Linux Audio

Check our new training course

Loading...
v3.5.6
 
  1/*
  2 * linux/fs/ext4/page-io.c
  3 *
  4 * This contains the new page_io functions for ext4
  5 *
  6 * Written by Theodore Ts'o, 2010.
  7 */
  8
  9#include <linux/fs.h>
 10#include <linux/time.h>
 11#include <linux/jbd2.h>
 12#include <linux/highuid.h>
 13#include <linux/pagemap.h>
 14#include <linux/quotaops.h>
 15#include <linux/string.h>
 16#include <linux/buffer_head.h>
 17#include <linux/writeback.h>
 18#include <linux/pagevec.h>
 19#include <linux/mpage.h>
 20#include <linux/namei.h>
 21#include <linux/uio.h>
 22#include <linux/bio.h>
 23#include <linux/workqueue.h>
 24#include <linux/kernel.h>
 25#include <linux/slab.h>
 
 
 26
 27#include "ext4_jbd2.h"
 28#include "xattr.h"
 29#include "acl.h"
 30#include "ext4_extents.h"
 31
 32static struct kmem_cache *io_page_cachep, *io_end_cachep;
 
 33
 34int __init ext4_init_pageio(void)
 35{
 36	io_page_cachep = KMEM_CACHE(ext4_io_page, SLAB_RECLAIM_ACCOUNT);
 37	if (io_page_cachep == NULL)
 38		return -ENOMEM;
 39	io_end_cachep = KMEM_CACHE(ext4_io_end, SLAB_RECLAIM_ACCOUNT);
 40	if (io_end_cachep == NULL) {
 41		kmem_cache_destroy(io_page_cachep);
 
 
 
 
 42		return -ENOMEM;
 43	}
 44	return 0;
 45}
 46
 47void ext4_exit_pageio(void)
 48{
 49	kmem_cache_destroy(io_end_cachep);
 50	kmem_cache_destroy(io_page_cachep);
 51}
 52
 53void ext4_ioend_wait(struct inode *inode)
 54{
 55	wait_queue_head_t *wq = ext4_ioend_wq(inode);
 56
 57	wait_event(*wq, (atomic_read(&EXT4_I(inode)->i_ioend_count) == 0));
 
 
 
 
 
 58}
 59
 60static void put_io_page(struct ext4_io_page *io_page)
 61{
 62	if (atomic_dec_and_test(&io_page->p_count)) {
 63		end_page_writeback(io_page->p_page);
 64		put_page(io_page->p_page);
 65		kmem_cache_free(io_page_cachep, io_page);
 
 
 
 66	}
 67}
 68
 69void ext4_free_io_end(ext4_io_end_t *io)
 70{
 71	int i;
 
 
 72
 73	BUG_ON(!io);
 74	if (io->page)
 75		put_page(io->page);
 76	for (i = 0; i < io->num_io_pages; i++)
 77		put_io_page(io->pages[i]);
 78	io->num_io_pages = 0;
 79	if (atomic_dec_and_test(&EXT4_I(io->inode)->i_ioend_count))
 80		wake_up_all(ext4_ioend_wq(io->inode));
 81	kmem_cache_free(io_end_cachep, io);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 82}
 83
 84/*
 85 * check a range of space and convert unwritten extents to written.
 86 *
 87 * Called with inode->i_mutex; we depend on this when we manipulate
 88 * io->flag, since we could otherwise race with ext4_flush_completed_IO()
 
 
 89 */
 90int ext4_end_io_nolock(ext4_io_end_t *io)
 91{
 92	struct inode *inode = io->inode;
 93	loff_t offset = io->offset;
 94	ssize_t size = io->size;
 95	int ret = 0;
 96
 97	ext4_debug("ext4_end_io_nolock: io 0x%p from inode %lu,list->next 0x%p,"
 98		   "list->prev 0x%p\n",
 99		   io, inode->i_ino, io->list.next, io->list.prev);
100
101	ret = ext4_convert_unwritten_extents(inode, offset, size);
102	if (ret < 0) {
 
103		ext4_msg(inode->i_sb, KERN_EMERG,
104			 "failed to convert unwritten extents to written "
105			 "extents -- potential data loss!  "
106			 "(inode %lu, offset %llu, size %zd, error %d)",
107			 inode->i_ino, offset, size, ret);
108	}
109
110	if (io->iocb)
111		aio_complete(io->iocb, io->result, 0);
112
113	if (io->flag & EXT4_IO_END_DIRECT)
114		inode_dio_done(inode);
115	/* Wake up anyone waiting on unwritten extent conversion */
116	if (atomic_dec_and_test(&EXT4_I(inode)->i_aiodio_unwritten))
117		wake_up_all(ext4_ioend_wq(io->inode));
118	return ret;
119}
120
121/*
122 * work on completed aio dio IO, to convert unwritten extents to extents
123 */
124static void ext4_end_io_work(struct work_struct *work)
125{
126	ext4_io_end_t		*io = container_of(work, ext4_io_end_t, work);
127	struct inode		*inode = io->inode;
128	struct ext4_inode_info	*ei = EXT4_I(inode);
129	unsigned long		flags;
130
131	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
132	if (io->flag & EXT4_IO_END_IN_FSYNC)
133		goto requeue;
134	if (list_empty(&io->list)) {
135		spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
136		goto free;
137	}
138
139	if (!mutex_trylock(&inode->i_mutex)) {
140		bool was_queued;
141requeue:
142		was_queued = !!(io->flag & EXT4_IO_END_QUEUED);
143		io->flag |= EXT4_IO_END_QUEUED;
144		spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
145		/*
146		 * Requeue the work instead of waiting so that the work
147		 * items queued after this can be processed.
148		 */
149		queue_work(EXT4_SB(inode->i_sb)->dio_unwritten_wq, &io->work);
150		/*
151		 * To prevent the ext4-dio-unwritten thread from keeping
152		 * requeueing end_io requests and occupying cpu for too long,
153		 * yield the cpu if it sees an end_io request that has already
154		 * been requeued.
155		 */
156		if (was_queued)
157			yield();
158		return;
 
 
 
 
 
 
 
 
 
 
 
159	}
160	list_del_init(&io->list);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
161	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
162	(void) ext4_end_io_nolock(io);
163	mutex_unlock(&inode->i_mutex);
164free:
165	ext4_free_io_end(io);
166}
167
168ext4_io_end_t *ext4_init_io_end(struct inode *inode, gfp_t flags)
 
169{
170	ext4_io_end_t *io = kmem_cache_zalloc(io_end_cachep, flags);
171	if (io) {
172		atomic_inc(&EXT4_I(inode)->i_ioend_count);
173		io->inode = inode;
174		INIT_WORK(&io->work, ext4_end_io_work);
175		INIT_LIST_HEAD(&io->list);
 
 
 
 
 
 
 
 
 
 
 
 
 
176	}
177	return io;
178}
179
180/*
181 * Print an buffer I/O error compatible with the fs/buffer.c.  This
182 * provides compatibility with dmesg scrapers that look for a specific
183 * buffer I/O error message.  We really need a unified error reporting
184 * structure to userspace ala Digital Unix's uerf system, but it's
185 * probably not going to happen in my lifetime, due to LKML politics...
186 */
187static void buffer_io_error(struct buffer_head *bh)
188{
189	char b[BDEVNAME_SIZE];
190	printk(KERN_ERR "Buffer I/O error on device %s, logical block %llu\n",
191			bdevname(bh->b_bdev, b),
192			(unsigned long long)bh->b_blocknr);
193}
194
195static void ext4_end_bio(struct bio *bio, int error)
196{
197	ext4_io_end_t *io_end = bio->bi_private;
198	struct workqueue_struct *wq;
199	struct inode *inode;
200	unsigned long flags;
201	int i;
202	sector_t bi_sector = bio->bi_sector;
203
204	BUG_ON(!io_end);
205	bio->bi_private = NULL;
206	bio->bi_end_io = NULL;
207	if (test_bit(BIO_UPTODATE, &bio->bi_flags))
208		error = 0;
209	bio_put(bio);
 
 
210
211	for (i = 0; i < io_end->num_io_pages; i++) {
212		struct page *page = io_end->pages[i]->p_page;
213		struct buffer_head *bh, *head;
214		loff_t offset;
215		loff_t io_end_offset;
 
 
 
 
 
 
216
217		if (error) {
218			SetPageError(page);
219			set_bit(AS_EIO, &page->mapping->flags);
220			head = page_buffers(page);
221			BUG_ON(!head);
222
223			io_end_offset = io_end->offset + io_end->size;
 
 
 
 
 
 
 
 
 
 
224
225			offset = (sector_t) page->index << PAGE_CACHE_SHIFT;
226			bh = head;
227			do {
228				if ((offset >= io_end->offset) &&
229				    (offset+bh->b_size <= io_end_offset))
230					buffer_io_error(bh);
231
232				offset += bh->b_size;
233				bh = bh->b_this_page;
234			} while (bh != head);
235		}
 
 
236
237		put_io_page(io_end->pages[i]);
 
 
 
 
 
 
 
238	}
239	io_end->num_io_pages = 0;
240	inode = io_end->inode;
241
242	if (error) {
243		io_end->flag |= EXT4_IO_END_ERROR;
244		ext4_warning(inode->i_sb, "I/O error writing to inode %lu "
245			     "(offset %llu size %ld starting block %llu)",
246			     inode->i_ino,
247			     (unsigned long long) io_end->offset,
248			     (long) io_end->size,
249			     (unsigned long long)
250			     bi_sector >> (inode->i_blkbits - 9));
 
 
251	}
252
253	if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
254		ext4_free_io_end(io_end);
255		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
256	}
257
258	/* Add the io_end to per-inode completed io list*/
259	spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
260	list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
261	spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
262
263	wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
264	/* queue the work to convert unwritten extents to written */
265	queue_work(wq, &io_end->work);
266}
267
268void ext4_io_submit(struct ext4_io_submit *io)
269{
270	struct bio *bio = io->io_bio;
271
272	if (bio) {
273		bio_get(io->io_bio);
274		submit_bio(io->io_op, io->io_bio);
275		BUG_ON(bio_flagged(io->io_bio, BIO_EOPNOTSUPP));
276		bio_put(io->io_bio);
 
277	}
278	io->io_bio = NULL;
279	io->io_op = 0;
 
 
 
 
 
 
280	io->io_end = NULL;
281}
282
283static int io_submit_init(struct ext4_io_submit *io,
284			  struct inode *inode,
285			  struct writeback_control *wbc,
286			  struct buffer_head *bh)
287{
288	ext4_io_end_t *io_end;
289	struct page *page = bh->b_page;
290	int nvecs = bio_get_nr_vecs(bh->b_bdev);
291	struct bio *bio;
292
293	io_end = ext4_init_io_end(inode, GFP_NOFS);
294	if (!io_end)
295		return -ENOMEM;
296	bio = bio_alloc(GFP_NOIO, min(nvecs, BIO_MAX_PAGES));
297	bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
298	bio->bi_bdev = bh->b_bdev;
299	bio->bi_private = io->io_end = io_end;
 
300	bio->bi_end_io = ext4_end_bio;
301
302	io_end->offset = (page->index << PAGE_CACHE_SHIFT) + bh_offset(bh);
303
304	io->io_bio = bio;
305	io->io_op = (wbc->sync_mode == WB_SYNC_ALL ?  WRITE_SYNC : WRITE);
306	io->io_next_block = bh->b_blocknr;
307	return 0;
308}
309
310static int io_submit_add_bh(struct ext4_io_submit *io,
311			    struct ext4_io_page *io_page,
312			    struct inode *inode,
313			    struct writeback_control *wbc,
314			    struct buffer_head *bh)
315{
316	ext4_io_end_t *io_end;
317	int ret;
318
319	if (buffer_new(bh)) {
320		clear_buffer_new(bh);
321		unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
322	}
323
324	if (!buffer_mapped(bh) || buffer_delay(bh)) {
325		if (!buffer_mapped(bh))
326			clear_buffer_dirty(bh);
327		if (io->io_bio)
328			ext4_io_submit(io);
329		return 0;
330	}
331
332	if (io->io_bio && bh->b_blocknr != io->io_next_block) {
333submit_and_retry:
334		ext4_io_submit(io);
335	}
336	if (io->io_bio == NULL) {
337		ret = io_submit_init(io, inode, wbc, bh);
338		if (ret)
339			return ret;
340	}
341	io_end = io->io_end;
342	if ((io_end->num_io_pages >= MAX_IO_PAGES) &&
343	    (io_end->pages[io_end->num_io_pages-1] != io_page))
344		goto submit_and_retry;
345	if (buffer_uninit(bh))
346		ext4_set_io_unwritten_flag(inode, io_end);
347	io->io_end->size += bh->b_size;
348	io->io_next_block++;
349	ret = bio_add_page(io->io_bio, bh->b_page, bh->b_size, bh_offset(bh));
350	if (ret != bh->b_size)
351		goto submit_and_retry;
352	if ((io_end->num_io_pages == 0) ||
353	    (io_end->pages[io_end->num_io_pages-1] != io_page)) {
354		io_end->pages[io_end->num_io_pages++] = io_page;
355		atomic_inc(&io_page->p_count);
356	}
357	return 0;
358}
359
360int ext4_bio_write_page(struct ext4_io_submit *io,
361			struct page *page,
362			int len,
363			struct writeback_control *wbc)
 
364{
 
365	struct inode *inode = page->mapping->host;
366	unsigned block_start, block_end, blocksize;
367	struct ext4_io_page *io_page;
368	struct buffer_head *bh, *head;
369	int ret = 0;
370
371	blocksize = 1 << inode->i_blkbits;
372
373	BUG_ON(!PageLocked(page));
374	BUG_ON(PageWriteback(page));
375
376	io_page = kmem_cache_alloc(io_page_cachep, GFP_NOFS);
377	if (!io_page) {
378		set_page_dirty(page);
379		unlock_page(page);
380		return -ENOMEM;
381	}
382	io_page->p_page = page;
383	atomic_set(&io_page->p_count, 1);
384	get_page(page);
385	set_page_writeback(page);
386	ClearPageError(page);
387
388	for (bh = head = page_buffers(page), block_start = 0;
389	     bh != head || !block_start;
390	     block_start = block_end, bh = bh->b_this_page) {
391
392		block_end = block_start + blocksize;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
393		if (block_start >= len) {
394			/*
395			 * Comments copied from block_write_full_page_endio:
396			 *
397			 * The page straddles i_size.  It must be zeroed out on
398			 * each and every writepage invocation because it may
399			 * be mmapped.  "A file is mapped in multiples of the
400			 * page size.  For a file that is not a multiple of
401			 * the  page size, the remaining memory is zeroed when
402			 * mapped, and writes to that region are not written
403			 * out to the file."
404			 */
405			zero_user_segment(page, block_start, block_end);
406			clear_buffer_dirty(bh);
407			set_buffer_uptodate(bh);
408			continue;
409		}
410		clear_buffer_dirty(bh);
411		ret = io_submit_add_bh(io, io_page, inode, wbc, bh);
412		if (ret) {
413			/*
414			 * We only get here on ENOMEM.  Not much else
415			 * we can do but mark the page as dirty, and
416			 * better luck next time.
417			 */
418			set_page_dirty(page);
419			break;
420		}
421	}
422	unlock_page(page);
 
 
 
 
 
 
423	/*
424	 * If the page was truncated before we could do the writeback,
425	 * or we had a memory allocation error while trying to write
426	 * the first buffer head, we won't have submitted any pages for
427	 * I/O.  In that case we need to make sure we've cleared the
428	 * PageWriteback bit from the page to prevent the system from
429	 * wedging later on.
430	 */
431	put_io_page(io_page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
432	return ret;
433}
v5.9
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * linux/fs/ext4/page-io.c
  4 *
  5 * This contains the new page_io functions for ext4
  6 *
  7 * Written by Theodore Ts'o, 2010.
  8 */
  9
 10#include <linux/fs.h>
 11#include <linux/time.h>
 
 12#include <linux/highuid.h>
 13#include <linux/pagemap.h>
 14#include <linux/quotaops.h>
 15#include <linux/string.h>
 16#include <linux/buffer_head.h>
 17#include <linux/writeback.h>
 18#include <linux/pagevec.h>
 19#include <linux/mpage.h>
 20#include <linux/namei.h>
 21#include <linux/uio.h>
 22#include <linux/bio.h>
 23#include <linux/workqueue.h>
 24#include <linux/kernel.h>
 25#include <linux/slab.h>
 26#include <linux/mm.h>
 27#include <linux/backing-dev.h>
 28
 29#include "ext4_jbd2.h"
 30#include "xattr.h"
 31#include "acl.h"
 
 32
 33static struct kmem_cache *io_end_cachep;
 34static struct kmem_cache *io_end_vec_cachep;
 35
 36int __init ext4_init_pageio(void)
 37{
 
 
 
 38	io_end_cachep = KMEM_CACHE(ext4_io_end, SLAB_RECLAIM_ACCOUNT);
 39	if (io_end_cachep == NULL)
 40		return -ENOMEM;
 41
 42	io_end_vec_cachep = KMEM_CACHE(ext4_io_end_vec, 0);
 43	if (io_end_vec_cachep == NULL) {
 44		kmem_cache_destroy(io_end_cachep);
 45		return -ENOMEM;
 46	}
 47	return 0;
 48}
 49
 50void ext4_exit_pageio(void)
 51{
 52	kmem_cache_destroy(io_end_cachep);
 53	kmem_cache_destroy(io_end_vec_cachep);
 54}
 55
 56struct ext4_io_end_vec *ext4_alloc_io_end_vec(ext4_io_end_t *io_end)
 57{
 58	struct ext4_io_end_vec *io_end_vec;
 59
 60	io_end_vec = kmem_cache_zalloc(io_end_vec_cachep, GFP_NOFS);
 61	if (!io_end_vec)
 62		return ERR_PTR(-ENOMEM);
 63	INIT_LIST_HEAD(&io_end_vec->list);
 64	list_add_tail(&io_end_vec->list, &io_end->list_vec);
 65	return io_end_vec;
 66}
 67
 68static void ext4_free_io_end_vec(ext4_io_end_t *io_end)
 69{
 70	struct ext4_io_end_vec *io_end_vec, *tmp;
 71
 72	if (list_empty(&io_end->list_vec))
 73		return;
 74	list_for_each_entry_safe(io_end_vec, tmp, &io_end->list_vec, list) {
 75		list_del(&io_end_vec->list);
 76		kmem_cache_free(io_end_vec_cachep, io_end_vec);
 77	}
 78}
 79
 80struct ext4_io_end_vec *ext4_last_io_end_vec(ext4_io_end_t *io_end)
 81{
 82	BUG_ON(list_empty(&io_end->list_vec));
 83	return list_last_entry(&io_end->list_vec, struct ext4_io_end_vec, list);
 84}
 85
 86/*
 87 * Print an buffer I/O error compatible with the fs/buffer.c.  This
 88 * provides compatibility with dmesg scrapers that look for a specific
 89 * buffer I/O error message.  We really need a unified error reporting
 90 * structure to userspace ala Digital Unix's uerf system, but it's
 91 * probably not going to happen in my lifetime, due to LKML politics...
 92 */
 93static void buffer_io_error(struct buffer_head *bh)
 94{
 95	printk_ratelimited(KERN_ERR "Buffer I/O error on device %pg, logical block %llu\n",
 96		       bh->b_bdev,
 97			(unsigned long long)bh->b_blocknr);
 98}
 99
100static void ext4_finish_bio(struct bio *bio)
101{
102	struct bio_vec *bvec;
103	struct bvec_iter_all iter_all;
104
105	bio_for_each_segment_all(bvec, bio, iter_all) {
106		struct page *page = bvec->bv_page;
107		struct page *bounce_page = NULL;
108		struct buffer_head *bh, *head;
109		unsigned bio_start = bvec->bv_offset;
110		unsigned bio_end = bio_start + bvec->bv_len;
111		unsigned under_io = 0;
112		unsigned long flags;
113
114		if (!page)
115			continue;
116
117		if (fscrypt_is_bounce_page(page)) {
118			bounce_page = page;
119			page = fscrypt_pagecache_page(bounce_page);
120		}
121
122		if (bio->bi_status) {
123			SetPageError(page);
124			mapping_set_error(page->mapping, -EIO);
125		}
126		bh = head = page_buffers(page);
127		/*
128		 * We check all buffers in the page under b_uptodate_lock
129		 * to avoid races with other end io clearing async_write flags
130		 */
131		spin_lock_irqsave(&head->b_uptodate_lock, flags);
132		do {
133			if (bh_offset(bh) < bio_start ||
134			    bh_offset(bh) + bh->b_size > bio_end) {
135				if (buffer_async_write(bh))
136					under_io++;
137				continue;
138			}
139			clear_buffer_async_write(bh);
140			if (bio->bi_status)
141				buffer_io_error(bh);
142		} while ((bh = bh->b_this_page) != head);
143		spin_unlock_irqrestore(&head->b_uptodate_lock, flags);
144		if (!under_io) {
145			fscrypt_free_bounce_page(bounce_page);
146			end_page_writeback(page);
147		}
148	}
149}
150
151static void ext4_release_io_end(ext4_io_end_t *io_end)
152{
153	struct bio *bio, *next_bio;
154
155	BUG_ON(!list_empty(&io_end->list));
156	BUG_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
157	WARN_ON(io_end->handle);
158
159	for (bio = io_end->bio; bio; bio = next_bio) {
160		next_bio = bio->bi_private;
161		ext4_finish_bio(bio);
162		bio_put(bio);
163	}
164	ext4_free_io_end_vec(io_end);
165	kmem_cache_free(io_end_cachep, io_end);
166}
167
168/*
169 * Check a range of space and convert unwritten extents to written. Note that
170 * we are protected from truncate touching same part of extent tree by the
171 * fact that truncate code waits for all DIO to finish (thus exclusion from
172 * direct IO is achieved) and also waits for PageWriteback bits. Thus we
173 * cannot get to ext4_ext_truncate() before all IOs overlapping that range are
174 * completed (happens from ext4_free_ioend()).
175 */
176static int ext4_end_io_end(ext4_io_end_t *io_end)
177{
178	struct inode *inode = io_end->inode;
179	handle_t *handle = io_end->handle;
 
180	int ret = 0;
181
182	ext4_debug("ext4_end_io_nolock: io_end 0x%p from inode %lu,list->next 0x%p,"
183		   "list->prev 0x%p\n",
184		   io_end, inode->i_ino, io_end->list.next, io_end->list.prev);
185
186	io_end->handle = NULL;	/* Following call will use up the handle */
187	ret = ext4_convert_unwritten_io_end_vec(handle, io_end);
188	if (ret < 0 && !ext4_forced_shutdown(EXT4_SB(inode->i_sb))) {
189		ext4_msg(inode->i_sb, KERN_EMERG,
190			 "failed to convert unwritten extents to written "
191			 "extents -- potential data loss!  "
192			 "(inode %lu, error %d)", inode->i_ino, ret);
 
193	}
194	ext4_clear_io_unwritten_flag(io_end);
195	ext4_release_io_end(io_end);
 
 
 
 
 
 
 
196	return ret;
197}
198
199static void dump_completed_IO(struct inode *inode, struct list_head *head)
 
 
 
200{
201#ifdef	EXT4FS_DEBUG
202	struct list_head *cur, *before, *after;
203	ext4_io_end_t *io_end, *io_end0, *io_end1;
 
 
 
 
 
 
 
 
 
204
205	if (list_empty(head))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
206		return;
207
208	ext4_debug("Dump inode %lu completed io list\n", inode->i_ino);
209	list_for_each_entry(io_end, head, list) {
210		cur = &io_end->list;
211		before = cur->prev;
212		io_end0 = container_of(before, ext4_io_end_t, list);
213		after = cur->next;
214		io_end1 = container_of(after, ext4_io_end_t, list);
215
216		ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
217			    io_end, inode->i_ino, io_end0, io_end1);
218	}
219#endif
220}
221
222/* Add the io_end to per-inode completed end_io list. */
223static void ext4_add_complete_io(ext4_io_end_t *io_end)
224{
225	struct ext4_inode_info *ei = EXT4_I(io_end->inode);
226	struct ext4_sb_info *sbi = EXT4_SB(io_end->inode->i_sb);
227	struct workqueue_struct *wq;
228	unsigned long flags;
229
230	/* Only reserved conversions from writeback should enter here */
231	WARN_ON(!(io_end->flag & EXT4_IO_END_UNWRITTEN));
232	WARN_ON(!io_end->handle && sbi->s_journal);
233	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
234	wq = sbi->rsv_conversion_wq;
235	if (list_empty(&ei->i_rsv_conversion_list))
236		queue_work(wq, &ei->i_rsv_conversion_work);
237	list_add_tail(&io_end->list, &ei->i_rsv_conversion_list);
238	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
 
 
 
 
239}
240
241static int ext4_do_flush_completed_IO(struct inode *inode,
242				      struct list_head *head)
243{
244	ext4_io_end_t *io_end;
245	struct list_head unwritten;
246	unsigned long flags;
247	struct ext4_inode_info *ei = EXT4_I(inode);
248	int err, ret = 0;
249
250	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
251	dump_completed_IO(inode, head);
252	list_replace_init(head, &unwritten);
253	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
254
255	while (!list_empty(&unwritten)) {
256		io_end = list_entry(unwritten.next, ext4_io_end_t, list);
257		BUG_ON(!(io_end->flag & EXT4_IO_END_UNWRITTEN));
258		list_del_init(&io_end->list);
259
260		err = ext4_end_io_end(io_end);
261		if (unlikely(!ret && err))
262			ret = err;
263	}
264	return ret;
265}
266
267/*
268 * work on completed IO, to convert unwritten extents to extents
 
 
 
 
269 */
270void ext4_end_io_rsv_work(struct work_struct *work)
271{
272	struct ext4_inode_info *ei = container_of(work, struct ext4_inode_info,
273						  i_rsv_conversion_work);
274	ext4_do_flush_completed_IO(&ei->vfs_inode, &ei->i_rsv_conversion_list);
 
275}
276
277ext4_io_end_t *ext4_init_io_end(struct inode *inode, gfp_t flags)
278{
279	ext4_io_end_t *io_end = kmem_cache_zalloc(io_end_cachep, flags);
 
 
 
 
 
280
281	if (io_end) {
282		io_end->inode = inode;
283		INIT_LIST_HEAD(&io_end->list);
284		INIT_LIST_HEAD(&io_end->list_vec);
285		atomic_set(&io_end->count, 1);
286	}
287	return io_end;
288}
289
290void ext4_put_io_end_defer(ext4_io_end_t *io_end)
291{
292	if (atomic_dec_and_test(&io_end->count)) {
293		if (!(io_end->flag & EXT4_IO_END_UNWRITTEN) ||
294				list_empty(&io_end->list_vec)) {
295			ext4_release_io_end(io_end);
296			return;
297		}
298		ext4_add_complete_io(io_end);
299	}
300}
301
302int ext4_put_io_end(ext4_io_end_t *io_end)
303{
304	int err = 0;
 
 
305
306	if (atomic_dec_and_test(&io_end->count)) {
307		if (io_end->flag & EXT4_IO_END_UNWRITTEN) {
308			err = ext4_convert_unwritten_io_end_vec(io_end->handle,
309								io_end);
310			io_end->handle = NULL;
311			ext4_clear_io_unwritten_flag(io_end);
312		}
313		ext4_release_io_end(io_end);
314	}
315	return err;
316}
317
318ext4_io_end_t *ext4_get_io_end(ext4_io_end_t *io_end)
319{
320	atomic_inc(&io_end->count);
321	return io_end;
322}
 
323
324/* BIO completion function for page writeback */
325static void ext4_end_bio(struct bio *bio)
326{
327	ext4_io_end_t *io_end = bio->bi_private;
328	sector_t bi_sector = bio->bi_iter.bi_sector;
329	char b[BDEVNAME_SIZE];
330
331	if (WARN_ONCE(!io_end, "io_end is NULL: %s: sector %Lu len %u err %d\n",
332		      bio_devname(bio, b),
333		      (long long) bio->bi_iter.bi_sector,
334		      (unsigned) bio_sectors(bio),
335		      bio->bi_status)) {
336		ext4_finish_bio(bio);
337		bio_put(bio);
338		return;
339	}
340	bio->bi_end_io = NULL;
 
341
342	if (bio->bi_status) {
343		struct inode *inode = io_end->inode;
344
345		ext4_warning(inode->i_sb, "I/O error %d writing to inode %lu "
346			     "starting block %llu)",
347			     bio->bi_status, inode->i_ino,
 
348			     (unsigned long long)
349			     bi_sector >> (inode->i_blkbits - 9));
350		mapping_set_error(inode->i_mapping,
351				blk_status_to_errno(bio->bi_status));
352	}
353
354	if (io_end->flag & EXT4_IO_END_UNWRITTEN) {
355		/*
356		 * Link bio into list hanging from io_end. We have to do it
357		 * atomically as bio completions can be racing against each
358		 * other.
359		 */
360		bio->bi_private = xchg(&io_end->bio, bio);
361		ext4_put_io_end_defer(io_end);
362	} else {
363		/*
364		 * Drop io_end reference early. Inode can get freed once
365		 * we finish the bio.
366		 */
367		ext4_put_io_end_defer(io_end);
368		ext4_finish_bio(bio);
369		bio_put(bio);
370	}
 
 
 
 
 
 
 
 
 
371}
372
373void ext4_io_submit(struct ext4_io_submit *io)
374{
375	struct bio *bio = io->io_bio;
376
377	if (bio) {
378		int io_op_flags = io->io_wbc->sync_mode == WB_SYNC_ALL ?
379				  REQ_SYNC : 0;
380		io->io_bio->bi_write_hint = io->io_end->inode->i_write_hint;
381		bio_set_op_attrs(io->io_bio, REQ_OP_WRITE, io_op_flags);
382		submit_bio(io->io_bio);
383	}
384	io->io_bio = NULL;
385}
386
387void ext4_io_submit_init(struct ext4_io_submit *io,
388			 struct writeback_control *wbc)
389{
390	io->io_wbc = wbc;
391	io->io_bio = NULL;
392	io->io_end = NULL;
393}
394
395static void io_submit_init_bio(struct ext4_io_submit *io,
396			       struct buffer_head *bh)
 
 
397{
 
 
 
398	struct bio *bio;
399
400	/*
401	 * bio_alloc will _always_ be able to allocate a bio if
402	 * __GFP_DIRECT_RECLAIM is set, see comments for bio_alloc_bioset().
403	 */
404	bio = bio_alloc(GFP_NOIO, BIO_MAX_PAGES);
405	fscrypt_set_bio_crypt_ctx_bh(bio, bh, GFP_NOIO);
406	bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
407	bio_set_dev(bio, bh->b_bdev);
408	bio->bi_end_io = ext4_end_bio;
409	bio->bi_private = ext4_get_io_end(io->io_end);
 
 
410	io->io_bio = bio;
 
411	io->io_next_block = bh->b_blocknr;
412	wbc_init_bio(io->io_wbc, bio);
413}
414
415static void io_submit_add_bh(struct ext4_io_submit *io,
416			     struct inode *inode,
417			     struct page *page,
418			     struct buffer_head *bh)
 
419{
 
420	int ret;
421
422	if (io->io_bio && (bh->b_blocknr != io->io_next_block ||
423			   !fscrypt_mergeable_bio_bh(io->io_bio, bh))) {
 
 
 
 
 
 
 
 
 
 
 
 
424submit_and_retry:
425		ext4_io_submit(io);
426	}
427	if (io->io_bio == NULL) {
428		io_submit_init_bio(io, bh);
429		io->io_bio->bi_write_hint = inode->i_write_hint;
430	}
431	ret = bio_add_page(io->io_bio, page, bh->b_size, bh_offset(bh));
 
 
 
 
 
 
 
 
 
432	if (ret != bh->b_size)
433		goto submit_and_retry;
434	wbc_account_cgroup_owner(io->io_wbc, page, bh->b_size);
435	io->io_next_block++;
 
 
 
 
436}
437
438int ext4_bio_write_page(struct ext4_io_submit *io,
439			struct page *page,
440			int len,
441			struct writeback_control *wbc,
442			bool keep_towrite)
443{
444	struct page *bounce_page = NULL;
445	struct inode *inode = page->mapping->host;
446	unsigned block_start;
 
447	struct buffer_head *bh, *head;
448	int ret = 0;
449	int nr_submitted = 0;
450	int nr_to_submit = 0;
451
452	BUG_ON(!PageLocked(page));
453	BUG_ON(PageWriteback(page));
454
455	if (keep_towrite)
456		set_page_writeback_keepwrite(page);
457	else
458		set_page_writeback(page);
 
 
 
 
 
 
459	ClearPageError(page);
460
461	/*
462	 * Comments copied from block_write_full_page:
463	 *
464	 * The page straddles i_size.  It must be zeroed out on each and every
465	 * writepage invocation because it may be mmapped.  "A file is mapped
466	 * in multiples of the page size.  For a file that is not a multiple of
467	 * the page size, the remaining memory is zeroed when mapped, and
468	 * writes to that region are not written out to the file."
469	 */
470	if (len < PAGE_SIZE)
471		zero_user_segment(page, len, PAGE_SIZE);
472	/*
473	 * In the first loop we prepare and mark buffers to submit. We have to
474	 * mark all buffers in the page before submitting so that
475	 * end_page_writeback() cannot be called from ext4_bio_end_io() when IO
476	 * on the first buffer finishes and we are still working on submitting
477	 * the second buffer.
478	 */
479	bh = head = page_buffers(page);
480	do {
481		block_start = bh_offset(bh);
482		if (block_start >= len) {
 
 
 
 
 
 
 
 
 
 
 
 
483			clear_buffer_dirty(bh);
484			set_buffer_uptodate(bh);
485			continue;
486		}
487		if (!buffer_dirty(bh) || buffer_delay(bh) ||
488		    !buffer_mapped(bh) || buffer_unwritten(bh)) {
489			/* A hole? We can safely clear the dirty bit */
490			if (!buffer_mapped(bh))
491				clear_buffer_dirty(bh);
492			if (io->io_bio)
493				ext4_io_submit(io);
494			continue;
 
 
495		}
496		if (buffer_new(bh))
497			clear_buffer_new(bh);
498		set_buffer_async_write(bh);
499		nr_to_submit++;
500	} while ((bh = bh->b_this_page) != head);
501
502	bh = head = page_buffers(page);
503
504	/*
505	 * If any blocks are being written to an encrypted file, encrypt them
506	 * into a bounce page.  For simplicity, just encrypt until the last
507	 * block which might be needed.  This may cause some unneeded blocks
508	 * (e.g. holes) to be unnecessarily encrypted, but this is rare and
509	 * can't happen in the common case of blocksize == PAGE_SIZE.
 
510	 */
511	if (fscrypt_inode_uses_fs_layer_crypto(inode) && nr_to_submit) {
512		gfp_t gfp_flags = GFP_NOFS;
513		unsigned int enc_bytes = round_up(len, i_blocksize(inode));
514
515		/*
516		 * Since bounce page allocation uses a mempool, we can only use
517		 * a waiting mask (i.e. request guaranteed allocation) on the
518		 * first page of the bio.  Otherwise it can deadlock.
519		 */
520		if (io->io_bio)
521			gfp_flags = GFP_NOWAIT | __GFP_NOWARN;
522	retry_encrypt:
523		bounce_page = fscrypt_encrypt_pagecache_blocks(page, enc_bytes,
524							       0, gfp_flags);
525		if (IS_ERR(bounce_page)) {
526			ret = PTR_ERR(bounce_page);
527			if (ret == -ENOMEM &&
528			    (io->io_bio || wbc->sync_mode == WB_SYNC_ALL)) {
529				gfp_flags = GFP_NOFS;
530				if (io->io_bio)
531					ext4_io_submit(io);
532				else
533					gfp_flags |= __GFP_NOFAIL;
534				congestion_wait(BLK_RW_ASYNC, HZ/50);
535				goto retry_encrypt;
536			}
537
538			printk_ratelimited(KERN_ERR "%s: ret = %d\n", __func__, ret);
539			redirty_page_for_writepage(wbc, page);
540			do {
541				clear_buffer_async_write(bh);
542				bh = bh->b_this_page;
543			} while (bh != head);
544			goto unlock;
545		}
546	}
547
548	/* Now submit buffers to write */
549	do {
550		if (!buffer_async_write(bh))
551			continue;
552		io_submit_add_bh(io, inode,
553				 bounce_page ? bounce_page : page, bh);
554		nr_submitted++;
555		clear_buffer_dirty(bh);
556	} while ((bh = bh->b_this_page) != head);
557
558unlock:
559	unlock_page(page);
560	/* Nothing submitted - we have to end page writeback */
561	if (!nr_submitted)
562		end_page_writeback(page);
563	return ret;
564}