Linux Audio

Check our new training course

Loading...
v3.5.6
  1/*
  2 * polling/bitbanging SPI master controller driver utilities
  3 *
  4 * This program is free software; you can redistribute it and/or modify
  5 * it under the terms of the GNU General Public License as published by
  6 * the Free Software Foundation; either version 2 of the License, or
  7 * (at your option) any later version.
  8 *
  9 * This program is distributed in the hope that it will be useful,
 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 12 * GNU General Public License for more details.
 13 *
 14 * You should have received a copy of the GNU General Public License
 15 * along with this program; if not, write to the Free Software
 16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 17 */
 18
 19#include <linux/init.h>
 20#include <linux/spinlock.h>
 21#include <linux/workqueue.h>
 22#include <linux/interrupt.h>
 23#include <linux/module.h>
 24#include <linux/delay.h>
 25#include <linux/errno.h>
 26#include <linux/platform_device.h>
 27#include <linux/slab.h>
 28
 29#include <linux/spi/spi.h>
 30#include <linux/spi/spi_bitbang.h>
 31
 32
 33/*----------------------------------------------------------------------*/
 34
 35/*
 36 * FIRST PART (OPTIONAL):  word-at-a-time spi_transfer support.
 37 * Use this for GPIO or shift-register level hardware APIs.
 38 *
 39 * spi_bitbang_cs is in spi_device->controller_state, which is unavailable
 40 * to glue code.  These bitbang setup() and cleanup() routines are always
 41 * used, though maybe they're called from controller-aware code.
 42 *
 43 * chipselect() and friends may use use spi_device->controller_data and
 44 * controller registers as appropriate.
 45 *
 46 *
 47 * NOTE:  SPI controller pins can often be used as GPIO pins instead,
 48 * which means you could use a bitbang driver either to get hardware
 49 * working quickly, or testing for differences that aren't speed related.
 50 */
 51
 52struct spi_bitbang_cs {
 53	unsigned	nsecs;	/* (clock cycle time)/2 */
 54	u32		(*txrx_word)(struct spi_device *spi, unsigned nsecs,
 55					u32 word, u8 bits);
 56	unsigned	(*txrx_bufs)(struct spi_device *,
 57					u32 (*txrx_word)(
 58						struct spi_device *spi,
 59						unsigned nsecs,
 60						u32 word, u8 bits),
 61					unsigned, struct spi_transfer *);
 62};
 63
 64static unsigned bitbang_txrx_8(
 65	struct spi_device	*spi,
 66	u32			(*txrx_word)(struct spi_device *spi,
 67					unsigned nsecs,
 68					u32 word, u8 bits),
 69	unsigned		ns,
 70	struct spi_transfer	*t
 71) {
 72	unsigned		bits = t->bits_per_word ? : spi->bits_per_word;
 73	unsigned		count = t->len;
 74	const u8		*tx = t->tx_buf;
 75	u8			*rx = t->rx_buf;
 76
 77	while (likely(count > 0)) {
 78		u8		word = 0;
 79
 80		if (tx)
 81			word = *tx++;
 82		word = txrx_word(spi, ns, word, bits);
 83		if (rx)
 84			*rx++ = word;
 85		count -= 1;
 86	}
 87	return t->len - count;
 88}
 89
 90static unsigned bitbang_txrx_16(
 91	struct spi_device	*spi,
 92	u32			(*txrx_word)(struct spi_device *spi,
 93					unsigned nsecs,
 94					u32 word, u8 bits),
 95	unsigned		ns,
 96	struct spi_transfer	*t
 97) {
 98	unsigned		bits = t->bits_per_word ? : spi->bits_per_word;
 99	unsigned		count = t->len;
100	const u16		*tx = t->tx_buf;
101	u16			*rx = t->rx_buf;
102
103	while (likely(count > 1)) {
104		u16		word = 0;
105
106		if (tx)
107			word = *tx++;
108		word = txrx_word(spi, ns, word, bits);
109		if (rx)
110			*rx++ = word;
111		count -= 2;
112	}
113	return t->len - count;
114}
115
116static unsigned bitbang_txrx_32(
117	struct spi_device	*spi,
118	u32			(*txrx_word)(struct spi_device *spi,
119					unsigned nsecs,
120					u32 word, u8 bits),
121	unsigned		ns,
122	struct spi_transfer	*t
123) {
124	unsigned		bits = t->bits_per_word ? : spi->bits_per_word;
125	unsigned		count = t->len;
126	const u32		*tx = t->tx_buf;
127	u32			*rx = t->rx_buf;
128
129	while (likely(count > 3)) {
130		u32		word = 0;
131
132		if (tx)
133			word = *tx++;
134		word = txrx_word(spi, ns, word, bits);
135		if (rx)
136			*rx++ = word;
137		count -= 4;
138	}
139	return t->len - count;
140}
141
142int spi_bitbang_setup_transfer(struct spi_device *spi, struct spi_transfer *t)
143{
144	struct spi_bitbang_cs	*cs = spi->controller_state;
145	u8			bits_per_word;
146	u32			hz;
147
148	if (t) {
149		bits_per_word = t->bits_per_word;
150		hz = t->speed_hz;
151	} else {
152		bits_per_word = 0;
153		hz = 0;
154	}
155
156	/* spi_transfer level calls that work per-word */
157	if (!bits_per_word)
158		bits_per_word = spi->bits_per_word;
159	if (bits_per_word <= 8)
160		cs->txrx_bufs = bitbang_txrx_8;
161	else if (bits_per_word <= 16)
162		cs->txrx_bufs = bitbang_txrx_16;
163	else if (bits_per_word <= 32)
164		cs->txrx_bufs = bitbang_txrx_32;
165	else
166		return -EINVAL;
167
168	/* nsecs = (clock period)/2 */
169	if (!hz)
170		hz = spi->max_speed_hz;
171	if (hz) {
172		cs->nsecs = (1000000000/2) / hz;
173		if (cs->nsecs > (MAX_UDELAY_MS * 1000 * 1000))
174			return -EINVAL;
175	}
176
177	return 0;
178}
179EXPORT_SYMBOL_GPL(spi_bitbang_setup_transfer);
180
181/**
182 * spi_bitbang_setup - default setup for per-word I/O loops
183 */
184int spi_bitbang_setup(struct spi_device *spi)
185{
186	struct spi_bitbang_cs	*cs = spi->controller_state;
187	struct spi_bitbang	*bitbang;
188	int			retval;
189	unsigned long		flags;
190
191	bitbang = spi_master_get_devdata(spi->master);
192
193	if (!cs) {
194		cs = kzalloc(sizeof *cs, GFP_KERNEL);
195		if (!cs)
196			return -ENOMEM;
197		spi->controller_state = cs;
198	}
199
200	/* per-word shift register access, in hardware or bitbanging */
201	cs->txrx_word = bitbang->txrx_word[spi->mode & (SPI_CPOL|SPI_CPHA)];
202	if (!cs->txrx_word)
203		return -EINVAL;
204
205	retval = bitbang->setup_transfer(spi, NULL);
206	if (retval < 0)
207		return retval;
208
209	dev_dbg(&spi->dev, "%s, %u nsec/bit\n", __func__, 2 * cs->nsecs);
210
211	/* NOTE we _need_ to call chipselect() early, ideally with adapter
212	 * setup, unless the hardware defaults cooperate to avoid confusion
213	 * between normal (active low) and inverted chipselects.
214	 */
215
216	/* deselect chip (low or high) */
217	spin_lock_irqsave(&bitbang->lock, flags);
218	if (!bitbang->busy) {
219		bitbang->chipselect(spi, BITBANG_CS_INACTIVE);
220		ndelay(cs->nsecs);
221	}
222	spin_unlock_irqrestore(&bitbang->lock, flags);
223
224	return 0;
225}
226EXPORT_SYMBOL_GPL(spi_bitbang_setup);
227
228/**
229 * spi_bitbang_cleanup - default cleanup for per-word I/O loops
230 */
231void spi_bitbang_cleanup(struct spi_device *spi)
232{
233	kfree(spi->controller_state);
234}
235EXPORT_SYMBOL_GPL(spi_bitbang_cleanup);
236
237static int spi_bitbang_bufs(struct spi_device *spi, struct spi_transfer *t)
238{
239	struct spi_bitbang_cs	*cs = spi->controller_state;
240	unsigned		nsecs = cs->nsecs;
241
242	return cs->txrx_bufs(spi, cs->txrx_word, nsecs, t);
243}
244
245/*----------------------------------------------------------------------*/
246
247/*
248 * SECOND PART ... simple transfer queue runner.
249 *
250 * This costs a task context per controller, running the queue by
251 * performing each transfer in sequence.  Smarter hardware can queue
252 * several DMA transfers at once, and process several controller queues
253 * in parallel; this driver doesn't match such hardware very well.
254 *
255 * Drivers can provide word-at-a-time i/o primitives, or provide
256 * transfer-at-a-time ones to leverage dma or fifo hardware.
257 */
258static void bitbang_work(struct work_struct *work)
259{
260	struct spi_bitbang	*bitbang =
261		container_of(work, struct spi_bitbang, work);
262	unsigned long		flags;
263
264	spin_lock_irqsave(&bitbang->lock, flags);
265	bitbang->busy = 1;
266	while (!list_empty(&bitbang->queue)) {
267		struct spi_message	*m;
268		struct spi_device	*spi;
269		unsigned		nsecs;
270		struct spi_transfer	*t = NULL;
271		unsigned		tmp;
272		unsigned		cs_change;
273		int			status;
274		int			do_setup = -1;
275
276		m = container_of(bitbang->queue.next, struct spi_message,
277				queue);
278		list_del_init(&m->queue);
279		spin_unlock_irqrestore(&bitbang->lock, flags);
280
281		/* FIXME this is made-up ... the correct value is known to
282		 * word-at-a-time bitbang code, and presumably chipselect()
283		 * should enforce these requirements too?
284		 */
285		nsecs = 100;
286
287		spi = m->spi;
288		tmp = 0;
289		cs_change = 1;
290		status = 0;
291
292		list_for_each_entry (t, &m->transfers, transfer_list) {
293
294			/* override speed or wordsize? */
295			if (t->speed_hz || t->bits_per_word)
296				do_setup = 1;
297
298			/* init (-1) or override (1) transfer params */
299			if (do_setup != 0) {
300				status = bitbang->setup_transfer(spi, t);
301				if (status < 0)
302					break;
303				if (do_setup == -1)
304					do_setup = 0;
305			}
306
307			/* set up default clock polarity, and activate chip;
308			 * this implicitly updates clock and spi modes as
309			 * previously recorded for this device via setup().
310			 * (and also deselects any other chip that might be
311			 * selected ...)
312			 */
313			if (cs_change) {
314				bitbang->chipselect(spi, BITBANG_CS_ACTIVE);
315				ndelay(nsecs);
316			}
317			cs_change = t->cs_change;
318			if (!t->tx_buf && !t->rx_buf && t->len) {
319				status = -EINVAL;
320				break;
321			}
322
323			/* transfer data.  the lower level code handles any
324			 * new dma mappings it needs. our caller always gave
325			 * us dma-safe buffers.
326			 */
327			if (t->len) {
328				/* REVISIT dma API still needs a designated
329				 * DMA_ADDR_INVALID; ~0 might be better.
330				 */
331				if (!m->is_dma_mapped)
332					t->rx_dma = t->tx_dma = 0;
333				status = bitbang->txrx_bufs(spi, t);
334			}
335			if (status > 0)
336				m->actual_length += status;
337			if (status != t->len) {
338				/* always report some kind of error */
339				if (status >= 0)
340					status = -EREMOTEIO;
341				break;
342			}
343			status = 0;
344
345			/* protocol tweaks before next transfer */
346			if (t->delay_usecs)
347				udelay(t->delay_usecs);
348
349			if (!cs_change)
350				continue;
351			if (t->transfer_list.next == &m->transfers)
352				break;
353
354			/* sometimes a short mid-message deselect of the chip
355			 * may be needed to terminate a mode or command
356			 */
357			ndelay(nsecs);
358			bitbang->chipselect(spi, BITBANG_CS_INACTIVE);
359			ndelay(nsecs);
360		}
361
362		m->status = status;
363		m->complete(m->context);
364
365		/* normally deactivate chipselect ... unless no error and
366		 * cs_change has hinted that the next message will probably
367		 * be for this chip too.
368		 */
369		if (!(status == 0 && cs_change)) {
370			ndelay(nsecs);
371			bitbang->chipselect(spi, BITBANG_CS_INACTIVE);
372			ndelay(nsecs);
373		}
374
375		spin_lock_irqsave(&bitbang->lock, flags);
376	}
377	bitbang->busy = 0;
378	spin_unlock_irqrestore(&bitbang->lock, flags);
379}
380
381/**
382 * spi_bitbang_transfer - default submit to transfer queue
383 */
384int spi_bitbang_transfer(struct spi_device *spi, struct spi_message *m)
385{
386	struct spi_bitbang	*bitbang;
387	unsigned long		flags;
388	int			status = 0;
389
390	m->actual_length = 0;
391	m->status = -EINPROGRESS;
392
393	bitbang = spi_master_get_devdata(spi->master);
394
395	spin_lock_irqsave(&bitbang->lock, flags);
396	if (!spi->max_speed_hz)
397		status = -ENETDOWN;
398	else {
399		list_add_tail(&m->queue, &bitbang->queue);
400		queue_work(bitbang->workqueue, &bitbang->work);
401	}
402	spin_unlock_irqrestore(&bitbang->lock, flags);
403
404	return status;
405}
406EXPORT_SYMBOL_GPL(spi_bitbang_transfer);
407
408/*----------------------------------------------------------------------*/
409
410/**
411 * spi_bitbang_start - start up a polled/bitbanging SPI master driver
412 * @bitbang: driver handle
413 *
414 * Caller should have zero-initialized all parts of the structure, and then
415 * provided callbacks for chip selection and I/O loops.  If the master has
416 * a transfer method, its final step should call spi_bitbang_transfer; or,
417 * that's the default if the transfer routine is not initialized.  It should
418 * also set up the bus number and number of chipselects.
419 *
420 * For i/o loops, provide callbacks either per-word (for bitbanging, or for
421 * hardware that basically exposes a shift register) or per-spi_transfer
422 * (which takes better advantage of hardware like fifos or DMA engines).
423 *
424 * Drivers using per-word I/O loops should use (or call) spi_bitbang_setup,
425 * spi_bitbang_cleanup and spi_bitbang_setup_transfer to handle those spi
426 * master methods.  Those methods are the defaults if the bitbang->txrx_bufs
427 * routine isn't initialized.
428 *
429 * This routine registers the spi_master, which will process requests in a
430 * dedicated task, keeping IRQs unblocked most of the time.  To stop
431 * processing those requests, call spi_bitbang_stop().
432 */
433int spi_bitbang_start(struct spi_bitbang *bitbang)
434{
435	int	status;
436
437	if (!bitbang->master || !bitbang->chipselect)
438		return -EINVAL;
439
440	INIT_WORK(&bitbang->work, bitbang_work);
441	spin_lock_init(&bitbang->lock);
442	INIT_LIST_HEAD(&bitbang->queue);
443
444	if (!bitbang->master->mode_bits)
445		bitbang->master->mode_bits = SPI_CPOL | SPI_CPHA | bitbang->flags;
446
447	if (!bitbang->master->transfer)
448		bitbang->master->transfer = spi_bitbang_transfer;
449	if (!bitbang->txrx_bufs) {
450		bitbang->use_dma = 0;
451		bitbang->txrx_bufs = spi_bitbang_bufs;
452		if (!bitbang->master->setup) {
453			if (!bitbang->setup_transfer)
454				bitbang->setup_transfer =
455					 spi_bitbang_setup_transfer;
456			bitbang->master->setup = spi_bitbang_setup;
457			bitbang->master->cleanup = spi_bitbang_cleanup;
458		}
459	} else if (!bitbang->master->setup)
460		return -EINVAL;
461	if (bitbang->master->transfer == spi_bitbang_transfer &&
462			!bitbang->setup_transfer)
463		return -EINVAL;
464
465	/* this task is the only thing to touch the SPI bits */
466	bitbang->busy = 0;
467	bitbang->workqueue = create_singlethread_workqueue(
468			dev_name(bitbang->master->dev.parent));
469	if (bitbang->workqueue == NULL) {
470		status = -EBUSY;
471		goto err1;
472	}
473
474	/* driver may get busy before register() returns, especially
475	 * if someone registered boardinfo for devices
476	 */
477	status = spi_register_master(bitbang->master);
478	if (status < 0)
479		goto err2;
480
481	return status;
482
483err2:
484	destroy_workqueue(bitbang->workqueue);
485err1:
486	return status;
487}
488EXPORT_SYMBOL_GPL(spi_bitbang_start);
489
490/**
491 * spi_bitbang_stop - stops the task providing spi communication
492 */
493int spi_bitbang_stop(struct spi_bitbang *bitbang)
494{
495	spi_unregister_master(bitbang->master);
496
497	WARN_ON(!list_empty(&bitbang->queue));
498
499	destroy_workqueue(bitbang->workqueue);
500
501	return 0;
502}
503EXPORT_SYMBOL_GPL(spi_bitbang_stop);
504
505MODULE_LICENSE("GPL");
506
v3.1
  1/*
  2 * polling/bitbanging SPI master controller driver utilities
  3 *
  4 * This program is free software; you can redistribute it and/or modify
  5 * it under the terms of the GNU General Public License as published by
  6 * the Free Software Foundation; either version 2 of the License, or
  7 * (at your option) any later version.
  8 *
  9 * This program is distributed in the hope that it will be useful,
 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 12 * GNU General Public License for more details.
 13 *
 14 * You should have received a copy of the GNU General Public License
 15 * along with this program; if not, write to the Free Software
 16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 17 */
 18
 19#include <linux/init.h>
 20#include <linux/spinlock.h>
 21#include <linux/workqueue.h>
 22#include <linux/interrupt.h>
 
 23#include <linux/delay.h>
 24#include <linux/errno.h>
 25#include <linux/platform_device.h>
 26#include <linux/slab.h>
 27
 28#include <linux/spi/spi.h>
 29#include <linux/spi/spi_bitbang.h>
 30
 31
 32/*----------------------------------------------------------------------*/
 33
 34/*
 35 * FIRST PART (OPTIONAL):  word-at-a-time spi_transfer support.
 36 * Use this for GPIO or shift-register level hardware APIs.
 37 *
 38 * spi_bitbang_cs is in spi_device->controller_state, which is unavailable
 39 * to glue code.  These bitbang setup() and cleanup() routines are always
 40 * used, though maybe they're called from controller-aware code.
 41 *
 42 * chipselect() and friends may use use spi_device->controller_data and
 43 * controller registers as appropriate.
 44 *
 45 *
 46 * NOTE:  SPI controller pins can often be used as GPIO pins instead,
 47 * which means you could use a bitbang driver either to get hardware
 48 * working quickly, or testing for differences that aren't speed related.
 49 */
 50
 51struct spi_bitbang_cs {
 52	unsigned	nsecs;	/* (clock cycle time)/2 */
 53	u32		(*txrx_word)(struct spi_device *spi, unsigned nsecs,
 54					u32 word, u8 bits);
 55	unsigned	(*txrx_bufs)(struct spi_device *,
 56					u32 (*txrx_word)(
 57						struct spi_device *spi,
 58						unsigned nsecs,
 59						u32 word, u8 bits),
 60					unsigned, struct spi_transfer *);
 61};
 62
 63static unsigned bitbang_txrx_8(
 64	struct spi_device	*spi,
 65	u32			(*txrx_word)(struct spi_device *spi,
 66					unsigned nsecs,
 67					u32 word, u8 bits),
 68	unsigned		ns,
 69	struct spi_transfer	*t
 70) {
 71	unsigned		bits = t->bits_per_word ? : spi->bits_per_word;
 72	unsigned		count = t->len;
 73	const u8		*tx = t->tx_buf;
 74	u8			*rx = t->rx_buf;
 75
 76	while (likely(count > 0)) {
 77		u8		word = 0;
 78
 79		if (tx)
 80			word = *tx++;
 81		word = txrx_word(spi, ns, word, bits);
 82		if (rx)
 83			*rx++ = word;
 84		count -= 1;
 85	}
 86	return t->len - count;
 87}
 88
 89static unsigned bitbang_txrx_16(
 90	struct spi_device	*spi,
 91	u32			(*txrx_word)(struct spi_device *spi,
 92					unsigned nsecs,
 93					u32 word, u8 bits),
 94	unsigned		ns,
 95	struct spi_transfer	*t
 96) {
 97	unsigned		bits = t->bits_per_word ? : spi->bits_per_word;
 98	unsigned		count = t->len;
 99	const u16		*tx = t->tx_buf;
100	u16			*rx = t->rx_buf;
101
102	while (likely(count > 1)) {
103		u16		word = 0;
104
105		if (tx)
106			word = *tx++;
107		word = txrx_word(spi, ns, word, bits);
108		if (rx)
109			*rx++ = word;
110		count -= 2;
111	}
112	return t->len - count;
113}
114
115static unsigned bitbang_txrx_32(
116	struct spi_device	*spi,
117	u32			(*txrx_word)(struct spi_device *spi,
118					unsigned nsecs,
119					u32 word, u8 bits),
120	unsigned		ns,
121	struct spi_transfer	*t
122) {
123	unsigned		bits = t->bits_per_word ? : spi->bits_per_word;
124	unsigned		count = t->len;
125	const u32		*tx = t->tx_buf;
126	u32			*rx = t->rx_buf;
127
128	while (likely(count > 3)) {
129		u32		word = 0;
130
131		if (tx)
132			word = *tx++;
133		word = txrx_word(spi, ns, word, bits);
134		if (rx)
135			*rx++ = word;
136		count -= 4;
137	}
138	return t->len - count;
139}
140
141int spi_bitbang_setup_transfer(struct spi_device *spi, struct spi_transfer *t)
142{
143	struct spi_bitbang_cs	*cs = spi->controller_state;
144	u8			bits_per_word;
145	u32			hz;
146
147	if (t) {
148		bits_per_word = t->bits_per_word;
149		hz = t->speed_hz;
150	} else {
151		bits_per_word = 0;
152		hz = 0;
153	}
154
155	/* spi_transfer level calls that work per-word */
156	if (!bits_per_word)
157		bits_per_word = spi->bits_per_word;
158	if (bits_per_word <= 8)
159		cs->txrx_bufs = bitbang_txrx_8;
160	else if (bits_per_word <= 16)
161		cs->txrx_bufs = bitbang_txrx_16;
162	else if (bits_per_word <= 32)
163		cs->txrx_bufs = bitbang_txrx_32;
164	else
165		return -EINVAL;
166
167	/* nsecs = (clock period)/2 */
168	if (!hz)
169		hz = spi->max_speed_hz;
170	if (hz) {
171		cs->nsecs = (1000000000/2) / hz;
172		if (cs->nsecs > (MAX_UDELAY_MS * 1000 * 1000))
173			return -EINVAL;
174	}
175
176	return 0;
177}
178EXPORT_SYMBOL_GPL(spi_bitbang_setup_transfer);
179
180/**
181 * spi_bitbang_setup - default setup for per-word I/O loops
182 */
183int spi_bitbang_setup(struct spi_device *spi)
184{
185	struct spi_bitbang_cs	*cs = spi->controller_state;
186	struct spi_bitbang	*bitbang;
187	int			retval;
188	unsigned long		flags;
189
190	bitbang = spi_master_get_devdata(spi->master);
191
192	if (!cs) {
193		cs = kzalloc(sizeof *cs, GFP_KERNEL);
194		if (!cs)
195			return -ENOMEM;
196		spi->controller_state = cs;
197	}
198
199	/* per-word shift register access, in hardware or bitbanging */
200	cs->txrx_word = bitbang->txrx_word[spi->mode & (SPI_CPOL|SPI_CPHA)];
201	if (!cs->txrx_word)
202		return -EINVAL;
203
204	retval = bitbang->setup_transfer(spi, NULL);
205	if (retval < 0)
206		return retval;
207
208	dev_dbg(&spi->dev, "%s, %u nsec/bit\n", __func__, 2 * cs->nsecs);
209
210	/* NOTE we _need_ to call chipselect() early, ideally with adapter
211	 * setup, unless the hardware defaults cooperate to avoid confusion
212	 * between normal (active low) and inverted chipselects.
213	 */
214
215	/* deselect chip (low or high) */
216	spin_lock_irqsave(&bitbang->lock, flags);
217	if (!bitbang->busy) {
218		bitbang->chipselect(spi, BITBANG_CS_INACTIVE);
219		ndelay(cs->nsecs);
220	}
221	spin_unlock_irqrestore(&bitbang->lock, flags);
222
223	return 0;
224}
225EXPORT_SYMBOL_GPL(spi_bitbang_setup);
226
227/**
228 * spi_bitbang_cleanup - default cleanup for per-word I/O loops
229 */
230void spi_bitbang_cleanup(struct spi_device *spi)
231{
232	kfree(spi->controller_state);
233}
234EXPORT_SYMBOL_GPL(spi_bitbang_cleanup);
235
236static int spi_bitbang_bufs(struct spi_device *spi, struct spi_transfer *t)
237{
238	struct spi_bitbang_cs	*cs = spi->controller_state;
239	unsigned		nsecs = cs->nsecs;
240
241	return cs->txrx_bufs(spi, cs->txrx_word, nsecs, t);
242}
243
244/*----------------------------------------------------------------------*/
245
246/*
247 * SECOND PART ... simple transfer queue runner.
248 *
249 * This costs a task context per controller, running the queue by
250 * performing each transfer in sequence.  Smarter hardware can queue
251 * several DMA transfers at once, and process several controller queues
252 * in parallel; this driver doesn't match such hardware very well.
253 *
254 * Drivers can provide word-at-a-time i/o primitives, or provide
255 * transfer-at-a-time ones to leverage dma or fifo hardware.
256 */
257static void bitbang_work(struct work_struct *work)
258{
259	struct spi_bitbang	*bitbang =
260		container_of(work, struct spi_bitbang, work);
261	unsigned long		flags;
262
263	spin_lock_irqsave(&bitbang->lock, flags);
264	bitbang->busy = 1;
265	while (!list_empty(&bitbang->queue)) {
266		struct spi_message	*m;
267		struct spi_device	*spi;
268		unsigned		nsecs;
269		struct spi_transfer	*t = NULL;
270		unsigned		tmp;
271		unsigned		cs_change;
272		int			status;
273		int			do_setup = -1;
274
275		m = container_of(bitbang->queue.next, struct spi_message,
276				queue);
277		list_del_init(&m->queue);
278		spin_unlock_irqrestore(&bitbang->lock, flags);
279
280		/* FIXME this is made-up ... the correct value is known to
281		 * word-at-a-time bitbang code, and presumably chipselect()
282		 * should enforce these requirements too?
283		 */
284		nsecs = 100;
285
286		spi = m->spi;
287		tmp = 0;
288		cs_change = 1;
289		status = 0;
290
291		list_for_each_entry (t, &m->transfers, transfer_list) {
292
293			/* override speed or wordsize? */
294			if (t->speed_hz || t->bits_per_word)
295				do_setup = 1;
296
297			/* init (-1) or override (1) transfer params */
298			if (do_setup != 0) {
299				status = bitbang->setup_transfer(spi, t);
300				if (status < 0)
301					break;
302				if (do_setup == -1)
303					do_setup = 0;
304			}
305
306			/* set up default clock polarity, and activate chip;
307			 * this implicitly updates clock and spi modes as
308			 * previously recorded for this device via setup().
309			 * (and also deselects any other chip that might be
310			 * selected ...)
311			 */
312			if (cs_change) {
313				bitbang->chipselect(spi, BITBANG_CS_ACTIVE);
314				ndelay(nsecs);
315			}
316			cs_change = t->cs_change;
317			if (!t->tx_buf && !t->rx_buf && t->len) {
318				status = -EINVAL;
319				break;
320			}
321
322			/* transfer data.  the lower level code handles any
323			 * new dma mappings it needs. our caller always gave
324			 * us dma-safe buffers.
325			 */
326			if (t->len) {
327				/* REVISIT dma API still needs a designated
328				 * DMA_ADDR_INVALID; ~0 might be better.
329				 */
330				if (!m->is_dma_mapped)
331					t->rx_dma = t->tx_dma = 0;
332				status = bitbang->txrx_bufs(spi, t);
333			}
334			if (status > 0)
335				m->actual_length += status;
336			if (status != t->len) {
337				/* always report some kind of error */
338				if (status >= 0)
339					status = -EREMOTEIO;
340				break;
341			}
342			status = 0;
343
344			/* protocol tweaks before next transfer */
345			if (t->delay_usecs)
346				udelay(t->delay_usecs);
347
348			if (!cs_change)
349				continue;
350			if (t->transfer_list.next == &m->transfers)
351				break;
352
353			/* sometimes a short mid-message deselect of the chip
354			 * may be needed to terminate a mode or command
355			 */
356			ndelay(nsecs);
357			bitbang->chipselect(spi, BITBANG_CS_INACTIVE);
358			ndelay(nsecs);
359		}
360
361		m->status = status;
362		m->complete(m->context);
363
364		/* normally deactivate chipselect ... unless no error and
365		 * cs_change has hinted that the next message will probably
366		 * be for this chip too.
367		 */
368		if (!(status == 0 && cs_change)) {
369			ndelay(nsecs);
370			bitbang->chipselect(spi, BITBANG_CS_INACTIVE);
371			ndelay(nsecs);
372		}
373
374		spin_lock_irqsave(&bitbang->lock, flags);
375	}
376	bitbang->busy = 0;
377	spin_unlock_irqrestore(&bitbang->lock, flags);
378}
379
380/**
381 * spi_bitbang_transfer - default submit to transfer queue
382 */
383int spi_bitbang_transfer(struct spi_device *spi, struct spi_message *m)
384{
385	struct spi_bitbang	*bitbang;
386	unsigned long		flags;
387	int			status = 0;
388
389	m->actual_length = 0;
390	m->status = -EINPROGRESS;
391
392	bitbang = spi_master_get_devdata(spi->master);
393
394	spin_lock_irqsave(&bitbang->lock, flags);
395	if (!spi->max_speed_hz)
396		status = -ENETDOWN;
397	else {
398		list_add_tail(&m->queue, &bitbang->queue);
399		queue_work(bitbang->workqueue, &bitbang->work);
400	}
401	spin_unlock_irqrestore(&bitbang->lock, flags);
402
403	return status;
404}
405EXPORT_SYMBOL_GPL(spi_bitbang_transfer);
406
407/*----------------------------------------------------------------------*/
408
409/**
410 * spi_bitbang_start - start up a polled/bitbanging SPI master driver
411 * @bitbang: driver handle
412 *
413 * Caller should have zero-initialized all parts of the structure, and then
414 * provided callbacks for chip selection and I/O loops.  If the master has
415 * a transfer method, its final step should call spi_bitbang_transfer; or,
416 * that's the default if the transfer routine is not initialized.  It should
417 * also set up the bus number and number of chipselects.
418 *
419 * For i/o loops, provide callbacks either per-word (for bitbanging, or for
420 * hardware that basically exposes a shift register) or per-spi_transfer
421 * (which takes better advantage of hardware like fifos or DMA engines).
422 *
423 * Drivers using per-word I/O loops should use (or call) spi_bitbang_setup,
424 * spi_bitbang_cleanup and spi_bitbang_setup_transfer to handle those spi
425 * master methods.  Those methods are the defaults if the bitbang->txrx_bufs
426 * routine isn't initialized.
427 *
428 * This routine registers the spi_master, which will process requests in a
429 * dedicated task, keeping IRQs unblocked most of the time.  To stop
430 * processing those requests, call spi_bitbang_stop().
431 */
432int spi_bitbang_start(struct spi_bitbang *bitbang)
433{
434	int	status;
435
436	if (!bitbang->master || !bitbang->chipselect)
437		return -EINVAL;
438
439	INIT_WORK(&bitbang->work, bitbang_work);
440	spin_lock_init(&bitbang->lock);
441	INIT_LIST_HEAD(&bitbang->queue);
442
443	if (!bitbang->master->mode_bits)
444		bitbang->master->mode_bits = SPI_CPOL | SPI_CPHA | bitbang->flags;
445
446	if (!bitbang->master->transfer)
447		bitbang->master->transfer = spi_bitbang_transfer;
448	if (!bitbang->txrx_bufs) {
449		bitbang->use_dma = 0;
450		bitbang->txrx_bufs = spi_bitbang_bufs;
451		if (!bitbang->master->setup) {
452			if (!bitbang->setup_transfer)
453				bitbang->setup_transfer =
454					 spi_bitbang_setup_transfer;
455			bitbang->master->setup = spi_bitbang_setup;
456			bitbang->master->cleanup = spi_bitbang_cleanup;
457		}
458	} else if (!bitbang->master->setup)
459		return -EINVAL;
460	if (bitbang->master->transfer == spi_bitbang_transfer &&
461			!bitbang->setup_transfer)
462		return -EINVAL;
463
464	/* this task is the only thing to touch the SPI bits */
465	bitbang->busy = 0;
466	bitbang->workqueue = create_singlethread_workqueue(
467			dev_name(bitbang->master->dev.parent));
468	if (bitbang->workqueue == NULL) {
469		status = -EBUSY;
470		goto err1;
471	}
472
473	/* driver may get busy before register() returns, especially
474	 * if someone registered boardinfo for devices
475	 */
476	status = spi_register_master(bitbang->master);
477	if (status < 0)
478		goto err2;
479
480	return status;
481
482err2:
483	destroy_workqueue(bitbang->workqueue);
484err1:
485	return status;
486}
487EXPORT_SYMBOL_GPL(spi_bitbang_start);
488
489/**
490 * spi_bitbang_stop - stops the task providing spi communication
491 */
492int spi_bitbang_stop(struct spi_bitbang *bitbang)
493{
494	spi_unregister_master(bitbang->master);
495
496	WARN_ON(!list_empty(&bitbang->queue));
497
498	destroy_workqueue(bitbang->workqueue);
499
500	return 0;
501}
502EXPORT_SYMBOL_GPL(spi_bitbang_stop);
503
504MODULE_LICENSE("GPL");
505