Linux Audio

Check our new training course

Loading...
v3.5.6
 
   1/*
   2 * Copyright (C) 2011 STRATO.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
 
 
 
  19#include "ctree.h"
  20#include "disk-io.h"
  21#include "backref.h"
  22#include "ulist.h"
  23#include "transaction.h"
  24#include "delayed-ref.h"
  25#include "locking.h"
 
 
 
 
 
  26
  27struct extent_inode_elem {
  28	u64 inum;
  29	u64 offset;
  30	struct extent_inode_elem *next;
  31};
  32
  33static int check_extent_in_eb(struct btrfs_key *key, struct extent_buffer *eb,
  34				struct btrfs_file_extent_item *fi,
  35				u64 extent_item_pos,
  36				struct extent_inode_elem **eie)
 
 
  37{
  38	u64 data_offset;
  39	u64 data_len;
  40	struct extent_inode_elem *e;
  41
  42	data_offset = btrfs_file_extent_offset(eb, fi);
  43	data_len = btrfs_file_extent_num_bytes(eb, fi);
 
 
 
 
  44
  45	if (extent_item_pos < data_offset ||
  46	    extent_item_pos >= data_offset + data_len)
  47		return 1;
 
 
 
 
 
  48
  49	e = kmalloc(sizeof(*e), GFP_NOFS);
  50	if (!e)
  51		return -ENOMEM;
  52
  53	e->next = *eie;
  54	e->inum = key->objectid;
  55	e->offset = key->offset + (extent_item_pos - data_offset);
  56	*eie = e;
  57
  58	return 0;
  59}
  60
  61static int find_extent_in_eb(struct extent_buffer *eb, u64 wanted_disk_byte,
  62				u64 extent_item_pos,
  63				struct extent_inode_elem **eie)
 
 
 
 
 
 
 
 
 
 
 
  64{
  65	u64 disk_byte;
  66	struct btrfs_key key;
  67	struct btrfs_file_extent_item *fi;
  68	int slot;
  69	int nritems;
  70	int extent_type;
  71	int ret;
  72
  73	/*
  74	 * from the shared data ref, we only have the leaf but we need
  75	 * the key. thus, we must look into all items and see that we
  76	 * find one (some) with a reference to our extent item.
  77	 */
  78	nritems = btrfs_header_nritems(eb);
  79	for (slot = 0; slot < nritems; ++slot) {
  80		btrfs_item_key_to_cpu(eb, &key, slot);
  81		if (key.type != BTRFS_EXTENT_DATA_KEY)
  82			continue;
  83		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
  84		extent_type = btrfs_file_extent_type(eb, fi);
  85		if (extent_type == BTRFS_FILE_EXTENT_INLINE)
  86			continue;
  87		/* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
  88		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
  89		if (disk_byte != wanted_disk_byte)
  90			continue;
  91
  92		ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie);
  93		if (ret < 0)
  94			return ret;
  95	}
  96
  97	return 0;
  98}
  99
 
 
 
 
 
 
 
 
 
 
 
 
 
 100/*
 101 * this structure records all encountered refs on the way up to the root
 
 
 
 
 
 102 */
 103struct __prelim_ref {
 104	struct list_head list;
 105	u64 root_id;
 106	struct btrfs_key key_for_search;
 107	int level;
 108	int count;
 109	struct extent_inode_elem *inode_list;
 110	u64 parent;
 111	u64 wanted_disk_byte;
 112};
 113
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 114/*
 115 * the rules for all callers of this function are:
 116 * - obtaining the parent is the goal
 117 * - if you add a key, you must know that it is a correct key
 118 * - if you cannot add the parent or a correct key, then we will look into the
 119 *   block later to set a correct key
 120 *
 121 * delayed refs
 122 * ============
 123 *        backref type | shared | indirect | shared | indirect
 124 * information         |   tree |     tree |   data |     data
 125 * --------------------+--------+----------+--------+----------
 126 *      parent logical |    y   |     -    |    -   |     -
 127 *      key to resolve |    -   |     y    |    y   |     y
 128 *  tree block logical |    -   |     -    |    -   |     -
 129 *  root for resolving |    y   |     y    |    y   |     y
 130 *
 131 * - column 1:       we've the parent -> done
 132 * - column 2, 3, 4: we use the key to find the parent
 133 *
 134 * on disk refs (inline or keyed)
 135 * ==============================
 136 *        backref type | shared | indirect | shared | indirect
 137 * information         |   tree |     tree |   data |     data
 138 * --------------------+--------+----------+--------+----------
 139 *      parent logical |    y   |     -    |    y   |     -
 140 *      key to resolve |    -   |     -    |    -   |     y
 141 *  tree block logical |    y   |     y    |    y   |     y
 142 *  root for resolving |    -   |     y    |    y   |     y
 143 *
 144 * - column 1, 3: we've the parent -> done
 145 * - column 2:    we take the first key from the block to find the parent
 146 *                (see __add_missing_keys)
 147 * - column 4:    we use the key to find the parent
 148 *
 149 * additional information that's available but not required to find the parent
 150 * block might help in merging entries to gain some speed.
 151 */
 152
 153static int __add_prelim_ref(struct list_head *head, u64 root_id,
 154			    struct btrfs_key *key, int level,
 155			    u64 parent, u64 wanted_disk_byte, int count)
 
 156{
 157	struct __prelim_ref *ref;
 
 
 
 158
 159	/* in case we're adding delayed refs, we're holding the refs spinlock */
 160	ref = kmalloc(sizeof(*ref), GFP_ATOMIC);
 161	if (!ref)
 162		return -ENOMEM;
 163
 164	ref->root_id = root_id;
 165	if (key)
 166		ref->key_for_search = *key;
 167	else
 168		memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
 169
 170	ref->inode_list = NULL;
 171	ref->level = level;
 172	ref->count = count;
 173	ref->parent = parent;
 174	ref->wanted_disk_byte = wanted_disk_byte;
 175	list_add_tail(&ref->list, head);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 176
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 177	return 0;
 178}
 179
 180static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
 181				struct ulist *parents, int level,
 182				struct btrfs_key *key_for_search, u64 time_seq,
 183				u64 wanted_disk_byte,
 184				const u64 *extent_item_pos)
 185{
 186	int ret = 0;
 187	int slot;
 188	struct extent_buffer *eb;
 189	struct btrfs_key key;
 
 190	struct btrfs_file_extent_item *fi;
 191	struct extent_inode_elem *eie = NULL;
 192	u64 disk_byte;
 
 
 
 193
 194	if (level != 0) {
 195		eb = path->nodes[level];
 196		ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
 197		if (ret < 0)
 198			return ret;
 199		return 0;
 200	}
 201
 202	/*
 203	 * We normally enter this function with the path already pointing to
 204	 * the first item to check. But sometimes, we may enter it with
 205	 * slot==nritems. In that case, go to the next leaf before we continue.
 
 
 
 
 
 206	 */
 207	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0]))
 208		ret = btrfs_next_old_leaf(root, path, time_seq);
 
 
 
 
 
 
 
 209
 210	while (!ret) {
 211		eb = path->nodes[0];
 212		slot = path->slots[0];
 213
 214		btrfs_item_key_to_cpu(eb, &key, slot);
 215
 216		if (key.objectid != key_for_search->objectid ||
 217		    key.type != BTRFS_EXTENT_DATA_KEY)
 218			break;
 219
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 220		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
 221		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
 
 222
 223		if (disk_byte == wanted_disk_byte) {
 224			eie = NULL;
 
 
 
 
 
 225			if (extent_item_pos) {
 226				ret = check_extent_in_eb(&key, eb, fi,
 227						*extent_item_pos,
 228						&eie);
 229				if (ret < 0)
 230					break;
 231			}
 232			if (!ret) {
 233				ret = ulist_add(parents, eb->start,
 234						(unsigned long)eie, GFP_NOFS);
 235				if (ret < 0)
 236					break;
 237				if (!extent_item_pos) {
 238					ret = btrfs_next_old_leaf(root, path,
 239							time_seq);
 240					continue;
 241				}
 242			}
 
 243		}
 244		ret = btrfs_next_old_item(root, path, time_seq);
 
 
 
 
 245	}
 246
 247	if (ret > 0)
 248		ret = 0;
 
 
 249	return ret;
 250}
 251
 252/*
 253 * resolve an indirect backref in the form (root_id, key, level)
 254 * to a logical address
 255 */
 256static int __resolve_indirect_ref(struct btrfs_fs_info *fs_info,
 257					int search_commit_root,
 258					u64 time_seq,
 259					struct __prelim_ref *ref,
 260					struct ulist *parents,
 261					const u64 *extent_item_pos)
 262{
 263	struct btrfs_path *path;
 264	struct btrfs_root *root;
 265	struct btrfs_key root_key;
 266	struct extent_buffer *eb;
 267	int ret = 0;
 268	int root_level;
 269	int level = ref->level;
 
 270
 271	path = btrfs_alloc_path();
 272	if (!path)
 273		return -ENOMEM;
 274	path->search_commit_root = !!search_commit_root;
 275
 276	root_key.objectid = ref->root_id;
 277	root_key.type = BTRFS_ROOT_ITEM_KEY;
 278	root_key.offset = (u64)-1;
 279	root = btrfs_read_fs_root_no_name(fs_info, &root_key);
 
 
 
 280	if (IS_ERR(root)) {
 281		ret = PTR_ERR(root);
 
 
 
 
 
 
 
 
 
 
 
 282		goto out;
 283	}
 284
 285	rcu_read_lock();
 286	root_level = btrfs_header_level(root->node);
 287	rcu_read_unlock();
 
 
 
 288
 289	if (root_level + 1 == level)
 290		goto out;
 291
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 292	path->lowest_level = level;
 293	ret = btrfs_search_old_slot(root, &ref->key_for_search, path, time_seq);
 294	pr_debug("search slot in root %llu (level %d, ref count %d) returned "
 295		 "%d for key (%llu %u %llu)\n",
 296		 (unsigned long long)ref->root_id, level, ref->count, ret,
 297		 (unsigned long long)ref->key_for_search.objectid,
 298		 ref->key_for_search.type,
 299		 (unsigned long long)ref->key_for_search.offset);
 
 
 
 300	if (ret < 0)
 301		goto out;
 302
 303	eb = path->nodes[level];
 304	while (!eb) {
 305		if (!level) {
 306			WARN_ON(1);
 307			ret = 1;
 308			goto out;
 309		}
 310		level--;
 311		eb = path->nodes[level];
 312	}
 313
 314	ret = add_all_parents(root, path, parents, level, &ref->key_for_search,
 315				time_seq, ref->wanted_disk_byte,
 316				extent_item_pos);
 317out:
 318	btrfs_free_path(path);
 
 
 
 319	return ret;
 320}
 321
 
 
 
 
 
 
 
 
 322/*
 323 * resolve all indirect backrefs from the list
 324 */
 325static int __resolve_indirect_refs(struct btrfs_fs_info *fs_info,
 326				   int search_commit_root, u64 time_seq,
 327				   struct list_head *head,
 328				   const u64 *extent_item_pos)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 329{
 330	int err;
 331	int ret = 0;
 332	struct __prelim_ref *ref;
 333	struct __prelim_ref *ref_safe;
 334	struct __prelim_ref *new_ref;
 335	struct ulist *parents;
 336	struct ulist_node *node;
 337	struct ulist_iterator uiter;
 
 338
 339	parents = ulist_alloc(GFP_NOFS);
 340	if (!parents)
 341		return -ENOMEM;
 342
 343	/*
 344	 * _safe allows us to insert directly after the current item without
 345	 * iterating over the newly inserted items.
 346	 * we're also allowed to re-assign ref during iteration.
 
 347	 */
 348	list_for_each_entry_safe(ref, ref_safe, head, list) {
 349		if (ref->parent)	/* already direct */
 350			continue;
 351		if (ref->count == 0)
 
 
 
 
 
 
 
 
 
 
 
 352			continue;
 353		err = __resolve_indirect_ref(fs_info, search_commit_root,
 354					     time_seq, ref, parents,
 355					     extent_item_pos);
 356		if (err) {
 357			if (ret == 0)
 358				ret = err;
 
 
 
 
 
 
 
 
 
 
 
 
 359			continue;
 
 
 
 
 360		}
 361
 362		/* we put the first parent into the ref at hand */
 363		ULIST_ITER_INIT(&uiter);
 364		node = ulist_next(parents, &uiter);
 365		ref->parent = node ? node->val : 0;
 366		ref->inode_list =
 367			node ? (struct extent_inode_elem *)node->aux : 0;
 368
 369		/* additional parents require new refs being added here */
 370		while ((node = ulist_next(parents, &uiter))) {
 371			new_ref = kmalloc(sizeof(*new_ref), GFP_NOFS);
 
 
 
 372			if (!new_ref) {
 
 373				ret = -ENOMEM;
 374				break;
 375			}
 376			memcpy(new_ref, ref, sizeof(*ref));
 377			new_ref->parent = node->val;
 378			new_ref->inode_list =
 379					(struct extent_inode_elem *)node->aux;
 380			list_add(&new_ref->list, &ref->list);
 381		}
 
 
 
 
 
 
 
 382		ulist_reinit(parents);
 
 383	}
 384
 385	ulist_free(parents);
 386	return ret;
 387}
 388
 389static inline int ref_for_same_block(struct __prelim_ref *ref1,
 390				     struct __prelim_ref *ref2)
 391{
 392	if (ref1->level != ref2->level)
 393		return 0;
 394	if (ref1->root_id != ref2->root_id)
 395		return 0;
 396	if (ref1->key_for_search.type != ref2->key_for_search.type)
 397		return 0;
 398	if (ref1->key_for_search.objectid != ref2->key_for_search.objectid)
 399		return 0;
 400	if (ref1->key_for_search.offset != ref2->key_for_search.offset)
 401		return 0;
 402	if (ref1->parent != ref2->parent)
 403		return 0;
 404
 405	return 1;
 406}
 407
 408/*
 409 * read tree blocks and add keys where required.
 410 */
 411static int __add_missing_keys(struct btrfs_fs_info *fs_info,
 412			      struct list_head *head)
 413{
 414	struct list_head *pos;
 415	struct extent_buffer *eb;
 
 
 416
 417	list_for_each(pos, head) {
 418		struct __prelim_ref *ref;
 419		ref = list_entry(pos, struct __prelim_ref, list);
 420
 421		if (ref->parent)
 422			continue;
 423		if (ref->key_for_search.type)
 424			continue;
 425		BUG_ON(!ref->wanted_disk_byte);
 426		eb = read_tree_block(fs_info->tree_root, ref->wanted_disk_byte,
 427				     fs_info->tree_root->leafsize, 0);
 428		BUG_ON(!eb);
 429		btrfs_tree_read_lock(eb);
 
 
 
 
 
 
 
 
 
 430		if (btrfs_header_level(eb) == 0)
 431			btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
 432		else
 433			btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
 434		btrfs_tree_read_unlock(eb);
 
 435		free_extent_buffer(eb);
 436	}
 437	return 0;
 438}
 439
 440/*
 441 * merge two lists of backrefs and adjust counts accordingly
 442 *
 443 * mode = 1: merge identical keys, if key is set
 444 *    FIXME: if we add more keys in __add_prelim_ref, we can merge more here.
 445 *           additionally, we could even add a key range for the blocks we
 446 *           looked into to merge even more (-> replace unresolved refs by those
 447 *           having a parent).
 448 * mode = 2: merge identical parents
 449 */
 450static int __merge_refs(struct list_head *head, int mode)
 451{
 452	struct list_head *pos1;
 453
 454	list_for_each(pos1, head) {
 455		struct list_head *n2;
 456		struct list_head *pos2;
 457		struct __prelim_ref *ref1;
 458
 459		ref1 = list_entry(pos1, struct __prelim_ref, list);
 460
 461		for (pos2 = pos1->next, n2 = pos2->next; pos2 != head;
 462		     pos2 = n2, n2 = pos2->next) {
 463			struct __prelim_ref *ref2;
 464			struct __prelim_ref *xchg;
 465
 466			ref2 = list_entry(pos2, struct __prelim_ref, list);
 467
 468			if (mode == 1) {
 469				if (!ref_for_same_block(ref1, ref2))
 470					continue;
 471				if (!ref1->parent && ref2->parent) {
 472					xchg = ref1;
 473					ref1 = ref2;
 474					ref2 = xchg;
 475				}
 476				ref1->count += ref2->count;
 477			} else {
 478				if (ref1->parent != ref2->parent)
 479					continue;
 480				ref1->count += ref2->count;
 481			}
 482			list_del(&ref2->list);
 483			kfree(ref2);
 484		}
 485
 486	}
 487	return 0;
 488}
 489
 490/*
 491 * add all currently queued delayed refs from this head whose seq nr is
 492 * smaller or equal that seq to the list
 493 */
 494static int __add_delayed_refs(struct btrfs_delayed_ref_head *head, u64 seq,
 495			      struct list_head *prefs)
 
 496{
 
 497	struct btrfs_delayed_extent_op *extent_op = head->extent_op;
 498	struct rb_node *n = &head->node.rb_node;
 499	struct btrfs_key key;
 500	struct btrfs_key op_key = {0};
 501	int sgn;
 
 502	int ret = 0;
 503
 504	if (extent_op && extent_op->update_key)
 505		btrfs_disk_key_to_cpu(&op_key, &extent_op->key);
 506
 507	while ((n = rb_prev(n))) {
 508		struct btrfs_delayed_ref_node *node;
 509		node = rb_entry(n, struct btrfs_delayed_ref_node,
 510				rb_node);
 511		if (node->bytenr != head->node.bytenr)
 512			break;
 513		WARN_ON(node->is_head);
 514
 515		if (node->seq > seq)
 516			continue;
 517
 518		switch (node->action) {
 519		case BTRFS_ADD_DELAYED_EXTENT:
 520		case BTRFS_UPDATE_DELAYED_HEAD:
 521			WARN_ON(1);
 522			continue;
 523		case BTRFS_ADD_DELAYED_REF:
 524			sgn = 1;
 525			break;
 526		case BTRFS_DROP_DELAYED_REF:
 527			sgn = -1;
 528			break;
 529		default:
 530			BUG_ON(1);
 531		}
 532		switch (node->type) {
 533		case BTRFS_TREE_BLOCK_REF_KEY: {
 
 534			struct btrfs_delayed_tree_ref *ref;
 535
 536			ref = btrfs_delayed_node_to_tree_ref(node);
 537			ret = __add_prelim_ref(prefs, ref->root, &op_key,
 538					       ref->level + 1, 0, node->bytenr,
 539					       node->ref_mod * sgn);
 
 540			break;
 541		}
 542		case BTRFS_SHARED_BLOCK_REF_KEY: {
 
 543			struct btrfs_delayed_tree_ref *ref;
 544
 545			ref = btrfs_delayed_node_to_tree_ref(node);
 546			ret = __add_prelim_ref(prefs, ref->root, NULL,
 547					       ref->level + 1, ref->parent,
 548					       node->bytenr,
 549					       node->ref_mod * sgn);
 550			break;
 551		}
 552		case BTRFS_EXTENT_DATA_REF_KEY: {
 
 553			struct btrfs_delayed_data_ref *ref;
 554			ref = btrfs_delayed_node_to_data_ref(node);
 555
 556			key.objectid = ref->objectid;
 557			key.type = BTRFS_EXTENT_DATA_KEY;
 558			key.offset = ref->offset;
 559			ret = __add_prelim_ref(prefs, ref->root, &key, 0, 0,
 560					       node->bytenr,
 561					       node->ref_mod * sgn);
 
 
 
 
 
 
 
 
 
 
 562			break;
 563		}
 564		case BTRFS_SHARED_DATA_REF_KEY: {
 
 565			struct btrfs_delayed_data_ref *ref;
 566
 567			ref = btrfs_delayed_node_to_data_ref(node);
 568
 569			key.objectid = ref->objectid;
 570			key.type = BTRFS_EXTENT_DATA_KEY;
 571			key.offset = ref->offset;
 572			ret = __add_prelim_ref(prefs, ref->root, &key, 0,
 573					       ref->parent, node->bytenr,
 574					       node->ref_mod * sgn);
 575			break;
 576		}
 577		default:
 578			WARN_ON(1);
 579		}
 580		BUG_ON(ret);
 
 
 
 
 
 581	}
 582
 583	return 0;
 
 
 
 584}
 585
 586/*
 587 * add all inline backrefs for bytenr to the list
 
 
 588 */
 589static int __add_inline_refs(struct btrfs_fs_info *fs_info,
 590			     struct btrfs_path *path, u64 bytenr,
 591			     int *info_level, struct list_head *prefs)
 
 592{
 593	int ret = 0;
 594	int slot;
 595	struct extent_buffer *leaf;
 596	struct btrfs_key key;
 
 597	unsigned long ptr;
 598	unsigned long end;
 599	struct btrfs_extent_item *ei;
 600	u64 flags;
 601	u64 item_size;
 602
 603	/*
 604	 * enumerate all inline refs
 605	 */
 606	leaf = path->nodes[0];
 607	slot = path->slots[0];
 608
 609	item_size = btrfs_item_size_nr(leaf, slot);
 610	BUG_ON(item_size < sizeof(*ei));
 611
 612	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
 613	flags = btrfs_extent_flags(leaf, ei);
 
 614
 615	ptr = (unsigned long)(ei + 1);
 616	end = (unsigned long)ei + item_size;
 617
 618	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
 
 619		struct btrfs_tree_block_info *info;
 620
 621		info = (struct btrfs_tree_block_info *)ptr;
 622		*info_level = btrfs_tree_block_level(leaf, info);
 623		ptr += sizeof(struct btrfs_tree_block_info);
 624		BUG_ON(ptr > end);
 
 
 625	} else {
 626		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
 627	}
 628
 629	while (ptr < end) {
 630		struct btrfs_extent_inline_ref *iref;
 631		u64 offset;
 632		int type;
 633
 634		iref = (struct btrfs_extent_inline_ref *)ptr;
 635		type = btrfs_extent_inline_ref_type(leaf, iref);
 
 
 
 
 636		offset = btrfs_extent_inline_ref_offset(leaf, iref);
 637
 638		switch (type) {
 639		case BTRFS_SHARED_BLOCK_REF_KEY:
 640			ret = __add_prelim_ref(prefs, 0, NULL,
 641						*info_level + 1, offset,
 642						bytenr, 1);
 643			break;
 644		case BTRFS_SHARED_DATA_REF_KEY: {
 645			struct btrfs_shared_data_ref *sdref;
 646			int count;
 647
 648			sdref = (struct btrfs_shared_data_ref *)(iref + 1);
 649			count = btrfs_shared_data_ref_count(leaf, sdref);
 650			ret = __add_prelim_ref(prefs, 0, NULL, 0, offset,
 651					       bytenr, count);
 
 652			break;
 653		}
 654		case BTRFS_TREE_BLOCK_REF_KEY:
 655			ret = __add_prelim_ref(prefs, offset, NULL,
 656					       *info_level + 1, 0,
 657					       bytenr, 1);
 658			break;
 659		case BTRFS_EXTENT_DATA_REF_KEY: {
 660			struct btrfs_extent_data_ref *dref;
 661			int count;
 662			u64 root;
 663
 664			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
 665			count = btrfs_extent_data_ref_count(leaf, dref);
 666			key.objectid = btrfs_extent_data_ref_objectid(leaf,
 667								      dref);
 668			key.type = BTRFS_EXTENT_DATA_KEY;
 669			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
 
 
 
 
 
 
 670			root = btrfs_extent_data_ref_root(leaf, dref);
 671			ret = __add_prelim_ref(prefs, root, &key, 0, 0,
 672					       bytenr, count);
 
 
 673			break;
 674		}
 675		default:
 676			WARN_ON(1);
 677		}
 678		BUG_ON(ret);
 
 679		ptr += btrfs_extent_inline_ref_size(type);
 680	}
 681
 682	return 0;
 683}
 684
 685/*
 686 * add all non-inline backrefs for bytenr to the list
 
 
 687 */
 688static int __add_keyed_refs(struct btrfs_fs_info *fs_info,
 689			    struct btrfs_path *path, u64 bytenr,
 690			    int info_level, struct list_head *prefs)
 
 691{
 692	struct btrfs_root *extent_root = fs_info->extent_root;
 693	int ret;
 694	int slot;
 695	struct extent_buffer *leaf;
 696	struct btrfs_key key;
 697
 698	while (1) {
 699		ret = btrfs_next_item(extent_root, path);
 700		if (ret < 0)
 701			break;
 702		if (ret) {
 703			ret = 0;
 704			break;
 705		}
 706
 707		slot = path->slots[0];
 708		leaf = path->nodes[0];
 709		btrfs_item_key_to_cpu(leaf, &key, slot);
 710
 711		if (key.objectid != bytenr)
 712			break;
 713		if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
 714			continue;
 715		if (key.type > BTRFS_SHARED_DATA_REF_KEY)
 716			break;
 717
 718		switch (key.type) {
 719		case BTRFS_SHARED_BLOCK_REF_KEY:
 720			ret = __add_prelim_ref(prefs, 0, NULL,
 721						info_level + 1, key.offset,
 722						bytenr, 1);
 
 723			break;
 724		case BTRFS_SHARED_DATA_REF_KEY: {
 
 725			struct btrfs_shared_data_ref *sdref;
 726			int count;
 727
 728			sdref = btrfs_item_ptr(leaf, slot,
 729					      struct btrfs_shared_data_ref);
 730			count = btrfs_shared_data_ref_count(leaf, sdref);
 731			ret = __add_prelim_ref(prefs, 0, NULL, 0, key.offset,
 732						bytenr, count);
 
 733			break;
 734		}
 735		case BTRFS_TREE_BLOCK_REF_KEY:
 736			ret = __add_prelim_ref(prefs, key.offset, NULL,
 737					       info_level + 1, 0,
 738					       bytenr, 1);
 
 739			break;
 740		case BTRFS_EXTENT_DATA_REF_KEY: {
 
 741			struct btrfs_extent_data_ref *dref;
 742			int count;
 743			u64 root;
 744
 745			dref = btrfs_item_ptr(leaf, slot,
 746					      struct btrfs_extent_data_ref);
 747			count = btrfs_extent_data_ref_count(leaf, dref);
 748			key.objectid = btrfs_extent_data_ref_objectid(leaf,
 749								      dref);
 750			key.type = BTRFS_EXTENT_DATA_KEY;
 751			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
 
 
 
 
 
 
 752			root = btrfs_extent_data_ref_root(leaf, dref);
 753			ret = __add_prelim_ref(prefs, root, &key, 0, 0,
 754					       bytenr, count);
 
 755			break;
 756		}
 757		default:
 758			WARN_ON(1);
 759		}
 760		BUG_ON(ret);
 
 
 761	}
 762
 763	return ret;
 764}
 765
 766/*
 767 * this adds all existing backrefs (inline backrefs, backrefs and delayed
 768 * refs) for the given bytenr to the refs list, merges duplicates and resolves
 769 * indirect refs to their parent bytenr.
 770 * When roots are found, they're added to the roots list
 771 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 772 * FIXME some caching might speed things up
 773 */
 774static int find_parent_nodes(struct btrfs_trans_handle *trans,
 775			     struct btrfs_fs_info *fs_info, u64 bytenr,
 776			     u64 delayed_ref_seq, u64 time_seq,
 777			     struct ulist *refs, struct ulist *roots,
 778			     const u64 *extent_item_pos)
 779{
 780	struct btrfs_key key;
 781	struct btrfs_path *path;
 782	struct btrfs_delayed_ref_root *delayed_refs = NULL;
 783	struct btrfs_delayed_ref_head *head;
 784	int info_level = 0;
 785	int ret;
 786	int search_commit_root = (trans == BTRFS_BACKREF_SEARCH_COMMIT_ROOT);
 787	struct list_head prefs_delayed;
 788	struct list_head prefs;
 789	struct __prelim_ref *ref;
 790
 791	INIT_LIST_HEAD(&prefs);
 792	INIT_LIST_HEAD(&prefs_delayed);
 
 793
 794	key.objectid = bytenr;
 795	key.type = BTRFS_EXTENT_ITEM_KEY;
 796	key.offset = (u64)-1;
 
 
 
 
 797
 798	path = btrfs_alloc_path();
 799	if (!path)
 800		return -ENOMEM;
 801	path->search_commit_root = !!search_commit_root;
 
 
 
 
 
 
 802
 803	/*
 804	 * grab both a lock on the path and a lock on the delayed ref head.
 805	 * We need both to get a consistent picture of how the refs look
 806	 * at a specified point in time
 807	 */
 808again:
 809	head = NULL;
 810
 811	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
 812	if (ret < 0)
 813		goto out;
 814	BUG_ON(ret == 0);
 815
 816	if (trans != BTRFS_BACKREF_SEARCH_COMMIT_ROOT) {
 
 
 
 
 
 817		/*
 818		 * look if there are updates for this ref queued and lock the
 819		 * head
 820		 */
 821		delayed_refs = &trans->transaction->delayed_refs;
 822		spin_lock(&delayed_refs->lock);
 823		head = btrfs_find_delayed_ref_head(trans, bytenr);
 824		if (head) {
 825			if (!mutex_trylock(&head->mutex)) {
 826				atomic_inc(&head->node.refs);
 827				spin_unlock(&delayed_refs->lock);
 828
 829				btrfs_release_path(path);
 830
 831				/*
 832				 * Mutex was contended, block until it's
 833				 * released and try again
 834				 */
 835				mutex_lock(&head->mutex);
 836				mutex_unlock(&head->mutex);
 837				btrfs_put_delayed_ref(&head->node);
 838				goto again;
 839			}
 840			ret = __add_delayed_refs(head, delayed_ref_seq,
 841						 &prefs_delayed);
 
 842			mutex_unlock(&head->mutex);
 843			if (ret) {
 844				spin_unlock(&delayed_refs->lock);
 845				goto out;
 846			}
 
 847		}
 848		spin_unlock(&delayed_refs->lock);
 849	}
 850
 851	if (path->slots[0]) {
 852		struct extent_buffer *leaf;
 853		int slot;
 854
 855		path->slots[0]--;
 856		leaf = path->nodes[0];
 857		slot = path->slots[0];
 858		btrfs_item_key_to_cpu(leaf, &key, slot);
 859		if (key.objectid == bytenr &&
 860		    key.type == BTRFS_EXTENT_ITEM_KEY) {
 861			ret = __add_inline_refs(fs_info, path, bytenr,
 862						&info_level, &prefs);
 
 863			if (ret)
 864				goto out;
 865			ret = __add_keyed_refs(fs_info, path, bytenr,
 866					       info_level, &prefs);
 867			if (ret)
 868				goto out;
 869		}
 870	}
 871	btrfs_release_path(path);
 872
 873	list_splice_init(&prefs_delayed, &prefs);
 874
 875	ret = __add_missing_keys(fs_info, &prefs);
 876	if (ret)
 877		goto out;
 878
 879	ret = __merge_refs(&prefs, 1);
 880	if (ret)
 881		goto out;
 882
 883	ret = __resolve_indirect_refs(fs_info, search_commit_root, time_seq,
 884				      &prefs, extent_item_pos);
 885	if (ret)
 886		goto out;
 887
 888	ret = __merge_refs(&prefs, 2);
 889	if (ret)
 890		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 891
 892	while (!list_empty(&prefs)) {
 893		ref = list_first_entry(&prefs, struct __prelim_ref, list);
 894		list_del(&ref->list);
 895		if (ref->count < 0)
 896			WARN_ON(1);
 897		if (ref->count && ref->root_id && ref->parent == 0) {
 898			/* no parent == root of tree */
 899			ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
 900			BUG_ON(ret < 0);
 
 901		}
 902		if (ref->count && ref->parent) {
 903			struct extent_inode_elem *eie = NULL;
 904			if (extent_item_pos && !ref->inode_list) {
 905				u32 bsz;
 906				struct extent_buffer *eb;
 907				bsz = btrfs_level_size(fs_info->extent_root,
 908							info_level);
 909				eb = read_tree_block(fs_info->extent_root,
 910							   ref->parent, bsz, 0);
 911				BUG_ON(!eb);
 
 
 
 
 
 
 
 
 
 912				ret = find_extent_in_eb(eb, bytenr,
 913							*extent_item_pos, &eie);
 914				ref->inode_list = eie;
 
 915				free_extent_buffer(eb);
 
 
 
 916			}
 917			ret = ulist_add_merge(refs, ref->parent,
 918					      (unsigned long)ref->inode_list,
 919					      (unsigned long *)&eie, GFP_NOFS);
 
 
 920			if (!ret && extent_item_pos) {
 921				/*
 922				 * we've recorded that parent, so we must extend
 923				 * its inode list here
 924				 */
 925				BUG_ON(!eie);
 926				while (eie->next)
 927					eie = eie->next;
 928				eie->next = ref->inode_list;
 929			}
 930			BUG_ON(ret < 0);
 931		}
 932		kfree(ref);
 933	}
 934
 935out:
 936	btrfs_free_path(path);
 937	while (!list_empty(&prefs)) {
 938		ref = list_first_entry(&prefs, struct __prelim_ref, list);
 939		list_del(&ref->list);
 940		kfree(ref);
 941	}
 942	while (!list_empty(&prefs_delayed)) {
 943		ref = list_first_entry(&prefs_delayed, struct __prelim_ref,
 944				       list);
 945		list_del(&ref->list);
 946		kfree(ref);
 947	}
 948
 
 
 
 
 
 
 949	return ret;
 950}
 951
 952static void free_leaf_list(struct ulist *blocks)
 953{
 954	struct ulist_node *node = NULL;
 955	struct extent_inode_elem *eie;
 956	struct extent_inode_elem *eie_next;
 957	struct ulist_iterator uiter;
 958
 959	ULIST_ITER_INIT(&uiter);
 960	while ((node = ulist_next(blocks, &uiter))) {
 961		if (!node->aux)
 962			continue;
 963		eie = (struct extent_inode_elem *)node->aux;
 964		for (; eie; eie = eie_next) {
 965			eie_next = eie->next;
 966			kfree(eie);
 967		}
 968		node->aux = 0;
 969	}
 970
 971	ulist_free(blocks);
 972}
 973
 974/*
 975 * Finds all leafs with a reference to the specified combination of bytenr and
 976 * offset. key_list_head will point to a list of corresponding keys (caller must
 977 * free each list element). The leafs will be stored in the leafs ulist, which
 978 * must be freed with ulist_free.
 979 *
 980 * returns 0 on success, <0 on error
 981 */
 982static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
 983				struct btrfs_fs_info *fs_info, u64 bytenr,
 984				u64 delayed_ref_seq, u64 time_seq,
 985				struct ulist **leafs,
 986				const u64 *extent_item_pos)
 987{
 988	struct ulist *tmp;
 989	int ret;
 990
 991	tmp = ulist_alloc(GFP_NOFS);
 992	if (!tmp)
 993		return -ENOMEM;
 994	*leafs = ulist_alloc(GFP_NOFS);
 995	if (!*leafs) {
 996		ulist_free(tmp);
 997		return -ENOMEM;
 998	}
 999
1000	ret = find_parent_nodes(trans, fs_info, bytenr, delayed_ref_seq,
1001				time_seq, *leafs, tmp, extent_item_pos);
1002	ulist_free(tmp);
1003
 
 
1004	if (ret < 0 && ret != -ENOENT) {
1005		free_leaf_list(*leafs);
1006		return ret;
1007	}
1008
1009	return 0;
1010}
1011
1012/*
1013 * walk all backrefs for a given extent to find all roots that reference this
1014 * extent. Walking a backref means finding all extents that reference this
1015 * extent and in turn walk the backrefs of those, too. Naturally this is a
1016 * recursive process, but here it is implemented in an iterative fashion: We
1017 * find all referencing extents for the extent in question and put them on a
1018 * list. In turn, we find all referencing extents for those, further appending
1019 * to the list. The way we iterate the list allows adding more elements after
1020 * the current while iterating. The process stops when we reach the end of the
1021 * list. Found roots are added to the roots list.
1022 *
1023 * returns 0 on success, < 0 on error.
1024 */
1025int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1026				struct btrfs_fs_info *fs_info, u64 bytenr,
1027				u64 delayed_ref_seq, u64 time_seq,
1028				struct ulist **roots)
1029{
1030	struct ulist *tmp;
1031	struct ulist_node *node = NULL;
1032	struct ulist_iterator uiter;
1033	int ret;
1034
1035	tmp = ulist_alloc(GFP_NOFS);
1036	if (!tmp)
1037		return -ENOMEM;
1038	*roots = ulist_alloc(GFP_NOFS);
1039	if (!*roots) {
1040		ulist_free(tmp);
1041		return -ENOMEM;
1042	}
1043
1044	ULIST_ITER_INIT(&uiter);
1045	while (1) {
1046		ret = find_parent_nodes(trans, fs_info, bytenr, delayed_ref_seq,
1047					time_seq, tmp, *roots, NULL);
1048		if (ret < 0 && ret != -ENOENT) {
1049			ulist_free(tmp);
1050			ulist_free(*roots);
 
1051			return ret;
1052		}
1053		node = ulist_next(tmp, &uiter);
1054		if (!node)
1055			break;
1056		bytenr = node->val;
 
1057	}
1058
1059	ulist_free(tmp);
1060	return 0;
1061}
1062
1063
1064static int __inode_info(u64 inum, u64 ioff, u8 key_type,
1065			struct btrfs_root *fs_root, struct btrfs_path *path,
1066			struct btrfs_key *found_key)
1067{
1068	int ret;
1069	struct btrfs_key key;
1070	struct extent_buffer *eb;
1071
1072	key.type = key_type;
1073	key.objectid = inum;
1074	key.offset = ioff;
1075
1076	ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1077	if (ret < 0)
1078		return ret;
 
 
 
 
 
1079
1080	eb = path->nodes[0];
1081	if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
1082		ret = btrfs_next_leaf(fs_root, path);
1083		if (ret)
1084			return ret;
1085		eb = path->nodes[0];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1086	}
1087
1088	btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
1089	if (found_key->type != key.type || found_key->objectid != key.objectid)
1090		return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1091
1092	return 0;
 
 
 
 
 
 
 
 
 
1093}
1094
1095/*
1096 * this makes the path point to (inum INODE_ITEM ioff)
1097 */
1098int inode_item_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
1099			struct btrfs_path *path)
1100{
 
1101	struct btrfs_key key;
1102	return __inode_info(inum, ioff, BTRFS_INODE_ITEM_KEY, fs_root, path,
1103				&key);
1104}
 
1105
1106static int inode_ref_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
1107				struct btrfs_path *path,
1108				struct btrfs_key *found_key)
1109{
1110	return __inode_info(inum, ioff, BTRFS_INODE_REF_KEY, fs_root, path,
1111				found_key);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1112}
1113
1114/*
1115 * this iterates to turn a btrfs_inode_ref into a full filesystem path. elements
1116 * of the path are separated by '/' and the path is guaranteed to be
1117 * 0-terminated. the path is only given within the current file system.
1118 * Therefore, it never starts with a '/'. the caller is responsible to provide
1119 * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
1120 * the start point of the resulting string is returned. this pointer is within
1121 * dest, normally.
1122 * in case the path buffer would overflow, the pointer is decremented further
1123 * as if output was written to the buffer, though no more output is actually
1124 * generated. that way, the caller can determine how much space would be
1125 * required for the path to fit into the buffer. in that case, the returned
1126 * value will be smaller than dest. callers must check this!
1127 */
1128static char *iref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
1129				struct btrfs_inode_ref *iref,
1130				struct extent_buffer *eb_in, u64 parent,
1131				char *dest, u32 size)
1132{
1133	u32 len;
1134	int slot;
1135	u64 next_inum;
1136	int ret;
1137	s64 bytes_left = size - 1;
1138	struct extent_buffer *eb = eb_in;
1139	struct btrfs_key found_key;
1140	int leave_spinning = path->leave_spinning;
1141
1142	if (bytes_left >= 0)
1143		dest[bytes_left] = '\0';
1144
1145	path->leave_spinning = 1;
1146	while (1) {
1147		len = btrfs_inode_ref_name_len(eb, iref);
1148		bytes_left -= len;
1149		if (bytes_left >= 0)
1150			read_extent_buffer(eb, dest + bytes_left,
1151						(unsigned long)(iref + 1), len);
1152		if (eb != eb_in) {
1153			btrfs_tree_read_unlock_blocking(eb);
 
1154			free_extent_buffer(eb);
1155		}
1156		ret = inode_ref_info(parent, 0, fs_root, path, &found_key);
 
1157		if (ret > 0)
1158			ret = -ENOENT;
1159		if (ret)
1160			break;
 
1161		next_inum = found_key.offset;
1162
1163		/* regular exit ahead */
1164		if (parent == next_inum)
1165			break;
1166
1167		slot = path->slots[0];
1168		eb = path->nodes[0];
1169		/* make sure we can use eb after releasing the path */
1170		if (eb != eb_in) {
1171			atomic_inc(&eb->refs);
1172			btrfs_tree_read_lock(eb);
1173			btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1174		}
1175		btrfs_release_path(path);
1176
1177		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
 
 
 
 
1178		parent = next_inum;
1179		--bytes_left;
1180		if (bytes_left >= 0)
1181			dest[bytes_left] = '/';
1182	}
1183
1184	btrfs_release_path(path);
1185	path->leave_spinning = leave_spinning;
1186
1187	if (ret)
1188		return ERR_PTR(ret);
1189
1190	return dest + bytes_left;
1191}
1192
1193/*
1194 * this makes the path point to (logical EXTENT_ITEM *)
1195 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
1196 * tree blocks and <0 on error.
1197 */
1198int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
1199			struct btrfs_path *path, struct btrfs_key *found_key)
 
1200{
1201	int ret;
1202	u64 flags;
 
1203	u32 item_size;
1204	struct extent_buffer *eb;
1205	struct btrfs_extent_item *ei;
1206	struct btrfs_key key;
1207
1208	key.type = BTRFS_EXTENT_ITEM_KEY;
 
 
 
1209	key.objectid = logical;
1210	key.offset = (u64)-1;
1211
1212	ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
1213	if (ret < 0)
1214		return ret;
1215	ret = btrfs_previous_item(fs_info->extent_root, path,
1216					0, BTRFS_EXTENT_ITEM_KEY);
1217	if (ret < 0)
1218		return ret;
1219
 
 
 
 
 
 
1220	btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
1221	if (found_key->type != BTRFS_EXTENT_ITEM_KEY ||
1222	    found_key->objectid > logical ||
1223	    found_key->objectid + found_key->offset <= logical) {
1224		pr_debug("logical %llu is not within any extent\n",
1225			 (unsigned long long)logical);
 
 
 
 
1226		return -ENOENT;
1227	}
1228
1229	eb = path->nodes[0];
1230	item_size = btrfs_item_size_nr(eb, path->slots[0]);
1231	BUG_ON(item_size < sizeof(*ei));
1232
1233	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
1234	flags = btrfs_extent_flags(eb, ei);
1235
1236	pr_debug("logical %llu is at position %llu within the extent (%llu "
1237		 "EXTENT_ITEM %llu) flags %#llx size %u\n",
1238		 (unsigned long long)logical,
1239		 (unsigned long long)(logical - found_key->objectid),
1240		 (unsigned long long)found_key->objectid,
1241		 (unsigned long long)found_key->offset,
1242		 (unsigned long long)flags, item_size);
1243	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1244		return BTRFS_EXTENT_FLAG_TREE_BLOCK;
1245	if (flags & BTRFS_EXTENT_FLAG_DATA)
1246		return BTRFS_EXTENT_FLAG_DATA;
 
 
 
 
1247
1248	return -EIO;
1249}
1250
1251/*
1252 * helper function to iterate extent inline refs. ptr must point to a 0 value
1253 * for the first call and may be modified. it is used to track state.
1254 * if more refs exist, 0 is returned and the next call to
1255 * __get_extent_inline_ref must pass the modified ptr parameter to get the
1256 * next ref. after the last ref was processed, 1 is returned.
1257 * returns <0 on error
1258 */
1259static int __get_extent_inline_ref(unsigned long *ptr, struct extent_buffer *eb,
1260				struct btrfs_extent_item *ei, u32 item_size,
1261				struct btrfs_extent_inline_ref **out_eiref,
1262				int *out_type)
 
 
 
1263{
1264	unsigned long end;
1265	u64 flags;
1266	struct btrfs_tree_block_info *info;
1267
1268	if (!*ptr) {
1269		/* first call */
1270		flags = btrfs_extent_flags(eb, ei);
1271		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1272			info = (struct btrfs_tree_block_info *)(ei + 1);
1273			*out_eiref =
1274				(struct btrfs_extent_inline_ref *)(info + 1);
 
 
 
 
 
 
 
1275		} else {
1276			*out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
1277		}
1278		*ptr = (unsigned long)*out_eiref;
1279		if ((void *)*ptr >= (void *)ei + item_size)
1280			return -ENOENT;
1281	}
1282
1283	end = (unsigned long)ei + item_size;
1284	*out_eiref = (struct btrfs_extent_inline_ref *)*ptr;
1285	*out_type = btrfs_extent_inline_ref_type(eb, *out_eiref);
 
 
 
1286
1287	*ptr += btrfs_extent_inline_ref_size(*out_type);
1288	WARN_ON(*ptr > end);
1289	if (*ptr == end)
1290		return 1; /* last */
1291
1292	return 0;
1293}
1294
1295/*
1296 * reads the tree block backref for an extent. tree level and root are returned
1297 * through out_level and out_root. ptr must point to a 0 value for the first
1298 * call and may be modified (see __get_extent_inline_ref comment).
1299 * returns 0 if data was provided, 1 if there was no more data to provide or
1300 * <0 on error.
1301 */
1302int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
1303				struct btrfs_extent_item *ei, u32 item_size,
1304				u64 *out_root, u8 *out_level)
1305{
1306	int ret;
1307	int type;
1308	struct btrfs_tree_block_info *info;
1309	struct btrfs_extent_inline_ref *eiref;
1310
1311	if (*ptr == (unsigned long)-1)
1312		return 1;
1313
1314	while (1) {
1315		ret = __get_extent_inline_ref(ptr, eb, ei, item_size,
1316						&eiref, &type);
1317		if (ret < 0)
1318			return ret;
1319
1320		if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1321		    type == BTRFS_SHARED_BLOCK_REF_KEY)
1322			break;
1323
1324		if (ret == 1)
1325			return 1;
1326	}
1327
1328	/* we can treat both ref types equally here */
1329	info = (struct btrfs_tree_block_info *)(ei + 1);
1330	*out_root = btrfs_extent_inline_ref_offset(eb, eiref);
1331	*out_level = btrfs_tree_block_level(eb, info);
 
 
 
 
 
 
 
 
 
1332
1333	if (ret == 1)
1334		*ptr = (unsigned long)-1;
1335
1336	return 0;
1337}
1338
1339static int iterate_leaf_refs(struct extent_inode_elem *inode_list,
1340				u64 root, u64 extent_item_objectid,
1341				iterate_extent_inodes_t *iterate, void *ctx)
 
1342{
1343	struct extent_inode_elem *eie;
1344	int ret = 0;
1345
1346	for (eie = inode_list; eie; eie = eie->next) {
1347		pr_debug("ref for %llu resolved, key (%llu EXTEND_DATA %llu), "
1348			 "root %llu\n", extent_item_objectid,
1349			 eie->inum, eie->offset, root);
 
1350		ret = iterate(eie->inum, eie->offset, root, ctx);
1351		if (ret) {
1352			pr_debug("stopping iteration for %llu due to ret=%d\n",
1353				 extent_item_objectid, ret);
 
1354			break;
1355		}
1356	}
1357
1358	return ret;
1359}
1360
1361/*
1362 * calls iterate() for every inode that references the extent identified by
1363 * the given parameters.
1364 * when the iterator function returns a non-zero value, iteration stops.
1365 */
1366int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
1367				u64 extent_item_objectid, u64 extent_item_pos,
1368				int search_commit_root,
1369				iterate_extent_inodes_t *iterate, void *ctx)
 
1370{
1371	int ret;
1372	struct list_head data_refs = LIST_HEAD_INIT(data_refs);
1373	struct list_head shared_refs = LIST_HEAD_INIT(shared_refs);
1374	struct btrfs_trans_handle *trans;
1375	struct ulist *refs = NULL;
1376	struct ulist *roots = NULL;
1377	struct ulist_node *ref_node = NULL;
1378	struct ulist_node *root_node = NULL;
1379	struct seq_list seq_elem = {};
1380	struct seq_list tree_mod_seq_elem = {};
1381	struct ulist_iterator ref_uiter;
1382	struct ulist_iterator root_uiter;
1383	struct btrfs_delayed_ref_root *delayed_refs = NULL;
1384
1385	pr_debug("resolving all inodes for extent %llu\n",
1386			extent_item_objectid);
1387
1388	if (search_commit_root) {
1389		trans = BTRFS_BACKREF_SEARCH_COMMIT_ROOT;
1390	} else {
1391		trans = btrfs_join_transaction(fs_info->extent_root);
1392		if (IS_ERR(trans))
1393			return PTR_ERR(trans);
1394
1395		delayed_refs = &trans->transaction->delayed_refs;
1396		spin_lock(&delayed_refs->lock);
1397		btrfs_get_delayed_seq(delayed_refs, &seq_elem);
1398		spin_unlock(&delayed_refs->lock);
1399		btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1400	}
1401
 
 
 
 
 
1402	ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
1403				   seq_elem.seq, tree_mod_seq_elem.seq, &refs,
1404				   &extent_item_pos);
1405	if (ret)
1406		goto out;
1407
1408	ULIST_ITER_INIT(&ref_uiter);
1409	while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
1410		ret = btrfs_find_all_roots(trans, fs_info, ref_node->val,
1411						seq_elem.seq,
1412						tree_mod_seq_elem.seq, &roots);
1413		if (ret)
1414			break;
1415		ULIST_ITER_INIT(&root_uiter);
1416		while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
1417			pr_debug("root %llu references leaf %llu, data list "
1418				 "%#lx\n", root_node->val, ref_node->val,
1419				 ref_node->aux);
1420			ret = iterate_leaf_refs(
1421				(struct extent_inode_elem *)ref_node->aux,
1422				root_node->val, extent_item_objectid,
1423				iterate, ctx);
 
 
 
1424		}
1425		ulist_free(roots);
1426		roots = NULL;
1427	}
1428
1429	free_leaf_list(refs);
1430	ulist_free(roots);
1431out:
1432	if (!search_commit_root) {
1433		btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1434		btrfs_put_delayed_seq(delayed_refs, &seq_elem);
1435		btrfs_end_transaction(trans, fs_info->extent_root);
 
1436	}
1437
1438	return ret;
1439}
1440
1441int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
1442				struct btrfs_path *path,
1443				iterate_extent_inodes_t *iterate, void *ctx)
 
1444{
1445	int ret;
1446	u64 extent_item_pos;
 
1447	struct btrfs_key found_key;
1448	int search_commit_root = path->search_commit_root;
1449
1450	ret = extent_from_logical(fs_info, logical, path,
1451					&found_key);
1452	btrfs_release_path(path);
1453	if (ret & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1454		ret = -EINVAL;
1455	if (ret < 0)
1456		return ret;
 
 
1457
1458	extent_item_pos = logical - found_key.objectid;
1459	ret = iterate_extent_inodes(fs_info, found_key.objectid,
1460					extent_item_pos, search_commit_root,
1461					iterate, ctx);
1462
1463	return ret;
1464}
1465
1466static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
1467				struct btrfs_path *path,
1468				iterate_irefs_t *iterate, void *ctx)
 
 
 
1469{
1470	int ret = 0;
1471	int slot;
1472	u32 cur;
1473	u32 len;
1474	u32 name_len;
1475	u64 parent = 0;
1476	int found = 0;
1477	struct extent_buffer *eb;
1478	struct btrfs_item *item;
1479	struct btrfs_inode_ref *iref;
1480	struct btrfs_key found_key;
1481
1482	while (!ret) {
1483		path->leave_spinning = 1;
1484		ret = inode_ref_info(inum, parent ? parent+1 : 0, fs_root, path,
1485					&found_key);
 
1486		if (ret < 0)
1487			break;
1488		if (ret) {
1489			ret = found ? 0 : -ENOENT;
1490			break;
1491		}
1492		++found;
1493
1494		parent = found_key.offset;
1495		slot = path->slots[0];
1496		eb = path->nodes[0];
1497		/* make sure we can use eb after releasing the path */
1498		atomic_inc(&eb->refs);
1499		btrfs_tree_read_lock(eb);
1500		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1501		btrfs_release_path(path);
1502
1503		item = btrfs_item_nr(eb, slot);
1504		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1505
1506		for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
1507			name_len = btrfs_inode_ref_name_len(eb, iref);
1508			/* path must be released before calling iterate()! */
1509			pr_debug("following ref at offset %u for inode %llu in "
1510				 "tree %llu\n", cur,
1511				 (unsigned long long)found_key.objectid,
1512				 (unsigned long long)fs_root->objectid);
1513			ret = iterate(parent, iref, eb, ctx);
 
1514			if (ret)
1515				break;
1516			len = sizeof(*iref) + name_len;
1517			iref = (struct btrfs_inode_ref *)((char *)iref + len);
1518		}
1519		btrfs_tree_read_unlock_blocking(eb);
1520		free_extent_buffer(eb);
1521	}
1522
1523	btrfs_release_path(path);
1524
1525	return ret;
1526}
1527
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1528/*
1529 * returns 0 if the path could be dumped (probably truncated)
1530 * returns <0 in case of an error
1531 */
1532static int inode_to_path(u64 inum, struct btrfs_inode_ref *iref,
1533				struct extent_buffer *eb, void *ctx)
1534{
1535	struct inode_fs_paths *ipath = ctx;
1536	char *fspath;
1537	char *fspath_min;
1538	int i = ipath->fspath->elem_cnt;
1539	const int s_ptr = sizeof(char *);
1540	u32 bytes_left;
1541
1542	bytes_left = ipath->fspath->bytes_left > s_ptr ?
1543					ipath->fspath->bytes_left - s_ptr : 0;
1544
1545	fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
1546	fspath = iref_to_path(ipath->fs_root, ipath->btrfs_path, iref, eb,
1547				inum, fspath_min, bytes_left);
1548	if (IS_ERR(fspath))
1549		return PTR_ERR(fspath);
1550
1551	if (fspath > fspath_min) {
1552		pr_debug("path resolved: %s\n", fspath);
1553		ipath->fspath->val[i] = (u64)(unsigned long)fspath;
1554		++ipath->fspath->elem_cnt;
1555		ipath->fspath->bytes_left = fspath - fspath_min;
1556	} else {
1557		pr_debug("missed path, not enough space. missing bytes: %lu, "
1558			 "constructed so far: %s\n",
1559			 (unsigned long)(fspath_min - fspath), fspath_min);
1560		++ipath->fspath->elem_missed;
1561		ipath->fspath->bytes_missing += fspath_min - fspath;
1562		ipath->fspath->bytes_left = 0;
1563	}
1564
1565	return 0;
1566}
1567
1568/*
1569 * this dumps all file system paths to the inode into the ipath struct, provided
1570 * is has been created large enough. each path is zero-terminated and accessed
1571 * from ipath->fspath->val[i].
1572 * when it returns, there are ipath->fspath->elem_cnt number of paths available
1573 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
1574 * number of missed paths in recored in ipath->fspath->elem_missed, otherwise,
1575 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
1576 * have been needed to return all paths.
1577 */
1578int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
1579{
1580	return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
1581				inode_to_path, ipath);
1582}
1583
1584struct btrfs_data_container *init_data_container(u32 total_bytes)
1585{
1586	struct btrfs_data_container *data;
1587	size_t alloc_bytes;
1588
1589	alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
1590	data = kmalloc(alloc_bytes, GFP_NOFS);
1591	if (!data)
1592		return ERR_PTR(-ENOMEM);
1593
1594	if (total_bytes >= sizeof(*data)) {
1595		data->bytes_left = total_bytes - sizeof(*data);
1596		data->bytes_missing = 0;
1597	} else {
1598		data->bytes_missing = sizeof(*data) - total_bytes;
1599		data->bytes_left = 0;
1600	}
1601
1602	data->elem_cnt = 0;
1603	data->elem_missed = 0;
1604
1605	return data;
1606}
1607
1608/*
1609 * allocates space to return multiple file system paths for an inode.
1610 * total_bytes to allocate are passed, note that space usable for actual path
1611 * information will be total_bytes - sizeof(struct inode_fs_paths).
1612 * the returned pointer must be freed with free_ipath() in the end.
1613 */
1614struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
1615					struct btrfs_path *path)
1616{
1617	struct inode_fs_paths *ifp;
1618	struct btrfs_data_container *fspath;
1619
1620	fspath = init_data_container(total_bytes);
1621	if (IS_ERR(fspath))
1622		return (void *)fspath;
1623
1624	ifp = kmalloc(sizeof(*ifp), GFP_NOFS);
1625	if (!ifp) {
1626		kfree(fspath);
1627		return ERR_PTR(-ENOMEM);
1628	}
1629
1630	ifp->btrfs_path = path;
1631	ifp->fspath = fspath;
1632	ifp->fs_root = fs_root;
1633
1634	return ifp;
1635}
1636
1637void free_ipath(struct inode_fs_paths *ipath)
1638{
1639	if (!ipath)
1640		return;
1641	kfree(ipath->fspath);
1642	kfree(ipath);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1643}
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2011 STRATO.  All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   4 */
   5
   6#include <linux/mm.h>
   7#include <linux/rbtree.h>
   8#include <trace/events/btrfs.h>
   9#include "ctree.h"
  10#include "disk-io.h"
  11#include "backref.h"
  12#include "ulist.h"
  13#include "transaction.h"
  14#include "delayed-ref.h"
  15#include "locking.h"
  16#include "misc.h"
  17#include "tree-mod-log.h"
  18
  19/* Just an arbitrary number so we can be sure this happened */
  20#define BACKREF_FOUND_SHARED 6
  21
  22struct extent_inode_elem {
  23	u64 inum;
  24	u64 offset;
  25	struct extent_inode_elem *next;
  26};
  27
  28static int check_extent_in_eb(const struct btrfs_key *key,
  29			      const struct extent_buffer *eb,
  30			      const struct btrfs_file_extent_item *fi,
  31			      u64 extent_item_pos,
  32			      struct extent_inode_elem **eie,
  33			      bool ignore_offset)
  34{
  35	u64 offset = 0;
 
  36	struct extent_inode_elem *e;
  37
  38	if (!ignore_offset &&
  39	    !btrfs_file_extent_compression(eb, fi) &&
  40	    !btrfs_file_extent_encryption(eb, fi) &&
  41	    !btrfs_file_extent_other_encoding(eb, fi)) {
  42		u64 data_offset;
  43		u64 data_len;
  44
  45		data_offset = btrfs_file_extent_offset(eb, fi);
  46		data_len = btrfs_file_extent_num_bytes(eb, fi);
  47
  48		if (extent_item_pos < data_offset ||
  49		    extent_item_pos >= data_offset + data_len)
  50			return 1;
  51		offset = extent_item_pos - data_offset;
  52	}
  53
  54	e = kmalloc(sizeof(*e), GFP_NOFS);
  55	if (!e)
  56		return -ENOMEM;
  57
  58	e->next = *eie;
  59	e->inum = key->objectid;
  60	e->offset = key->offset + offset;
  61	*eie = e;
  62
  63	return 0;
  64}
  65
  66static void free_inode_elem_list(struct extent_inode_elem *eie)
  67{
  68	struct extent_inode_elem *eie_next;
  69
  70	for (; eie; eie = eie_next) {
  71		eie_next = eie->next;
  72		kfree(eie);
  73	}
  74}
  75
  76static int find_extent_in_eb(const struct extent_buffer *eb,
  77			     u64 wanted_disk_byte, u64 extent_item_pos,
  78			     struct extent_inode_elem **eie,
  79			     bool ignore_offset)
  80{
  81	u64 disk_byte;
  82	struct btrfs_key key;
  83	struct btrfs_file_extent_item *fi;
  84	int slot;
  85	int nritems;
  86	int extent_type;
  87	int ret;
  88
  89	/*
  90	 * from the shared data ref, we only have the leaf but we need
  91	 * the key. thus, we must look into all items and see that we
  92	 * find one (some) with a reference to our extent item.
  93	 */
  94	nritems = btrfs_header_nritems(eb);
  95	for (slot = 0; slot < nritems; ++slot) {
  96		btrfs_item_key_to_cpu(eb, &key, slot);
  97		if (key.type != BTRFS_EXTENT_DATA_KEY)
  98			continue;
  99		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
 100		extent_type = btrfs_file_extent_type(eb, fi);
 101		if (extent_type == BTRFS_FILE_EXTENT_INLINE)
 102			continue;
 103		/* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
 104		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
 105		if (disk_byte != wanted_disk_byte)
 106			continue;
 107
 108		ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie, ignore_offset);
 109		if (ret < 0)
 110			return ret;
 111	}
 112
 113	return 0;
 114}
 115
 116struct preftree {
 117	struct rb_root_cached root;
 118	unsigned int count;
 119};
 120
 121#define PREFTREE_INIT	{ .root = RB_ROOT_CACHED, .count = 0 }
 122
 123struct preftrees {
 124	struct preftree direct;    /* BTRFS_SHARED_[DATA|BLOCK]_REF_KEY */
 125	struct preftree indirect;  /* BTRFS_[TREE_BLOCK|EXTENT_DATA]_REF_KEY */
 126	struct preftree indirect_missing_keys;
 127};
 128
 129/*
 130 * Checks for a shared extent during backref search.
 131 *
 132 * The share_count tracks prelim_refs (direct and indirect) having a
 133 * ref->count >0:
 134 *  - incremented when a ref->count transitions to >0
 135 *  - decremented when a ref->count transitions to <1
 136 */
 137struct share_check {
 138	u64 root_objectid;
 139	u64 inum;
 140	int share_count;
 
 
 
 
 
 141};
 142
 143static inline int extent_is_shared(struct share_check *sc)
 144{
 145	return (sc && sc->share_count > 1) ? BACKREF_FOUND_SHARED : 0;
 146}
 147
 148static struct kmem_cache *btrfs_prelim_ref_cache;
 149
 150int __init btrfs_prelim_ref_init(void)
 151{
 152	btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
 153					sizeof(struct prelim_ref),
 154					0,
 155					SLAB_MEM_SPREAD,
 156					NULL);
 157	if (!btrfs_prelim_ref_cache)
 158		return -ENOMEM;
 159	return 0;
 160}
 161
 162void __cold btrfs_prelim_ref_exit(void)
 163{
 164	kmem_cache_destroy(btrfs_prelim_ref_cache);
 165}
 166
 167static void free_pref(struct prelim_ref *ref)
 168{
 169	kmem_cache_free(btrfs_prelim_ref_cache, ref);
 170}
 171
 172/*
 173 * Return 0 when both refs are for the same block (and can be merged).
 174 * A -1 return indicates ref1 is a 'lower' block than ref2, while 1
 175 * indicates a 'higher' block.
 176 */
 177static int prelim_ref_compare(struct prelim_ref *ref1,
 178			      struct prelim_ref *ref2)
 179{
 180	if (ref1->level < ref2->level)
 181		return -1;
 182	if (ref1->level > ref2->level)
 183		return 1;
 184	if (ref1->root_id < ref2->root_id)
 185		return -1;
 186	if (ref1->root_id > ref2->root_id)
 187		return 1;
 188	if (ref1->key_for_search.type < ref2->key_for_search.type)
 189		return -1;
 190	if (ref1->key_for_search.type > ref2->key_for_search.type)
 191		return 1;
 192	if (ref1->key_for_search.objectid < ref2->key_for_search.objectid)
 193		return -1;
 194	if (ref1->key_for_search.objectid > ref2->key_for_search.objectid)
 195		return 1;
 196	if (ref1->key_for_search.offset < ref2->key_for_search.offset)
 197		return -1;
 198	if (ref1->key_for_search.offset > ref2->key_for_search.offset)
 199		return 1;
 200	if (ref1->parent < ref2->parent)
 201		return -1;
 202	if (ref1->parent > ref2->parent)
 203		return 1;
 204
 205	return 0;
 206}
 207
 208static void update_share_count(struct share_check *sc, int oldcount,
 209			       int newcount)
 210{
 211	if ((!sc) || (oldcount == 0 && newcount < 1))
 212		return;
 213
 214	if (oldcount > 0 && newcount < 1)
 215		sc->share_count--;
 216	else if (oldcount < 1 && newcount > 0)
 217		sc->share_count++;
 218}
 219
 220/*
 221 * Add @newref to the @root rbtree, merging identical refs.
 222 *
 223 * Callers should assume that newref has been freed after calling.
 224 */
 225static void prelim_ref_insert(const struct btrfs_fs_info *fs_info,
 226			      struct preftree *preftree,
 227			      struct prelim_ref *newref,
 228			      struct share_check *sc)
 229{
 230	struct rb_root_cached *root;
 231	struct rb_node **p;
 232	struct rb_node *parent = NULL;
 233	struct prelim_ref *ref;
 234	int result;
 235	bool leftmost = true;
 236
 237	root = &preftree->root;
 238	p = &root->rb_root.rb_node;
 239
 240	while (*p) {
 241		parent = *p;
 242		ref = rb_entry(parent, struct prelim_ref, rbnode);
 243		result = prelim_ref_compare(ref, newref);
 244		if (result < 0) {
 245			p = &(*p)->rb_left;
 246		} else if (result > 0) {
 247			p = &(*p)->rb_right;
 248			leftmost = false;
 249		} else {
 250			/* Identical refs, merge them and free @newref */
 251			struct extent_inode_elem *eie = ref->inode_list;
 252
 253			while (eie && eie->next)
 254				eie = eie->next;
 255
 256			if (!eie)
 257				ref->inode_list = newref->inode_list;
 258			else
 259				eie->next = newref->inode_list;
 260			trace_btrfs_prelim_ref_merge(fs_info, ref, newref,
 261						     preftree->count);
 262			/*
 263			 * A delayed ref can have newref->count < 0.
 264			 * The ref->count is updated to follow any
 265			 * BTRFS_[ADD|DROP]_DELAYED_REF actions.
 266			 */
 267			update_share_count(sc, ref->count,
 268					   ref->count + newref->count);
 269			ref->count += newref->count;
 270			free_pref(newref);
 271			return;
 272		}
 273	}
 274
 275	update_share_count(sc, 0, newref->count);
 276	preftree->count++;
 277	trace_btrfs_prelim_ref_insert(fs_info, newref, NULL, preftree->count);
 278	rb_link_node(&newref->rbnode, parent, p);
 279	rb_insert_color_cached(&newref->rbnode, root, leftmost);
 280}
 281
 282/*
 283 * Release the entire tree.  We don't care about internal consistency so
 284 * just free everything and then reset the tree root.
 285 */
 286static void prelim_release(struct preftree *preftree)
 287{
 288	struct prelim_ref *ref, *next_ref;
 289
 290	rbtree_postorder_for_each_entry_safe(ref, next_ref,
 291					     &preftree->root.rb_root, rbnode)
 292		free_pref(ref);
 293
 294	preftree->root = RB_ROOT_CACHED;
 295	preftree->count = 0;
 296}
 297
 298/*
 299 * the rules for all callers of this function are:
 300 * - obtaining the parent is the goal
 301 * - if you add a key, you must know that it is a correct key
 302 * - if you cannot add the parent or a correct key, then we will look into the
 303 *   block later to set a correct key
 304 *
 305 * delayed refs
 306 * ============
 307 *        backref type | shared | indirect | shared | indirect
 308 * information         |   tree |     tree |   data |     data
 309 * --------------------+--------+----------+--------+----------
 310 *      parent logical |    y   |     -    |    -   |     -
 311 *      key to resolve |    -   |     y    |    y   |     y
 312 *  tree block logical |    -   |     -    |    -   |     -
 313 *  root for resolving |    y   |     y    |    y   |     y
 314 *
 315 * - column 1:       we've the parent -> done
 316 * - column 2, 3, 4: we use the key to find the parent
 317 *
 318 * on disk refs (inline or keyed)
 319 * ==============================
 320 *        backref type | shared | indirect | shared | indirect
 321 * information         |   tree |     tree |   data |     data
 322 * --------------------+--------+----------+--------+----------
 323 *      parent logical |    y   |     -    |    y   |     -
 324 *      key to resolve |    -   |     -    |    -   |     y
 325 *  tree block logical |    y   |     y    |    y   |     y
 326 *  root for resolving |    -   |     y    |    y   |     y
 327 *
 328 * - column 1, 3: we've the parent -> done
 329 * - column 2:    we take the first key from the block to find the parent
 330 *                (see add_missing_keys)
 331 * - column 4:    we use the key to find the parent
 332 *
 333 * additional information that's available but not required to find the parent
 334 * block might help in merging entries to gain some speed.
 335 */
 336static int add_prelim_ref(const struct btrfs_fs_info *fs_info,
 337			  struct preftree *preftree, u64 root_id,
 338			  const struct btrfs_key *key, int level, u64 parent,
 339			  u64 wanted_disk_byte, int count,
 340			  struct share_check *sc, gfp_t gfp_mask)
 341{
 342	struct prelim_ref *ref;
 343
 344	if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
 345		return 0;
 346
 347	ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
 
 348	if (!ref)
 349		return -ENOMEM;
 350
 351	ref->root_id = root_id;
 352	if (key)
 353		ref->key_for_search = *key;
 354	else
 355		memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
 356
 357	ref->inode_list = NULL;
 358	ref->level = level;
 359	ref->count = count;
 360	ref->parent = parent;
 361	ref->wanted_disk_byte = wanted_disk_byte;
 362	prelim_ref_insert(fs_info, preftree, ref, sc);
 363	return extent_is_shared(sc);
 364}
 365
 366/* direct refs use root == 0, key == NULL */
 367static int add_direct_ref(const struct btrfs_fs_info *fs_info,
 368			  struct preftrees *preftrees, int level, u64 parent,
 369			  u64 wanted_disk_byte, int count,
 370			  struct share_check *sc, gfp_t gfp_mask)
 371{
 372	return add_prelim_ref(fs_info, &preftrees->direct, 0, NULL, level,
 373			      parent, wanted_disk_byte, count, sc, gfp_mask);
 374}
 375
 376/* indirect refs use parent == 0 */
 377static int add_indirect_ref(const struct btrfs_fs_info *fs_info,
 378			    struct preftrees *preftrees, u64 root_id,
 379			    const struct btrfs_key *key, int level,
 380			    u64 wanted_disk_byte, int count,
 381			    struct share_check *sc, gfp_t gfp_mask)
 382{
 383	struct preftree *tree = &preftrees->indirect;
 384
 385	if (!key)
 386		tree = &preftrees->indirect_missing_keys;
 387	return add_prelim_ref(fs_info, tree, root_id, key, level, 0,
 388			      wanted_disk_byte, count, sc, gfp_mask);
 389}
 390
 391static int is_shared_data_backref(struct preftrees *preftrees, u64 bytenr)
 392{
 393	struct rb_node **p = &preftrees->direct.root.rb_root.rb_node;
 394	struct rb_node *parent = NULL;
 395	struct prelim_ref *ref = NULL;
 396	struct prelim_ref target = {};
 397	int result;
 398
 399	target.parent = bytenr;
 400
 401	while (*p) {
 402		parent = *p;
 403		ref = rb_entry(parent, struct prelim_ref, rbnode);
 404		result = prelim_ref_compare(ref, &target);
 405
 406		if (result < 0)
 407			p = &(*p)->rb_left;
 408		else if (result > 0)
 409			p = &(*p)->rb_right;
 410		else
 411			return 1;
 412	}
 413	return 0;
 414}
 415
 416static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
 417			   struct ulist *parents,
 418			   struct preftrees *preftrees, struct prelim_ref *ref,
 419			   int level, u64 time_seq, const u64 *extent_item_pos,
 420			   bool ignore_offset)
 421{
 422	int ret = 0;
 423	int slot;
 424	struct extent_buffer *eb;
 425	struct btrfs_key key;
 426	struct btrfs_key *key_for_search = &ref->key_for_search;
 427	struct btrfs_file_extent_item *fi;
 428	struct extent_inode_elem *eie = NULL, *old = NULL;
 429	u64 disk_byte;
 430	u64 wanted_disk_byte = ref->wanted_disk_byte;
 431	u64 count = 0;
 432	u64 data_offset;
 433
 434	if (level != 0) {
 435		eb = path->nodes[level];
 436		ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
 437		if (ret < 0)
 438			return ret;
 439		return 0;
 440	}
 441
 442	/*
 443	 * 1. We normally enter this function with the path already pointing to
 444	 *    the first item to check. But sometimes, we may enter it with
 445	 *    slot == nritems.
 446	 * 2. We are searching for normal backref but bytenr of this leaf
 447	 *    matches shared data backref
 448	 * 3. The leaf owner is not equal to the root we are searching
 449	 *
 450	 * For these cases, go to the next leaf before we continue.
 451	 */
 452	eb = path->nodes[0];
 453	if (path->slots[0] >= btrfs_header_nritems(eb) ||
 454	    is_shared_data_backref(preftrees, eb->start) ||
 455	    ref->root_id != btrfs_header_owner(eb)) {
 456		if (time_seq == BTRFS_SEQ_LAST)
 457			ret = btrfs_next_leaf(root, path);
 458		else
 459			ret = btrfs_next_old_leaf(root, path, time_seq);
 460	}
 461
 462	while (!ret && count < ref->count) {
 463		eb = path->nodes[0];
 464		slot = path->slots[0];
 465
 466		btrfs_item_key_to_cpu(eb, &key, slot);
 467
 468		if (key.objectid != key_for_search->objectid ||
 469		    key.type != BTRFS_EXTENT_DATA_KEY)
 470			break;
 471
 472		/*
 473		 * We are searching for normal backref but bytenr of this leaf
 474		 * matches shared data backref, OR
 475		 * the leaf owner is not equal to the root we are searching for
 476		 */
 477		if (slot == 0 &&
 478		    (is_shared_data_backref(preftrees, eb->start) ||
 479		     ref->root_id != btrfs_header_owner(eb))) {
 480			if (time_seq == BTRFS_SEQ_LAST)
 481				ret = btrfs_next_leaf(root, path);
 482			else
 483				ret = btrfs_next_old_leaf(root, path, time_seq);
 484			continue;
 485		}
 486		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
 487		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
 488		data_offset = btrfs_file_extent_offset(eb, fi);
 489
 490		if (disk_byte == wanted_disk_byte) {
 491			eie = NULL;
 492			old = NULL;
 493			if (ref->key_for_search.offset == key.offset - data_offset)
 494				count++;
 495			else
 496				goto next;
 497			if (extent_item_pos) {
 498				ret = check_extent_in_eb(&key, eb, fi,
 499						*extent_item_pos,
 500						&eie, ignore_offset);
 501				if (ret < 0)
 502					break;
 503			}
 504			if (ret > 0)
 505				goto next;
 506			ret = ulist_add_merge_ptr(parents, eb->start,
 507						  eie, (void **)&old, GFP_NOFS);
 508			if (ret < 0)
 509				break;
 510			if (!ret && extent_item_pos) {
 511				while (old->next)
 512					old = old->next;
 513				old->next = eie;
 514			}
 515			eie = NULL;
 516		}
 517next:
 518		if (time_seq == BTRFS_SEQ_LAST)
 519			ret = btrfs_next_item(root, path);
 520		else
 521			ret = btrfs_next_old_item(root, path, time_seq);
 522	}
 523
 524	if (ret > 0)
 525		ret = 0;
 526	else if (ret < 0)
 527		free_inode_elem_list(eie);
 528	return ret;
 529}
 530
 531/*
 532 * resolve an indirect backref in the form (root_id, key, level)
 533 * to a logical address
 534 */
 535static int resolve_indirect_ref(struct btrfs_fs_info *fs_info,
 536				struct btrfs_path *path, u64 time_seq,
 537				struct preftrees *preftrees,
 538				struct prelim_ref *ref, struct ulist *parents,
 539				const u64 *extent_item_pos, bool ignore_offset)
 
 540{
 
 541	struct btrfs_root *root;
 
 542	struct extent_buffer *eb;
 543	int ret = 0;
 544	int root_level;
 545	int level = ref->level;
 546	struct btrfs_key search_key = ref->key_for_search;
 547
 548	/*
 549	 * If we're search_commit_root we could possibly be holding locks on
 550	 * other tree nodes.  This happens when qgroups does backref walks when
 551	 * adding new delayed refs.  To deal with this we need to look in cache
 552	 * for the root, and if we don't find it then we need to search the
 553	 * tree_root's commit root, thus the btrfs_get_fs_root_commit_root usage
 554	 * here.
 555	 */
 556	if (path->search_commit_root)
 557		root = btrfs_get_fs_root_commit_root(fs_info, path, ref->root_id);
 558	else
 559		root = btrfs_get_fs_root(fs_info, ref->root_id, false);
 560	if (IS_ERR(root)) {
 561		ret = PTR_ERR(root);
 562		goto out_free;
 563	}
 564
 565	if (!path->search_commit_root &&
 566	    test_bit(BTRFS_ROOT_DELETING, &root->state)) {
 567		ret = -ENOENT;
 568		goto out;
 569	}
 570
 571	if (btrfs_is_testing(fs_info)) {
 572		ret = -ENOENT;
 573		goto out;
 574	}
 575
 576	if (path->search_commit_root)
 577		root_level = btrfs_header_level(root->commit_root);
 578	else if (time_seq == BTRFS_SEQ_LAST)
 579		root_level = btrfs_header_level(root->node);
 580	else
 581		root_level = btrfs_old_root_level(root, time_seq);
 582
 583	if (root_level + 1 == level)
 584		goto out;
 585
 586	/*
 587	 * We can often find data backrefs with an offset that is too large
 588	 * (>= LLONG_MAX, maximum allowed file offset) due to underflows when
 589	 * subtracting a file's offset with the data offset of its
 590	 * corresponding extent data item. This can happen for example in the
 591	 * clone ioctl.
 592	 *
 593	 * So if we detect such case we set the search key's offset to zero to
 594	 * make sure we will find the matching file extent item at
 595	 * add_all_parents(), otherwise we will miss it because the offset
 596	 * taken form the backref is much larger then the offset of the file
 597	 * extent item. This can make us scan a very large number of file
 598	 * extent items, but at least it will not make us miss any.
 599	 *
 600	 * This is an ugly workaround for a behaviour that should have never
 601	 * existed, but it does and a fix for the clone ioctl would touch a lot
 602	 * of places, cause backwards incompatibility and would not fix the
 603	 * problem for extents cloned with older kernels.
 604	 */
 605	if (search_key.type == BTRFS_EXTENT_DATA_KEY &&
 606	    search_key.offset >= LLONG_MAX)
 607		search_key.offset = 0;
 608	path->lowest_level = level;
 609	if (time_seq == BTRFS_SEQ_LAST)
 610		ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
 611	else
 612		ret = btrfs_search_old_slot(root, &search_key, path, time_seq);
 613
 614	btrfs_debug(fs_info,
 615		"search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)",
 616		 ref->root_id, level, ref->count, ret,
 617		 ref->key_for_search.objectid, ref->key_for_search.type,
 618		 ref->key_for_search.offset);
 619	if (ret < 0)
 620		goto out;
 621
 622	eb = path->nodes[level];
 623	while (!eb) {
 624		if (WARN_ON(!level)) {
 
 625			ret = 1;
 626			goto out;
 627		}
 628		level--;
 629		eb = path->nodes[level];
 630	}
 631
 632	ret = add_all_parents(root, path, parents, preftrees, ref, level,
 633			      time_seq, extent_item_pos, ignore_offset);
 
 634out:
 635	btrfs_put_root(root);
 636out_free:
 637	path->lowest_level = 0;
 638	btrfs_release_path(path);
 639	return ret;
 640}
 641
 642static struct extent_inode_elem *
 643unode_aux_to_inode_list(struct ulist_node *node)
 644{
 645	if (!node)
 646		return NULL;
 647	return (struct extent_inode_elem *)(uintptr_t)node->aux;
 648}
 649
 650/*
 651 * We maintain three separate rbtrees: one for direct refs, one for
 652 * indirect refs which have a key, and one for indirect refs which do not
 653 * have a key. Each tree does merge on insertion.
 654 *
 655 * Once all of the references are located, we iterate over the tree of
 656 * indirect refs with missing keys. An appropriate key is located and
 657 * the ref is moved onto the tree for indirect refs. After all missing
 658 * keys are thus located, we iterate over the indirect ref tree, resolve
 659 * each reference, and then insert the resolved reference onto the
 660 * direct tree (merging there too).
 661 *
 662 * New backrefs (i.e., for parent nodes) are added to the appropriate
 663 * rbtree as they are encountered. The new backrefs are subsequently
 664 * resolved as above.
 665 */
 666static int resolve_indirect_refs(struct btrfs_fs_info *fs_info,
 667				 struct btrfs_path *path, u64 time_seq,
 668				 struct preftrees *preftrees,
 669				 const u64 *extent_item_pos,
 670				 struct share_check *sc, bool ignore_offset)
 671{
 672	int err;
 673	int ret = 0;
 
 
 
 674	struct ulist *parents;
 675	struct ulist_node *node;
 676	struct ulist_iterator uiter;
 677	struct rb_node *rnode;
 678
 679	parents = ulist_alloc(GFP_NOFS);
 680	if (!parents)
 681		return -ENOMEM;
 682
 683	/*
 684	 * We could trade memory usage for performance here by iterating
 685	 * the tree, allocating new refs for each insertion, and then
 686	 * freeing the entire indirect tree when we're done.  In some test
 687	 * cases, the tree can grow quite large (~200k objects).
 688	 */
 689	while ((rnode = rb_first_cached(&preftrees->indirect.root))) {
 690		struct prelim_ref *ref;
 691
 692		ref = rb_entry(rnode, struct prelim_ref, rbnode);
 693		if (WARN(ref->parent,
 694			 "BUG: direct ref found in indirect tree")) {
 695			ret = -EINVAL;
 696			goto out;
 697		}
 698
 699		rb_erase_cached(&ref->rbnode, &preftrees->indirect.root);
 700		preftrees->indirect.count--;
 701
 702		if (ref->count == 0) {
 703			free_pref(ref);
 704			continue;
 705		}
 706
 707		if (sc && sc->root_objectid &&
 708		    ref->root_id != sc->root_objectid) {
 709			free_pref(ref);
 710			ret = BACKREF_FOUND_SHARED;
 711			goto out;
 712		}
 713		err = resolve_indirect_ref(fs_info, path, time_seq, preftrees,
 714					   ref, parents, extent_item_pos,
 715					   ignore_offset);
 716		/*
 717		 * we can only tolerate ENOENT,otherwise,we should catch error
 718		 * and return directly.
 719		 */
 720		if (err == -ENOENT) {
 721			prelim_ref_insert(fs_info, &preftrees->direct, ref,
 722					  NULL);
 723			continue;
 724		} else if (err) {
 725			free_pref(ref);
 726			ret = err;
 727			goto out;
 728		}
 729
 730		/* we put the first parent into the ref at hand */
 731		ULIST_ITER_INIT(&uiter);
 732		node = ulist_next(parents, &uiter);
 733		ref->parent = node ? node->val : 0;
 734		ref->inode_list = unode_aux_to_inode_list(node);
 
 735
 736		/* Add a prelim_ref(s) for any other parent(s). */
 737		while ((node = ulist_next(parents, &uiter))) {
 738			struct prelim_ref *new_ref;
 739
 740			new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
 741						   GFP_NOFS);
 742			if (!new_ref) {
 743				free_pref(ref);
 744				ret = -ENOMEM;
 745				goto out;
 746			}
 747			memcpy(new_ref, ref, sizeof(*ref));
 748			new_ref->parent = node->val;
 749			new_ref->inode_list = unode_aux_to_inode_list(node);
 750			prelim_ref_insert(fs_info, &preftrees->direct,
 751					  new_ref, NULL);
 752		}
 753
 754		/*
 755		 * Now it's a direct ref, put it in the direct tree. We must
 756		 * do this last because the ref could be merged/freed here.
 757		 */
 758		prelim_ref_insert(fs_info, &preftrees->direct, ref, NULL);
 759
 760		ulist_reinit(parents);
 761		cond_resched();
 762	}
 763out:
 764	ulist_free(parents);
 765	return ret;
 766}
 767
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 768/*
 769 * read tree blocks and add keys where required.
 770 */
 771static int add_missing_keys(struct btrfs_fs_info *fs_info,
 772			    struct preftrees *preftrees, bool lock)
 773{
 774	struct prelim_ref *ref;
 775	struct extent_buffer *eb;
 776	struct preftree *tree = &preftrees->indirect_missing_keys;
 777	struct rb_node *node;
 778
 779	while ((node = rb_first_cached(&tree->root))) {
 780		ref = rb_entry(node, struct prelim_ref, rbnode);
 781		rb_erase_cached(node, &tree->root);
 782
 783		BUG_ON(ref->parent);	/* should not be a direct ref */
 784		BUG_ON(ref->key_for_search.type);
 
 
 785		BUG_ON(!ref->wanted_disk_byte);
 786
 787		eb = read_tree_block(fs_info, ref->wanted_disk_byte,
 788				     ref->root_id, 0, ref->level - 1, NULL);
 789		if (IS_ERR(eb)) {
 790			free_pref(ref);
 791			return PTR_ERR(eb);
 792		} else if (!extent_buffer_uptodate(eb)) {
 793			free_pref(ref);
 794			free_extent_buffer(eb);
 795			return -EIO;
 796		}
 797		if (lock)
 798			btrfs_tree_read_lock(eb);
 799		if (btrfs_header_level(eb) == 0)
 800			btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
 801		else
 802			btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
 803		if (lock)
 804			btrfs_tree_read_unlock(eb);
 805		free_extent_buffer(eb);
 806		prelim_ref_insert(fs_info, &preftrees->indirect, ref, NULL);
 807		cond_resched();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 808	}
 809	return 0;
 810}
 811
 812/*
 813 * add all currently queued delayed refs from this head whose seq nr is
 814 * smaller or equal that seq to the list
 815 */
 816static int add_delayed_refs(const struct btrfs_fs_info *fs_info,
 817			    struct btrfs_delayed_ref_head *head, u64 seq,
 818			    struct preftrees *preftrees, struct share_check *sc)
 819{
 820	struct btrfs_delayed_ref_node *node;
 821	struct btrfs_delayed_extent_op *extent_op = head->extent_op;
 
 822	struct btrfs_key key;
 823	struct btrfs_key tmp_op_key;
 824	struct rb_node *n;
 825	int count;
 826	int ret = 0;
 827
 828	if (extent_op && extent_op->update_key)
 829		btrfs_disk_key_to_cpu(&tmp_op_key, &extent_op->key);
 830
 831	spin_lock(&head->lock);
 832	for (n = rb_first_cached(&head->ref_tree); n; n = rb_next(n)) {
 833		node = rb_entry(n, struct btrfs_delayed_ref_node,
 834				ref_node);
 
 
 
 
 835		if (node->seq > seq)
 836			continue;
 837
 838		switch (node->action) {
 839		case BTRFS_ADD_DELAYED_EXTENT:
 840		case BTRFS_UPDATE_DELAYED_HEAD:
 841			WARN_ON(1);
 842			continue;
 843		case BTRFS_ADD_DELAYED_REF:
 844			count = node->ref_mod;
 845			break;
 846		case BTRFS_DROP_DELAYED_REF:
 847			count = node->ref_mod * -1;
 848			break;
 849		default:
 850			BUG();
 851		}
 852		switch (node->type) {
 853		case BTRFS_TREE_BLOCK_REF_KEY: {
 854			/* NORMAL INDIRECT METADATA backref */
 855			struct btrfs_delayed_tree_ref *ref;
 856
 857			ref = btrfs_delayed_node_to_tree_ref(node);
 858			ret = add_indirect_ref(fs_info, preftrees, ref->root,
 859					       &tmp_op_key, ref->level + 1,
 860					       node->bytenr, count, sc,
 861					       GFP_ATOMIC);
 862			break;
 863		}
 864		case BTRFS_SHARED_BLOCK_REF_KEY: {
 865			/* SHARED DIRECT METADATA backref */
 866			struct btrfs_delayed_tree_ref *ref;
 867
 868			ref = btrfs_delayed_node_to_tree_ref(node);
 869
 870			ret = add_direct_ref(fs_info, preftrees, ref->level + 1,
 871					     ref->parent, node->bytenr, count,
 872					     sc, GFP_ATOMIC);
 873			break;
 874		}
 875		case BTRFS_EXTENT_DATA_REF_KEY: {
 876			/* NORMAL INDIRECT DATA backref */
 877			struct btrfs_delayed_data_ref *ref;
 878			ref = btrfs_delayed_node_to_data_ref(node);
 879
 880			key.objectid = ref->objectid;
 881			key.type = BTRFS_EXTENT_DATA_KEY;
 882			key.offset = ref->offset;
 883
 884			/*
 885			 * Found a inum that doesn't match our known inum, we
 886			 * know it's shared.
 887			 */
 888			if (sc && sc->inum && ref->objectid != sc->inum) {
 889				ret = BACKREF_FOUND_SHARED;
 890				goto out;
 891			}
 892
 893			ret = add_indirect_ref(fs_info, preftrees, ref->root,
 894					       &key, 0, node->bytenr, count, sc,
 895					       GFP_ATOMIC);
 896			break;
 897		}
 898		case BTRFS_SHARED_DATA_REF_KEY: {
 899			/* SHARED DIRECT FULL backref */
 900			struct btrfs_delayed_data_ref *ref;
 901
 902			ref = btrfs_delayed_node_to_data_ref(node);
 903
 904			ret = add_direct_ref(fs_info, preftrees, 0, ref->parent,
 905					     node->bytenr, count, sc,
 906					     GFP_ATOMIC);
 
 
 
 907			break;
 908		}
 909		default:
 910			WARN_ON(1);
 911		}
 912		/*
 913		 * We must ignore BACKREF_FOUND_SHARED until all delayed
 914		 * refs have been checked.
 915		 */
 916		if (ret && (ret != BACKREF_FOUND_SHARED))
 917			break;
 918	}
 919	if (!ret)
 920		ret = extent_is_shared(sc);
 921out:
 922	spin_unlock(&head->lock);
 923	return ret;
 924}
 925
 926/*
 927 * add all inline backrefs for bytenr to the list
 928 *
 929 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
 930 */
 931static int add_inline_refs(const struct btrfs_fs_info *fs_info,
 932			   struct btrfs_path *path, u64 bytenr,
 933			   int *info_level, struct preftrees *preftrees,
 934			   struct share_check *sc)
 935{
 936	int ret = 0;
 937	int slot;
 938	struct extent_buffer *leaf;
 939	struct btrfs_key key;
 940	struct btrfs_key found_key;
 941	unsigned long ptr;
 942	unsigned long end;
 943	struct btrfs_extent_item *ei;
 944	u64 flags;
 945	u64 item_size;
 946
 947	/*
 948	 * enumerate all inline refs
 949	 */
 950	leaf = path->nodes[0];
 951	slot = path->slots[0];
 952
 953	item_size = btrfs_item_size_nr(leaf, slot);
 954	BUG_ON(item_size < sizeof(*ei));
 955
 956	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
 957	flags = btrfs_extent_flags(leaf, ei);
 958	btrfs_item_key_to_cpu(leaf, &found_key, slot);
 959
 960	ptr = (unsigned long)(ei + 1);
 961	end = (unsigned long)ei + item_size;
 962
 963	if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
 964	    flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
 965		struct btrfs_tree_block_info *info;
 966
 967		info = (struct btrfs_tree_block_info *)ptr;
 968		*info_level = btrfs_tree_block_level(leaf, info);
 969		ptr += sizeof(struct btrfs_tree_block_info);
 970		BUG_ON(ptr > end);
 971	} else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
 972		*info_level = found_key.offset;
 973	} else {
 974		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
 975	}
 976
 977	while (ptr < end) {
 978		struct btrfs_extent_inline_ref *iref;
 979		u64 offset;
 980		int type;
 981
 982		iref = (struct btrfs_extent_inline_ref *)ptr;
 983		type = btrfs_get_extent_inline_ref_type(leaf, iref,
 984							BTRFS_REF_TYPE_ANY);
 985		if (type == BTRFS_REF_TYPE_INVALID)
 986			return -EUCLEAN;
 987
 988		offset = btrfs_extent_inline_ref_offset(leaf, iref);
 989
 990		switch (type) {
 991		case BTRFS_SHARED_BLOCK_REF_KEY:
 992			ret = add_direct_ref(fs_info, preftrees,
 993					     *info_level + 1, offset,
 994					     bytenr, 1, NULL, GFP_NOFS);
 995			break;
 996		case BTRFS_SHARED_DATA_REF_KEY: {
 997			struct btrfs_shared_data_ref *sdref;
 998			int count;
 999
1000			sdref = (struct btrfs_shared_data_ref *)(iref + 1);
1001			count = btrfs_shared_data_ref_count(leaf, sdref);
1002
1003			ret = add_direct_ref(fs_info, preftrees, 0, offset,
1004					     bytenr, count, sc, GFP_NOFS);
1005			break;
1006		}
1007		case BTRFS_TREE_BLOCK_REF_KEY:
1008			ret = add_indirect_ref(fs_info, preftrees, offset,
1009					       NULL, *info_level + 1,
1010					       bytenr, 1, NULL, GFP_NOFS);
1011			break;
1012		case BTRFS_EXTENT_DATA_REF_KEY: {
1013			struct btrfs_extent_data_ref *dref;
1014			int count;
1015			u64 root;
1016
1017			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1018			count = btrfs_extent_data_ref_count(leaf, dref);
1019			key.objectid = btrfs_extent_data_ref_objectid(leaf,
1020								      dref);
1021			key.type = BTRFS_EXTENT_DATA_KEY;
1022			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1023
1024			if (sc && sc->inum && key.objectid != sc->inum) {
1025				ret = BACKREF_FOUND_SHARED;
1026				break;
1027			}
1028
1029			root = btrfs_extent_data_ref_root(leaf, dref);
1030
1031			ret = add_indirect_ref(fs_info, preftrees, root,
1032					       &key, 0, bytenr, count,
1033					       sc, GFP_NOFS);
1034			break;
1035		}
1036		default:
1037			WARN_ON(1);
1038		}
1039		if (ret)
1040			return ret;
1041		ptr += btrfs_extent_inline_ref_size(type);
1042	}
1043
1044	return 0;
1045}
1046
1047/*
1048 * add all non-inline backrefs for bytenr to the list
1049 *
1050 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
1051 */
1052static int add_keyed_refs(struct btrfs_fs_info *fs_info,
1053			  struct btrfs_path *path, u64 bytenr,
1054			  int info_level, struct preftrees *preftrees,
1055			  struct share_check *sc)
1056{
1057	struct btrfs_root *extent_root = fs_info->extent_root;
1058	int ret;
1059	int slot;
1060	struct extent_buffer *leaf;
1061	struct btrfs_key key;
1062
1063	while (1) {
1064		ret = btrfs_next_item(extent_root, path);
1065		if (ret < 0)
1066			break;
1067		if (ret) {
1068			ret = 0;
1069			break;
1070		}
1071
1072		slot = path->slots[0];
1073		leaf = path->nodes[0];
1074		btrfs_item_key_to_cpu(leaf, &key, slot);
1075
1076		if (key.objectid != bytenr)
1077			break;
1078		if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
1079			continue;
1080		if (key.type > BTRFS_SHARED_DATA_REF_KEY)
1081			break;
1082
1083		switch (key.type) {
1084		case BTRFS_SHARED_BLOCK_REF_KEY:
1085			/* SHARED DIRECT METADATA backref */
1086			ret = add_direct_ref(fs_info, preftrees,
1087					     info_level + 1, key.offset,
1088					     bytenr, 1, NULL, GFP_NOFS);
1089			break;
1090		case BTRFS_SHARED_DATA_REF_KEY: {
1091			/* SHARED DIRECT FULL backref */
1092			struct btrfs_shared_data_ref *sdref;
1093			int count;
1094
1095			sdref = btrfs_item_ptr(leaf, slot,
1096					      struct btrfs_shared_data_ref);
1097			count = btrfs_shared_data_ref_count(leaf, sdref);
1098			ret = add_direct_ref(fs_info, preftrees, 0,
1099					     key.offset, bytenr, count,
1100					     sc, GFP_NOFS);
1101			break;
1102		}
1103		case BTRFS_TREE_BLOCK_REF_KEY:
1104			/* NORMAL INDIRECT METADATA backref */
1105			ret = add_indirect_ref(fs_info, preftrees, key.offset,
1106					       NULL, info_level + 1, bytenr,
1107					       1, NULL, GFP_NOFS);
1108			break;
1109		case BTRFS_EXTENT_DATA_REF_KEY: {
1110			/* NORMAL INDIRECT DATA backref */
1111			struct btrfs_extent_data_ref *dref;
1112			int count;
1113			u64 root;
1114
1115			dref = btrfs_item_ptr(leaf, slot,
1116					      struct btrfs_extent_data_ref);
1117			count = btrfs_extent_data_ref_count(leaf, dref);
1118			key.objectid = btrfs_extent_data_ref_objectid(leaf,
1119								      dref);
1120			key.type = BTRFS_EXTENT_DATA_KEY;
1121			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1122
1123			if (sc && sc->inum && key.objectid != sc->inum) {
1124				ret = BACKREF_FOUND_SHARED;
1125				break;
1126			}
1127
1128			root = btrfs_extent_data_ref_root(leaf, dref);
1129			ret = add_indirect_ref(fs_info, preftrees, root,
1130					       &key, 0, bytenr, count,
1131					       sc, GFP_NOFS);
1132			break;
1133		}
1134		default:
1135			WARN_ON(1);
1136		}
1137		if (ret)
1138			return ret;
1139
1140	}
1141
1142	return ret;
1143}
1144
1145/*
1146 * this adds all existing backrefs (inline backrefs, backrefs and delayed
1147 * refs) for the given bytenr to the refs list, merges duplicates and resolves
1148 * indirect refs to their parent bytenr.
1149 * When roots are found, they're added to the roots list
1150 *
1151 * If time_seq is set to BTRFS_SEQ_LAST, it will not search delayed_refs, and
1152 * behave much like trans == NULL case, the difference only lies in it will not
1153 * commit root.
1154 * The special case is for qgroup to search roots in commit_transaction().
1155 *
1156 * @sc - if !NULL, then immediately return BACKREF_FOUND_SHARED when a
1157 * shared extent is detected.
1158 *
1159 * Otherwise this returns 0 for success and <0 for an error.
1160 *
1161 * If ignore_offset is set to false, only extent refs whose offsets match
1162 * extent_item_pos are returned.  If true, every extent ref is returned
1163 * and extent_item_pos is ignored.
1164 *
1165 * FIXME some caching might speed things up
1166 */
1167static int find_parent_nodes(struct btrfs_trans_handle *trans,
1168			     struct btrfs_fs_info *fs_info, u64 bytenr,
1169			     u64 time_seq, struct ulist *refs,
1170			     struct ulist *roots, const u64 *extent_item_pos,
1171			     struct share_check *sc, bool ignore_offset)
1172{
1173	struct btrfs_key key;
1174	struct btrfs_path *path;
1175	struct btrfs_delayed_ref_root *delayed_refs = NULL;
1176	struct btrfs_delayed_ref_head *head;
1177	int info_level = 0;
1178	int ret;
1179	struct prelim_ref *ref;
1180	struct rb_node *node;
1181	struct extent_inode_elem *eie = NULL;
1182	struct preftrees preftrees = {
1183		.direct = PREFTREE_INIT,
1184		.indirect = PREFTREE_INIT,
1185		.indirect_missing_keys = PREFTREE_INIT
1186	};
1187
1188	key.objectid = bytenr;
 
1189	key.offset = (u64)-1;
1190	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1191		key.type = BTRFS_METADATA_ITEM_KEY;
1192	else
1193		key.type = BTRFS_EXTENT_ITEM_KEY;
1194
1195	path = btrfs_alloc_path();
1196	if (!path)
1197		return -ENOMEM;
1198	if (!trans) {
1199		path->search_commit_root = 1;
1200		path->skip_locking = 1;
1201	}
1202
1203	if (time_seq == BTRFS_SEQ_LAST)
1204		path->skip_locking = 1;
1205
1206	/*
1207	 * grab both a lock on the path and a lock on the delayed ref head.
1208	 * We need both to get a consistent picture of how the refs look
1209	 * at a specified point in time
1210	 */
1211again:
1212	head = NULL;
1213
1214	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
1215	if (ret < 0)
1216		goto out;
1217	BUG_ON(ret == 0);
1218
1219#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1220	if (trans && likely(trans->type != __TRANS_DUMMY) &&
1221	    time_seq != BTRFS_SEQ_LAST) {
1222#else
1223	if (trans && time_seq != BTRFS_SEQ_LAST) {
1224#endif
1225		/*
1226		 * look if there are updates for this ref queued and lock the
1227		 * head
1228		 */
1229		delayed_refs = &trans->transaction->delayed_refs;
1230		spin_lock(&delayed_refs->lock);
1231		head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
1232		if (head) {
1233			if (!mutex_trylock(&head->mutex)) {
1234				refcount_inc(&head->refs);
1235				spin_unlock(&delayed_refs->lock);
1236
1237				btrfs_release_path(path);
1238
1239				/*
1240				 * Mutex was contended, block until it's
1241				 * released and try again
1242				 */
1243				mutex_lock(&head->mutex);
1244				mutex_unlock(&head->mutex);
1245				btrfs_put_delayed_ref_head(head);
1246				goto again;
1247			}
1248			spin_unlock(&delayed_refs->lock);
1249			ret = add_delayed_refs(fs_info, head, time_seq,
1250					       &preftrees, sc);
1251			mutex_unlock(&head->mutex);
1252			if (ret)
 
1253				goto out;
1254		} else {
1255			spin_unlock(&delayed_refs->lock);
1256		}
 
1257	}
1258
1259	if (path->slots[0]) {
1260		struct extent_buffer *leaf;
1261		int slot;
1262
1263		path->slots[0]--;
1264		leaf = path->nodes[0];
1265		slot = path->slots[0];
1266		btrfs_item_key_to_cpu(leaf, &key, slot);
1267		if (key.objectid == bytenr &&
1268		    (key.type == BTRFS_EXTENT_ITEM_KEY ||
1269		     key.type == BTRFS_METADATA_ITEM_KEY)) {
1270			ret = add_inline_refs(fs_info, path, bytenr,
1271					      &info_level, &preftrees, sc);
1272			if (ret)
1273				goto out;
1274			ret = add_keyed_refs(fs_info, path, bytenr, info_level,
1275					     &preftrees, sc);
1276			if (ret)
1277				goto out;
1278		}
1279	}
 
1280
1281	btrfs_release_path(path);
1282
1283	ret = add_missing_keys(fs_info, &preftrees, path->skip_locking == 0);
1284	if (ret)
1285		goto out;
1286
1287	WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect_missing_keys.root.rb_root));
 
 
1288
1289	ret = resolve_indirect_refs(fs_info, path, time_seq, &preftrees,
1290				    extent_item_pos, sc, ignore_offset);
1291	if (ret)
1292		goto out;
1293
1294	WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect.root.rb_root));
1295
1296	/*
1297	 * This walks the tree of merged and resolved refs. Tree blocks are
1298	 * read in as needed. Unique entries are added to the ulist, and
1299	 * the list of found roots is updated.
1300	 *
1301	 * We release the entire tree in one go before returning.
1302	 */
1303	node = rb_first_cached(&preftrees.direct.root);
1304	while (node) {
1305		ref = rb_entry(node, struct prelim_ref, rbnode);
1306		node = rb_next(&ref->rbnode);
1307		/*
1308		 * ref->count < 0 can happen here if there are delayed
1309		 * refs with a node->action of BTRFS_DROP_DELAYED_REF.
1310		 * prelim_ref_insert() relies on this when merging
1311		 * identical refs to keep the overall count correct.
1312		 * prelim_ref_insert() will merge only those refs
1313		 * which compare identically.  Any refs having
1314		 * e.g. different offsets would not be merged,
1315		 * and would retain their original ref->count < 0.
1316		 */
1317		if (roots && ref->count && ref->root_id && ref->parent == 0) {
1318			if (sc && sc->root_objectid &&
1319			    ref->root_id != sc->root_objectid) {
1320				ret = BACKREF_FOUND_SHARED;
1321				goto out;
1322			}
1323
 
 
 
 
 
 
1324			/* no parent == root of tree */
1325			ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
1326			if (ret < 0)
1327				goto out;
1328		}
1329		if (ref->count && ref->parent) {
1330			if (extent_item_pos && !ref->inode_list &&
1331			    ref->level == 0) {
 
1332				struct extent_buffer *eb;
1333
1334				eb = read_tree_block(fs_info, ref->parent, 0,
1335						     0, ref->level, NULL);
1336				if (IS_ERR(eb)) {
1337					ret = PTR_ERR(eb);
1338					goto out;
1339				} else if (!extent_buffer_uptodate(eb)) {
1340					free_extent_buffer(eb);
1341					ret = -EIO;
1342					goto out;
1343				}
1344
1345				if (!path->skip_locking)
1346					btrfs_tree_read_lock(eb);
1347				ret = find_extent_in_eb(eb, bytenr,
1348							*extent_item_pos, &eie, ignore_offset);
1349				if (!path->skip_locking)
1350					btrfs_tree_read_unlock(eb);
1351				free_extent_buffer(eb);
1352				if (ret < 0)
1353					goto out;
1354				ref->inode_list = eie;
1355			}
1356			ret = ulist_add_merge_ptr(refs, ref->parent,
1357						  ref->inode_list,
1358						  (void **)&eie, GFP_NOFS);
1359			if (ret < 0)
1360				goto out;
1361			if (!ret && extent_item_pos) {
1362				/*
1363				 * we've recorded that parent, so we must extend
1364				 * its inode list here
1365				 */
1366				BUG_ON(!eie);
1367				while (eie->next)
1368					eie = eie->next;
1369				eie->next = ref->inode_list;
1370			}
1371			eie = NULL;
1372		}
1373		cond_resched();
1374	}
1375
1376out:
1377	btrfs_free_path(path);
 
 
 
 
 
 
 
 
 
 
 
1378
1379	prelim_release(&preftrees.direct);
1380	prelim_release(&preftrees.indirect);
1381	prelim_release(&preftrees.indirect_missing_keys);
1382
1383	if (ret < 0)
1384		free_inode_elem_list(eie);
1385	return ret;
1386}
1387
1388static void free_leaf_list(struct ulist *blocks)
1389{
1390	struct ulist_node *node = NULL;
1391	struct extent_inode_elem *eie;
 
1392	struct ulist_iterator uiter;
1393
1394	ULIST_ITER_INIT(&uiter);
1395	while ((node = ulist_next(blocks, &uiter))) {
1396		if (!node->aux)
1397			continue;
1398		eie = unode_aux_to_inode_list(node);
1399		free_inode_elem_list(eie);
 
 
 
1400		node->aux = 0;
1401	}
1402
1403	ulist_free(blocks);
1404}
1405
1406/*
1407 * Finds all leafs with a reference to the specified combination of bytenr and
1408 * offset. key_list_head will point to a list of corresponding keys (caller must
1409 * free each list element). The leafs will be stored in the leafs ulist, which
1410 * must be freed with ulist_free.
1411 *
1412 * returns 0 on success, <0 on error
1413 */
1414int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
1415			 struct btrfs_fs_info *fs_info, u64 bytenr,
1416			 u64 time_seq, struct ulist **leafs,
1417			 const u64 *extent_item_pos, bool ignore_offset)
 
1418{
 
1419	int ret;
1420
 
 
 
1421	*leafs = ulist_alloc(GFP_NOFS);
1422	if (!*leafs)
 
1423		return -ENOMEM;
 
 
 
 
 
1424
1425	ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
1426				*leafs, NULL, extent_item_pos, NULL, ignore_offset);
1427	if (ret < 0 && ret != -ENOENT) {
1428		free_leaf_list(*leafs);
1429		return ret;
1430	}
1431
1432	return 0;
1433}
1434
1435/*
1436 * walk all backrefs for a given extent to find all roots that reference this
1437 * extent. Walking a backref means finding all extents that reference this
1438 * extent and in turn walk the backrefs of those, too. Naturally this is a
1439 * recursive process, but here it is implemented in an iterative fashion: We
1440 * find all referencing extents for the extent in question and put them on a
1441 * list. In turn, we find all referencing extents for those, further appending
1442 * to the list. The way we iterate the list allows adding more elements after
1443 * the current while iterating. The process stops when we reach the end of the
1444 * list. Found roots are added to the roots list.
1445 *
1446 * returns 0 on success, < 0 on error.
1447 */
1448static int btrfs_find_all_roots_safe(struct btrfs_trans_handle *trans,
1449				     struct btrfs_fs_info *fs_info, u64 bytenr,
1450				     u64 time_seq, struct ulist **roots,
1451				     bool ignore_offset)
1452{
1453	struct ulist *tmp;
1454	struct ulist_node *node = NULL;
1455	struct ulist_iterator uiter;
1456	int ret;
1457
1458	tmp = ulist_alloc(GFP_NOFS);
1459	if (!tmp)
1460		return -ENOMEM;
1461	*roots = ulist_alloc(GFP_NOFS);
1462	if (!*roots) {
1463		ulist_free(tmp);
1464		return -ENOMEM;
1465	}
1466
1467	ULIST_ITER_INIT(&uiter);
1468	while (1) {
1469		ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
1470					tmp, *roots, NULL, NULL, ignore_offset);
1471		if (ret < 0 && ret != -ENOENT) {
1472			ulist_free(tmp);
1473			ulist_free(*roots);
1474			*roots = NULL;
1475			return ret;
1476		}
1477		node = ulist_next(tmp, &uiter);
1478		if (!node)
1479			break;
1480		bytenr = node->val;
1481		cond_resched();
1482	}
1483
1484	ulist_free(tmp);
1485	return 0;
1486}
1487
1488int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1489			 struct btrfs_fs_info *fs_info, u64 bytenr,
1490			 u64 time_seq, struct ulist **roots,
1491			 bool ignore_offset, bool skip_commit_root_sem)
1492{
1493	int ret;
 
 
 
 
 
 
1494
1495	if (!trans && !skip_commit_root_sem)
1496		down_read(&fs_info->commit_root_sem);
1497	ret = btrfs_find_all_roots_safe(trans, fs_info, bytenr,
1498					time_seq, roots, ignore_offset);
1499	if (!trans && !skip_commit_root_sem)
1500		up_read(&fs_info->commit_root_sem);
1501	return ret;
1502}
1503
1504/**
1505 * Check if an extent is shared or not
1506 *
1507 * @root:   root inode belongs to
1508 * @inum:   inode number of the inode whose extent we are checking
1509 * @bytenr: logical bytenr of the extent we are checking
1510 * @roots:  list of roots this extent is shared among
1511 * @tmp:    temporary list used for iteration
1512 *
1513 * btrfs_check_shared uses the backref walking code but will short
1514 * circuit as soon as it finds a root or inode that doesn't match the
1515 * one passed in. This provides a significant performance benefit for
1516 * callers (such as fiemap) which want to know whether the extent is
1517 * shared but do not need a ref count.
1518 *
1519 * This attempts to attach to the running transaction in order to account for
1520 * delayed refs, but continues on even when no running transaction exists.
1521 *
1522 * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error.
1523 */
1524int btrfs_check_shared(struct btrfs_root *root, u64 inum, u64 bytenr,
1525		struct ulist *roots, struct ulist *tmp)
1526{
1527	struct btrfs_fs_info *fs_info = root->fs_info;
1528	struct btrfs_trans_handle *trans;
1529	struct ulist_iterator uiter;
1530	struct ulist_node *node;
1531	struct btrfs_seq_list elem = BTRFS_SEQ_LIST_INIT(elem);
1532	int ret = 0;
1533	struct share_check shared = {
1534		.root_objectid = root->root_key.objectid,
1535		.inum = inum,
1536		.share_count = 0,
1537	};
1538
1539	ulist_init(roots);
1540	ulist_init(tmp);
1541
1542	trans = btrfs_join_transaction_nostart(root);
1543	if (IS_ERR(trans)) {
1544		if (PTR_ERR(trans) != -ENOENT && PTR_ERR(trans) != -EROFS) {
1545			ret = PTR_ERR(trans);
1546			goto out;
1547		}
1548		trans = NULL;
1549		down_read(&fs_info->commit_root_sem);
1550	} else {
1551		btrfs_get_tree_mod_seq(fs_info, &elem);
1552	}
1553
1554	ULIST_ITER_INIT(&uiter);
1555	while (1) {
1556		ret = find_parent_nodes(trans, fs_info, bytenr, elem.seq, tmp,
1557					roots, NULL, &shared, false);
1558		if (ret == BACKREF_FOUND_SHARED) {
1559			/* this is the only condition under which we return 1 */
1560			ret = 1;
1561			break;
1562		}
1563		if (ret < 0 && ret != -ENOENT)
1564			break;
1565		ret = 0;
1566		node = ulist_next(tmp, &uiter);
1567		if (!node)
1568			break;
1569		bytenr = node->val;
1570		shared.share_count = 0;
1571		cond_resched();
1572	}
1573
1574	if (trans) {
1575		btrfs_put_tree_mod_seq(fs_info, &elem);
1576		btrfs_end_transaction(trans);
1577	} else {
1578		up_read(&fs_info->commit_root_sem);
1579	}
1580out:
1581	ulist_release(roots);
1582	ulist_release(tmp);
1583	return ret;
1584}
1585
1586int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
1587			  u64 start_off, struct btrfs_path *path,
1588			  struct btrfs_inode_extref **ret_extref,
1589			  u64 *found_off)
 
1590{
1591	int ret, slot;
1592	struct btrfs_key key;
1593	struct btrfs_key found_key;
1594	struct btrfs_inode_extref *extref;
1595	const struct extent_buffer *leaf;
1596	unsigned long ptr;
1597
1598	key.objectid = inode_objectid;
1599	key.type = BTRFS_INODE_EXTREF_KEY;
1600	key.offset = start_off;
1601
1602	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1603	if (ret < 0)
1604		return ret;
1605
1606	while (1) {
1607		leaf = path->nodes[0];
1608		slot = path->slots[0];
1609		if (slot >= btrfs_header_nritems(leaf)) {
1610			/*
1611			 * If the item at offset is not found,
1612			 * btrfs_search_slot will point us to the slot
1613			 * where it should be inserted. In our case
1614			 * that will be the slot directly before the
1615			 * next INODE_REF_KEY_V2 item. In the case
1616			 * that we're pointing to the last slot in a
1617			 * leaf, we must move one leaf over.
1618			 */
1619			ret = btrfs_next_leaf(root, path);
1620			if (ret) {
1621				if (ret >= 1)
1622					ret = -ENOENT;
1623				break;
1624			}
1625			continue;
1626		}
1627
1628		btrfs_item_key_to_cpu(leaf, &found_key, slot);
1629
1630		/*
1631		 * Check that we're still looking at an extended ref key for
1632		 * this particular objectid. If we have different
1633		 * objectid or type then there are no more to be found
1634		 * in the tree and we can exit.
1635		 */
1636		ret = -ENOENT;
1637		if (found_key.objectid != inode_objectid)
1638			break;
1639		if (found_key.type != BTRFS_INODE_EXTREF_KEY)
1640			break;
1641
1642		ret = 0;
1643		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1644		extref = (struct btrfs_inode_extref *)ptr;
1645		*ret_extref = extref;
1646		if (found_off)
1647			*found_off = found_key.offset;
1648		break;
1649	}
1650
1651	return ret;
1652}
1653
1654/*
1655 * this iterates to turn a name (from iref/extref) into a full filesystem path.
1656 * Elements of the path are separated by '/' and the path is guaranteed to be
1657 * 0-terminated. the path is only given within the current file system.
1658 * Therefore, it never starts with a '/'. the caller is responsible to provide
1659 * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
1660 * the start point of the resulting string is returned. this pointer is within
1661 * dest, normally.
1662 * in case the path buffer would overflow, the pointer is decremented further
1663 * as if output was written to the buffer, though no more output is actually
1664 * generated. that way, the caller can determine how much space would be
1665 * required for the path to fit into the buffer. in that case, the returned
1666 * value will be smaller than dest. callers must check this!
1667 */
1668char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
1669			u32 name_len, unsigned long name_off,
1670			struct extent_buffer *eb_in, u64 parent,
1671			char *dest, u32 size)
1672{
 
1673	int slot;
1674	u64 next_inum;
1675	int ret;
1676	s64 bytes_left = ((s64)size) - 1;
1677	struct extent_buffer *eb = eb_in;
1678	struct btrfs_key found_key;
1679	struct btrfs_inode_ref *iref;
1680
1681	if (bytes_left >= 0)
1682		dest[bytes_left] = '\0';
1683
 
1684	while (1) {
1685		bytes_left -= name_len;
 
1686		if (bytes_left >= 0)
1687			read_extent_buffer(eb, dest + bytes_left,
1688					   name_off, name_len);
1689		if (eb != eb_in) {
1690			if (!path->skip_locking)
1691				btrfs_tree_read_unlock(eb);
1692			free_extent_buffer(eb);
1693		}
1694		ret = btrfs_find_item(fs_root, path, parent, 0,
1695				BTRFS_INODE_REF_KEY, &found_key);
1696		if (ret > 0)
1697			ret = -ENOENT;
1698		if (ret)
1699			break;
1700
1701		next_inum = found_key.offset;
1702
1703		/* regular exit ahead */
1704		if (parent == next_inum)
1705			break;
1706
1707		slot = path->slots[0];
1708		eb = path->nodes[0];
1709		/* make sure we can use eb after releasing the path */
1710		if (eb != eb_in) {
1711			path->nodes[0] = NULL;
1712			path->locks[0] = 0;
 
1713		}
1714		btrfs_release_path(path);
 
1715		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1716
1717		name_len = btrfs_inode_ref_name_len(eb, iref);
1718		name_off = (unsigned long)(iref + 1);
1719
1720		parent = next_inum;
1721		--bytes_left;
1722		if (bytes_left >= 0)
1723			dest[bytes_left] = '/';
1724	}
1725
1726	btrfs_release_path(path);
 
1727
1728	if (ret)
1729		return ERR_PTR(ret);
1730
1731	return dest + bytes_left;
1732}
1733
1734/*
1735 * this makes the path point to (logical EXTENT_ITEM *)
1736 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
1737 * tree blocks and <0 on error.
1738 */
1739int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
1740			struct btrfs_path *path, struct btrfs_key *found_key,
1741			u64 *flags_ret)
1742{
1743	int ret;
1744	u64 flags;
1745	u64 size = 0;
1746	u32 item_size;
1747	const struct extent_buffer *eb;
1748	struct btrfs_extent_item *ei;
1749	struct btrfs_key key;
1750
1751	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1752		key.type = BTRFS_METADATA_ITEM_KEY;
1753	else
1754		key.type = BTRFS_EXTENT_ITEM_KEY;
1755	key.objectid = logical;
1756	key.offset = (u64)-1;
1757
1758	ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
1759	if (ret < 0)
1760		return ret;
 
 
 
 
1761
1762	ret = btrfs_previous_extent_item(fs_info->extent_root, path, 0);
1763	if (ret) {
1764		if (ret > 0)
1765			ret = -ENOENT;
1766		return ret;
1767	}
1768	btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
1769	if (found_key->type == BTRFS_METADATA_ITEM_KEY)
1770		size = fs_info->nodesize;
1771	else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
1772		size = found_key->offset;
1773
1774	if (found_key->objectid > logical ||
1775	    found_key->objectid + size <= logical) {
1776		btrfs_debug(fs_info,
1777			"logical %llu is not within any extent", logical);
1778		return -ENOENT;
1779	}
1780
1781	eb = path->nodes[0];
1782	item_size = btrfs_item_size_nr(eb, path->slots[0]);
1783	BUG_ON(item_size < sizeof(*ei));
1784
1785	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
1786	flags = btrfs_extent_flags(eb, ei);
1787
1788	btrfs_debug(fs_info,
1789		"logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u",
1790		 logical, logical - found_key->objectid, found_key->objectid,
1791		 found_key->offset, flags, item_size);
1792
1793	WARN_ON(!flags_ret);
1794	if (flags_ret) {
1795		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1796			*flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
1797		else if (flags & BTRFS_EXTENT_FLAG_DATA)
1798			*flags_ret = BTRFS_EXTENT_FLAG_DATA;
1799		else
1800			BUG();
1801		return 0;
1802	}
1803
1804	return -EIO;
1805}
1806
1807/*
1808 * helper function to iterate extent inline refs. ptr must point to a 0 value
1809 * for the first call and may be modified. it is used to track state.
1810 * if more refs exist, 0 is returned and the next call to
1811 * get_extent_inline_ref must pass the modified ptr parameter to get the
1812 * next ref. after the last ref was processed, 1 is returned.
1813 * returns <0 on error
1814 */
1815static int get_extent_inline_ref(unsigned long *ptr,
1816				 const struct extent_buffer *eb,
1817				 const struct btrfs_key *key,
1818				 const struct btrfs_extent_item *ei,
1819				 u32 item_size,
1820				 struct btrfs_extent_inline_ref **out_eiref,
1821				 int *out_type)
1822{
1823	unsigned long end;
1824	u64 flags;
1825	struct btrfs_tree_block_info *info;
1826
1827	if (!*ptr) {
1828		/* first call */
1829		flags = btrfs_extent_flags(eb, ei);
1830		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1831			if (key->type == BTRFS_METADATA_ITEM_KEY) {
1832				/* a skinny metadata extent */
1833				*out_eiref =
1834				     (struct btrfs_extent_inline_ref *)(ei + 1);
1835			} else {
1836				WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY);
1837				info = (struct btrfs_tree_block_info *)(ei + 1);
1838				*out_eiref =
1839				   (struct btrfs_extent_inline_ref *)(info + 1);
1840			}
1841		} else {
1842			*out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
1843		}
1844		*ptr = (unsigned long)*out_eiref;
1845		if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size)
1846			return -ENOENT;
1847	}
1848
1849	end = (unsigned long)ei + item_size;
1850	*out_eiref = (struct btrfs_extent_inline_ref *)(*ptr);
1851	*out_type = btrfs_get_extent_inline_ref_type(eb, *out_eiref,
1852						     BTRFS_REF_TYPE_ANY);
1853	if (*out_type == BTRFS_REF_TYPE_INVALID)
1854		return -EUCLEAN;
1855
1856	*ptr += btrfs_extent_inline_ref_size(*out_type);
1857	WARN_ON(*ptr > end);
1858	if (*ptr == end)
1859		return 1; /* last */
1860
1861	return 0;
1862}
1863
1864/*
1865 * reads the tree block backref for an extent. tree level and root are returned
1866 * through out_level and out_root. ptr must point to a 0 value for the first
1867 * call and may be modified (see get_extent_inline_ref comment).
1868 * returns 0 if data was provided, 1 if there was no more data to provide or
1869 * <0 on error.
1870 */
1871int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
1872			    struct btrfs_key *key, struct btrfs_extent_item *ei,
1873			    u32 item_size, u64 *out_root, u8 *out_level)
1874{
1875	int ret;
1876	int type;
 
1877	struct btrfs_extent_inline_ref *eiref;
1878
1879	if (*ptr == (unsigned long)-1)
1880		return 1;
1881
1882	while (1) {
1883		ret = get_extent_inline_ref(ptr, eb, key, ei, item_size,
1884					      &eiref, &type);
1885		if (ret < 0)
1886			return ret;
1887
1888		if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1889		    type == BTRFS_SHARED_BLOCK_REF_KEY)
1890			break;
1891
1892		if (ret == 1)
1893			return 1;
1894	}
1895
1896	/* we can treat both ref types equally here */
 
1897	*out_root = btrfs_extent_inline_ref_offset(eb, eiref);
1898
1899	if (key->type == BTRFS_EXTENT_ITEM_KEY) {
1900		struct btrfs_tree_block_info *info;
1901
1902		info = (struct btrfs_tree_block_info *)(ei + 1);
1903		*out_level = btrfs_tree_block_level(eb, info);
1904	} else {
1905		ASSERT(key->type == BTRFS_METADATA_ITEM_KEY);
1906		*out_level = (u8)key->offset;
1907	}
1908
1909	if (ret == 1)
1910		*ptr = (unsigned long)-1;
1911
1912	return 0;
1913}
1914
1915static int iterate_leaf_refs(struct btrfs_fs_info *fs_info,
1916			     struct extent_inode_elem *inode_list,
1917			     u64 root, u64 extent_item_objectid,
1918			     iterate_extent_inodes_t *iterate, void *ctx)
1919{
1920	struct extent_inode_elem *eie;
1921	int ret = 0;
1922
1923	for (eie = inode_list; eie; eie = eie->next) {
1924		btrfs_debug(fs_info,
1925			    "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu",
1926			    extent_item_objectid, eie->inum,
1927			    eie->offset, root);
1928		ret = iterate(eie->inum, eie->offset, root, ctx);
1929		if (ret) {
1930			btrfs_debug(fs_info,
1931				    "stopping iteration for %llu due to ret=%d",
1932				    extent_item_objectid, ret);
1933			break;
1934		}
1935	}
1936
1937	return ret;
1938}
1939
1940/*
1941 * calls iterate() for every inode that references the extent identified by
1942 * the given parameters.
1943 * when the iterator function returns a non-zero value, iteration stops.
1944 */
1945int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
1946				u64 extent_item_objectid, u64 extent_item_pos,
1947				int search_commit_root,
1948				iterate_extent_inodes_t *iterate, void *ctx,
1949				bool ignore_offset)
1950{
1951	int ret;
1952	struct btrfs_trans_handle *trans = NULL;
 
 
1953	struct ulist *refs = NULL;
1954	struct ulist *roots = NULL;
1955	struct ulist_node *ref_node = NULL;
1956	struct ulist_node *root_node = NULL;
1957	struct btrfs_seq_list seq_elem = BTRFS_SEQ_LIST_INIT(seq_elem);
 
1958	struct ulist_iterator ref_uiter;
1959	struct ulist_iterator root_uiter;
 
1960
1961	btrfs_debug(fs_info, "resolving all inodes for extent %llu",
1962			extent_item_objectid);
1963
1964	if (!search_commit_root) {
1965		trans = btrfs_attach_transaction(fs_info->extent_root);
1966		if (IS_ERR(trans)) {
1967			if (PTR_ERR(trans) != -ENOENT &&
1968			    PTR_ERR(trans) != -EROFS)
1969				return PTR_ERR(trans);
1970			trans = NULL;
1971		}
 
 
 
 
1972	}
1973
1974	if (trans)
1975		btrfs_get_tree_mod_seq(fs_info, &seq_elem);
1976	else
1977		down_read(&fs_info->commit_root_sem);
1978
1979	ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
1980				   seq_elem.seq, &refs,
1981				   &extent_item_pos, ignore_offset);
1982	if (ret)
1983		goto out;
1984
1985	ULIST_ITER_INIT(&ref_uiter);
1986	while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
1987		ret = btrfs_find_all_roots_safe(trans, fs_info, ref_node->val,
1988						seq_elem.seq, &roots,
1989						ignore_offset);
1990		if (ret)
1991			break;
1992		ULIST_ITER_INIT(&root_uiter);
1993		while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
1994			btrfs_debug(fs_info,
1995				    "root %llu references leaf %llu, data list %#llx",
1996				    root_node->val, ref_node->val,
1997				    ref_node->aux);
1998			ret = iterate_leaf_refs(fs_info,
1999						(struct extent_inode_elem *)
2000						(uintptr_t)ref_node->aux,
2001						root_node->val,
2002						extent_item_objectid,
2003						iterate, ctx);
2004		}
2005		ulist_free(roots);
 
2006	}
2007
2008	free_leaf_list(refs);
 
2009out:
2010	if (trans) {
2011		btrfs_put_tree_mod_seq(fs_info, &seq_elem);
2012		btrfs_end_transaction(trans);
2013	} else {
2014		up_read(&fs_info->commit_root_sem);
2015	}
2016
2017	return ret;
2018}
2019
2020int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
2021				struct btrfs_path *path,
2022				iterate_extent_inodes_t *iterate, void *ctx,
2023				bool ignore_offset)
2024{
2025	int ret;
2026	u64 extent_item_pos;
2027	u64 flags = 0;
2028	struct btrfs_key found_key;
2029	int search_commit_root = path->search_commit_root;
2030
2031	ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
 
2032	btrfs_release_path(path);
 
 
2033	if (ret < 0)
2034		return ret;
2035	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
2036		return -EINVAL;
2037
2038	extent_item_pos = logical - found_key.objectid;
2039	ret = iterate_extent_inodes(fs_info, found_key.objectid,
2040					extent_item_pos, search_commit_root,
2041					iterate, ctx, ignore_offset);
2042
2043	return ret;
2044}
2045
2046typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
2047			      struct extent_buffer *eb, void *ctx);
2048
2049static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
2050			      struct btrfs_path *path,
2051			      iterate_irefs_t *iterate, void *ctx)
2052{
2053	int ret = 0;
2054	int slot;
2055	u32 cur;
2056	u32 len;
2057	u32 name_len;
2058	u64 parent = 0;
2059	int found = 0;
2060	struct extent_buffer *eb;
2061	struct btrfs_item *item;
2062	struct btrfs_inode_ref *iref;
2063	struct btrfs_key found_key;
2064
2065	while (!ret) {
2066		ret = btrfs_find_item(fs_root, path, inum,
2067				parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY,
2068				&found_key);
2069
2070		if (ret < 0)
2071			break;
2072		if (ret) {
2073			ret = found ? 0 : -ENOENT;
2074			break;
2075		}
2076		++found;
2077
2078		parent = found_key.offset;
2079		slot = path->slots[0];
2080		eb = btrfs_clone_extent_buffer(path->nodes[0]);
2081		if (!eb) {
2082			ret = -ENOMEM;
2083			break;
2084		}
2085		btrfs_release_path(path);
2086
2087		item = btrfs_item_nr(slot);
2088		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
2089
2090		for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
2091			name_len = btrfs_inode_ref_name_len(eb, iref);
2092			/* path must be released before calling iterate()! */
2093			btrfs_debug(fs_root->fs_info,
2094				"following ref at offset %u for inode %llu in tree %llu",
2095				cur, found_key.objectid,
2096				fs_root->root_key.objectid);
2097			ret = iterate(parent, name_len,
2098				      (unsigned long)(iref + 1), eb, ctx);
2099			if (ret)
2100				break;
2101			len = sizeof(*iref) + name_len;
2102			iref = (struct btrfs_inode_ref *)((char *)iref + len);
2103		}
 
2104		free_extent_buffer(eb);
2105	}
2106
2107	btrfs_release_path(path);
2108
2109	return ret;
2110}
2111
2112static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
2113				 struct btrfs_path *path,
2114				 iterate_irefs_t *iterate, void *ctx)
2115{
2116	int ret;
2117	int slot;
2118	u64 offset = 0;
2119	u64 parent;
2120	int found = 0;
2121	struct extent_buffer *eb;
2122	struct btrfs_inode_extref *extref;
2123	u32 item_size;
2124	u32 cur_offset;
2125	unsigned long ptr;
2126
2127	while (1) {
2128		ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
2129					    &offset);
2130		if (ret < 0)
2131			break;
2132		if (ret) {
2133			ret = found ? 0 : -ENOENT;
2134			break;
2135		}
2136		++found;
2137
2138		slot = path->slots[0];
2139		eb = btrfs_clone_extent_buffer(path->nodes[0]);
2140		if (!eb) {
2141			ret = -ENOMEM;
2142			break;
2143		}
2144		btrfs_release_path(path);
2145
2146		item_size = btrfs_item_size_nr(eb, slot);
2147		ptr = btrfs_item_ptr_offset(eb, slot);
2148		cur_offset = 0;
2149
2150		while (cur_offset < item_size) {
2151			u32 name_len;
2152
2153			extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
2154			parent = btrfs_inode_extref_parent(eb, extref);
2155			name_len = btrfs_inode_extref_name_len(eb, extref);
2156			ret = iterate(parent, name_len,
2157				      (unsigned long)&extref->name, eb, ctx);
2158			if (ret)
2159				break;
2160
2161			cur_offset += btrfs_inode_extref_name_len(eb, extref);
2162			cur_offset += sizeof(*extref);
2163		}
2164		free_extent_buffer(eb);
2165
2166		offset++;
2167	}
2168
2169	btrfs_release_path(path);
2170
2171	return ret;
2172}
2173
2174static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
2175			 struct btrfs_path *path, iterate_irefs_t *iterate,
2176			 void *ctx)
2177{
2178	int ret;
2179	int found_refs = 0;
2180
2181	ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
2182	if (!ret)
2183		++found_refs;
2184	else if (ret != -ENOENT)
2185		return ret;
2186
2187	ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
2188	if (ret == -ENOENT && found_refs)
2189		return 0;
2190
2191	return ret;
2192}
2193
2194/*
2195 * returns 0 if the path could be dumped (probably truncated)
2196 * returns <0 in case of an error
2197 */
2198static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
2199			 struct extent_buffer *eb, void *ctx)
2200{
2201	struct inode_fs_paths *ipath = ctx;
2202	char *fspath;
2203	char *fspath_min;
2204	int i = ipath->fspath->elem_cnt;
2205	const int s_ptr = sizeof(char *);
2206	u32 bytes_left;
2207
2208	bytes_left = ipath->fspath->bytes_left > s_ptr ?
2209					ipath->fspath->bytes_left - s_ptr : 0;
2210
2211	fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
2212	fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
2213				   name_off, eb, inum, fspath_min, bytes_left);
2214	if (IS_ERR(fspath))
2215		return PTR_ERR(fspath);
2216
2217	if (fspath > fspath_min) {
 
2218		ipath->fspath->val[i] = (u64)(unsigned long)fspath;
2219		++ipath->fspath->elem_cnt;
2220		ipath->fspath->bytes_left = fspath - fspath_min;
2221	} else {
 
 
 
2222		++ipath->fspath->elem_missed;
2223		ipath->fspath->bytes_missing += fspath_min - fspath;
2224		ipath->fspath->bytes_left = 0;
2225	}
2226
2227	return 0;
2228}
2229
2230/*
2231 * this dumps all file system paths to the inode into the ipath struct, provided
2232 * is has been created large enough. each path is zero-terminated and accessed
2233 * from ipath->fspath->val[i].
2234 * when it returns, there are ipath->fspath->elem_cnt number of paths available
2235 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
2236 * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise,
2237 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
2238 * have been needed to return all paths.
2239 */
2240int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
2241{
2242	return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
2243			     inode_to_path, ipath);
2244}
2245
2246struct btrfs_data_container *init_data_container(u32 total_bytes)
2247{
2248	struct btrfs_data_container *data;
2249	size_t alloc_bytes;
2250
2251	alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
2252	data = kvmalloc(alloc_bytes, GFP_KERNEL);
2253	if (!data)
2254		return ERR_PTR(-ENOMEM);
2255
2256	if (total_bytes >= sizeof(*data)) {
2257		data->bytes_left = total_bytes - sizeof(*data);
2258		data->bytes_missing = 0;
2259	} else {
2260		data->bytes_missing = sizeof(*data) - total_bytes;
2261		data->bytes_left = 0;
2262	}
2263
2264	data->elem_cnt = 0;
2265	data->elem_missed = 0;
2266
2267	return data;
2268}
2269
2270/*
2271 * allocates space to return multiple file system paths for an inode.
2272 * total_bytes to allocate are passed, note that space usable for actual path
2273 * information will be total_bytes - sizeof(struct inode_fs_paths).
2274 * the returned pointer must be freed with free_ipath() in the end.
2275 */
2276struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
2277					struct btrfs_path *path)
2278{
2279	struct inode_fs_paths *ifp;
2280	struct btrfs_data_container *fspath;
2281
2282	fspath = init_data_container(total_bytes);
2283	if (IS_ERR(fspath))
2284		return ERR_CAST(fspath);
2285
2286	ifp = kmalloc(sizeof(*ifp), GFP_KERNEL);
2287	if (!ifp) {
2288		kvfree(fspath);
2289		return ERR_PTR(-ENOMEM);
2290	}
2291
2292	ifp->btrfs_path = path;
2293	ifp->fspath = fspath;
2294	ifp->fs_root = fs_root;
2295
2296	return ifp;
2297}
2298
2299void free_ipath(struct inode_fs_paths *ipath)
2300{
2301	if (!ipath)
2302		return;
2303	kvfree(ipath->fspath);
2304	kfree(ipath);
2305}
2306
2307struct btrfs_backref_iter *btrfs_backref_iter_alloc(
2308		struct btrfs_fs_info *fs_info, gfp_t gfp_flag)
2309{
2310	struct btrfs_backref_iter *ret;
2311
2312	ret = kzalloc(sizeof(*ret), gfp_flag);
2313	if (!ret)
2314		return NULL;
2315
2316	ret->path = btrfs_alloc_path();
2317	if (!ret->path) {
2318		kfree(ret);
2319		return NULL;
2320	}
2321
2322	/* Current backref iterator only supports iteration in commit root */
2323	ret->path->search_commit_root = 1;
2324	ret->path->skip_locking = 1;
2325	ret->fs_info = fs_info;
2326
2327	return ret;
2328}
2329
2330int btrfs_backref_iter_start(struct btrfs_backref_iter *iter, u64 bytenr)
2331{
2332	struct btrfs_fs_info *fs_info = iter->fs_info;
2333	struct btrfs_path *path = iter->path;
2334	struct btrfs_extent_item *ei;
2335	struct btrfs_key key;
2336	int ret;
2337
2338	key.objectid = bytenr;
2339	key.type = BTRFS_METADATA_ITEM_KEY;
2340	key.offset = (u64)-1;
2341	iter->bytenr = bytenr;
2342
2343	ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
2344	if (ret < 0)
2345		return ret;
2346	if (ret == 0) {
2347		ret = -EUCLEAN;
2348		goto release;
2349	}
2350	if (path->slots[0] == 0) {
2351		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
2352		ret = -EUCLEAN;
2353		goto release;
2354	}
2355	path->slots[0]--;
2356
2357	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2358	if ((key.type != BTRFS_EXTENT_ITEM_KEY &&
2359	     key.type != BTRFS_METADATA_ITEM_KEY) || key.objectid != bytenr) {
2360		ret = -ENOENT;
2361		goto release;
2362	}
2363	memcpy(&iter->cur_key, &key, sizeof(key));
2364	iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2365						    path->slots[0]);
2366	iter->end_ptr = (u32)(iter->item_ptr +
2367			btrfs_item_size_nr(path->nodes[0], path->slots[0]));
2368	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
2369			    struct btrfs_extent_item);
2370
2371	/*
2372	 * Only support iteration on tree backref yet.
2373	 *
2374	 * This is an extra precaution for non skinny-metadata, where
2375	 * EXTENT_ITEM is also used for tree blocks, that we can only use
2376	 * extent flags to determine if it's a tree block.
2377	 */
2378	if (btrfs_extent_flags(path->nodes[0], ei) & BTRFS_EXTENT_FLAG_DATA) {
2379		ret = -ENOTSUPP;
2380		goto release;
2381	}
2382	iter->cur_ptr = (u32)(iter->item_ptr + sizeof(*ei));
2383
2384	/* If there is no inline backref, go search for keyed backref */
2385	if (iter->cur_ptr >= iter->end_ptr) {
2386		ret = btrfs_next_item(fs_info->extent_root, path);
2387
2388		/* No inline nor keyed ref */
2389		if (ret > 0) {
2390			ret = -ENOENT;
2391			goto release;
2392		}
2393		if (ret < 0)
2394			goto release;
2395
2396		btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key,
2397				path->slots[0]);
2398		if (iter->cur_key.objectid != bytenr ||
2399		    (iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY &&
2400		     iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY)) {
2401			ret = -ENOENT;
2402			goto release;
2403		}
2404		iter->cur_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2405							   path->slots[0]);
2406		iter->item_ptr = iter->cur_ptr;
2407		iter->end_ptr = (u32)(iter->item_ptr + btrfs_item_size_nr(
2408				      path->nodes[0], path->slots[0]));
2409	}
2410
2411	return 0;
2412release:
2413	btrfs_backref_iter_release(iter);
2414	return ret;
2415}
2416
2417/*
2418 * Go to the next backref item of current bytenr, can be either inlined or
2419 * keyed.
2420 *
2421 * Caller needs to check whether it's inline ref or not by iter->cur_key.
2422 *
2423 * Return 0 if we get next backref without problem.
2424 * Return >0 if there is no extra backref for this bytenr.
2425 * Return <0 if there is something wrong happened.
2426 */
2427int btrfs_backref_iter_next(struct btrfs_backref_iter *iter)
2428{
2429	struct extent_buffer *eb = btrfs_backref_get_eb(iter);
2430	struct btrfs_path *path = iter->path;
2431	struct btrfs_extent_inline_ref *iref;
2432	int ret;
2433	u32 size;
2434
2435	if (btrfs_backref_iter_is_inline_ref(iter)) {
2436		/* We're still inside the inline refs */
2437		ASSERT(iter->cur_ptr < iter->end_ptr);
2438
2439		if (btrfs_backref_has_tree_block_info(iter)) {
2440			/* First tree block info */
2441			size = sizeof(struct btrfs_tree_block_info);
2442		} else {
2443			/* Use inline ref type to determine the size */
2444			int type;
2445
2446			iref = (struct btrfs_extent_inline_ref *)
2447				((unsigned long)iter->cur_ptr);
2448			type = btrfs_extent_inline_ref_type(eb, iref);
2449
2450			size = btrfs_extent_inline_ref_size(type);
2451		}
2452		iter->cur_ptr += size;
2453		if (iter->cur_ptr < iter->end_ptr)
2454			return 0;
2455
2456		/* All inline items iterated, fall through */
2457	}
2458
2459	/* We're at keyed items, there is no inline item, go to the next one */
2460	ret = btrfs_next_item(iter->fs_info->extent_root, iter->path);
2461	if (ret)
2462		return ret;
2463
2464	btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key, path->slots[0]);
2465	if (iter->cur_key.objectid != iter->bytenr ||
2466	    (iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY &&
2467	     iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY))
2468		return 1;
2469	iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2470					path->slots[0]);
2471	iter->cur_ptr = iter->item_ptr;
2472	iter->end_ptr = iter->item_ptr + (u32)btrfs_item_size_nr(path->nodes[0],
2473						path->slots[0]);
2474	return 0;
2475}
2476
2477void btrfs_backref_init_cache(struct btrfs_fs_info *fs_info,
2478			      struct btrfs_backref_cache *cache, int is_reloc)
2479{
2480	int i;
2481
2482	cache->rb_root = RB_ROOT;
2483	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
2484		INIT_LIST_HEAD(&cache->pending[i]);
2485	INIT_LIST_HEAD(&cache->changed);
2486	INIT_LIST_HEAD(&cache->detached);
2487	INIT_LIST_HEAD(&cache->leaves);
2488	INIT_LIST_HEAD(&cache->pending_edge);
2489	INIT_LIST_HEAD(&cache->useless_node);
2490	cache->fs_info = fs_info;
2491	cache->is_reloc = is_reloc;
2492}
2493
2494struct btrfs_backref_node *btrfs_backref_alloc_node(
2495		struct btrfs_backref_cache *cache, u64 bytenr, int level)
2496{
2497	struct btrfs_backref_node *node;
2498
2499	ASSERT(level >= 0 && level < BTRFS_MAX_LEVEL);
2500	node = kzalloc(sizeof(*node), GFP_NOFS);
2501	if (!node)
2502		return node;
2503
2504	INIT_LIST_HEAD(&node->list);
2505	INIT_LIST_HEAD(&node->upper);
2506	INIT_LIST_HEAD(&node->lower);
2507	RB_CLEAR_NODE(&node->rb_node);
2508	cache->nr_nodes++;
2509	node->level = level;
2510	node->bytenr = bytenr;
2511
2512	return node;
2513}
2514
2515struct btrfs_backref_edge *btrfs_backref_alloc_edge(
2516		struct btrfs_backref_cache *cache)
2517{
2518	struct btrfs_backref_edge *edge;
2519
2520	edge = kzalloc(sizeof(*edge), GFP_NOFS);
2521	if (edge)
2522		cache->nr_edges++;
2523	return edge;
2524}
2525
2526/*
2527 * Drop the backref node from cache, also cleaning up all its
2528 * upper edges and any uncached nodes in the path.
2529 *
2530 * This cleanup happens bottom up, thus the node should either
2531 * be the lowest node in the cache or a detached node.
2532 */
2533void btrfs_backref_cleanup_node(struct btrfs_backref_cache *cache,
2534				struct btrfs_backref_node *node)
2535{
2536	struct btrfs_backref_node *upper;
2537	struct btrfs_backref_edge *edge;
2538
2539	if (!node)
2540		return;
2541
2542	BUG_ON(!node->lowest && !node->detached);
2543	while (!list_empty(&node->upper)) {
2544		edge = list_entry(node->upper.next, struct btrfs_backref_edge,
2545				  list[LOWER]);
2546		upper = edge->node[UPPER];
2547		list_del(&edge->list[LOWER]);
2548		list_del(&edge->list[UPPER]);
2549		btrfs_backref_free_edge(cache, edge);
2550
2551		/*
2552		 * Add the node to leaf node list if no other child block
2553		 * cached.
2554		 */
2555		if (list_empty(&upper->lower)) {
2556			list_add_tail(&upper->lower, &cache->leaves);
2557			upper->lowest = 1;
2558		}
2559	}
2560
2561	btrfs_backref_drop_node(cache, node);
2562}
2563
2564/*
2565 * Release all nodes/edges from current cache
2566 */
2567void btrfs_backref_release_cache(struct btrfs_backref_cache *cache)
2568{
2569	struct btrfs_backref_node *node;
2570	int i;
2571
2572	while (!list_empty(&cache->detached)) {
2573		node = list_entry(cache->detached.next,
2574				  struct btrfs_backref_node, list);
2575		btrfs_backref_cleanup_node(cache, node);
2576	}
2577
2578	while (!list_empty(&cache->leaves)) {
2579		node = list_entry(cache->leaves.next,
2580				  struct btrfs_backref_node, lower);
2581		btrfs_backref_cleanup_node(cache, node);
2582	}
2583
2584	cache->last_trans = 0;
2585
2586	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
2587		ASSERT(list_empty(&cache->pending[i]));
2588	ASSERT(list_empty(&cache->pending_edge));
2589	ASSERT(list_empty(&cache->useless_node));
2590	ASSERT(list_empty(&cache->changed));
2591	ASSERT(list_empty(&cache->detached));
2592	ASSERT(RB_EMPTY_ROOT(&cache->rb_root));
2593	ASSERT(!cache->nr_nodes);
2594	ASSERT(!cache->nr_edges);
2595}
2596
2597/*
2598 * Handle direct tree backref
2599 *
2600 * Direct tree backref means, the backref item shows its parent bytenr
2601 * directly. This is for SHARED_BLOCK_REF backref (keyed or inlined).
2602 *
2603 * @ref_key:	The converted backref key.
2604 *		For keyed backref, it's the item key.
2605 *		For inlined backref, objectid is the bytenr,
2606 *		type is btrfs_inline_ref_type, offset is
2607 *		btrfs_inline_ref_offset.
2608 */
2609static int handle_direct_tree_backref(struct btrfs_backref_cache *cache,
2610				      struct btrfs_key *ref_key,
2611				      struct btrfs_backref_node *cur)
2612{
2613	struct btrfs_backref_edge *edge;
2614	struct btrfs_backref_node *upper;
2615	struct rb_node *rb_node;
2616
2617	ASSERT(ref_key->type == BTRFS_SHARED_BLOCK_REF_KEY);
2618
2619	/* Only reloc root uses backref pointing to itself */
2620	if (ref_key->objectid == ref_key->offset) {
2621		struct btrfs_root *root;
2622
2623		cur->is_reloc_root = 1;
2624		/* Only reloc backref cache cares about a specific root */
2625		if (cache->is_reloc) {
2626			root = find_reloc_root(cache->fs_info, cur->bytenr);
2627			if (!root)
2628				return -ENOENT;
2629			cur->root = root;
2630		} else {
2631			/*
2632			 * For generic purpose backref cache, reloc root node
2633			 * is useless.
2634			 */
2635			list_add(&cur->list, &cache->useless_node);
2636		}
2637		return 0;
2638	}
2639
2640	edge = btrfs_backref_alloc_edge(cache);
2641	if (!edge)
2642		return -ENOMEM;
2643
2644	rb_node = rb_simple_search(&cache->rb_root, ref_key->offset);
2645	if (!rb_node) {
2646		/* Parent node not yet cached */
2647		upper = btrfs_backref_alloc_node(cache, ref_key->offset,
2648					   cur->level + 1);
2649		if (!upper) {
2650			btrfs_backref_free_edge(cache, edge);
2651			return -ENOMEM;
2652		}
2653
2654		/*
2655		 *  Backrefs for the upper level block isn't cached, add the
2656		 *  block to pending list
2657		 */
2658		list_add_tail(&edge->list[UPPER], &cache->pending_edge);
2659	} else {
2660		/* Parent node already cached */
2661		upper = rb_entry(rb_node, struct btrfs_backref_node, rb_node);
2662		ASSERT(upper->checked);
2663		INIT_LIST_HEAD(&edge->list[UPPER]);
2664	}
2665	btrfs_backref_link_edge(edge, cur, upper, LINK_LOWER);
2666	return 0;
2667}
2668
2669/*
2670 * Handle indirect tree backref
2671 *
2672 * Indirect tree backref means, we only know which tree the node belongs to.
2673 * We still need to do a tree search to find out the parents. This is for
2674 * TREE_BLOCK_REF backref (keyed or inlined).
2675 *
2676 * @ref_key:	The same as @ref_key in  handle_direct_tree_backref()
2677 * @tree_key:	The first key of this tree block.
2678 * @path:	A clean (released) path, to avoid allocating path every time
2679 *		the function get called.
2680 */
2681static int handle_indirect_tree_backref(struct btrfs_backref_cache *cache,
2682					struct btrfs_path *path,
2683					struct btrfs_key *ref_key,
2684					struct btrfs_key *tree_key,
2685					struct btrfs_backref_node *cur)
2686{
2687	struct btrfs_fs_info *fs_info = cache->fs_info;
2688	struct btrfs_backref_node *upper;
2689	struct btrfs_backref_node *lower;
2690	struct btrfs_backref_edge *edge;
2691	struct extent_buffer *eb;
2692	struct btrfs_root *root;
2693	struct rb_node *rb_node;
2694	int level;
2695	bool need_check = true;
2696	int ret;
2697
2698	root = btrfs_get_fs_root(fs_info, ref_key->offset, false);
2699	if (IS_ERR(root))
2700		return PTR_ERR(root);
2701	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
2702		cur->cowonly = 1;
2703
2704	if (btrfs_root_level(&root->root_item) == cur->level) {
2705		/* Tree root */
2706		ASSERT(btrfs_root_bytenr(&root->root_item) == cur->bytenr);
2707		/*
2708		 * For reloc backref cache, we may ignore reloc root.  But for
2709		 * general purpose backref cache, we can't rely on
2710		 * btrfs_should_ignore_reloc_root() as it may conflict with
2711		 * current running relocation and lead to missing root.
2712		 *
2713		 * For general purpose backref cache, reloc root detection is
2714		 * completely relying on direct backref (key->offset is parent
2715		 * bytenr), thus only do such check for reloc cache.
2716		 */
2717		if (btrfs_should_ignore_reloc_root(root) && cache->is_reloc) {
2718			btrfs_put_root(root);
2719			list_add(&cur->list, &cache->useless_node);
2720		} else {
2721			cur->root = root;
2722		}
2723		return 0;
2724	}
2725
2726	level = cur->level + 1;
2727
2728	/* Search the tree to find parent blocks referring to the block */
2729	path->search_commit_root = 1;
2730	path->skip_locking = 1;
2731	path->lowest_level = level;
2732	ret = btrfs_search_slot(NULL, root, tree_key, path, 0, 0);
2733	path->lowest_level = 0;
2734	if (ret < 0) {
2735		btrfs_put_root(root);
2736		return ret;
2737	}
2738	if (ret > 0 && path->slots[level] > 0)
2739		path->slots[level]--;
2740
2741	eb = path->nodes[level];
2742	if (btrfs_node_blockptr(eb, path->slots[level]) != cur->bytenr) {
2743		btrfs_err(fs_info,
2744"couldn't find block (%llu) (level %d) in tree (%llu) with key (%llu %u %llu)",
2745			  cur->bytenr, level - 1, root->root_key.objectid,
2746			  tree_key->objectid, tree_key->type, tree_key->offset);
2747		btrfs_put_root(root);
2748		ret = -ENOENT;
2749		goto out;
2750	}
2751	lower = cur;
2752
2753	/* Add all nodes and edges in the path */
2754	for (; level < BTRFS_MAX_LEVEL; level++) {
2755		if (!path->nodes[level]) {
2756			ASSERT(btrfs_root_bytenr(&root->root_item) ==
2757			       lower->bytenr);
2758			/* Same as previous should_ignore_reloc_root() call */
2759			if (btrfs_should_ignore_reloc_root(root) &&
2760			    cache->is_reloc) {
2761				btrfs_put_root(root);
2762				list_add(&lower->list, &cache->useless_node);
2763			} else {
2764				lower->root = root;
2765			}
2766			break;
2767		}
2768
2769		edge = btrfs_backref_alloc_edge(cache);
2770		if (!edge) {
2771			btrfs_put_root(root);
2772			ret = -ENOMEM;
2773			goto out;
2774		}
2775
2776		eb = path->nodes[level];
2777		rb_node = rb_simple_search(&cache->rb_root, eb->start);
2778		if (!rb_node) {
2779			upper = btrfs_backref_alloc_node(cache, eb->start,
2780							 lower->level + 1);
2781			if (!upper) {
2782				btrfs_put_root(root);
2783				btrfs_backref_free_edge(cache, edge);
2784				ret = -ENOMEM;
2785				goto out;
2786			}
2787			upper->owner = btrfs_header_owner(eb);
2788			if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
2789				upper->cowonly = 1;
2790
2791			/*
2792			 * If we know the block isn't shared we can avoid
2793			 * checking its backrefs.
2794			 */
2795			if (btrfs_block_can_be_shared(root, eb))
2796				upper->checked = 0;
2797			else
2798				upper->checked = 1;
2799
2800			/*
2801			 * Add the block to pending list if we need to check its
2802			 * backrefs, we only do this once while walking up a
2803			 * tree as we will catch anything else later on.
2804			 */
2805			if (!upper->checked && need_check) {
2806				need_check = false;
2807				list_add_tail(&edge->list[UPPER],
2808					      &cache->pending_edge);
2809			} else {
2810				if (upper->checked)
2811					need_check = true;
2812				INIT_LIST_HEAD(&edge->list[UPPER]);
2813			}
2814		} else {
2815			upper = rb_entry(rb_node, struct btrfs_backref_node,
2816					 rb_node);
2817			ASSERT(upper->checked);
2818			INIT_LIST_HEAD(&edge->list[UPPER]);
2819			if (!upper->owner)
2820				upper->owner = btrfs_header_owner(eb);
2821		}
2822		btrfs_backref_link_edge(edge, lower, upper, LINK_LOWER);
2823
2824		if (rb_node) {
2825			btrfs_put_root(root);
2826			break;
2827		}
2828		lower = upper;
2829		upper = NULL;
2830	}
2831out:
2832	btrfs_release_path(path);
2833	return ret;
2834}
2835
2836/*
2837 * Add backref node @cur into @cache.
2838 *
2839 * NOTE: Even if the function returned 0, @cur is not yet cached as its upper
2840 *	 links aren't yet bi-directional. Needs to finish such links.
2841 *	 Use btrfs_backref_finish_upper_links() to finish such linkage.
2842 *
2843 * @path:	Released path for indirect tree backref lookup
2844 * @iter:	Released backref iter for extent tree search
2845 * @node_key:	The first key of the tree block
2846 */
2847int btrfs_backref_add_tree_node(struct btrfs_backref_cache *cache,
2848				struct btrfs_path *path,
2849				struct btrfs_backref_iter *iter,
2850				struct btrfs_key *node_key,
2851				struct btrfs_backref_node *cur)
2852{
2853	struct btrfs_fs_info *fs_info = cache->fs_info;
2854	struct btrfs_backref_edge *edge;
2855	struct btrfs_backref_node *exist;
2856	int ret;
2857
2858	ret = btrfs_backref_iter_start(iter, cur->bytenr);
2859	if (ret < 0)
2860		return ret;
2861	/*
2862	 * We skip the first btrfs_tree_block_info, as we don't use the key
2863	 * stored in it, but fetch it from the tree block
2864	 */
2865	if (btrfs_backref_has_tree_block_info(iter)) {
2866		ret = btrfs_backref_iter_next(iter);
2867		if (ret < 0)
2868			goto out;
2869		/* No extra backref? This means the tree block is corrupted */
2870		if (ret > 0) {
2871			ret = -EUCLEAN;
2872			goto out;
2873		}
2874	}
2875	WARN_ON(cur->checked);
2876	if (!list_empty(&cur->upper)) {
2877		/*
2878		 * The backref was added previously when processing backref of
2879		 * type BTRFS_TREE_BLOCK_REF_KEY
2880		 */
2881		ASSERT(list_is_singular(&cur->upper));
2882		edge = list_entry(cur->upper.next, struct btrfs_backref_edge,
2883				  list[LOWER]);
2884		ASSERT(list_empty(&edge->list[UPPER]));
2885		exist = edge->node[UPPER];
2886		/*
2887		 * Add the upper level block to pending list if we need check
2888		 * its backrefs
2889		 */
2890		if (!exist->checked)
2891			list_add_tail(&edge->list[UPPER], &cache->pending_edge);
2892	} else {
2893		exist = NULL;
2894	}
2895
2896	for (; ret == 0; ret = btrfs_backref_iter_next(iter)) {
2897		struct extent_buffer *eb;
2898		struct btrfs_key key;
2899		int type;
2900
2901		cond_resched();
2902		eb = btrfs_backref_get_eb(iter);
2903
2904		key.objectid = iter->bytenr;
2905		if (btrfs_backref_iter_is_inline_ref(iter)) {
2906			struct btrfs_extent_inline_ref *iref;
2907
2908			/* Update key for inline backref */
2909			iref = (struct btrfs_extent_inline_ref *)
2910				((unsigned long)iter->cur_ptr);
2911			type = btrfs_get_extent_inline_ref_type(eb, iref,
2912							BTRFS_REF_TYPE_BLOCK);
2913			if (type == BTRFS_REF_TYPE_INVALID) {
2914				ret = -EUCLEAN;
2915				goto out;
2916			}
2917			key.type = type;
2918			key.offset = btrfs_extent_inline_ref_offset(eb, iref);
2919		} else {
2920			key.type = iter->cur_key.type;
2921			key.offset = iter->cur_key.offset;
2922		}
2923
2924		/*
2925		 * Parent node found and matches current inline ref, no need to
2926		 * rebuild this node for this inline ref
2927		 */
2928		if (exist &&
2929		    ((key.type == BTRFS_TREE_BLOCK_REF_KEY &&
2930		      exist->owner == key.offset) ||
2931		     (key.type == BTRFS_SHARED_BLOCK_REF_KEY &&
2932		      exist->bytenr == key.offset))) {
2933			exist = NULL;
2934			continue;
2935		}
2936
2937		/* SHARED_BLOCK_REF means key.offset is the parent bytenr */
2938		if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) {
2939			ret = handle_direct_tree_backref(cache, &key, cur);
2940			if (ret < 0)
2941				goto out;
2942			continue;
2943		} else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
2944			ret = -EINVAL;
2945			btrfs_print_v0_err(fs_info);
2946			btrfs_handle_fs_error(fs_info, ret, NULL);
2947			goto out;
2948		} else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) {
2949			continue;
2950		}
2951
2952		/*
2953		 * key.type == BTRFS_TREE_BLOCK_REF_KEY, inline ref offset
2954		 * means the root objectid. We need to search the tree to get
2955		 * its parent bytenr.
2956		 */
2957		ret = handle_indirect_tree_backref(cache, path, &key, node_key,
2958						   cur);
2959		if (ret < 0)
2960			goto out;
2961	}
2962	ret = 0;
2963	cur->checked = 1;
2964	WARN_ON(exist);
2965out:
2966	btrfs_backref_iter_release(iter);
2967	return ret;
2968}
2969
2970/*
2971 * Finish the upwards linkage created by btrfs_backref_add_tree_node()
2972 */
2973int btrfs_backref_finish_upper_links(struct btrfs_backref_cache *cache,
2974				     struct btrfs_backref_node *start)
2975{
2976	struct list_head *useless_node = &cache->useless_node;
2977	struct btrfs_backref_edge *edge;
2978	struct rb_node *rb_node;
2979	LIST_HEAD(pending_edge);
2980
2981	ASSERT(start->checked);
2982
2983	/* Insert this node to cache if it's not COW-only */
2984	if (!start->cowonly) {
2985		rb_node = rb_simple_insert(&cache->rb_root, start->bytenr,
2986					   &start->rb_node);
2987		if (rb_node)
2988			btrfs_backref_panic(cache->fs_info, start->bytenr,
2989					    -EEXIST);
2990		list_add_tail(&start->lower, &cache->leaves);
2991	}
2992
2993	/*
2994	 * Use breadth first search to iterate all related edges.
2995	 *
2996	 * The starting points are all the edges of this node
2997	 */
2998	list_for_each_entry(edge, &start->upper, list[LOWER])
2999		list_add_tail(&edge->list[UPPER], &pending_edge);
3000
3001	while (!list_empty(&pending_edge)) {
3002		struct btrfs_backref_node *upper;
3003		struct btrfs_backref_node *lower;
3004
3005		edge = list_first_entry(&pending_edge,
3006				struct btrfs_backref_edge, list[UPPER]);
3007		list_del_init(&edge->list[UPPER]);
3008		upper = edge->node[UPPER];
3009		lower = edge->node[LOWER];
3010
3011		/* Parent is detached, no need to keep any edges */
3012		if (upper->detached) {
3013			list_del(&edge->list[LOWER]);
3014			btrfs_backref_free_edge(cache, edge);
3015
3016			/* Lower node is orphan, queue for cleanup */
3017			if (list_empty(&lower->upper))
3018				list_add(&lower->list, useless_node);
3019			continue;
3020		}
3021
3022		/*
3023		 * All new nodes added in current build_backref_tree() haven't
3024		 * been linked to the cache rb tree.
3025		 * So if we have upper->rb_node populated, this means a cache
3026		 * hit. We only need to link the edge, as @upper and all its
3027		 * parents have already been linked.
3028		 */
3029		if (!RB_EMPTY_NODE(&upper->rb_node)) {
3030			if (upper->lowest) {
3031				list_del_init(&upper->lower);
3032				upper->lowest = 0;
3033			}
3034
3035			list_add_tail(&edge->list[UPPER], &upper->lower);
3036			continue;
3037		}
3038
3039		/* Sanity check, we shouldn't have any unchecked nodes */
3040		if (!upper->checked) {
3041			ASSERT(0);
3042			return -EUCLEAN;
3043		}
3044
3045		/* Sanity check, COW-only node has non-COW-only parent */
3046		if (start->cowonly != upper->cowonly) {
3047			ASSERT(0);
3048			return -EUCLEAN;
3049		}
3050
3051		/* Only cache non-COW-only (subvolume trees) tree blocks */
3052		if (!upper->cowonly) {
3053			rb_node = rb_simple_insert(&cache->rb_root, upper->bytenr,
3054						   &upper->rb_node);
3055			if (rb_node) {
3056				btrfs_backref_panic(cache->fs_info,
3057						upper->bytenr, -EEXIST);
3058				return -EUCLEAN;
3059			}
3060		}
3061
3062		list_add_tail(&edge->list[UPPER], &upper->lower);
3063
3064		/*
3065		 * Also queue all the parent edges of this uncached node
3066		 * to finish the upper linkage
3067		 */
3068		list_for_each_entry(edge, &upper->upper, list[LOWER])
3069			list_add_tail(&edge->list[UPPER], &pending_edge);
3070	}
3071	return 0;
3072}
3073
3074void btrfs_backref_error_cleanup(struct btrfs_backref_cache *cache,
3075				 struct btrfs_backref_node *node)
3076{
3077	struct btrfs_backref_node *lower;
3078	struct btrfs_backref_node *upper;
3079	struct btrfs_backref_edge *edge;
3080
3081	while (!list_empty(&cache->useless_node)) {
3082		lower = list_first_entry(&cache->useless_node,
3083				   struct btrfs_backref_node, list);
3084		list_del_init(&lower->list);
3085	}
3086	while (!list_empty(&cache->pending_edge)) {
3087		edge = list_first_entry(&cache->pending_edge,
3088				struct btrfs_backref_edge, list[UPPER]);
3089		list_del(&edge->list[UPPER]);
3090		list_del(&edge->list[LOWER]);
3091		lower = edge->node[LOWER];
3092		upper = edge->node[UPPER];
3093		btrfs_backref_free_edge(cache, edge);
3094
3095		/*
3096		 * Lower is no longer linked to any upper backref nodes and
3097		 * isn't in the cache, we can free it ourselves.
3098		 */
3099		if (list_empty(&lower->upper) &&
3100		    RB_EMPTY_NODE(&lower->rb_node))
3101			list_add(&lower->list, &cache->useless_node);
3102
3103		if (!RB_EMPTY_NODE(&upper->rb_node))
3104			continue;
3105
3106		/* Add this guy's upper edges to the list to process */
3107		list_for_each_entry(edge, &upper->upper, list[LOWER])
3108			list_add_tail(&edge->list[UPPER],
3109				      &cache->pending_edge);
3110		if (list_empty(&upper->upper))
3111			list_add(&upper->list, &cache->useless_node);
3112	}
3113
3114	while (!list_empty(&cache->useless_node)) {
3115		lower = list_first_entry(&cache->useless_node,
3116				   struct btrfs_backref_node, list);
3117		list_del_init(&lower->list);
3118		if (lower == node)
3119			node = NULL;
3120		btrfs_backref_drop_node(cache, lower);
3121	}
3122
3123	btrfs_backref_cleanup_node(cache, node);
3124	ASSERT(list_empty(&cache->useless_node) &&
3125	       list_empty(&cache->pending_edge));
3126}