Loading...
1#ifndef _FS_CEPH_SUPER_H
2#define _FS_CEPH_SUPER_H
3
4#include <linux/ceph/ceph_debug.h>
5
6#include <asm/unaligned.h>
7#include <linux/backing-dev.h>
8#include <linux/completion.h>
9#include <linux/exportfs.h>
10#include <linux/fs.h>
11#include <linux/mempool.h>
12#include <linux/pagemap.h>
13#include <linux/wait.h>
14#include <linux/writeback.h>
15#include <linux/slab.h>
16
17#include <linux/ceph/libceph.h>
18
19/* f_type in struct statfs */
20#define CEPH_SUPER_MAGIC 0x00c36400
21
22/* large granularity for statfs utilization stats to facilitate
23 * large volume sizes on 32-bit machines. */
24#define CEPH_BLOCK_SHIFT 20 /* 1 MB */
25#define CEPH_BLOCK (1 << CEPH_BLOCK_SHIFT)
26
27#define CEPH_MOUNT_OPT_DIRSTAT (1<<4) /* `cat dirname` for stats */
28#define CEPH_MOUNT_OPT_RBYTES (1<<5) /* dir st_bytes = rbytes */
29#define CEPH_MOUNT_OPT_NOASYNCREADDIR (1<<7) /* no dcache readdir */
30#define CEPH_MOUNT_OPT_INO32 (1<<8) /* 32 bit inos */
31#define CEPH_MOUNT_OPT_DCACHE (1<<9) /* use dcache for readdir etc */
32
33#define CEPH_MOUNT_OPT_DEFAULT (CEPH_MOUNT_OPT_RBYTES)
34
35#define ceph_set_mount_opt(fsc, opt) \
36 (fsc)->mount_options->flags |= CEPH_MOUNT_OPT_##opt;
37#define ceph_test_mount_opt(fsc, opt) \
38 (!!((fsc)->mount_options->flags & CEPH_MOUNT_OPT_##opt))
39
40#define CEPH_RSIZE_DEFAULT 0 /* max read size */
41#define CEPH_RASIZE_DEFAULT (8192*1024) /* readahead */
42#define CEPH_MAX_READDIR_DEFAULT 1024
43#define CEPH_MAX_READDIR_BYTES_DEFAULT (512*1024)
44#define CEPH_SNAPDIRNAME_DEFAULT ".snap"
45
46struct ceph_mount_options {
47 int flags;
48 int sb_flags;
49
50 int wsize; /* max write size */
51 int rsize; /* max read size */
52 int rasize; /* max readahead */
53 int congestion_kb; /* max writeback in flight */
54 int caps_wanted_delay_min, caps_wanted_delay_max;
55 int cap_release_safety;
56 int max_readdir; /* max readdir result (entires) */
57 int max_readdir_bytes; /* max readdir result (bytes) */
58
59 /*
60 * everything above this point can be memcmp'd; everything below
61 * is handled in compare_mount_options()
62 */
63
64 char *snapdir_name; /* default ".snap" */
65};
66
67struct ceph_fs_client {
68 struct super_block *sb;
69
70 struct ceph_mount_options *mount_options;
71 struct ceph_client *client;
72
73 unsigned long mount_state;
74 int min_caps; /* min caps i added */
75
76 struct ceph_mds_client *mdsc;
77
78 /* writeback */
79 mempool_t *wb_pagevec_pool;
80 struct workqueue_struct *wb_wq;
81 struct workqueue_struct *pg_inv_wq;
82 struct workqueue_struct *trunc_wq;
83 atomic_long_t writeback_count;
84
85 struct backing_dev_info backing_dev_info;
86
87#ifdef CONFIG_DEBUG_FS
88 struct dentry *debugfs_dentry_lru, *debugfs_caps;
89 struct dentry *debugfs_congestion_kb;
90 struct dentry *debugfs_bdi;
91 struct dentry *debugfs_mdsc, *debugfs_mdsmap;
92#endif
93};
94
95
96/*
97 * File i/o capability. This tracks shared state with the metadata
98 * server that allows us to cache or writeback attributes or to read
99 * and write data. For any given inode, we should have one or more
100 * capabilities, one issued by each metadata server, and our
101 * cumulative access is the OR of all issued capabilities.
102 *
103 * Each cap is referenced by the inode's i_caps rbtree and by per-mds
104 * session capability lists.
105 */
106struct ceph_cap {
107 struct ceph_inode_info *ci;
108 struct rb_node ci_node; /* per-ci cap tree */
109 struct ceph_mds_session *session;
110 struct list_head session_caps; /* per-session caplist */
111 int mds;
112 u64 cap_id; /* unique cap id (mds provided) */
113 int issued; /* latest, from the mds */
114 int implemented; /* implemented superset of issued (for revocation) */
115 int mds_wanted;
116 u32 seq, issue_seq, mseq;
117 u32 cap_gen; /* active/stale cycle */
118 unsigned long last_used;
119 struct list_head caps_item;
120};
121
122#define CHECK_CAPS_NODELAY 1 /* do not delay any further */
123#define CHECK_CAPS_AUTHONLY 2 /* only check auth cap */
124#define CHECK_CAPS_FLUSH 4 /* flush any dirty caps */
125
126/*
127 * Snapped cap state that is pending flush to mds. When a snapshot occurs,
128 * we first complete any in-process sync writes and writeback any dirty
129 * data before flushing the snapped state (tracked here) back to the MDS.
130 */
131struct ceph_cap_snap {
132 atomic_t nref;
133 struct ceph_inode_info *ci;
134 struct list_head ci_item, flushing_item;
135
136 u64 follows, flush_tid;
137 int issued, dirty;
138 struct ceph_snap_context *context;
139
140 umode_t mode;
141 uid_t uid;
142 gid_t gid;
143
144 struct ceph_buffer *xattr_blob;
145 u64 xattr_version;
146
147 u64 size;
148 struct timespec mtime, atime, ctime;
149 u64 time_warp_seq;
150 int writing; /* a sync write is still in progress */
151 int dirty_pages; /* dirty pages awaiting writeback */
152};
153
154static inline void ceph_put_cap_snap(struct ceph_cap_snap *capsnap)
155{
156 if (atomic_dec_and_test(&capsnap->nref)) {
157 if (capsnap->xattr_blob)
158 ceph_buffer_put(capsnap->xattr_blob);
159 kfree(capsnap);
160 }
161}
162
163/*
164 * The frag tree describes how a directory is fragmented, potentially across
165 * multiple metadata servers. It is also used to indicate points where
166 * metadata authority is delegated, and whether/where metadata is replicated.
167 *
168 * A _leaf_ frag will be present in the i_fragtree IFF there is
169 * delegation info. That is, if mds >= 0 || ndist > 0.
170 */
171#define CEPH_MAX_DIRFRAG_REP 4
172
173struct ceph_inode_frag {
174 struct rb_node node;
175
176 /* fragtree state */
177 u32 frag;
178 int split_by; /* i.e. 2^(split_by) children */
179
180 /* delegation and replication info */
181 int mds; /* -1 if same authority as parent */
182 int ndist; /* >0 if replicated */
183 int dist[CEPH_MAX_DIRFRAG_REP];
184};
185
186/*
187 * We cache inode xattrs as an encoded blob until they are first used,
188 * at which point we parse them into an rbtree.
189 */
190struct ceph_inode_xattr {
191 struct rb_node node;
192
193 const char *name;
194 int name_len;
195 const char *val;
196 int val_len;
197 int dirty;
198
199 int should_free_name;
200 int should_free_val;
201};
202
203/*
204 * Ceph dentry state
205 */
206struct ceph_dentry_info {
207 unsigned long flags;
208 struct ceph_mds_session *lease_session;
209 u32 lease_gen, lease_shared_gen;
210 u32 lease_seq;
211 unsigned long lease_renew_after, lease_renew_from;
212 struct list_head lru;
213 struct dentry *dentry;
214 u64 time;
215 u64 offset;
216};
217
218/*
219 * dentry flags
220 *
221 * The locking for D_COMPLETE is a bit odd:
222 * - we can clear it at almost any time (see ceph_d_prune)
223 * - it is only meaningful if:
224 * - we hold dir inode i_ceph_lock
225 * - we hold dir FILE_SHARED caps
226 * - the dentry D_COMPLETE is set
227 */
228#define CEPH_D_COMPLETE 1 /* if set, d_u.d_subdirs is complete directory */
229
230struct ceph_inode_xattrs_info {
231 /*
232 * (still encoded) xattr blob. we avoid the overhead of parsing
233 * this until someone actually calls getxattr, etc.
234 *
235 * blob->vec.iov_len == 4 implies there are no xattrs; blob ==
236 * NULL means we don't know.
237 */
238 struct ceph_buffer *blob, *prealloc_blob;
239
240 struct rb_root index;
241 bool dirty;
242 int count;
243 int names_size;
244 int vals_size;
245 u64 version, index_version;
246};
247
248/*
249 * Ceph inode.
250 */
251struct ceph_inode_info {
252 struct ceph_vino i_vino; /* ceph ino + snap */
253
254 spinlock_t i_ceph_lock;
255
256 u64 i_version;
257 u32 i_time_warp_seq;
258
259 unsigned i_ceph_flags;
260 unsigned long i_release_count;
261
262 struct ceph_dir_layout i_dir_layout;
263 struct ceph_file_layout i_layout;
264 char *i_symlink;
265
266 /* for dirs */
267 struct timespec i_rctime;
268 u64 i_rbytes, i_rfiles, i_rsubdirs;
269 u64 i_files, i_subdirs;
270 u64 i_max_offset; /* largest readdir offset, set with D_COMPLETE */
271
272 struct rb_root i_fragtree;
273 struct mutex i_fragtree_mutex;
274
275 struct ceph_inode_xattrs_info i_xattrs;
276
277 /* capabilities. protected _both_ by i_ceph_lock and cap->session's
278 * s_mutex. */
279 struct rb_root i_caps; /* cap list */
280 struct ceph_cap *i_auth_cap; /* authoritative cap, if any */
281 unsigned i_dirty_caps, i_flushing_caps; /* mask of dirtied fields */
282 struct list_head i_dirty_item, i_flushing_item;
283 u64 i_cap_flush_seq;
284 /* we need to track cap writeback on a per-cap-bit basis, to allow
285 * overlapping, pipelined cap flushes to the mds. we can probably
286 * reduce the tid to 8 bits if we're concerned about inode size. */
287 u16 i_cap_flush_last_tid, i_cap_flush_tid[CEPH_CAP_BITS];
288 wait_queue_head_t i_cap_wq; /* threads waiting on a capability */
289 unsigned long i_hold_caps_min; /* jiffies */
290 unsigned long i_hold_caps_max; /* jiffies */
291 struct list_head i_cap_delay_list; /* for delayed cap release to mds */
292 int i_cap_exporting_mds; /* to handle cap migration between */
293 unsigned i_cap_exporting_mseq; /* mds's. */
294 unsigned i_cap_exporting_issued;
295 struct ceph_cap_reservation i_cap_migration_resv;
296 struct list_head i_cap_snaps; /* snapped state pending flush to mds */
297 struct ceph_snap_context *i_head_snapc; /* set if wr_buffer_head > 0 or
298 dirty|flushing caps */
299 unsigned i_snap_caps; /* cap bits for snapped files */
300
301 int i_nr_by_mode[CEPH_FILE_MODE_NUM]; /* open file counts */
302
303 u32 i_truncate_seq; /* last truncate to smaller size */
304 u64 i_truncate_size; /* and the size we last truncated down to */
305 int i_truncate_pending; /* still need to call vmtruncate */
306
307 u64 i_max_size; /* max file size authorized by mds */
308 u64 i_reported_size; /* (max_)size reported to or requested of mds */
309 u64 i_wanted_max_size; /* offset we'd like to write too */
310 u64 i_requested_max_size; /* max_size we've requested */
311
312 /* held references to caps */
313 int i_pin_ref;
314 int i_rd_ref, i_rdcache_ref, i_wr_ref, i_wb_ref;
315 int i_wrbuffer_ref, i_wrbuffer_ref_head;
316 u32 i_shared_gen; /* increment each time we get FILE_SHARED */
317 u32 i_rdcache_gen; /* incremented each time we get FILE_CACHE. */
318 u32 i_rdcache_revoking; /* RDCACHE gen to async invalidate, if any */
319
320 struct list_head i_unsafe_writes; /* uncommitted sync writes */
321 struct list_head i_unsafe_dirops; /* uncommitted mds dir ops */
322 spinlock_t i_unsafe_lock;
323
324 struct ceph_snap_realm *i_snap_realm; /* snap realm (if caps) */
325 int i_snap_realm_counter; /* snap realm (if caps) */
326 struct list_head i_snap_realm_item;
327 struct list_head i_snap_flush_item;
328
329 struct work_struct i_wb_work; /* writeback work */
330 struct work_struct i_pg_inv_work; /* page invalidation work */
331
332 struct work_struct i_vmtruncate_work;
333
334 struct inode vfs_inode; /* at end */
335};
336
337static inline struct ceph_inode_info *ceph_inode(struct inode *inode)
338{
339 return container_of(inode, struct ceph_inode_info, vfs_inode);
340}
341
342static inline struct ceph_fs_client *ceph_inode_to_client(struct inode *inode)
343{
344 return (struct ceph_fs_client *)inode->i_sb->s_fs_info;
345}
346
347static inline struct ceph_fs_client *ceph_sb_to_client(struct super_block *sb)
348{
349 return (struct ceph_fs_client *)sb->s_fs_info;
350}
351
352static inline struct ceph_vino ceph_vino(struct inode *inode)
353{
354 return ceph_inode(inode)->i_vino;
355}
356
357/*
358 * ino_t is <64 bits on many architectures, blech.
359 *
360 * i_ino (kernel inode) st_ino (userspace)
361 * i386 32 32
362 * x86_64+ino32 64 32
363 * x86_64 64 64
364 */
365static inline u32 ceph_ino_to_ino32(__u64 vino)
366{
367 u32 ino = vino & 0xffffffff;
368 ino ^= vino >> 32;
369 if (!ino)
370 ino = 2;
371 return ino;
372}
373
374/*
375 * kernel i_ino value
376 */
377static inline ino_t ceph_vino_to_ino(struct ceph_vino vino)
378{
379#if BITS_PER_LONG == 32
380 return ceph_ino_to_ino32(vino.ino);
381#else
382 return (ino_t)vino.ino;
383#endif
384}
385
386/*
387 * user-visible ino (stat, filldir)
388 */
389#if BITS_PER_LONG == 32
390static inline ino_t ceph_translate_ino(struct super_block *sb, ino_t ino)
391{
392 return ino;
393}
394#else
395static inline ino_t ceph_translate_ino(struct super_block *sb, ino_t ino)
396{
397 if (ceph_test_mount_opt(ceph_sb_to_client(sb), INO32))
398 ino = ceph_ino_to_ino32(ino);
399 return ino;
400}
401#endif
402
403
404/* for printf-style formatting */
405#define ceph_vinop(i) ceph_inode(i)->i_vino.ino, ceph_inode(i)->i_vino.snap
406
407static inline u64 ceph_ino(struct inode *inode)
408{
409 return ceph_inode(inode)->i_vino.ino;
410}
411static inline u64 ceph_snap(struct inode *inode)
412{
413 return ceph_inode(inode)->i_vino.snap;
414}
415
416static inline int ceph_ino_compare(struct inode *inode, void *data)
417{
418 struct ceph_vino *pvino = (struct ceph_vino *)data;
419 struct ceph_inode_info *ci = ceph_inode(inode);
420 return ci->i_vino.ino == pvino->ino &&
421 ci->i_vino.snap == pvino->snap;
422}
423
424static inline struct inode *ceph_find_inode(struct super_block *sb,
425 struct ceph_vino vino)
426{
427 ino_t t = ceph_vino_to_ino(vino);
428 return ilookup5(sb, t, ceph_ino_compare, &vino);
429}
430
431
432/*
433 * Ceph inode.
434 */
435#define CEPH_I_NODELAY 4 /* do not delay cap release */
436#define CEPH_I_FLUSH 8 /* do not delay flush of dirty metadata */
437#define CEPH_I_NOFLUSH 16 /* do not flush dirty caps */
438
439static inline void ceph_i_clear(struct inode *inode, unsigned mask)
440{
441 struct ceph_inode_info *ci = ceph_inode(inode);
442
443 spin_lock(&ci->i_ceph_lock);
444 ci->i_ceph_flags &= ~mask;
445 spin_unlock(&ci->i_ceph_lock);
446}
447
448static inline void ceph_i_set(struct inode *inode, unsigned mask)
449{
450 struct ceph_inode_info *ci = ceph_inode(inode);
451
452 spin_lock(&ci->i_ceph_lock);
453 ci->i_ceph_flags |= mask;
454 spin_unlock(&ci->i_ceph_lock);
455}
456
457static inline bool ceph_i_test(struct inode *inode, unsigned mask)
458{
459 struct ceph_inode_info *ci = ceph_inode(inode);
460 bool r;
461
462 spin_lock(&ci->i_ceph_lock);
463 r = (ci->i_ceph_flags & mask) == mask;
464 spin_unlock(&ci->i_ceph_lock);
465 return r;
466}
467
468
469/* find a specific frag @f */
470extern struct ceph_inode_frag *__ceph_find_frag(struct ceph_inode_info *ci,
471 u32 f);
472
473/*
474 * choose fragment for value @v. copy frag content to pfrag, if leaf
475 * exists
476 */
477extern u32 ceph_choose_frag(struct ceph_inode_info *ci, u32 v,
478 struct ceph_inode_frag *pfrag,
479 int *found);
480
481static inline struct ceph_dentry_info *ceph_dentry(struct dentry *dentry)
482{
483 return (struct ceph_dentry_info *)dentry->d_fsdata;
484}
485
486static inline loff_t ceph_make_fpos(unsigned frag, unsigned off)
487{
488 return ((loff_t)frag << 32) | (loff_t)off;
489}
490
491/*
492 * set/clear directory D_COMPLETE flag
493 */
494void ceph_dir_set_complete(struct inode *inode);
495void ceph_dir_clear_complete(struct inode *inode);
496bool ceph_dir_test_complete(struct inode *inode);
497
498/*
499 * caps helpers
500 */
501static inline bool __ceph_is_any_real_caps(struct ceph_inode_info *ci)
502{
503 return !RB_EMPTY_ROOT(&ci->i_caps);
504}
505
506extern int __ceph_caps_issued(struct ceph_inode_info *ci, int *implemented);
507extern int __ceph_caps_issued_mask(struct ceph_inode_info *ci, int mask, int t);
508extern int __ceph_caps_issued_other(struct ceph_inode_info *ci,
509 struct ceph_cap *cap);
510
511static inline int ceph_caps_issued(struct ceph_inode_info *ci)
512{
513 int issued;
514 spin_lock(&ci->i_ceph_lock);
515 issued = __ceph_caps_issued(ci, NULL);
516 spin_unlock(&ci->i_ceph_lock);
517 return issued;
518}
519
520static inline int ceph_caps_issued_mask(struct ceph_inode_info *ci, int mask,
521 int touch)
522{
523 int r;
524 spin_lock(&ci->i_ceph_lock);
525 r = __ceph_caps_issued_mask(ci, mask, touch);
526 spin_unlock(&ci->i_ceph_lock);
527 return r;
528}
529
530static inline int __ceph_caps_dirty(struct ceph_inode_info *ci)
531{
532 return ci->i_dirty_caps | ci->i_flushing_caps;
533}
534extern int __ceph_mark_dirty_caps(struct ceph_inode_info *ci, int mask);
535
536extern int ceph_caps_revoking(struct ceph_inode_info *ci, int mask);
537extern int __ceph_caps_used(struct ceph_inode_info *ci);
538
539extern int __ceph_caps_file_wanted(struct ceph_inode_info *ci);
540
541/*
542 * wanted, by virtue of open file modes AND cap refs (buffered/cached data)
543 */
544static inline int __ceph_caps_wanted(struct ceph_inode_info *ci)
545{
546 int w = __ceph_caps_file_wanted(ci) | __ceph_caps_used(ci);
547 if (w & CEPH_CAP_FILE_BUFFER)
548 w |= CEPH_CAP_FILE_EXCL; /* we want EXCL if dirty data */
549 return w;
550}
551
552/* what the mds thinks we want */
553extern int __ceph_caps_mds_wanted(struct ceph_inode_info *ci);
554
555extern void ceph_caps_init(struct ceph_mds_client *mdsc);
556extern void ceph_caps_finalize(struct ceph_mds_client *mdsc);
557extern void ceph_adjust_min_caps(struct ceph_mds_client *mdsc, int delta);
558extern int ceph_reserve_caps(struct ceph_mds_client *mdsc,
559 struct ceph_cap_reservation *ctx, int need);
560extern int ceph_unreserve_caps(struct ceph_mds_client *mdsc,
561 struct ceph_cap_reservation *ctx);
562extern void ceph_reservation_status(struct ceph_fs_client *client,
563 int *total, int *avail, int *used,
564 int *reserved, int *min);
565
566
567
568/*
569 * we keep buffered readdir results attached to file->private_data
570 */
571#define CEPH_F_SYNC 1
572#define CEPH_F_ATEND 2
573
574struct ceph_file_info {
575 short fmode; /* initialized on open */
576 short flags; /* CEPH_F_* */
577
578 /* readdir: position within the dir */
579 u32 frag;
580 struct ceph_mds_request *last_readdir;
581
582 /* readdir: position within a frag */
583 unsigned offset; /* offset of last chunk, adjusted for . and .. */
584 u64 next_offset; /* offset of next chunk (last_name's + 1) */
585 char *last_name; /* last entry in previous chunk */
586 struct dentry *dentry; /* next dentry (for dcache readdir) */
587 unsigned long dir_release_count;
588
589 /* used for -o dirstat read() on directory thing */
590 char *dir_info;
591 int dir_info_len;
592};
593
594
595
596/*
597 * A "snap realm" describes a subset of the file hierarchy sharing
598 * the same set of snapshots that apply to it. The realms themselves
599 * are organized into a hierarchy, such that children inherit (some of)
600 * the snapshots of their parents.
601 *
602 * All inodes within the realm that have capabilities are linked into a
603 * per-realm list.
604 */
605struct ceph_snap_realm {
606 u64 ino;
607 atomic_t nref;
608 struct rb_node node;
609
610 u64 created, seq;
611 u64 parent_ino;
612 u64 parent_since; /* snapid when our current parent became so */
613
614 u64 *prior_parent_snaps; /* snaps inherited from any parents we */
615 int num_prior_parent_snaps; /* had prior to parent_since */
616 u64 *snaps; /* snaps specific to this realm */
617 int num_snaps;
618
619 struct ceph_snap_realm *parent;
620 struct list_head children; /* list of child realms */
621 struct list_head child_item;
622
623 struct list_head empty_item; /* if i have ref==0 */
624
625 struct list_head dirty_item; /* if realm needs new context */
626
627 /* the current set of snaps for this realm */
628 struct ceph_snap_context *cached_context;
629
630 struct list_head inodes_with_caps;
631 spinlock_t inodes_with_caps_lock;
632};
633
634static inline int default_congestion_kb(void)
635{
636 int congestion_kb;
637
638 /*
639 * Copied from NFS
640 *
641 * congestion size, scale with available memory.
642 *
643 * 64MB: 8192k
644 * 128MB: 11585k
645 * 256MB: 16384k
646 * 512MB: 23170k
647 * 1GB: 32768k
648 * 2GB: 46340k
649 * 4GB: 65536k
650 * 8GB: 92681k
651 * 16GB: 131072k
652 *
653 * This allows larger machines to have larger/more transfers.
654 * Limit the default to 256M
655 */
656 congestion_kb = (16*int_sqrt(totalram_pages)) << (PAGE_SHIFT-10);
657 if (congestion_kb > 256*1024)
658 congestion_kb = 256*1024;
659
660 return congestion_kb;
661}
662
663
664
665/* snap.c */
666struct ceph_snap_realm *ceph_lookup_snap_realm(struct ceph_mds_client *mdsc,
667 u64 ino);
668extern void ceph_get_snap_realm(struct ceph_mds_client *mdsc,
669 struct ceph_snap_realm *realm);
670extern void ceph_put_snap_realm(struct ceph_mds_client *mdsc,
671 struct ceph_snap_realm *realm);
672extern int ceph_update_snap_trace(struct ceph_mds_client *m,
673 void *p, void *e, bool deletion);
674extern void ceph_handle_snap(struct ceph_mds_client *mdsc,
675 struct ceph_mds_session *session,
676 struct ceph_msg *msg);
677extern void ceph_queue_cap_snap(struct ceph_inode_info *ci);
678extern int __ceph_finish_cap_snap(struct ceph_inode_info *ci,
679 struct ceph_cap_snap *capsnap);
680extern void ceph_cleanup_empty_realms(struct ceph_mds_client *mdsc);
681
682/*
683 * a cap_snap is "pending" if it is still awaiting an in-progress
684 * sync write (that may/may not still update size, mtime, etc.).
685 */
686static inline bool __ceph_have_pending_cap_snap(struct ceph_inode_info *ci)
687{
688 return !list_empty(&ci->i_cap_snaps) &&
689 list_entry(ci->i_cap_snaps.prev, struct ceph_cap_snap,
690 ci_item)->writing;
691}
692
693/* inode.c */
694extern const struct inode_operations ceph_file_iops;
695
696extern struct inode *ceph_alloc_inode(struct super_block *sb);
697extern void ceph_destroy_inode(struct inode *inode);
698
699extern struct inode *ceph_get_inode(struct super_block *sb,
700 struct ceph_vino vino);
701extern struct inode *ceph_get_snapdir(struct inode *parent);
702extern int ceph_fill_file_size(struct inode *inode, int issued,
703 u32 truncate_seq, u64 truncate_size, u64 size);
704extern void ceph_fill_file_time(struct inode *inode, int issued,
705 u64 time_warp_seq, struct timespec *ctime,
706 struct timespec *mtime, struct timespec *atime);
707extern int ceph_fill_trace(struct super_block *sb,
708 struct ceph_mds_request *req,
709 struct ceph_mds_session *session);
710extern int ceph_readdir_prepopulate(struct ceph_mds_request *req,
711 struct ceph_mds_session *session);
712
713extern int ceph_inode_holds_cap(struct inode *inode, int mask);
714
715extern int ceph_inode_set_size(struct inode *inode, loff_t size);
716extern void __ceph_do_pending_vmtruncate(struct inode *inode);
717extern void ceph_queue_vmtruncate(struct inode *inode);
718
719extern void ceph_queue_invalidate(struct inode *inode);
720extern void ceph_queue_writeback(struct inode *inode);
721
722extern int ceph_do_getattr(struct inode *inode, int mask);
723extern int ceph_permission(struct inode *inode, int mask);
724extern int ceph_setattr(struct dentry *dentry, struct iattr *attr);
725extern int ceph_getattr(struct vfsmount *mnt, struct dentry *dentry,
726 struct kstat *stat);
727
728/* xattr.c */
729extern int ceph_setxattr(struct dentry *, const char *, const void *,
730 size_t, int);
731extern ssize_t ceph_getxattr(struct dentry *, const char *, void *, size_t);
732extern ssize_t ceph_listxattr(struct dentry *, char *, size_t);
733extern int ceph_removexattr(struct dentry *, const char *);
734extern void __ceph_build_xattrs_blob(struct ceph_inode_info *ci);
735extern void __ceph_destroy_xattrs(struct ceph_inode_info *ci);
736extern void __init ceph_xattr_init(void);
737extern void ceph_xattr_exit(void);
738
739/* caps.c */
740extern const char *ceph_cap_string(int c);
741extern void ceph_handle_caps(struct ceph_mds_session *session,
742 struct ceph_msg *msg);
743extern int ceph_add_cap(struct inode *inode,
744 struct ceph_mds_session *session, u64 cap_id,
745 int fmode, unsigned issued, unsigned wanted,
746 unsigned cap, unsigned seq, u64 realmino, int flags,
747 struct ceph_cap_reservation *caps_reservation);
748extern void __ceph_remove_cap(struct ceph_cap *cap);
749static inline void ceph_remove_cap(struct ceph_cap *cap)
750{
751 spin_lock(&cap->ci->i_ceph_lock);
752 __ceph_remove_cap(cap);
753 spin_unlock(&cap->ci->i_ceph_lock);
754}
755extern void ceph_put_cap(struct ceph_mds_client *mdsc,
756 struct ceph_cap *cap);
757
758extern void ceph_queue_caps_release(struct inode *inode);
759extern int ceph_write_inode(struct inode *inode, struct writeback_control *wbc);
760extern int ceph_fsync(struct file *file, loff_t start, loff_t end,
761 int datasync);
762extern void ceph_kick_flushing_caps(struct ceph_mds_client *mdsc,
763 struct ceph_mds_session *session);
764extern struct ceph_cap *ceph_get_cap_for_mds(struct ceph_inode_info *ci,
765 int mds);
766extern int ceph_get_cap_mds(struct inode *inode);
767extern void ceph_get_cap_refs(struct ceph_inode_info *ci, int caps);
768extern void ceph_put_cap_refs(struct ceph_inode_info *ci, int had);
769extern void ceph_put_wrbuffer_cap_refs(struct ceph_inode_info *ci, int nr,
770 struct ceph_snap_context *snapc);
771extern void __ceph_flush_snaps(struct ceph_inode_info *ci,
772 struct ceph_mds_session **psession,
773 int again);
774extern void ceph_check_caps(struct ceph_inode_info *ci, int flags,
775 struct ceph_mds_session *session);
776extern void ceph_check_delayed_caps(struct ceph_mds_client *mdsc);
777extern void ceph_flush_dirty_caps(struct ceph_mds_client *mdsc);
778
779extern int ceph_encode_inode_release(void **p, struct inode *inode,
780 int mds, int drop, int unless, int force);
781extern int ceph_encode_dentry_release(void **p, struct dentry *dn,
782 int mds, int drop, int unless);
783
784extern int ceph_get_caps(struct ceph_inode_info *ci, int need, int want,
785 int *got, loff_t endoff);
786
787/* for counting open files by mode */
788static inline void __ceph_get_fmode(struct ceph_inode_info *ci, int mode)
789{
790 ci->i_nr_by_mode[mode]++;
791}
792extern void ceph_put_fmode(struct ceph_inode_info *ci, int mode);
793
794/* addr.c */
795extern const struct address_space_operations ceph_aops;
796extern int ceph_mmap(struct file *file, struct vm_area_struct *vma);
797
798/* file.c */
799extern const struct file_operations ceph_file_fops;
800extern const struct address_space_operations ceph_aops;
801extern int ceph_copy_to_page_vector(struct page **pages,
802 const char *data,
803 loff_t off, size_t len);
804extern int ceph_copy_from_page_vector(struct page **pages,
805 char *data,
806 loff_t off, size_t len);
807extern struct page **ceph_alloc_page_vector(int num_pages, gfp_t flags);
808extern int ceph_open(struct inode *inode, struct file *file);
809extern struct dentry *ceph_lookup_open(struct inode *dir, struct dentry *dentry,
810 struct nameidata *nd, int mode,
811 int locked_dir);
812extern int ceph_release(struct inode *inode, struct file *filp);
813
814/* dir.c */
815extern const struct file_operations ceph_dir_fops;
816extern const struct inode_operations ceph_dir_iops;
817extern const struct dentry_operations ceph_dentry_ops, ceph_snap_dentry_ops,
818 ceph_snapdir_dentry_ops;
819
820extern int ceph_handle_notrace_create(struct inode *dir, struct dentry *dentry);
821extern int ceph_handle_snapdir(struct ceph_mds_request *req,
822 struct dentry *dentry, int err);
823extern struct dentry *ceph_finish_lookup(struct ceph_mds_request *req,
824 struct dentry *dentry, int err);
825
826extern void ceph_dentry_lru_add(struct dentry *dn);
827extern void ceph_dentry_lru_touch(struct dentry *dn);
828extern void ceph_dentry_lru_del(struct dentry *dn);
829extern void ceph_invalidate_dentry_lease(struct dentry *dentry);
830extern unsigned ceph_dentry_hash(struct inode *dir, struct dentry *dn);
831extern struct inode *ceph_get_dentry_parent_inode(struct dentry *dentry);
832
833/*
834 * our d_ops vary depending on whether the inode is live,
835 * snapshotted (read-only), or a virtual ".snap" directory.
836 */
837int ceph_init_dentry(struct dentry *dentry);
838
839
840/* ioctl.c */
841extern long ceph_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
842
843/* export.c */
844extern const struct export_operations ceph_export_ops;
845
846/* locks.c */
847extern int ceph_lock(struct file *file, int cmd, struct file_lock *fl);
848extern int ceph_flock(struct file *file, int cmd, struct file_lock *fl);
849extern void ceph_count_locks(struct inode *inode, int *p_num, int *f_num);
850extern int ceph_encode_locks(struct inode *i, struct ceph_pagelist *p,
851 int p_locks, int f_locks);
852extern int lock_to_ceph_filelock(struct file_lock *fl, struct ceph_filelock *c);
853
854/* debugfs.c */
855extern int ceph_fs_debugfs_init(struct ceph_fs_client *client);
856extern void ceph_fs_debugfs_cleanup(struct ceph_fs_client *client);
857
858#endif /* _FS_CEPH_SUPER_H */
1#ifndef _FS_CEPH_SUPER_H
2#define _FS_CEPH_SUPER_H
3
4#include <linux/ceph/ceph_debug.h>
5
6#include <asm/unaligned.h>
7#include <linux/backing-dev.h>
8#include <linux/completion.h>
9#include <linux/exportfs.h>
10#include <linux/fs.h>
11#include <linux/mempool.h>
12#include <linux/pagemap.h>
13#include <linux/wait.h>
14#include <linux/writeback.h>
15#include <linux/slab.h>
16
17#include <linux/ceph/libceph.h>
18
19/* f_type in struct statfs */
20#define CEPH_SUPER_MAGIC 0x00c36400
21
22/* large granularity for statfs utilization stats to facilitate
23 * large volume sizes on 32-bit machines. */
24#define CEPH_BLOCK_SHIFT 20 /* 1 MB */
25#define CEPH_BLOCK (1 << CEPH_BLOCK_SHIFT)
26
27#define CEPH_MOUNT_OPT_DIRSTAT (1<<4) /* `cat dirname` for stats */
28#define CEPH_MOUNT_OPT_RBYTES (1<<5) /* dir st_bytes = rbytes */
29#define CEPH_MOUNT_OPT_NOASYNCREADDIR (1<<7) /* no dcache readdir */
30#define CEPH_MOUNT_OPT_INO32 (1<<8) /* 32 bit inos */
31
32#define CEPH_MOUNT_OPT_DEFAULT (CEPH_MOUNT_OPT_RBYTES)
33
34#define ceph_set_mount_opt(fsc, opt) \
35 (fsc)->mount_options->flags |= CEPH_MOUNT_OPT_##opt;
36#define ceph_test_mount_opt(fsc, opt) \
37 (!!((fsc)->mount_options->flags & CEPH_MOUNT_OPT_##opt))
38
39#define CEPH_RSIZE_DEFAULT (512*1024) /* readahead */
40#define CEPH_MAX_READDIR_DEFAULT 1024
41#define CEPH_MAX_READDIR_BYTES_DEFAULT (512*1024)
42#define CEPH_SNAPDIRNAME_DEFAULT ".snap"
43
44struct ceph_mount_options {
45 int flags;
46 int sb_flags;
47
48 int wsize;
49 int rsize; /* max readahead */
50 int congestion_kb; /* max writeback in flight */
51 int caps_wanted_delay_min, caps_wanted_delay_max;
52 int cap_release_safety;
53 int max_readdir; /* max readdir result (entires) */
54 int max_readdir_bytes; /* max readdir result (bytes) */
55
56 /*
57 * everything above this point can be memcmp'd; everything below
58 * is handled in compare_mount_options()
59 */
60
61 char *snapdir_name; /* default ".snap" */
62};
63
64struct ceph_fs_client {
65 struct super_block *sb;
66
67 struct ceph_mount_options *mount_options;
68 struct ceph_client *client;
69
70 unsigned long mount_state;
71 int min_caps; /* min caps i added */
72
73 struct ceph_mds_client *mdsc;
74
75 /* writeback */
76 mempool_t *wb_pagevec_pool;
77 struct workqueue_struct *wb_wq;
78 struct workqueue_struct *pg_inv_wq;
79 struct workqueue_struct *trunc_wq;
80 atomic_long_t writeback_count;
81
82 struct backing_dev_info backing_dev_info;
83
84#ifdef CONFIG_DEBUG_FS
85 struct dentry *debugfs_dentry_lru, *debugfs_caps;
86 struct dentry *debugfs_congestion_kb;
87 struct dentry *debugfs_bdi;
88 struct dentry *debugfs_mdsc, *debugfs_mdsmap;
89#endif
90};
91
92
93/*
94 * File i/o capability. This tracks shared state with the metadata
95 * server that allows us to cache or writeback attributes or to read
96 * and write data. For any given inode, we should have one or more
97 * capabilities, one issued by each metadata server, and our
98 * cumulative access is the OR of all issued capabilities.
99 *
100 * Each cap is referenced by the inode's i_caps rbtree and by per-mds
101 * session capability lists.
102 */
103struct ceph_cap {
104 struct ceph_inode_info *ci;
105 struct rb_node ci_node; /* per-ci cap tree */
106 struct ceph_mds_session *session;
107 struct list_head session_caps; /* per-session caplist */
108 int mds;
109 u64 cap_id; /* unique cap id (mds provided) */
110 int issued; /* latest, from the mds */
111 int implemented; /* implemented superset of issued (for revocation) */
112 int mds_wanted;
113 u32 seq, issue_seq, mseq;
114 u32 cap_gen; /* active/stale cycle */
115 unsigned long last_used;
116 struct list_head caps_item;
117};
118
119#define CHECK_CAPS_NODELAY 1 /* do not delay any further */
120#define CHECK_CAPS_AUTHONLY 2 /* only check auth cap */
121#define CHECK_CAPS_FLUSH 4 /* flush any dirty caps */
122
123/*
124 * Snapped cap state that is pending flush to mds. When a snapshot occurs,
125 * we first complete any in-process sync writes and writeback any dirty
126 * data before flushing the snapped state (tracked here) back to the MDS.
127 */
128struct ceph_cap_snap {
129 atomic_t nref;
130 struct ceph_inode_info *ci;
131 struct list_head ci_item, flushing_item;
132
133 u64 follows, flush_tid;
134 int issued, dirty;
135 struct ceph_snap_context *context;
136
137 mode_t mode;
138 uid_t uid;
139 gid_t gid;
140
141 struct ceph_buffer *xattr_blob;
142 u64 xattr_version;
143
144 u64 size;
145 struct timespec mtime, atime, ctime;
146 u64 time_warp_seq;
147 int writing; /* a sync write is still in progress */
148 int dirty_pages; /* dirty pages awaiting writeback */
149};
150
151static inline void ceph_put_cap_snap(struct ceph_cap_snap *capsnap)
152{
153 if (atomic_dec_and_test(&capsnap->nref)) {
154 if (capsnap->xattr_blob)
155 ceph_buffer_put(capsnap->xattr_blob);
156 kfree(capsnap);
157 }
158}
159
160/*
161 * The frag tree describes how a directory is fragmented, potentially across
162 * multiple metadata servers. It is also used to indicate points where
163 * metadata authority is delegated, and whether/where metadata is replicated.
164 *
165 * A _leaf_ frag will be present in the i_fragtree IFF there is
166 * delegation info. That is, if mds >= 0 || ndist > 0.
167 */
168#define CEPH_MAX_DIRFRAG_REP 4
169
170struct ceph_inode_frag {
171 struct rb_node node;
172
173 /* fragtree state */
174 u32 frag;
175 int split_by; /* i.e. 2^(split_by) children */
176
177 /* delegation and replication info */
178 int mds; /* -1 if same authority as parent */
179 int ndist; /* >0 if replicated */
180 int dist[CEPH_MAX_DIRFRAG_REP];
181};
182
183/*
184 * We cache inode xattrs as an encoded blob until they are first used,
185 * at which point we parse them into an rbtree.
186 */
187struct ceph_inode_xattr {
188 struct rb_node node;
189
190 const char *name;
191 int name_len;
192 const char *val;
193 int val_len;
194 int dirty;
195
196 int should_free_name;
197 int should_free_val;
198};
199
200/*
201 * Ceph dentry state
202 */
203struct ceph_dentry_info {
204 struct ceph_mds_session *lease_session;
205 u32 lease_gen, lease_shared_gen;
206 u32 lease_seq;
207 unsigned long lease_renew_after, lease_renew_from;
208 struct list_head lru;
209 struct dentry *dentry;
210 u64 time;
211 u64 offset;
212};
213
214struct ceph_inode_xattrs_info {
215 /*
216 * (still encoded) xattr blob. we avoid the overhead of parsing
217 * this until someone actually calls getxattr, etc.
218 *
219 * blob->vec.iov_len == 4 implies there are no xattrs; blob ==
220 * NULL means we don't know.
221 */
222 struct ceph_buffer *blob, *prealloc_blob;
223
224 struct rb_root index;
225 bool dirty;
226 int count;
227 int names_size;
228 int vals_size;
229 u64 version, index_version;
230};
231
232/*
233 * Ceph inode.
234 */
235struct ceph_inode_info {
236 struct ceph_vino i_vino; /* ceph ino + snap */
237
238 u64 i_version;
239 u32 i_time_warp_seq;
240
241 unsigned i_ceph_flags;
242 unsigned long i_release_count;
243
244 struct ceph_dir_layout i_dir_layout;
245 struct ceph_file_layout i_layout;
246 char *i_symlink;
247
248 /* for dirs */
249 struct timespec i_rctime;
250 u64 i_rbytes, i_rfiles, i_rsubdirs;
251 u64 i_files, i_subdirs;
252 u64 i_max_offset; /* largest readdir offset, set with I_COMPLETE */
253
254 struct rb_root i_fragtree;
255 struct mutex i_fragtree_mutex;
256
257 struct ceph_inode_xattrs_info i_xattrs;
258
259 /* capabilities. protected _both_ by i_lock and cap->session's
260 * s_mutex. */
261 struct rb_root i_caps; /* cap list */
262 struct ceph_cap *i_auth_cap; /* authoritative cap, if any */
263 unsigned i_dirty_caps, i_flushing_caps; /* mask of dirtied fields */
264 struct list_head i_dirty_item, i_flushing_item;
265 u64 i_cap_flush_seq;
266 /* we need to track cap writeback on a per-cap-bit basis, to allow
267 * overlapping, pipelined cap flushes to the mds. we can probably
268 * reduce the tid to 8 bits if we're concerned about inode size. */
269 u16 i_cap_flush_last_tid, i_cap_flush_tid[CEPH_CAP_BITS];
270 wait_queue_head_t i_cap_wq; /* threads waiting on a capability */
271 unsigned long i_hold_caps_min; /* jiffies */
272 unsigned long i_hold_caps_max; /* jiffies */
273 struct list_head i_cap_delay_list; /* for delayed cap release to mds */
274 int i_cap_exporting_mds; /* to handle cap migration between */
275 unsigned i_cap_exporting_mseq; /* mds's. */
276 unsigned i_cap_exporting_issued;
277 struct ceph_cap_reservation i_cap_migration_resv;
278 struct list_head i_cap_snaps; /* snapped state pending flush to mds */
279 struct ceph_snap_context *i_head_snapc; /* set if wr_buffer_head > 0 or
280 dirty|flushing caps */
281 unsigned i_snap_caps; /* cap bits for snapped files */
282
283 int i_nr_by_mode[CEPH_FILE_MODE_NUM]; /* open file counts */
284
285 u32 i_truncate_seq; /* last truncate to smaller size */
286 u64 i_truncate_size; /* and the size we last truncated down to */
287 int i_truncate_pending; /* still need to call vmtruncate */
288
289 u64 i_max_size; /* max file size authorized by mds */
290 u64 i_reported_size; /* (max_)size reported to or requested of mds */
291 u64 i_wanted_max_size; /* offset we'd like to write too */
292 u64 i_requested_max_size; /* max_size we've requested */
293
294 /* held references to caps */
295 int i_pin_ref;
296 int i_rd_ref, i_rdcache_ref, i_wr_ref, i_wb_ref;
297 int i_wrbuffer_ref, i_wrbuffer_ref_head;
298 u32 i_shared_gen; /* increment each time we get FILE_SHARED */
299 u32 i_rdcache_gen; /* incremented each time we get FILE_CACHE. */
300 u32 i_rdcache_revoking; /* RDCACHE gen to async invalidate, if any */
301
302 struct list_head i_unsafe_writes; /* uncommitted sync writes */
303 struct list_head i_unsafe_dirops; /* uncommitted mds dir ops */
304 spinlock_t i_unsafe_lock;
305
306 struct ceph_snap_realm *i_snap_realm; /* snap realm (if caps) */
307 int i_snap_realm_counter; /* snap realm (if caps) */
308 struct list_head i_snap_realm_item;
309 struct list_head i_snap_flush_item;
310
311 struct work_struct i_wb_work; /* writeback work */
312 struct work_struct i_pg_inv_work; /* page invalidation work */
313
314 struct work_struct i_vmtruncate_work;
315
316 struct inode vfs_inode; /* at end */
317};
318
319static inline struct ceph_inode_info *ceph_inode(struct inode *inode)
320{
321 return container_of(inode, struct ceph_inode_info, vfs_inode);
322}
323
324static inline struct ceph_fs_client *ceph_inode_to_client(struct inode *inode)
325{
326 return (struct ceph_fs_client *)inode->i_sb->s_fs_info;
327}
328
329static inline struct ceph_fs_client *ceph_sb_to_client(struct super_block *sb)
330{
331 return (struct ceph_fs_client *)sb->s_fs_info;
332}
333
334static inline struct ceph_vino ceph_vino(struct inode *inode)
335{
336 return ceph_inode(inode)->i_vino;
337}
338
339/*
340 * ino_t is <64 bits on many architectures, blech.
341 *
342 * i_ino (kernel inode) st_ino (userspace)
343 * i386 32 32
344 * x86_64+ino32 64 32
345 * x86_64 64 64
346 */
347static inline u32 ceph_ino_to_ino32(ino_t ino)
348{
349 ino ^= ino >> (sizeof(ino) * 8 - 32);
350 if (!ino)
351 ino = 1;
352 return ino;
353}
354
355/*
356 * kernel i_ino value
357 */
358static inline ino_t ceph_vino_to_ino(struct ceph_vino vino)
359{
360 ino_t ino = (ino_t)vino.ino; /* ^ (vino.snap << 20); */
361#if BITS_PER_LONG == 32
362 ino = ceph_ino_to_ino32(ino);
363#endif
364 return ino;
365}
366
367/*
368 * user-visible ino (stat, filldir)
369 */
370#if BITS_PER_LONG == 32
371static inline ino_t ceph_translate_ino(struct super_block *sb, ino_t ino)
372{
373 return ino;
374}
375#else
376static inline ino_t ceph_translate_ino(struct super_block *sb, ino_t ino)
377{
378 if (ceph_test_mount_opt(ceph_sb_to_client(sb), INO32))
379 ino = ceph_ino_to_ino32(ino);
380 return ino;
381}
382#endif
383
384
385/* for printf-style formatting */
386#define ceph_vinop(i) ceph_inode(i)->i_vino.ino, ceph_inode(i)->i_vino.snap
387
388static inline u64 ceph_ino(struct inode *inode)
389{
390 return ceph_inode(inode)->i_vino.ino;
391}
392static inline u64 ceph_snap(struct inode *inode)
393{
394 return ceph_inode(inode)->i_vino.snap;
395}
396
397static inline int ceph_ino_compare(struct inode *inode, void *data)
398{
399 struct ceph_vino *pvino = (struct ceph_vino *)data;
400 struct ceph_inode_info *ci = ceph_inode(inode);
401 return ci->i_vino.ino == pvino->ino &&
402 ci->i_vino.snap == pvino->snap;
403}
404
405static inline struct inode *ceph_find_inode(struct super_block *sb,
406 struct ceph_vino vino)
407{
408 ino_t t = ceph_vino_to_ino(vino);
409 return ilookup5(sb, t, ceph_ino_compare, &vino);
410}
411
412
413/*
414 * Ceph inode.
415 */
416#define CEPH_I_COMPLETE 1 /* we have complete directory cached */
417#define CEPH_I_NODELAY 4 /* do not delay cap release */
418#define CEPH_I_FLUSH 8 /* do not delay flush of dirty metadata */
419#define CEPH_I_NOFLUSH 16 /* do not flush dirty caps */
420
421static inline void ceph_i_clear(struct inode *inode, unsigned mask)
422{
423 struct ceph_inode_info *ci = ceph_inode(inode);
424
425 spin_lock(&inode->i_lock);
426 ci->i_ceph_flags &= ~mask;
427 spin_unlock(&inode->i_lock);
428}
429
430static inline void ceph_i_set(struct inode *inode, unsigned mask)
431{
432 struct ceph_inode_info *ci = ceph_inode(inode);
433
434 spin_lock(&inode->i_lock);
435 ci->i_ceph_flags |= mask;
436 spin_unlock(&inode->i_lock);
437}
438
439static inline bool ceph_i_test(struct inode *inode, unsigned mask)
440{
441 struct ceph_inode_info *ci = ceph_inode(inode);
442 bool r;
443
444 spin_lock(&inode->i_lock);
445 r = (ci->i_ceph_flags & mask) == mask;
446 spin_unlock(&inode->i_lock);
447 return r;
448}
449
450
451/* find a specific frag @f */
452extern struct ceph_inode_frag *__ceph_find_frag(struct ceph_inode_info *ci,
453 u32 f);
454
455/*
456 * choose fragment for value @v. copy frag content to pfrag, if leaf
457 * exists
458 */
459extern u32 ceph_choose_frag(struct ceph_inode_info *ci, u32 v,
460 struct ceph_inode_frag *pfrag,
461 int *found);
462
463static inline struct ceph_dentry_info *ceph_dentry(struct dentry *dentry)
464{
465 return (struct ceph_dentry_info *)dentry->d_fsdata;
466}
467
468static inline loff_t ceph_make_fpos(unsigned frag, unsigned off)
469{
470 return ((loff_t)frag << 32) | (loff_t)off;
471}
472
473/*
474 * caps helpers
475 */
476static inline bool __ceph_is_any_real_caps(struct ceph_inode_info *ci)
477{
478 return !RB_EMPTY_ROOT(&ci->i_caps);
479}
480
481extern int __ceph_caps_issued(struct ceph_inode_info *ci, int *implemented);
482extern int __ceph_caps_issued_mask(struct ceph_inode_info *ci, int mask, int t);
483extern int __ceph_caps_issued_other(struct ceph_inode_info *ci,
484 struct ceph_cap *cap);
485
486static inline int ceph_caps_issued(struct ceph_inode_info *ci)
487{
488 int issued;
489 spin_lock(&ci->vfs_inode.i_lock);
490 issued = __ceph_caps_issued(ci, NULL);
491 spin_unlock(&ci->vfs_inode.i_lock);
492 return issued;
493}
494
495static inline int ceph_caps_issued_mask(struct ceph_inode_info *ci, int mask,
496 int touch)
497{
498 int r;
499 spin_lock(&ci->vfs_inode.i_lock);
500 r = __ceph_caps_issued_mask(ci, mask, touch);
501 spin_unlock(&ci->vfs_inode.i_lock);
502 return r;
503}
504
505static inline int __ceph_caps_dirty(struct ceph_inode_info *ci)
506{
507 return ci->i_dirty_caps | ci->i_flushing_caps;
508}
509extern int __ceph_mark_dirty_caps(struct ceph_inode_info *ci, int mask);
510
511extern int ceph_caps_revoking(struct ceph_inode_info *ci, int mask);
512extern int __ceph_caps_used(struct ceph_inode_info *ci);
513
514extern int __ceph_caps_file_wanted(struct ceph_inode_info *ci);
515
516/*
517 * wanted, by virtue of open file modes AND cap refs (buffered/cached data)
518 */
519static inline int __ceph_caps_wanted(struct ceph_inode_info *ci)
520{
521 int w = __ceph_caps_file_wanted(ci) | __ceph_caps_used(ci);
522 if (w & CEPH_CAP_FILE_BUFFER)
523 w |= CEPH_CAP_FILE_EXCL; /* we want EXCL if dirty data */
524 return w;
525}
526
527/* what the mds thinks we want */
528extern int __ceph_caps_mds_wanted(struct ceph_inode_info *ci);
529
530extern void ceph_caps_init(struct ceph_mds_client *mdsc);
531extern void ceph_caps_finalize(struct ceph_mds_client *mdsc);
532extern void ceph_adjust_min_caps(struct ceph_mds_client *mdsc, int delta);
533extern int ceph_reserve_caps(struct ceph_mds_client *mdsc,
534 struct ceph_cap_reservation *ctx, int need);
535extern int ceph_unreserve_caps(struct ceph_mds_client *mdsc,
536 struct ceph_cap_reservation *ctx);
537extern void ceph_reservation_status(struct ceph_fs_client *client,
538 int *total, int *avail, int *used,
539 int *reserved, int *min);
540
541
542
543/*
544 * we keep buffered readdir results attached to file->private_data
545 */
546#define CEPH_F_SYNC 1
547#define CEPH_F_ATEND 2
548
549struct ceph_file_info {
550 short fmode; /* initialized on open */
551 short flags; /* CEPH_F_* */
552
553 /* readdir: position within the dir */
554 u32 frag;
555 struct ceph_mds_request *last_readdir;
556
557 /* readdir: position within a frag */
558 unsigned offset; /* offset of last chunk, adjusted for . and .. */
559 u64 next_offset; /* offset of next chunk (last_name's + 1) */
560 char *last_name; /* last entry in previous chunk */
561 struct dentry *dentry; /* next dentry (for dcache readdir) */
562 unsigned long dir_release_count;
563
564 /* used for -o dirstat read() on directory thing */
565 char *dir_info;
566 int dir_info_len;
567};
568
569
570
571/*
572 * A "snap realm" describes a subset of the file hierarchy sharing
573 * the same set of snapshots that apply to it. The realms themselves
574 * are organized into a hierarchy, such that children inherit (some of)
575 * the snapshots of their parents.
576 *
577 * All inodes within the realm that have capabilities are linked into a
578 * per-realm list.
579 */
580struct ceph_snap_realm {
581 u64 ino;
582 atomic_t nref;
583 struct rb_node node;
584
585 u64 created, seq;
586 u64 parent_ino;
587 u64 parent_since; /* snapid when our current parent became so */
588
589 u64 *prior_parent_snaps; /* snaps inherited from any parents we */
590 int num_prior_parent_snaps; /* had prior to parent_since */
591 u64 *snaps; /* snaps specific to this realm */
592 int num_snaps;
593
594 struct ceph_snap_realm *parent;
595 struct list_head children; /* list of child realms */
596 struct list_head child_item;
597
598 struct list_head empty_item; /* if i have ref==0 */
599
600 struct list_head dirty_item; /* if realm needs new context */
601
602 /* the current set of snaps for this realm */
603 struct ceph_snap_context *cached_context;
604
605 struct list_head inodes_with_caps;
606 spinlock_t inodes_with_caps_lock;
607};
608
609static inline int default_congestion_kb(void)
610{
611 int congestion_kb;
612
613 /*
614 * Copied from NFS
615 *
616 * congestion size, scale with available memory.
617 *
618 * 64MB: 8192k
619 * 128MB: 11585k
620 * 256MB: 16384k
621 * 512MB: 23170k
622 * 1GB: 32768k
623 * 2GB: 46340k
624 * 4GB: 65536k
625 * 8GB: 92681k
626 * 16GB: 131072k
627 *
628 * This allows larger machines to have larger/more transfers.
629 * Limit the default to 256M
630 */
631 congestion_kb = (16*int_sqrt(totalram_pages)) << (PAGE_SHIFT-10);
632 if (congestion_kb > 256*1024)
633 congestion_kb = 256*1024;
634
635 return congestion_kb;
636}
637
638
639
640/* snap.c */
641struct ceph_snap_realm *ceph_lookup_snap_realm(struct ceph_mds_client *mdsc,
642 u64 ino);
643extern void ceph_get_snap_realm(struct ceph_mds_client *mdsc,
644 struct ceph_snap_realm *realm);
645extern void ceph_put_snap_realm(struct ceph_mds_client *mdsc,
646 struct ceph_snap_realm *realm);
647extern int ceph_update_snap_trace(struct ceph_mds_client *m,
648 void *p, void *e, bool deletion);
649extern void ceph_handle_snap(struct ceph_mds_client *mdsc,
650 struct ceph_mds_session *session,
651 struct ceph_msg *msg);
652extern void ceph_queue_cap_snap(struct ceph_inode_info *ci);
653extern int __ceph_finish_cap_snap(struct ceph_inode_info *ci,
654 struct ceph_cap_snap *capsnap);
655extern void ceph_cleanup_empty_realms(struct ceph_mds_client *mdsc);
656
657/*
658 * a cap_snap is "pending" if it is still awaiting an in-progress
659 * sync write (that may/may not still update size, mtime, etc.).
660 */
661static inline bool __ceph_have_pending_cap_snap(struct ceph_inode_info *ci)
662{
663 return !list_empty(&ci->i_cap_snaps) &&
664 list_entry(ci->i_cap_snaps.prev, struct ceph_cap_snap,
665 ci_item)->writing;
666}
667
668/* inode.c */
669extern const struct inode_operations ceph_file_iops;
670
671extern struct inode *ceph_alloc_inode(struct super_block *sb);
672extern void ceph_destroy_inode(struct inode *inode);
673
674extern struct inode *ceph_get_inode(struct super_block *sb,
675 struct ceph_vino vino);
676extern struct inode *ceph_get_snapdir(struct inode *parent);
677extern int ceph_fill_file_size(struct inode *inode, int issued,
678 u32 truncate_seq, u64 truncate_size, u64 size);
679extern void ceph_fill_file_time(struct inode *inode, int issued,
680 u64 time_warp_seq, struct timespec *ctime,
681 struct timespec *mtime, struct timespec *atime);
682extern int ceph_fill_trace(struct super_block *sb,
683 struct ceph_mds_request *req,
684 struct ceph_mds_session *session);
685extern int ceph_readdir_prepopulate(struct ceph_mds_request *req,
686 struct ceph_mds_session *session);
687
688extern int ceph_inode_holds_cap(struct inode *inode, int mask);
689
690extern int ceph_inode_set_size(struct inode *inode, loff_t size);
691extern void __ceph_do_pending_vmtruncate(struct inode *inode);
692extern void ceph_queue_vmtruncate(struct inode *inode);
693
694extern void ceph_queue_invalidate(struct inode *inode);
695extern void ceph_queue_writeback(struct inode *inode);
696
697extern int ceph_do_getattr(struct inode *inode, int mask);
698extern int ceph_permission(struct inode *inode, int mask);
699extern int ceph_setattr(struct dentry *dentry, struct iattr *attr);
700extern int ceph_getattr(struct vfsmount *mnt, struct dentry *dentry,
701 struct kstat *stat);
702
703/* xattr.c */
704extern int ceph_setxattr(struct dentry *, const char *, const void *,
705 size_t, int);
706extern ssize_t ceph_getxattr(struct dentry *, const char *, void *, size_t);
707extern ssize_t ceph_listxattr(struct dentry *, char *, size_t);
708extern int ceph_removexattr(struct dentry *, const char *);
709extern void __ceph_build_xattrs_blob(struct ceph_inode_info *ci);
710extern void __ceph_destroy_xattrs(struct ceph_inode_info *ci);
711
712/* caps.c */
713extern const char *ceph_cap_string(int c);
714extern void ceph_handle_caps(struct ceph_mds_session *session,
715 struct ceph_msg *msg);
716extern int ceph_add_cap(struct inode *inode,
717 struct ceph_mds_session *session, u64 cap_id,
718 int fmode, unsigned issued, unsigned wanted,
719 unsigned cap, unsigned seq, u64 realmino, int flags,
720 struct ceph_cap_reservation *caps_reservation);
721extern void __ceph_remove_cap(struct ceph_cap *cap);
722static inline void ceph_remove_cap(struct ceph_cap *cap)
723{
724 struct inode *inode = &cap->ci->vfs_inode;
725 spin_lock(&inode->i_lock);
726 __ceph_remove_cap(cap);
727 spin_unlock(&inode->i_lock);
728}
729extern void ceph_put_cap(struct ceph_mds_client *mdsc,
730 struct ceph_cap *cap);
731
732extern void ceph_queue_caps_release(struct inode *inode);
733extern int ceph_write_inode(struct inode *inode, struct writeback_control *wbc);
734extern int ceph_fsync(struct file *file, loff_t start, loff_t end,
735 int datasync);
736extern void ceph_kick_flushing_caps(struct ceph_mds_client *mdsc,
737 struct ceph_mds_session *session);
738extern struct ceph_cap *ceph_get_cap_for_mds(struct ceph_inode_info *ci,
739 int mds);
740extern int ceph_get_cap_mds(struct inode *inode);
741extern void ceph_get_cap_refs(struct ceph_inode_info *ci, int caps);
742extern void ceph_put_cap_refs(struct ceph_inode_info *ci, int had);
743extern void ceph_put_wrbuffer_cap_refs(struct ceph_inode_info *ci, int nr,
744 struct ceph_snap_context *snapc);
745extern void __ceph_flush_snaps(struct ceph_inode_info *ci,
746 struct ceph_mds_session **psession,
747 int again);
748extern void ceph_check_caps(struct ceph_inode_info *ci, int flags,
749 struct ceph_mds_session *session);
750extern void ceph_check_delayed_caps(struct ceph_mds_client *mdsc);
751extern void ceph_flush_dirty_caps(struct ceph_mds_client *mdsc);
752
753extern int ceph_encode_inode_release(void **p, struct inode *inode,
754 int mds, int drop, int unless, int force);
755extern int ceph_encode_dentry_release(void **p, struct dentry *dn,
756 int mds, int drop, int unless);
757
758extern int ceph_get_caps(struct ceph_inode_info *ci, int need, int want,
759 int *got, loff_t endoff);
760
761/* for counting open files by mode */
762static inline void __ceph_get_fmode(struct ceph_inode_info *ci, int mode)
763{
764 ci->i_nr_by_mode[mode]++;
765}
766extern void ceph_put_fmode(struct ceph_inode_info *ci, int mode);
767
768/* addr.c */
769extern const struct address_space_operations ceph_aops;
770extern int ceph_mmap(struct file *file, struct vm_area_struct *vma);
771
772/* file.c */
773extern const struct file_operations ceph_file_fops;
774extern const struct address_space_operations ceph_aops;
775extern int ceph_copy_to_page_vector(struct page **pages,
776 const char *data,
777 loff_t off, size_t len);
778extern int ceph_copy_from_page_vector(struct page **pages,
779 char *data,
780 loff_t off, size_t len);
781extern struct page **ceph_alloc_page_vector(int num_pages, gfp_t flags);
782extern int ceph_open(struct inode *inode, struct file *file);
783extern struct dentry *ceph_lookup_open(struct inode *dir, struct dentry *dentry,
784 struct nameidata *nd, int mode,
785 int locked_dir);
786extern int ceph_release(struct inode *inode, struct file *filp);
787
788/* dir.c */
789extern const struct file_operations ceph_dir_fops;
790extern const struct inode_operations ceph_dir_iops;
791extern const struct dentry_operations ceph_dentry_ops, ceph_snap_dentry_ops,
792 ceph_snapdir_dentry_ops;
793
794extern int ceph_handle_notrace_create(struct inode *dir, struct dentry *dentry);
795extern int ceph_handle_snapdir(struct ceph_mds_request *req,
796 struct dentry *dentry, int err);
797extern struct dentry *ceph_finish_lookup(struct ceph_mds_request *req,
798 struct dentry *dentry, int err);
799
800extern void ceph_dentry_lru_add(struct dentry *dn);
801extern void ceph_dentry_lru_touch(struct dentry *dn);
802extern void ceph_dentry_lru_del(struct dentry *dn);
803extern void ceph_invalidate_dentry_lease(struct dentry *dentry);
804extern unsigned ceph_dentry_hash(struct inode *dir, struct dentry *dn);
805extern struct inode *ceph_get_dentry_parent_inode(struct dentry *dentry);
806
807/*
808 * our d_ops vary depending on whether the inode is live,
809 * snapshotted (read-only), or a virtual ".snap" directory.
810 */
811int ceph_init_dentry(struct dentry *dentry);
812
813
814/* ioctl.c */
815extern long ceph_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
816
817/* export.c */
818extern const struct export_operations ceph_export_ops;
819
820/* locks.c */
821extern int ceph_lock(struct file *file, int cmd, struct file_lock *fl);
822extern int ceph_flock(struct file *file, int cmd, struct file_lock *fl);
823extern void ceph_count_locks(struct inode *inode, int *p_num, int *f_num);
824extern int ceph_encode_locks(struct inode *i, struct ceph_pagelist *p,
825 int p_locks, int f_locks);
826extern int lock_to_ceph_filelock(struct file_lock *fl, struct ceph_filelock *c);
827
828/* debugfs.c */
829extern int ceph_fs_debugfs_init(struct ceph_fs_client *client);
830extern void ceph_fs_debugfs_cleanup(struct ceph_fs_client *client);
831
832#endif /* _FS_CEPH_SUPER_H */