Linux Audio

Check our new training course

Loading...
v3.5.6
 
  1#ifndef _FS_CEPH_SUPER_H
  2#define _FS_CEPH_SUPER_H
  3
  4#include <linux/ceph/ceph_debug.h>
  5
  6#include <asm/unaligned.h>
  7#include <linux/backing-dev.h>
  8#include <linux/completion.h>
  9#include <linux/exportfs.h>
 10#include <linux/fs.h>
 11#include <linux/mempool.h>
 12#include <linux/pagemap.h>
 13#include <linux/wait.h>
 14#include <linux/writeback.h>
 15#include <linux/slab.h>
 
 
 
 16
 17#include <linux/ceph/libceph.h>
 18
 
 
 
 
 19/* f_type in struct statfs */
 20#define CEPH_SUPER_MAGIC 0x00c36400
 21
 22/* large granularity for statfs utilization stats to facilitate
 23 * large volume sizes on 32-bit machines. */
 24#define CEPH_BLOCK_SHIFT   20  /* 1 MB */
 25#define CEPH_BLOCK         (1 << CEPH_BLOCK_SHIFT)
 26
 
 27#define CEPH_MOUNT_OPT_DIRSTAT         (1<<4) /* `cat dirname` for stats */
 28#define CEPH_MOUNT_OPT_RBYTES          (1<<5) /* dir st_bytes = rbytes */
 29#define CEPH_MOUNT_OPT_NOASYNCREADDIR  (1<<7) /* no dcache readdir */
 30#define CEPH_MOUNT_OPT_INO32           (1<<8) /* 32 bit inos */
 31#define CEPH_MOUNT_OPT_DCACHE          (1<<9) /* use dcache for readdir etc */
 32
 33#define CEPH_MOUNT_OPT_DEFAULT    (CEPH_MOUNT_OPT_RBYTES)
 
 
 
 
 
 
 
 
 34
 35#define ceph_set_mount_opt(fsc, opt) \
 36	(fsc)->mount_options->flags |= CEPH_MOUNT_OPT_##opt;
 
 
 37#define ceph_test_mount_opt(fsc, opt) \
 38	(!!((fsc)->mount_options->flags & CEPH_MOUNT_OPT_##opt))
 39
 40#define CEPH_RSIZE_DEFAULT             0           /* max read size */
 41#define CEPH_RASIZE_DEFAULT            (8192*1024) /* readahead */
 
 
 
 
 42#define CEPH_MAX_READDIR_DEFAULT        1024
 43#define CEPH_MAX_READDIR_BYTES_DEFAULT  (512*1024)
 44#define CEPH_SNAPDIRNAME_DEFAULT        ".snap"
 45
 
 
 
 
 
 
 
 
 
 46struct ceph_mount_options {
 47	int flags;
 48	int sb_flags;
 49
 50	int wsize;            /* max write size */
 51	int rsize;            /* max read size */
 52	int rasize;           /* max readahead */
 53	int congestion_kb;    /* max writeback in flight */
 54	int caps_wanted_delay_min, caps_wanted_delay_max;
 55	int cap_release_safety;
 56	int max_readdir;       /* max readdir result (entires) */
 57	int max_readdir_bytes; /* max readdir result (bytes) */
 58
 59	/*
 60	 * everything above this point can be memcmp'd; everything below
 61	 * is handled in compare_mount_options()
 62	 */
 63
 64	char *snapdir_name;   /* default ".snap" */
 
 
 
 65};
 66
 67struct ceph_fs_client {
 68	struct super_block *sb;
 69
 
 
 70	struct ceph_mount_options *mount_options;
 71	struct ceph_client *client;
 72
 73	unsigned long mount_state;
 74	int min_caps;                  /* min caps i added */
 
 
 
 
 
 
 
 75
 76	struct ceph_mds_client *mdsc;
 77
 78	/* writeback */
 79	mempool_t *wb_pagevec_pool;
 80	struct workqueue_struct *wb_wq;
 81	struct workqueue_struct *pg_inv_wq;
 82	struct workqueue_struct *trunc_wq;
 83	atomic_long_t writeback_count;
 84
 85	struct backing_dev_info backing_dev_info;
 
 86
 87#ifdef CONFIG_DEBUG_FS
 88	struct dentry *debugfs_dentry_lru, *debugfs_caps;
 89	struct dentry *debugfs_congestion_kb;
 90	struct dentry *debugfs_bdi;
 91	struct dentry *debugfs_mdsc, *debugfs_mdsmap;
 
 
 
 
 
 
 92#endif
 93};
 94
 95
 96/*
 97 * File i/o capability.  This tracks shared state with the metadata
 98 * server that allows us to cache or writeback attributes or to read
 99 * and write data.  For any given inode, we should have one or more
100 * capabilities, one issued by each metadata server, and our
101 * cumulative access is the OR of all issued capabilities.
102 *
103 * Each cap is referenced by the inode's i_caps rbtree and by per-mds
104 * session capability lists.
105 */
106struct ceph_cap {
107	struct ceph_inode_info *ci;
108	struct rb_node ci_node;          /* per-ci cap tree */
109	struct ceph_mds_session *session;
110	struct list_head session_caps;   /* per-session caplist */
111	int mds;
112	u64 cap_id;       /* unique cap id (mds provided) */
113	int issued;       /* latest, from the mds */
114	int implemented;  /* implemented superset of issued (for revocation) */
115	int mds_wanted;
 
 
 
 
 
 
 
 
 
 
 
116	u32 seq, issue_seq, mseq;
117	u32 cap_gen;      /* active/stale cycle */
118	unsigned long last_used;
119	struct list_head caps_item;
120};
121
122#define CHECK_CAPS_NODELAY    1  /* do not delay any further */
123#define CHECK_CAPS_AUTHONLY   2  /* only check auth cap */
124#define CHECK_CAPS_FLUSH      4  /* flush any dirty caps */
 
 
 
 
 
 
 
 
125
126/*
127 * Snapped cap state that is pending flush to mds.  When a snapshot occurs,
128 * we first complete any in-process sync writes and writeback any dirty
129 * data before flushing the snapped state (tracked here) back to the MDS.
130 */
131struct ceph_cap_snap {
132	atomic_t nref;
133	struct ceph_inode_info *ci;
134	struct list_head ci_item, flushing_item;
135
136	u64 follows, flush_tid;
 
 
137	int issued, dirty;
138	struct ceph_snap_context *context;
139
140	umode_t mode;
141	uid_t uid;
142	gid_t gid;
143
144	struct ceph_buffer *xattr_blob;
145	u64 xattr_version;
146
147	u64 size;
148	struct timespec mtime, atime, ctime;
 
149	u64 time_warp_seq;
 
 
150	int writing;   /* a sync write is still in progress */
151	int dirty_pages;     /* dirty pages awaiting writeback */
 
 
152};
153
154static inline void ceph_put_cap_snap(struct ceph_cap_snap *capsnap)
155{
156	if (atomic_dec_and_test(&capsnap->nref)) {
157		if (capsnap->xattr_blob)
158			ceph_buffer_put(capsnap->xattr_blob);
159		kfree(capsnap);
160	}
161}
162
163/*
164 * The frag tree describes how a directory is fragmented, potentially across
165 * multiple metadata servers.  It is also used to indicate points where
166 * metadata authority is delegated, and whether/where metadata is replicated.
167 *
168 * A _leaf_ frag will be present in the i_fragtree IFF there is
169 * delegation info.  That is, if mds >= 0 || ndist > 0.
170 */
171#define CEPH_MAX_DIRFRAG_REP 4
172
173struct ceph_inode_frag {
174	struct rb_node node;
175
176	/* fragtree state */
177	u32 frag;
178	int split_by;         /* i.e. 2^(split_by) children */
179
180	/* delegation and replication info */
181	int mds;              /* -1 if same authority as parent */
182	int ndist;            /* >0 if replicated */
183	int dist[CEPH_MAX_DIRFRAG_REP];
184};
185
186/*
187 * We cache inode xattrs as an encoded blob until they are first used,
188 * at which point we parse them into an rbtree.
189 */
190struct ceph_inode_xattr {
191	struct rb_node node;
192
193	const char *name;
194	int name_len;
195	const char *val;
196	int val_len;
197	int dirty;
198
199	int should_free_name;
200	int should_free_val;
201};
202
203/*
204 * Ceph dentry state
205 */
206struct ceph_dentry_info {
207	unsigned long flags;
208	struct ceph_mds_session *lease_session;
209	u32 lease_gen, lease_shared_gen;
 
 
 
210	u32 lease_seq;
211	unsigned long lease_renew_after, lease_renew_from;
212	struct list_head lru;
213	struct dentry *dentry;
214	u64 time;
215	u64 offset;
216};
217
218/*
219 * dentry flags
220 *
221 * The locking for D_COMPLETE is a bit odd:
222 *  - we can clear it at almost any time (see ceph_d_prune)
223 *  - it is only meaningful if:
224 *    - we hold dir inode i_ceph_lock
225 *    - we hold dir FILE_SHARED caps
226 *    - the dentry D_COMPLETE is set
227 */
228#define CEPH_D_COMPLETE 1  /* if set, d_u.d_subdirs is complete directory */
229
230struct ceph_inode_xattrs_info {
231	/*
232	 * (still encoded) xattr blob. we avoid the overhead of parsing
233	 * this until someone actually calls getxattr, etc.
234	 *
235	 * blob->vec.iov_len == 4 implies there are no xattrs; blob ==
236	 * NULL means we don't know.
237	*/
238	struct ceph_buffer *blob, *prealloc_blob;
239
240	struct rb_root index;
241	bool dirty;
242	int count;
243	int names_size;
244	int vals_size;
245	u64 version, index_version;
246};
247
248/*
249 * Ceph inode.
250 */
251struct ceph_inode_info {
252	struct ceph_vino i_vino;   /* ceph ino + snap */
253
254	spinlock_t i_ceph_lock;
255
256	u64 i_version;
 
257	u32 i_time_warp_seq;
258
259	unsigned i_ceph_flags;
260	unsigned long i_release_count;
 
 
261
262	struct ceph_dir_layout i_dir_layout;
263	struct ceph_file_layout i_layout;
 
264	char *i_symlink;
265
266	/* for dirs */
267	struct timespec i_rctime;
268	u64 i_rbytes, i_rfiles, i_rsubdirs;
269	u64 i_files, i_subdirs;
270	u64 i_max_offset;  /* largest readdir offset, set with D_COMPLETE */
 
 
 
 
271
272	struct rb_root i_fragtree;
 
273	struct mutex i_fragtree_mutex;
274
275	struct ceph_inode_xattrs_info i_xattrs;
276
277	/* capabilities.  protected _both_ by i_ceph_lock and cap->session's
278	 * s_mutex. */
279	struct rb_root i_caps;           /* cap list */
280	struct ceph_cap *i_auth_cap;     /* authoritative cap, if any */
281	unsigned i_dirty_caps, i_flushing_caps;     /* mask of dirtied fields */
282	struct list_head i_dirty_item, i_flushing_item;
283	u64 i_cap_flush_seq;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
284	/* we need to track cap writeback on a per-cap-bit basis, to allow
285	 * overlapping, pipelined cap flushes to the mds.  we can probably
286	 * reduce the tid to 8 bits if we're concerned about inode size. */
287	u16 i_cap_flush_last_tid, i_cap_flush_tid[CEPH_CAP_BITS];
 
288	wait_queue_head_t i_cap_wq;      /* threads waiting on a capability */
289	unsigned long i_hold_caps_min; /* jiffies */
290	unsigned long i_hold_caps_max; /* jiffies */
291	struct list_head i_cap_delay_list;  /* for delayed cap release to mds */
292	int i_cap_exporting_mds;         /* to handle cap migration between */
293	unsigned i_cap_exporting_mseq;   /*  mds's. */
294	unsigned i_cap_exporting_issued;
295	struct ceph_cap_reservation i_cap_migration_resv;
296	struct list_head i_cap_snaps;   /* snapped state pending flush to mds */
297	struct ceph_snap_context *i_head_snapc;  /* set if wr_buffer_head > 0 or
298						    dirty|flushing caps */
299	unsigned i_snap_caps;           /* cap bits for snapped files */
300
301	int i_nr_by_mode[CEPH_FILE_MODE_NUM];  /* open file counts */
 
 
302
 
303	u32 i_truncate_seq;        /* last truncate to smaller size */
304	u64 i_truncate_size;       /*  and the size we last truncated down to */
305	int i_truncate_pending;    /*  still need to call vmtruncate */
306
307	u64 i_max_size;            /* max file size authorized by mds */
308	u64 i_reported_size; /* (max_)size reported to or requested of mds */
309	u64 i_wanted_max_size;     /* offset we'd like to write too */
310	u64 i_requested_max_size;  /* max_size we've requested */
311
312	/* held references to caps */
313	int i_pin_ref;
314	int i_rd_ref, i_rdcache_ref, i_wr_ref, i_wb_ref;
315	int i_wrbuffer_ref, i_wrbuffer_ref_head;
316	u32 i_shared_gen;       /* increment each time we get FILE_SHARED */
 
317	u32 i_rdcache_gen;      /* incremented each time we get FILE_CACHE. */
318	u32 i_rdcache_revoking; /* RDCACHE gen to async invalidate, if any */
319
320	struct list_head i_unsafe_writes; /* uncommitted sync writes */
321	struct list_head i_unsafe_dirops; /* uncommitted mds dir ops */
 
322	spinlock_t i_unsafe_lock;
323
324	struct ceph_snap_realm *i_snap_realm; /* snap realm (if caps) */
 
 
 
325	int i_snap_realm_counter; /* snap realm (if caps) */
326	struct list_head i_snap_realm_item;
327	struct list_head i_snap_flush_item;
 
 
328
329	struct work_struct i_wb_work;  /* writeback work */
330	struct work_struct i_pg_inv_work;  /* page invalidation work */
331
332	struct work_struct i_vmtruncate_work;
 
 
 
 
333
334	struct inode vfs_inode; /* at end */
335};
336
337static inline struct ceph_inode_info *ceph_inode(struct inode *inode)
 
338{
339	return container_of(inode, struct ceph_inode_info, vfs_inode);
340}
341
342static inline struct ceph_fs_client *ceph_inode_to_client(struct inode *inode)
 
343{
344	return (struct ceph_fs_client *)inode->i_sb->s_fs_info;
345}
346
347static inline struct ceph_fs_client *ceph_sb_to_client(struct super_block *sb)
 
348{
349	return (struct ceph_fs_client *)sb->s_fs_info;
350}
351
352static inline struct ceph_vino ceph_vino(struct inode *inode)
 
353{
354	return ceph_inode(inode)->i_vino;
355}
356
357/*
358 * ino_t is <64 bits on many architectures, blech.
359 *
360 *               i_ino (kernel inode)   st_ino (userspace)
361 * i386          32                     32
362 * x86_64+ino32  64                     32
363 * x86_64        64                     64
364 */
365static inline u32 ceph_ino_to_ino32(__u64 vino)
366{
367	u32 ino = vino & 0xffffffff;
368	ino ^= vino >> 32;
369	if (!ino)
370		ino = 2;
371	return ino;
372}
373
374/*
375 * kernel i_ino value
 
 
 
376 */
377static inline ino_t ceph_vino_to_ino(struct ceph_vino vino)
378{
379#if BITS_PER_LONG == 32
380	return ceph_ino_to_ino32(vino.ino);
381#else
382	return (ino_t)vino.ino;
383#endif
384}
385
386/*
387 * user-visible ino (stat, filldir)
388 */
389#if BITS_PER_LONG == 32
390static inline ino_t ceph_translate_ino(struct super_block *sb, ino_t ino)
391{
392	return ino;
393}
394#else
395static inline ino_t ceph_translate_ino(struct super_block *sb, ino_t ino)
396{
397	if (ceph_test_mount_opt(ceph_sb_to_client(sb), INO32))
398		ino = ceph_ino_to_ino32(ino);
399	return ino;
400}
401#endif
402
403
404/* for printf-style formatting */
405#define ceph_vinop(i) ceph_inode(i)->i_vino.ino, ceph_inode(i)->i_vino.snap
406
407static inline u64 ceph_ino(struct inode *inode)
408{
409	return ceph_inode(inode)->i_vino.ino;
410}
 
411static inline u64 ceph_snap(struct inode *inode)
412{
413	return ceph_inode(inode)->i_vino.snap;
414}
415
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
416static inline int ceph_ino_compare(struct inode *inode, void *data)
417{
418	struct ceph_vino *pvino = (struct ceph_vino *)data;
419	struct ceph_inode_info *ci = ceph_inode(inode);
420	return ci->i_vino.ino == pvino->ino &&
421		ci->i_vino.snap == pvino->snap;
422}
423
 
424static inline struct inode *ceph_find_inode(struct super_block *sb,
425					    struct ceph_vino vino)
426{
427	ino_t t = ceph_vino_to_ino(vino);
428	return ilookup5(sb, t, ceph_ino_compare, &vino);
 
 
 
 
429}
430
431
432/*
433 * Ceph inode.
434 */
435#define CEPH_I_NODELAY   4  /* do not delay cap release */
436#define CEPH_I_FLUSH     8  /* do not delay flush of dirty metadata */
437#define CEPH_I_NOFLUSH  16  /* do not flush dirty caps */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
438
439static inline void ceph_i_clear(struct inode *inode, unsigned mask)
 
 
 
 
 
 
 
440{
441	struct ceph_inode_info *ci = ceph_inode(inode);
 
 
 
 
 
442
443	spin_lock(&ci->i_ceph_lock);
444	ci->i_ceph_flags &= ~mask;
445	spin_unlock(&ci->i_ceph_lock);
 
 
 
 
446}
447
448static inline void ceph_i_set(struct inode *inode, unsigned mask)
 
 
449{
450	struct ceph_inode_info *ci = ceph_inode(inode);
 
 
 
 
 
 
 
 
451
452	spin_lock(&ci->i_ceph_lock);
453	ci->i_ceph_flags |= mask;
454	spin_unlock(&ci->i_ceph_lock);
455}
456
457static inline bool ceph_i_test(struct inode *inode, unsigned mask)
458{
459	struct ceph_inode_info *ci = ceph_inode(inode);
460	bool r;
461
462	spin_lock(&ci->i_ceph_lock);
463	r = (ci->i_ceph_flags & mask) == mask;
464	spin_unlock(&ci->i_ceph_lock);
465	return r;
466}
467
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
468
469/* find a specific frag @f */
470extern struct ceph_inode_frag *__ceph_find_frag(struct ceph_inode_info *ci,
471						u32 f);
472
473/*
474 * choose fragment for value @v.  copy frag content to pfrag, if leaf
475 * exists
476 */
477extern u32 ceph_choose_frag(struct ceph_inode_info *ci, u32 v,
478			    struct ceph_inode_frag *pfrag,
479			    int *found);
480
481static inline struct ceph_dentry_info *ceph_dentry(struct dentry *dentry)
482{
483	return (struct ceph_dentry_info *)dentry->d_fsdata;
484}
485
486static inline loff_t ceph_make_fpos(unsigned frag, unsigned off)
487{
488	return ((loff_t)frag << 32) | (loff_t)off;
489}
490
491/*
492 * set/clear directory D_COMPLETE flag
493 */
494void ceph_dir_set_complete(struct inode *inode);
495void ceph_dir_clear_complete(struct inode *inode);
496bool ceph_dir_test_complete(struct inode *inode);
497
498/*
499 * caps helpers
500 */
501static inline bool __ceph_is_any_real_caps(struct ceph_inode_info *ci)
502{
503	return !RB_EMPTY_ROOT(&ci->i_caps);
504}
505
506extern int __ceph_caps_issued(struct ceph_inode_info *ci, int *implemented);
507extern int __ceph_caps_issued_mask(struct ceph_inode_info *ci, int mask, int t);
 
 
508extern int __ceph_caps_issued_other(struct ceph_inode_info *ci,
509				    struct ceph_cap *cap);
510
511static inline int ceph_caps_issued(struct ceph_inode_info *ci)
512{
513	int issued;
514	spin_lock(&ci->i_ceph_lock);
515	issued = __ceph_caps_issued(ci, NULL);
516	spin_unlock(&ci->i_ceph_lock);
517	return issued;
518}
519
520static inline int ceph_caps_issued_mask(struct ceph_inode_info *ci, int mask,
521					int touch)
522{
523	int r;
524	spin_lock(&ci->i_ceph_lock);
525	r = __ceph_caps_issued_mask(ci, mask, touch);
526	spin_unlock(&ci->i_ceph_lock);
527	return r;
528}
529
530static inline int __ceph_caps_dirty(struct ceph_inode_info *ci)
531{
532	return ci->i_dirty_caps | ci->i_flushing_caps;
533}
534extern int __ceph_mark_dirty_caps(struct ceph_inode_info *ci, int mask);
 
 
 
535
 
 
536extern int ceph_caps_revoking(struct ceph_inode_info *ci, int mask);
537extern int __ceph_caps_used(struct ceph_inode_info *ci);
538
539extern int __ceph_caps_file_wanted(struct ceph_inode_info *ci);
540
541/*
542 * wanted, by virtue of open file modes AND cap refs (buffered/cached data)
543 */
544static inline int __ceph_caps_wanted(struct ceph_inode_info *ci)
545{
546	int w = __ceph_caps_file_wanted(ci) | __ceph_caps_used(ci);
547	if (w & CEPH_CAP_FILE_BUFFER)
548		w |= CEPH_CAP_FILE_EXCL;  /* we want EXCL if dirty data */
549	return w;
550}
 
 
551
552/* what the mds thinks we want */
553extern int __ceph_caps_mds_wanted(struct ceph_inode_info *ci);
554
555extern void ceph_caps_init(struct ceph_mds_client *mdsc);
556extern void ceph_caps_finalize(struct ceph_mds_client *mdsc);
557extern void ceph_adjust_min_caps(struct ceph_mds_client *mdsc, int delta);
 
558extern int ceph_reserve_caps(struct ceph_mds_client *mdsc,
559			     struct ceph_cap_reservation *ctx, int need);
560extern int ceph_unreserve_caps(struct ceph_mds_client *mdsc,
561			       struct ceph_cap_reservation *ctx);
562extern void ceph_reservation_status(struct ceph_fs_client *client,
563				    int *total, int *avail, int *used,
564				    int *reserved, int *min);
565
566
567
568/*
569 * we keep buffered readdir results attached to file->private_data
570 */
571#define CEPH_F_SYNC     1
572#define CEPH_F_ATEND    2
573
574struct ceph_file_info {
575	short fmode;     /* initialized on open */
576	short flags;     /* CEPH_F_* */
577
 
 
 
 
 
 
 
 
 
 
 
578	/* readdir: position within the dir */
579	u32 frag;
580	struct ceph_mds_request *last_readdir;
581
582	/* readdir: position within a frag */
583	unsigned offset;       /* offset of last chunk, adjusted for . and .. */
584	u64 next_offset;       /* offset of next chunk (last_name's + 1) */
585	char *last_name;       /* last entry in previous chunk */
586	struct dentry *dentry; /* next dentry (for dcache readdir) */
587	unsigned long dir_release_count;
 
588
589	/* used for -o dirstat read() on directory thing */
590	char *dir_info;
591	int dir_info_len;
592};
593
 
 
 
 
 
 
 
 
 
 
 
594
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
595
596/*
597 * A "snap realm" describes a subset of the file hierarchy sharing
598 * the same set of snapshots that apply to it.  The realms themselves
599 * are organized into a hierarchy, such that children inherit (some of)
600 * the snapshots of their parents.
601 *
602 * All inodes within the realm that have capabilities are linked into a
603 * per-realm list.
604 */
605struct ceph_snap_realm {
606	u64 ino;
 
607	atomic_t nref;
608	struct rb_node node;
609
610	u64 created, seq;
611	u64 parent_ino;
612	u64 parent_since;   /* snapid when our current parent became so */
613
614	u64 *prior_parent_snaps;      /* snaps inherited from any parents we */
615	int num_prior_parent_snaps;   /*  had prior to parent_since */
616	u64 *snaps;                   /* snaps specific to this realm */
617	int num_snaps;
618
619	struct ceph_snap_realm *parent;
620	struct list_head children;       /* list of child realms */
621	struct list_head child_item;
622
623	struct list_head empty_item;     /* if i have ref==0 */
624
625	struct list_head dirty_item;     /* if realm needs new context */
626
627	/* the current set of snaps for this realm */
628	struct ceph_snap_context *cached_context;
629
630	struct list_head inodes_with_caps;
631	spinlock_t inodes_with_caps_lock;
632};
633
634static inline int default_congestion_kb(void)
635{
636	int congestion_kb;
637
638	/*
639	 * Copied from NFS
640	 *
641	 * congestion size, scale with available memory.
642	 *
643	 *  64MB:    8192k
644	 * 128MB:   11585k
645	 * 256MB:   16384k
646	 * 512MB:   23170k
647	 *   1GB:   32768k
648	 *   2GB:   46340k
649	 *   4GB:   65536k
650	 *   8GB:   92681k
651	 *  16GB:  131072k
652	 *
653	 * This allows larger machines to have larger/more transfers.
654	 * Limit the default to 256M
655	 */
656	congestion_kb = (16*int_sqrt(totalram_pages)) << (PAGE_SHIFT-10);
657	if (congestion_kb > 256*1024)
658		congestion_kb = 256*1024;
659
660	return congestion_kb;
661}
662
663
664
 
665/* snap.c */
666struct ceph_snap_realm *ceph_lookup_snap_realm(struct ceph_mds_client *mdsc,
667					       u64 ino);
668extern void ceph_get_snap_realm(struct ceph_mds_client *mdsc,
669				struct ceph_snap_realm *realm);
670extern void ceph_put_snap_realm(struct ceph_mds_client *mdsc,
671				struct ceph_snap_realm *realm);
672extern int ceph_update_snap_trace(struct ceph_mds_client *m,
673				  void *p, void *e, bool deletion);
 
674extern void ceph_handle_snap(struct ceph_mds_client *mdsc,
675			     struct ceph_mds_session *session,
676			     struct ceph_msg *msg);
677extern void ceph_queue_cap_snap(struct ceph_inode_info *ci);
678extern int __ceph_finish_cap_snap(struct ceph_inode_info *ci,
679				  struct ceph_cap_snap *capsnap);
680extern void ceph_cleanup_empty_realms(struct ceph_mds_client *mdsc);
681
 
 
 
 
 
 
 
 
682/*
683 * a cap_snap is "pending" if it is still awaiting an in-progress
684 * sync write (that may/may not still update size, mtime, etc.).
685 */
686static inline bool __ceph_have_pending_cap_snap(struct ceph_inode_info *ci)
687{
688	return !list_empty(&ci->i_cap_snaps) &&
689		list_entry(ci->i_cap_snaps.prev, struct ceph_cap_snap,
690			   ci_item)->writing;
691}
692
693/* inode.c */
 
 
 
694extern const struct inode_operations ceph_file_iops;
695
696extern struct inode *ceph_alloc_inode(struct super_block *sb);
697extern void ceph_destroy_inode(struct inode *inode);
 
698
699extern struct inode *ceph_get_inode(struct super_block *sb,
700				    struct ceph_vino vino);
701extern struct inode *ceph_get_snapdir(struct inode *parent);
702extern int ceph_fill_file_size(struct inode *inode, int issued,
703			       u32 truncate_seq, u64 truncate_size, u64 size);
704extern void ceph_fill_file_time(struct inode *inode, int issued,
705				u64 time_warp_seq, struct timespec *ctime,
706				struct timespec *mtime, struct timespec *atime);
 
 
 
 
 
 
707extern int ceph_fill_trace(struct super_block *sb,
708			   struct ceph_mds_request *req,
709			   struct ceph_mds_session *session);
710extern int ceph_readdir_prepopulate(struct ceph_mds_request *req,
711				    struct ceph_mds_session *session);
712
713extern int ceph_inode_holds_cap(struct inode *inode, int mask);
714
715extern int ceph_inode_set_size(struct inode *inode, loff_t size);
716extern void __ceph_do_pending_vmtruncate(struct inode *inode);
717extern void ceph_queue_vmtruncate(struct inode *inode);
718
719extern void ceph_queue_invalidate(struct inode *inode);
720extern void ceph_queue_writeback(struct inode *inode);
 
721
722extern int ceph_do_getattr(struct inode *inode, int mask);
 
 
 
 
 
723extern int ceph_permission(struct inode *inode, int mask);
 
724extern int ceph_setattr(struct dentry *dentry, struct iattr *attr);
725extern int ceph_getattr(struct vfsmount *mnt, struct dentry *dentry,
726			struct kstat *stat);
727
728/* xattr.c */
729extern int ceph_setxattr(struct dentry *, const char *, const void *,
730			 size_t, int);
731extern ssize_t ceph_getxattr(struct dentry *, const char *, void *, size_t);
732extern ssize_t ceph_listxattr(struct dentry *, char *, size_t);
733extern int ceph_removexattr(struct dentry *, const char *);
734extern void __ceph_build_xattrs_blob(struct ceph_inode_info *ci);
735extern void __ceph_destroy_xattrs(struct ceph_inode_info *ci);
736extern void __init ceph_xattr_init(void);
737extern void ceph_xattr_exit(void);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
738
739/* caps.c */
740extern const char *ceph_cap_string(int c);
741extern void ceph_handle_caps(struct ceph_mds_session *session,
742			     struct ceph_msg *msg);
743extern int ceph_add_cap(struct inode *inode,
744			struct ceph_mds_session *session, u64 cap_id,
745			int fmode, unsigned issued, unsigned wanted,
746			unsigned cap, unsigned seq, u64 realmino, int flags,
747			struct ceph_cap_reservation *caps_reservation);
748extern void __ceph_remove_cap(struct ceph_cap *cap);
749static inline void ceph_remove_cap(struct ceph_cap *cap)
750{
751	spin_lock(&cap->ci->i_ceph_lock);
752	__ceph_remove_cap(cap);
753	spin_unlock(&cap->ci->i_ceph_lock);
754}
755extern void ceph_put_cap(struct ceph_mds_client *mdsc,
756			 struct ceph_cap *cap);
 
757
758extern void ceph_queue_caps_release(struct inode *inode);
759extern int ceph_write_inode(struct inode *inode, struct writeback_control *wbc);
760extern int ceph_fsync(struct file *file, loff_t start, loff_t end,
761		      int datasync);
 
 
762extern void ceph_kick_flushing_caps(struct ceph_mds_client *mdsc,
763				    struct ceph_mds_session *session);
 
 
764extern struct ceph_cap *ceph_get_cap_for_mds(struct ceph_inode_info *ci,
765					     int mds);
766extern int ceph_get_cap_mds(struct inode *inode);
 
767extern void ceph_get_cap_refs(struct ceph_inode_info *ci, int caps);
768extern void ceph_put_cap_refs(struct ceph_inode_info *ci, int had);
 
 
769extern void ceph_put_wrbuffer_cap_refs(struct ceph_inode_info *ci, int nr,
770				       struct ceph_snap_context *snapc);
771extern void __ceph_flush_snaps(struct ceph_inode_info *ci,
772			       struct ceph_mds_session **psession,
773			       int again);
774extern void ceph_check_caps(struct ceph_inode_info *ci, int flags,
775			    struct ceph_mds_session *session);
776extern void ceph_check_delayed_caps(struct ceph_mds_client *mdsc);
777extern void ceph_flush_dirty_caps(struct ceph_mds_client *mdsc);
778
779extern int ceph_encode_inode_release(void **p, struct inode *inode,
780				     int mds, int drop, int unless, int force);
781extern int ceph_encode_dentry_release(void **p, struct dentry *dn,
 
782				      int mds, int drop, int unless);
783
784extern int ceph_get_caps(struct ceph_inode_info *ci, int need, int want,
785			 int *got, loff_t endoff);
 
 
786
787/* for counting open files by mode */
788static inline void __ceph_get_fmode(struct ceph_inode_info *ci, int mode)
789{
790	ci->i_nr_by_mode[mode]++;
791}
792extern void ceph_put_fmode(struct ceph_inode_info *ci, int mode);
793
794/* addr.c */
795extern const struct address_space_operations ceph_aops;
796extern int ceph_mmap(struct file *file, struct vm_area_struct *vma);
 
 
 
797
798/* file.c */
799extern const struct file_operations ceph_file_fops;
800extern const struct address_space_operations ceph_aops;
801extern int ceph_copy_to_page_vector(struct page **pages,
802				    const char *data,
803				    loff_t off, size_t len);
804extern int ceph_copy_from_page_vector(struct page **pages,
805				    char *data,
806				    loff_t off, size_t len);
807extern struct page **ceph_alloc_page_vector(int num_pages, gfp_t flags);
808extern int ceph_open(struct inode *inode, struct file *file);
809extern struct dentry *ceph_lookup_open(struct inode *dir, struct dentry *dentry,
810				       struct nameidata *nd, int mode,
811				       int locked_dir);
812extern int ceph_release(struct inode *inode, struct file *filp);
 
 
813
814/* dir.c */
815extern const struct file_operations ceph_dir_fops;
 
816extern const struct inode_operations ceph_dir_iops;
817extern const struct dentry_operations ceph_dentry_ops, ceph_snap_dentry_ops,
818	ceph_snapdir_dentry_ops;
819
 
820extern int ceph_handle_notrace_create(struct inode *dir, struct dentry *dentry);
821extern int ceph_handle_snapdir(struct ceph_mds_request *req,
822			       struct dentry *dentry, int err);
823extern struct dentry *ceph_finish_lookup(struct ceph_mds_request *req,
824					 struct dentry *dentry, int err);
825
826extern void ceph_dentry_lru_add(struct dentry *dn);
827extern void ceph_dentry_lru_touch(struct dentry *dn);
828extern void ceph_dentry_lru_del(struct dentry *dn);
829extern void ceph_invalidate_dentry_lease(struct dentry *dentry);
 
830extern unsigned ceph_dentry_hash(struct inode *dir, struct dentry *dn);
831extern struct inode *ceph_get_dentry_parent_inode(struct dentry *dentry);
832
833/*
834 * our d_ops vary depending on whether the inode is live,
835 * snapshotted (read-only), or a virtual ".snap" directory.
836 */
837int ceph_init_dentry(struct dentry *dentry);
838
839
840/* ioctl.c */
841extern long ceph_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
842
843/* export.c */
844extern const struct export_operations ceph_export_ops;
 
845
846/* locks.c */
 
847extern int ceph_lock(struct file *file, int cmd, struct file_lock *fl);
848extern int ceph_flock(struct file *file, int cmd, struct file_lock *fl);
849extern void ceph_count_locks(struct inode *inode, int *p_num, int *f_num);
850extern int ceph_encode_locks(struct inode *i, struct ceph_pagelist *p,
851			     int p_locks, int f_locks);
852extern int lock_to_ceph_filelock(struct file_lock *fl, struct ceph_filelock *c);
 
 
 
 
853
854/* debugfs.c */
855extern int ceph_fs_debugfs_init(struct ceph_fs_client *client);
856extern void ceph_fs_debugfs_cleanup(struct ceph_fs_client *client);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
857
858#endif /* _FS_CEPH_SUPER_H */
v5.9
   1/* SPDX-License-Identifier: GPL-2.0 */
   2#ifndef _FS_CEPH_SUPER_H
   3#define _FS_CEPH_SUPER_H
   4
   5#include <linux/ceph/ceph_debug.h>
   6
   7#include <asm/unaligned.h>
   8#include <linux/backing-dev.h>
   9#include <linux/completion.h>
  10#include <linux/exportfs.h>
  11#include <linux/fs.h>
  12#include <linux/mempool.h>
  13#include <linux/pagemap.h>
  14#include <linux/wait.h>
  15#include <linux/writeback.h>
  16#include <linux/slab.h>
  17#include <linux/posix_acl.h>
  18#include <linux/refcount.h>
  19#include <linux/security.h>
  20
  21#include <linux/ceph/libceph.h>
  22
  23#ifdef CONFIG_CEPH_FSCACHE
  24#include <linux/fscache.h>
  25#endif
  26
  27/* f_type in struct statfs */
  28#define CEPH_SUPER_MAGIC 0x00c36400
  29
  30/* large granularity for statfs utilization stats to facilitate
  31 * large volume sizes on 32-bit machines. */
  32#define CEPH_BLOCK_SHIFT   22  /* 4 MB */
  33#define CEPH_BLOCK         (1 << CEPH_BLOCK_SHIFT)
  34
  35#define CEPH_MOUNT_OPT_CLEANRECOVER    (1<<1) /* auto reonnect (clean mode) after blacklisted */
  36#define CEPH_MOUNT_OPT_DIRSTAT         (1<<4) /* `cat dirname` for stats */
  37#define CEPH_MOUNT_OPT_RBYTES          (1<<5) /* dir st_bytes = rbytes */
  38#define CEPH_MOUNT_OPT_NOASYNCREADDIR  (1<<7) /* no dcache readdir */
  39#define CEPH_MOUNT_OPT_INO32           (1<<8) /* 32 bit inos */
  40#define CEPH_MOUNT_OPT_DCACHE          (1<<9) /* use dcache for readdir etc */
  41#define CEPH_MOUNT_OPT_FSCACHE         (1<<10) /* use fscache */
  42#define CEPH_MOUNT_OPT_NOPOOLPERM      (1<<11) /* no pool permission check */
  43#define CEPH_MOUNT_OPT_MOUNTWAIT       (1<<12) /* mount waits if no mds is up */
  44#define CEPH_MOUNT_OPT_NOQUOTADF       (1<<13) /* no root dir quota in statfs */
  45#define CEPH_MOUNT_OPT_NOCOPYFROM      (1<<14) /* don't use RADOS 'copy-from' op */
  46#define CEPH_MOUNT_OPT_ASYNC_DIROPS    (1<<15) /* allow async directory ops */
  47
  48#define CEPH_MOUNT_OPT_DEFAULT			\
  49	(CEPH_MOUNT_OPT_DCACHE |		\
  50	 CEPH_MOUNT_OPT_NOCOPYFROM)
  51
  52#define ceph_set_mount_opt(fsc, opt) \
  53	(fsc)->mount_options->flags |= CEPH_MOUNT_OPT_##opt
  54#define ceph_clear_mount_opt(fsc, opt) \
  55	(fsc)->mount_options->flags &= ~CEPH_MOUNT_OPT_##opt
  56#define ceph_test_mount_opt(fsc, opt) \
  57	(!!((fsc)->mount_options->flags & CEPH_MOUNT_OPT_##opt))
  58
  59/* max size of osd read request, limited by libceph */
  60#define CEPH_MAX_READ_SIZE              CEPH_MSG_MAX_DATA_LEN
  61/* osd has a configurable limitaion of max write size.
  62 * CEPH_MSG_MAX_DATA_LEN should be small enough. */
  63#define CEPH_MAX_WRITE_SIZE		CEPH_MSG_MAX_DATA_LEN
  64#define CEPH_RASIZE_DEFAULT             (8192*1024)    /* max readahead */
  65#define CEPH_MAX_READDIR_DEFAULT        1024
  66#define CEPH_MAX_READDIR_BYTES_DEFAULT  (512*1024)
  67#define CEPH_SNAPDIRNAME_DEFAULT        ".snap"
  68
  69/*
  70 * Delay telling the MDS we no longer want caps, in case we reopen
  71 * the file.  Delay a minimum amount of time, even if we send a cap
  72 * message for some other reason.  Otherwise, take the oppotunity to
  73 * update the mds to avoid sending another message later.
  74 */
  75#define CEPH_CAPS_WANTED_DELAY_MIN_DEFAULT      5  /* cap release delay */
  76#define CEPH_CAPS_WANTED_DELAY_MAX_DEFAULT     60  /* cap release delay */
  77
  78struct ceph_mount_options {
  79	unsigned int flags;
 
  80
  81	unsigned int wsize;            /* max write size */
  82	unsigned int rsize;            /* max read size */
  83	unsigned int rasize;           /* max readahead */
  84	unsigned int congestion_kb;    /* max writeback in flight */
  85	unsigned int caps_wanted_delay_min, caps_wanted_delay_max;
  86	int caps_max;
  87	unsigned int max_readdir;       /* max readdir result (entries) */
  88	unsigned int max_readdir_bytes; /* max readdir result (bytes) */
  89
  90	/*
  91	 * everything above this point can be memcmp'd; everything below
  92	 * is handled in compare_mount_options()
  93	 */
  94
  95	char *snapdir_name;   /* default ".snap" */
  96	char *mds_namespace;  /* default NULL */
  97	char *server_path;    /* default NULL (means "/") */
  98	char *fscache_uniq;   /* default NULL */
  99};
 100
 101struct ceph_fs_client {
 102	struct super_block *sb;
 103
 104	struct list_head metric_wakeup;
 105
 106	struct ceph_mount_options *mount_options;
 107	struct ceph_client *client;
 108
 109	unsigned long mount_state;
 110
 111	unsigned long last_auto_reconnect;
 112	bool blacklisted;
 113
 114	bool have_copy_from2;
 115
 116	u32 filp_gen;
 117	loff_t max_file_size;
 118
 119	struct ceph_mds_client *mdsc;
 120
 
 
 
 
 
 121	atomic_long_t writeback_count;
 122
 123	struct workqueue_struct *inode_wq;
 124	struct workqueue_struct *cap_wq;
 125
 126#ifdef CONFIG_DEBUG_FS
 127	struct dentry *debugfs_dentry_lru, *debugfs_caps;
 128	struct dentry *debugfs_congestion_kb;
 129	struct dentry *debugfs_bdi;
 130	struct dentry *debugfs_mdsc, *debugfs_mdsmap;
 131	struct dentry *debugfs_metric;
 132	struct dentry *debugfs_mds_sessions;
 133#endif
 134
 135#ifdef CONFIG_CEPH_FSCACHE
 136	struct fscache_cookie *fscache;
 137#endif
 138};
 139
 140
 141/*
 142 * File i/o capability.  This tracks shared state with the metadata
 143 * server that allows us to cache or writeback attributes or to read
 144 * and write data.  For any given inode, we should have one or more
 145 * capabilities, one issued by each metadata server, and our
 146 * cumulative access is the OR of all issued capabilities.
 147 *
 148 * Each cap is referenced by the inode's i_caps rbtree and by per-mds
 149 * session capability lists.
 150 */
 151struct ceph_cap {
 152	struct ceph_inode_info *ci;
 153	struct rb_node ci_node;          /* per-ci cap tree */
 154	struct ceph_mds_session *session;
 155	struct list_head session_caps;   /* per-session caplist */
 
 156	u64 cap_id;       /* unique cap id (mds provided) */
 157	union {
 158		/* in-use caps */
 159		struct {
 160			int issued;       /* latest, from the mds */
 161			int implemented;  /* implemented superset of
 162					     issued (for revocation) */
 163			int mds, mds_wanted;
 164		};
 165		/* caps to release */
 166		struct {
 167			u64 cap_ino;
 168			int queue_release;
 169		};
 170	};
 171	u32 seq, issue_seq, mseq;
 172	u32 cap_gen;      /* active/stale cycle */
 173	unsigned long last_used;
 174	struct list_head caps_item;
 175};
 176
 177#define CHECK_CAPS_AUTHONLY   1  /* only check auth cap */
 178#define CHECK_CAPS_FLUSH      2  /* flush any dirty caps */
 179#define CHECK_CAPS_NOINVAL    4  /* don't invalidate pagecache */
 180
 181struct ceph_cap_flush {
 182	u64 tid;
 183	int caps; /* 0 means capsnap */
 184	bool wake; /* wake up flush waiters when finish ? */
 185	struct list_head g_list; // global
 186	struct list_head i_list; // per inode
 187};
 188
 189/*
 190 * Snapped cap state that is pending flush to mds.  When a snapshot occurs,
 191 * we first complete any in-process sync writes and writeback any dirty
 192 * data before flushing the snapped state (tracked here) back to the MDS.
 193 */
 194struct ceph_cap_snap {
 195	refcount_t nref;
 196	struct list_head ci_item;
 
 197
 198	struct ceph_cap_flush cap_flush;
 199
 200	u64 follows;
 201	int issued, dirty;
 202	struct ceph_snap_context *context;
 203
 204	umode_t mode;
 205	kuid_t uid;
 206	kgid_t gid;
 207
 208	struct ceph_buffer *xattr_blob;
 209	u64 xattr_version;
 210
 211	u64 size;
 212	u64 change_attr;
 213	struct timespec64 mtime, atime, ctime, btime;
 214	u64 time_warp_seq;
 215	u64 truncate_size;
 216	u32 truncate_seq;
 217	int writing;   /* a sync write is still in progress */
 218	int dirty_pages;     /* dirty pages awaiting writeback */
 219	bool inline_data;
 220	bool need_flush;
 221};
 222
 223static inline void ceph_put_cap_snap(struct ceph_cap_snap *capsnap)
 224{
 225	if (refcount_dec_and_test(&capsnap->nref)) {
 226		if (capsnap->xattr_blob)
 227			ceph_buffer_put(capsnap->xattr_blob);
 228		kfree(capsnap);
 229	}
 230}
 231
 232/*
 233 * The frag tree describes how a directory is fragmented, potentially across
 234 * multiple metadata servers.  It is also used to indicate points where
 235 * metadata authority is delegated, and whether/where metadata is replicated.
 236 *
 237 * A _leaf_ frag will be present in the i_fragtree IFF there is
 238 * delegation info.  That is, if mds >= 0 || ndist > 0.
 239 */
 240#define CEPH_MAX_DIRFRAG_REP 4
 241
 242struct ceph_inode_frag {
 243	struct rb_node node;
 244
 245	/* fragtree state */
 246	u32 frag;
 247	int split_by;         /* i.e. 2^(split_by) children */
 248
 249	/* delegation and replication info */
 250	int mds;              /* -1 if same authority as parent */
 251	int ndist;            /* >0 if replicated */
 252	int dist[CEPH_MAX_DIRFRAG_REP];
 253};
 254
 255/*
 256 * We cache inode xattrs as an encoded blob until they are first used,
 257 * at which point we parse them into an rbtree.
 258 */
 259struct ceph_inode_xattr {
 260	struct rb_node node;
 261
 262	const char *name;
 263	int name_len;
 264	const char *val;
 265	int val_len;
 266	int dirty;
 267
 268	int should_free_name;
 269	int should_free_val;
 270};
 271
 272/*
 273 * Ceph dentry state
 274 */
 275struct ceph_dentry_info {
 276	struct dentry *dentry;
 277	struct ceph_mds_session *lease_session;
 278	struct list_head lease_list;
 279	unsigned flags;
 280	int lease_shared_gen;
 281	u32 lease_gen;
 282	u32 lease_seq;
 283	unsigned long lease_renew_after, lease_renew_from;
 284	unsigned long time;
 
 
 285	u64 offset;
 286};
 287
 288#define CEPH_DENTRY_REFERENCED		1
 289#define CEPH_DENTRY_LEASE_LIST		2
 290#define CEPH_DENTRY_SHRINK_LIST		4
 291#define CEPH_DENTRY_PRIMARY_LINK	8
 
 
 
 
 
 
 
 292
 293struct ceph_inode_xattrs_info {
 294	/*
 295	 * (still encoded) xattr blob. we avoid the overhead of parsing
 296	 * this until someone actually calls getxattr, etc.
 297	 *
 298	 * blob->vec.iov_len == 4 implies there are no xattrs; blob ==
 299	 * NULL means we don't know.
 300	*/
 301	struct ceph_buffer *blob, *prealloc_blob;
 302
 303	struct rb_root index;
 304	bool dirty;
 305	int count;
 306	int names_size;
 307	int vals_size;
 308	u64 version, index_version;
 309};
 310
 311/*
 312 * Ceph inode.
 313 */
 314struct ceph_inode_info {
 315	struct ceph_vino i_vino;   /* ceph ino + snap */
 316
 317	spinlock_t i_ceph_lock;
 318
 319	u64 i_version;
 320	u64 i_inline_version;
 321	u32 i_time_warp_seq;
 322
 323	unsigned long i_ceph_flags;
 324	atomic64_t i_release_count;
 325	atomic64_t i_ordered_count;
 326	atomic64_t i_complete_seq[2];
 327
 328	struct ceph_dir_layout i_dir_layout;
 329	struct ceph_file_layout i_layout;
 330	struct ceph_file_layout i_cached_layout;	// for async creates
 331	char *i_symlink;
 332
 333	/* for dirs */
 334	struct timespec64 i_rctime;
 335	u64 i_rbytes, i_rfiles, i_rsubdirs;
 336	u64 i_files, i_subdirs;
 337
 338	/* quotas */
 339	u64 i_max_bytes, i_max_files;
 340
 341	s32 i_dir_pin;
 342
 343	struct rb_root i_fragtree;
 344	int i_fragtree_nsplits;
 345	struct mutex i_fragtree_mutex;
 346
 347	struct ceph_inode_xattrs_info i_xattrs;
 348
 349	/* capabilities.  protected _both_ by i_ceph_lock and cap->session's
 350	 * s_mutex. */
 351	struct rb_root i_caps;           /* cap list */
 352	struct ceph_cap *i_auth_cap;     /* authoritative cap, if any */
 353	unsigned i_dirty_caps, i_flushing_caps;     /* mask of dirtied fields */
 354
 355	/*
 356	 * Link to the auth cap's session's s_cap_dirty list. s_cap_dirty
 357	 * is protected by the mdsc->cap_dirty_lock, but each individual item
 358	 * is also protected by the inode's i_ceph_lock. Walking s_cap_dirty
 359	 * requires the mdsc->cap_dirty_lock. List presence for an item can
 360	 * be tested under the i_ceph_lock. Changing anything requires both.
 361	 */
 362	struct list_head i_dirty_item;
 363
 364	/*
 365	 * Link to session's s_cap_flushing list. Protected in a similar
 366	 * fashion to i_dirty_item, but also by the s_mutex for changes. The
 367	 * s_cap_flushing list can be walked while holding either the s_mutex
 368	 * or msdc->cap_dirty_lock. List presence can also be checked while
 369	 * holding the i_ceph_lock for this inode.
 370	 */
 371	struct list_head i_flushing_item;
 372
 373	/* we need to track cap writeback on a per-cap-bit basis, to allow
 374	 * overlapping, pipelined cap flushes to the mds.  we can probably
 375	 * reduce the tid to 8 bits if we're concerned about inode size. */
 376	struct ceph_cap_flush *i_prealloc_cap_flush;
 377	struct list_head i_cap_flush_list;
 378	wait_queue_head_t i_cap_wq;      /* threads waiting on a capability */
 
 379	unsigned long i_hold_caps_max; /* jiffies */
 380	struct list_head i_cap_delay_list;  /* for delayed cap release to mds */
 
 
 
 381	struct ceph_cap_reservation i_cap_migration_resv;
 382	struct list_head i_cap_snaps;   /* snapped state pending flush to mds */
 383	struct ceph_snap_context *i_head_snapc;  /* set if wr_buffer_head > 0 or
 384						    dirty|flushing caps */
 385	unsigned i_snap_caps;           /* cap bits for snapped files */
 386
 387	unsigned long i_last_rd;
 388	unsigned long i_last_wr;
 389	int i_nr_by_mode[CEPH_FILE_MODE_BITS];  /* open file counts */
 390
 391	struct mutex i_truncate_mutex;
 392	u32 i_truncate_seq;        /* last truncate to smaller size */
 393	u64 i_truncate_size;       /*  and the size we last truncated down to */
 394	int i_truncate_pending;    /*  still need to call vmtruncate */
 395
 396	u64 i_max_size;            /* max file size authorized by mds */
 397	u64 i_reported_size; /* (max_)size reported to or requested of mds */
 398	u64 i_wanted_max_size;     /* offset we'd like to write too */
 399	u64 i_requested_max_size;  /* max_size we've requested */
 400
 401	/* held references to caps */
 402	int i_pin_ref;
 403	int i_rd_ref, i_rdcache_ref, i_wr_ref, i_wb_ref, i_fx_ref;
 404	int i_wrbuffer_ref, i_wrbuffer_ref_head;
 405	atomic_t i_filelock_ref;
 406	atomic_t i_shared_gen;       /* increment each time we get FILE_SHARED */
 407	u32 i_rdcache_gen;      /* incremented each time we get FILE_CACHE. */
 408	u32 i_rdcache_revoking; /* RDCACHE gen to async invalidate, if any */
 409
 
 410	struct list_head i_unsafe_dirops; /* uncommitted mds dir ops */
 411	struct list_head i_unsafe_iops;   /* uncommitted mds inode ops */
 412	spinlock_t i_unsafe_lock;
 413
 414	union {
 415		struct ceph_snap_realm *i_snap_realm; /* snap realm (if caps) */
 416		struct ceph_snapid_map *i_snapid_map; /* snapid -> dev_t */
 417	};
 418	int i_snap_realm_counter; /* snap realm (if caps) */
 419	struct list_head i_snap_realm_item;
 420	struct list_head i_snap_flush_item;
 421	struct timespec64 i_btime;
 422	struct timespec64 i_snap_btime;
 423
 424	struct work_struct i_work;
 425	unsigned long  i_work_mask;
 426
 427#ifdef CONFIG_CEPH_FSCACHE
 428	struct fscache_cookie *fscache;
 429	u32 i_fscache_gen;
 430#endif
 431	errseq_t i_meta_err;
 432
 433	struct inode vfs_inode; /* at end */
 434};
 435
 436static inline struct ceph_inode_info *
 437ceph_inode(const struct inode *inode)
 438{
 439	return container_of(inode, struct ceph_inode_info, vfs_inode);
 440}
 441
 442static inline struct ceph_fs_client *
 443ceph_inode_to_client(const struct inode *inode)
 444{
 445	return (struct ceph_fs_client *)inode->i_sb->s_fs_info;
 446}
 447
 448static inline struct ceph_fs_client *
 449ceph_sb_to_client(const struct super_block *sb)
 450{
 451	return (struct ceph_fs_client *)sb->s_fs_info;
 452}
 453
 454static inline struct ceph_vino
 455ceph_vino(const struct inode *inode)
 456{
 457	return ceph_inode(inode)->i_vino;
 458}
 459
 460static inline u32 ceph_ino_to_ino32(u64 vino)
 
 
 
 
 
 
 
 
 461{
 462	u32 ino = vino & 0xffffffff;
 463	ino ^= vino >> 32;
 464	if (!ino)
 465		ino = 2;
 466	return ino;
 467}
 468
 469/*
 470 * Inode numbers in cephfs are 64 bits, but inode->i_ino is 32-bits on
 471 * some arches. We generally do not use this value inside the ceph driver, but
 472 * we do want to set it to something, so that generic vfs code has an
 473 * appropriate value for tracepoints and the like.
 474 */
 475static inline ino_t ceph_vino_to_ino_t(struct ceph_vino vino)
 476{
 477	if (sizeof(ino_t) == sizeof(u32))
 478		return ceph_ino_to_ino32(vino.ino);
 
 479	return (ino_t)vino.ino;
 
 480}
 481
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 482/* for printf-style formatting */
 483#define ceph_vinop(i) ceph_inode(i)->i_vino.ino, ceph_inode(i)->i_vino.snap
 484
 485static inline u64 ceph_ino(struct inode *inode)
 486{
 487	return ceph_inode(inode)->i_vino.ino;
 488}
 489
 490static inline u64 ceph_snap(struct inode *inode)
 491{
 492	return ceph_inode(inode)->i_vino.snap;
 493}
 494
 495/**
 496 * ceph_present_ino - format an inode number for presentation to userland
 497 * @sb: superblock where the inode lives
 498 * @ino: inode number to (possibly) convert
 499 *
 500 * If the user mounted with the ino32 option, then the 64-bit value needs
 501 * to be converted to something that can fit inside 32 bits. Note that
 502 * internal kernel code never uses this value, so this is entirely for
 503 * userland consumption.
 504 */
 505static inline u64 ceph_present_ino(struct super_block *sb, u64 ino)
 506{
 507	if (unlikely(ceph_test_mount_opt(ceph_sb_to_client(sb), INO32)))
 508		return ceph_ino_to_ino32(ino);
 509	return ino;
 510}
 511
 512static inline u64 ceph_present_inode(struct inode *inode)
 513{
 514	return ceph_present_ino(inode->i_sb, ceph_ino(inode));
 515}
 516
 517static inline int ceph_ino_compare(struct inode *inode, void *data)
 518{
 519	struct ceph_vino *pvino = (struct ceph_vino *)data;
 520	struct ceph_inode_info *ci = ceph_inode(inode);
 521	return ci->i_vino.ino == pvino->ino &&
 522		ci->i_vino.snap == pvino->snap;
 523}
 524
 525
 526static inline struct inode *ceph_find_inode(struct super_block *sb,
 527					    struct ceph_vino vino)
 528{
 529	/*
 530	 * NB: The hashval will be run through the fs/inode.c hash function
 531	 * anyway, so there is no need to squash the inode number down to
 532	 * 32-bits first. Just use low-order bits on arches with 32-bit long.
 533	 */
 534	return ilookup5(sb, (unsigned long)vino.ino, ceph_ino_compare, &vino);
 535}
 536
 537
 538/*
 539 * Ceph inode.
 540 */
 541#define CEPH_I_DIR_ORDERED	(1 << 0)  /* dentries in dir are ordered */
 542#define CEPH_I_FLUSH		(1 << 2)  /* do not delay flush of dirty metadata */
 543#define CEPH_I_POOL_PERM	(1 << 3)  /* pool rd/wr bits are valid */
 544#define CEPH_I_POOL_RD		(1 << 4)  /* can read from pool */
 545#define CEPH_I_POOL_WR		(1 << 5)  /* can write to pool */
 546#define CEPH_I_SEC_INITED	(1 << 6)  /* security initialized */
 547#define CEPH_I_KICK_FLUSH	(1 << 7)  /* kick flushing caps */
 548#define CEPH_I_FLUSH_SNAPS	(1 << 8)  /* need flush snapss */
 549#define CEPH_I_ERROR_WRITE	(1 << 9) /* have seen write errors */
 550#define CEPH_I_ERROR_FILELOCK	(1 << 10) /* have seen file lock errors */
 551#define CEPH_I_ODIRECT		(1 << 11) /* inode in direct I/O mode */
 552#define CEPH_ASYNC_CREATE_BIT	(12)	  /* async create in flight for this */
 553#define CEPH_I_ASYNC_CREATE	(1 << CEPH_ASYNC_CREATE_BIT)
 554
 555/*
 556 * Masks of ceph inode work.
 557 */
 558#define CEPH_I_WORK_WRITEBACK		0 /* writeback */
 559#define CEPH_I_WORK_INVALIDATE_PAGES	1 /* invalidate pages */
 560#define CEPH_I_WORK_VMTRUNCATE		2 /* vmtruncate */
 561
 562/*
 563 * We set the ERROR_WRITE bit when we start seeing write errors on an inode
 564 * and then clear it when they start succeeding. Note that we do a lockless
 565 * check first, and only take the lock if it looks like it needs to be changed.
 566 * The write submission code just takes this as a hint, so we're not too
 567 * worried if a few slip through in either direction.
 568 */
 569static inline void ceph_set_error_write(struct ceph_inode_info *ci)
 570{
 571	if (!(READ_ONCE(ci->i_ceph_flags) & CEPH_I_ERROR_WRITE)) {
 572		spin_lock(&ci->i_ceph_lock);
 573		ci->i_ceph_flags |= CEPH_I_ERROR_WRITE;
 574		spin_unlock(&ci->i_ceph_lock);
 575	}
 576}
 577
 578static inline void ceph_clear_error_write(struct ceph_inode_info *ci)
 579{
 580	if (READ_ONCE(ci->i_ceph_flags) & CEPH_I_ERROR_WRITE) {
 581		spin_lock(&ci->i_ceph_lock);
 582		ci->i_ceph_flags &= ~CEPH_I_ERROR_WRITE;
 583		spin_unlock(&ci->i_ceph_lock);
 584	}
 585}
 586
 587static inline void __ceph_dir_set_complete(struct ceph_inode_info *ci,
 588					   long long release_count,
 589					   long long ordered_count)
 590{
 591	/*
 592	 * Makes sure operations that setup readdir cache (update page
 593	 * cache and i_size) are strongly ordered w.r.t. the following
 594	 * atomic64_set() operations.
 595	 */
 596	smp_mb();
 597	atomic64_set(&ci->i_complete_seq[0], release_count);
 598	atomic64_set(&ci->i_complete_seq[1], ordered_count);
 599}
 600
 601static inline void __ceph_dir_clear_complete(struct ceph_inode_info *ci)
 602{
 603	atomic64_inc(&ci->i_release_count);
 604}
 605
 606static inline void __ceph_dir_clear_ordered(struct ceph_inode_info *ci)
 607{
 608	atomic64_inc(&ci->i_ordered_count);
 609}
 610
 611static inline bool __ceph_dir_is_complete(struct ceph_inode_info *ci)
 612{
 613	return atomic64_read(&ci->i_complete_seq[0]) ==
 614		atomic64_read(&ci->i_release_count);
 615}
 616
 617static inline bool __ceph_dir_is_complete_ordered(struct ceph_inode_info *ci)
 618{
 619	return  atomic64_read(&ci->i_complete_seq[0]) ==
 620		atomic64_read(&ci->i_release_count) &&
 621		atomic64_read(&ci->i_complete_seq[1]) ==
 622		atomic64_read(&ci->i_ordered_count);
 623}
 624
 625static inline void ceph_dir_clear_complete(struct inode *inode)
 626{
 627	__ceph_dir_clear_complete(ceph_inode(inode));
 628}
 629
 630static inline void ceph_dir_clear_ordered(struct inode *inode)
 631{
 632	__ceph_dir_clear_ordered(ceph_inode(inode));
 633}
 634
 635static inline bool ceph_dir_is_complete_ordered(struct inode *inode)
 636{
 637	bool ret = __ceph_dir_is_complete_ordered(ceph_inode(inode));
 638	smp_rmb();
 639	return ret;
 640}
 641
 642/* find a specific frag @f */
 643extern struct ceph_inode_frag *__ceph_find_frag(struct ceph_inode_info *ci,
 644						u32 f);
 645
 646/*
 647 * choose fragment for value @v.  copy frag content to pfrag, if leaf
 648 * exists
 649 */
 650extern u32 ceph_choose_frag(struct ceph_inode_info *ci, u32 v,
 651			    struct ceph_inode_frag *pfrag,
 652			    int *found);
 653
 654static inline struct ceph_dentry_info *ceph_dentry(const struct dentry *dentry)
 655{
 656	return (struct ceph_dentry_info *)dentry->d_fsdata;
 657}
 658
 
 
 
 
 
 
 
 
 
 
 
 
 659/*
 660 * caps helpers
 661 */
 662static inline bool __ceph_is_any_real_caps(struct ceph_inode_info *ci)
 663{
 664	return !RB_EMPTY_ROOT(&ci->i_caps);
 665}
 666
 667extern int __ceph_caps_issued(struct ceph_inode_info *ci, int *implemented);
 668extern int __ceph_caps_issued_mask(struct ceph_inode_info *ci, int mask, int t);
 669extern int __ceph_caps_issued_mask_metric(struct ceph_inode_info *ci, int mask,
 670					  int t);
 671extern int __ceph_caps_issued_other(struct ceph_inode_info *ci,
 672				    struct ceph_cap *cap);
 673
 674static inline int ceph_caps_issued(struct ceph_inode_info *ci)
 675{
 676	int issued;
 677	spin_lock(&ci->i_ceph_lock);
 678	issued = __ceph_caps_issued(ci, NULL);
 679	spin_unlock(&ci->i_ceph_lock);
 680	return issued;
 681}
 682
 683static inline int ceph_caps_issued_mask_metric(struct ceph_inode_info *ci,
 684					       int mask, int touch)
 685{
 686	int r;
 687	spin_lock(&ci->i_ceph_lock);
 688	r = __ceph_caps_issued_mask_metric(ci, mask, touch);
 689	spin_unlock(&ci->i_ceph_lock);
 690	return r;
 691}
 692
 693static inline int __ceph_caps_dirty(struct ceph_inode_info *ci)
 694{
 695	return ci->i_dirty_caps | ci->i_flushing_caps;
 696}
 697extern struct ceph_cap_flush *ceph_alloc_cap_flush(void);
 698extern void ceph_free_cap_flush(struct ceph_cap_flush *cf);
 699extern int __ceph_mark_dirty_caps(struct ceph_inode_info *ci, int mask,
 700				  struct ceph_cap_flush **pcf);
 701
 702extern int __ceph_caps_revoking_other(struct ceph_inode_info *ci,
 703				      struct ceph_cap *ocap, int mask);
 704extern int ceph_caps_revoking(struct ceph_inode_info *ci, int mask);
 705extern int __ceph_caps_used(struct ceph_inode_info *ci);
 706
 707static inline bool __ceph_is_file_opened(struct ceph_inode_info *ci)
 
 
 
 
 
 708{
 709	return ci->i_nr_by_mode[0];
 
 
 
 710}
 711extern int __ceph_caps_file_wanted(struct ceph_inode_info *ci);
 712extern int __ceph_caps_wanted(struct ceph_inode_info *ci);
 713
 714/* what the mds thinks we want */
 715extern int __ceph_caps_mds_wanted(struct ceph_inode_info *ci, bool check);
 716
 717extern void ceph_caps_init(struct ceph_mds_client *mdsc);
 718extern void ceph_caps_finalize(struct ceph_mds_client *mdsc);
 719extern void ceph_adjust_caps_max_min(struct ceph_mds_client *mdsc,
 720				     struct ceph_mount_options *fsopt);
 721extern int ceph_reserve_caps(struct ceph_mds_client *mdsc,
 722			     struct ceph_cap_reservation *ctx, int need);
 723extern void ceph_unreserve_caps(struct ceph_mds_client *mdsc,
 724			       struct ceph_cap_reservation *ctx);
 725extern void ceph_reservation_status(struct ceph_fs_client *client,
 726				    int *total, int *avail, int *used,
 727				    int *reserved, int *min);
 728
 729
 730
 731/*
 732 * we keep buffered readdir results attached to file->private_data
 733 */
 734#define CEPH_F_SYNC     1
 735#define CEPH_F_ATEND    2
 736
 737struct ceph_file_info {
 738	short fmode;     /* initialized on open */
 739	short flags;     /* CEPH_F_* */
 740
 741	spinlock_t rw_contexts_lock;
 742	struct list_head rw_contexts;
 743
 744	errseq_t meta_err;
 745	u32 filp_gen;
 746	atomic_t num_locks;
 747};
 748
 749struct ceph_dir_file_info {
 750	struct ceph_file_info file_info;
 751
 752	/* readdir: position within the dir */
 753	u32 frag;
 754	struct ceph_mds_request *last_readdir;
 755
 756	/* readdir: position within a frag */
 757	unsigned next_offset;  /* offset of next chunk (last_name's + 1) */
 
 758	char *last_name;       /* last entry in previous chunk */
 759	long long dir_release_count;
 760	long long dir_ordered_count;
 761	int readdir_cache_idx;
 762
 763	/* used for -o dirstat read() on directory thing */
 764	char *dir_info;
 765	int dir_info_len;
 766};
 767
 768struct ceph_rw_context {
 769	struct list_head list;
 770	struct task_struct *thread;
 771	int caps;
 772};
 773
 774#define CEPH_DEFINE_RW_CONTEXT(_name, _caps)	\
 775	struct ceph_rw_context _name = {	\
 776		.thread = current,		\
 777		.caps = _caps,			\
 778	}
 779
 780static inline void ceph_add_rw_context(struct ceph_file_info *cf,
 781				       struct ceph_rw_context *ctx)
 782{
 783	spin_lock(&cf->rw_contexts_lock);
 784	list_add(&ctx->list, &cf->rw_contexts);
 785	spin_unlock(&cf->rw_contexts_lock);
 786}
 787
 788static inline void ceph_del_rw_context(struct ceph_file_info *cf,
 789				       struct ceph_rw_context *ctx)
 790{
 791	spin_lock(&cf->rw_contexts_lock);
 792	list_del(&ctx->list);
 793	spin_unlock(&cf->rw_contexts_lock);
 794}
 795
 796static inline struct ceph_rw_context*
 797ceph_find_rw_context(struct ceph_file_info *cf)
 798{
 799	struct ceph_rw_context *ctx, *found = NULL;
 800	spin_lock(&cf->rw_contexts_lock);
 801	list_for_each_entry(ctx, &cf->rw_contexts, list) {
 802		if (ctx->thread == current) {
 803			found = ctx;
 804			break;
 805		}
 806	}
 807	spin_unlock(&cf->rw_contexts_lock);
 808	return found;
 809}
 810
 811struct ceph_readdir_cache_control {
 812	struct page  *page;
 813	struct dentry **dentries;
 814	int index;
 815};
 816
 817/*
 818 * A "snap realm" describes a subset of the file hierarchy sharing
 819 * the same set of snapshots that apply to it.  The realms themselves
 820 * are organized into a hierarchy, such that children inherit (some of)
 821 * the snapshots of their parents.
 822 *
 823 * All inodes within the realm that have capabilities are linked into a
 824 * per-realm list.
 825 */
 826struct ceph_snap_realm {
 827	u64 ino;
 828	struct inode *inode;
 829	atomic_t nref;
 830	struct rb_node node;
 831
 832	u64 created, seq;
 833	u64 parent_ino;
 834	u64 parent_since;   /* snapid when our current parent became so */
 835
 836	u64 *prior_parent_snaps;      /* snaps inherited from any parents we */
 837	u32 num_prior_parent_snaps;   /*  had prior to parent_since */
 838	u64 *snaps;                   /* snaps specific to this realm */
 839	u32 num_snaps;
 840
 841	struct ceph_snap_realm *parent;
 842	struct list_head children;       /* list of child realms */
 843	struct list_head child_item;
 844
 845	struct list_head empty_item;     /* if i have ref==0 */
 846
 847	struct list_head dirty_item;     /* if realm needs new context */
 848
 849	/* the current set of snaps for this realm */
 850	struct ceph_snap_context *cached_context;
 851
 852	struct list_head inodes_with_caps;
 853	spinlock_t inodes_with_caps_lock;
 854};
 855
 856static inline int default_congestion_kb(void)
 857{
 858	int congestion_kb;
 859
 860	/*
 861	 * Copied from NFS
 862	 *
 863	 * congestion size, scale with available memory.
 864	 *
 865	 *  64MB:    8192k
 866	 * 128MB:   11585k
 867	 * 256MB:   16384k
 868	 * 512MB:   23170k
 869	 *   1GB:   32768k
 870	 *   2GB:   46340k
 871	 *   4GB:   65536k
 872	 *   8GB:   92681k
 873	 *  16GB:  131072k
 874	 *
 875	 * This allows larger machines to have larger/more transfers.
 876	 * Limit the default to 256M
 877	 */
 878	congestion_kb = (16*int_sqrt(totalram_pages())) << (PAGE_SHIFT-10);
 879	if (congestion_kb > 256*1024)
 880		congestion_kb = 256*1024;
 881
 882	return congestion_kb;
 883}
 884
 885
 886/* super.c */
 887extern int ceph_force_reconnect(struct super_block *sb);
 888/* snap.c */
 889struct ceph_snap_realm *ceph_lookup_snap_realm(struct ceph_mds_client *mdsc,
 890					       u64 ino);
 891extern void ceph_get_snap_realm(struct ceph_mds_client *mdsc,
 892				struct ceph_snap_realm *realm);
 893extern void ceph_put_snap_realm(struct ceph_mds_client *mdsc,
 894				struct ceph_snap_realm *realm);
 895extern int ceph_update_snap_trace(struct ceph_mds_client *m,
 896				  void *p, void *e, bool deletion,
 897				  struct ceph_snap_realm **realm_ret);
 898extern void ceph_handle_snap(struct ceph_mds_client *mdsc,
 899			     struct ceph_mds_session *session,
 900			     struct ceph_msg *msg);
 901extern void ceph_queue_cap_snap(struct ceph_inode_info *ci);
 902extern int __ceph_finish_cap_snap(struct ceph_inode_info *ci,
 903				  struct ceph_cap_snap *capsnap);
 904extern void ceph_cleanup_empty_realms(struct ceph_mds_client *mdsc);
 905
 906extern struct ceph_snapid_map *ceph_get_snapid_map(struct ceph_mds_client *mdsc,
 907						   u64 snap);
 908extern void ceph_put_snapid_map(struct ceph_mds_client* mdsc,
 909				struct ceph_snapid_map *sm);
 910extern void ceph_trim_snapid_map(struct ceph_mds_client *mdsc);
 911extern void ceph_cleanup_snapid_map(struct ceph_mds_client *mdsc);
 912
 913
 914/*
 915 * a cap_snap is "pending" if it is still awaiting an in-progress
 916 * sync write (that may/may not still update size, mtime, etc.).
 917 */
 918static inline bool __ceph_have_pending_cap_snap(struct ceph_inode_info *ci)
 919{
 920	return !list_empty(&ci->i_cap_snaps) &&
 921	       list_last_entry(&ci->i_cap_snaps, struct ceph_cap_snap,
 922			       ci_item)->writing;
 923}
 924
 925/* inode.c */
 926struct ceph_mds_reply_info_in;
 927struct ceph_mds_reply_dirfrag;
 928
 929extern const struct inode_operations ceph_file_iops;
 930
 931extern struct inode *ceph_alloc_inode(struct super_block *sb);
 932extern void ceph_evict_inode(struct inode *inode);
 933extern void ceph_free_inode(struct inode *inode);
 934
 935extern struct inode *ceph_get_inode(struct super_block *sb,
 936				    struct ceph_vino vino);
 937extern struct inode *ceph_get_snapdir(struct inode *parent);
 938extern int ceph_fill_file_size(struct inode *inode, int issued,
 939			       u32 truncate_seq, u64 truncate_size, u64 size);
 940extern void ceph_fill_file_time(struct inode *inode, int issued,
 941				u64 time_warp_seq, struct timespec64 *ctime,
 942				struct timespec64 *mtime,
 943				struct timespec64 *atime);
 944extern int ceph_fill_inode(struct inode *inode, struct page *locked_page,
 945		    struct ceph_mds_reply_info_in *iinfo,
 946		    struct ceph_mds_reply_dirfrag *dirinfo,
 947		    struct ceph_mds_session *session, int cap_fmode,
 948		    struct ceph_cap_reservation *caps_reservation);
 949extern int ceph_fill_trace(struct super_block *sb,
 950			   struct ceph_mds_request *req);
 
 951extern int ceph_readdir_prepopulate(struct ceph_mds_request *req,
 952				    struct ceph_mds_session *session);
 953
 954extern int ceph_inode_holds_cap(struct inode *inode, int mask);
 955
 956extern bool ceph_inode_set_size(struct inode *inode, loff_t size);
 957extern void __ceph_do_pending_vmtruncate(struct inode *inode);
 958extern void ceph_queue_vmtruncate(struct inode *inode);
 
 959extern void ceph_queue_invalidate(struct inode *inode);
 960extern void ceph_queue_writeback(struct inode *inode);
 961extern void ceph_async_iput(struct inode *inode);
 962
 963extern int __ceph_do_getattr(struct inode *inode, struct page *locked_page,
 964			     int mask, bool force);
 965static inline int ceph_do_getattr(struct inode *inode, int mask, bool force)
 966{
 967	return __ceph_do_getattr(inode, NULL, mask, force);
 968}
 969extern int ceph_permission(struct inode *inode, int mask);
 970extern int __ceph_setattr(struct inode *inode, struct iattr *attr);
 971extern int ceph_setattr(struct dentry *dentry, struct iattr *attr);
 972extern int ceph_getattr(const struct path *path, struct kstat *stat,
 973			u32 request_mask, unsigned int flags);
 974
 975/* xattr.c */
 976int __ceph_setxattr(struct inode *, const char *, const void *, size_t, int);
 977ssize_t __ceph_getxattr(struct inode *, const char *, void *, size_t);
 
 978extern ssize_t ceph_listxattr(struct dentry *, char *, size_t);
 979extern struct ceph_buffer *__ceph_build_xattrs_blob(struct ceph_inode_info *ci);
 
 980extern void __ceph_destroy_xattrs(struct ceph_inode_info *ci);
 981extern const struct xattr_handler *ceph_xattr_handlers[];
 982
 983struct ceph_acl_sec_ctx {
 984#ifdef CONFIG_CEPH_FS_POSIX_ACL
 985	void *default_acl;
 986	void *acl;
 987#endif
 988#ifdef CONFIG_CEPH_FS_SECURITY_LABEL
 989	void *sec_ctx;
 990	u32 sec_ctxlen;
 991#endif
 992	struct ceph_pagelist *pagelist;
 993};
 994
 995#ifdef CONFIG_SECURITY
 996extern bool ceph_security_xattr_deadlock(struct inode *in);
 997extern bool ceph_security_xattr_wanted(struct inode *in);
 998#else
 999static inline bool ceph_security_xattr_deadlock(struct inode *in)
1000{
1001	return false;
1002}
1003static inline bool ceph_security_xattr_wanted(struct inode *in)
1004{
1005	return false;
1006}
1007#endif
1008
1009#ifdef CONFIG_CEPH_FS_SECURITY_LABEL
1010extern int ceph_security_init_secctx(struct dentry *dentry, umode_t mode,
1011				     struct ceph_acl_sec_ctx *ctx);
1012static inline void ceph_security_invalidate_secctx(struct inode *inode)
1013{
1014	security_inode_invalidate_secctx(inode);
1015}
1016#else
1017static inline int ceph_security_init_secctx(struct dentry *dentry, umode_t mode,
1018					    struct ceph_acl_sec_ctx *ctx)
1019{
1020	return 0;
1021}
1022static inline void ceph_security_invalidate_secctx(struct inode *inode)
1023{
1024}
1025#endif
1026
1027void ceph_release_acl_sec_ctx(struct ceph_acl_sec_ctx *as_ctx);
1028
1029/* acl.c */
1030#ifdef CONFIG_CEPH_FS_POSIX_ACL
1031
1032struct posix_acl *ceph_get_acl(struct inode *, int);
1033int ceph_set_acl(struct inode *inode, struct posix_acl *acl, int type);
1034int ceph_pre_init_acls(struct inode *dir, umode_t *mode,
1035		       struct ceph_acl_sec_ctx *as_ctx);
1036void ceph_init_inode_acls(struct inode *inode,
1037			  struct ceph_acl_sec_ctx *as_ctx);
1038
1039static inline void ceph_forget_all_cached_acls(struct inode *inode)
1040{
1041       forget_all_cached_acls(inode);
1042}
1043
1044#else
1045
1046#define ceph_get_acl NULL
1047#define ceph_set_acl NULL
1048
1049static inline int ceph_pre_init_acls(struct inode *dir, umode_t *mode,
1050				     struct ceph_acl_sec_ctx *as_ctx)
1051{
1052	return 0;
1053}
1054static inline void ceph_init_inode_acls(struct inode *inode,
1055					struct ceph_acl_sec_ctx *as_ctx)
1056{
1057}
1058static inline int ceph_acl_chmod(struct dentry *dentry, struct inode *inode)
1059{
1060	return 0;
1061}
1062
1063static inline void ceph_forget_all_cached_acls(struct inode *inode)
1064{
1065}
1066
1067#endif
1068
1069/* caps.c */
1070extern const char *ceph_cap_string(int c);
1071extern void ceph_handle_caps(struct ceph_mds_session *session,
1072			     struct ceph_msg *msg);
1073extern struct ceph_cap *ceph_get_cap(struct ceph_mds_client *mdsc,
1074				     struct ceph_cap_reservation *ctx);
1075extern void ceph_add_cap(struct inode *inode,
1076			 struct ceph_mds_session *session, u64 cap_id,
1077			 unsigned issued, unsigned wanted,
1078			 unsigned cap, unsigned seq, u64 realmino, int flags,
1079			 struct ceph_cap **new_cap);
1080extern void __ceph_remove_cap(struct ceph_cap *cap, bool queue_release);
1081extern void __ceph_remove_caps(struct ceph_inode_info *ci);
 
 
 
1082extern void ceph_put_cap(struct ceph_mds_client *mdsc,
1083			 struct ceph_cap *cap);
1084extern int ceph_is_any_caps(struct inode *inode);
1085
 
1086extern int ceph_write_inode(struct inode *inode, struct writeback_control *wbc);
1087extern int ceph_fsync(struct file *file, loff_t start, loff_t end,
1088		      int datasync);
1089extern void ceph_early_kick_flushing_caps(struct ceph_mds_client *mdsc,
1090					  struct ceph_mds_session *session);
1091extern void ceph_kick_flushing_caps(struct ceph_mds_client *mdsc,
1092				    struct ceph_mds_session *session);
1093void ceph_kick_flushing_inode_caps(struct ceph_mds_session *session,
1094				   struct ceph_inode_info *ci);
1095extern struct ceph_cap *ceph_get_cap_for_mds(struct ceph_inode_info *ci,
1096					     int mds);
1097extern void ceph_take_cap_refs(struct ceph_inode_info *ci, int caps,
1098				bool snap_rwsem_locked);
1099extern void ceph_get_cap_refs(struct ceph_inode_info *ci, int caps);
1100extern void ceph_put_cap_refs(struct ceph_inode_info *ci, int had);
1101extern void ceph_put_cap_refs_no_check_caps(struct ceph_inode_info *ci,
1102					    int had);
1103extern void ceph_put_wrbuffer_cap_refs(struct ceph_inode_info *ci, int nr,
1104				       struct ceph_snap_context *snapc);
1105extern void ceph_flush_snaps(struct ceph_inode_info *ci,
1106			     struct ceph_mds_session **psession);
1107extern bool __ceph_should_report_size(struct ceph_inode_info *ci);
1108extern void ceph_check_caps(struct ceph_inode_info *ci, int flags,
1109			    struct ceph_mds_session *session);
1110extern void ceph_check_delayed_caps(struct ceph_mds_client *mdsc);
1111extern void ceph_flush_dirty_caps(struct ceph_mds_client *mdsc);
1112extern int  ceph_drop_caps_for_unlink(struct inode *inode);
1113extern int ceph_encode_inode_release(void **p, struct inode *inode,
1114				     int mds, int drop, int unless, int force);
1115extern int ceph_encode_dentry_release(void **p, struct dentry *dn,
1116				      struct inode *dir,
1117				      int mds, int drop, int unless);
1118
1119extern int ceph_get_caps(struct file *filp, int need, int want,
1120			 loff_t endoff, int *got, struct page **pinned_page);
1121extern int ceph_try_get_caps(struct inode *inode,
1122			     int need, int want, bool nonblock, int *got);
1123
1124/* for counting open files by mode */
1125extern void ceph_get_fmode(struct ceph_inode_info *ci, int mode, int count);
1126extern void ceph_put_fmode(struct ceph_inode_info *ci, int mode, int count);
1127extern void __ceph_touch_fmode(struct ceph_inode_info *ci,
1128			       struct ceph_mds_client *mdsc, int fmode);
 
1129
1130/* addr.c */
1131extern const struct address_space_operations ceph_aops;
1132extern int ceph_mmap(struct file *file, struct vm_area_struct *vma);
1133extern int ceph_uninline_data(struct file *filp, struct page *locked_page);
1134extern int ceph_pool_perm_check(struct inode *inode, int need);
1135extern void ceph_pool_perm_destroy(struct ceph_mds_client* mdsc);
1136
1137/* file.c */
1138extern const struct file_operations ceph_file_fops;
1139
1140extern int ceph_renew_caps(struct inode *inode, int fmode);
 
 
 
 
 
 
1141extern int ceph_open(struct inode *inode, struct file *file);
1142extern int ceph_atomic_open(struct inode *dir, struct dentry *dentry,
1143			    struct file *file, unsigned flags, umode_t mode);
 
1144extern int ceph_release(struct inode *inode, struct file *filp);
1145extern void ceph_fill_inline_data(struct inode *inode, struct page *locked_page,
1146				  char *data, size_t len);
1147
1148/* dir.c */
1149extern const struct file_operations ceph_dir_fops;
1150extern const struct file_operations ceph_snapdir_fops;
1151extern const struct inode_operations ceph_dir_iops;
1152extern const struct inode_operations ceph_snapdir_iops;
1153extern const struct dentry_operations ceph_dentry_ops;
1154
1155extern loff_t ceph_make_fpos(unsigned high, unsigned off, bool hash_order);
1156extern int ceph_handle_notrace_create(struct inode *dir, struct dentry *dentry);
1157extern int ceph_handle_snapdir(struct ceph_mds_request *req,
1158			       struct dentry *dentry, int err);
1159extern struct dentry *ceph_finish_lookup(struct ceph_mds_request *req,
1160					 struct dentry *dentry, int err);
1161
1162extern void __ceph_dentry_lease_touch(struct ceph_dentry_info *di);
1163extern void __ceph_dentry_dir_lease_touch(struct ceph_dentry_info *di);
 
1164extern void ceph_invalidate_dentry_lease(struct dentry *dentry);
1165extern int ceph_trim_dentries(struct ceph_mds_client *mdsc);
1166extern unsigned ceph_dentry_hash(struct inode *dir, struct dentry *dn);
1167extern void ceph_readdir_cache_release(struct ceph_readdir_cache_control *ctl);
 
 
 
 
 
 
 
1168
1169/* ioctl.c */
1170extern long ceph_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
1171
1172/* export.c */
1173extern const struct export_operations ceph_export_ops;
1174struct inode *ceph_lookup_inode(struct super_block *sb, u64 ino);
1175
1176/* locks.c */
1177extern __init void ceph_flock_init(void);
1178extern int ceph_lock(struct file *file, int cmd, struct file_lock *fl);
1179extern int ceph_flock(struct file *file, int cmd, struct file_lock *fl);
1180extern void ceph_count_locks(struct inode *inode, int *p_num, int *f_num);
1181extern int ceph_encode_locks_to_buffer(struct inode *inode,
1182				       struct ceph_filelock *flocks,
1183				       int num_fcntl_locks,
1184				       int num_flock_locks);
1185extern int ceph_locks_to_pagelist(struct ceph_filelock *flocks,
1186				  struct ceph_pagelist *pagelist,
1187				  int num_fcntl_locks, int num_flock_locks);
1188
1189/* debugfs.c */
1190extern void ceph_fs_debugfs_init(struct ceph_fs_client *client);
1191extern void ceph_fs_debugfs_cleanup(struct ceph_fs_client *client);
1192
1193/* quota.c */
1194static inline bool __ceph_has_any_quota(struct ceph_inode_info *ci)
1195{
1196	return ci->i_max_files || ci->i_max_bytes;
1197}
1198
1199extern void ceph_adjust_quota_realms_count(struct inode *inode, bool inc);
1200
1201static inline void __ceph_update_quota(struct ceph_inode_info *ci,
1202				       u64 max_bytes, u64 max_files)
1203{
1204	bool had_quota, has_quota;
1205	had_quota = __ceph_has_any_quota(ci);
1206	ci->i_max_bytes = max_bytes;
1207	ci->i_max_files = max_files;
1208	has_quota = __ceph_has_any_quota(ci);
1209
1210	if (had_quota != has_quota)
1211		ceph_adjust_quota_realms_count(&ci->vfs_inode, has_quota);
1212}
1213
1214extern void ceph_handle_quota(struct ceph_mds_client *mdsc,
1215			      struct ceph_mds_session *session,
1216			      struct ceph_msg *msg);
1217extern bool ceph_quota_is_max_files_exceeded(struct inode *inode);
1218extern bool ceph_quota_is_max_bytes_exceeded(struct inode *inode,
1219					     loff_t newlen);
1220extern bool ceph_quota_is_max_bytes_approaching(struct inode *inode,
1221						loff_t newlen);
1222extern bool ceph_quota_update_statfs(struct ceph_fs_client *fsc,
1223				     struct kstatfs *buf);
1224extern int ceph_quota_check_rename(struct ceph_mds_client *mdsc,
1225				   struct inode *old, struct inode *new);
1226extern void ceph_cleanup_quotarealms_inodes(struct ceph_mds_client *mdsc);
1227
1228#endif /* _FS_CEPH_SUPER_H */