Linux Audio

Check our new training course

Loading...
v3.5.6
  1/*
  2 * linux/fs/ext4/page-io.c
  3 *
  4 * This contains the new page_io functions for ext4
  5 *
  6 * Written by Theodore Ts'o, 2010.
  7 */
  8
  9#include <linux/fs.h>
 10#include <linux/time.h>
 11#include <linux/jbd2.h>
 12#include <linux/highuid.h>
 13#include <linux/pagemap.h>
 14#include <linux/quotaops.h>
 15#include <linux/string.h>
 16#include <linux/buffer_head.h>
 17#include <linux/writeback.h>
 18#include <linux/pagevec.h>
 19#include <linux/mpage.h>
 20#include <linux/namei.h>
 
 21#include <linux/uio.h>
 22#include <linux/bio.h>
 23#include <linux/workqueue.h>
 24#include <linux/kernel.h>
 25#include <linux/slab.h>
 
 
 26
 27#include "ext4_jbd2.h"
 28#include "xattr.h"
 29#include "acl.h"
 30#include "ext4_extents.h"
 31
 32static struct kmem_cache *io_page_cachep, *io_end_cachep;
 33
 34int __init ext4_init_pageio(void)
 35{
 36	io_page_cachep = KMEM_CACHE(ext4_io_page, SLAB_RECLAIM_ACCOUNT);
 37	if (io_page_cachep == NULL)
 38		return -ENOMEM;
 39	io_end_cachep = KMEM_CACHE(ext4_io_end, SLAB_RECLAIM_ACCOUNT);
 40	if (io_end_cachep == NULL) {
 41		kmem_cache_destroy(io_page_cachep);
 42		return -ENOMEM;
 43	}
 44	return 0;
 45}
 46
 47void ext4_exit_pageio(void)
 48{
 49	kmem_cache_destroy(io_end_cachep);
 50	kmem_cache_destroy(io_page_cachep);
 51}
 52
 53void ext4_ioend_wait(struct inode *inode)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 54{
 55	wait_queue_head_t *wq = ext4_ioend_wq(inode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 56
 57	wait_event(*wq, (atomic_read(&EXT4_I(inode)->i_ioend_count) == 0));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 58}
 59
 60static void put_io_page(struct ext4_io_page *io_page)
 61{
 62	if (atomic_dec_and_test(&io_page->p_count)) {
 63		end_page_writeback(io_page->p_page);
 64		put_page(io_page->p_page);
 65		kmem_cache_free(io_page_cachep, io_page);
 
 
 
 
 
 
 
 
 
 66	}
 
 67}
 68
 69void ext4_free_io_end(ext4_io_end_t *io)
 70{
 71	int i;
 72
 73	BUG_ON(!io);
 74	if (io->page)
 75		put_page(io->page);
 76	for (i = 0; i < io->num_io_pages; i++)
 77		put_io_page(io->pages[i]);
 78	io->num_io_pages = 0;
 79	if (atomic_dec_and_test(&EXT4_I(io->inode)->i_ioend_count))
 80		wake_up_all(ext4_ioend_wq(io->inode));
 81	kmem_cache_free(io_end_cachep, io);
 82}
 83
 84/*
 85 * check a range of space and convert unwritten extents to written.
 86 *
 87 * Called with inode->i_mutex; we depend on this when we manipulate
 88 * io->flag, since we could otherwise race with ext4_flush_completed_IO()
 
 
 89 */
 90int ext4_end_io_nolock(ext4_io_end_t *io)
 91{
 92	struct inode *inode = io->inode;
 93	loff_t offset = io->offset;
 94	ssize_t size = io->size;
 
 95	int ret = 0;
 96
 97	ext4_debug("ext4_end_io_nolock: io 0x%p from inode %lu,list->next 0x%p,"
 98		   "list->prev 0x%p\n",
 99		   io, inode->i_ino, io->list.next, io->list.prev);
100
101	ret = ext4_convert_unwritten_extents(inode, offset, size);
 
102	if (ret < 0) {
103		ext4_msg(inode->i_sb, KERN_EMERG,
104			 "failed to convert unwritten extents to written "
105			 "extents -- potential data loss!  "
106			 "(inode %lu, offset %llu, size %zd, error %d)",
107			 inode->i_ino, offset, size, ret);
108	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
109
110	if (io->iocb)
111		aio_complete(io->iocb, io->result, 0);
 
 
 
 
 
112
113	if (io->flag & EXT4_IO_END_DIRECT)
114		inode_dio_done(inode);
115	/* Wake up anyone waiting on unwritten extent conversion */
116	if (atomic_dec_and_test(&EXT4_I(inode)->i_aiodio_unwritten))
117		wake_up_all(ext4_ioend_wq(io->inode));
118	return ret;
 
 
 
119}
120
121/*
122 * work on completed aio dio IO, to convert unwritten extents to extents
123 */
124static void ext4_end_io_work(struct work_struct *work)
125{
126	ext4_io_end_t		*io = container_of(work, ext4_io_end_t, work);
127	struct inode		*inode = io->inode;
128	struct ext4_inode_info	*ei = EXT4_I(inode);
129	unsigned long		flags;
 
130
131	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
132	if (io->flag & EXT4_IO_END_IN_FSYNC)
133		goto requeue;
134	if (list_empty(&io->list)) {
135		spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
136		goto free;
137	}
138
139	if (!mutex_trylock(&inode->i_mutex)) {
140		bool was_queued;
141requeue:
142		was_queued = !!(io->flag & EXT4_IO_END_QUEUED);
143		io->flag |= EXT4_IO_END_QUEUED;
144		spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
145		/*
146		 * Requeue the work instead of waiting so that the work
147		 * items queued after this can be processed.
148		 */
149		queue_work(EXT4_SB(inode->i_sb)->dio_unwritten_wq, &io->work);
150		/*
151		 * To prevent the ext4-dio-unwritten thread from keeping
152		 * requeueing end_io requests and occupying cpu for too long,
153		 * yield the cpu if it sees an end_io request that has already
154		 * been requeued.
155		 */
156		if (was_queued)
157			yield();
158		return;
159	}
160	list_del_init(&io->list);
161	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
162	(void) ext4_end_io_nolock(io);
163	mutex_unlock(&inode->i_mutex);
164free:
165	ext4_free_io_end(io);
 
 
 
 
 
166}
167
168ext4_io_end_t *ext4_init_io_end(struct inode *inode, gfp_t flags)
169{
170	ext4_io_end_t *io = kmem_cache_zalloc(io_end_cachep, flags);
171	if (io) {
172		atomic_inc(&EXT4_I(inode)->i_ioend_count);
173		io->inode = inode;
174		INIT_WORK(&io->work, ext4_end_io_work);
175		INIT_LIST_HEAD(&io->list);
 
176	}
177	return io;
178}
179
180/*
181 * Print an buffer I/O error compatible with the fs/buffer.c.  This
182 * provides compatibility with dmesg scrapers that look for a specific
183 * buffer I/O error message.  We really need a unified error reporting
184 * structure to userspace ala Digital Unix's uerf system, but it's
185 * probably not going to happen in my lifetime, due to LKML politics...
186 */
187static void buffer_io_error(struct buffer_head *bh)
188{
189	char b[BDEVNAME_SIZE];
190	printk(KERN_ERR "Buffer I/O error on device %s, logical block %llu\n",
191			bdevname(bh->b_bdev, b),
192			(unsigned long long)bh->b_blocknr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
193}
194
 
 
 
 
 
 
 
195static void ext4_end_bio(struct bio *bio, int error)
196{
197	ext4_io_end_t *io_end = bio->bi_private;
198	struct workqueue_struct *wq;
199	struct inode *inode;
200	unsigned long flags;
201	int i;
202	sector_t bi_sector = bio->bi_sector;
203
204	BUG_ON(!io_end);
205	bio->bi_private = NULL;
206	bio->bi_end_io = NULL;
207	if (test_bit(BIO_UPTODATE, &bio->bi_flags))
208		error = 0;
209	bio_put(bio);
210
211	for (i = 0; i < io_end->num_io_pages; i++) {
212		struct page *page = io_end->pages[i]->p_page;
213		struct buffer_head *bh, *head;
214		loff_t offset;
215		loff_t io_end_offset;
216
217		if (error) {
218			SetPageError(page);
219			set_bit(AS_EIO, &page->mapping->flags);
220			head = page_buffers(page);
221			BUG_ON(!head);
222
223			io_end_offset = io_end->offset + io_end->size;
224
225			offset = (sector_t) page->index << PAGE_CACHE_SHIFT;
226			bh = head;
227			do {
228				if ((offset >= io_end->offset) &&
229				    (offset+bh->b_size <= io_end_offset))
230					buffer_io_error(bh);
231
232				offset += bh->b_size;
233				bh = bh->b_this_page;
234			} while (bh != head);
235		}
236
237		put_io_page(io_end->pages[i]);
238	}
239	io_end->num_io_pages = 0;
240	inode = io_end->inode;
241
242	if (error) {
243		io_end->flag |= EXT4_IO_END_ERROR;
244		ext4_warning(inode->i_sb, "I/O error writing to inode %lu "
 
245			     "(offset %llu size %ld starting block %llu)",
246			     inode->i_ino,
247			     (unsigned long long) io_end->offset,
248			     (long) io_end->size,
249			     (unsigned long long)
250			     bi_sector >> (inode->i_blkbits - 9));
 
251	}
252
253	if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
254		ext4_free_io_end(io_end);
255		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
256	}
257
258	/* Add the io_end to per-inode completed io list*/
259	spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
260	list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
261	spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
262
263	wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
264	/* queue the work to convert unwritten extents to written */
265	queue_work(wq, &io_end->work);
266}
267
268void ext4_io_submit(struct ext4_io_submit *io)
269{
270	struct bio *bio = io->io_bio;
271
272	if (bio) {
273		bio_get(io->io_bio);
274		submit_bio(io->io_op, io->io_bio);
275		BUG_ON(bio_flagged(io->io_bio, BIO_EOPNOTSUPP));
276		bio_put(io->io_bio);
277	}
278	io->io_bio = NULL;
279	io->io_op = 0;
 
 
 
 
 
 
280	io->io_end = NULL;
281}
282
283static int io_submit_init(struct ext4_io_submit *io,
284			  struct inode *inode,
285			  struct writeback_control *wbc,
286			  struct buffer_head *bh)
287{
288	ext4_io_end_t *io_end;
289	struct page *page = bh->b_page;
290	int nvecs = bio_get_nr_vecs(bh->b_bdev);
291	struct bio *bio;
292
293	io_end = ext4_init_io_end(inode, GFP_NOFS);
294	if (!io_end)
295		return -ENOMEM;
296	bio = bio_alloc(GFP_NOIO, min(nvecs, BIO_MAX_PAGES));
297	bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
 
 
298	bio->bi_bdev = bh->b_bdev;
299	bio->bi_private = io->io_end = io_end;
300	bio->bi_end_io = ext4_end_bio;
301
302	io_end->offset = (page->index << PAGE_CACHE_SHIFT) + bh_offset(bh);
303
304	io->io_bio = bio;
305	io->io_op = (wbc->sync_mode == WB_SYNC_ALL ?  WRITE_SYNC : WRITE);
306	io->io_next_block = bh->b_blocknr;
307	return 0;
308}
309
310static int io_submit_add_bh(struct ext4_io_submit *io,
311			    struct ext4_io_page *io_page,
312			    struct inode *inode,
313			    struct writeback_control *wbc,
314			    struct buffer_head *bh)
315{
316	ext4_io_end_t *io_end;
317	int ret;
318
319	if (buffer_new(bh)) {
320		clear_buffer_new(bh);
321		unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
322	}
323
324	if (!buffer_mapped(bh) || buffer_delay(bh)) {
325		if (!buffer_mapped(bh))
326			clear_buffer_dirty(bh);
327		if (io->io_bio)
328			ext4_io_submit(io);
329		return 0;
330	}
331
332	if (io->io_bio && bh->b_blocknr != io->io_next_block) {
333submit_and_retry:
334		ext4_io_submit(io);
335	}
336	if (io->io_bio == NULL) {
337		ret = io_submit_init(io, inode, wbc, bh);
338		if (ret)
339			return ret;
340	}
341	io_end = io->io_end;
342	if ((io_end->num_io_pages >= MAX_IO_PAGES) &&
343	    (io_end->pages[io_end->num_io_pages-1] != io_page))
344		goto submit_and_retry;
345	if (buffer_uninit(bh))
346		ext4_set_io_unwritten_flag(inode, io_end);
347	io->io_end->size += bh->b_size;
348	io->io_next_block++;
349	ret = bio_add_page(io->io_bio, bh->b_page, bh->b_size, bh_offset(bh));
350	if (ret != bh->b_size)
351		goto submit_and_retry;
352	if ((io_end->num_io_pages == 0) ||
353	    (io_end->pages[io_end->num_io_pages-1] != io_page)) {
354		io_end->pages[io_end->num_io_pages++] = io_page;
355		atomic_inc(&io_page->p_count);
356	}
357	return 0;
358}
359
360int ext4_bio_write_page(struct ext4_io_submit *io,
361			struct page *page,
362			int len,
363			struct writeback_control *wbc)
364{
365	struct inode *inode = page->mapping->host;
366	unsigned block_start, block_end, blocksize;
367	struct ext4_io_page *io_page;
368	struct buffer_head *bh, *head;
369	int ret = 0;
 
370
371	blocksize = 1 << inode->i_blkbits;
372
373	BUG_ON(!PageLocked(page));
374	BUG_ON(PageWriteback(page));
375
376	io_page = kmem_cache_alloc(io_page_cachep, GFP_NOFS);
377	if (!io_page) {
378		set_page_dirty(page);
379		unlock_page(page);
380		return -ENOMEM;
381	}
382	io_page->p_page = page;
383	atomic_set(&io_page->p_count, 1);
384	get_page(page);
385	set_page_writeback(page);
386	ClearPageError(page);
387
388	for (bh = head = page_buffers(page), block_start = 0;
389	     bh != head || !block_start;
390	     block_start = block_end, bh = bh->b_this_page) {
391
392		block_end = block_start + blocksize;
 
 
 
 
 
393		if (block_start >= len) {
394			/*
395			 * Comments copied from block_write_full_page_endio:
396			 *
397			 * The page straddles i_size.  It must be zeroed out on
398			 * each and every writepage invocation because it may
399			 * be mmapped.  "A file is mapped in multiples of the
400			 * page size.  For a file that is not a multiple of
401			 * the  page size, the remaining memory is zeroed when
402			 * mapped, and writes to that region are not written
403			 * out to the file."
404			 */
405			zero_user_segment(page, block_start, block_end);
 
406			clear_buffer_dirty(bh);
407			set_buffer_uptodate(bh);
408			continue;
409		}
410		clear_buffer_dirty(bh);
411		ret = io_submit_add_bh(io, io_page, inode, wbc, bh);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
412		if (ret) {
413			/*
414			 * We only get here on ENOMEM.  Not much else
415			 * we can do but mark the page as dirty, and
416			 * better luck next time.
417			 */
418			set_page_dirty(page);
419			break;
420		}
 
 
 
 
 
 
 
 
 
 
421	}
422	unlock_page(page);
423	/*
424	 * If the page was truncated before we could do the writeback,
425	 * or we had a memory allocation error while trying to write
426	 * the first buffer head, we won't have submitted any pages for
427	 * I/O.  In that case we need to make sure we've cleared the
428	 * PageWriteback bit from the page to prevent the system from
429	 * wedging later on.
430	 */
431	put_io_page(io_page);
432	return ret;
433}
v3.15
  1/*
  2 * linux/fs/ext4/page-io.c
  3 *
  4 * This contains the new page_io functions for ext4
  5 *
  6 * Written by Theodore Ts'o, 2010.
  7 */
  8
  9#include <linux/fs.h>
 10#include <linux/time.h>
 11#include <linux/jbd2.h>
 12#include <linux/highuid.h>
 13#include <linux/pagemap.h>
 14#include <linux/quotaops.h>
 15#include <linux/string.h>
 16#include <linux/buffer_head.h>
 17#include <linux/writeback.h>
 18#include <linux/pagevec.h>
 19#include <linux/mpage.h>
 20#include <linux/namei.h>
 21#include <linux/aio.h>
 22#include <linux/uio.h>
 23#include <linux/bio.h>
 24#include <linux/workqueue.h>
 25#include <linux/kernel.h>
 26#include <linux/slab.h>
 27#include <linux/mm.h>
 28#include <linux/ratelimit.h>
 29
 30#include "ext4_jbd2.h"
 31#include "xattr.h"
 32#include "acl.h"
 
 33
 34static struct kmem_cache *io_end_cachep;
 35
 36int __init ext4_init_pageio(void)
 37{
 
 
 
 38	io_end_cachep = KMEM_CACHE(ext4_io_end, SLAB_RECLAIM_ACCOUNT);
 39	if (io_end_cachep == NULL)
 
 40		return -ENOMEM;
 
 41	return 0;
 42}
 43
 44void ext4_exit_pageio(void)
 45{
 46	kmem_cache_destroy(io_end_cachep);
 
 47}
 48
 49/*
 50 * Print an buffer I/O error compatible with the fs/buffer.c.  This
 51 * provides compatibility with dmesg scrapers that look for a specific
 52 * buffer I/O error message.  We really need a unified error reporting
 53 * structure to userspace ala Digital Unix's uerf system, but it's
 54 * probably not going to happen in my lifetime, due to LKML politics...
 55 */
 56static void buffer_io_error(struct buffer_head *bh)
 57{
 58	char b[BDEVNAME_SIZE];
 59	printk_ratelimited(KERN_ERR "Buffer I/O error on device %s, logical block %llu\n",
 60			bdevname(bh->b_bdev, b),
 61			(unsigned long long)bh->b_blocknr);
 62}
 63
 64static void ext4_finish_bio(struct bio *bio)
 65{
 66	int i;
 67	int error = !test_bit(BIO_UPTODATE, &bio->bi_flags);
 68	struct bio_vec *bvec;
 69
 70	bio_for_each_segment_all(bvec, bio, i) {
 71		struct page *page = bvec->bv_page;
 72		struct buffer_head *bh, *head;
 73		unsigned bio_start = bvec->bv_offset;
 74		unsigned bio_end = bio_start + bvec->bv_len;
 75		unsigned under_io = 0;
 76		unsigned long flags;
 77
 78		if (!page)
 79			continue;
 80
 81		if (error) {
 82			SetPageError(page);
 83			set_bit(AS_EIO, &page->mapping->flags);
 84		}
 85		bh = head = page_buffers(page);
 86		/*
 87		 * We check all buffers in the page under BH_Uptodate_Lock
 88		 * to avoid races with other end io clearing async_write flags
 89		 */
 90		local_irq_save(flags);
 91		bit_spin_lock(BH_Uptodate_Lock, &head->b_state);
 92		do {
 93			if (bh_offset(bh) < bio_start ||
 94			    bh_offset(bh) + bh->b_size > bio_end) {
 95				if (buffer_async_write(bh))
 96					under_io++;
 97				continue;
 98			}
 99			clear_buffer_async_write(bh);
100			if (error)
101				buffer_io_error(bh);
102		} while ((bh = bh->b_this_page) != head);
103		bit_spin_unlock(BH_Uptodate_Lock, &head->b_state);
104		local_irq_restore(flags);
105		if (!under_io)
106			end_page_writeback(page);
107	}
108}
109
110static void ext4_release_io_end(ext4_io_end_t *io_end)
111{
112	struct bio *bio, *next_bio;
113
114	BUG_ON(!list_empty(&io_end->list));
115	BUG_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
116	WARN_ON(io_end->handle);
117
118	if (atomic_dec_and_test(&EXT4_I(io_end->inode)->i_ioend_count))
119		wake_up_all(ext4_ioend_wq(io_end->inode));
120
121	for (bio = io_end->bio; bio; bio = next_bio) {
122		next_bio = bio->bi_private;
123		ext4_finish_bio(bio);
124		bio_put(bio);
125	}
126	kmem_cache_free(io_end_cachep, io_end);
127}
128
129static void ext4_clear_io_unwritten_flag(ext4_io_end_t *io_end)
130{
131	struct inode *inode = io_end->inode;
132
133	io_end->flag &= ~EXT4_IO_END_UNWRITTEN;
134	/* Wake up anyone waiting on unwritten extent conversion */
135	if (atomic_dec_and_test(&EXT4_I(inode)->i_unwritten))
136		wake_up_all(ext4_ioend_wq(inode));
 
 
 
 
 
137}
138
139/*
140 * Check a range of space and convert unwritten extents to written. Note that
141 * we are protected from truncate touching same part of extent tree by the
142 * fact that truncate code waits for all DIO to finish (thus exclusion from
143 * direct IO is achieved) and also waits for PageWriteback bits. Thus we
144 * cannot get to ext4_ext_truncate() before all IOs overlapping that range are
145 * completed (happens from ext4_free_ioend()).
146 */
147static int ext4_end_io(ext4_io_end_t *io)
148{
149	struct inode *inode = io->inode;
150	loff_t offset = io->offset;
151	ssize_t size = io->size;
152	handle_t *handle = io->handle;
153	int ret = 0;
154
155	ext4_debug("ext4_end_io_nolock: io 0x%p from inode %lu,list->next 0x%p,"
156		   "list->prev 0x%p\n",
157		   io, inode->i_ino, io->list.next, io->list.prev);
158
159	io->handle = NULL;	/* Following call will use up the handle */
160	ret = ext4_convert_unwritten_extents(handle, inode, offset, size);
161	if (ret < 0) {
162		ext4_msg(inode->i_sb, KERN_EMERG,
163			 "failed to convert unwritten extents to written "
164			 "extents -- potential data loss!  "
165			 "(inode %lu, offset %llu, size %zd, error %d)",
166			 inode->i_ino, offset, size, ret);
167	}
168	ext4_clear_io_unwritten_flag(io);
169	ext4_release_io_end(io);
170	return ret;
171}
172
173static void dump_completed_IO(struct inode *inode, struct list_head *head)
174{
175#ifdef	EXT4FS_DEBUG
176	struct list_head *cur, *before, *after;
177	ext4_io_end_t *io, *io0, *io1;
178
179	if (list_empty(head))
180		return;
181
182	ext4_debug("Dump inode %lu completed io list\n", inode->i_ino);
183	list_for_each_entry(io, head, list) {
184		cur = &io->list;
185		before = cur->prev;
186		io0 = container_of(before, ext4_io_end_t, list);
187		after = cur->next;
188		io1 = container_of(after, ext4_io_end_t, list);
189
190		ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
191			    io, inode->i_ino, io0, io1);
192	}
193#endif
194}
195
196/* Add the io_end to per-inode completed end_io list. */
197static void ext4_add_complete_io(ext4_io_end_t *io_end)
198{
199	struct ext4_inode_info *ei = EXT4_I(io_end->inode);
200	struct ext4_sb_info *sbi = EXT4_SB(io_end->inode->i_sb);
201	struct workqueue_struct *wq;
202	unsigned long flags;
203
204	/* Only reserved conversions from writeback should enter here */
205	WARN_ON(!(io_end->flag & EXT4_IO_END_UNWRITTEN));
206	WARN_ON(!io_end->handle && sbi->s_journal);
207	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
208	wq = sbi->rsv_conversion_wq;
209	if (list_empty(&ei->i_rsv_conversion_list))
210		queue_work(wq, &ei->i_rsv_conversion_work);
211	list_add_tail(&io_end->list, &ei->i_rsv_conversion_list);
212	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
213}
214
215static int ext4_do_flush_completed_IO(struct inode *inode,
216				      struct list_head *head)
 
 
217{
218	ext4_io_end_t *io;
219	struct list_head unwritten;
220	unsigned long flags;
221	struct ext4_inode_info *ei = EXT4_I(inode);
222	int err, ret = 0;
223
224	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
225	dump_completed_IO(inode, head);
226	list_replace_init(head, &unwritten);
227	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
 
 
 
228
229	while (!list_empty(&unwritten)) {
230		io = list_entry(unwritten.next, ext4_io_end_t, list);
231		BUG_ON(!(io->flag & EXT4_IO_END_UNWRITTEN));
232		list_del_init(&io->list);
233
234		err = ext4_end_io(io);
235		if (unlikely(!ret && err))
236			ret = err;
 
 
 
 
 
 
 
 
 
 
 
 
237	}
238	return ret;
239}
240
241/*
242 * work on completed IO, to convert unwritten extents to extents
243 */
244void ext4_end_io_rsv_work(struct work_struct *work)
245{
246	struct ext4_inode_info *ei = container_of(work, struct ext4_inode_info,
247						  i_rsv_conversion_work);
248	ext4_do_flush_completed_IO(&ei->vfs_inode, &ei->i_rsv_conversion_list);
249}
250
251ext4_io_end_t *ext4_init_io_end(struct inode *inode, gfp_t flags)
252{
253	ext4_io_end_t *io = kmem_cache_zalloc(io_end_cachep, flags);
254	if (io) {
255		atomic_inc(&EXT4_I(inode)->i_ioend_count);
256		io->inode = inode;
 
257		INIT_LIST_HEAD(&io->list);
258		atomic_set(&io->count, 1);
259	}
260	return io;
261}
262
263void ext4_put_io_end_defer(ext4_io_end_t *io_end)
 
 
 
 
 
 
 
264{
265	if (atomic_dec_and_test(&io_end->count)) {
266		if (!(io_end->flag & EXT4_IO_END_UNWRITTEN) || !io_end->size) {
267			ext4_release_io_end(io_end);
268			return;
269		}
270		ext4_add_complete_io(io_end);
271	}
272}
273
274int ext4_put_io_end(ext4_io_end_t *io_end)
275{
276	int err = 0;
277
278	if (atomic_dec_and_test(&io_end->count)) {
279		if (io_end->flag & EXT4_IO_END_UNWRITTEN) {
280			err = ext4_convert_unwritten_extents(io_end->handle,
281						io_end->inode, io_end->offset,
282						io_end->size);
283			io_end->handle = NULL;
284			ext4_clear_io_unwritten_flag(io_end);
285		}
286		ext4_release_io_end(io_end);
287	}
288	return err;
289}
290
291ext4_io_end_t *ext4_get_io_end(ext4_io_end_t *io_end)
292{
293	atomic_inc(&io_end->count);
294	return io_end;
295}
296
297/* BIO completion function for page writeback */
298static void ext4_end_bio(struct bio *bio, int error)
299{
300	ext4_io_end_t *io_end = bio->bi_private;
301	sector_t bi_sector = bio->bi_iter.bi_sector;
 
 
 
 
302
303	BUG_ON(!io_end);
 
304	bio->bi_end_io = NULL;
305	if (test_bit(BIO_UPTODATE, &bio->bi_flags))
306		error = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
307
308	if (error) {
309		struct inode *inode = io_end->inode;
310
311		ext4_warning(inode->i_sb, "I/O error %d writing to inode %lu "
312			     "(offset %llu size %ld starting block %llu)",
313			     error, inode->i_ino,
314			     (unsigned long long) io_end->offset,
315			     (long) io_end->size,
316			     (unsigned long long)
317			     bi_sector >> (inode->i_blkbits - 9));
318		mapping_set_error(inode->i_mapping, error);
319	}
320
321	if (io_end->flag & EXT4_IO_END_UNWRITTEN) {
322		/*
323		 * Link bio into list hanging from io_end. We have to do it
324		 * atomically as bio completions can be racing against each
325		 * other.
326		 */
327		bio->bi_private = xchg(&io_end->bio, bio);
328		ext4_put_io_end_defer(io_end);
329	} else {
330		/*
331		 * Drop io_end reference early. Inode can get freed once
332		 * we finish the bio.
333		 */
334		ext4_put_io_end_defer(io_end);
335		ext4_finish_bio(bio);
336		bio_put(bio);
337	}
 
 
 
 
 
 
 
 
 
338}
339
340void ext4_io_submit(struct ext4_io_submit *io)
341{
342	struct bio *bio = io->io_bio;
343
344	if (bio) {
345		bio_get(io->io_bio);
346		submit_bio(io->io_op, io->io_bio);
347		BUG_ON(bio_flagged(io->io_bio, BIO_EOPNOTSUPP));
348		bio_put(io->io_bio);
349	}
350	io->io_bio = NULL;
351}
352
353void ext4_io_submit_init(struct ext4_io_submit *io,
354			 struct writeback_control *wbc)
355{
356	io->io_op = (wbc->sync_mode == WB_SYNC_ALL ?  WRITE_SYNC : WRITE);
357	io->io_bio = NULL;
358	io->io_end = NULL;
359}
360
361static int io_submit_init_bio(struct ext4_io_submit *io,
362			      struct buffer_head *bh)
 
 
363{
 
 
364	int nvecs = bio_get_nr_vecs(bh->b_bdev);
365	struct bio *bio;
366
 
 
 
367	bio = bio_alloc(GFP_NOIO, min(nvecs, BIO_MAX_PAGES));
368	if (!bio)
369		return -ENOMEM;
370	bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
371	bio->bi_bdev = bh->b_bdev;
 
372	bio->bi_end_io = ext4_end_bio;
373	bio->bi_private = ext4_get_io_end(io->io_end);
 
 
374	io->io_bio = bio;
 
375	io->io_next_block = bh->b_blocknr;
376	return 0;
377}
378
379static int io_submit_add_bh(struct ext4_io_submit *io,
 
380			    struct inode *inode,
 
381			    struct buffer_head *bh)
382{
 
383	int ret;
384
 
 
 
 
 
 
 
 
 
 
 
 
 
385	if (io->io_bio && bh->b_blocknr != io->io_next_block) {
386submit_and_retry:
387		ext4_io_submit(io);
388	}
389	if (io->io_bio == NULL) {
390		ret = io_submit_init_bio(io, bh);
391		if (ret)
392			return ret;
393	}
 
 
 
 
 
 
 
 
394	ret = bio_add_page(io->io_bio, bh->b_page, bh->b_size, bh_offset(bh));
395	if (ret != bh->b_size)
396		goto submit_and_retry;
397	io->io_next_block++;
 
 
 
 
398	return 0;
399}
400
401int ext4_bio_write_page(struct ext4_io_submit *io,
402			struct page *page,
403			int len,
404			struct writeback_control *wbc)
405{
406	struct inode *inode = page->mapping->host;
407	unsigned block_start, blocksize;
 
408	struct buffer_head *bh, *head;
409	int ret = 0;
410	int nr_submitted = 0;
411
412	blocksize = 1 << inode->i_blkbits;
413
414	BUG_ON(!PageLocked(page));
415	BUG_ON(PageWriteback(page));
416
 
 
 
 
 
 
 
 
 
417	set_page_writeback(page);
418	ClearPageError(page);
419
420	/*
421	 * In the first loop we prepare and mark buffers to submit. We have to
422	 * mark all buffers in the page before submitting so that
423	 * end_page_writeback() cannot be called from ext4_bio_end_io() when IO
424	 * on the first buffer finishes and we are still working on submitting
425	 * the second buffer.
426	 */
427	bh = head = page_buffers(page);
428	do {
429		block_start = bh_offset(bh);
430		if (block_start >= len) {
431			/*
432			 * Comments copied from block_write_full_page_endio:
433			 *
434			 * The page straddles i_size.  It must be zeroed out on
435			 * each and every writepage invocation because it may
436			 * be mmapped.  "A file is mapped in multiples of the
437			 * page size.  For a file that is not a multiple of
438			 * the  page size, the remaining memory is zeroed when
439			 * mapped, and writes to that region are not written
440			 * out to the file."
441			 */
442			zero_user_segment(page, block_start,
443					  block_start + blocksize);
444			clear_buffer_dirty(bh);
445			set_buffer_uptodate(bh);
446			continue;
447		}
448		if (!buffer_dirty(bh) || buffer_delay(bh) ||
449		    !buffer_mapped(bh) || buffer_unwritten(bh)) {
450			/* A hole? We can safely clear the dirty bit */
451			if (!buffer_mapped(bh))
452				clear_buffer_dirty(bh);
453			if (io->io_bio)
454				ext4_io_submit(io);
455			continue;
456		}
457		if (buffer_new(bh)) {
458			clear_buffer_new(bh);
459			unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
460		}
461		set_buffer_async_write(bh);
462	} while ((bh = bh->b_this_page) != head);
463
464	/* Now submit buffers to write */
465	bh = head = page_buffers(page);
466	do {
467		if (!buffer_async_write(bh))
468			continue;
469		ret = io_submit_add_bh(io, inode, bh);
470		if (ret) {
471			/*
472			 * We only get here on ENOMEM.  Not much else
473			 * we can do but mark the page as dirty, and
474			 * better luck next time.
475			 */
476			redirty_page_for_writepage(wbc, page);
477			break;
478		}
479		nr_submitted++;
480		clear_buffer_dirty(bh);
481	} while ((bh = bh->b_this_page) != head);
482
483	/* Error stopped previous loop? Clean up buffers... */
484	if (ret) {
485		do {
486			clear_buffer_async_write(bh);
487			bh = bh->b_this_page;
488		} while (bh != head);
489	}
490	unlock_page(page);
491	/* Nothing submitted - we have to end page writeback */
492	if (!nr_submitted)
493		end_page_writeback(page);
 
 
 
 
 
 
494	return ret;
495}