Linux Audio

Check our new training course

Real-Time Linux with PREEMPT_RT training

Feb 18-20, 2025
Register
Loading...
v3.5.6
 
  1/*
  2 * polling/bitbanging SPI master controller driver utilities
  3 *
  4 * This program is free software; you can redistribute it and/or modify
  5 * it under the terms of the GNU General Public License as published by
  6 * the Free Software Foundation; either version 2 of the License, or
  7 * (at your option) any later version.
  8 *
  9 * This program is distributed in the hope that it will be useful,
 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 12 * GNU General Public License for more details.
 13 *
 14 * You should have received a copy of the GNU General Public License
 15 * along with this program; if not, write to the Free Software
 16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 17 */
 18
 19#include <linux/init.h>
 20#include <linux/spinlock.h>
 21#include <linux/workqueue.h>
 22#include <linux/interrupt.h>
 23#include <linux/module.h>
 24#include <linux/delay.h>
 25#include <linux/errno.h>
 26#include <linux/platform_device.h>
 27#include <linux/slab.h>
 28
 29#include <linux/spi/spi.h>
 30#include <linux/spi/spi_bitbang.h>
 31
 
 
 32
 33/*----------------------------------------------------------------------*/
 34
 35/*
 36 * FIRST PART (OPTIONAL):  word-at-a-time spi_transfer support.
 37 * Use this for GPIO or shift-register level hardware APIs.
 38 *
 39 * spi_bitbang_cs is in spi_device->controller_state, which is unavailable
 40 * to glue code.  These bitbang setup() and cleanup() routines are always
 41 * used, though maybe they're called from controller-aware code.
 42 *
 43 * chipselect() and friends may use use spi_device->controller_data and
 44 * controller registers as appropriate.
 45 *
 46 *
 47 * NOTE:  SPI controller pins can often be used as GPIO pins instead,
 48 * which means you could use a bitbang driver either to get hardware
 49 * working quickly, or testing for differences that aren't speed related.
 50 */
 51
 52struct spi_bitbang_cs {
 53	unsigned	nsecs;	/* (clock cycle time)/2 */
 54	u32		(*txrx_word)(struct spi_device *spi, unsigned nsecs,
 55					u32 word, u8 bits);
 56	unsigned	(*txrx_bufs)(struct spi_device *,
 57					u32 (*txrx_word)(
 58						struct spi_device *spi,
 59						unsigned nsecs,
 60						u32 word, u8 bits),
 61					unsigned, struct spi_transfer *);
 
 
 62};
 63
 64static unsigned bitbang_txrx_8(
 65	struct spi_device	*spi,
 66	u32			(*txrx_word)(struct spi_device *spi,
 67					unsigned nsecs,
 68					u32 word, u8 bits),
 
 69	unsigned		ns,
 70	struct spi_transfer	*t
 
 71) {
 72	unsigned		bits = t->bits_per_word ? : spi->bits_per_word;
 73	unsigned		count = t->len;
 74	const u8		*tx = t->tx_buf;
 75	u8			*rx = t->rx_buf;
 76
 77	while (likely(count > 0)) {
 78		u8		word = 0;
 79
 80		if (tx)
 81			word = *tx++;
 82		word = txrx_word(spi, ns, word, bits);
 83		if (rx)
 84			*rx++ = word;
 85		count -= 1;
 86	}
 87	return t->len - count;
 88}
 89
 90static unsigned bitbang_txrx_16(
 91	struct spi_device	*spi,
 92	u32			(*txrx_word)(struct spi_device *spi,
 93					unsigned nsecs,
 94					u32 word, u8 bits),
 
 95	unsigned		ns,
 96	struct spi_transfer	*t
 
 97) {
 98	unsigned		bits = t->bits_per_word ? : spi->bits_per_word;
 99	unsigned		count = t->len;
100	const u16		*tx = t->tx_buf;
101	u16			*rx = t->rx_buf;
102
103	while (likely(count > 1)) {
104		u16		word = 0;
105
106		if (tx)
107			word = *tx++;
108		word = txrx_word(spi, ns, word, bits);
109		if (rx)
110			*rx++ = word;
111		count -= 2;
112	}
113	return t->len - count;
114}
115
116static unsigned bitbang_txrx_32(
117	struct spi_device	*spi,
118	u32			(*txrx_word)(struct spi_device *spi,
119					unsigned nsecs,
120					u32 word, u8 bits),
 
121	unsigned		ns,
122	struct spi_transfer	*t
 
123) {
124	unsigned		bits = t->bits_per_word ? : spi->bits_per_word;
125	unsigned		count = t->len;
126	const u32		*tx = t->tx_buf;
127	u32			*rx = t->rx_buf;
128
129	while (likely(count > 3)) {
130		u32		word = 0;
131
132		if (tx)
133			word = *tx++;
134		word = txrx_word(spi, ns, word, bits);
135		if (rx)
136			*rx++ = word;
137		count -= 4;
138	}
139	return t->len - count;
140}
141
142int spi_bitbang_setup_transfer(struct spi_device *spi, struct spi_transfer *t)
143{
144	struct spi_bitbang_cs	*cs = spi->controller_state;
145	u8			bits_per_word;
146	u32			hz;
147
148	if (t) {
149		bits_per_word = t->bits_per_word;
150		hz = t->speed_hz;
151	} else {
152		bits_per_word = 0;
153		hz = 0;
154	}
155
156	/* spi_transfer level calls that work per-word */
157	if (!bits_per_word)
158		bits_per_word = spi->bits_per_word;
159	if (bits_per_word <= 8)
160		cs->txrx_bufs = bitbang_txrx_8;
161	else if (bits_per_word <= 16)
162		cs->txrx_bufs = bitbang_txrx_16;
163	else if (bits_per_word <= 32)
164		cs->txrx_bufs = bitbang_txrx_32;
165	else
166		return -EINVAL;
167
168	/* nsecs = (clock period)/2 */
169	if (!hz)
170		hz = spi->max_speed_hz;
171	if (hz) {
172		cs->nsecs = (1000000000/2) / hz;
173		if (cs->nsecs > (MAX_UDELAY_MS * 1000 * 1000))
174			return -EINVAL;
175	}
176
177	return 0;
178}
179EXPORT_SYMBOL_GPL(spi_bitbang_setup_transfer);
180
181/**
182 * spi_bitbang_setup - default setup for per-word I/O loops
183 */
184int spi_bitbang_setup(struct spi_device *spi)
185{
186	struct spi_bitbang_cs	*cs = spi->controller_state;
187	struct spi_bitbang	*bitbang;
188	int			retval;
189	unsigned long		flags;
190
191	bitbang = spi_master_get_devdata(spi->master);
192
193	if (!cs) {
194		cs = kzalloc(sizeof *cs, GFP_KERNEL);
195		if (!cs)
196			return -ENOMEM;
197		spi->controller_state = cs;
198	}
199
200	/* per-word shift register access, in hardware or bitbanging */
201	cs->txrx_word = bitbang->txrx_word[spi->mode & (SPI_CPOL|SPI_CPHA)];
202	if (!cs->txrx_word)
203		return -EINVAL;
204
205	retval = bitbang->setup_transfer(spi, NULL);
206	if (retval < 0)
207		return retval;
 
 
208
209	dev_dbg(&spi->dev, "%s, %u nsec/bit\n", __func__, 2 * cs->nsecs);
210
211	/* NOTE we _need_ to call chipselect() early, ideally with adapter
212	 * setup, unless the hardware defaults cooperate to avoid confusion
213	 * between normal (active low) and inverted chipselects.
214	 */
215
216	/* deselect chip (low or high) */
217	spin_lock_irqsave(&bitbang->lock, flags);
218	if (!bitbang->busy) {
219		bitbang->chipselect(spi, BITBANG_CS_INACTIVE);
220		ndelay(cs->nsecs);
221	}
222	spin_unlock_irqrestore(&bitbang->lock, flags);
223
224	return 0;
225}
226EXPORT_SYMBOL_GPL(spi_bitbang_setup);
227
228/**
229 * spi_bitbang_cleanup - default cleanup for per-word I/O loops
230 */
231void spi_bitbang_cleanup(struct spi_device *spi)
232{
233	kfree(spi->controller_state);
234}
235EXPORT_SYMBOL_GPL(spi_bitbang_cleanup);
236
237static int spi_bitbang_bufs(struct spi_device *spi, struct spi_transfer *t)
238{
239	struct spi_bitbang_cs	*cs = spi->controller_state;
240	unsigned		nsecs = cs->nsecs;
 
241
242	return cs->txrx_bufs(spi, cs->txrx_word, nsecs, t);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
243}
244
245/*----------------------------------------------------------------------*/
246
247/*
248 * SECOND PART ... simple transfer queue runner.
249 *
250 * This costs a task context per controller, running the queue by
251 * performing each transfer in sequence.  Smarter hardware can queue
252 * several DMA transfers at once, and process several controller queues
253 * in parallel; this driver doesn't match such hardware very well.
254 *
255 * Drivers can provide word-at-a-time i/o primitives, or provide
256 * transfer-at-a-time ones to leverage dma or fifo hardware.
257 */
258static void bitbang_work(struct work_struct *work)
 
259{
260	struct spi_bitbang	*bitbang =
261		container_of(work, struct spi_bitbang, work);
262	unsigned long		flags;
263
264	spin_lock_irqsave(&bitbang->lock, flags);
265	bitbang->busy = 1;
266	while (!list_empty(&bitbang->queue)) {
267		struct spi_message	*m;
268		struct spi_device	*spi;
269		unsigned		nsecs;
270		struct spi_transfer	*t = NULL;
271		unsigned		tmp;
272		unsigned		cs_change;
273		int			status;
274		int			do_setup = -1;
275
276		m = container_of(bitbang->queue.next, struct spi_message,
277				queue);
278		list_del_init(&m->queue);
279		spin_unlock_irqrestore(&bitbang->lock, flags);
280
281		/* FIXME this is made-up ... the correct value is known to
282		 * word-at-a-time bitbang code, and presumably chipselect()
283		 * should enforce these requirements too?
284		 */
285		nsecs = 100;
286
287		spi = m->spi;
288		tmp = 0;
289		cs_change = 1;
290		status = 0;
291
292		list_for_each_entry (t, &m->transfers, transfer_list) {
 
293
294			/* override speed or wordsize? */
295			if (t->speed_hz || t->bits_per_word)
296				do_setup = 1;
297
298			/* init (-1) or override (1) transfer params */
299			if (do_setup != 0) {
300				status = bitbang->setup_transfer(spi, t);
301				if (status < 0)
302					break;
303				if (do_setup == -1)
304					do_setup = 0;
305			}
306
307			/* set up default clock polarity, and activate chip;
308			 * this implicitly updates clock and spi modes as
309			 * previously recorded for this device via setup().
310			 * (and also deselects any other chip that might be
311			 * selected ...)
312			 */
313			if (cs_change) {
314				bitbang->chipselect(spi, BITBANG_CS_ACTIVE);
315				ndelay(nsecs);
316			}
317			cs_change = t->cs_change;
318			if (!t->tx_buf && !t->rx_buf && t->len) {
319				status = -EINVAL;
320				break;
321			}
322
323			/* transfer data.  the lower level code handles any
324			 * new dma mappings it needs. our caller always gave
325			 * us dma-safe buffers.
326			 */
327			if (t->len) {
328				/* REVISIT dma API still needs a designated
329				 * DMA_ADDR_INVALID; ~0 might be better.
330				 */
331				if (!m->is_dma_mapped)
332					t->rx_dma = t->tx_dma = 0;
333				status = bitbang->txrx_bufs(spi, t);
334			}
335			if (status > 0)
336				m->actual_length += status;
337			if (status != t->len) {
338				/* always report some kind of error */
339				if (status >= 0)
340					status = -EREMOTEIO;
341				break;
342			}
343			status = 0;
344
345			/* protocol tweaks before next transfer */
346			if (t->delay_usecs)
347				udelay(t->delay_usecs);
348
349			if (!cs_change)
350				continue;
351			if (t->transfer_list.next == &m->transfers)
352				break;
353
354			/* sometimes a short mid-message deselect of the chip
355			 * may be needed to terminate a mode or command
356			 */
357			ndelay(nsecs);
358			bitbang->chipselect(spi, BITBANG_CS_INACTIVE);
359			ndelay(nsecs);
360		}
361
362		m->status = status;
363		m->complete(m->context);
 
 
 
364
365		/* normally deactivate chipselect ... unless no error and
366		 * cs_change has hinted that the next message will probably
367		 * be for this chip too.
368		 */
369		if (!(status == 0 && cs_change)) {
370			ndelay(nsecs);
371			bitbang->chipselect(spi, BITBANG_CS_INACTIVE);
372			ndelay(nsecs);
373		}
374
375		spin_lock_irqsave(&bitbang->lock, flags);
376	}
377	bitbang->busy = 0;
378	spin_unlock_irqrestore(&bitbang->lock, flags);
 
 
 
 
 
379}
380
381/**
382 * spi_bitbang_transfer - default submit to transfer queue
383 */
384int spi_bitbang_transfer(struct spi_device *spi, struct spi_message *m)
385{
386	struct spi_bitbang	*bitbang;
387	unsigned long		flags;
388	int			status = 0;
389
390	m->actual_length = 0;
391	m->status = -EINPROGRESS;
392
393	bitbang = spi_master_get_devdata(spi->master);
 
 
394
395	spin_lock_irqsave(&bitbang->lock, flags);
396	if (!spi->max_speed_hz)
397		status = -ENETDOWN;
398	else {
399		list_add_tail(&m->queue, &bitbang->queue);
400		queue_work(bitbang->workqueue, &bitbang->work);
401	}
402	spin_unlock_irqrestore(&bitbang->lock, flags);
403
404	return status;
 
 
 
 
 
 
 
 
 
 
 
 
 
405}
406EXPORT_SYMBOL_GPL(spi_bitbang_transfer);
407
408/*----------------------------------------------------------------------*/
409
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
410/**
411 * spi_bitbang_start - start up a polled/bitbanging SPI master driver
412 * @bitbang: driver handle
413 *
414 * Caller should have zero-initialized all parts of the structure, and then
415 * provided callbacks for chip selection and I/O loops.  If the master has
416 * a transfer method, its final step should call spi_bitbang_transfer; or,
417 * that's the default if the transfer routine is not initialized.  It should
418 * also set up the bus number and number of chipselects.
419 *
420 * For i/o loops, provide callbacks either per-word (for bitbanging, or for
421 * hardware that basically exposes a shift register) or per-spi_transfer
422 * (which takes better advantage of hardware like fifos or DMA engines).
423 *
424 * Drivers using per-word I/O loops should use (or call) spi_bitbang_setup,
425 * spi_bitbang_cleanup and spi_bitbang_setup_transfer to handle those spi
426 * master methods.  Those methods are the defaults if the bitbang->txrx_bufs
427 * routine isn't initialized.
428 *
429 * This routine registers the spi_master, which will process requests in a
430 * dedicated task, keeping IRQs unblocked most of the time.  To stop
431 * processing those requests, call spi_bitbang_stop().
 
 
 
 
 
432 */
433int spi_bitbang_start(struct spi_bitbang *bitbang)
434{
435	int	status;
436
437	if (!bitbang->master || !bitbang->chipselect)
438		return -EINVAL;
439
440	INIT_WORK(&bitbang->work, bitbang_work);
441	spin_lock_init(&bitbang->lock);
442	INIT_LIST_HEAD(&bitbang->queue);
443
444	if (!bitbang->master->mode_bits)
445		bitbang->master->mode_bits = SPI_CPOL | SPI_CPHA | bitbang->flags;
446
447	if (!bitbang->master->transfer)
448		bitbang->master->transfer = spi_bitbang_transfer;
449	if (!bitbang->txrx_bufs) {
450		bitbang->use_dma = 0;
451		bitbang->txrx_bufs = spi_bitbang_bufs;
452		if (!bitbang->master->setup) {
453			if (!bitbang->setup_transfer)
454				bitbang->setup_transfer =
455					 spi_bitbang_setup_transfer;
456			bitbang->master->setup = spi_bitbang_setup;
457			bitbang->master->cleanup = spi_bitbang_cleanup;
458		}
459	} else if (!bitbang->master->setup)
460		return -EINVAL;
461	if (bitbang->master->transfer == spi_bitbang_transfer &&
462			!bitbang->setup_transfer)
463		return -EINVAL;
464
465	/* this task is the only thing to touch the SPI bits */
466	bitbang->busy = 0;
467	bitbang->workqueue = create_singlethread_workqueue(
468			dev_name(bitbang->master->dev.parent));
469	if (bitbang->workqueue == NULL) {
470		status = -EBUSY;
471		goto err1;
472	}
473
474	/* driver may get busy before register() returns, especially
475	 * if someone registered boardinfo for devices
476	 */
477	status = spi_register_master(bitbang->master);
478	if (status < 0)
479		goto err2;
480
481	return status;
482
483err2:
484	destroy_workqueue(bitbang->workqueue);
485err1:
486	return status;
487}
488EXPORT_SYMBOL_GPL(spi_bitbang_start);
489
490/**
491 * spi_bitbang_stop - stops the task providing spi communication
492 */
493int spi_bitbang_stop(struct spi_bitbang *bitbang)
494{
495	spi_unregister_master(bitbang->master);
496
497	WARN_ON(!list_empty(&bitbang->queue));
498
499	destroy_workqueue(bitbang->workqueue);
500
501	return 0;
502}
503EXPORT_SYMBOL_GPL(spi_bitbang_stop);
504
505MODULE_LICENSE("GPL");
506
v5.9
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * polling/bitbanging SPI master controller driver utilities
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  4 */
  5
 
  6#include <linux/spinlock.h>
  7#include <linux/workqueue.h>
  8#include <linux/interrupt.h>
  9#include <linux/module.h>
 10#include <linux/delay.h>
 11#include <linux/errno.h>
 12#include <linux/platform_device.h>
 13#include <linux/slab.h>
 14
 15#include <linux/spi/spi.h>
 16#include <linux/spi/spi_bitbang.h>
 17
 18#define SPI_BITBANG_CS_DELAY	100
 19
 20
 21/*----------------------------------------------------------------------*/
 22
 23/*
 24 * FIRST PART (OPTIONAL):  word-at-a-time spi_transfer support.
 25 * Use this for GPIO or shift-register level hardware APIs.
 26 *
 27 * spi_bitbang_cs is in spi_device->controller_state, which is unavailable
 28 * to glue code.  These bitbang setup() and cleanup() routines are always
 29 * used, though maybe they're called from controller-aware code.
 30 *
 31 * chipselect() and friends may use spi_device->controller_data and
 32 * controller registers as appropriate.
 33 *
 34 *
 35 * NOTE:  SPI controller pins can often be used as GPIO pins instead,
 36 * which means you could use a bitbang driver either to get hardware
 37 * working quickly, or testing for differences that aren't speed related.
 38 */
 39
 40struct spi_bitbang_cs {
 41	unsigned	nsecs;	/* (clock cycle time)/2 */
 42	u32		(*txrx_word)(struct spi_device *spi, unsigned nsecs,
 43					u32 word, u8 bits, unsigned flags);
 44	unsigned	(*txrx_bufs)(struct spi_device *,
 45					u32 (*txrx_word)(
 46						struct spi_device *spi,
 47						unsigned nsecs,
 48						u32 word, u8 bits,
 49						unsigned flags),
 50					unsigned, struct spi_transfer *,
 51					unsigned);
 52};
 53
 54static unsigned bitbang_txrx_8(
 55	struct spi_device	*spi,
 56	u32			(*txrx_word)(struct spi_device *spi,
 57					unsigned nsecs,
 58					u32 word, u8 bits,
 59					unsigned flags),
 60	unsigned		ns,
 61	struct spi_transfer	*t,
 62	unsigned flags
 63) {
 64	unsigned		bits = t->bits_per_word;
 65	unsigned		count = t->len;
 66	const u8		*tx = t->tx_buf;
 67	u8			*rx = t->rx_buf;
 68
 69	while (likely(count > 0)) {
 70		u8		word = 0;
 71
 72		if (tx)
 73			word = *tx++;
 74		word = txrx_word(spi, ns, word, bits, flags);
 75		if (rx)
 76			*rx++ = word;
 77		count -= 1;
 78	}
 79	return t->len - count;
 80}
 81
 82static unsigned bitbang_txrx_16(
 83	struct spi_device	*spi,
 84	u32			(*txrx_word)(struct spi_device *spi,
 85					unsigned nsecs,
 86					u32 word, u8 bits,
 87					unsigned flags),
 88	unsigned		ns,
 89	struct spi_transfer	*t,
 90	unsigned flags
 91) {
 92	unsigned		bits = t->bits_per_word;
 93	unsigned		count = t->len;
 94	const u16		*tx = t->tx_buf;
 95	u16			*rx = t->rx_buf;
 96
 97	while (likely(count > 1)) {
 98		u16		word = 0;
 99
100		if (tx)
101			word = *tx++;
102		word = txrx_word(spi, ns, word, bits, flags);
103		if (rx)
104			*rx++ = word;
105		count -= 2;
106	}
107	return t->len - count;
108}
109
110static unsigned bitbang_txrx_32(
111	struct spi_device	*spi,
112	u32			(*txrx_word)(struct spi_device *spi,
113					unsigned nsecs,
114					u32 word, u8 bits,
115					unsigned flags),
116	unsigned		ns,
117	struct spi_transfer	*t,
118	unsigned flags
119) {
120	unsigned		bits = t->bits_per_word;
121	unsigned		count = t->len;
122	const u32		*tx = t->tx_buf;
123	u32			*rx = t->rx_buf;
124
125	while (likely(count > 3)) {
126		u32		word = 0;
127
128		if (tx)
129			word = *tx++;
130		word = txrx_word(spi, ns, word, bits, flags);
131		if (rx)
132			*rx++ = word;
133		count -= 4;
134	}
135	return t->len - count;
136}
137
138int spi_bitbang_setup_transfer(struct spi_device *spi, struct spi_transfer *t)
139{
140	struct spi_bitbang_cs	*cs = spi->controller_state;
141	u8			bits_per_word;
142	u32			hz;
143
144	if (t) {
145		bits_per_word = t->bits_per_word;
146		hz = t->speed_hz;
147	} else {
148		bits_per_word = 0;
149		hz = 0;
150	}
151
152	/* spi_transfer level calls that work per-word */
153	if (!bits_per_word)
154		bits_per_word = spi->bits_per_word;
155	if (bits_per_word <= 8)
156		cs->txrx_bufs = bitbang_txrx_8;
157	else if (bits_per_word <= 16)
158		cs->txrx_bufs = bitbang_txrx_16;
159	else if (bits_per_word <= 32)
160		cs->txrx_bufs = bitbang_txrx_32;
161	else
162		return -EINVAL;
163
164	/* nsecs = (clock period)/2 */
165	if (!hz)
166		hz = spi->max_speed_hz;
167	if (hz) {
168		cs->nsecs = (1000000000/2) / hz;
169		if (cs->nsecs > (MAX_UDELAY_MS * 1000 * 1000))
170			return -EINVAL;
171	}
172
173	return 0;
174}
175EXPORT_SYMBOL_GPL(spi_bitbang_setup_transfer);
176
177/*
178 * spi_bitbang_setup - default setup for per-word I/O loops
179 */
180int spi_bitbang_setup(struct spi_device *spi)
181{
182	struct spi_bitbang_cs	*cs = spi->controller_state;
183	struct spi_bitbang	*bitbang;
 
 
184
185	bitbang = spi_master_get_devdata(spi->master);
186
187	if (!cs) {
188		cs = kzalloc(sizeof(*cs), GFP_KERNEL);
189		if (!cs)
190			return -ENOMEM;
191		spi->controller_state = cs;
192	}
193
194	/* per-word shift register access, in hardware or bitbanging */
195	cs->txrx_word = bitbang->txrx_word[spi->mode & (SPI_CPOL|SPI_CPHA)];
196	if (!cs->txrx_word)
197		return -EINVAL;
198
199	if (bitbang->setup_transfer) {
200		int retval = bitbang->setup_transfer(spi, NULL);
201		if (retval < 0)
202			return retval;
203	}
204
205	dev_dbg(&spi->dev, "%s, %u nsec/bit\n", __func__, 2 * cs->nsecs);
206
 
 
 
 
 
 
 
 
 
 
 
 
 
207	return 0;
208}
209EXPORT_SYMBOL_GPL(spi_bitbang_setup);
210
211/*
212 * spi_bitbang_cleanup - default cleanup for per-word I/O loops
213 */
214void spi_bitbang_cleanup(struct spi_device *spi)
215{
216	kfree(spi->controller_state);
217}
218EXPORT_SYMBOL_GPL(spi_bitbang_cleanup);
219
220static int spi_bitbang_bufs(struct spi_device *spi, struct spi_transfer *t)
221{
222	struct spi_bitbang_cs	*cs = spi->controller_state;
223	unsigned		nsecs = cs->nsecs;
224	struct spi_bitbang	*bitbang;
225
226	bitbang = spi_master_get_devdata(spi->master);
227	if (bitbang->set_line_direction) {
228		int err;
229
230		err = bitbang->set_line_direction(spi, !!(t->tx_buf));
231		if (err < 0)
232			return err;
233	}
234
235	if (spi->mode & SPI_3WIRE) {
236		unsigned flags;
237
238		flags = t->tx_buf ? SPI_MASTER_NO_RX : SPI_MASTER_NO_TX;
239		return cs->txrx_bufs(spi, cs->txrx_word, nsecs, t, flags);
240	}
241	return cs->txrx_bufs(spi, cs->txrx_word, nsecs, t, 0);
242}
243
244/*----------------------------------------------------------------------*/
245
246/*
247 * SECOND PART ... simple transfer queue runner.
248 *
249 * This costs a task context per controller, running the queue by
250 * performing each transfer in sequence.  Smarter hardware can queue
251 * several DMA transfers at once, and process several controller queues
252 * in parallel; this driver doesn't match such hardware very well.
253 *
254 * Drivers can provide word-at-a-time i/o primitives, or provide
255 * transfer-at-a-time ones to leverage dma or fifo hardware.
256 */
257
258static int spi_bitbang_prepare_hardware(struct spi_master *spi)
259{
260	struct spi_bitbang	*bitbang;
261
262	bitbang = spi_master_get_devdata(spi);
263
264	mutex_lock(&bitbang->lock);
265	bitbang->busy = 1;
266	mutex_unlock(&bitbang->lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
267
268	return 0;
269}
270
271static int spi_bitbang_transfer_one(struct spi_master *master,
272				    struct spi_device *spi,
273				    struct spi_transfer *transfer)
274{
275	struct spi_bitbang *bitbang = spi_master_get_devdata(master);
276	int status = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
277
278	if (bitbang->setup_transfer) {
279		status = bitbang->setup_transfer(spi, transfer);
280		if (status < 0)
281			goto out;
282	}
283
284	if (transfer->len)
285		status = bitbang->txrx_bufs(spi, transfer);
 
 
 
 
 
 
 
286
287	if (status == transfer->len)
288		status = 0;
289	else if (status >= 0)
290		status = -EREMOTEIO;
291
292out:
293	spi_finalize_current_transfer(master);
294
295	return status;
296}
297
298static int spi_bitbang_unprepare_hardware(struct spi_master *spi)
 
 
 
299{
300	struct spi_bitbang	*bitbang;
 
 
301
302	bitbang = spi_master_get_devdata(spi);
 
303
304	mutex_lock(&bitbang->lock);
305	bitbang->busy = 0;
306	mutex_unlock(&bitbang->lock);
307
308	return 0;
309}
 
 
 
 
 
 
310
311static void spi_bitbang_set_cs(struct spi_device *spi, bool enable)
312{
313	struct spi_bitbang *bitbang = spi_master_get_devdata(spi->master);
314
315	/* SPI core provides CS high / low, but bitbang driver
316	 * expects CS active
317	 * spi device driver takes care of handling SPI_CS_HIGH
318	 */
319	enable = (!!(spi->mode & SPI_CS_HIGH) == enable);
320
321	ndelay(SPI_BITBANG_CS_DELAY);
322	bitbang->chipselect(spi, enable ? BITBANG_CS_ACTIVE :
323			    BITBANG_CS_INACTIVE);
324	ndelay(SPI_BITBANG_CS_DELAY);
325}
 
326
327/*----------------------------------------------------------------------*/
328
329int spi_bitbang_init(struct spi_bitbang *bitbang)
330{
331	struct spi_master *master = bitbang->master;
332	bool custom_cs;
333
334	if (!master)
335		return -EINVAL;
336	/*
337	 * We only need the chipselect callback if we are actually using it.
338	 * If we just use GPIO descriptors, it is surplus. If the
339	 * SPI_MASTER_GPIO_SS flag is set, we always need to call the
340	 * driver-specific chipselect routine.
341	 */
342	custom_cs = (!master->use_gpio_descriptors ||
343		     (master->flags & SPI_MASTER_GPIO_SS));
344
345	if (custom_cs && !bitbang->chipselect)
346		return -EINVAL;
347
348	mutex_init(&bitbang->lock);
349
350	if (!master->mode_bits)
351		master->mode_bits = SPI_CPOL | SPI_CPHA | bitbang->flags;
352
353	if (master->transfer || master->transfer_one_message)
354		return -EINVAL;
355
356	master->prepare_transfer_hardware = spi_bitbang_prepare_hardware;
357	master->unprepare_transfer_hardware = spi_bitbang_unprepare_hardware;
358	master->transfer_one = spi_bitbang_transfer_one;
359	/*
360	 * When using GPIO descriptors, the ->set_cs() callback doesn't even
361	 * get called unless SPI_MASTER_GPIO_SS is set.
362	 */
363	if (custom_cs)
364		master->set_cs = spi_bitbang_set_cs;
365
366	if (!bitbang->txrx_bufs) {
367		bitbang->use_dma = 0;
368		bitbang->txrx_bufs = spi_bitbang_bufs;
369		if (!master->setup) {
370			if (!bitbang->setup_transfer)
371				bitbang->setup_transfer =
372					 spi_bitbang_setup_transfer;
373			master->setup = spi_bitbang_setup;
374			master->cleanup = spi_bitbang_cleanup;
375		}
376	}
377
378	return 0;
379}
380EXPORT_SYMBOL_GPL(spi_bitbang_init);
381
382/**
383 * spi_bitbang_start - start up a polled/bitbanging SPI master driver
384 * @bitbang: driver handle
385 *
386 * Caller should have zero-initialized all parts of the structure, and then
387 * provided callbacks for chip selection and I/O loops.  If the master has
388 * a transfer method, its final step should call spi_bitbang_transfer; or,
389 * that's the default if the transfer routine is not initialized.  It should
390 * also set up the bus number and number of chipselects.
391 *
392 * For i/o loops, provide callbacks either per-word (for bitbanging, or for
393 * hardware that basically exposes a shift register) or per-spi_transfer
394 * (which takes better advantage of hardware like fifos or DMA engines).
395 *
396 * Drivers using per-word I/O loops should use (or call) spi_bitbang_setup,
397 * spi_bitbang_cleanup and spi_bitbang_setup_transfer to handle those spi
398 * master methods.  Those methods are the defaults if the bitbang->txrx_bufs
399 * routine isn't initialized.
400 *
401 * This routine registers the spi_master, which will process requests in a
402 * dedicated task, keeping IRQs unblocked most of the time.  To stop
403 * processing those requests, call spi_bitbang_stop().
404 *
405 * On success, this routine will take a reference to master. The caller is
406 * responsible for calling spi_bitbang_stop() to decrement the reference and
407 * spi_master_put() as counterpart of spi_alloc_master() to prevent a memory
408 * leak.
409 */
410int spi_bitbang_start(struct spi_bitbang *bitbang)
411{
412	struct spi_master *master = bitbang->master;
413	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
414
415	ret = spi_bitbang_init(bitbang);
416	if (ret)
417		return ret;
 
 
 
 
 
418
419	/* driver may get busy before register() returns, especially
420	 * if someone registered boardinfo for devices
421	 */
422	ret = spi_register_master(spi_master_get(master));
423	if (ret)
424		spi_master_put(master);
425
426	return ret;
 
 
 
 
 
427}
428EXPORT_SYMBOL_GPL(spi_bitbang_start);
429
430/*
431 * spi_bitbang_stop - stops the task providing spi communication
432 */
433void spi_bitbang_stop(struct spi_bitbang *bitbang)
434{
435	spi_unregister_master(bitbang->master);
 
 
 
 
 
 
436}
437EXPORT_SYMBOL_GPL(spi_bitbang_stop);
438
439MODULE_LICENSE("GPL");
440