 492	 *    In this case we currently only have minimal speedups here:
 493	 *    when N(CR) == 1 we can avoid I/O in response_get().
 494	 */
 495	if (cs_on && (mrq->data->flags & MMC_DATA_READ)) {
 496		cp += 2;	/* min(N(CR)) + status */
 497		/* R1 */
 498	} else {
 499		cp += 10;	/* max(N(CR)) + status + min(N(RC),N(WR)) */
 500		if (cmd->flags & MMC_RSP_SPI_S2)	/* R2/R5 */
 501			cp++;
 502		else if (cmd->flags & MMC_RSP_SPI_B4)	/* R3/R4/R7 */
 503			cp += 4;
 504		else if (cmd->flags & MMC_RSP_BUSY)	/* R1B */
 505			cp = data->status + sizeof(data->status);
 506		/* else:  R1 (most commands) */
 507	}
 508
 509	dev_dbg(&host->spi->dev, "  mmc_spi: CMD%d, resp %s\n",
 510		cmd->opcode, maptype(cmd));
 511
 512	/* send command, leaving chipselect active */
 513	spi_message_init(&host->m);
 514
 515	t = &host->t;
 516	memset(t, 0, sizeof(*t));
 517	t->tx_buf = t->rx_buf = data->status;
 518	t->tx_dma = t->rx_dma = host->data_dma;
 519	t->len = cp - data->status;
 520	t->cs_change = 1;
 521	spi_message_add_tail(t, &host->m);
 522
 523	if (host->dma_dev) {
 524		host->m.is_dma_mapped = 1;
 525		dma_sync_single_for_device(host->dma_dev,
 526				host->data_dma, sizeof(*host->data),
 527				DMA_BIDIRECTIONAL);
 528	}
 529	status = spi_sync_locked(host->spi, &host->m);
 530
 531	if (host->dma_dev)
 532		dma_sync_single_for_cpu(host->dma_dev,
 533				host->data_dma, sizeof(*host->data),
 534				DMA_BIDIRECTIONAL);
 535	if (status < 0) {
 536		dev_dbg(&host->spi->dev, "  ... write returned %d\n", status);
 537		cmd->error = status;
 538		return status;
 539	}
 540
 541	/* after no-data commands and STOP_TRANSMISSION, chipselect off */
 542	return mmc_spi_response_get(host, cmd, cs_on);
 543}
 544
 545/* Build data message with up to four separate transfers.  For TX, we
 546 * start by writing the data token.  And in most cases, we finish with
 547 * a status transfer.
 548 *
 549 * We always provide TX data for data and CRC.  The MMC/SD protocol
 550 * requires us to write ones; but Linux defaults to writing zeroes;
 551 * so we explicitly initialize it to all ones on RX paths.
 552 *
 553 * We also handle DMA mapping, so the underlying SPI controller does
 554 * not need to (re)do it for each message.
 555 */
 556static void
 557mmc_spi_setup_data_message(
 558	struct mmc_spi_host	*host,
 559	int			multiple,
 560	enum dma_data_direction	direction)
 561{
 562	struct spi_transfer	*t;
 563	struct scratch		*scratch = host->data;
 564	dma_addr_t		dma = host->data_dma;
 565
 566	spi_message_init(&host->m);
 567	if (dma)
 568		host->m.is_dma_mapped = 1;
 569
 570	/* for reads, readblock() skips 0xff bytes before finding
 571	 * the token; for writes, this transfer issues that token.
 572	 */
 573	if (direction == DMA_TO_DEVICE) {
 574		t = &host->token;
 575		memset(t, 0, sizeof(*t));
 576		t->len = 1;
 577		if (multiple)
 578			scratch->data_token = SPI_TOKEN_MULTI_WRITE;
 579		else
 580			scratch->data_token = SPI_TOKEN_SINGLE;
 581		t->tx_buf = &scratch->data_token;
 582		if (dma)
 583			t->tx_dma = dma + offsetof(struct scratch, data_token);
 584		spi_message_add_tail(t, &host->m);
 585	}
 586
 587	/* Body of transfer is buffer, then CRC ...
 588	 * either TX-only, or RX with TX-ones.
 589	 */
 590	t = &host->t;
 591	memset(t, 0, sizeof(*t));
 592	t->tx_buf = host->ones;
 593	t->tx_dma = host->ones_dma;
 594	/* length and actual buffer info are written later */
 595	spi_message_add_tail(t, &host->m);
 596
 597	t = &host->crc;
 598	memset(t, 0, sizeof(*t));
 599	t->len = 2;
 600	if (direction == DMA_TO_DEVICE) {
 601		/* the actual CRC may get written later */
 602		t->tx_buf = &scratch->crc_val;
 603		if (dma)
 604			t->tx_dma = dma + offsetof(struct scratch, crc_val);
 605	} else {
 606		t->tx_buf = host->ones;
 607		t->tx_dma = host->ones_dma;
 608		t->rx_buf = &scratch->crc_val;
 609		if (dma)
 610			t->rx_dma = dma + offsetof(struct scratch, crc_val);
 611	}
 612	spi_message_add_tail(t, &host->m);
 613
 614	/*
 615	 * A single block read is followed by N(EC) [0+] all-ones bytes
 616	 * before deselect ... don't bother.
 617	 *
 618	 * Multiblock reads are followed by N(AC) [1+] all-ones bytes before
 619	 * the next block is read, or a STOP_TRANSMISSION is issued.  We'll
 620	 * collect that single byte, so readblock() doesn't need to.
 621	 *
 622	 * For a write, the one-byte data response follows immediately, then
 623	 * come zero or more busy bytes, then N(WR) [1+] all-ones bytes.
 624	 * Then single block reads may deselect, and multiblock ones issue
 625	 * the next token (next data block, or STOP_TRAN).  We can try to
 626	 * minimize I/O ops by using a single read to collect end-of-busy.
 627	 */
 628	if (multiple || direction == DMA_TO_DEVICE) {
 629		t = &host->early_status;
 630		memset(t, 0, sizeof(*t));
 631		t->len = (direction == DMA_TO_DEVICE) ? sizeof(scratch->status) : 1;
 
 
 632		t->tx_buf = host->ones;
 633		t->tx_dma = host->ones_dma;
 634		t->rx_buf = scratch->status;
 635		if (dma)
 636			t->rx_dma = dma + offsetof(struct scratch, status);
 637		t->cs_change = 1;
 638		spi_message_add_tail(t, &host->m);
 639	}
 640}
 641
 642/*
 643 * Write one block:
 644 *  - caller handled preceding N(WR) [1+] all-ones bytes
 645 *  - data block
 646 *	+ token
 647 *	+ data bytes
 648 *	+ crc16
 649 *  - an all-ones byte ... card writes a data-response byte
 650 *  - followed by N(EC) [0+] all-ones bytes, card writes zero/'busy'
 651 *
 652 * Return negative errno, else success.
 653 */
 654static int
 655mmc_spi_writeblock(struct mmc_spi_host *host, struct spi_transfer *t,
 656	unsigned long timeout)
 657{
 658	struct spi_device	*spi = host->spi;
 659	int			status, i;
 660	struct scratch		*scratch = host->data;
 661	u32			pattern;
 662
 663	if (host->mmc->use_spi_crc)
 664		scratch->crc_val = cpu_to_be16(crc_itu_t(0, t->tx_buf, t->len));
 
 665	if (host->dma_dev)
 666		dma_sync_single_for_device(host->dma_dev,
 667				host->data_dma, sizeof(*scratch),
 668				DMA_BIDIRECTIONAL);
 669
 670	status = spi_sync_locked(spi, &host->m);
 671
 672	if (status != 0) {
 673		dev_dbg(&spi->dev, "write error (%d)\n", status);
 674		return status;
 675	}
 676
 677	if (host->dma_dev)
 678		dma_sync_single_for_cpu(host->dma_dev,
 679				host->data_dma, sizeof(*scratch),
 680				DMA_BIDIRECTIONAL);
 681
 682	/*
 683	 * Get the transmission data-response reply.  It must follow
 684	 * immediately after the data block we transferred.  This reply
 685	 * doesn't necessarily tell whether the write operation succeeded;
 686	 * it just says if the transmission was ok and whether *earlier*
 687	 * writes succeeded; see the standard.
 688	 *
 689	 * In practice, there are (even modern SDHC-)cards which are late
 690	 * in sending the response, and miss the time frame by a few bits,
 691	 * so we have to cope with this situation and check the response
 692	 * bit-by-bit. Arggh!!!
 693	 */
 694	pattern = get_unaligned_be32(scratch->status);
 
 
 
 695
 696	/* First 3 bit of pattern are undefined */
 697	pattern |= 0xE0000000;
 698
 699	/* left-adjust to leading 0 bit */
 700	while (pattern & 0x80000000)
 701		pattern <<= 1;
 702	/* right-adjust for pattern matching. Code is in bit 4..0 now. */
 703	pattern >>= 27;
 704
 705	switch (pattern) {
 706	case SPI_RESPONSE_ACCEPTED:
 707		status = 0;
 708		break;
 709	case SPI_RESPONSE_CRC_ERR:
 710		/* host shall then issue MMC_STOP_TRANSMISSION */
 711		status = -EILSEQ;
 712		break;
 713	case SPI_RESPONSE_WRITE_ERR:
 714		/* host shall then issue MMC_STOP_TRANSMISSION,
 715		 * and should MMC_SEND_STATUS to sort it out
 716		 */
 717		status = -EIO;
 718		break;
 719	default:
 720		status = -EPROTO;
 721		break;
 722	}
 723	if (status != 0) {
 724		dev_dbg(&spi->dev, "write error %02x (%d)\n",
 725			scratch->status[0], status);
 726		return status;
 727	}
 728
 729	t->tx_buf += t->len;
 730	if (host->dma_dev)
 731		t->tx_dma += t->len;
 732
 733	/* Return when not busy.  If we didn't collect that status yet,
 734	 * we'll need some more I/O.
 735	 */
 736	for (i = 4; i < sizeof(scratch->status); i++) {
 737		/* card is non-busy if the most recent bit is 1 */
 738		if (scratch->status[i] & 0x01)
 739			return 0;
 740	}
 741	return mmc_spi_wait_unbusy(host, timeout);
 742}
 743
 744/*
 745 * Read one block:
 746 *  - skip leading all-ones bytes ... either
 747 *      + N(AC) [1..f(clock,CSD)] usually, else
 748 *      + N(CX) [0..8] when reading CSD or CID
 749 *  - data block
 750 *	+ token ... if error token, no data or crc
 751 *	+ data bytes
 752 *	+ crc16
 753 *
 754 * After single block reads, we're done; N(EC) [0+] all-ones bytes follow
 755 * before dropping chipselect.
 756 *
 757 * For multiblock reads, caller either reads the next block or issues a
 758 * STOP_TRANSMISSION command.
 759 */
 760static int
 761mmc_spi_readblock(struct mmc_spi_host *host, struct spi_transfer *t,
 762	unsigned long timeout)
 763{
 764	struct spi_device	*spi = host->spi;
 765	int			status;
 766	struct scratch		*scratch = host->data;
 767	unsigned int 		bitshift;
 768	u8			leftover;
 769
 770	/* At least one SD card sends an all-zeroes byte when N(CX)
 771	 * applies, before the all-ones bytes ... just cope with that.
 772	 */
 773	status = mmc_spi_readbytes(host, 1);
 774	if (status < 0)
 775		return status;
 776	status = scratch->status[0];
 777	if (status == 0xff || status == 0)
 778		status = mmc_spi_readtoken(host, timeout);
 779
 780	if (status < 0) {
 781		dev_dbg(&spi->dev, "read error %02x (%d)\n", status, status);
 782		return status;
 783	}
 784
 785	/* The token may be bit-shifted...
 786	 * the first 0-bit precedes the data stream.
 787	 */
 788	bitshift = 7;
 789	while (status & 0x80) {
 790		status <<= 1;
 791		bitshift--;
 792	}
 793	leftover = status << 1;
 794
 795	if (host->dma_dev) {
 796		dma_sync_single_for_device(host->dma_dev,
 797				host->data_dma, sizeof(*scratch),
 798				DMA_BIDIRECTIONAL);
 799		dma_sync_single_for_device(host->dma_dev,
 800				t->rx_dma, t->len,
 801				DMA_FROM_DEVICE);
 802	}
 803
 804	status = spi_sync_locked(spi, &host->m);
 805	if (status < 0) {
 806		dev_dbg(&spi->dev, "read error %d\n", status);
 807		return status;
 808	}
 809
 810	if (host->dma_dev) {
 811		dma_sync_single_for_cpu(host->dma_dev,
 812				host->data_dma, sizeof(*scratch),
 813				DMA_BIDIRECTIONAL);
 814		dma_sync_single_for_cpu(host->dma_dev,
 815				t->rx_dma, t->len,
 816				DMA_FROM_DEVICE);
 817	}
 818
 819	if (bitshift) {
 820		/* Walk through the data and the crc and do
 821		 * all the magic to get byte-aligned data.
 822		 */
 823		u8 *cp = t->rx_buf;
 824		unsigned int len;
 825		unsigned int bitright = 8 - bitshift;
 826		u8 temp;
 827		for (len = t->len; len; len--) {
 828			temp = *cp;
 829			*cp++ = leftover | (temp >> bitshift);
 830			leftover = temp << bitright;
 831		}
 832		cp = (u8 *) &scratch->crc_val;
 833		temp = *cp;
 834		*cp++ = leftover | (temp >> bitshift);
 835		leftover = temp << bitright;
 836		temp = *cp;
 837		*cp = leftover | (temp >> bitshift);
 838	}
 839
 840	if (host->mmc->use_spi_crc) {
 841		u16 crc = crc_itu_t(0, t->rx_buf, t->len);
 842
 843		be16_to_cpus(&scratch->crc_val);
 844		if (scratch->crc_val != crc) {
 845			dev_dbg(&spi->dev,
 846				"read - crc error: crc_val=0x%04x, computed=0x%04x len=%d\n",
 847				scratch->crc_val, crc, t->len);
 848			return -EILSEQ;
 849		}
 850	}
 851
 852	t->rx_buf += t->len;
 853	if (host->dma_dev)
 854		t->rx_dma += t->len;
 855
 856	return 0;
 857}
 858
 859/*
 860 * An MMC/SD data stage includes one or more blocks, optional CRCs,
 861 * and inline handshaking.  That handhaking makes it unlike most
 862 * other SPI protocol stacks.
 863 */
 864static void
 865mmc_spi_data_do(struct mmc_spi_host *host, struct mmc_command *cmd,
 866		struct mmc_data *data, u32 blk_size)
 867{
 868	struct spi_device	*spi = host->spi;
 869	struct device		*dma_dev = host->dma_dev;
 870	struct spi_transfer	*t;
 871	enum dma_data_direction	direction;
 872	struct scatterlist	*sg;
 873	unsigned		n_sg;
 874	int			multiple = (data->blocks > 1);
 875	u32			clock_rate;
 876	unsigned long		timeout;
 877
 878	direction = mmc_get_dma_dir(data);
 
 
 
 879	mmc_spi_setup_data_message(host, multiple, direction);
 880	t = &host->t;
 881
 882	if (t->speed_hz)
 883		clock_rate = t->speed_hz;
 884	else
 885		clock_rate = spi->max_speed_hz;
 886
 887	timeout = data->timeout_ns +
 888		  data->timeout_clks * 1000000 / clock_rate;
 889	timeout = usecs_to_jiffies((unsigned int)(timeout / 1000)) + 1;
 890
 891	/* Handle scatterlist segments one at a time, with synch for
 892	 * each 512-byte block
 893	 */
 894	for_each_sg(data->sg, sg, data->sg_len, n_sg) {
 895		int			status = 0;
 896		dma_addr_t		dma_addr = 0;
 897		void			*kmap_addr;
 898		unsigned		length = sg->length;
 899		enum dma_data_direction	dir = direction;
 900
 901		/* set up dma mapping for controller drivers that might
 902		 * use DMA ... though they may fall back to PIO
 903		 */
 904		if (dma_dev) {
 905			/* never invalidate whole *shared* pages ... */
 906			if ((sg->offset != 0 || length != PAGE_SIZE)
 907					&& dir == DMA_FROM_DEVICE)
 908				dir = DMA_BIDIRECTIONAL;
 909
 910			dma_addr = dma_map_page(dma_dev, sg_page(sg), 0,
 911						PAGE_SIZE, dir);
 912			if (dma_mapping_error(dma_dev, dma_addr)) {
 913				data->error = -EFAULT;
 914				break;
 915			}
 916			if (direction == DMA_TO_DEVICE)
 917				t->tx_dma = dma_addr + sg->offset;
 918			else
 919				t->rx_dma = dma_addr + sg->offset;
 920		}
 921
 922		/* allow pio too; we don't allow highmem */
 923		kmap_addr = kmap(sg_page(sg));
 924		if (direction == DMA_TO_DEVICE)
 925			t->tx_buf = kmap_addr + sg->offset;
 926		else
 927			t->rx_buf = kmap_addr + sg->offset;
 928
 929		/* transfer each block, and update request status */
 930		while (length) {
 931			t->len = min(length, blk_size);
 932
 933			dev_dbg(&host->spi->dev,
 934				"    mmc_spi: %s block, %d bytes\n",
 935				(direction == DMA_TO_DEVICE) ? "write" : "read",
 
 
 936				t->len);
 937
 938			if (direction == DMA_TO_DEVICE)
 939				status = mmc_spi_writeblock(host, t, timeout);
 940			else
 941				status = mmc_spi_readblock(host, t, timeout);
 942			if (status < 0)
 943				break;
 944
 945			data->bytes_xfered += t->len;
 946			length -= t->len;
 947
 948			if (!multiple)
 949				break;
 950		}
 951
 952		/* discard mappings */
 953		if (direction == DMA_FROM_DEVICE)
 954			flush_kernel_dcache_page(sg_page(sg));
 955		kunmap(sg_page(sg));
 956		if (dma_dev)
 957			dma_unmap_page(dma_dev, dma_addr, PAGE_SIZE, dir);
 958
 959		if (status < 0) {
 960			data->error = status;
 961			dev_dbg(&spi->dev, "%s status %d\n",
 962				(direction == DMA_TO_DEVICE) ? "write" : "read",
 
 963				status);
 964			break;
 965		}
 966	}
 967
 968	/* NOTE some docs describe an MMC-only SET_BLOCK_COUNT (CMD23) that
 969	 * can be issued before multiblock writes.  Unlike its more widely
 970	 * documented analogue for SD cards (SET_WR_BLK_ERASE_COUNT, ACMD23),
 971	 * that can affect the STOP_TRAN logic.   Complete (and current)
 972	 * MMC specs should sort that out before Linux starts using CMD23.
 973	 */
 974	if (direction == DMA_TO_DEVICE && multiple) {
 975		struct scratch	*scratch = host->data;
 976		int		tmp;
 977		const unsigned	statlen = sizeof(scratch->status);
 978
 979		dev_dbg(&spi->dev, "    mmc_spi: STOP_TRAN\n");
 980
 981		/* Tweak the per-block message we set up earlier by morphing
 982		 * it to hold single buffer with the token followed by some
 983		 * all-ones bytes ... skip N(BR) (0..1), scan the rest for
 984		 * "not busy any longer" status, and leave chip selected.
 985		 */
 986		INIT_LIST_HEAD(&host->m.transfers);
 987		list_add(&host->early_status.transfer_list,
 988				&host->m.transfers);
 989
 990		memset(scratch->status, 0xff, statlen);
 991		scratch->status[0] = SPI_TOKEN_STOP_TRAN;
 992
 993		host->early_status.tx_buf = host->early_status.rx_buf;
 994		host->early_status.tx_dma = host->early_status.rx_dma;
 995		host->early_status.len = statlen;
 996
 997		if (host->dma_dev)
 998			dma_sync_single_for_device(host->dma_dev,
 999					host->data_dma, sizeof(*scratch),
1000					DMA_BIDIRECTIONAL);
1001
1002		tmp = spi_sync_locked(spi, &host->m);
1003
1004		if (host->dma_dev)
1005			dma_sync_single_for_cpu(host->dma_dev,
1006					host->data_dma, sizeof(*scratch),
1007					DMA_BIDIRECTIONAL);
1008
1009		if (tmp < 0) {
1010			if (!data->error)
1011				data->error = tmp;
1012			return;
1013		}
1014
1015		/* Ideally we collected "not busy" status with one I/O,
1016		 * avoiding wasteful byte-at-a-time scanning... but more
1017		 * I/O is often needed.
1018		 */
1019		for (tmp = 2; tmp < statlen; tmp++) {
1020			if (scratch->status[tmp] != 0)
1021				return;
1022		}
1023		tmp = mmc_spi_wait_unbusy(host, timeout);
1024		if (tmp < 0 && !data->error)
1025			data->error = tmp;
1026	}
1027}
1028
1029/****************************************************************************/
1030
1031/*
1032 * MMC driver implementation -- the interface to the MMC stack
1033 */
1034
1035static void mmc_spi_request(struct mmc_host *mmc, struct mmc_request *mrq)
1036{
1037	struct mmc_spi_host	*host = mmc_priv(mmc);
1038	int			status = -EINVAL;
1039	int			crc_retry = 5;
1040	struct mmc_command	stop;
1041
1042#ifdef DEBUG
1043	/* MMC core and layered drivers *MUST* issue SPI-aware commands */
1044	{
1045		struct mmc_command	*cmd;
1046		int			invalid = 0;
1047
1048		cmd = mrq->cmd;
1049		if (!mmc_spi_resp_type(cmd)) {
1050			dev_dbg(&host->spi->dev, "bogus command\n");
1051			cmd->error = -EINVAL;
1052			invalid = 1;
1053		}
1054
1055		cmd = mrq->stop;
1056		if (cmd && !mmc_spi_resp_type(cmd)) {
1057			dev_dbg(&host->spi->dev, "bogus STOP command\n");
1058			cmd->error = -EINVAL;
1059			invalid = 1;
1060		}
1061
1062		if (invalid) {
1063			dump_stack();
1064			mmc_request_done(host->mmc, mrq);
1065			return;
1066		}
1067	}
1068#endif
1069
1070	/* request exclusive bus access */
1071	spi_bus_lock(host->spi->master);
1072
1073crc_recover:
1074	/* issue command; then optionally data and stop */
1075	status = mmc_spi_command_send(host, mrq, mrq->cmd, mrq->data != NULL);
1076	if (status == 0 && mrq->data) {
1077		mmc_spi_data_do(host, mrq->cmd, mrq->data, mrq->data->blksz);
1078
1079		/*
1080		 * The SPI bus is not always reliable for large data transfers.
1081		 * If an occasional crc error is reported by the SD device with
1082		 * data read/write over SPI, it may be recovered by repeating
1083		 * the last SD command again. The retry count is set to 5 to
1084		 * ensure the driver passes stress tests.
1085		 */
1086		if (mrq->data->error == -EILSEQ && crc_retry) {
1087			stop.opcode = MMC_STOP_TRANSMISSION;
1088			stop.arg = 0;
1089			stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1090			status = mmc_spi_command_send(host, mrq, &stop, 0);
1091			crc_retry--;
1092			mrq->data->error = 0;
1093			goto crc_recover;
1094		}
1095
1096		if (mrq->stop)
1097			status = mmc_spi_command_send(host, mrq, mrq->stop, 0);
1098		else
1099			mmc_cs_off(host);
1100	}
1101
1102	/* release the bus */
1103	spi_bus_unlock(host->spi->master);
1104
1105	mmc_request_done(host->mmc, mrq);
1106}
1107
1108/* See Section 6.4.1, in SD "Simplified Physical Layer Specification 2.0"
1109 *
1110 * NOTE that here we can't know that the card has just been powered up;
1111 * not all MMC/SD sockets support power switching.
1112 *
1113 * FIXME when the card is still in SPI mode, e.g. from a previous kernel,
1114 * this doesn't seem to do the right thing at all...
1115 */
1116static void mmc_spi_initsequence(struct mmc_spi_host *host)
1117{
1118	/* Try to be very sure any previous command has completed;
1119	 * wait till not-busy, skip debris from any old commands.
1120	 */
1121	mmc_spi_wait_unbusy(host, r1b_timeout);
1122	mmc_spi_readbytes(host, 10);
1123
1124	/*
1125	 * Do a burst with chipselect active-high.  We need to do this to
1126	 * meet the requirement of 74 clock cycles with both chipselect
1127	 * and CMD (MOSI) high before CMD0 ... after the card has been
1128	 * powered up to Vdd(min), and so is ready to take commands.
1129	 *
1130	 * Some cards are particularly needy of this (e.g. Viking "SD256")
1131	 * while most others don't seem to care.
1132	 *
1133	 * Note that this is one of the places MMC/SD plays games with the
1134	 * SPI protocol.  Another is that when chipselect is released while
1135	 * the card returns BUSY status, the clock must issue several cycles
1136	 * with chipselect high before the card will stop driving its output.
1137	 */
1138	host->spi->mode |= SPI_CS_HIGH;
1139	if (spi_setup(host->spi) != 0) {
1140		/* Just warn; most cards work without it. */
1141		dev_warn(&host->spi->dev,
1142				"can't change chip-select polarity\n");
1143		host->spi->mode &= ~SPI_CS_HIGH;
1144	} else {
1145		mmc_spi_readbytes(host, 18);
1146
1147		host->spi->mode &= ~SPI_CS_HIGH;
1148		if (spi_setup(host->spi) != 0) {
1149			/* Wot, we can't get the same setup we had before? */
1150			dev_err(&host->spi->dev,
1151					"can't restore chip-select polarity\n");
1152		}
1153	}
1154}
1155
1156static char *mmc_powerstring(u8 power_mode)
1157{
1158	switch (power_mode) {
1159	case MMC_POWER_OFF: return "off";
1160	case MMC_POWER_UP:  return "up";
1161	case MMC_POWER_ON:  return "on";
1162	}
1163	return "?";
1164}
1165
1166static void mmc_spi_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1167{
1168	struct mmc_spi_host *host = mmc_priv(mmc);
1169
1170	if (host->power_mode != ios->power_mode) {
1171		int		canpower;
1172
1173		canpower = host->pdata && host->pdata->setpower;
1174
1175		dev_dbg(&host->spi->dev, "mmc_spi: power %s (%d)%s\n",
1176				mmc_powerstring(ios->power_mode),
1177				ios->vdd,
1178				canpower ? ", can switch" : "");
1179
1180		/* switch power on/off if possible, accounting for
1181		 * max 250msec powerup time if needed.
1182		 */
1183		if (canpower) {
1184			switch (ios->power_mode) {
1185			case MMC_POWER_OFF:
1186			case MMC_POWER_UP:
1187				host->pdata->setpower(&host->spi->dev,
1188						ios->vdd);
1189				if (ios->power_mode == MMC_POWER_UP)
1190					msleep(host->powerup_msecs);
1191			}
1192		}
1193
1194		/* See 6.4.1 in the simplified SD card physical spec 2.0 */
1195		if (ios->power_mode == MMC_POWER_ON)
1196			mmc_spi_initsequence(host);
1197
1198		/* If powering down, ground all card inputs to avoid power
1199		 * delivery from data lines!  On a shared SPI bus, this
1200		 * will probably be temporary; 6.4.2 of the simplified SD
1201		 * spec says this must last at least 1msec.
1202		 *
1203		 *   - Clock low means CPOL 0, e.g. mode 0
1204		 *   - MOSI low comes from writing zero
1205		 *   - Chipselect is usually active low...
1206		 */
1207		if (canpower && ios->power_mode == MMC_POWER_OFF) {
1208			int mres;
1209			u8 nullbyte = 0;
1210
1211			host->spi->mode &= ~(SPI_CPOL|SPI_CPHA);
1212			mres = spi_setup(host->spi);
1213			if (mres < 0)
1214				dev_dbg(&host->spi->dev,
1215					"switch to SPI mode 0 failed\n");
1216
1217			if (spi_write(host->spi, &nullbyte, 1) < 0)
1218				dev_dbg(&host->spi->dev,
1219					"put spi signals to low failed\n");
1220
1221			/*
1222			 * Now clock should be low due to spi mode 0;
1223			 * MOSI should be low because of written 0x00;
1224			 * chipselect should be low (it is active low)
1225			 * power supply is off, so now MMC is off too!
1226			 *
1227			 * FIXME no, chipselect can be high since the
1228			 * device is inactive and SPI_CS_HIGH is clear...
1229			 */
1230			msleep(10);
1231			if (mres == 0) {
1232				host->spi->mode |= (SPI_CPOL|SPI_CPHA);
1233				mres = spi_setup(host->spi);
1234				if (mres < 0)
1235					dev_dbg(&host->spi->dev,
1236						"switch back to SPI mode 3 failed\n");
 
1237			}
1238		}
1239
1240		host->power_mode = ios->power_mode;
1241	}
1242
1243	if (host->spi->max_speed_hz != ios->clock && ios->clock != 0) {
1244		int		status;
1245
1246		host->spi->max_speed_hz = ios->clock;
1247		status = spi_setup(host->spi);
1248		dev_dbg(&host->spi->dev,
1249			"mmc_spi:  clock to %d Hz, %d\n",
1250			host->spi->max_speed_hz, status);
1251	}
1252}
1253
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1254static const struct mmc_host_ops mmc_spi_ops = {
1255	.request	= mmc_spi_request,
1256	.set_ios	= mmc_spi_set_ios,
1257	.get_ro		= mmc_gpio_get_ro,
1258	.get_cd		= mmc_gpio_get_cd,
1259};
1260
1261
1262/****************************************************************************/
1263
1264/*
1265 * SPI driver implementation
1266 */
1267
1268static irqreturn_t
1269mmc_spi_detect_irq(int irq, void *mmc)
1270{
1271	struct mmc_spi_host *host = mmc_priv(mmc);
1272	u16 delay_msec = max(host->pdata->detect_delay, (u16)100);
1273
1274	mmc_detect_change(mmc, msecs_to_jiffies(delay_msec));
1275	return IRQ_HANDLED;
1276}
1277
1278static int mmc_spi_probe(struct spi_device *spi)
1279{
1280	void			*ones;
1281	struct mmc_host		*mmc;
1282	struct mmc_spi_host	*host;
1283	int			status;
1284	bool			has_ro = false;
1285
1286	/* We rely on full duplex transfers, mostly to reduce
1287	 * per-transfer overheads (by making fewer transfers).
1288	 */
1289	if (spi->master->flags & SPI_MASTER_HALF_DUPLEX)
1290		return -EINVAL;
1291
1292	/* MMC and SD specs only seem to care that sampling is on the
1293	 * rising edge ... meaning SPI modes 0 or 3.  So either SPI mode
1294	 * should be legit.  We'll use mode 0 since the steady state is 0,
1295	 * which is appropriate for hotplugging, unless the platform data
1296	 * specify mode 3 (if hardware is not compatible to mode 0).
1297	 */
1298	if (spi->mode != SPI_MODE_3)
1299		spi->mode = SPI_MODE_0;
1300	spi->bits_per_word = 8;
1301
1302	status = spi_setup(spi);
1303	if (status < 0) {
1304		dev_dbg(&spi->dev, "needs SPI mode %02x, %d KHz; %d\n",
1305				spi->mode, spi->max_speed_hz / 1000,
1306				status);
1307		return status;
1308	}
1309
1310	/* We need a supply of ones to transmit.  This is the only time
1311	 * the CPU touches these, so cache coherency isn't a concern.
1312	 *
1313	 * NOTE if many systems use more than one MMC-over-SPI connector
1314	 * it'd save some memory to share this.  That's evidently rare.
1315	 */
1316	status = -ENOMEM;
1317	ones = kmalloc(MMC_SPI_BLOCKSIZE, GFP_KERNEL);
1318	if (!ones)
1319		goto nomem;
1320	memset(ones, 0xff, MMC_SPI_BLOCKSIZE);
1321
1322	mmc = mmc_alloc_host(sizeof(*host), &spi->dev);
1323	if (!mmc)
1324		goto nomem;
1325
1326	mmc->ops = &mmc_spi_ops;
1327	mmc->max_blk_size = MMC_SPI_BLOCKSIZE;
1328	mmc->max_segs = MMC_SPI_BLOCKSATONCE;
1329	mmc->max_req_size = MMC_SPI_BLOCKSATONCE * MMC_SPI_BLOCKSIZE;
1330	mmc->max_blk_count = MMC_SPI_BLOCKSATONCE;
1331
1332	mmc->caps = MMC_CAP_SPI;
1333
1334	/* SPI doesn't need the lowspeed device identification thing for
1335	 * MMC or SD cards, since it never comes up in open drain mode.
1336	 * That's good; some SPI masters can't handle very low speeds!
1337	 *
1338	 * However, low speed SDIO cards need not handle over 400 KHz;
1339	 * that's the only reason not to use a few MHz for f_min (until
1340	 * the upper layer reads the target frequency from the CSD).
1341	 */
1342	mmc->f_min = 400000;
1343	mmc->f_max = spi->max_speed_hz;
1344
1345	host = mmc_priv(mmc);
1346	host->mmc = mmc;
1347	host->spi = spi;
1348
1349	host->ones = ones;
1350
1351	/* Platform data is used to hook up things like card sensing
1352	 * and power switching gpios.
1353	 */
1354	host->pdata = mmc_spi_get_pdata(spi);
1355	if (host->pdata)
1356		mmc->ocr_avail = host->pdata->ocr_mask;
1357	if (!mmc->ocr_avail) {
1358		dev_warn(&spi->dev, "ASSUMING 3.2-3.4 V slot power\n");
1359		mmc->ocr_avail = MMC_VDD_32_33|MMC_VDD_33_34;
1360	}
1361	if (host->pdata && host->pdata->setpower) {
1362		host->powerup_msecs = host->pdata->powerup_msecs;
1363		if (!host->powerup_msecs || host->powerup_msecs > 250)
1364			host->powerup_msecs = 250;
1365	}
1366
1367	dev_set_drvdata(&spi->dev, mmc);
1368
1369	/* preallocate dma buffers */
1370	host->data = kmalloc(sizeof(*host->data), GFP_KERNEL);
1371	if (!host->data)
1372		goto fail_nobuf1;
1373
1374	if (spi->master->dev.parent->dma_mask) {
1375		struct device	*dev = spi->master->dev.parent;
1376
1377		host->dma_dev = dev;
1378		host->ones_dma = dma_map_single(dev, ones,
1379				MMC_SPI_BLOCKSIZE, DMA_TO_DEVICE);
1380		if (dma_mapping_error(dev, host->ones_dma))
1381			goto fail_ones_dma;
1382		host->data_dma = dma_map_single(dev, host->data,
1383				sizeof(*host->data), DMA_BIDIRECTIONAL);
1384		if (dma_mapping_error(dev, host->data_dma))
1385			goto fail_data_dma;
1386
1387		dma_sync_single_for_cpu(host->dma_dev,
1388				host->data_dma, sizeof(*host->data),
1389				DMA_BIDIRECTIONAL);
1390	}
1391
1392	/* setup message for status/busy readback */
1393	spi_message_init(&host->readback);
1394	host->readback.is_dma_mapped = (host->dma_dev != NULL);
1395
1396	spi_message_add_tail(&host->status, &host->readback);
1397	host->status.tx_buf = host->ones;
1398	host->status.tx_dma = host->ones_dma;
1399	host->status.rx_buf = &host->data->status;
1400	host->status.rx_dma = host->data_dma + offsetof(struct scratch, status);
1401	host->status.cs_change = 1;
1402
1403	/* register card detect irq */
1404	if (host->pdata && host->pdata->init) {
1405		status = host->pdata->init(&spi->dev, mmc_spi_detect_irq, mmc);
1406		if (status != 0)
1407			goto fail_glue_init;
1408	}
1409
1410	/* pass platform capabilities, if any */
1411	if (host->pdata) {
1412		mmc->caps |= host->pdata->caps;
1413		mmc->caps2 |= host->pdata->caps2;
1414	}
1415
1416	status = mmc_add_host(mmc);
1417	if (status != 0)
1418		goto fail_add_host;
1419
1420	/*
1421	 * Index 0 is card detect
1422	 * Old boardfiles were specifying 1 ms as debounce
1423	 */
1424	status = mmc_gpiod_request_cd(mmc, NULL, 0, false, 1, NULL);
1425	if (status == -EPROBE_DEFER)
1426		goto fail_add_host;
1427	if (!status) {
1428		/*
1429		 * The platform has a CD GPIO signal that may support
1430		 * interrupts, so let mmc_gpiod_request_cd_irq() decide
1431		 * if polling is needed or not.
1432		 */
1433		mmc->caps &= ~MMC_CAP_NEEDS_POLL;
1434		mmc_gpiod_request_cd_irq(mmc);
1435	}
1436	mmc_detect_change(mmc, 0);
1437
1438	/* Index 1 is write protect/read only */
1439	status = mmc_gpiod_request_ro(mmc, NULL, 1, 0, NULL);
1440	if (status == -EPROBE_DEFER)
1441		goto fail_add_host;
1442	if (!status)
1443		has_ro = true;
1444
1445	dev_info(&spi->dev, "SD/MMC host %s%s%s%s%s\n",
1446			dev_name(&mmc->class_dev),
1447			host->dma_dev ? "" : ", no DMA",
1448			has_ro ? "" : ", no WP",
 
1449			(host->pdata && host->pdata->setpower)
1450				? "" : ", no poweroff",
1451			(mmc->caps & MMC_CAP_NEEDS_POLL)
1452				? ", cd polling" : "");
1453	return 0;
1454
1455fail_add_host:
1456	mmc_remove_host(mmc);
1457fail_glue_init:
1458	if (host->dma_dev)
1459		dma_unmap_single(host->dma_dev, host->data_dma,
1460				sizeof(*host->data), DMA_BIDIRECTIONAL);
1461fail_data_dma:
1462	if (host->dma_dev)
1463		dma_unmap_single(host->dma_dev, host->ones_dma,
1464				MMC_SPI_BLOCKSIZE, DMA_TO_DEVICE);
1465fail_ones_dma:
1466	kfree(host->data);
1467
1468fail_nobuf1:
1469	mmc_free_host(mmc);
1470	mmc_spi_put_pdata(spi);
 
1471
1472nomem:
1473	kfree(ones);
1474	return status;
1475}
1476
1477
1478static int mmc_spi_remove(struct spi_device *spi)
1479{
1480	struct mmc_host		*mmc = dev_get_drvdata(&spi->dev);
1481	struct mmc_spi_host	*host = mmc_priv(mmc);
 
 
 
1482
1483	/* prevent new mmc_detect_change() calls */
1484	if (host->pdata && host->pdata->exit)
1485		host->pdata->exit(&spi->dev, mmc);
1486
1487	mmc_remove_host(mmc);
1488
1489	if (host->dma_dev) {
1490		dma_unmap_single(host->dma_dev, host->ones_dma,
1491			MMC_SPI_BLOCKSIZE, DMA_TO_DEVICE);
1492		dma_unmap_single(host->dma_dev, host->data_dma,
1493			sizeof(*host->data), DMA_BIDIRECTIONAL);
1494	}
1495
1496	kfree(host->data);
1497	kfree(host->ones);
1498
1499	spi->max_speed_hz = mmc->f_max;
1500	mmc_free_host(mmc);
1501	mmc_spi_put_pdata(spi);
 
 
1502	return 0;
1503}
1504
1505static const struct of_device_id mmc_spi_of_match_table[] = {
1506	{ .compatible = "mmc-spi-slot", },
1507	{},
1508};
1509MODULE_DEVICE_TABLE(of, mmc_spi_of_match_table);
1510
1511static struct spi_driver mmc_spi_driver = {
1512	.driver = {
1513		.name =		"mmc_spi",
 
1514		.of_match_table = mmc_spi_of_match_table,
1515	},
1516	.probe =	mmc_spi_probe,
1517	.remove =	mmc_spi_remove,
1518};
1519
1520module_spi_driver(mmc_spi_driver);
1521
1522MODULE_AUTHOR("Mike Lavender, David Brownell, Hans-Peter Nilsson, Jan Nikitenko");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1523MODULE_DESCRIPTION("SPI SD/MMC host driver");
1524MODULE_LICENSE("GPL");
1525MODULE_ALIAS("spi:mmc_spi");