Linux Audio

Check our new training course

Loading...
v3.5.6
 
   1/*
   2 * Copyright (C) 2011 STRATO.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
 
 
 
  19#include "ctree.h"
  20#include "disk-io.h"
  21#include "backref.h"
  22#include "ulist.h"
  23#include "transaction.h"
  24#include "delayed-ref.h"
  25#include "locking.h"
 
 
 
 
  26
  27struct extent_inode_elem {
  28	u64 inum;
  29	u64 offset;
  30	struct extent_inode_elem *next;
  31};
  32
  33static int check_extent_in_eb(struct btrfs_key *key, struct extent_buffer *eb,
  34				struct btrfs_file_extent_item *fi,
  35				u64 extent_item_pos,
  36				struct extent_inode_elem **eie)
 
 
  37{
  38	u64 data_offset;
  39	u64 data_len;
  40	struct extent_inode_elem *e;
  41
  42	data_offset = btrfs_file_extent_offset(eb, fi);
  43	data_len = btrfs_file_extent_num_bytes(eb, fi);
 
 
 
 
  44
  45	if (extent_item_pos < data_offset ||
  46	    extent_item_pos >= data_offset + data_len)
  47		return 1;
 
 
 
 
 
  48
  49	e = kmalloc(sizeof(*e), GFP_NOFS);
  50	if (!e)
  51		return -ENOMEM;
  52
  53	e->next = *eie;
  54	e->inum = key->objectid;
  55	e->offset = key->offset + (extent_item_pos - data_offset);
  56	*eie = e;
  57
  58	return 0;
  59}
  60
  61static int find_extent_in_eb(struct extent_buffer *eb, u64 wanted_disk_byte,
  62				u64 extent_item_pos,
  63				struct extent_inode_elem **eie)
 
 
 
 
 
 
 
 
 
 
 
  64{
  65	u64 disk_byte;
  66	struct btrfs_key key;
  67	struct btrfs_file_extent_item *fi;
  68	int slot;
  69	int nritems;
  70	int extent_type;
  71	int ret;
  72
  73	/*
  74	 * from the shared data ref, we only have the leaf but we need
  75	 * the key. thus, we must look into all items and see that we
  76	 * find one (some) with a reference to our extent item.
  77	 */
  78	nritems = btrfs_header_nritems(eb);
  79	for (slot = 0; slot < nritems; ++slot) {
  80		btrfs_item_key_to_cpu(eb, &key, slot);
  81		if (key.type != BTRFS_EXTENT_DATA_KEY)
  82			continue;
  83		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
  84		extent_type = btrfs_file_extent_type(eb, fi);
  85		if (extent_type == BTRFS_FILE_EXTENT_INLINE)
  86			continue;
  87		/* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
  88		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
  89		if (disk_byte != wanted_disk_byte)
  90			continue;
  91
  92		ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie);
  93		if (ret < 0)
  94			return ret;
  95	}
  96
  97	return 0;
  98}
  99
 
 
 
 
 
 
 
 
 
 
 
 
 
 100/*
 101 * this structure records all encountered refs on the way up to the root
 
 
 
 
 
 102 */
 103struct __prelim_ref {
 104	struct list_head list;
 105	u64 root_id;
 106	struct btrfs_key key_for_search;
 107	int level;
 108	int count;
 109	struct extent_inode_elem *inode_list;
 110	u64 parent;
 111	u64 wanted_disk_byte;
 112};
 113
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 114/*
 115 * the rules for all callers of this function are:
 116 * - obtaining the parent is the goal
 117 * - if you add a key, you must know that it is a correct key
 118 * - if you cannot add the parent or a correct key, then we will look into the
 119 *   block later to set a correct key
 120 *
 121 * delayed refs
 122 * ============
 123 *        backref type | shared | indirect | shared | indirect
 124 * information         |   tree |     tree |   data |     data
 125 * --------------------+--------+----------+--------+----------
 126 *      parent logical |    y   |     -    |    -   |     -
 127 *      key to resolve |    -   |     y    |    y   |     y
 128 *  tree block logical |    -   |     -    |    -   |     -
 129 *  root for resolving |    y   |     y    |    y   |     y
 130 *
 131 * - column 1:       we've the parent -> done
 132 * - column 2, 3, 4: we use the key to find the parent
 133 *
 134 * on disk refs (inline or keyed)
 135 * ==============================
 136 *        backref type | shared | indirect | shared | indirect
 137 * information         |   tree |     tree |   data |     data
 138 * --------------------+--------+----------+--------+----------
 139 *      parent logical |    y   |     -    |    y   |     -
 140 *      key to resolve |    -   |     -    |    -   |     y
 141 *  tree block logical |    y   |     y    |    y   |     y
 142 *  root for resolving |    -   |     y    |    y   |     y
 143 *
 144 * - column 1, 3: we've the parent -> done
 145 * - column 2:    we take the first key from the block to find the parent
 146 *                (see __add_missing_keys)
 147 * - column 4:    we use the key to find the parent
 148 *
 149 * additional information that's available but not required to find the parent
 150 * block might help in merging entries to gain some speed.
 151 */
 152
 153static int __add_prelim_ref(struct list_head *head, u64 root_id,
 154			    struct btrfs_key *key, int level,
 155			    u64 parent, u64 wanted_disk_byte, int count)
 
 156{
 157	struct __prelim_ref *ref;
 
 
 
 158
 159	/* in case we're adding delayed refs, we're holding the refs spinlock */
 160	ref = kmalloc(sizeof(*ref), GFP_ATOMIC);
 161	if (!ref)
 162		return -ENOMEM;
 163
 164	ref->root_id = root_id;
 165	if (key)
 166		ref->key_for_search = *key;
 167	else
 168		memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
 169
 170	ref->inode_list = NULL;
 171	ref->level = level;
 172	ref->count = count;
 173	ref->parent = parent;
 174	ref->wanted_disk_byte = wanted_disk_byte;
 175	list_add_tail(&ref->list, head);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 176
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 177	return 0;
 178}
 179
 180static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
 181				struct ulist *parents, int level,
 182				struct btrfs_key *key_for_search, u64 time_seq,
 183				u64 wanted_disk_byte,
 184				const u64 *extent_item_pos)
 185{
 186	int ret = 0;
 187	int slot;
 188	struct extent_buffer *eb;
 189	struct btrfs_key key;
 
 190	struct btrfs_file_extent_item *fi;
 191	struct extent_inode_elem *eie = NULL;
 192	u64 disk_byte;
 
 
 
 193
 194	if (level != 0) {
 195		eb = path->nodes[level];
 196		ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
 197		if (ret < 0)
 198			return ret;
 199		return 0;
 200	}
 201
 202	/*
 203	 * We normally enter this function with the path already pointing to
 204	 * the first item to check. But sometimes, we may enter it with
 205	 * slot==nritems. In that case, go to the next leaf before we continue.
 
 
 
 
 
 206	 */
 207	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0]))
 208		ret = btrfs_next_old_leaf(root, path, time_seq);
 
 
 
 
 
 
 
 209
 210	while (!ret) {
 211		eb = path->nodes[0];
 212		slot = path->slots[0];
 213
 214		btrfs_item_key_to_cpu(eb, &key, slot);
 215
 216		if (key.objectid != key_for_search->objectid ||
 217		    key.type != BTRFS_EXTENT_DATA_KEY)
 218			break;
 219
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 220		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
 221		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
 
 222
 223		if (disk_byte == wanted_disk_byte) {
 224			eie = NULL;
 
 
 
 
 
 225			if (extent_item_pos) {
 226				ret = check_extent_in_eb(&key, eb, fi,
 227						*extent_item_pos,
 228						&eie);
 229				if (ret < 0)
 230					break;
 231			}
 232			if (!ret) {
 233				ret = ulist_add(parents, eb->start,
 234						(unsigned long)eie, GFP_NOFS);
 235				if (ret < 0)
 236					break;
 237				if (!extent_item_pos) {
 238					ret = btrfs_next_old_leaf(root, path,
 239							time_seq);
 240					continue;
 241				}
 242			}
 
 243		}
 244		ret = btrfs_next_old_item(root, path, time_seq);
 
 
 
 
 245	}
 246
 247	if (ret > 0)
 248		ret = 0;
 
 
 249	return ret;
 250}
 251
 252/*
 253 * resolve an indirect backref in the form (root_id, key, level)
 254 * to a logical address
 255 */
 256static int __resolve_indirect_ref(struct btrfs_fs_info *fs_info,
 257					int search_commit_root,
 258					u64 time_seq,
 259					struct __prelim_ref *ref,
 260					struct ulist *parents,
 261					const u64 *extent_item_pos)
 262{
 263	struct btrfs_path *path;
 264	struct btrfs_root *root;
 265	struct btrfs_key root_key;
 266	struct extent_buffer *eb;
 267	int ret = 0;
 268	int root_level;
 269	int level = ref->level;
 
 270
 271	path = btrfs_alloc_path();
 272	if (!path)
 273		return -ENOMEM;
 274	path->search_commit_root = !!search_commit_root;
 275
 276	root_key.objectid = ref->root_id;
 277	root_key.type = BTRFS_ROOT_ITEM_KEY;
 278	root_key.offset = (u64)-1;
 279	root = btrfs_read_fs_root_no_name(fs_info, &root_key);
 280	if (IS_ERR(root)) {
 281		ret = PTR_ERR(root);
 
 
 
 
 
 
 282		goto out;
 283	}
 284
 285	rcu_read_lock();
 286	root_level = btrfs_header_level(root->node);
 287	rcu_read_unlock();
 
 
 
 
 
 
 
 
 288
 289	if (root_level + 1 == level)
 290		goto out;
 291
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 292	path->lowest_level = level;
 293	ret = btrfs_search_old_slot(root, &ref->key_for_search, path, time_seq);
 294	pr_debug("search slot in root %llu (level %d, ref count %d) returned "
 295		 "%d for key (%llu %u %llu)\n",
 296		 (unsigned long long)ref->root_id, level, ref->count, ret,
 297		 (unsigned long long)ref->key_for_search.objectid,
 298		 ref->key_for_search.type,
 299		 (unsigned long long)ref->key_for_search.offset);
 
 
 
 300	if (ret < 0)
 301		goto out;
 302
 303	eb = path->nodes[level];
 304	while (!eb) {
 305		if (!level) {
 306			WARN_ON(1);
 307			ret = 1;
 308			goto out;
 309		}
 310		level--;
 311		eb = path->nodes[level];
 312	}
 313
 314	ret = add_all_parents(root, path, parents, level, &ref->key_for_search,
 315				time_seq, ref->wanted_disk_byte,
 316				extent_item_pos);
 317out:
 318	btrfs_free_path(path);
 
 
 
 319	return ret;
 320}
 321
 
 
 
 
 
 
 
 
 322/*
 323 * resolve all indirect backrefs from the list
 324 */
 325static int __resolve_indirect_refs(struct btrfs_fs_info *fs_info,
 326				   int search_commit_root, u64 time_seq,
 327				   struct list_head *head,
 328				   const u64 *extent_item_pos)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 329{
 330	int err;
 331	int ret = 0;
 332	struct __prelim_ref *ref;
 333	struct __prelim_ref *ref_safe;
 334	struct __prelim_ref *new_ref;
 335	struct ulist *parents;
 336	struct ulist_node *node;
 337	struct ulist_iterator uiter;
 
 338
 339	parents = ulist_alloc(GFP_NOFS);
 340	if (!parents)
 341		return -ENOMEM;
 342
 343	/*
 344	 * _safe allows us to insert directly after the current item without
 345	 * iterating over the newly inserted items.
 346	 * we're also allowed to re-assign ref during iteration.
 
 347	 */
 348	list_for_each_entry_safe(ref, ref_safe, head, list) {
 349		if (ref->parent)	/* already direct */
 350			continue;
 351		if (ref->count == 0)
 
 
 
 
 
 
 
 
 
 
 
 352			continue;
 353		err = __resolve_indirect_ref(fs_info, search_commit_root,
 354					     time_seq, ref, parents,
 355					     extent_item_pos);
 356		if (err) {
 357			if (ret == 0)
 358				ret = err;
 
 
 
 
 
 
 
 
 
 
 
 
 359			continue;
 
 
 
 
 360		}
 361
 362		/* we put the first parent into the ref at hand */
 363		ULIST_ITER_INIT(&uiter);
 364		node = ulist_next(parents, &uiter);
 365		ref->parent = node ? node->val : 0;
 366		ref->inode_list =
 367			node ? (struct extent_inode_elem *)node->aux : 0;
 368
 369		/* additional parents require new refs being added here */
 370		while ((node = ulist_next(parents, &uiter))) {
 371			new_ref = kmalloc(sizeof(*new_ref), GFP_NOFS);
 
 
 
 372			if (!new_ref) {
 
 373				ret = -ENOMEM;
 374				break;
 375			}
 376			memcpy(new_ref, ref, sizeof(*ref));
 377			new_ref->parent = node->val;
 378			new_ref->inode_list =
 379					(struct extent_inode_elem *)node->aux;
 380			list_add(&new_ref->list, &ref->list);
 381		}
 
 
 
 
 
 
 
 382		ulist_reinit(parents);
 
 383	}
 384
 385	ulist_free(parents);
 386	return ret;
 387}
 388
 389static inline int ref_for_same_block(struct __prelim_ref *ref1,
 390				     struct __prelim_ref *ref2)
 391{
 392	if (ref1->level != ref2->level)
 393		return 0;
 394	if (ref1->root_id != ref2->root_id)
 395		return 0;
 396	if (ref1->key_for_search.type != ref2->key_for_search.type)
 397		return 0;
 398	if (ref1->key_for_search.objectid != ref2->key_for_search.objectid)
 399		return 0;
 400	if (ref1->key_for_search.offset != ref2->key_for_search.offset)
 401		return 0;
 402	if (ref1->parent != ref2->parent)
 403		return 0;
 404
 405	return 1;
 406}
 407
 408/*
 409 * read tree blocks and add keys where required.
 410 */
 411static int __add_missing_keys(struct btrfs_fs_info *fs_info,
 412			      struct list_head *head)
 413{
 414	struct list_head *pos;
 415	struct extent_buffer *eb;
 
 
 416
 417	list_for_each(pos, head) {
 418		struct __prelim_ref *ref;
 419		ref = list_entry(pos, struct __prelim_ref, list);
 420
 421		if (ref->parent)
 422			continue;
 423		if (ref->key_for_search.type)
 424			continue;
 425		BUG_ON(!ref->wanted_disk_byte);
 426		eb = read_tree_block(fs_info->tree_root, ref->wanted_disk_byte,
 427				     fs_info->tree_root->leafsize, 0);
 428		BUG_ON(!eb);
 429		btrfs_tree_read_lock(eb);
 
 
 
 
 
 
 
 
 
 430		if (btrfs_header_level(eb) == 0)
 431			btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
 432		else
 433			btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
 434		btrfs_tree_read_unlock(eb);
 
 435		free_extent_buffer(eb);
 436	}
 437	return 0;
 438}
 439
 440/*
 441 * merge two lists of backrefs and adjust counts accordingly
 442 *
 443 * mode = 1: merge identical keys, if key is set
 444 *    FIXME: if we add more keys in __add_prelim_ref, we can merge more here.
 445 *           additionally, we could even add a key range for the blocks we
 446 *           looked into to merge even more (-> replace unresolved refs by those
 447 *           having a parent).
 448 * mode = 2: merge identical parents
 449 */
 450static int __merge_refs(struct list_head *head, int mode)
 451{
 452	struct list_head *pos1;
 453
 454	list_for_each(pos1, head) {
 455		struct list_head *n2;
 456		struct list_head *pos2;
 457		struct __prelim_ref *ref1;
 458
 459		ref1 = list_entry(pos1, struct __prelim_ref, list);
 460
 461		for (pos2 = pos1->next, n2 = pos2->next; pos2 != head;
 462		     pos2 = n2, n2 = pos2->next) {
 463			struct __prelim_ref *ref2;
 464			struct __prelim_ref *xchg;
 465
 466			ref2 = list_entry(pos2, struct __prelim_ref, list);
 467
 468			if (mode == 1) {
 469				if (!ref_for_same_block(ref1, ref2))
 470					continue;
 471				if (!ref1->parent && ref2->parent) {
 472					xchg = ref1;
 473					ref1 = ref2;
 474					ref2 = xchg;
 475				}
 476				ref1->count += ref2->count;
 477			} else {
 478				if (ref1->parent != ref2->parent)
 479					continue;
 480				ref1->count += ref2->count;
 481			}
 482			list_del(&ref2->list);
 483			kfree(ref2);
 484		}
 485
 486	}
 487	return 0;
 488}
 489
 490/*
 491 * add all currently queued delayed refs from this head whose seq nr is
 492 * smaller or equal that seq to the list
 493 */
 494static int __add_delayed_refs(struct btrfs_delayed_ref_head *head, u64 seq,
 495			      struct list_head *prefs)
 
 496{
 
 497	struct btrfs_delayed_extent_op *extent_op = head->extent_op;
 498	struct rb_node *n = &head->node.rb_node;
 499	struct btrfs_key key;
 500	struct btrfs_key op_key = {0};
 501	int sgn;
 
 502	int ret = 0;
 503
 504	if (extent_op && extent_op->update_key)
 505		btrfs_disk_key_to_cpu(&op_key, &extent_op->key);
 506
 507	while ((n = rb_prev(n))) {
 508		struct btrfs_delayed_ref_node *node;
 509		node = rb_entry(n, struct btrfs_delayed_ref_node,
 510				rb_node);
 511		if (node->bytenr != head->node.bytenr)
 512			break;
 513		WARN_ON(node->is_head);
 514
 515		if (node->seq > seq)
 516			continue;
 517
 518		switch (node->action) {
 519		case BTRFS_ADD_DELAYED_EXTENT:
 520		case BTRFS_UPDATE_DELAYED_HEAD:
 521			WARN_ON(1);
 522			continue;
 523		case BTRFS_ADD_DELAYED_REF:
 524			sgn = 1;
 525			break;
 526		case BTRFS_DROP_DELAYED_REF:
 527			sgn = -1;
 528			break;
 529		default:
 530			BUG_ON(1);
 531		}
 532		switch (node->type) {
 533		case BTRFS_TREE_BLOCK_REF_KEY: {
 
 534			struct btrfs_delayed_tree_ref *ref;
 535
 536			ref = btrfs_delayed_node_to_tree_ref(node);
 537			ret = __add_prelim_ref(prefs, ref->root, &op_key,
 538					       ref->level + 1, 0, node->bytenr,
 539					       node->ref_mod * sgn);
 
 540			break;
 541		}
 542		case BTRFS_SHARED_BLOCK_REF_KEY: {
 
 543			struct btrfs_delayed_tree_ref *ref;
 544
 545			ref = btrfs_delayed_node_to_tree_ref(node);
 546			ret = __add_prelim_ref(prefs, ref->root, NULL,
 547					       ref->level + 1, ref->parent,
 548					       node->bytenr,
 549					       node->ref_mod * sgn);
 550			break;
 551		}
 552		case BTRFS_EXTENT_DATA_REF_KEY: {
 
 553			struct btrfs_delayed_data_ref *ref;
 554			ref = btrfs_delayed_node_to_data_ref(node);
 555
 556			key.objectid = ref->objectid;
 557			key.type = BTRFS_EXTENT_DATA_KEY;
 558			key.offset = ref->offset;
 559			ret = __add_prelim_ref(prefs, ref->root, &key, 0, 0,
 560					       node->bytenr,
 561					       node->ref_mod * sgn);
 
 
 
 
 
 
 
 
 
 
 562			break;
 563		}
 564		case BTRFS_SHARED_DATA_REF_KEY: {
 
 565			struct btrfs_delayed_data_ref *ref;
 566
 567			ref = btrfs_delayed_node_to_data_ref(node);
 568
 569			key.objectid = ref->objectid;
 570			key.type = BTRFS_EXTENT_DATA_KEY;
 571			key.offset = ref->offset;
 572			ret = __add_prelim_ref(prefs, ref->root, &key, 0,
 573					       ref->parent, node->bytenr,
 574					       node->ref_mod * sgn);
 575			break;
 576		}
 577		default:
 578			WARN_ON(1);
 579		}
 580		BUG_ON(ret);
 
 
 
 
 
 581	}
 582
 583	return 0;
 
 
 
 584}
 585
 586/*
 587 * add all inline backrefs for bytenr to the list
 
 
 588 */
 589static int __add_inline_refs(struct btrfs_fs_info *fs_info,
 590			     struct btrfs_path *path, u64 bytenr,
 591			     int *info_level, struct list_head *prefs)
 
 592{
 593	int ret = 0;
 594	int slot;
 595	struct extent_buffer *leaf;
 596	struct btrfs_key key;
 
 597	unsigned long ptr;
 598	unsigned long end;
 599	struct btrfs_extent_item *ei;
 600	u64 flags;
 601	u64 item_size;
 602
 603	/*
 604	 * enumerate all inline refs
 605	 */
 606	leaf = path->nodes[0];
 607	slot = path->slots[0];
 608
 609	item_size = btrfs_item_size_nr(leaf, slot);
 610	BUG_ON(item_size < sizeof(*ei));
 611
 612	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
 613	flags = btrfs_extent_flags(leaf, ei);
 
 614
 615	ptr = (unsigned long)(ei + 1);
 616	end = (unsigned long)ei + item_size;
 617
 618	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
 
 619		struct btrfs_tree_block_info *info;
 620
 621		info = (struct btrfs_tree_block_info *)ptr;
 622		*info_level = btrfs_tree_block_level(leaf, info);
 623		ptr += sizeof(struct btrfs_tree_block_info);
 624		BUG_ON(ptr > end);
 
 
 625	} else {
 626		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
 627	}
 628
 629	while (ptr < end) {
 630		struct btrfs_extent_inline_ref *iref;
 631		u64 offset;
 632		int type;
 633
 634		iref = (struct btrfs_extent_inline_ref *)ptr;
 635		type = btrfs_extent_inline_ref_type(leaf, iref);
 
 
 
 
 636		offset = btrfs_extent_inline_ref_offset(leaf, iref);
 637
 638		switch (type) {
 639		case BTRFS_SHARED_BLOCK_REF_KEY:
 640			ret = __add_prelim_ref(prefs, 0, NULL,
 641						*info_level + 1, offset,
 642						bytenr, 1);
 643			break;
 644		case BTRFS_SHARED_DATA_REF_KEY: {
 645			struct btrfs_shared_data_ref *sdref;
 646			int count;
 647
 648			sdref = (struct btrfs_shared_data_ref *)(iref + 1);
 649			count = btrfs_shared_data_ref_count(leaf, sdref);
 650			ret = __add_prelim_ref(prefs, 0, NULL, 0, offset,
 651					       bytenr, count);
 
 652			break;
 653		}
 654		case BTRFS_TREE_BLOCK_REF_KEY:
 655			ret = __add_prelim_ref(prefs, offset, NULL,
 656					       *info_level + 1, 0,
 657					       bytenr, 1);
 658			break;
 659		case BTRFS_EXTENT_DATA_REF_KEY: {
 660			struct btrfs_extent_data_ref *dref;
 661			int count;
 662			u64 root;
 663
 664			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
 665			count = btrfs_extent_data_ref_count(leaf, dref);
 666			key.objectid = btrfs_extent_data_ref_objectid(leaf,
 667								      dref);
 668			key.type = BTRFS_EXTENT_DATA_KEY;
 669			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
 
 
 
 
 
 
 670			root = btrfs_extent_data_ref_root(leaf, dref);
 671			ret = __add_prelim_ref(prefs, root, &key, 0, 0,
 672					       bytenr, count);
 
 
 673			break;
 674		}
 675		default:
 676			WARN_ON(1);
 677		}
 678		BUG_ON(ret);
 
 679		ptr += btrfs_extent_inline_ref_size(type);
 680	}
 681
 682	return 0;
 683}
 684
 685/*
 686 * add all non-inline backrefs for bytenr to the list
 
 
 687 */
 688static int __add_keyed_refs(struct btrfs_fs_info *fs_info,
 689			    struct btrfs_path *path, u64 bytenr,
 690			    int info_level, struct list_head *prefs)
 
 691{
 692	struct btrfs_root *extent_root = fs_info->extent_root;
 693	int ret;
 694	int slot;
 695	struct extent_buffer *leaf;
 696	struct btrfs_key key;
 697
 698	while (1) {
 699		ret = btrfs_next_item(extent_root, path);
 700		if (ret < 0)
 701			break;
 702		if (ret) {
 703			ret = 0;
 704			break;
 705		}
 706
 707		slot = path->slots[0];
 708		leaf = path->nodes[0];
 709		btrfs_item_key_to_cpu(leaf, &key, slot);
 710
 711		if (key.objectid != bytenr)
 712			break;
 713		if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
 714			continue;
 715		if (key.type > BTRFS_SHARED_DATA_REF_KEY)
 716			break;
 717
 718		switch (key.type) {
 719		case BTRFS_SHARED_BLOCK_REF_KEY:
 720			ret = __add_prelim_ref(prefs, 0, NULL,
 721						info_level + 1, key.offset,
 722						bytenr, 1);
 
 723			break;
 724		case BTRFS_SHARED_DATA_REF_KEY: {
 
 725			struct btrfs_shared_data_ref *sdref;
 726			int count;
 727
 728			sdref = btrfs_item_ptr(leaf, slot,
 729					      struct btrfs_shared_data_ref);
 730			count = btrfs_shared_data_ref_count(leaf, sdref);
 731			ret = __add_prelim_ref(prefs, 0, NULL, 0, key.offset,
 732						bytenr, count);
 
 733			break;
 734		}
 735		case BTRFS_TREE_BLOCK_REF_KEY:
 736			ret = __add_prelim_ref(prefs, key.offset, NULL,
 737					       info_level + 1, 0,
 738					       bytenr, 1);
 
 739			break;
 740		case BTRFS_EXTENT_DATA_REF_KEY: {
 
 741			struct btrfs_extent_data_ref *dref;
 742			int count;
 743			u64 root;
 744
 745			dref = btrfs_item_ptr(leaf, slot,
 746					      struct btrfs_extent_data_ref);
 747			count = btrfs_extent_data_ref_count(leaf, dref);
 748			key.objectid = btrfs_extent_data_ref_objectid(leaf,
 749								      dref);
 750			key.type = BTRFS_EXTENT_DATA_KEY;
 751			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
 
 
 
 
 
 
 752			root = btrfs_extent_data_ref_root(leaf, dref);
 753			ret = __add_prelim_ref(prefs, root, &key, 0, 0,
 754					       bytenr, count);
 
 755			break;
 756		}
 757		default:
 758			WARN_ON(1);
 759		}
 760		BUG_ON(ret);
 
 
 761	}
 762
 763	return ret;
 764}
 765
 766/*
 767 * this adds all existing backrefs (inline backrefs, backrefs and delayed
 768 * refs) for the given bytenr to the refs list, merges duplicates and resolves
 769 * indirect refs to their parent bytenr.
 770 * When roots are found, they're added to the roots list
 771 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 772 * FIXME some caching might speed things up
 773 */
 774static int find_parent_nodes(struct btrfs_trans_handle *trans,
 775			     struct btrfs_fs_info *fs_info, u64 bytenr,
 776			     u64 delayed_ref_seq, u64 time_seq,
 777			     struct ulist *refs, struct ulist *roots,
 778			     const u64 *extent_item_pos)
 779{
 780	struct btrfs_key key;
 781	struct btrfs_path *path;
 782	struct btrfs_delayed_ref_root *delayed_refs = NULL;
 783	struct btrfs_delayed_ref_head *head;
 784	int info_level = 0;
 785	int ret;
 786	int search_commit_root = (trans == BTRFS_BACKREF_SEARCH_COMMIT_ROOT);
 787	struct list_head prefs_delayed;
 788	struct list_head prefs;
 789	struct __prelim_ref *ref;
 790
 791	INIT_LIST_HEAD(&prefs);
 792	INIT_LIST_HEAD(&prefs_delayed);
 
 793
 794	key.objectid = bytenr;
 795	key.type = BTRFS_EXTENT_ITEM_KEY;
 796	key.offset = (u64)-1;
 
 
 
 
 797
 798	path = btrfs_alloc_path();
 799	if (!path)
 800		return -ENOMEM;
 801	path->search_commit_root = !!search_commit_root;
 
 
 
 
 
 
 802
 803	/*
 804	 * grab both a lock on the path and a lock on the delayed ref head.
 805	 * We need both to get a consistent picture of how the refs look
 806	 * at a specified point in time
 807	 */
 808again:
 809	head = NULL;
 810
 811	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
 812	if (ret < 0)
 813		goto out;
 814	BUG_ON(ret == 0);
 815
 816	if (trans != BTRFS_BACKREF_SEARCH_COMMIT_ROOT) {
 
 
 
 
 
 817		/*
 818		 * look if there are updates for this ref queued and lock the
 819		 * head
 820		 */
 821		delayed_refs = &trans->transaction->delayed_refs;
 822		spin_lock(&delayed_refs->lock);
 823		head = btrfs_find_delayed_ref_head(trans, bytenr);
 824		if (head) {
 825			if (!mutex_trylock(&head->mutex)) {
 826				atomic_inc(&head->node.refs);
 827				spin_unlock(&delayed_refs->lock);
 828
 829				btrfs_release_path(path);
 830
 831				/*
 832				 * Mutex was contended, block until it's
 833				 * released and try again
 834				 */
 835				mutex_lock(&head->mutex);
 836				mutex_unlock(&head->mutex);
 837				btrfs_put_delayed_ref(&head->node);
 838				goto again;
 839			}
 840			ret = __add_delayed_refs(head, delayed_ref_seq,
 841						 &prefs_delayed);
 
 842			mutex_unlock(&head->mutex);
 843			if (ret) {
 844				spin_unlock(&delayed_refs->lock);
 845				goto out;
 846			}
 
 847		}
 848		spin_unlock(&delayed_refs->lock);
 849	}
 850
 851	if (path->slots[0]) {
 852		struct extent_buffer *leaf;
 853		int slot;
 854
 855		path->slots[0]--;
 856		leaf = path->nodes[0];
 857		slot = path->slots[0];
 858		btrfs_item_key_to_cpu(leaf, &key, slot);
 859		if (key.objectid == bytenr &&
 860		    key.type == BTRFS_EXTENT_ITEM_KEY) {
 861			ret = __add_inline_refs(fs_info, path, bytenr,
 862						&info_level, &prefs);
 
 863			if (ret)
 864				goto out;
 865			ret = __add_keyed_refs(fs_info, path, bytenr,
 866					       info_level, &prefs);
 867			if (ret)
 868				goto out;
 869		}
 870	}
 871	btrfs_release_path(path);
 872
 873	list_splice_init(&prefs_delayed, &prefs);
 874
 875	ret = __add_missing_keys(fs_info, &prefs);
 876	if (ret)
 877		goto out;
 878
 879	ret = __merge_refs(&prefs, 1);
 880	if (ret)
 881		goto out;
 882
 883	ret = __resolve_indirect_refs(fs_info, search_commit_root, time_seq,
 884				      &prefs, extent_item_pos);
 885	if (ret)
 886		goto out;
 887
 888	ret = __merge_refs(&prefs, 2);
 889	if (ret)
 890		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 891
 892	while (!list_empty(&prefs)) {
 893		ref = list_first_entry(&prefs, struct __prelim_ref, list);
 894		list_del(&ref->list);
 895		if (ref->count < 0)
 896			WARN_ON(1);
 897		if (ref->count && ref->root_id && ref->parent == 0) {
 898			/* no parent == root of tree */
 899			ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
 900			BUG_ON(ret < 0);
 
 901		}
 902		if (ref->count && ref->parent) {
 903			struct extent_inode_elem *eie = NULL;
 904			if (extent_item_pos && !ref->inode_list) {
 905				u32 bsz;
 906				struct extent_buffer *eb;
 907				bsz = btrfs_level_size(fs_info->extent_root,
 908							info_level);
 909				eb = read_tree_block(fs_info->extent_root,
 910							   ref->parent, bsz, 0);
 911				BUG_ON(!eb);
 
 
 
 
 
 
 
 
 
 
 
 912				ret = find_extent_in_eb(eb, bytenr,
 913							*extent_item_pos, &eie);
 914				ref->inode_list = eie;
 
 915				free_extent_buffer(eb);
 
 
 
 916			}
 917			ret = ulist_add_merge(refs, ref->parent,
 918					      (unsigned long)ref->inode_list,
 919					      (unsigned long *)&eie, GFP_NOFS);
 
 
 920			if (!ret && extent_item_pos) {
 921				/*
 922				 * we've recorded that parent, so we must extend
 923				 * its inode list here
 924				 */
 925				BUG_ON(!eie);
 926				while (eie->next)
 927					eie = eie->next;
 928				eie->next = ref->inode_list;
 929			}
 930			BUG_ON(ret < 0);
 931		}
 932		kfree(ref);
 933	}
 934
 935out:
 936	btrfs_free_path(path);
 937	while (!list_empty(&prefs)) {
 938		ref = list_first_entry(&prefs, struct __prelim_ref, list);
 939		list_del(&ref->list);
 940		kfree(ref);
 941	}
 942	while (!list_empty(&prefs_delayed)) {
 943		ref = list_first_entry(&prefs_delayed, struct __prelim_ref,
 944				       list);
 945		list_del(&ref->list);
 946		kfree(ref);
 947	}
 948
 
 
 
 
 
 
 949	return ret;
 950}
 951
 952static void free_leaf_list(struct ulist *blocks)
 953{
 954	struct ulist_node *node = NULL;
 955	struct extent_inode_elem *eie;
 956	struct extent_inode_elem *eie_next;
 957	struct ulist_iterator uiter;
 958
 959	ULIST_ITER_INIT(&uiter);
 960	while ((node = ulist_next(blocks, &uiter))) {
 961		if (!node->aux)
 962			continue;
 963		eie = (struct extent_inode_elem *)node->aux;
 964		for (; eie; eie = eie_next) {
 965			eie_next = eie->next;
 966			kfree(eie);
 967		}
 968		node->aux = 0;
 969	}
 970
 971	ulist_free(blocks);
 972}
 973
 974/*
 975 * Finds all leafs with a reference to the specified combination of bytenr and
 976 * offset. key_list_head will point to a list of corresponding keys (caller must
 977 * free each list element). The leafs will be stored in the leafs ulist, which
 978 * must be freed with ulist_free.
 979 *
 980 * returns 0 on success, <0 on error
 981 */
 982static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
 983				struct btrfs_fs_info *fs_info, u64 bytenr,
 984				u64 delayed_ref_seq, u64 time_seq,
 985				struct ulist **leafs,
 986				const u64 *extent_item_pos)
 987{
 988	struct ulist *tmp;
 989	int ret;
 990
 991	tmp = ulist_alloc(GFP_NOFS);
 992	if (!tmp)
 993		return -ENOMEM;
 994	*leafs = ulist_alloc(GFP_NOFS);
 995	if (!*leafs) {
 996		ulist_free(tmp);
 997		return -ENOMEM;
 998	}
 999
1000	ret = find_parent_nodes(trans, fs_info, bytenr, delayed_ref_seq,
1001				time_seq, *leafs, tmp, extent_item_pos);
1002	ulist_free(tmp);
1003
 
 
1004	if (ret < 0 && ret != -ENOENT) {
1005		free_leaf_list(*leafs);
1006		return ret;
1007	}
1008
1009	return 0;
1010}
1011
1012/*
1013 * walk all backrefs for a given extent to find all roots that reference this
1014 * extent. Walking a backref means finding all extents that reference this
1015 * extent and in turn walk the backrefs of those, too. Naturally this is a
1016 * recursive process, but here it is implemented in an iterative fashion: We
1017 * find all referencing extents for the extent in question and put them on a
1018 * list. In turn, we find all referencing extents for those, further appending
1019 * to the list. The way we iterate the list allows adding more elements after
1020 * the current while iterating. The process stops when we reach the end of the
1021 * list. Found roots are added to the roots list.
1022 *
1023 * returns 0 on success, < 0 on error.
1024 */
1025int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1026				struct btrfs_fs_info *fs_info, u64 bytenr,
1027				u64 delayed_ref_seq, u64 time_seq,
1028				struct ulist **roots)
1029{
1030	struct ulist *tmp;
1031	struct ulist_node *node = NULL;
1032	struct ulist_iterator uiter;
1033	int ret;
1034
1035	tmp = ulist_alloc(GFP_NOFS);
1036	if (!tmp)
1037		return -ENOMEM;
1038	*roots = ulist_alloc(GFP_NOFS);
1039	if (!*roots) {
1040		ulist_free(tmp);
1041		return -ENOMEM;
1042	}
1043
1044	ULIST_ITER_INIT(&uiter);
1045	while (1) {
1046		ret = find_parent_nodes(trans, fs_info, bytenr, delayed_ref_seq,
1047					time_seq, tmp, *roots, NULL);
1048		if (ret < 0 && ret != -ENOENT) {
1049			ulist_free(tmp);
1050			ulist_free(*roots);
 
1051			return ret;
1052		}
1053		node = ulist_next(tmp, &uiter);
1054		if (!node)
1055			break;
1056		bytenr = node->val;
 
1057	}
1058
1059	ulist_free(tmp);
1060	return 0;
1061}
1062
1063
1064static int __inode_info(u64 inum, u64 ioff, u8 key_type,
1065			struct btrfs_root *fs_root, struct btrfs_path *path,
1066			struct btrfs_key *found_key)
1067{
1068	int ret;
1069	struct btrfs_key key;
1070	struct extent_buffer *eb;
1071
1072	key.type = key_type;
1073	key.objectid = inum;
1074	key.offset = ioff;
1075
1076	ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1077	if (ret < 0)
1078		return ret;
 
 
 
 
 
1079
1080	eb = path->nodes[0];
1081	if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
1082		ret = btrfs_next_leaf(fs_root, path);
1083		if (ret)
1084			return ret;
1085		eb = path->nodes[0];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1086	}
1087
1088	btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
1089	if (found_key->type != key.type || found_key->objectid != key.objectid)
1090		return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1091
1092	return 0;
 
 
 
 
 
 
 
 
 
1093}
1094
1095/*
1096 * this makes the path point to (inum INODE_ITEM ioff)
1097 */
1098int inode_item_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
1099			struct btrfs_path *path)
1100{
 
1101	struct btrfs_key key;
1102	return __inode_info(inum, ioff, BTRFS_INODE_ITEM_KEY, fs_root, path,
1103				&key);
1104}
 
1105
1106static int inode_ref_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
1107				struct btrfs_path *path,
1108				struct btrfs_key *found_key)
1109{
1110	return __inode_info(inum, ioff, BTRFS_INODE_REF_KEY, fs_root, path,
1111				found_key);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1112}
1113
1114/*
1115 * this iterates to turn a btrfs_inode_ref into a full filesystem path. elements
1116 * of the path are separated by '/' and the path is guaranteed to be
1117 * 0-terminated. the path is only given within the current file system.
1118 * Therefore, it never starts with a '/'. the caller is responsible to provide
1119 * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
1120 * the start point of the resulting string is returned. this pointer is within
1121 * dest, normally.
1122 * in case the path buffer would overflow, the pointer is decremented further
1123 * as if output was written to the buffer, though no more output is actually
1124 * generated. that way, the caller can determine how much space would be
1125 * required for the path to fit into the buffer. in that case, the returned
1126 * value will be smaller than dest. callers must check this!
1127 */
1128static char *iref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
1129				struct btrfs_inode_ref *iref,
1130				struct extent_buffer *eb_in, u64 parent,
1131				char *dest, u32 size)
1132{
1133	u32 len;
1134	int slot;
1135	u64 next_inum;
1136	int ret;
1137	s64 bytes_left = size - 1;
1138	struct extent_buffer *eb = eb_in;
1139	struct btrfs_key found_key;
1140	int leave_spinning = path->leave_spinning;
 
1141
1142	if (bytes_left >= 0)
1143		dest[bytes_left] = '\0';
1144
1145	path->leave_spinning = 1;
1146	while (1) {
1147		len = btrfs_inode_ref_name_len(eb, iref);
1148		bytes_left -= len;
1149		if (bytes_left >= 0)
1150			read_extent_buffer(eb, dest + bytes_left,
1151						(unsigned long)(iref + 1), len);
1152		if (eb != eb_in) {
1153			btrfs_tree_read_unlock_blocking(eb);
 
1154			free_extent_buffer(eb);
1155		}
1156		ret = inode_ref_info(parent, 0, fs_root, path, &found_key);
 
1157		if (ret > 0)
1158			ret = -ENOENT;
1159		if (ret)
1160			break;
 
1161		next_inum = found_key.offset;
1162
1163		/* regular exit ahead */
1164		if (parent == next_inum)
1165			break;
1166
1167		slot = path->slots[0];
1168		eb = path->nodes[0];
1169		/* make sure we can use eb after releasing the path */
1170		if (eb != eb_in) {
1171			atomic_inc(&eb->refs);
1172			btrfs_tree_read_lock(eb);
1173			btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
 
1174		}
1175		btrfs_release_path(path);
1176
1177		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
 
 
 
 
1178		parent = next_inum;
1179		--bytes_left;
1180		if (bytes_left >= 0)
1181			dest[bytes_left] = '/';
1182	}
1183
1184	btrfs_release_path(path);
1185	path->leave_spinning = leave_spinning;
1186
1187	if (ret)
1188		return ERR_PTR(ret);
1189
1190	return dest + bytes_left;
1191}
1192
1193/*
1194 * this makes the path point to (logical EXTENT_ITEM *)
1195 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
1196 * tree blocks and <0 on error.
1197 */
1198int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
1199			struct btrfs_path *path, struct btrfs_key *found_key)
 
1200{
1201	int ret;
1202	u64 flags;
 
1203	u32 item_size;
1204	struct extent_buffer *eb;
1205	struct btrfs_extent_item *ei;
1206	struct btrfs_key key;
1207
1208	key.type = BTRFS_EXTENT_ITEM_KEY;
 
 
 
1209	key.objectid = logical;
1210	key.offset = (u64)-1;
1211
1212	ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
1213	if (ret < 0)
1214		return ret;
1215	ret = btrfs_previous_item(fs_info->extent_root, path,
1216					0, BTRFS_EXTENT_ITEM_KEY);
1217	if (ret < 0)
1218		return ret;
1219
 
 
 
 
 
 
1220	btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
1221	if (found_key->type != BTRFS_EXTENT_ITEM_KEY ||
1222	    found_key->objectid > logical ||
1223	    found_key->objectid + found_key->offset <= logical) {
1224		pr_debug("logical %llu is not within any extent\n",
1225			 (unsigned long long)logical);
 
 
 
 
1226		return -ENOENT;
1227	}
1228
1229	eb = path->nodes[0];
1230	item_size = btrfs_item_size_nr(eb, path->slots[0]);
1231	BUG_ON(item_size < sizeof(*ei));
1232
1233	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
1234	flags = btrfs_extent_flags(eb, ei);
1235
1236	pr_debug("logical %llu is at position %llu within the extent (%llu "
1237		 "EXTENT_ITEM %llu) flags %#llx size %u\n",
1238		 (unsigned long long)logical,
1239		 (unsigned long long)(logical - found_key->objectid),
1240		 (unsigned long long)found_key->objectid,
1241		 (unsigned long long)found_key->offset,
1242		 (unsigned long long)flags, item_size);
1243	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1244		return BTRFS_EXTENT_FLAG_TREE_BLOCK;
1245	if (flags & BTRFS_EXTENT_FLAG_DATA)
1246		return BTRFS_EXTENT_FLAG_DATA;
 
 
 
 
1247
1248	return -EIO;
1249}
1250
1251/*
1252 * helper function to iterate extent inline refs. ptr must point to a 0 value
1253 * for the first call and may be modified. it is used to track state.
1254 * if more refs exist, 0 is returned and the next call to
1255 * __get_extent_inline_ref must pass the modified ptr parameter to get the
1256 * next ref. after the last ref was processed, 1 is returned.
1257 * returns <0 on error
1258 */
1259static int __get_extent_inline_ref(unsigned long *ptr, struct extent_buffer *eb,
1260				struct btrfs_extent_item *ei, u32 item_size,
1261				struct btrfs_extent_inline_ref **out_eiref,
1262				int *out_type)
 
 
 
1263{
1264	unsigned long end;
1265	u64 flags;
1266	struct btrfs_tree_block_info *info;
1267
1268	if (!*ptr) {
1269		/* first call */
1270		flags = btrfs_extent_flags(eb, ei);
1271		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1272			info = (struct btrfs_tree_block_info *)(ei + 1);
1273			*out_eiref =
1274				(struct btrfs_extent_inline_ref *)(info + 1);
 
 
 
 
 
 
 
1275		} else {
1276			*out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
1277		}
1278		*ptr = (unsigned long)*out_eiref;
1279		if ((void *)*ptr >= (void *)ei + item_size)
1280			return -ENOENT;
1281	}
1282
1283	end = (unsigned long)ei + item_size;
1284	*out_eiref = (struct btrfs_extent_inline_ref *)*ptr;
1285	*out_type = btrfs_extent_inline_ref_type(eb, *out_eiref);
 
 
 
1286
1287	*ptr += btrfs_extent_inline_ref_size(*out_type);
1288	WARN_ON(*ptr > end);
1289	if (*ptr == end)
1290		return 1; /* last */
1291
1292	return 0;
1293}
1294
1295/*
1296 * reads the tree block backref for an extent. tree level and root are returned
1297 * through out_level and out_root. ptr must point to a 0 value for the first
1298 * call and may be modified (see __get_extent_inline_ref comment).
1299 * returns 0 if data was provided, 1 if there was no more data to provide or
1300 * <0 on error.
1301 */
1302int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
1303				struct btrfs_extent_item *ei, u32 item_size,
1304				u64 *out_root, u8 *out_level)
1305{
1306	int ret;
1307	int type;
1308	struct btrfs_tree_block_info *info;
1309	struct btrfs_extent_inline_ref *eiref;
1310
1311	if (*ptr == (unsigned long)-1)
1312		return 1;
1313
1314	while (1) {
1315		ret = __get_extent_inline_ref(ptr, eb, ei, item_size,
1316						&eiref, &type);
1317		if (ret < 0)
1318			return ret;
1319
1320		if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1321		    type == BTRFS_SHARED_BLOCK_REF_KEY)
1322			break;
1323
1324		if (ret == 1)
1325			return 1;
1326	}
1327
1328	/* we can treat both ref types equally here */
1329	info = (struct btrfs_tree_block_info *)(ei + 1);
1330	*out_root = btrfs_extent_inline_ref_offset(eb, eiref);
1331	*out_level = btrfs_tree_block_level(eb, info);
 
 
 
 
 
 
 
 
 
1332
1333	if (ret == 1)
1334		*ptr = (unsigned long)-1;
1335
1336	return 0;
1337}
1338
1339static int iterate_leaf_refs(struct extent_inode_elem *inode_list,
1340				u64 root, u64 extent_item_objectid,
1341				iterate_extent_inodes_t *iterate, void *ctx)
 
1342{
1343	struct extent_inode_elem *eie;
1344	int ret = 0;
1345
1346	for (eie = inode_list; eie; eie = eie->next) {
1347		pr_debug("ref for %llu resolved, key (%llu EXTEND_DATA %llu), "
1348			 "root %llu\n", extent_item_objectid,
1349			 eie->inum, eie->offset, root);
 
1350		ret = iterate(eie->inum, eie->offset, root, ctx);
1351		if (ret) {
1352			pr_debug("stopping iteration for %llu due to ret=%d\n",
1353				 extent_item_objectid, ret);
 
1354			break;
1355		}
1356	}
1357
1358	return ret;
1359}
1360
1361/*
1362 * calls iterate() for every inode that references the extent identified by
1363 * the given parameters.
1364 * when the iterator function returns a non-zero value, iteration stops.
1365 */
1366int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
1367				u64 extent_item_objectid, u64 extent_item_pos,
1368				int search_commit_root,
1369				iterate_extent_inodes_t *iterate, void *ctx)
 
1370{
1371	int ret;
1372	struct list_head data_refs = LIST_HEAD_INIT(data_refs);
1373	struct list_head shared_refs = LIST_HEAD_INIT(shared_refs);
1374	struct btrfs_trans_handle *trans;
1375	struct ulist *refs = NULL;
1376	struct ulist *roots = NULL;
1377	struct ulist_node *ref_node = NULL;
1378	struct ulist_node *root_node = NULL;
1379	struct seq_list seq_elem = {};
1380	struct seq_list tree_mod_seq_elem = {};
1381	struct ulist_iterator ref_uiter;
1382	struct ulist_iterator root_uiter;
1383	struct btrfs_delayed_ref_root *delayed_refs = NULL;
1384
1385	pr_debug("resolving all inodes for extent %llu\n",
1386			extent_item_objectid);
1387
1388	if (search_commit_root) {
1389		trans = BTRFS_BACKREF_SEARCH_COMMIT_ROOT;
1390	} else {
1391		trans = btrfs_join_transaction(fs_info->extent_root);
1392		if (IS_ERR(trans))
1393			return PTR_ERR(trans);
 
 
 
1394
1395		delayed_refs = &trans->transaction->delayed_refs;
1396		spin_lock(&delayed_refs->lock);
1397		btrfs_get_delayed_seq(delayed_refs, &seq_elem);
1398		spin_unlock(&delayed_refs->lock);
1399		btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1400	}
 
1401
1402	ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
1403				   seq_elem.seq, tree_mod_seq_elem.seq, &refs,
1404				   &extent_item_pos);
1405	if (ret)
1406		goto out;
1407
1408	ULIST_ITER_INIT(&ref_uiter);
1409	while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
1410		ret = btrfs_find_all_roots(trans, fs_info, ref_node->val,
1411						seq_elem.seq,
1412						tree_mod_seq_elem.seq, &roots);
1413		if (ret)
1414			break;
1415		ULIST_ITER_INIT(&root_uiter);
1416		while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
1417			pr_debug("root %llu references leaf %llu, data list "
1418				 "%#lx\n", root_node->val, ref_node->val,
1419				 ref_node->aux);
1420			ret = iterate_leaf_refs(
1421				(struct extent_inode_elem *)ref_node->aux,
1422				root_node->val, extent_item_objectid,
1423				iterate, ctx);
 
 
 
1424		}
1425		ulist_free(roots);
1426		roots = NULL;
1427	}
1428
1429	free_leaf_list(refs);
1430	ulist_free(roots);
1431out:
1432	if (!search_commit_root) {
1433		btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1434		btrfs_put_delayed_seq(delayed_refs, &seq_elem);
1435		btrfs_end_transaction(trans, fs_info->extent_root);
 
1436	}
1437
1438	return ret;
1439}
1440
1441int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
1442				struct btrfs_path *path,
1443				iterate_extent_inodes_t *iterate, void *ctx)
 
1444{
1445	int ret;
1446	u64 extent_item_pos;
 
1447	struct btrfs_key found_key;
1448	int search_commit_root = path->search_commit_root;
1449
1450	ret = extent_from_logical(fs_info, logical, path,
1451					&found_key);
1452	btrfs_release_path(path);
1453	if (ret & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1454		ret = -EINVAL;
1455	if (ret < 0)
1456		return ret;
 
 
1457
1458	extent_item_pos = logical - found_key.objectid;
1459	ret = iterate_extent_inodes(fs_info, found_key.objectid,
1460					extent_item_pos, search_commit_root,
1461					iterate, ctx);
1462
1463	return ret;
1464}
1465
1466static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
1467				struct btrfs_path *path,
1468				iterate_irefs_t *iterate, void *ctx)
 
 
 
1469{
1470	int ret = 0;
1471	int slot;
1472	u32 cur;
1473	u32 len;
1474	u32 name_len;
1475	u64 parent = 0;
1476	int found = 0;
1477	struct extent_buffer *eb;
1478	struct btrfs_item *item;
1479	struct btrfs_inode_ref *iref;
1480	struct btrfs_key found_key;
1481
1482	while (!ret) {
1483		path->leave_spinning = 1;
1484		ret = inode_ref_info(inum, parent ? parent+1 : 0, fs_root, path,
1485					&found_key);
 
1486		if (ret < 0)
1487			break;
1488		if (ret) {
1489			ret = found ? 0 : -ENOENT;
1490			break;
1491		}
1492		++found;
1493
1494		parent = found_key.offset;
1495		slot = path->slots[0];
1496		eb = path->nodes[0];
1497		/* make sure we can use eb after releasing the path */
1498		atomic_inc(&eb->refs);
1499		btrfs_tree_read_lock(eb);
1500		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1501		btrfs_release_path(path);
1502
1503		item = btrfs_item_nr(eb, slot);
1504		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1505
1506		for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
1507			name_len = btrfs_inode_ref_name_len(eb, iref);
1508			/* path must be released before calling iterate()! */
1509			pr_debug("following ref at offset %u for inode %llu in "
1510				 "tree %llu\n", cur,
1511				 (unsigned long long)found_key.objectid,
1512				 (unsigned long long)fs_root->objectid);
1513			ret = iterate(parent, iref, eb, ctx);
 
1514			if (ret)
1515				break;
1516			len = sizeof(*iref) + name_len;
1517			iref = (struct btrfs_inode_ref *)((char *)iref + len);
1518		}
1519		btrfs_tree_read_unlock_blocking(eb);
1520		free_extent_buffer(eb);
1521	}
1522
1523	btrfs_release_path(path);
1524
1525	return ret;
1526}
1527
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1528/*
1529 * returns 0 if the path could be dumped (probably truncated)
1530 * returns <0 in case of an error
1531 */
1532static int inode_to_path(u64 inum, struct btrfs_inode_ref *iref,
1533				struct extent_buffer *eb, void *ctx)
1534{
1535	struct inode_fs_paths *ipath = ctx;
1536	char *fspath;
1537	char *fspath_min;
1538	int i = ipath->fspath->elem_cnt;
1539	const int s_ptr = sizeof(char *);
1540	u32 bytes_left;
1541
1542	bytes_left = ipath->fspath->bytes_left > s_ptr ?
1543					ipath->fspath->bytes_left - s_ptr : 0;
1544
1545	fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
1546	fspath = iref_to_path(ipath->fs_root, ipath->btrfs_path, iref, eb,
1547				inum, fspath_min, bytes_left);
1548	if (IS_ERR(fspath))
1549		return PTR_ERR(fspath);
1550
1551	if (fspath > fspath_min) {
1552		pr_debug("path resolved: %s\n", fspath);
1553		ipath->fspath->val[i] = (u64)(unsigned long)fspath;
1554		++ipath->fspath->elem_cnt;
1555		ipath->fspath->bytes_left = fspath - fspath_min;
1556	} else {
1557		pr_debug("missed path, not enough space. missing bytes: %lu, "
1558			 "constructed so far: %s\n",
1559			 (unsigned long)(fspath_min - fspath), fspath_min);
1560		++ipath->fspath->elem_missed;
1561		ipath->fspath->bytes_missing += fspath_min - fspath;
1562		ipath->fspath->bytes_left = 0;
1563	}
1564
1565	return 0;
1566}
1567
1568/*
1569 * this dumps all file system paths to the inode into the ipath struct, provided
1570 * is has been created large enough. each path is zero-terminated and accessed
1571 * from ipath->fspath->val[i].
1572 * when it returns, there are ipath->fspath->elem_cnt number of paths available
1573 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
1574 * number of missed paths in recored in ipath->fspath->elem_missed, otherwise,
1575 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
1576 * have been needed to return all paths.
1577 */
1578int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
1579{
1580	return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
1581				inode_to_path, ipath);
1582}
1583
1584struct btrfs_data_container *init_data_container(u32 total_bytes)
1585{
1586	struct btrfs_data_container *data;
1587	size_t alloc_bytes;
1588
1589	alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
1590	data = kmalloc(alloc_bytes, GFP_NOFS);
1591	if (!data)
1592		return ERR_PTR(-ENOMEM);
1593
1594	if (total_bytes >= sizeof(*data)) {
1595		data->bytes_left = total_bytes - sizeof(*data);
1596		data->bytes_missing = 0;
1597	} else {
1598		data->bytes_missing = sizeof(*data) - total_bytes;
1599		data->bytes_left = 0;
1600	}
1601
1602	data->elem_cnt = 0;
1603	data->elem_missed = 0;
1604
1605	return data;
1606}
1607
1608/*
1609 * allocates space to return multiple file system paths for an inode.
1610 * total_bytes to allocate are passed, note that space usable for actual path
1611 * information will be total_bytes - sizeof(struct inode_fs_paths).
1612 * the returned pointer must be freed with free_ipath() in the end.
1613 */
1614struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
1615					struct btrfs_path *path)
1616{
1617	struct inode_fs_paths *ifp;
1618	struct btrfs_data_container *fspath;
1619
1620	fspath = init_data_container(total_bytes);
1621	if (IS_ERR(fspath))
1622		return (void *)fspath;
1623
1624	ifp = kmalloc(sizeof(*ifp), GFP_NOFS);
1625	if (!ifp) {
1626		kfree(fspath);
1627		return ERR_PTR(-ENOMEM);
1628	}
1629
1630	ifp->btrfs_path = path;
1631	ifp->fspath = fspath;
1632	ifp->fs_root = fs_root;
1633
1634	return ifp;
1635}
1636
1637void free_ipath(struct inode_fs_paths *ipath)
1638{
1639	if (!ipath)
1640		return;
1641	kfree(ipath->fspath);
1642	kfree(ipath);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1643}
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2011 STRATO.  All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   4 */
   5
   6#include <linux/mm.h>
   7#include <linux/rbtree.h>
   8#include <trace/events/btrfs.h>
   9#include "ctree.h"
  10#include "disk-io.h"
  11#include "backref.h"
  12#include "ulist.h"
  13#include "transaction.h"
  14#include "delayed-ref.h"
  15#include "locking.h"
  16#include "misc.h"
  17
  18/* Just an arbitrary number so we can be sure this happened */
  19#define BACKREF_FOUND_SHARED 6
  20
  21struct extent_inode_elem {
  22	u64 inum;
  23	u64 offset;
  24	struct extent_inode_elem *next;
  25};
  26
  27static int check_extent_in_eb(const struct btrfs_key *key,
  28			      const struct extent_buffer *eb,
  29			      const struct btrfs_file_extent_item *fi,
  30			      u64 extent_item_pos,
  31			      struct extent_inode_elem **eie,
  32			      bool ignore_offset)
  33{
  34	u64 offset = 0;
 
  35	struct extent_inode_elem *e;
  36
  37	if (!ignore_offset &&
  38	    !btrfs_file_extent_compression(eb, fi) &&
  39	    !btrfs_file_extent_encryption(eb, fi) &&
  40	    !btrfs_file_extent_other_encoding(eb, fi)) {
  41		u64 data_offset;
  42		u64 data_len;
  43
  44		data_offset = btrfs_file_extent_offset(eb, fi);
  45		data_len = btrfs_file_extent_num_bytes(eb, fi);
  46
  47		if (extent_item_pos < data_offset ||
  48		    extent_item_pos >= data_offset + data_len)
  49			return 1;
  50		offset = extent_item_pos - data_offset;
  51	}
  52
  53	e = kmalloc(sizeof(*e), GFP_NOFS);
  54	if (!e)
  55		return -ENOMEM;
  56
  57	e->next = *eie;
  58	e->inum = key->objectid;
  59	e->offset = key->offset + offset;
  60	*eie = e;
  61
  62	return 0;
  63}
  64
  65static void free_inode_elem_list(struct extent_inode_elem *eie)
  66{
  67	struct extent_inode_elem *eie_next;
  68
  69	for (; eie; eie = eie_next) {
  70		eie_next = eie->next;
  71		kfree(eie);
  72	}
  73}
  74
  75static int find_extent_in_eb(const struct extent_buffer *eb,
  76			     u64 wanted_disk_byte, u64 extent_item_pos,
  77			     struct extent_inode_elem **eie,
  78			     bool ignore_offset)
  79{
  80	u64 disk_byte;
  81	struct btrfs_key key;
  82	struct btrfs_file_extent_item *fi;
  83	int slot;
  84	int nritems;
  85	int extent_type;
  86	int ret;
  87
  88	/*
  89	 * from the shared data ref, we only have the leaf but we need
  90	 * the key. thus, we must look into all items and see that we
  91	 * find one (some) with a reference to our extent item.
  92	 */
  93	nritems = btrfs_header_nritems(eb);
  94	for (slot = 0; slot < nritems; ++slot) {
  95		btrfs_item_key_to_cpu(eb, &key, slot);
  96		if (key.type != BTRFS_EXTENT_DATA_KEY)
  97			continue;
  98		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
  99		extent_type = btrfs_file_extent_type(eb, fi);
 100		if (extent_type == BTRFS_FILE_EXTENT_INLINE)
 101			continue;
 102		/* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
 103		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
 104		if (disk_byte != wanted_disk_byte)
 105			continue;
 106
 107		ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie, ignore_offset);
 108		if (ret < 0)
 109			return ret;
 110	}
 111
 112	return 0;
 113}
 114
 115struct preftree {
 116	struct rb_root_cached root;
 117	unsigned int count;
 118};
 119
 120#define PREFTREE_INIT	{ .root = RB_ROOT_CACHED, .count = 0 }
 121
 122struct preftrees {
 123	struct preftree direct;    /* BTRFS_SHARED_[DATA|BLOCK]_REF_KEY */
 124	struct preftree indirect;  /* BTRFS_[TREE_BLOCK|EXTENT_DATA]_REF_KEY */
 125	struct preftree indirect_missing_keys;
 126};
 127
 128/*
 129 * Checks for a shared extent during backref search.
 130 *
 131 * The share_count tracks prelim_refs (direct and indirect) having a
 132 * ref->count >0:
 133 *  - incremented when a ref->count transitions to >0
 134 *  - decremented when a ref->count transitions to <1
 135 */
 136struct share_check {
 137	u64 root_objectid;
 138	u64 inum;
 139	int share_count;
 
 
 
 
 
 140};
 141
 142static inline int extent_is_shared(struct share_check *sc)
 143{
 144	return (sc && sc->share_count > 1) ? BACKREF_FOUND_SHARED : 0;
 145}
 146
 147static struct kmem_cache *btrfs_prelim_ref_cache;
 148
 149int __init btrfs_prelim_ref_init(void)
 150{
 151	btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
 152					sizeof(struct prelim_ref),
 153					0,
 154					SLAB_MEM_SPREAD,
 155					NULL);
 156	if (!btrfs_prelim_ref_cache)
 157		return -ENOMEM;
 158	return 0;
 159}
 160
 161void __cold btrfs_prelim_ref_exit(void)
 162{
 163	kmem_cache_destroy(btrfs_prelim_ref_cache);
 164}
 165
 166static void free_pref(struct prelim_ref *ref)
 167{
 168	kmem_cache_free(btrfs_prelim_ref_cache, ref);
 169}
 170
 171/*
 172 * Return 0 when both refs are for the same block (and can be merged).
 173 * A -1 return indicates ref1 is a 'lower' block than ref2, while 1
 174 * indicates a 'higher' block.
 175 */
 176static int prelim_ref_compare(struct prelim_ref *ref1,
 177			      struct prelim_ref *ref2)
 178{
 179	if (ref1->level < ref2->level)
 180		return -1;
 181	if (ref1->level > ref2->level)
 182		return 1;
 183	if (ref1->root_id < ref2->root_id)
 184		return -1;
 185	if (ref1->root_id > ref2->root_id)
 186		return 1;
 187	if (ref1->key_for_search.type < ref2->key_for_search.type)
 188		return -1;
 189	if (ref1->key_for_search.type > ref2->key_for_search.type)
 190		return 1;
 191	if (ref1->key_for_search.objectid < ref2->key_for_search.objectid)
 192		return -1;
 193	if (ref1->key_for_search.objectid > ref2->key_for_search.objectid)
 194		return 1;
 195	if (ref1->key_for_search.offset < ref2->key_for_search.offset)
 196		return -1;
 197	if (ref1->key_for_search.offset > ref2->key_for_search.offset)
 198		return 1;
 199	if (ref1->parent < ref2->parent)
 200		return -1;
 201	if (ref1->parent > ref2->parent)
 202		return 1;
 203
 204	return 0;
 205}
 206
 207static void update_share_count(struct share_check *sc, int oldcount,
 208			       int newcount)
 209{
 210	if ((!sc) || (oldcount == 0 && newcount < 1))
 211		return;
 212
 213	if (oldcount > 0 && newcount < 1)
 214		sc->share_count--;
 215	else if (oldcount < 1 && newcount > 0)
 216		sc->share_count++;
 217}
 218
 219/*
 220 * Add @newref to the @root rbtree, merging identical refs.
 221 *
 222 * Callers should assume that newref has been freed after calling.
 223 */
 224static void prelim_ref_insert(const struct btrfs_fs_info *fs_info,
 225			      struct preftree *preftree,
 226			      struct prelim_ref *newref,
 227			      struct share_check *sc)
 228{
 229	struct rb_root_cached *root;
 230	struct rb_node **p;
 231	struct rb_node *parent = NULL;
 232	struct prelim_ref *ref;
 233	int result;
 234	bool leftmost = true;
 235
 236	root = &preftree->root;
 237	p = &root->rb_root.rb_node;
 238
 239	while (*p) {
 240		parent = *p;
 241		ref = rb_entry(parent, struct prelim_ref, rbnode);
 242		result = prelim_ref_compare(ref, newref);
 243		if (result < 0) {
 244			p = &(*p)->rb_left;
 245		} else if (result > 0) {
 246			p = &(*p)->rb_right;
 247			leftmost = false;
 248		} else {
 249			/* Identical refs, merge them and free @newref */
 250			struct extent_inode_elem *eie = ref->inode_list;
 251
 252			while (eie && eie->next)
 253				eie = eie->next;
 254
 255			if (!eie)
 256				ref->inode_list = newref->inode_list;
 257			else
 258				eie->next = newref->inode_list;
 259			trace_btrfs_prelim_ref_merge(fs_info, ref, newref,
 260						     preftree->count);
 261			/*
 262			 * A delayed ref can have newref->count < 0.
 263			 * The ref->count is updated to follow any
 264			 * BTRFS_[ADD|DROP]_DELAYED_REF actions.
 265			 */
 266			update_share_count(sc, ref->count,
 267					   ref->count + newref->count);
 268			ref->count += newref->count;
 269			free_pref(newref);
 270			return;
 271		}
 272	}
 273
 274	update_share_count(sc, 0, newref->count);
 275	preftree->count++;
 276	trace_btrfs_prelim_ref_insert(fs_info, newref, NULL, preftree->count);
 277	rb_link_node(&newref->rbnode, parent, p);
 278	rb_insert_color_cached(&newref->rbnode, root, leftmost);
 279}
 280
 281/*
 282 * Release the entire tree.  We don't care about internal consistency so
 283 * just free everything and then reset the tree root.
 284 */
 285static void prelim_release(struct preftree *preftree)
 286{
 287	struct prelim_ref *ref, *next_ref;
 288
 289	rbtree_postorder_for_each_entry_safe(ref, next_ref,
 290					     &preftree->root.rb_root, rbnode)
 291		free_pref(ref);
 292
 293	preftree->root = RB_ROOT_CACHED;
 294	preftree->count = 0;
 295}
 296
 297/*
 298 * the rules for all callers of this function are:
 299 * - obtaining the parent is the goal
 300 * - if you add a key, you must know that it is a correct key
 301 * - if you cannot add the parent or a correct key, then we will look into the
 302 *   block later to set a correct key
 303 *
 304 * delayed refs
 305 * ============
 306 *        backref type | shared | indirect | shared | indirect
 307 * information         |   tree |     tree |   data |     data
 308 * --------------------+--------+----------+--------+----------
 309 *      parent logical |    y   |     -    |    -   |     -
 310 *      key to resolve |    -   |     y    |    y   |     y
 311 *  tree block logical |    -   |     -    |    -   |     -
 312 *  root for resolving |    y   |     y    |    y   |     y
 313 *
 314 * - column 1:       we've the parent -> done
 315 * - column 2, 3, 4: we use the key to find the parent
 316 *
 317 * on disk refs (inline or keyed)
 318 * ==============================
 319 *        backref type | shared | indirect | shared | indirect
 320 * information         |   tree |     tree |   data |     data
 321 * --------------------+--------+----------+--------+----------
 322 *      parent logical |    y   |     -    |    y   |     -
 323 *      key to resolve |    -   |     -    |    -   |     y
 324 *  tree block logical |    y   |     y    |    y   |     y
 325 *  root for resolving |    -   |     y    |    y   |     y
 326 *
 327 * - column 1, 3: we've the parent -> done
 328 * - column 2:    we take the first key from the block to find the parent
 329 *                (see add_missing_keys)
 330 * - column 4:    we use the key to find the parent
 331 *
 332 * additional information that's available but not required to find the parent
 333 * block might help in merging entries to gain some speed.
 334 */
 335static int add_prelim_ref(const struct btrfs_fs_info *fs_info,
 336			  struct preftree *preftree, u64 root_id,
 337			  const struct btrfs_key *key, int level, u64 parent,
 338			  u64 wanted_disk_byte, int count,
 339			  struct share_check *sc, gfp_t gfp_mask)
 340{
 341	struct prelim_ref *ref;
 342
 343	if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
 344		return 0;
 345
 346	ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
 
 347	if (!ref)
 348		return -ENOMEM;
 349
 350	ref->root_id = root_id;
 351	if (key)
 352		ref->key_for_search = *key;
 353	else
 354		memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
 355
 356	ref->inode_list = NULL;
 357	ref->level = level;
 358	ref->count = count;
 359	ref->parent = parent;
 360	ref->wanted_disk_byte = wanted_disk_byte;
 361	prelim_ref_insert(fs_info, preftree, ref, sc);
 362	return extent_is_shared(sc);
 363}
 364
 365/* direct refs use root == 0, key == NULL */
 366static int add_direct_ref(const struct btrfs_fs_info *fs_info,
 367			  struct preftrees *preftrees, int level, u64 parent,
 368			  u64 wanted_disk_byte, int count,
 369			  struct share_check *sc, gfp_t gfp_mask)
 370{
 371	return add_prelim_ref(fs_info, &preftrees->direct, 0, NULL, level,
 372			      parent, wanted_disk_byte, count, sc, gfp_mask);
 373}
 374
 375/* indirect refs use parent == 0 */
 376static int add_indirect_ref(const struct btrfs_fs_info *fs_info,
 377			    struct preftrees *preftrees, u64 root_id,
 378			    const struct btrfs_key *key, int level,
 379			    u64 wanted_disk_byte, int count,
 380			    struct share_check *sc, gfp_t gfp_mask)
 381{
 382	struct preftree *tree = &preftrees->indirect;
 383
 384	if (!key)
 385		tree = &preftrees->indirect_missing_keys;
 386	return add_prelim_ref(fs_info, tree, root_id, key, level, 0,
 387			      wanted_disk_byte, count, sc, gfp_mask);
 388}
 389
 390static int is_shared_data_backref(struct preftrees *preftrees, u64 bytenr)
 391{
 392	struct rb_node **p = &preftrees->direct.root.rb_root.rb_node;
 393	struct rb_node *parent = NULL;
 394	struct prelim_ref *ref = NULL;
 395	struct prelim_ref target = {};
 396	int result;
 397
 398	target.parent = bytenr;
 399
 400	while (*p) {
 401		parent = *p;
 402		ref = rb_entry(parent, struct prelim_ref, rbnode);
 403		result = prelim_ref_compare(ref, &target);
 404
 405		if (result < 0)
 406			p = &(*p)->rb_left;
 407		else if (result > 0)
 408			p = &(*p)->rb_right;
 409		else
 410			return 1;
 411	}
 412	return 0;
 413}
 414
 415static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
 416			   struct ulist *parents,
 417			   struct preftrees *preftrees, struct prelim_ref *ref,
 418			   int level, u64 time_seq, const u64 *extent_item_pos,
 419			   bool ignore_offset)
 420{
 421	int ret = 0;
 422	int slot;
 423	struct extent_buffer *eb;
 424	struct btrfs_key key;
 425	struct btrfs_key *key_for_search = &ref->key_for_search;
 426	struct btrfs_file_extent_item *fi;
 427	struct extent_inode_elem *eie = NULL, *old = NULL;
 428	u64 disk_byte;
 429	u64 wanted_disk_byte = ref->wanted_disk_byte;
 430	u64 count = 0;
 431	u64 data_offset;
 432
 433	if (level != 0) {
 434		eb = path->nodes[level];
 435		ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
 436		if (ret < 0)
 437			return ret;
 438		return 0;
 439	}
 440
 441	/*
 442	 * 1. We normally enter this function with the path already pointing to
 443	 *    the first item to check. But sometimes, we may enter it with
 444	 *    slot == nritems.
 445	 * 2. We are searching for normal backref but bytenr of this leaf
 446	 *    matches shared data backref
 447	 * 3. The leaf owner is not equal to the root we are searching
 448	 *
 449	 * For these cases, go to the next leaf before we continue.
 450	 */
 451	eb = path->nodes[0];
 452	if (path->slots[0] >= btrfs_header_nritems(eb) ||
 453	    is_shared_data_backref(preftrees, eb->start) ||
 454	    ref->root_id != btrfs_header_owner(eb)) {
 455		if (time_seq == SEQ_LAST)
 456			ret = btrfs_next_leaf(root, path);
 457		else
 458			ret = btrfs_next_old_leaf(root, path, time_seq);
 459	}
 460
 461	while (!ret && count < ref->count) {
 462		eb = path->nodes[0];
 463		slot = path->slots[0];
 464
 465		btrfs_item_key_to_cpu(eb, &key, slot);
 466
 467		if (key.objectid != key_for_search->objectid ||
 468		    key.type != BTRFS_EXTENT_DATA_KEY)
 469			break;
 470
 471		/*
 472		 * We are searching for normal backref but bytenr of this leaf
 473		 * matches shared data backref, OR
 474		 * the leaf owner is not equal to the root we are searching for
 475		 */
 476		if (slot == 0 &&
 477		    (is_shared_data_backref(preftrees, eb->start) ||
 478		     ref->root_id != btrfs_header_owner(eb))) {
 479			if (time_seq == SEQ_LAST)
 480				ret = btrfs_next_leaf(root, path);
 481			else
 482				ret = btrfs_next_old_leaf(root, path, time_seq);
 483			continue;
 484		}
 485		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
 486		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
 487		data_offset = btrfs_file_extent_offset(eb, fi);
 488
 489		if (disk_byte == wanted_disk_byte) {
 490			eie = NULL;
 491			old = NULL;
 492			if (ref->key_for_search.offset == key.offset - data_offset)
 493				count++;
 494			else
 495				goto next;
 496			if (extent_item_pos) {
 497				ret = check_extent_in_eb(&key, eb, fi,
 498						*extent_item_pos,
 499						&eie, ignore_offset);
 500				if (ret < 0)
 501					break;
 502			}
 503			if (ret > 0)
 504				goto next;
 505			ret = ulist_add_merge_ptr(parents, eb->start,
 506						  eie, (void **)&old, GFP_NOFS);
 507			if (ret < 0)
 508				break;
 509			if (!ret && extent_item_pos) {
 510				while (old->next)
 511					old = old->next;
 512				old->next = eie;
 513			}
 514			eie = NULL;
 515		}
 516next:
 517		if (time_seq == SEQ_LAST)
 518			ret = btrfs_next_item(root, path);
 519		else
 520			ret = btrfs_next_old_item(root, path, time_seq);
 521	}
 522
 523	if (ret > 0)
 524		ret = 0;
 525	else if (ret < 0)
 526		free_inode_elem_list(eie);
 527	return ret;
 528}
 529
 530/*
 531 * resolve an indirect backref in the form (root_id, key, level)
 532 * to a logical address
 533 */
 534static int resolve_indirect_ref(struct btrfs_fs_info *fs_info,
 535				struct btrfs_path *path, u64 time_seq,
 536				struct preftrees *preftrees,
 537				struct prelim_ref *ref, struct ulist *parents,
 538				const u64 *extent_item_pos, bool ignore_offset)
 
 539{
 
 540	struct btrfs_root *root;
 
 541	struct extent_buffer *eb;
 542	int ret = 0;
 543	int root_level;
 544	int level = ref->level;
 545	struct btrfs_key search_key = ref->key_for_search;
 546
 547	root = btrfs_get_fs_root(fs_info, ref->root_id, false);
 
 
 
 
 
 
 
 
 548	if (IS_ERR(root)) {
 549		ret = PTR_ERR(root);
 550		goto out_free;
 551	}
 552
 553	if (!path->search_commit_root &&
 554	    test_bit(BTRFS_ROOT_DELETING, &root->state)) {
 555		ret = -ENOENT;
 556		goto out;
 557	}
 558
 559	if (btrfs_is_testing(fs_info)) {
 560		ret = -ENOENT;
 561		goto out;
 562	}
 563
 564	if (path->search_commit_root)
 565		root_level = btrfs_header_level(root->commit_root);
 566	else if (time_seq == SEQ_LAST)
 567		root_level = btrfs_header_level(root->node);
 568	else
 569		root_level = btrfs_old_root_level(root, time_seq);
 570
 571	if (root_level + 1 == level)
 572		goto out;
 573
 574	/*
 575	 * We can often find data backrefs with an offset that is too large
 576	 * (>= LLONG_MAX, maximum allowed file offset) due to underflows when
 577	 * subtracting a file's offset with the data offset of its
 578	 * corresponding extent data item. This can happen for example in the
 579	 * clone ioctl.
 580	 *
 581	 * So if we detect such case we set the search key's offset to zero to
 582	 * make sure we will find the matching file extent item at
 583	 * add_all_parents(), otherwise we will miss it because the offset
 584	 * taken form the backref is much larger then the offset of the file
 585	 * extent item. This can make us scan a very large number of file
 586	 * extent items, but at least it will not make us miss any.
 587	 *
 588	 * This is an ugly workaround for a behaviour that should have never
 589	 * existed, but it does and a fix for the clone ioctl would touch a lot
 590	 * of places, cause backwards incompatibility and would not fix the
 591	 * problem for extents cloned with older kernels.
 592	 */
 593	if (search_key.type == BTRFS_EXTENT_DATA_KEY &&
 594	    search_key.offset >= LLONG_MAX)
 595		search_key.offset = 0;
 596	path->lowest_level = level;
 597	if (time_seq == SEQ_LAST)
 598		ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
 599	else
 600		ret = btrfs_search_old_slot(root, &search_key, path, time_seq);
 601
 602	btrfs_debug(fs_info,
 603		"search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)",
 604		 ref->root_id, level, ref->count, ret,
 605		 ref->key_for_search.objectid, ref->key_for_search.type,
 606		 ref->key_for_search.offset);
 607	if (ret < 0)
 608		goto out;
 609
 610	eb = path->nodes[level];
 611	while (!eb) {
 612		if (WARN_ON(!level)) {
 
 613			ret = 1;
 614			goto out;
 615		}
 616		level--;
 617		eb = path->nodes[level];
 618	}
 619
 620	ret = add_all_parents(root, path, parents, preftrees, ref, level,
 621			      time_seq, extent_item_pos, ignore_offset);
 
 622out:
 623	btrfs_put_root(root);
 624out_free:
 625	path->lowest_level = 0;
 626	btrfs_release_path(path);
 627	return ret;
 628}
 629
 630static struct extent_inode_elem *
 631unode_aux_to_inode_list(struct ulist_node *node)
 632{
 633	if (!node)
 634		return NULL;
 635	return (struct extent_inode_elem *)(uintptr_t)node->aux;
 636}
 637
 638/*
 639 * We maintain three separate rbtrees: one for direct refs, one for
 640 * indirect refs which have a key, and one for indirect refs which do not
 641 * have a key. Each tree does merge on insertion.
 642 *
 643 * Once all of the references are located, we iterate over the tree of
 644 * indirect refs with missing keys. An appropriate key is located and
 645 * the ref is moved onto the tree for indirect refs. After all missing
 646 * keys are thus located, we iterate over the indirect ref tree, resolve
 647 * each reference, and then insert the resolved reference onto the
 648 * direct tree (merging there too).
 649 *
 650 * New backrefs (i.e., for parent nodes) are added to the appropriate
 651 * rbtree as they are encountered. The new backrefs are subsequently
 652 * resolved as above.
 653 */
 654static int resolve_indirect_refs(struct btrfs_fs_info *fs_info,
 655				 struct btrfs_path *path, u64 time_seq,
 656				 struct preftrees *preftrees,
 657				 const u64 *extent_item_pos,
 658				 struct share_check *sc, bool ignore_offset)
 659{
 660	int err;
 661	int ret = 0;
 
 
 
 662	struct ulist *parents;
 663	struct ulist_node *node;
 664	struct ulist_iterator uiter;
 665	struct rb_node *rnode;
 666
 667	parents = ulist_alloc(GFP_NOFS);
 668	if (!parents)
 669		return -ENOMEM;
 670
 671	/*
 672	 * We could trade memory usage for performance here by iterating
 673	 * the tree, allocating new refs for each insertion, and then
 674	 * freeing the entire indirect tree when we're done.  In some test
 675	 * cases, the tree can grow quite large (~200k objects).
 676	 */
 677	while ((rnode = rb_first_cached(&preftrees->indirect.root))) {
 678		struct prelim_ref *ref;
 679
 680		ref = rb_entry(rnode, struct prelim_ref, rbnode);
 681		if (WARN(ref->parent,
 682			 "BUG: direct ref found in indirect tree")) {
 683			ret = -EINVAL;
 684			goto out;
 685		}
 686
 687		rb_erase_cached(&ref->rbnode, &preftrees->indirect.root);
 688		preftrees->indirect.count--;
 689
 690		if (ref->count == 0) {
 691			free_pref(ref);
 692			continue;
 693		}
 694
 695		if (sc && sc->root_objectid &&
 696		    ref->root_id != sc->root_objectid) {
 697			free_pref(ref);
 698			ret = BACKREF_FOUND_SHARED;
 699			goto out;
 700		}
 701		err = resolve_indirect_ref(fs_info, path, time_seq, preftrees,
 702					   ref, parents, extent_item_pos,
 703					   ignore_offset);
 704		/*
 705		 * we can only tolerate ENOENT,otherwise,we should catch error
 706		 * and return directly.
 707		 */
 708		if (err == -ENOENT) {
 709			prelim_ref_insert(fs_info, &preftrees->direct, ref,
 710					  NULL);
 711			continue;
 712		} else if (err) {
 713			free_pref(ref);
 714			ret = err;
 715			goto out;
 716		}
 717
 718		/* we put the first parent into the ref at hand */
 719		ULIST_ITER_INIT(&uiter);
 720		node = ulist_next(parents, &uiter);
 721		ref->parent = node ? node->val : 0;
 722		ref->inode_list = unode_aux_to_inode_list(node);
 
 723
 724		/* Add a prelim_ref(s) for any other parent(s). */
 725		while ((node = ulist_next(parents, &uiter))) {
 726			struct prelim_ref *new_ref;
 727
 728			new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
 729						   GFP_NOFS);
 730			if (!new_ref) {
 731				free_pref(ref);
 732				ret = -ENOMEM;
 733				goto out;
 734			}
 735			memcpy(new_ref, ref, sizeof(*ref));
 736			new_ref->parent = node->val;
 737			new_ref->inode_list = unode_aux_to_inode_list(node);
 738			prelim_ref_insert(fs_info, &preftrees->direct,
 739					  new_ref, NULL);
 740		}
 741
 742		/*
 743		 * Now it's a direct ref, put it in the direct tree. We must
 744		 * do this last because the ref could be merged/freed here.
 745		 */
 746		prelim_ref_insert(fs_info, &preftrees->direct, ref, NULL);
 747
 748		ulist_reinit(parents);
 749		cond_resched();
 750	}
 751out:
 752	ulist_free(parents);
 753	return ret;
 754}
 755
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 756/*
 757 * read tree blocks and add keys where required.
 758 */
 759static int add_missing_keys(struct btrfs_fs_info *fs_info,
 760			    struct preftrees *preftrees, bool lock)
 761{
 762	struct prelim_ref *ref;
 763	struct extent_buffer *eb;
 764	struct preftree *tree = &preftrees->indirect_missing_keys;
 765	struct rb_node *node;
 766
 767	while ((node = rb_first_cached(&tree->root))) {
 768		ref = rb_entry(node, struct prelim_ref, rbnode);
 769		rb_erase_cached(node, &tree->root);
 770
 771		BUG_ON(ref->parent);	/* should not be a direct ref */
 772		BUG_ON(ref->key_for_search.type);
 
 
 773		BUG_ON(!ref->wanted_disk_byte);
 774
 775		eb = read_tree_block(fs_info, ref->wanted_disk_byte, 0,
 776				     ref->level - 1, NULL);
 777		if (IS_ERR(eb)) {
 778			free_pref(ref);
 779			return PTR_ERR(eb);
 780		} else if (!extent_buffer_uptodate(eb)) {
 781			free_pref(ref);
 782			free_extent_buffer(eb);
 783			return -EIO;
 784		}
 785		if (lock)
 786			btrfs_tree_read_lock(eb);
 787		if (btrfs_header_level(eb) == 0)
 788			btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
 789		else
 790			btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
 791		if (lock)
 792			btrfs_tree_read_unlock(eb);
 793		free_extent_buffer(eb);
 794		prelim_ref_insert(fs_info, &preftrees->indirect, ref, NULL);
 795		cond_resched();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 796	}
 797	return 0;
 798}
 799
 800/*
 801 * add all currently queued delayed refs from this head whose seq nr is
 802 * smaller or equal that seq to the list
 803 */
 804static int add_delayed_refs(const struct btrfs_fs_info *fs_info,
 805			    struct btrfs_delayed_ref_head *head, u64 seq,
 806			    struct preftrees *preftrees, struct share_check *sc)
 807{
 808	struct btrfs_delayed_ref_node *node;
 809	struct btrfs_delayed_extent_op *extent_op = head->extent_op;
 
 810	struct btrfs_key key;
 811	struct btrfs_key tmp_op_key;
 812	struct rb_node *n;
 813	int count;
 814	int ret = 0;
 815
 816	if (extent_op && extent_op->update_key)
 817		btrfs_disk_key_to_cpu(&tmp_op_key, &extent_op->key);
 818
 819	spin_lock(&head->lock);
 820	for (n = rb_first_cached(&head->ref_tree); n; n = rb_next(n)) {
 821		node = rb_entry(n, struct btrfs_delayed_ref_node,
 822				ref_node);
 
 
 
 
 823		if (node->seq > seq)
 824			continue;
 825
 826		switch (node->action) {
 827		case BTRFS_ADD_DELAYED_EXTENT:
 828		case BTRFS_UPDATE_DELAYED_HEAD:
 829			WARN_ON(1);
 830			continue;
 831		case BTRFS_ADD_DELAYED_REF:
 832			count = node->ref_mod;
 833			break;
 834		case BTRFS_DROP_DELAYED_REF:
 835			count = node->ref_mod * -1;
 836			break;
 837		default:
 838			BUG();
 839		}
 840		switch (node->type) {
 841		case BTRFS_TREE_BLOCK_REF_KEY: {
 842			/* NORMAL INDIRECT METADATA backref */
 843			struct btrfs_delayed_tree_ref *ref;
 844
 845			ref = btrfs_delayed_node_to_tree_ref(node);
 846			ret = add_indirect_ref(fs_info, preftrees, ref->root,
 847					       &tmp_op_key, ref->level + 1,
 848					       node->bytenr, count, sc,
 849					       GFP_ATOMIC);
 850			break;
 851		}
 852		case BTRFS_SHARED_BLOCK_REF_KEY: {
 853			/* SHARED DIRECT METADATA backref */
 854			struct btrfs_delayed_tree_ref *ref;
 855
 856			ref = btrfs_delayed_node_to_tree_ref(node);
 857
 858			ret = add_direct_ref(fs_info, preftrees, ref->level + 1,
 859					     ref->parent, node->bytenr, count,
 860					     sc, GFP_ATOMIC);
 861			break;
 862		}
 863		case BTRFS_EXTENT_DATA_REF_KEY: {
 864			/* NORMAL INDIRECT DATA backref */
 865			struct btrfs_delayed_data_ref *ref;
 866			ref = btrfs_delayed_node_to_data_ref(node);
 867
 868			key.objectid = ref->objectid;
 869			key.type = BTRFS_EXTENT_DATA_KEY;
 870			key.offset = ref->offset;
 871
 872			/*
 873			 * Found a inum that doesn't match our known inum, we
 874			 * know it's shared.
 875			 */
 876			if (sc && sc->inum && ref->objectid != sc->inum) {
 877				ret = BACKREF_FOUND_SHARED;
 878				goto out;
 879			}
 880
 881			ret = add_indirect_ref(fs_info, preftrees, ref->root,
 882					       &key, 0, node->bytenr, count, sc,
 883					       GFP_ATOMIC);
 884			break;
 885		}
 886		case BTRFS_SHARED_DATA_REF_KEY: {
 887			/* SHARED DIRECT FULL backref */
 888			struct btrfs_delayed_data_ref *ref;
 889
 890			ref = btrfs_delayed_node_to_data_ref(node);
 891
 892			ret = add_direct_ref(fs_info, preftrees, 0, ref->parent,
 893					     node->bytenr, count, sc,
 894					     GFP_ATOMIC);
 
 
 
 895			break;
 896		}
 897		default:
 898			WARN_ON(1);
 899		}
 900		/*
 901		 * We must ignore BACKREF_FOUND_SHARED until all delayed
 902		 * refs have been checked.
 903		 */
 904		if (ret && (ret != BACKREF_FOUND_SHARED))
 905			break;
 906	}
 907	if (!ret)
 908		ret = extent_is_shared(sc);
 909out:
 910	spin_unlock(&head->lock);
 911	return ret;
 912}
 913
 914/*
 915 * add all inline backrefs for bytenr to the list
 916 *
 917 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
 918 */
 919static int add_inline_refs(const struct btrfs_fs_info *fs_info,
 920			   struct btrfs_path *path, u64 bytenr,
 921			   int *info_level, struct preftrees *preftrees,
 922			   struct share_check *sc)
 923{
 924	int ret = 0;
 925	int slot;
 926	struct extent_buffer *leaf;
 927	struct btrfs_key key;
 928	struct btrfs_key found_key;
 929	unsigned long ptr;
 930	unsigned long end;
 931	struct btrfs_extent_item *ei;
 932	u64 flags;
 933	u64 item_size;
 934
 935	/*
 936	 * enumerate all inline refs
 937	 */
 938	leaf = path->nodes[0];
 939	slot = path->slots[0];
 940
 941	item_size = btrfs_item_size_nr(leaf, slot);
 942	BUG_ON(item_size < sizeof(*ei));
 943
 944	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
 945	flags = btrfs_extent_flags(leaf, ei);
 946	btrfs_item_key_to_cpu(leaf, &found_key, slot);
 947
 948	ptr = (unsigned long)(ei + 1);
 949	end = (unsigned long)ei + item_size;
 950
 951	if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
 952	    flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
 953		struct btrfs_tree_block_info *info;
 954
 955		info = (struct btrfs_tree_block_info *)ptr;
 956		*info_level = btrfs_tree_block_level(leaf, info);
 957		ptr += sizeof(struct btrfs_tree_block_info);
 958		BUG_ON(ptr > end);
 959	} else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
 960		*info_level = found_key.offset;
 961	} else {
 962		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
 963	}
 964
 965	while (ptr < end) {
 966		struct btrfs_extent_inline_ref *iref;
 967		u64 offset;
 968		int type;
 969
 970		iref = (struct btrfs_extent_inline_ref *)ptr;
 971		type = btrfs_get_extent_inline_ref_type(leaf, iref,
 972							BTRFS_REF_TYPE_ANY);
 973		if (type == BTRFS_REF_TYPE_INVALID)
 974			return -EUCLEAN;
 975
 976		offset = btrfs_extent_inline_ref_offset(leaf, iref);
 977
 978		switch (type) {
 979		case BTRFS_SHARED_BLOCK_REF_KEY:
 980			ret = add_direct_ref(fs_info, preftrees,
 981					     *info_level + 1, offset,
 982					     bytenr, 1, NULL, GFP_NOFS);
 983			break;
 984		case BTRFS_SHARED_DATA_REF_KEY: {
 985			struct btrfs_shared_data_ref *sdref;
 986			int count;
 987
 988			sdref = (struct btrfs_shared_data_ref *)(iref + 1);
 989			count = btrfs_shared_data_ref_count(leaf, sdref);
 990
 991			ret = add_direct_ref(fs_info, preftrees, 0, offset,
 992					     bytenr, count, sc, GFP_NOFS);
 993			break;
 994		}
 995		case BTRFS_TREE_BLOCK_REF_KEY:
 996			ret = add_indirect_ref(fs_info, preftrees, offset,
 997					       NULL, *info_level + 1,
 998					       bytenr, 1, NULL, GFP_NOFS);
 999			break;
1000		case BTRFS_EXTENT_DATA_REF_KEY: {
1001			struct btrfs_extent_data_ref *dref;
1002			int count;
1003			u64 root;
1004
1005			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1006			count = btrfs_extent_data_ref_count(leaf, dref);
1007			key.objectid = btrfs_extent_data_ref_objectid(leaf,
1008								      dref);
1009			key.type = BTRFS_EXTENT_DATA_KEY;
1010			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1011
1012			if (sc && sc->inum && key.objectid != sc->inum) {
1013				ret = BACKREF_FOUND_SHARED;
1014				break;
1015			}
1016
1017			root = btrfs_extent_data_ref_root(leaf, dref);
1018
1019			ret = add_indirect_ref(fs_info, preftrees, root,
1020					       &key, 0, bytenr, count,
1021					       sc, GFP_NOFS);
1022			break;
1023		}
1024		default:
1025			WARN_ON(1);
1026		}
1027		if (ret)
1028			return ret;
1029		ptr += btrfs_extent_inline_ref_size(type);
1030	}
1031
1032	return 0;
1033}
1034
1035/*
1036 * add all non-inline backrefs for bytenr to the list
1037 *
1038 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
1039 */
1040static int add_keyed_refs(struct btrfs_fs_info *fs_info,
1041			  struct btrfs_path *path, u64 bytenr,
1042			  int info_level, struct preftrees *preftrees,
1043			  struct share_check *sc)
1044{
1045	struct btrfs_root *extent_root = fs_info->extent_root;
1046	int ret;
1047	int slot;
1048	struct extent_buffer *leaf;
1049	struct btrfs_key key;
1050
1051	while (1) {
1052		ret = btrfs_next_item(extent_root, path);
1053		if (ret < 0)
1054			break;
1055		if (ret) {
1056			ret = 0;
1057			break;
1058		}
1059
1060		slot = path->slots[0];
1061		leaf = path->nodes[0];
1062		btrfs_item_key_to_cpu(leaf, &key, slot);
1063
1064		if (key.objectid != bytenr)
1065			break;
1066		if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
1067			continue;
1068		if (key.type > BTRFS_SHARED_DATA_REF_KEY)
1069			break;
1070
1071		switch (key.type) {
1072		case BTRFS_SHARED_BLOCK_REF_KEY:
1073			/* SHARED DIRECT METADATA backref */
1074			ret = add_direct_ref(fs_info, preftrees,
1075					     info_level + 1, key.offset,
1076					     bytenr, 1, NULL, GFP_NOFS);
1077			break;
1078		case BTRFS_SHARED_DATA_REF_KEY: {
1079			/* SHARED DIRECT FULL backref */
1080			struct btrfs_shared_data_ref *sdref;
1081			int count;
1082
1083			sdref = btrfs_item_ptr(leaf, slot,
1084					      struct btrfs_shared_data_ref);
1085			count = btrfs_shared_data_ref_count(leaf, sdref);
1086			ret = add_direct_ref(fs_info, preftrees, 0,
1087					     key.offset, bytenr, count,
1088					     sc, GFP_NOFS);
1089			break;
1090		}
1091		case BTRFS_TREE_BLOCK_REF_KEY:
1092			/* NORMAL INDIRECT METADATA backref */
1093			ret = add_indirect_ref(fs_info, preftrees, key.offset,
1094					       NULL, info_level + 1, bytenr,
1095					       1, NULL, GFP_NOFS);
1096			break;
1097		case BTRFS_EXTENT_DATA_REF_KEY: {
1098			/* NORMAL INDIRECT DATA backref */
1099			struct btrfs_extent_data_ref *dref;
1100			int count;
1101			u64 root;
1102
1103			dref = btrfs_item_ptr(leaf, slot,
1104					      struct btrfs_extent_data_ref);
1105			count = btrfs_extent_data_ref_count(leaf, dref);
1106			key.objectid = btrfs_extent_data_ref_objectid(leaf,
1107								      dref);
1108			key.type = BTRFS_EXTENT_DATA_KEY;
1109			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1110
1111			if (sc && sc->inum && key.objectid != sc->inum) {
1112				ret = BACKREF_FOUND_SHARED;
1113				break;
1114			}
1115
1116			root = btrfs_extent_data_ref_root(leaf, dref);
1117			ret = add_indirect_ref(fs_info, preftrees, root,
1118					       &key, 0, bytenr, count,
1119					       sc, GFP_NOFS);
1120			break;
1121		}
1122		default:
1123			WARN_ON(1);
1124		}
1125		if (ret)
1126			return ret;
1127
1128	}
1129
1130	return ret;
1131}
1132
1133/*
1134 * this adds all existing backrefs (inline backrefs, backrefs and delayed
1135 * refs) for the given bytenr to the refs list, merges duplicates and resolves
1136 * indirect refs to their parent bytenr.
1137 * When roots are found, they're added to the roots list
1138 *
1139 * If time_seq is set to SEQ_LAST, it will not search delayed_refs, and behave
1140 * much like trans == NULL case, the difference only lies in it will not
1141 * commit root.
1142 * The special case is for qgroup to search roots in commit_transaction().
1143 *
1144 * @sc - if !NULL, then immediately return BACKREF_FOUND_SHARED when a
1145 * shared extent is detected.
1146 *
1147 * Otherwise this returns 0 for success and <0 for an error.
1148 *
1149 * If ignore_offset is set to false, only extent refs whose offsets match
1150 * extent_item_pos are returned.  If true, every extent ref is returned
1151 * and extent_item_pos is ignored.
1152 *
1153 * FIXME some caching might speed things up
1154 */
1155static int find_parent_nodes(struct btrfs_trans_handle *trans,
1156			     struct btrfs_fs_info *fs_info, u64 bytenr,
1157			     u64 time_seq, struct ulist *refs,
1158			     struct ulist *roots, const u64 *extent_item_pos,
1159			     struct share_check *sc, bool ignore_offset)
1160{
1161	struct btrfs_key key;
1162	struct btrfs_path *path;
1163	struct btrfs_delayed_ref_root *delayed_refs = NULL;
1164	struct btrfs_delayed_ref_head *head;
1165	int info_level = 0;
1166	int ret;
1167	struct prelim_ref *ref;
1168	struct rb_node *node;
1169	struct extent_inode_elem *eie = NULL;
1170	struct preftrees preftrees = {
1171		.direct = PREFTREE_INIT,
1172		.indirect = PREFTREE_INIT,
1173		.indirect_missing_keys = PREFTREE_INIT
1174	};
1175
1176	key.objectid = bytenr;
 
1177	key.offset = (u64)-1;
1178	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1179		key.type = BTRFS_METADATA_ITEM_KEY;
1180	else
1181		key.type = BTRFS_EXTENT_ITEM_KEY;
1182
1183	path = btrfs_alloc_path();
1184	if (!path)
1185		return -ENOMEM;
1186	if (!trans) {
1187		path->search_commit_root = 1;
1188		path->skip_locking = 1;
1189	}
1190
1191	if (time_seq == SEQ_LAST)
1192		path->skip_locking = 1;
1193
1194	/*
1195	 * grab both a lock on the path and a lock on the delayed ref head.
1196	 * We need both to get a consistent picture of how the refs look
1197	 * at a specified point in time
1198	 */
1199again:
1200	head = NULL;
1201
1202	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
1203	if (ret < 0)
1204		goto out;
1205	BUG_ON(ret == 0);
1206
1207#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1208	if (trans && likely(trans->type != __TRANS_DUMMY) &&
1209	    time_seq != SEQ_LAST) {
1210#else
1211	if (trans && time_seq != SEQ_LAST) {
1212#endif
1213		/*
1214		 * look if there are updates for this ref queued and lock the
1215		 * head
1216		 */
1217		delayed_refs = &trans->transaction->delayed_refs;
1218		spin_lock(&delayed_refs->lock);
1219		head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
1220		if (head) {
1221			if (!mutex_trylock(&head->mutex)) {
1222				refcount_inc(&head->refs);
1223				spin_unlock(&delayed_refs->lock);
1224
1225				btrfs_release_path(path);
1226
1227				/*
1228				 * Mutex was contended, block until it's
1229				 * released and try again
1230				 */
1231				mutex_lock(&head->mutex);
1232				mutex_unlock(&head->mutex);
1233				btrfs_put_delayed_ref_head(head);
1234				goto again;
1235			}
1236			spin_unlock(&delayed_refs->lock);
1237			ret = add_delayed_refs(fs_info, head, time_seq,
1238					       &preftrees, sc);
1239			mutex_unlock(&head->mutex);
1240			if (ret)
 
1241				goto out;
1242		} else {
1243			spin_unlock(&delayed_refs->lock);
1244		}
 
1245	}
1246
1247	if (path->slots[0]) {
1248		struct extent_buffer *leaf;
1249		int slot;
1250
1251		path->slots[0]--;
1252		leaf = path->nodes[0];
1253		slot = path->slots[0];
1254		btrfs_item_key_to_cpu(leaf, &key, slot);
1255		if (key.objectid == bytenr &&
1256		    (key.type == BTRFS_EXTENT_ITEM_KEY ||
1257		     key.type == BTRFS_METADATA_ITEM_KEY)) {
1258			ret = add_inline_refs(fs_info, path, bytenr,
1259					      &info_level, &preftrees, sc);
1260			if (ret)
1261				goto out;
1262			ret = add_keyed_refs(fs_info, path, bytenr, info_level,
1263					     &preftrees, sc);
1264			if (ret)
1265				goto out;
1266		}
1267	}
 
1268
1269	btrfs_release_path(path);
1270
1271	ret = add_missing_keys(fs_info, &preftrees, path->skip_locking == 0);
1272	if (ret)
1273		goto out;
1274
1275	WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect_missing_keys.root.rb_root));
 
 
1276
1277	ret = resolve_indirect_refs(fs_info, path, time_seq, &preftrees,
1278				    extent_item_pos, sc, ignore_offset);
1279	if (ret)
1280		goto out;
1281
1282	WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect.root.rb_root));
1283
1284	/*
1285	 * This walks the tree of merged and resolved refs. Tree blocks are
1286	 * read in as needed. Unique entries are added to the ulist, and
1287	 * the list of found roots is updated.
1288	 *
1289	 * We release the entire tree in one go before returning.
1290	 */
1291	node = rb_first_cached(&preftrees.direct.root);
1292	while (node) {
1293		ref = rb_entry(node, struct prelim_ref, rbnode);
1294		node = rb_next(&ref->rbnode);
1295		/*
1296		 * ref->count < 0 can happen here if there are delayed
1297		 * refs with a node->action of BTRFS_DROP_DELAYED_REF.
1298		 * prelim_ref_insert() relies on this when merging
1299		 * identical refs to keep the overall count correct.
1300		 * prelim_ref_insert() will merge only those refs
1301		 * which compare identically.  Any refs having
1302		 * e.g. different offsets would not be merged,
1303		 * and would retain their original ref->count < 0.
1304		 */
1305		if (roots && ref->count && ref->root_id && ref->parent == 0) {
1306			if (sc && sc->root_objectid &&
1307			    ref->root_id != sc->root_objectid) {
1308				ret = BACKREF_FOUND_SHARED;
1309				goto out;
1310			}
1311
 
 
 
 
 
 
1312			/* no parent == root of tree */
1313			ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
1314			if (ret < 0)
1315				goto out;
1316		}
1317		if (ref->count && ref->parent) {
1318			if (extent_item_pos && !ref->inode_list &&
1319			    ref->level == 0) {
 
1320				struct extent_buffer *eb;
1321
1322				eb = read_tree_block(fs_info, ref->parent, 0,
1323						     ref->level, NULL);
1324				if (IS_ERR(eb)) {
1325					ret = PTR_ERR(eb);
1326					goto out;
1327				} else if (!extent_buffer_uptodate(eb)) {
1328					free_extent_buffer(eb);
1329					ret = -EIO;
1330					goto out;
1331				}
1332
1333				if (!path->skip_locking) {
1334					btrfs_tree_read_lock(eb);
1335					btrfs_set_lock_blocking_read(eb);
1336				}
1337				ret = find_extent_in_eb(eb, bytenr,
1338							*extent_item_pos, &eie, ignore_offset);
1339				if (!path->skip_locking)
1340					btrfs_tree_read_unlock_blocking(eb);
1341				free_extent_buffer(eb);
1342				if (ret < 0)
1343					goto out;
1344				ref->inode_list = eie;
1345			}
1346			ret = ulist_add_merge_ptr(refs, ref->parent,
1347						  ref->inode_list,
1348						  (void **)&eie, GFP_NOFS);
1349			if (ret < 0)
1350				goto out;
1351			if (!ret && extent_item_pos) {
1352				/*
1353				 * we've recorded that parent, so we must extend
1354				 * its inode list here
1355				 */
1356				BUG_ON(!eie);
1357				while (eie->next)
1358					eie = eie->next;
1359				eie->next = ref->inode_list;
1360			}
1361			eie = NULL;
1362		}
1363		cond_resched();
1364	}
1365
1366out:
1367	btrfs_free_path(path);
 
 
 
 
 
 
 
 
 
 
 
1368
1369	prelim_release(&preftrees.direct);
1370	prelim_release(&preftrees.indirect);
1371	prelim_release(&preftrees.indirect_missing_keys);
1372
1373	if (ret < 0)
1374		free_inode_elem_list(eie);
1375	return ret;
1376}
1377
1378static void free_leaf_list(struct ulist *blocks)
1379{
1380	struct ulist_node *node = NULL;
1381	struct extent_inode_elem *eie;
 
1382	struct ulist_iterator uiter;
1383
1384	ULIST_ITER_INIT(&uiter);
1385	while ((node = ulist_next(blocks, &uiter))) {
1386		if (!node->aux)
1387			continue;
1388		eie = unode_aux_to_inode_list(node);
1389		free_inode_elem_list(eie);
 
 
 
1390		node->aux = 0;
1391	}
1392
1393	ulist_free(blocks);
1394}
1395
1396/*
1397 * Finds all leafs with a reference to the specified combination of bytenr and
1398 * offset. key_list_head will point to a list of corresponding keys (caller must
1399 * free each list element). The leafs will be stored in the leafs ulist, which
1400 * must be freed with ulist_free.
1401 *
1402 * returns 0 on success, <0 on error
1403 */
1404int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
1405			 struct btrfs_fs_info *fs_info, u64 bytenr,
1406			 u64 time_seq, struct ulist **leafs,
1407			 const u64 *extent_item_pos, bool ignore_offset)
 
1408{
 
1409	int ret;
1410
 
 
 
1411	*leafs = ulist_alloc(GFP_NOFS);
1412	if (!*leafs)
 
1413		return -ENOMEM;
 
 
 
 
 
1414
1415	ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
1416				*leafs, NULL, extent_item_pos, NULL, ignore_offset);
1417	if (ret < 0 && ret != -ENOENT) {
1418		free_leaf_list(*leafs);
1419		return ret;
1420	}
1421
1422	return 0;
1423}
1424
1425/*
1426 * walk all backrefs for a given extent to find all roots that reference this
1427 * extent. Walking a backref means finding all extents that reference this
1428 * extent and in turn walk the backrefs of those, too. Naturally this is a
1429 * recursive process, but here it is implemented in an iterative fashion: We
1430 * find all referencing extents for the extent in question and put them on a
1431 * list. In turn, we find all referencing extents for those, further appending
1432 * to the list. The way we iterate the list allows adding more elements after
1433 * the current while iterating. The process stops when we reach the end of the
1434 * list. Found roots are added to the roots list.
1435 *
1436 * returns 0 on success, < 0 on error.
1437 */
1438static int btrfs_find_all_roots_safe(struct btrfs_trans_handle *trans,
1439				     struct btrfs_fs_info *fs_info, u64 bytenr,
1440				     u64 time_seq, struct ulist **roots,
1441				     bool ignore_offset)
1442{
1443	struct ulist *tmp;
1444	struct ulist_node *node = NULL;
1445	struct ulist_iterator uiter;
1446	int ret;
1447
1448	tmp = ulist_alloc(GFP_NOFS);
1449	if (!tmp)
1450		return -ENOMEM;
1451	*roots = ulist_alloc(GFP_NOFS);
1452	if (!*roots) {
1453		ulist_free(tmp);
1454		return -ENOMEM;
1455	}
1456
1457	ULIST_ITER_INIT(&uiter);
1458	while (1) {
1459		ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
1460					tmp, *roots, NULL, NULL, ignore_offset);
1461		if (ret < 0 && ret != -ENOENT) {
1462			ulist_free(tmp);
1463			ulist_free(*roots);
1464			*roots = NULL;
1465			return ret;
1466		}
1467		node = ulist_next(tmp, &uiter);
1468		if (!node)
1469			break;
1470		bytenr = node->val;
1471		cond_resched();
1472	}
1473
1474	ulist_free(tmp);
1475	return 0;
1476}
1477
1478int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1479			 struct btrfs_fs_info *fs_info, u64 bytenr,
1480			 u64 time_seq, struct ulist **roots,
1481			 bool ignore_offset)
1482{
1483	int ret;
 
 
 
 
 
 
1484
1485	if (!trans)
1486		down_read(&fs_info->commit_root_sem);
1487	ret = btrfs_find_all_roots_safe(trans, fs_info, bytenr,
1488					time_seq, roots, ignore_offset);
1489	if (!trans)
1490		up_read(&fs_info->commit_root_sem);
1491	return ret;
1492}
1493
1494/**
1495 * btrfs_check_shared - tell us whether an extent is shared
1496 *
1497 * btrfs_check_shared uses the backref walking code but will short
1498 * circuit as soon as it finds a root or inode that doesn't match the
1499 * one passed in. This provides a significant performance benefit for
1500 * callers (such as fiemap) which want to know whether the extent is
1501 * shared but do not need a ref count.
1502 *
1503 * This attempts to attach to the running transaction in order to account for
1504 * delayed refs, but continues on even when no running transaction exists.
1505 *
1506 * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error.
1507 */
1508int btrfs_check_shared(struct btrfs_root *root, u64 inum, u64 bytenr,
1509		struct ulist *roots, struct ulist *tmp)
1510{
1511	struct btrfs_fs_info *fs_info = root->fs_info;
1512	struct btrfs_trans_handle *trans;
1513	struct ulist_iterator uiter;
1514	struct ulist_node *node;
1515	struct seq_list elem = SEQ_LIST_INIT(elem);
1516	int ret = 0;
1517	struct share_check shared = {
1518		.root_objectid = root->root_key.objectid,
1519		.inum = inum,
1520		.share_count = 0,
1521	};
1522
1523	ulist_init(roots);
1524	ulist_init(tmp);
1525
1526	trans = btrfs_join_transaction_nostart(root);
1527	if (IS_ERR(trans)) {
1528		if (PTR_ERR(trans) != -ENOENT && PTR_ERR(trans) != -EROFS) {
1529			ret = PTR_ERR(trans);
1530			goto out;
1531		}
1532		trans = NULL;
1533		down_read(&fs_info->commit_root_sem);
1534	} else {
1535		btrfs_get_tree_mod_seq(fs_info, &elem);
1536	}
1537
1538	ULIST_ITER_INIT(&uiter);
1539	while (1) {
1540		ret = find_parent_nodes(trans, fs_info, bytenr, elem.seq, tmp,
1541					roots, NULL, &shared, false);
1542		if (ret == BACKREF_FOUND_SHARED) {
1543			/* this is the only condition under which we return 1 */
1544			ret = 1;
1545			break;
1546		}
1547		if (ret < 0 && ret != -ENOENT)
1548			break;
1549		ret = 0;
1550		node = ulist_next(tmp, &uiter);
1551		if (!node)
1552			break;
1553		bytenr = node->val;
1554		shared.share_count = 0;
1555		cond_resched();
1556	}
1557
1558	if (trans) {
1559		btrfs_put_tree_mod_seq(fs_info, &elem);
1560		btrfs_end_transaction(trans);
1561	} else {
1562		up_read(&fs_info->commit_root_sem);
1563	}
1564out:
1565	ulist_release(roots);
1566	ulist_release(tmp);
1567	return ret;
1568}
1569
1570int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
1571			  u64 start_off, struct btrfs_path *path,
1572			  struct btrfs_inode_extref **ret_extref,
1573			  u64 *found_off)
 
1574{
1575	int ret, slot;
1576	struct btrfs_key key;
1577	struct btrfs_key found_key;
1578	struct btrfs_inode_extref *extref;
1579	const struct extent_buffer *leaf;
1580	unsigned long ptr;
1581
1582	key.objectid = inode_objectid;
1583	key.type = BTRFS_INODE_EXTREF_KEY;
1584	key.offset = start_off;
1585
1586	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1587	if (ret < 0)
1588		return ret;
1589
1590	while (1) {
1591		leaf = path->nodes[0];
1592		slot = path->slots[0];
1593		if (slot >= btrfs_header_nritems(leaf)) {
1594			/*
1595			 * If the item at offset is not found,
1596			 * btrfs_search_slot will point us to the slot
1597			 * where it should be inserted. In our case
1598			 * that will be the slot directly before the
1599			 * next INODE_REF_KEY_V2 item. In the case
1600			 * that we're pointing to the last slot in a
1601			 * leaf, we must move one leaf over.
1602			 */
1603			ret = btrfs_next_leaf(root, path);
1604			if (ret) {
1605				if (ret >= 1)
1606					ret = -ENOENT;
1607				break;
1608			}
1609			continue;
1610		}
1611
1612		btrfs_item_key_to_cpu(leaf, &found_key, slot);
1613
1614		/*
1615		 * Check that we're still looking at an extended ref key for
1616		 * this particular objectid. If we have different
1617		 * objectid or type then there are no more to be found
1618		 * in the tree and we can exit.
1619		 */
1620		ret = -ENOENT;
1621		if (found_key.objectid != inode_objectid)
1622			break;
1623		if (found_key.type != BTRFS_INODE_EXTREF_KEY)
1624			break;
1625
1626		ret = 0;
1627		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1628		extref = (struct btrfs_inode_extref *)ptr;
1629		*ret_extref = extref;
1630		if (found_off)
1631			*found_off = found_key.offset;
1632		break;
1633	}
1634
1635	return ret;
1636}
1637
1638/*
1639 * this iterates to turn a name (from iref/extref) into a full filesystem path.
1640 * Elements of the path are separated by '/' and the path is guaranteed to be
1641 * 0-terminated. the path is only given within the current file system.
1642 * Therefore, it never starts with a '/'. the caller is responsible to provide
1643 * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
1644 * the start point of the resulting string is returned. this pointer is within
1645 * dest, normally.
1646 * in case the path buffer would overflow, the pointer is decremented further
1647 * as if output was written to the buffer, though no more output is actually
1648 * generated. that way, the caller can determine how much space would be
1649 * required for the path to fit into the buffer. in that case, the returned
1650 * value will be smaller than dest. callers must check this!
1651 */
1652char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
1653			u32 name_len, unsigned long name_off,
1654			struct extent_buffer *eb_in, u64 parent,
1655			char *dest, u32 size)
1656{
 
1657	int slot;
1658	u64 next_inum;
1659	int ret;
1660	s64 bytes_left = ((s64)size) - 1;
1661	struct extent_buffer *eb = eb_in;
1662	struct btrfs_key found_key;
1663	int leave_spinning = path->leave_spinning;
1664	struct btrfs_inode_ref *iref;
1665
1666	if (bytes_left >= 0)
1667		dest[bytes_left] = '\0';
1668
1669	path->leave_spinning = 1;
1670	while (1) {
1671		bytes_left -= name_len;
 
1672		if (bytes_left >= 0)
1673			read_extent_buffer(eb, dest + bytes_left,
1674					   name_off, name_len);
1675		if (eb != eb_in) {
1676			if (!path->skip_locking)
1677				btrfs_tree_read_unlock_blocking(eb);
1678			free_extent_buffer(eb);
1679		}
1680		ret = btrfs_find_item(fs_root, path, parent, 0,
1681				BTRFS_INODE_REF_KEY, &found_key);
1682		if (ret > 0)
1683			ret = -ENOENT;
1684		if (ret)
1685			break;
1686
1687		next_inum = found_key.offset;
1688
1689		/* regular exit ahead */
1690		if (parent == next_inum)
1691			break;
1692
1693		slot = path->slots[0];
1694		eb = path->nodes[0];
1695		/* make sure we can use eb after releasing the path */
1696		if (eb != eb_in) {
1697			if (!path->skip_locking)
1698				btrfs_set_lock_blocking_read(eb);
1699			path->nodes[0] = NULL;
1700			path->locks[0] = 0;
1701		}
1702		btrfs_release_path(path);
 
1703		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1704
1705		name_len = btrfs_inode_ref_name_len(eb, iref);
1706		name_off = (unsigned long)(iref + 1);
1707
1708		parent = next_inum;
1709		--bytes_left;
1710		if (bytes_left >= 0)
1711			dest[bytes_left] = '/';
1712	}
1713
1714	btrfs_release_path(path);
1715	path->leave_spinning = leave_spinning;
1716
1717	if (ret)
1718		return ERR_PTR(ret);
1719
1720	return dest + bytes_left;
1721}
1722
1723/*
1724 * this makes the path point to (logical EXTENT_ITEM *)
1725 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
1726 * tree blocks and <0 on error.
1727 */
1728int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
1729			struct btrfs_path *path, struct btrfs_key *found_key,
1730			u64 *flags_ret)
1731{
1732	int ret;
1733	u64 flags;
1734	u64 size = 0;
1735	u32 item_size;
1736	const struct extent_buffer *eb;
1737	struct btrfs_extent_item *ei;
1738	struct btrfs_key key;
1739
1740	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1741		key.type = BTRFS_METADATA_ITEM_KEY;
1742	else
1743		key.type = BTRFS_EXTENT_ITEM_KEY;
1744	key.objectid = logical;
1745	key.offset = (u64)-1;
1746
1747	ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
1748	if (ret < 0)
1749		return ret;
 
 
 
 
1750
1751	ret = btrfs_previous_extent_item(fs_info->extent_root, path, 0);
1752	if (ret) {
1753		if (ret > 0)
1754			ret = -ENOENT;
1755		return ret;
1756	}
1757	btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
1758	if (found_key->type == BTRFS_METADATA_ITEM_KEY)
1759		size = fs_info->nodesize;
1760	else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
1761		size = found_key->offset;
1762
1763	if (found_key->objectid > logical ||
1764	    found_key->objectid + size <= logical) {
1765		btrfs_debug(fs_info,
1766			"logical %llu is not within any extent", logical);
1767		return -ENOENT;
1768	}
1769
1770	eb = path->nodes[0];
1771	item_size = btrfs_item_size_nr(eb, path->slots[0]);
1772	BUG_ON(item_size < sizeof(*ei));
1773
1774	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
1775	flags = btrfs_extent_flags(eb, ei);
1776
1777	btrfs_debug(fs_info,
1778		"logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u",
1779		 logical, logical - found_key->objectid, found_key->objectid,
1780		 found_key->offset, flags, item_size);
1781
1782	WARN_ON(!flags_ret);
1783	if (flags_ret) {
1784		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1785			*flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
1786		else if (flags & BTRFS_EXTENT_FLAG_DATA)
1787			*flags_ret = BTRFS_EXTENT_FLAG_DATA;
1788		else
1789			BUG();
1790		return 0;
1791	}
1792
1793	return -EIO;
1794}
1795
1796/*
1797 * helper function to iterate extent inline refs. ptr must point to a 0 value
1798 * for the first call and may be modified. it is used to track state.
1799 * if more refs exist, 0 is returned and the next call to
1800 * get_extent_inline_ref must pass the modified ptr parameter to get the
1801 * next ref. after the last ref was processed, 1 is returned.
1802 * returns <0 on error
1803 */
1804static int get_extent_inline_ref(unsigned long *ptr,
1805				 const struct extent_buffer *eb,
1806				 const struct btrfs_key *key,
1807				 const struct btrfs_extent_item *ei,
1808				 u32 item_size,
1809				 struct btrfs_extent_inline_ref **out_eiref,
1810				 int *out_type)
1811{
1812	unsigned long end;
1813	u64 flags;
1814	struct btrfs_tree_block_info *info;
1815
1816	if (!*ptr) {
1817		/* first call */
1818		flags = btrfs_extent_flags(eb, ei);
1819		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1820			if (key->type == BTRFS_METADATA_ITEM_KEY) {
1821				/* a skinny metadata extent */
1822				*out_eiref =
1823				     (struct btrfs_extent_inline_ref *)(ei + 1);
1824			} else {
1825				WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY);
1826				info = (struct btrfs_tree_block_info *)(ei + 1);
1827				*out_eiref =
1828				   (struct btrfs_extent_inline_ref *)(info + 1);
1829			}
1830		} else {
1831			*out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
1832		}
1833		*ptr = (unsigned long)*out_eiref;
1834		if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size)
1835			return -ENOENT;
1836	}
1837
1838	end = (unsigned long)ei + item_size;
1839	*out_eiref = (struct btrfs_extent_inline_ref *)(*ptr);
1840	*out_type = btrfs_get_extent_inline_ref_type(eb, *out_eiref,
1841						     BTRFS_REF_TYPE_ANY);
1842	if (*out_type == BTRFS_REF_TYPE_INVALID)
1843		return -EUCLEAN;
1844
1845	*ptr += btrfs_extent_inline_ref_size(*out_type);
1846	WARN_ON(*ptr > end);
1847	if (*ptr == end)
1848		return 1; /* last */
1849
1850	return 0;
1851}
1852
1853/*
1854 * reads the tree block backref for an extent. tree level and root are returned
1855 * through out_level and out_root. ptr must point to a 0 value for the first
1856 * call and may be modified (see get_extent_inline_ref comment).
1857 * returns 0 if data was provided, 1 if there was no more data to provide or
1858 * <0 on error.
1859 */
1860int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
1861			    struct btrfs_key *key, struct btrfs_extent_item *ei,
1862			    u32 item_size, u64 *out_root, u8 *out_level)
1863{
1864	int ret;
1865	int type;
 
1866	struct btrfs_extent_inline_ref *eiref;
1867
1868	if (*ptr == (unsigned long)-1)
1869		return 1;
1870
1871	while (1) {
1872		ret = get_extent_inline_ref(ptr, eb, key, ei, item_size,
1873					      &eiref, &type);
1874		if (ret < 0)
1875			return ret;
1876
1877		if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1878		    type == BTRFS_SHARED_BLOCK_REF_KEY)
1879			break;
1880
1881		if (ret == 1)
1882			return 1;
1883	}
1884
1885	/* we can treat both ref types equally here */
 
1886	*out_root = btrfs_extent_inline_ref_offset(eb, eiref);
1887
1888	if (key->type == BTRFS_EXTENT_ITEM_KEY) {
1889		struct btrfs_tree_block_info *info;
1890
1891		info = (struct btrfs_tree_block_info *)(ei + 1);
1892		*out_level = btrfs_tree_block_level(eb, info);
1893	} else {
1894		ASSERT(key->type == BTRFS_METADATA_ITEM_KEY);
1895		*out_level = (u8)key->offset;
1896	}
1897
1898	if (ret == 1)
1899		*ptr = (unsigned long)-1;
1900
1901	return 0;
1902}
1903
1904static int iterate_leaf_refs(struct btrfs_fs_info *fs_info,
1905			     struct extent_inode_elem *inode_list,
1906			     u64 root, u64 extent_item_objectid,
1907			     iterate_extent_inodes_t *iterate, void *ctx)
1908{
1909	struct extent_inode_elem *eie;
1910	int ret = 0;
1911
1912	for (eie = inode_list; eie; eie = eie->next) {
1913		btrfs_debug(fs_info,
1914			    "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu",
1915			    extent_item_objectid, eie->inum,
1916			    eie->offset, root);
1917		ret = iterate(eie->inum, eie->offset, root, ctx);
1918		if (ret) {
1919			btrfs_debug(fs_info,
1920				    "stopping iteration for %llu due to ret=%d",
1921				    extent_item_objectid, ret);
1922			break;
1923		}
1924	}
1925
1926	return ret;
1927}
1928
1929/*
1930 * calls iterate() for every inode that references the extent identified by
1931 * the given parameters.
1932 * when the iterator function returns a non-zero value, iteration stops.
1933 */
1934int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
1935				u64 extent_item_objectid, u64 extent_item_pos,
1936				int search_commit_root,
1937				iterate_extent_inodes_t *iterate, void *ctx,
1938				bool ignore_offset)
1939{
1940	int ret;
1941	struct btrfs_trans_handle *trans = NULL;
 
 
1942	struct ulist *refs = NULL;
1943	struct ulist *roots = NULL;
1944	struct ulist_node *ref_node = NULL;
1945	struct ulist_node *root_node = NULL;
1946	struct seq_list tree_mod_seq_elem = SEQ_LIST_INIT(tree_mod_seq_elem);
 
1947	struct ulist_iterator ref_uiter;
1948	struct ulist_iterator root_uiter;
 
1949
1950	btrfs_debug(fs_info, "resolving all inodes for extent %llu",
1951			extent_item_objectid);
1952
1953	if (!search_commit_root) {
1954		trans = btrfs_attach_transaction(fs_info->extent_root);
1955		if (IS_ERR(trans)) {
1956			if (PTR_ERR(trans) != -ENOENT &&
1957			    PTR_ERR(trans) != -EROFS)
1958				return PTR_ERR(trans);
1959			trans = NULL;
1960		}
1961	}
1962
1963	if (trans)
 
 
 
1964		btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1965	else
1966		down_read(&fs_info->commit_root_sem);
1967
1968	ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
1969				   tree_mod_seq_elem.seq, &refs,
1970				   &extent_item_pos, ignore_offset);
1971	if (ret)
1972		goto out;
1973
1974	ULIST_ITER_INIT(&ref_uiter);
1975	while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
1976		ret = btrfs_find_all_roots_safe(trans, fs_info, ref_node->val,
1977						tree_mod_seq_elem.seq, &roots,
1978						ignore_offset);
1979		if (ret)
1980			break;
1981		ULIST_ITER_INIT(&root_uiter);
1982		while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
1983			btrfs_debug(fs_info,
1984				    "root %llu references leaf %llu, data list %#llx",
1985				    root_node->val, ref_node->val,
1986				    ref_node->aux);
1987			ret = iterate_leaf_refs(fs_info,
1988						(struct extent_inode_elem *)
1989						(uintptr_t)ref_node->aux,
1990						root_node->val,
1991						extent_item_objectid,
1992						iterate, ctx);
1993		}
1994		ulist_free(roots);
 
1995	}
1996
1997	free_leaf_list(refs);
 
1998out:
1999	if (trans) {
2000		btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
2001		btrfs_end_transaction(trans);
2002	} else {
2003		up_read(&fs_info->commit_root_sem);
2004	}
2005
2006	return ret;
2007}
2008
2009int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
2010				struct btrfs_path *path,
2011				iterate_extent_inodes_t *iterate, void *ctx,
2012				bool ignore_offset)
2013{
2014	int ret;
2015	u64 extent_item_pos;
2016	u64 flags = 0;
2017	struct btrfs_key found_key;
2018	int search_commit_root = path->search_commit_root;
2019
2020	ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
 
2021	btrfs_release_path(path);
 
 
2022	if (ret < 0)
2023		return ret;
2024	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
2025		return -EINVAL;
2026
2027	extent_item_pos = logical - found_key.objectid;
2028	ret = iterate_extent_inodes(fs_info, found_key.objectid,
2029					extent_item_pos, search_commit_root,
2030					iterate, ctx, ignore_offset);
2031
2032	return ret;
2033}
2034
2035typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
2036			      struct extent_buffer *eb, void *ctx);
2037
2038static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
2039			      struct btrfs_path *path,
2040			      iterate_irefs_t *iterate, void *ctx)
2041{
2042	int ret = 0;
2043	int slot;
2044	u32 cur;
2045	u32 len;
2046	u32 name_len;
2047	u64 parent = 0;
2048	int found = 0;
2049	struct extent_buffer *eb;
2050	struct btrfs_item *item;
2051	struct btrfs_inode_ref *iref;
2052	struct btrfs_key found_key;
2053
2054	while (!ret) {
2055		ret = btrfs_find_item(fs_root, path, inum,
2056				parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY,
2057				&found_key);
2058
2059		if (ret < 0)
2060			break;
2061		if (ret) {
2062			ret = found ? 0 : -ENOENT;
2063			break;
2064		}
2065		++found;
2066
2067		parent = found_key.offset;
2068		slot = path->slots[0];
2069		eb = btrfs_clone_extent_buffer(path->nodes[0]);
2070		if (!eb) {
2071			ret = -ENOMEM;
2072			break;
2073		}
2074		btrfs_release_path(path);
2075
2076		item = btrfs_item_nr(slot);
2077		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
2078
2079		for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
2080			name_len = btrfs_inode_ref_name_len(eb, iref);
2081			/* path must be released before calling iterate()! */
2082			btrfs_debug(fs_root->fs_info,
2083				"following ref at offset %u for inode %llu in tree %llu",
2084				cur, found_key.objectid,
2085				fs_root->root_key.objectid);
2086			ret = iterate(parent, name_len,
2087				      (unsigned long)(iref + 1), eb, ctx);
2088			if (ret)
2089				break;
2090			len = sizeof(*iref) + name_len;
2091			iref = (struct btrfs_inode_ref *)((char *)iref + len);
2092		}
 
2093		free_extent_buffer(eb);
2094	}
2095
2096	btrfs_release_path(path);
2097
2098	return ret;
2099}
2100
2101static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
2102				 struct btrfs_path *path,
2103				 iterate_irefs_t *iterate, void *ctx)
2104{
2105	int ret;
2106	int slot;
2107	u64 offset = 0;
2108	u64 parent;
2109	int found = 0;
2110	struct extent_buffer *eb;
2111	struct btrfs_inode_extref *extref;
2112	u32 item_size;
2113	u32 cur_offset;
2114	unsigned long ptr;
2115
2116	while (1) {
2117		ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
2118					    &offset);
2119		if (ret < 0)
2120			break;
2121		if (ret) {
2122			ret = found ? 0 : -ENOENT;
2123			break;
2124		}
2125		++found;
2126
2127		slot = path->slots[0];
2128		eb = btrfs_clone_extent_buffer(path->nodes[0]);
2129		if (!eb) {
2130			ret = -ENOMEM;
2131			break;
2132		}
2133		btrfs_release_path(path);
2134
2135		item_size = btrfs_item_size_nr(eb, slot);
2136		ptr = btrfs_item_ptr_offset(eb, slot);
2137		cur_offset = 0;
2138
2139		while (cur_offset < item_size) {
2140			u32 name_len;
2141
2142			extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
2143			parent = btrfs_inode_extref_parent(eb, extref);
2144			name_len = btrfs_inode_extref_name_len(eb, extref);
2145			ret = iterate(parent, name_len,
2146				      (unsigned long)&extref->name, eb, ctx);
2147			if (ret)
2148				break;
2149
2150			cur_offset += btrfs_inode_extref_name_len(eb, extref);
2151			cur_offset += sizeof(*extref);
2152		}
2153		free_extent_buffer(eb);
2154
2155		offset++;
2156	}
2157
2158	btrfs_release_path(path);
2159
2160	return ret;
2161}
2162
2163static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
2164			 struct btrfs_path *path, iterate_irefs_t *iterate,
2165			 void *ctx)
2166{
2167	int ret;
2168	int found_refs = 0;
2169
2170	ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
2171	if (!ret)
2172		++found_refs;
2173	else if (ret != -ENOENT)
2174		return ret;
2175
2176	ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
2177	if (ret == -ENOENT && found_refs)
2178		return 0;
2179
2180	return ret;
2181}
2182
2183/*
2184 * returns 0 if the path could be dumped (probably truncated)
2185 * returns <0 in case of an error
2186 */
2187static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
2188			 struct extent_buffer *eb, void *ctx)
2189{
2190	struct inode_fs_paths *ipath = ctx;
2191	char *fspath;
2192	char *fspath_min;
2193	int i = ipath->fspath->elem_cnt;
2194	const int s_ptr = sizeof(char *);
2195	u32 bytes_left;
2196
2197	bytes_left = ipath->fspath->bytes_left > s_ptr ?
2198					ipath->fspath->bytes_left - s_ptr : 0;
2199
2200	fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
2201	fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
2202				   name_off, eb, inum, fspath_min, bytes_left);
2203	if (IS_ERR(fspath))
2204		return PTR_ERR(fspath);
2205
2206	if (fspath > fspath_min) {
 
2207		ipath->fspath->val[i] = (u64)(unsigned long)fspath;
2208		++ipath->fspath->elem_cnt;
2209		ipath->fspath->bytes_left = fspath - fspath_min;
2210	} else {
 
 
 
2211		++ipath->fspath->elem_missed;
2212		ipath->fspath->bytes_missing += fspath_min - fspath;
2213		ipath->fspath->bytes_left = 0;
2214	}
2215
2216	return 0;
2217}
2218
2219/*
2220 * this dumps all file system paths to the inode into the ipath struct, provided
2221 * is has been created large enough. each path is zero-terminated and accessed
2222 * from ipath->fspath->val[i].
2223 * when it returns, there are ipath->fspath->elem_cnt number of paths available
2224 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
2225 * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise,
2226 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
2227 * have been needed to return all paths.
2228 */
2229int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
2230{
2231	return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
2232			     inode_to_path, ipath);
2233}
2234
2235struct btrfs_data_container *init_data_container(u32 total_bytes)
2236{
2237	struct btrfs_data_container *data;
2238	size_t alloc_bytes;
2239
2240	alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
2241	data = kvmalloc(alloc_bytes, GFP_KERNEL);
2242	if (!data)
2243		return ERR_PTR(-ENOMEM);
2244
2245	if (total_bytes >= sizeof(*data)) {
2246		data->bytes_left = total_bytes - sizeof(*data);
2247		data->bytes_missing = 0;
2248	} else {
2249		data->bytes_missing = sizeof(*data) - total_bytes;
2250		data->bytes_left = 0;
2251	}
2252
2253	data->elem_cnt = 0;
2254	data->elem_missed = 0;
2255
2256	return data;
2257}
2258
2259/*
2260 * allocates space to return multiple file system paths for an inode.
2261 * total_bytes to allocate are passed, note that space usable for actual path
2262 * information will be total_bytes - sizeof(struct inode_fs_paths).
2263 * the returned pointer must be freed with free_ipath() in the end.
2264 */
2265struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
2266					struct btrfs_path *path)
2267{
2268	struct inode_fs_paths *ifp;
2269	struct btrfs_data_container *fspath;
2270
2271	fspath = init_data_container(total_bytes);
2272	if (IS_ERR(fspath))
2273		return ERR_CAST(fspath);
2274
2275	ifp = kmalloc(sizeof(*ifp), GFP_KERNEL);
2276	if (!ifp) {
2277		kvfree(fspath);
2278		return ERR_PTR(-ENOMEM);
2279	}
2280
2281	ifp->btrfs_path = path;
2282	ifp->fspath = fspath;
2283	ifp->fs_root = fs_root;
2284
2285	return ifp;
2286}
2287
2288void free_ipath(struct inode_fs_paths *ipath)
2289{
2290	if (!ipath)
2291		return;
2292	kvfree(ipath->fspath);
2293	kfree(ipath);
2294}
2295
2296struct btrfs_backref_iter *btrfs_backref_iter_alloc(
2297		struct btrfs_fs_info *fs_info, gfp_t gfp_flag)
2298{
2299	struct btrfs_backref_iter *ret;
2300
2301	ret = kzalloc(sizeof(*ret), gfp_flag);
2302	if (!ret)
2303		return NULL;
2304
2305	ret->path = btrfs_alloc_path();
2306	if (!ret->path) {
2307		kfree(ret);
2308		return NULL;
2309	}
2310
2311	/* Current backref iterator only supports iteration in commit root */
2312	ret->path->search_commit_root = 1;
2313	ret->path->skip_locking = 1;
2314	ret->fs_info = fs_info;
2315
2316	return ret;
2317}
2318
2319int btrfs_backref_iter_start(struct btrfs_backref_iter *iter, u64 bytenr)
2320{
2321	struct btrfs_fs_info *fs_info = iter->fs_info;
2322	struct btrfs_path *path = iter->path;
2323	struct btrfs_extent_item *ei;
2324	struct btrfs_key key;
2325	int ret;
2326
2327	key.objectid = bytenr;
2328	key.type = BTRFS_METADATA_ITEM_KEY;
2329	key.offset = (u64)-1;
2330	iter->bytenr = bytenr;
2331
2332	ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
2333	if (ret < 0)
2334		return ret;
2335	if (ret == 0) {
2336		ret = -EUCLEAN;
2337		goto release;
2338	}
2339	if (path->slots[0] == 0) {
2340		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
2341		ret = -EUCLEAN;
2342		goto release;
2343	}
2344	path->slots[0]--;
2345
2346	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2347	if ((key.type != BTRFS_EXTENT_ITEM_KEY &&
2348	     key.type != BTRFS_METADATA_ITEM_KEY) || key.objectid != bytenr) {
2349		ret = -ENOENT;
2350		goto release;
2351	}
2352	memcpy(&iter->cur_key, &key, sizeof(key));
2353	iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2354						    path->slots[0]);
2355	iter->end_ptr = (u32)(iter->item_ptr +
2356			btrfs_item_size_nr(path->nodes[0], path->slots[0]));
2357	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
2358			    struct btrfs_extent_item);
2359
2360	/*
2361	 * Only support iteration on tree backref yet.
2362	 *
2363	 * This is an extra precaution for non skinny-metadata, where
2364	 * EXTENT_ITEM is also used for tree blocks, that we can only use
2365	 * extent flags to determine if it's a tree block.
2366	 */
2367	if (btrfs_extent_flags(path->nodes[0], ei) & BTRFS_EXTENT_FLAG_DATA) {
2368		ret = -ENOTSUPP;
2369		goto release;
2370	}
2371	iter->cur_ptr = (u32)(iter->item_ptr + sizeof(*ei));
2372
2373	/* If there is no inline backref, go search for keyed backref */
2374	if (iter->cur_ptr >= iter->end_ptr) {
2375		ret = btrfs_next_item(fs_info->extent_root, path);
2376
2377		/* No inline nor keyed ref */
2378		if (ret > 0) {
2379			ret = -ENOENT;
2380			goto release;
2381		}
2382		if (ret < 0)
2383			goto release;
2384
2385		btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key,
2386				path->slots[0]);
2387		if (iter->cur_key.objectid != bytenr ||
2388		    (iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY &&
2389		     iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY)) {
2390			ret = -ENOENT;
2391			goto release;
2392		}
2393		iter->cur_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2394							   path->slots[0]);
2395		iter->item_ptr = iter->cur_ptr;
2396		iter->end_ptr = (u32)(iter->item_ptr + btrfs_item_size_nr(
2397				      path->nodes[0], path->slots[0]));
2398	}
2399
2400	return 0;
2401release:
2402	btrfs_backref_iter_release(iter);
2403	return ret;
2404}
2405
2406/*
2407 * Go to the next backref item of current bytenr, can be either inlined or
2408 * keyed.
2409 *
2410 * Caller needs to check whether it's inline ref or not by iter->cur_key.
2411 *
2412 * Return 0 if we get next backref without problem.
2413 * Return >0 if there is no extra backref for this bytenr.
2414 * Return <0 if there is something wrong happened.
2415 */
2416int btrfs_backref_iter_next(struct btrfs_backref_iter *iter)
2417{
2418	struct extent_buffer *eb = btrfs_backref_get_eb(iter);
2419	struct btrfs_path *path = iter->path;
2420	struct btrfs_extent_inline_ref *iref;
2421	int ret;
2422	u32 size;
2423
2424	if (btrfs_backref_iter_is_inline_ref(iter)) {
2425		/* We're still inside the inline refs */
2426		ASSERT(iter->cur_ptr < iter->end_ptr);
2427
2428		if (btrfs_backref_has_tree_block_info(iter)) {
2429			/* First tree block info */
2430			size = sizeof(struct btrfs_tree_block_info);
2431		} else {
2432			/* Use inline ref type to determine the size */
2433			int type;
2434
2435			iref = (struct btrfs_extent_inline_ref *)
2436				((unsigned long)iter->cur_ptr);
2437			type = btrfs_extent_inline_ref_type(eb, iref);
2438
2439			size = btrfs_extent_inline_ref_size(type);
2440		}
2441		iter->cur_ptr += size;
2442		if (iter->cur_ptr < iter->end_ptr)
2443			return 0;
2444
2445		/* All inline items iterated, fall through */
2446	}
2447
2448	/* We're at keyed items, there is no inline item, go to the next one */
2449	ret = btrfs_next_item(iter->fs_info->extent_root, iter->path);
2450	if (ret)
2451		return ret;
2452
2453	btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key, path->slots[0]);
2454	if (iter->cur_key.objectid != iter->bytenr ||
2455	    (iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY &&
2456	     iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY))
2457		return 1;
2458	iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2459					path->slots[0]);
2460	iter->cur_ptr = iter->item_ptr;
2461	iter->end_ptr = iter->item_ptr + (u32)btrfs_item_size_nr(path->nodes[0],
2462						path->slots[0]);
2463	return 0;
2464}
2465
2466void btrfs_backref_init_cache(struct btrfs_fs_info *fs_info,
2467			      struct btrfs_backref_cache *cache, int is_reloc)
2468{
2469	int i;
2470
2471	cache->rb_root = RB_ROOT;
2472	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
2473		INIT_LIST_HEAD(&cache->pending[i]);
2474	INIT_LIST_HEAD(&cache->changed);
2475	INIT_LIST_HEAD(&cache->detached);
2476	INIT_LIST_HEAD(&cache->leaves);
2477	INIT_LIST_HEAD(&cache->pending_edge);
2478	INIT_LIST_HEAD(&cache->useless_node);
2479	cache->fs_info = fs_info;
2480	cache->is_reloc = is_reloc;
2481}
2482
2483struct btrfs_backref_node *btrfs_backref_alloc_node(
2484		struct btrfs_backref_cache *cache, u64 bytenr, int level)
2485{
2486	struct btrfs_backref_node *node;
2487
2488	ASSERT(level >= 0 && level < BTRFS_MAX_LEVEL);
2489	node = kzalloc(sizeof(*node), GFP_NOFS);
2490	if (!node)
2491		return node;
2492
2493	INIT_LIST_HEAD(&node->list);
2494	INIT_LIST_HEAD(&node->upper);
2495	INIT_LIST_HEAD(&node->lower);
2496	RB_CLEAR_NODE(&node->rb_node);
2497	cache->nr_nodes++;
2498	node->level = level;
2499	node->bytenr = bytenr;
2500
2501	return node;
2502}
2503
2504struct btrfs_backref_edge *btrfs_backref_alloc_edge(
2505		struct btrfs_backref_cache *cache)
2506{
2507	struct btrfs_backref_edge *edge;
2508
2509	edge = kzalloc(sizeof(*edge), GFP_NOFS);
2510	if (edge)
2511		cache->nr_edges++;
2512	return edge;
2513}
2514
2515/*
2516 * Drop the backref node from cache, also cleaning up all its
2517 * upper edges and any uncached nodes in the path.
2518 *
2519 * This cleanup happens bottom up, thus the node should either
2520 * be the lowest node in the cache or a detached node.
2521 */
2522void btrfs_backref_cleanup_node(struct btrfs_backref_cache *cache,
2523				struct btrfs_backref_node *node)
2524{
2525	struct btrfs_backref_node *upper;
2526	struct btrfs_backref_edge *edge;
2527
2528	if (!node)
2529		return;
2530
2531	BUG_ON(!node->lowest && !node->detached);
2532	while (!list_empty(&node->upper)) {
2533		edge = list_entry(node->upper.next, struct btrfs_backref_edge,
2534				  list[LOWER]);
2535		upper = edge->node[UPPER];
2536		list_del(&edge->list[LOWER]);
2537		list_del(&edge->list[UPPER]);
2538		btrfs_backref_free_edge(cache, edge);
2539
2540		if (RB_EMPTY_NODE(&upper->rb_node)) {
2541			BUG_ON(!list_empty(&node->upper));
2542			btrfs_backref_drop_node(cache, node);
2543			node = upper;
2544			node->lowest = 1;
2545			continue;
2546		}
2547		/*
2548		 * Add the node to leaf node list if no other child block
2549		 * cached.
2550		 */
2551		if (list_empty(&upper->lower)) {
2552			list_add_tail(&upper->lower, &cache->leaves);
2553			upper->lowest = 1;
2554		}
2555	}
2556
2557	btrfs_backref_drop_node(cache, node);
2558}
2559
2560/*
2561 * Release all nodes/edges from current cache
2562 */
2563void btrfs_backref_release_cache(struct btrfs_backref_cache *cache)
2564{
2565	struct btrfs_backref_node *node;
2566	int i;
2567
2568	while (!list_empty(&cache->detached)) {
2569		node = list_entry(cache->detached.next,
2570				  struct btrfs_backref_node, list);
2571		btrfs_backref_cleanup_node(cache, node);
2572	}
2573
2574	while (!list_empty(&cache->leaves)) {
2575		node = list_entry(cache->leaves.next,
2576				  struct btrfs_backref_node, lower);
2577		btrfs_backref_cleanup_node(cache, node);
2578	}
2579
2580	cache->last_trans = 0;
2581
2582	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
2583		ASSERT(list_empty(&cache->pending[i]));
2584	ASSERT(list_empty(&cache->pending_edge));
2585	ASSERT(list_empty(&cache->useless_node));
2586	ASSERT(list_empty(&cache->changed));
2587	ASSERT(list_empty(&cache->detached));
2588	ASSERT(RB_EMPTY_ROOT(&cache->rb_root));
2589	ASSERT(!cache->nr_nodes);
2590	ASSERT(!cache->nr_edges);
2591}
2592
2593/*
2594 * Handle direct tree backref
2595 *
2596 * Direct tree backref means, the backref item shows its parent bytenr
2597 * directly. This is for SHARED_BLOCK_REF backref (keyed or inlined).
2598 *
2599 * @ref_key:	The converted backref key.
2600 *		For keyed backref, it's the item key.
2601 *		For inlined backref, objectid is the bytenr,
2602 *		type is btrfs_inline_ref_type, offset is
2603 *		btrfs_inline_ref_offset.
2604 */
2605static int handle_direct_tree_backref(struct btrfs_backref_cache *cache,
2606				      struct btrfs_key *ref_key,
2607				      struct btrfs_backref_node *cur)
2608{
2609	struct btrfs_backref_edge *edge;
2610	struct btrfs_backref_node *upper;
2611	struct rb_node *rb_node;
2612
2613	ASSERT(ref_key->type == BTRFS_SHARED_BLOCK_REF_KEY);
2614
2615	/* Only reloc root uses backref pointing to itself */
2616	if (ref_key->objectid == ref_key->offset) {
2617		struct btrfs_root *root;
2618
2619		cur->is_reloc_root = 1;
2620		/* Only reloc backref cache cares about a specific root */
2621		if (cache->is_reloc) {
2622			root = find_reloc_root(cache->fs_info, cur->bytenr);
2623			if (WARN_ON(!root))
2624				return -ENOENT;
2625			cur->root = root;
2626		} else {
2627			/*
2628			 * For generic purpose backref cache, reloc root node
2629			 * is useless.
2630			 */
2631			list_add(&cur->list, &cache->useless_node);
2632		}
2633		return 0;
2634	}
2635
2636	edge = btrfs_backref_alloc_edge(cache);
2637	if (!edge)
2638		return -ENOMEM;
2639
2640	rb_node = rb_simple_search(&cache->rb_root, ref_key->offset);
2641	if (!rb_node) {
2642		/* Parent node not yet cached */
2643		upper = btrfs_backref_alloc_node(cache, ref_key->offset,
2644					   cur->level + 1);
2645		if (!upper) {
2646			btrfs_backref_free_edge(cache, edge);
2647			return -ENOMEM;
2648		}
2649
2650		/*
2651		 *  Backrefs for the upper level block isn't cached, add the
2652		 *  block to pending list
2653		 */
2654		list_add_tail(&edge->list[UPPER], &cache->pending_edge);
2655	} else {
2656		/* Parent node already cached */
2657		upper = rb_entry(rb_node, struct btrfs_backref_node, rb_node);
2658		ASSERT(upper->checked);
2659		INIT_LIST_HEAD(&edge->list[UPPER]);
2660	}
2661	btrfs_backref_link_edge(edge, cur, upper, LINK_LOWER);
2662	return 0;
2663}
2664
2665/*
2666 * Handle indirect tree backref
2667 *
2668 * Indirect tree backref means, we only know which tree the node belongs to.
2669 * We still need to do a tree search to find out the parents. This is for
2670 * TREE_BLOCK_REF backref (keyed or inlined).
2671 *
2672 * @ref_key:	The same as @ref_key in  handle_direct_tree_backref()
2673 * @tree_key:	The first key of this tree block.
2674 * @path:	A clean (released) path, to avoid allocating path everytime
2675 *		the function get called.
2676 */
2677static int handle_indirect_tree_backref(struct btrfs_backref_cache *cache,
2678					struct btrfs_path *path,
2679					struct btrfs_key *ref_key,
2680					struct btrfs_key *tree_key,
2681					struct btrfs_backref_node *cur)
2682{
2683	struct btrfs_fs_info *fs_info = cache->fs_info;
2684	struct btrfs_backref_node *upper;
2685	struct btrfs_backref_node *lower;
2686	struct btrfs_backref_edge *edge;
2687	struct extent_buffer *eb;
2688	struct btrfs_root *root;
2689	struct rb_node *rb_node;
2690	int level;
2691	bool need_check = true;
2692	int ret;
2693
2694	root = btrfs_get_fs_root(fs_info, ref_key->offset, false);
2695	if (IS_ERR(root))
2696		return PTR_ERR(root);
2697	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
2698		cur->cowonly = 1;
2699
2700	if (btrfs_root_level(&root->root_item) == cur->level) {
2701		/* Tree root */
2702		ASSERT(btrfs_root_bytenr(&root->root_item) == cur->bytenr);
2703		/*
2704		 * For reloc backref cache, we may ignore reloc root.  But for
2705		 * general purpose backref cache, we can't rely on
2706		 * btrfs_should_ignore_reloc_root() as it may conflict with
2707		 * current running relocation and lead to missing root.
2708		 *
2709		 * For general purpose backref cache, reloc root detection is
2710		 * completely relying on direct backref (key->offset is parent
2711		 * bytenr), thus only do such check for reloc cache.
2712		 */
2713		if (btrfs_should_ignore_reloc_root(root) && cache->is_reloc) {
2714			btrfs_put_root(root);
2715			list_add(&cur->list, &cache->useless_node);
2716		} else {
2717			cur->root = root;
2718		}
2719		return 0;
2720	}
2721
2722	level = cur->level + 1;
2723
2724	/* Search the tree to find parent blocks referring to the block */
2725	path->search_commit_root = 1;
2726	path->skip_locking = 1;
2727	path->lowest_level = level;
2728	ret = btrfs_search_slot(NULL, root, tree_key, path, 0, 0);
2729	path->lowest_level = 0;
2730	if (ret < 0) {
2731		btrfs_put_root(root);
2732		return ret;
2733	}
2734	if (ret > 0 && path->slots[level] > 0)
2735		path->slots[level]--;
2736
2737	eb = path->nodes[level];
2738	if (btrfs_node_blockptr(eb, path->slots[level]) != cur->bytenr) {
2739		btrfs_err(fs_info,
2740"couldn't find block (%llu) (level %d) in tree (%llu) with key (%llu %u %llu)",
2741			  cur->bytenr, level - 1, root->root_key.objectid,
2742			  tree_key->objectid, tree_key->type, tree_key->offset);
2743		btrfs_put_root(root);
2744		ret = -ENOENT;
2745		goto out;
2746	}
2747	lower = cur;
2748
2749	/* Add all nodes and edges in the path */
2750	for (; level < BTRFS_MAX_LEVEL; level++) {
2751		if (!path->nodes[level]) {
2752			ASSERT(btrfs_root_bytenr(&root->root_item) ==
2753			       lower->bytenr);
2754			/* Same as previous should_ignore_reloc_root() call */
2755			if (btrfs_should_ignore_reloc_root(root) &&
2756			    cache->is_reloc) {
2757				btrfs_put_root(root);
2758				list_add(&lower->list, &cache->useless_node);
2759			} else {
2760				lower->root = root;
2761			}
2762			break;
2763		}
2764
2765		edge = btrfs_backref_alloc_edge(cache);
2766		if (!edge) {
2767			btrfs_put_root(root);
2768			ret = -ENOMEM;
2769			goto out;
2770		}
2771
2772		eb = path->nodes[level];
2773		rb_node = rb_simple_search(&cache->rb_root, eb->start);
2774		if (!rb_node) {
2775			upper = btrfs_backref_alloc_node(cache, eb->start,
2776							 lower->level + 1);
2777			if (!upper) {
2778				btrfs_put_root(root);
2779				btrfs_backref_free_edge(cache, edge);
2780				ret = -ENOMEM;
2781				goto out;
2782			}
2783			upper->owner = btrfs_header_owner(eb);
2784			if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
2785				upper->cowonly = 1;
2786
2787			/*
2788			 * If we know the block isn't shared we can avoid
2789			 * checking its backrefs.
2790			 */
2791			if (btrfs_block_can_be_shared(root, eb))
2792				upper->checked = 0;
2793			else
2794				upper->checked = 1;
2795
2796			/*
2797			 * Add the block to pending list if we need to check its
2798			 * backrefs, we only do this once while walking up a
2799			 * tree as we will catch anything else later on.
2800			 */
2801			if (!upper->checked && need_check) {
2802				need_check = false;
2803				list_add_tail(&edge->list[UPPER],
2804					      &cache->pending_edge);
2805			} else {
2806				if (upper->checked)
2807					need_check = true;
2808				INIT_LIST_HEAD(&edge->list[UPPER]);
2809			}
2810		} else {
2811			upper = rb_entry(rb_node, struct btrfs_backref_node,
2812					 rb_node);
2813			ASSERT(upper->checked);
2814			INIT_LIST_HEAD(&edge->list[UPPER]);
2815			if (!upper->owner)
2816				upper->owner = btrfs_header_owner(eb);
2817		}
2818		btrfs_backref_link_edge(edge, lower, upper, LINK_LOWER);
2819
2820		if (rb_node) {
2821			btrfs_put_root(root);
2822			break;
2823		}
2824		lower = upper;
2825		upper = NULL;
2826	}
2827out:
2828	btrfs_release_path(path);
2829	return ret;
2830}
2831
2832/*
2833 * Add backref node @cur into @cache.
2834 *
2835 * NOTE: Even if the function returned 0, @cur is not yet cached as its upper
2836 *	 links aren't yet bi-directional. Needs to finish such links.
2837 *	 Use btrfs_backref_finish_upper_links() to finish such linkage.
2838 *
2839 * @path:	Released path for indirect tree backref lookup
2840 * @iter:	Released backref iter for extent tree search
2841 * @node_key:	The first key of the tree block
2842 */
2843int btrfs_backref_add_tree_node(struct btrfs_backref_cache *cache,
2844				struct btrfs_path *path,
2845				struct btrfs_backref_iter *iter,
2846				struct btrfs_key *node_key,
2847				struct btrfs_backref_node *cur)
2848{
2849	struct btrfs_fs_info *fs_info = cache->fs_info;
2850	struct btrfs_backref_edge *edge;
2851	struct btrfs_backref_node *exist;
2852	int ret;
2853
2854	ret = btrfs_backref_iter_start(iter, cur->bytenr);
2855	if (ret < 0)
2856		return ret;
2857	/*
2858	 * We skip the first btrfs_tree_block_info, as we don't use the key
2859	 * stored in it, but fetch it from the tree block
2860	 */
2861	if (btrfs_backref_has_tree_block_info(iter)) {
2862		ret = btrfs_backref_iter_next(iter);
2863		if (ret < 0)
2864			goto out;
2865		/* No extra backref? This means the tree block is corrupted */
2866		if (ret > 0) {
2867			ret = -EUCLEAN;
2868			goto out;
2869		}
2870	}
2871	WARN_ON(cur->checked);
2872	if (!list_empty(&cur->upper)) {
2873		/*
2874		 * The backref was added previously when processing backref of
2875		 * type BTRFS_TREE_BLOCK_REF_KEY
2876		 */
2877		ASSERT(list_is_singular(&cur->upper));
2878		edge = list_entry(cur->upper.next, struct btrfs_backref_edge,
2879				  list[LOWER]);
2880		ASSERT(list_empty(&edge->list[UPPER]));
2881		exist = edge->node[UPPER];
2882		/*
2883		 * Add the upper level block to pending list if we need check
2884		 * its backrefs
2885		 */
2886		if (!exist->checked)
2887			list_add_tail(&edge->list[UPPER], &cache->pending_edge);
2888	} else {
2889		exist = NULL;
2890	}
2891
2892	for (; ret == 0; ret = btrfs_backref_iter_next(iter)) {
2893		struct extent_buffer *eb;
2894		struct btrfs_key key;
2895		int type;
2896
2897		cond_resched();
2898		eb = btrfs_backref_get_eb(iter);
2899
2900		key.objectid = iter->bytenr;
2901		if (btrfs_backref_iter_is_inline_ref(iter)) {
2902			struct btrfs_extent_inline_ref *iref;
2903
2904			/* Update key for inline backref */
2905			iref = (struct btrfs_extent_inline_ref *)
2906				((unsigned long)iter->cur_ptr);
2907			type = btrfs_get_extent_inline_ref_type(eb, iref,
2908							BTRFS_REF_TYPE_BLOCK);
2909			if (type == BTRFS_REF_TYPE_INVALID) {
2910				ret = -EUCLEAN;
2911				goto out;
2912			}
2913			key.type = type;
2914			key.offset = btrfs_extent_inline_ref_offset(eb, iref);
2915		} else {
2916			key.type = iter->cur_key.type;
2917			key.offset = iter->cur_key.offset;
2918		}
2919
2920		/*
2921		 * Parent node found and matches current inline ref, no need to
2922		 * rebuild this node for this inline ref
2923		 */
2924		if (exist &&
2925		    ((key.type == BTRFS_TREE_BLOCK_REF_KEY &&
2926		      exist->owner == key.offset) ||
2927		     (key.type == BTRFS_SHARED_BLOCK_REF_KEY &&
2928		      exist->bytenr == key.offset))) {
2929			exist = NULL;
2930			continue;
2931		}
2932
2933		/* SHARED_BLOCK_REF means key.offset is the parent bytenr */
2934		if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) {
2935			ret = handle_direct_tree_backref(cache, &key, cur);
2936			if (ret < 0)
2937				goto out;
2938			continue;
2939		} else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
2940			ret = -EINVAL;
2941			btrfs_print_v0_err(fs_info);
2942			btrfs_handle_fs_error(fs_info, ret, NULL);
2943			goto out;
2944		} else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) {
2945			continue;
2946		}
2947
2948		/*
2949		 * key.type == BTRFS_TREE_BLOCK_REF_KEY, inline ref offset
2950		 * means the root objectid. We need to search the tree to get
2951		 * its parent bytenr.
2952		 */
2953		ret = handle_indirect_tree_backref(cache, path, &key, node_key,
2954						   cur);
2955		if (ret < 0)
2956			goto out;
2957	}
2958	ret = 0;
2959	cur->checked = 1;
2960	WARN_ON(exist);
2961out:
2962	btrfs_backref_iter_release(iter);
2963	return ret;
2964}
2965
2966/*
2967 * Finish the upwards linkage created by btrfs_backref_add_tree_node()
2968 */
2969int btrfs_backref_finish_upper_links(struct btrfs_backref_cache *cache,
2970				     struct btrfs_backref_node *start)
2971{
2972	struct list_head *useless_node = &cache->useless_node;
2973	struct btrfs_backref_edge *edge;
2974	struct rb_node *rb_node;
2975	LIST_HEAD(pending_edge);
2976
2977	ASSERT(start->checked);
2978
2979	/* Insert this node to cache if it's not COW-only */
2980	if (!start->cowonly) {
2981		rb_node = rb_simple_insert(&cache->rb_root, start->bytenr,
2982					   &start->rb_node);
2983		if (rb_node)
2984			btrfs_backref_panic(cache->fs_info, start->bytenr,
2985					    -EEXIST);
2986		list_add_tail(&start->lower, &cache->leaves);
2987	}
2988
2989	/*
2990	 * Use breadth first search to iterate all related edges.
2991	 *
2992	 * The starting points are all the edges of this node
2993	 */
2994	list_for_each_entry(edge, &start->upper, list[LOWER])
2995		list_add_tail(&edge->list[UPPER], &pending_edge);
2996
2997	while (!list_empty(&pending_edge)) {
2998		struct btrfs_backref_node *upper;
2999		struct btrfs_backref_node *lower;
3000		struct rb_node *rb_node;
3001
3002		edge = list_first_entry(&pending_edge,
3003				struct btrfs_backref_edge, list[UPPER]);
3004		list_del_init(&edge->list[UPPER]);
3005		upper = edge->node[UPPER];
3006		lower = edge->node[LOWER];
3007
3008		/* Parent is detached, no need to keep any edges */
3009		if (upper->detached) {
3010			list_del(&edge->list[LOWER]);
3011			btrfs_backref_free_edge(cache, edge);
3012
3013			/* Lower node is orphan, queue for cleanup */
3014			if (list_empty(&lower->upper))
3015				list_add(&lower->list, useless_node);
3016			continue;
3017		}
3018
3019		/*
3020		 * All new nodes added in current build_backref_tree() haven't
3021		 * been linked to the cache rb tree.
3022		 * So if we have upper->rb_node populated, this means a cache
3023		 * hit. We only need to link the edge, as @upper and all its
3024		 * parents have already been linked.
3025		 */
3026		if (!RB_EMPTY_NODE(&upper->rb_node)) {
3027			if (upper->lowest) {
3028				list_del_init(&upper->lower);
3029				upper->lowest = 0;
3030			}
3031
3032			list_add_tail(&edge->list[UPPER], &upper->lower);
3033			continue;
3034		}
3035
3036		/* Sanity check, we shouldn't have any unchecked nodes */
3037		if (!upper->checked) {
3038			ASSERT(0);
3039			return -EUCLEAN;
3040		}
3041
3042		/* Sanity check, COW-only node has non-COW-only parent */
3043		if (start->cowonly != upper->cowonly) {
3044			ASSERT(0);
3045			return -EUCLEAN;
3046		}
3047
3048		/* Only cache non-COW-only (subvolume trees) tree blocks */
3049		if (!upper->cowonly) {
3050			rb_node = rb_simple_insert(&cache->rb_root, upper->bytenr,
3051						   &upper->rb_node);
3052			if (rb_node) {
3053				btrfs_backref_panic(cache->fs_info,
3054						upper->bytenr, -EEXIST);
3055				return -EUCLEAN;
3056			}
3057		}
3058
3059		list_add_tail(&edge->list[UPPER], &upper->lower);
3060
3061		/*
3062		 * Also queue all the parent edges of this uncached node
3063		 * to finish the upper linkage
3064		 */
3065		list_for_each_entry(edge, &upper->upper, list[LOWER])
3066			list_add_tail(&edge->list[UPPER], &pending_edge);
3067	}
3068	return 0;
3069}
3070
3071void btrfs_backref_error_cleanup(struct btrfs_backref_cache *cache,
3072				 struct btrfs_backref_node *node)
3073{
3074	struct btrfs_backref_node *lower;
3075	struct btrfs_backref_node *upper;
3076	struct btrfs_backref_edge *edge;
3077
3078	while (!list_empty(&cache->useless_node)) {
3079		lower = list_first_entry(&cache->useless_node,
3080				   struct btrfs_backref_node, list);
3081		list_del_init(&lower->list);
3082	}
3083	while (!list_empty(&cache->pending_edge)) {
3084		edge = list_first_entry(&cache->pending_edge,
3085				struct btrfs_backref_edge, list[UPPER]);
3086		list_del(&edge->list[UPPER]);
3087		list_del(&edge->list[LOWER]);
3088		lower = edge->node[LOWER];
3089		upper = edge->node[UPPER];
3090		btrfs_backref_free_edge(cache, edge);
3091
3092		/*
3093		 * Lower is no longer linked to any upper backref nodes and
3094		 * isn't in the cache, we can free it ourselves.
3095		 */
3096		if (list_empty(&lower->upper) &&
3097		    RB_EMPTY_NODE(&lower->rb_node))
3098			list_add(&lower->list, &cache->useless_node);
3099
3100		if (!RB_EMPTY_NODE(&upper->rb_node))
3101			continue;
3102
3103		/* Add this guy's upper edges to the list to process */
3104		list_for_each_entry(edge, &upper->upper, list[LOWER])
3105			list_add_tail(&edge->list[UPPER],
3106				      &cache->pending_edge);
3107		if (list_empty(&upper->upper))
3108			list_add(&upper->list, &cache->useless_node);
3109	}
3110
3111	while (!list_empty(&cache->useless_node)) {
3112		lower = list_first_entry(&cache->useless_node,
3113				   struct btrfs_backref_node, list);
3114		list_del_init(&lower->list);
3115		if (lower == node)
3116			node = NULL;
3117		btrfs_backref_free_node(cache, lower);
3118	}
3119
3120	btrfs_backref_cleanup_node(cache, node);
3121	ASSERT(list_empty(&cache->useless_node) &&
3122	       list_empty(&cache->pending_edge));
3123}