Linux Audio

Check our new training course

Loading...
v3.5.6
 
  1/*
  2 * LPDDR flash memory device operations. This module provides read, write,
  3 * erase, lock/unlock support for LPDDR flash memories
  4 * (C) 2008 Korolev Alexey <akorolev@infradead.org>
  5 * (C) 2008 Vasiliy Leonenko <vasiliy.leonenko@gmail.com>
  6 * Many thanks to Roman Borisov for initial enabling
  7 *
  8 * This program is free software; you can redistribute it and/or
  9 * modify it under the terms of the GNU General Public License
 10 * as published by the Free Software Foundation; either version 2
 11 * of the License, or (at your option) any later version.
 12 *
 13 * This program is distributed in the hope that it will be useful,
 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 16 * GNU General Public License for more details.
 17 *
 18 * You should have received a copy of the GNU General Public License
 19 * along with this program; if not, write to the Free Software
 20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
 21 * 02110-1301, USA.
 22 * TODO:
 23 * Implement VPP management
 24 * Implement XIP support
 25 * Implement OTP support
 26 */
 27#include <linux/mtd/pfow.h>
 28#include <linux/mtd/qinfo.h>
 29#include <linux/slab.h>
 30#include <linux/module.h>
 31
 32static int lpddr_read(struct mtd_info *mtd, loff_t adr, size_t len,
 33					size_t *retlen, u_char *buf);
 34static int lpddr_write_buffers(struct mtd_info *mtd, loff_t to,
 35				size_t len, size_t *retlen, const u_char *buf);
 36static int lpddr_writev(struct mtd_info *mtd, const struct kvec *vecs,
 37				unsigned long count, loff_t to, size_t *retlen);
 38static int lpddr_erase(struct mtd_info *mtd, struct erase_info *instr);
 39static int lpddr_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
 40static int lpddr_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
 41static int lpddr_point(struct mtd_info *mtd, loff_t adr, size_t len,
 42			size_t *retlen, void **mtdbuf, resource_size_t *phys);
 43static int lpddr_unpoint(struct mtd_info *mtd, loff_t adr, size_t len);
 44static int get_chip(struct map_info *map, struct flchip *chip, int mode);
 45static int chip_ready(struct map_info *map, struct flchip *chip, int mode);
 46static void put_chip(struct map_info *map, struct flchip *chip);
 47
 48struct mtd_info *lpddr_cmdset(struct map_info *map)
 49{
 50	struct lpddr_private *lpddr = map->fldrv_priv;
 51	struct flchip_shared *shared;
 52	struct flchip *chip;
 53	struct mtd_info *mtd;
 54	int numchips;
 55	int i, j;
 56
 57	mtd = kzalloc(sizeof(*mtd), GFP_KERNEL);
 58	if (!mtd) {
 59		printk(KERN_ERR "Failed to allocate memory for MTD device\n");
 60		return NULL;
 61	}
 62	mtd->priv = map;
 63	mtd->type = MTD_NORFLASH;
 64
 65	/* Fill in the default mtd operations */
 66	mtd->_read = lpddr_read;
 67	mtd->type = MTD_NORFLASH;
 68	mtd->flags = MTD_CAP_NORFLASH;
 69	mtd->flags &= ~MTD_BIT_WRITEABLE;
 70	mtd->_erase = lpddr_erase;
 71	mtd->_write = lpddr_write_buffers;
 72	mtd->_writev = lpddr_writev;
 73	mtd->_lock = lpddr_lock;
 74	mtd->_unlock = lpddr_unlock;
 75	if (map_is_linear(map)) {
 76		mtd->_point = lpddr_point;
 77		mtd->_unpoint = lpddr_unpoint;
 78	}
 79	mtd->size = 1 << lpddr->qinfo->DevSizeShift;
 80	mtd->erasesize = 1 << lpddr->qinfo->UniformBlockSizeShift;
 81	mtd->writesize = 1 << lpddr->qinfo->BufSizeShift;
 82
 83	shared = kmalloc(sizeof(struct flchip_shared) * lpddr->numchips,
 84						GFP_KERNEL);
 85	if (!shared) {
 86		kfree(lpddr);
 87		kfree(mtd);
 88		return NULL;
 89	}
 90
 91	chip = &lpddr->chips[0];
 92	numchips = lpddr->numchips / lpddr->qinfo->HWPartsNum;
 93	for (i = 0; i < numchips; i++) {
 94		shared[i].writing = shared[i].erasing = NULL;
 95		mutex_init(&shared[i].lock);
 96		for (j = 0; j < lpddr->qinfo->HWPartsNum; j++) {
 97			*chip = lpddr->chips[i];
 98			chip->start += j << lpddr->chipshift;
 99			chip->oldstate = chip->state = FL_READY;
100			chip->priv = &shared[i];
101			/* those should be reset too since
102			   they create memory references. */
103			init_waitqueue_head(&chip->wq);
104			mutex_init(&chip->mutex);
105			chip++;
106		}
107	}
108
109	return mtd;
110}
111EXPORT_SYMBOL(lpddr_cmdset);
112
113static int wait_for_ready(struct map_info *map, struct flchip *chip,
114		unsigned int chip_op_time)
115{
116	unsigned int timeo, reset_timeo, sleep_time;
117	unsigned int dsr;
118	flstate_t chip_state = chip->state;
119	int ret = 0;
120
121	/* set our timeout to 8 times the expected delay */
122	timeo = chip_op_time * 8;
123	if (!timeo)
124		timeo = 500000;
125	reset_timeo = timeo;
126	sleep_time = chip_op_time / 2;
127
128	for (;;) {
129		dsr = CMDVAL(map_read(map, map->pfow_base + PFOW_DSR));
130		if (dsr & DSR_READY_STATUS)
131			break;
132		if (!timeo) {
133			printk(KERN_ERR "%s: Flash timeout error state %d \n",
134							map->name, chip_state);
135			ret = -ETIME;
136			break;
137		}
138
139		/* OK Still waiting. Drop the lock, wait a while and retry. */
140		mutex_unlock(&chip->mutex);
141		if (sleep_time >= 1000000/HZ) {
142			/*
143			 * Half of the normal delay still remaining
144			 * can be performed with a sleeping delay instead
145			 * of busy waiting.
146			 */
147			msleep(sleep_time/1000);
148			timeo -= sleep_time;
149			sleep_time = 1000000/HZ;
150		} else {
151			udelay(1);
152			cond_resched();
153			timeo--;
154		}
155		mutex_lock(&chip->mutex);
156
157		while (chip->state != chip_state) {
158			/* Someone's suspended the operation: sleep */
159			DECLARE_WAITQUEUE(wait, current);
160			set_current_state(TASK_UNINTERRUPTIBLE);
161			add_wait_queue(&chip->wq, &wait);
162			mutex_unlock(&chip->mutex);
163			schedule();
164			remove_wait_queue(&chip->wq, &wait);
165			mutex_lock(&chip->mutex);
166		}
167		if (chip->erase_suspended || chip->write_suspended)  {
168			/* Suspend has occurred while sleep: reset timeout */
169			timeo = reset_timeo;
170			chip->erase_suspended = chip->write_suspended = 0;
171		}
172	}
173	/* check status for errors */
174	if (dsr & DSR_ERR) {
175		/* Clear DSR*/
176		map_write(map, CMD(~(DSR_ERR)), map->pfow_base + PFOW_DSR);
177		printk(KERN_WARNING"%s: Bad status on wait: 0x%x \n",
178				map->name, dsr);
179		print_drs_error(dsr);
180		ret = -EIO;
181	}
182	chip->state = FL_READY;
183	return ret;
184}
185
186static int get_chip(struct map_info *map, struct flchip *chip, int mode)
187{
188	int ret;
189	DECLARE_WAITQUEUE(wait, current);
190
191 retry:
192	if (chip->priv && (mode == FL_WRITING || mode == FL_ERASING)
193		&& chip->state != FL_SYNCING) {
194		/*
195		 * OK. We have possibility for contension on the write/erase
196		 * operations which are global to the real chip and not per
197		 * partition.  So let's fight it over in the partition which
198		 * currently has authority on the operation.
199		 *
200		 * The rules are as follows:
201		 *
202		 * - any write operation must own shared->writing.
203		 *
204		 * - any erase operation must own _both_ shared->writing and
205		 *   shared->erasing.
206		 *
207		 * - contension arbitration is handled in the owner's context.
208		 *
209		 * The 'shared' struct can be read and/or written only when
210		 * its lock is taken.
211		 */
212		struct flchip_shared *shared = chip->priv;
213		struct flchip *contender;
214		mutex_lock(&shared->lock);
215		contender = shared->writing;
216		if (contender && contender != chip) {
217			/*
218			 * The engine to perform desired operation on this
219			 * partition is already in use by someone else.
220			 * Let's fight over it in the context of the chip
221			 * currently using it.  If it is possible to suspend,
222			 * that other partition will do just that, otherwise
223			 * it'll happily send us to sleep.  In any case, when
224			 * get_chip returns success we're clear to go ahead.
225			 */
226			ret = mutex_trylock(&contender->mutex);
227			mutex_unlock(&shared->lock);
228			if (!ret)
229				goto retry;
230			mutex_unlock(&chip->mutex);
231			ret = chip_ready(map, contender, mode);
232			mutex_lock(&chip->mutex);
233
234			if (ret == -EAGAIN) {
235				mutex_unlock(&contender->mutex);
236				goto retry;
237			}
238			if (ret) {
239				mutex_unlock(&contender->mutex);
240				return ret;
241			}
242			mutex_lock(&shared->lock);
243
244			/* We should not own chip if it is already in FL_SYNCING
245			 * state. Put contender and retry. */
246			if (chip->state == FL_SYNCING) {
247				put_chip(map, contender);
248				mutex_unlock(&contender->mutex);
249				goto retry;
250			}
251			mutex_unlock(&contender->mutex);
252		}
253
254		/* Check if we have suspended erase on this chip.
255		   Must sleep in such a case. */
256		if (mode == FL_ERASING && shared->erasing
257		    && shared->erasing->oldstate == FL_ERASING) {
258			mutex_unlock(&shared->lock);
259			set_current_state(TASK_UNINTERRUPTIBLE);
260			add_wait_queue(&chip->wq, &wait);
261			mutex_unlock(&chip->mutex);
262			schedule();
263			remove_wait_queue(&chip->wq, &wait);
264			mutex_lock(&chip->mutex);
265			goto retry;
266		}
267
268		/* We now own it */
269		shared->writing = chip;
270		if (mode == FL_ERASING)
271			shared->erasing = chip;
272		mutex_unlock(&shared->lock);
273	}
274
275	ret = chip_ready(map, chip, mode);
276	if (ret == -EAGAIN)
277		goto retry;
278
279	return ret;
280}
281
282static int chip_ready(struct map_info *map, struct flchip *chip, int mode)
283{
284	struct lpddr_private *lpddr = map->fldrv_priv;
285	int ret = 0;
286	DECLARE_WAITQUEUE(wait, current);
287
288	/* Prevent setting state FL_SYNCING for chip in suspended state. */
289	if (FL_SYNCING == mode && FL_READY != chip->oldstate)
290		goto sleep;
291
292	switch (chip->state) {
293	case FL_READY:
294	case FL_JEDEC_QUERY:
295		return 0;
296
297	case FL_ERASING:
298		if (!lpddr->qinfo->SuspEraseSupp ||
299			!(mode == FL_READY || mode == FL_POINT))
300			goto sleep;
301
302		map_write(map, CMD(LPDDR_SUSPEND),
303			map->pfow_base + PFOW_PROGRAM_ERASE_SUSPEND);
304		chip->oldstate = FL_ERASING;
305		chip->state = FL_ERASE_SUSPENDING;
306		ret = wait_for_ready(map, chip, 0);
307		if (ret) {
308			/* Oops. something got wrong. */
309			/* Resume and pretend we weren't here.  */
310			put_chip(map, chip);
311			printk(KERN_ERR "%s: suspend operation failed."
312					"State may be wrong \n", map->name);
313			return -EIO;
314		}
315		chip->erase_suspended = 1;
316		chip->state = FL_READY;
317		return 0;
318		/* Erase suspend */
319	case FL_POINT:
320		/* Only if there's no operation suspended... */
321		if (mode == FL_READY && chip->oldstate == FL_READY)
322			return 0;
323
324	default:
325sleep:
326		set_current_state(TASK_UNINTERRUPTIBLE);
327		add_wait_queue(&chip->wq, &wait);
328		mutex_unlock(&chip->mutex);
329		schedule();
330		remove_wait_queue(&chip->wq, &wait);
331		mutex_lock(&chip->mutex);
332		return -EAGAIN;
333	}
334}
335
336static void put_chip(struct map_info *map, struct flchip *chip)
337{
338	if (chip->priv) {
339		struct flchip_shared *shared = chip->priv;
340		mutex_lock(&shared->lock);
341		if (shared->writing == chip && chip->oldstate == FL_READY) {
342			/* We own the ability to write, but we're done */
343			shared->writing = shared->erasing;
344			if (shared->writing && shared->writing != chip) {
345				/* give back the ownership */
346				struct flchip *loaner = shared->writing;
347				mutex_lock(&loaner->mutex);
348				mutex_unlock(&shared->lock);
349				mutex_unlock(&chip->mutex);
350				put_chip(map, loaner);
351				mutex_lock(&chip->mutex);
352				mutex_unlock(&loaner->mutex);
353				wake_up(&chip->wq);
354				return;
355			}
356			shared->erasing = NULL;
357			shared->writing = NULL;
358		} else if (shared->erasing == chip && shared->writing != chip) {
359			/*
360			 * We own the ability to erase without the ability
361			 * to write, which means the erase was suspended
362			 * and some other partition is currently writing.
363			 * Don't let the switch below mess things up since
364			 * we don't have ownership to resume anything.
365			 */
366			mutex_unlock(&shared->lock);
367			wake_up(&chip->wq);
368			return;
369		}
370		mutex_unlock(&shared->lock);
371	}
372
373	switch (chip->oldstate) {
374	case FL_ERASING:
375		map_write(map, CMD(LPDDR_RESUME),
376				map->pfow_base + PFOW_COMMAND_CODE);
377		map_write(map, CMD(LPDDR_START_EXECUTION),
378				map->pfow_base + PFOW_COMMAND_EXECUTE);
379		chip->oldstate = FL_READY;
380		chip->state = FL_ERASING;
381		break;
382	case FL_READY:
383		break;
384	default:
385		printk(KERN_ERR "%s: put_chip() called with oldstate %d!\n",
386				map->name, chip->oldstate);
387	}
388	wake_up(&chip->wq);
389}
390
391int do_write_buffer(struct map_info *map, struct flchip *chip,
392			unsigned long adr, const struct kvec **pvec,
393			unsigned long *pvec_seek, int len)
394{
395	struct lpddr_private *lpddr = map->fldrv_priv;
396	map_word datum;
397	int ret, wbufsize, word_gap, words;
398	const struct kvec *vec;
399	unsigned long vec_seek;
400	unsigned long prog_buf_ofs;
401
402	wbufsize = 1 << lpddr->qinfo->BufSizeShift;
403
404	mutex_lock(&chip->mutex);
405	ret = get_chip(map, chip, FL_WRITING);
406	if (ret) {
407		mutex_unlock(&chip->mutex);
408		return ret;
409	}
410	/* Figure out the number of words to write */
411	word_gap = (-adr & (map_bankwidth(map)-1));
412	words = (len - word_gap + map_bankwidth(map) - 1) / map_bankwidth(map);
413	if (!word_gap) {
414		words--;
415	} else {
416		word_gap = map_bankwidth(map) - word_gap;
417		adr -= word_gap;
418		datum = map_word_ff(map);
419	}
420	/* Write data */
421	/* Get the program buffer offset from PFOW register data first*/
422	prog_buf_ofs = map->pfow_base + CMDVAL(map_read(map,
423				map->pfow_base + PFOW_PROGRAM_BUFFER_OFFSET));
424	vec = *pvec;
425	vec_seek = *pvec_seek;
426	do {
427		int n = map_bankwidth(map) - word_gap;
428
429		if (n > vec->iov_len - vec_seek)
430			n = vec->iov_len - vec_seek;
431		if (n > len)
432			n = len;
433
434		if (!word_gap && (len < map_bankwidth(map)))
435			datum = map_word_ff(map);
436
437		datum = map_word_load_partial(map, datum,
438				vec->iov_base + vec_seek, word_gap, n);
439
440		len -= n;
441		word_gap += n;
442		if (!len || word_gap == map_bankwidth(map)) {
443			map_write(map, datum, prog_buf_ofs);
444			prog_buf_ofs += map_bankwidth(map);
445			word_gap = 0;
446		}
447
448		vec_seek += n;
449		if (vec_seek == vec->iov_len) {
450			vec++;
451			vec_seek = 0;
452		}
453	} while (len);
454	*pvec = vec;
455	*pvec_seek = vec_seek;
456
457	/* GO GO GO */
458	send_pfow_command(map, LPDDR_BUFF_PROGRAM, adr, wbufsize, NULL);
459	chip->state = FL_WRITING;
460	ret = wait_for_ready(map, chip, (1<<lpddr->qinfo->ProgBufferTime));
461	if (ret)	{
462		printk(KERN_WARNING"%s Buffer program error: %d at %lx; \n",
463			map->name, ret, adr);
464		goto out;
465	}
466
467 out:	put_chip(map, chip);
468	mutex_unlock(&chip->mutex);
469	return ret;
470}
471
472int do_erase_oneblock(struct mtd_info *mtd, loff_t adr)
473{
474	struct map_info *map = mtd->priv;
475	struct lpddr_private *lpddr = map->fldrv_priv;
476	int chipnum = adr >> lpddr->chipshift;
477	struct flchip *chip = &lpddr->chips[chipnum];
478	int ret;
479
480	mutex_lock(&chip->mutex);
481	ret = get_chip(map, chip, FL_ERASING);
482	if (ret) {
483		mutex_unlock(&chip->mutex);
484		return ret;
485	}
486	send_pfow_command(map, LPDDR_BLOCK_ERASE, adr, 0, NULL);
487	chip->state = FL_ERASING;
488	ret = wait_for_ready(map, chip, (1<<lpddr->qinfo->BlockEraseTime)*1000);
489	if (ret) {
490		printk(KERN_WARNING"%s Erase block error %d at : %llx\n",
491			map->name, ret, adr);
492		goto out;
493	}
494 out:	put_chip(map, chip);
495	mutex_unlock(&chip->mutex);
496	return ret;
497}
498
499static int lpddr_read(struct mtd_info *mtd, loff_t adr, size_t len,
500			size_t *retlen, u_char *buf)
501{
502	struct map_info *map = mtd->priv;
503	struct lpddr_private *lpddr = map->fldrv_priv;
504	int chipnum = adr >> lpddr->chipshift;
505	struct flchip *chip = &lpddr->chips[chipnum];
506	int ret = 0;
507
508	mutex_lock(&chip->mutex);
509	ret = get_chip(map, chip, FL_READY);
510	if (ret) {
511		mutex_unlock(&chip->mutex);
512		return ret;
513	}
514
515	map_copy_from(map, buf, adr, len);
516	*retlen = len;
517
518	put_chip(map, chip);
519	mutex_unlock(&chip->mutex);
520	return ret;
521}
522
523static int lpddr_point(struct mtd_info *mtd, loff_t adr, size_t len,
524			size_t *retlen, void **mtdbuf, resource_size_t *phys)
525{
526	struct map_info *map = mtd->priv;
527	struct lpddr_private *lpddr = map->fldrv_priv;
528	int chipnum = adr >> lpddr->chipshift;
529	unsigned long ofs, last_end = 0;
530	struct flchip *chip = &lpddr->chips[chipnum];
531	int ret = 0;
532
533	if (!map->virt)
534		return -EINVAL;
535
536	/* ofs: offset within the first chip that the first read should start */
537	ofs = adr - (chipnum << lpddr->chipshift);
538	*mtdbuf = (void *)map->virt + chip->start + ofs;
539
540	while (len) {
541		unsigned long thislen;
542
543		if (chipnum >= lpddr->numchips)
544			break;
545
546		/* We cannot point across chips that are virtually disjoint */
547		if (!last_end)
548			last_end = chip->start;
549		else if (chip->start != last_end)
550			break;
551
552		if ((len + ofs - 1) >> lpddr->chipshift)
553			thislen = (1<<lpddr->chipshift) - ofs;
554		else
555			thislen = len;
556		/* get the chip */
557		mutex_lock(&chip->mutex);
558		ret = get_chip(map, chip, FL_POINT);
559		mutex_unlock(&chip->mutex);
560		if (ret)
561			break;
562
563		chip->state = FL_POINT;
564		chip->ref_point_counter++;
565		*retlen += thislen;
566		len -= thislen;
567
568		ofs = 0;
569		last_end += 1 << lpddr->chipshift;
570		chipnum++;
571		chip = &lpddr->chips[chipnum];
572	}
573	return 0;
574}
575
576static int lpddr_unpoint (struct mtd_info *mtd, loff_t adr, size_t len)
577{
578	struct map_info *map = mtd->priv;
579	struct lpddr_private *lpddr = map->fldrv_priv;
580	int chipnum = adr >> lpddr->chipshift, err = 0;
581	unsigned long ofs;
582
583	/* ofs: offset within the first chip that the first read should start */
584	ofs = adr - (chipnum << lpddr->chipshift);
585
586	while (len) {
587		unsigned long thislen;
588		struct flchip *chip;
589
590		chip = &lpddr->chips[chipnum];
591		if (chipnum >= lpddr->numchips)
592			break;
593
594		if ((len + ofs - 1) >> lpddr->chipshift)
595			thislen = (1<<lpddr->chipshift) - ofs;
596		else
597			thislen = len;
598
599		mutex_lock(&chip->mutex);
600		if (chip->state == FL_POINT) {
601			chip->ref_point_counter--;
602			if (chip->ref_point_counter == 0)
603				chip->state = FL_READY;
604		} else {
605			printk(KERN_WARNING "%s: Warning: unpoint called on non"
606					"pointed region\n", map->name);
607			err = -EINVAL;
608		}
609
610		put_chip(map, chip);
611		mutex_unlock(&chip->mutex);
612
613		len -= thislen;
614		ofs = 0;
615		chipnum++;
616	}
617
618	return err;
619}
620
621static int lpddr_write_buffers(struct mtd_info *mtd, loff_t to, size_t len,
622				size_t *retlen, const u_char *buf)
623{
624	struct kvec vec;
625
626	vec.iov_base = (void *) buf;
627	vec.iov_len = len;
628
629	return lpddr_writev(mtd, &vec, 1, to, retlen);
630}
631
632
633static int lpddr_writev(struct mtd_info *mtd, const struct kvec *vecs,
634				unsigned long count, loff_t to, size_t *retlen)
635{
636	struct map_info *map = mtd->priv;
637	struct lpddr_private *lpddr = map->fldrv_priv;
638	int ret = 0;
639	int chipnum;
640	unsigned long ofs, vec_seek, i;
641	int wbufsize = 1 << lpddr->qinfo->BufSizeShift;
642	size_t len = 0;
643
644	for (i = 0; i < count; i++)
645		len += vecs[i].iov_len;
646
647	if (!len)
648		return 0;
649
650	chipnum = to >> lpddr->chipshift;
651
652	ofs = to;
653	vec_seek = 0;
654
655	do {
656		/* We must not cross write block boundaries */
657		int size = wbufsize - (ofs & (wbufsize-1));
658
659		if (size > len)
660			size = len;
661
662		ret = do_write_buffer(map, &lpddr->chips[chipnum],
663					  ofs, &vecs, &vec_seek, size);
664		if (ret)
665			return ret;
666
667		ofs += size;
668		(*retlen) += size;
669		len -= size;
670
671		/* Be nice and reschedule with the chip in a usable
672		 * state for other processes */
673		cond_resched();
674
675	} while (len);
676
677	return 0;
678}
679
680static int lpddr_erase(struct mtd_info *mtd, struct erase_info *instr)
681{
682	unsigned long ofs, len;
683	int ret;
684	struct map_info *map = mtd->priv;
685	struct lpddr_private *lpddr = map->fldrv_priv;
686	int size = 1 << lpddr->qinfo->UniformBlockSizeShift;
687
688	ofs = instr->addr;
689	len = instr->len;
690
691	while (len > 0) {
692		ret = do_erase_oneblock(mtd, ofs);
693		if (ret)
694			return ret;
695		ofs += size;
696		len -= size;
697	}
698	instr->state = MTD_ERASE_DONE;
699	mtd_erase_callback(instr);
700
701	return 0;
702}
703
704#define DO_XXLOCK_LOCK		1
705#define DO_XXLOCK_UNLOCK	2
706int do_xxlock(struct mtd_info *mtd, loff_t adr, uint32_t len, int thunk)
707{
708	int ret = 0;
709	struct map_info *map = mtd->priv;
710	struct lpddr_private *lpddr = map->fldrv_priv;
711	int chipnum = adr >> lpddr->chipshift;
712	struct flchip *chip = &lpddr->chips[chipnum];
713
714	mutex_lock(&chip->mutex);
715	ret = get_chip(map, chip, FL_LOCKING);
716	if (ret) {
717		mutex_unlock(&chip->mutex);
718		return ret;
719	}
720
721	if (thunk == DO_XXLOCK_LOCK) {
722		send_pfow_command(map, LPDDR_LOCK_BLOCK, adr, adr + len, NULL);
723		chip->state = FL_LOCKING;
724	} else if (thunk == DO_XXLOCK_UNLOCK) {
725		send_pfow_command(map, LPDDR_UNLOCK_BLOCK, adr, adr + len, NULL);
726		chip->state = FL_UNLOCKING;
727	} else
728		BUG();
729
730	ret = wait_for_ready(map, chip, 1);
731	if (ret)	{
732		printk(KERN_ERR "%s: block unlock error status %d \n",
733				map->name, ret);
734		goto out;
735	}
736out:	put_chip(map, chip);
737	mutex_unlock(&chip->mutex);
738	return ret;
739}
740
741static int lpddr_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
742{
743	return do_xxlock(mtd, ofs, len, DO_XXLOCK_LOCK);
744}
745
746static int lpddr_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
747{
748	return do_xxlock(mtd, ofs, len, DO_XXLOCK_UNLOCK);
749}
750
751int word_program(struct map_info *map, loff_t adr, uint32_t curval)
752{
753    int ret;
754	struct lpddr_private *lpddr = map->fldrv_priv;
755	int chipnum = adr >> lpddr->chipshift;
756	struct flchip *chip = &lpddr->chips[chipnum];
757
758	mutex_lock(&chip->mutex);
759	ret = get_chip(map, chip, FL_WRITING);
760	if (ret) {
761		mutex_unlock(&chip->mutex);
762		return ret;
763	}
764
765	send_pfow_command(map, LPDDR_WORD_PROGRAM, adr, 0x00, (map_word *)&curval);
766
767	ret = wait_for_ready(map, chip, (1<<lpddr->qinfo->SingleWordProgTime));
768	if (ret)	{
769		printk(KERN_WARNING"%s word_program error at: %llx; val: %x\n",
770			map->name, adr, curval);
771		goto out;
772	}
773
774out:	put_chip(map, chip);
775	mutex_unlock(&chip->mutex);
776	return ret;
777}
778
779MODULE_LICENSE("GPL");
780MODULE_AUTHOR("Alexey Korolev <akorolev@infradead.org>");
781MODULE_DESCRIPTION("MTD driver for LPDDR flash chips");
v5.9
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * LPDDR flash memory device operations. This module provides read, write,
  4 * erase, lock/unlock support for LPDDR flash memories
  5 * (C) 2008 Korolev Alexey <akorolev@infradead.org>
  6 * (C) 2008 Vasiliy Leonenko <vasiliy.leonenko@gmail.com>
  7 * Many thanks to Roman Borisov for initial enabling
  8 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  9 * TODO:
 10 * Implement VPP management
 11 * Implement XIP support
 12 * Implement OTP support
 13 */
 14#include <linux/mtd/pfow.h>
 15#include <linux/mtd/qinfo.h>
 16#include <linux/slab.h>
 17#include <linux/module.h>
 18
 19static int lpddr_read(struct mtd_info *mtd, loff_t adr, size_t len,
 20					size_t *retlen, u_char *buf);
 21static int lpddr_write_buffers(struct mtd_info *mtd, loff_t to,
 22				size_t len, size_t *retlen, const u_char *buf);
 23static int lpddr_writev(struct mtd_info *mtd, const struct kvec *vecs,
 24				unsigned long count, loff_t to, size_t *retlen);
 25static int lpddr_erase(struct mtd_info *mtd, struct erase_info *instr);
 26static int lpddr_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
 27static int lpddr_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
 28static int lpddr_point(struct mtd_info *mtd, loff_t adr, size_t len,
 29			size_t *retlen, void **mtdbuf, resource_size_t *phys);
 30static int lpddr_unpoint(struct mtd_info *mtd, loff_t adr, size_t len);
 31static int get_chip(struct map_info *map, struct flchip *chip, int mode);
 32static int chip_ready(struct map_info *map, struct flchip *chip, int mode);
 33static void put_chip(struct map_info *map, struct flchip *chip);
 34
 35struct mtd_info *lpddr_cmdset(struct map_info *map)
 36{
 37	struct lpddr_private *lpddr = map->fldrv_priv;
 38	struct flchip_shared *shared;
 39	struct flchip *chip;
 40	struct mtd_info *mtd;
 41	int numchips;
 42	int i, j;
 43
 44	mtd = kzalloc(sizeof(*mtd), GFP_KERNEL);
 45	if (!mtd)
 
 46		return NULL;
 
 47	mtd->priv = map;
 48	mtd->type = MTD_NORFLASH;
 49
 50	/* Fill in the default mtd operations */
 51	mtd->_read = lpddr_read;
 52	mtd->type = MTD_NORFLASH;
 53	mtd->flags = MTD_CAP_NORFLASH;
 54	mtd->flags &= ~MTD_BIT_WRITEABLE;
 55	mtd->_erase = lpddr_erase;
 56	mtd->_write = lpddr_write_buffers;
 57	mtd->_writev = lpddr_writev;
 58	mtd->_lock = lpddr_lock;
 59	mtd->_unlock = lpddr_unlock;
 60	if (map_is_linear(map)) {
 61		mtd->_point = lpddr_point;
 62		mtd->_unpoint = lpddr_unpoint;
 63	}
 64	mtd->size = 1 << lpddr->qinfo->DevSizeShift;
 65	mtd->erasesize = 1 << lpddr->qinfo->UniformBlockSizeShift;
 66	mtd->writesize = 1 << lpddr->qinfo->BufSizeShift;
 67
 68	shared = kmalloc_array(lpddr->numchips, sizeof(struct flchip_shared),
 69						GFP_KERNEL);
 70	if (!shared) {
 
 71		kfree(mtd);
 72		return NULL;
 73	}
 74
 75	chip = &lpddr->chips[0];
 76	numchips = lpddr->numchips / lpddr->qinfo->HWPartsNum;
 77	for (i = 0; i < numchips; i++) {
 78		shared[i].writing = shared[i].erasing = NULL;
 79		mutex_init(&shared[i].lock);
 80		for (j = 0; j < lpddr->qinfo->HWPartsNum; j++) {
 81			*chip = lpddr->chips[i];
 82			chip->start += j << lpddr->chipshift;
 83			chip->oldstate = chip->state = FL_READY;
 84			chip->priv = &shared[i];
 85			/* those should be reset too since
 86			   they create memory references. */
 87			init_waitqueue_head(&chip->wq);
 88			mutex_init(&chip->mutex);
 89			chip++;
 90		}
 91	}
 92
 93	return mtd;
 94}
 95EXPORT_SYMBOL(lpddr_cmdset);
 96
 97static int wait_for_ready(struct map_info *map, struct flchip *chip,
 98		unsigned int chip_op_time)
 99{
100	unsigned int timeo, reset_timeo, sleep_time;
101	unsigned int dsr;
102	flstate_t chip_state = chip->state;
103	int ret = 0;
104
105	/* set our timeout to 8 times the expected delay */
106	timeo = chip_op_time * 8;
107	if (!timeo)
108		timeo = 500000;
109	reset_timeo = timeo;
110	sleep_time = chip_op_time / 2;
111
112	for (;;) {
113		dsr = CMDVAL(map_read(map, map->pfow_base + PFOW_DSR));
114		if (dsr & DSR_READY_STATUS)
115			break;
116		if (!timeo) {
117			printk(KERN_ERR "%s: Flash timeout error state %d \n",
118							map->name, chip_state);
119			ret = -ETIME;
120			break;
121		}
122
123		/* OK Still waiting. Drop the lock, wait a while and retry. */
124		mutex_unlock(&chip->mutex);
125		if (sleep_time >= 1000000/HZ) {
126			/*
127			 * Half of the normal delay still remaining
128			 * can be performed with a sleeping delay instead
129			 * of busy waiting.
130			 */
131			msleep(sleep_time/1000);
132			timeo -= sleep_time;
133			sleep_time = 1000000/HZ;
134		} else {
135			udelay(1);
136			cond_resched();
137			timeo--;
138		}
139		mutex_lock(&chip->mutex);
140
141		while (chip->state != chip_state) {
142			/* Someone's suspended the operation: sleep */
143			DECLARE_WAITQUEUE(wait, current);
144			set_current_state(TASK_UNINTERRUPTIBLE);
145			add_wait_queue(&chip->wq, &wait);
146			mutex_unlock(&chip->mutex);
147			schedule();
148			remove_wait_queue(&chip->wq, &wait);
149			mutex_lock(&chip->mutex);
150		}
151		if (chip->erase_suspended || chip->write_suspended)  {
152			/* Suspend has occurred while sleep: reset timeout */
153			timeo = reset_timeo;
154			chip->erase_suspended = chip->write_suspended = 0;
155		}
156	}
157	/* check status for errors */
158	if (dsr & DSR_ERR) {
159		/* Clear DSR*/
160		map_write(map, CMD(~(DSR_ERR)), map->pfow_base + PFOW_DSR);
161		printk(KERN_WARNING"%s: Bad status on wait: 0x%x \n",
162				map->name, dsr);
163		print_drs_error(dsr);
164		ret = -EIO;
165	}
166	chip->state = FL_READY;
167	return ret;
168}
169
170static int get_chip(struct map_info *map, struct flchip *chip, int mode)
171{
172	int ret;
173	DECLARE_WAITQUEUE(wait, current);
174
175 retry:
176	if (chip->priv && (mode == FL_WRITING || mode == FL_ERASING)
177		&& chip->state != FL_SYNCING) {
178		/*
179		 * OK. We have possibility for contension on the write/erase
180		 * operations which are global to the real chip and not per
181		 * partition.  So let's fight it over in the partition which
182		 * currently has authority on the operation.
183		 *
184		 * The rules are as follows:
185		 *
186		 * - any write operation must own shared->writing.
187		 *
188		 * - any erase operation must own _both_ shared->writing and
189		 *   shared->erasing.
190		 *
191		 * - contension arbitration is handled in the owner's context.
192		 *
193		 * The 'shared' struct can be read and/or written only when
194		 * its lock is taken.
195		 */
196		struct flchip_shared *shared = chip->priv;
197		struct flchip *contender;
198		mutex_lock(&shared->lock);
199		contender = shared->writing;
200		if (contender && contender != chip) {
201			/*
202			 * The engine to perform desired operation on this
203			 * partition is already in use by someone else.
204			 * Let's fight over it in the context of the chip
205			 * currently using it.  If it is possible to suspend,
206			 * that other partition will do just that, otherwise
207			 * it'll happily send us to sleep.  In any case, when
208			 * get_chip returns success we're clear to go ahead.
209			 */
210			ret = mutex_trylock(&contender->mutex);
211			mutex_unlock(&shared->lock);
212			if (!ret)
213				goto retry;
214			mutex_unlock(&chip->mutex);
215			ret = chip_ready(map, contender, mode);
216			mutex_lock(&chip->mutex);
217
218			if (ret == -EAGAIN) {
219				mutex_unlock(&contender->mutex);
220				goto retry;
221			}
222			if (ret) {
223				mutex_unlock(&contender->mutex);
224				return ret;
225			}
226			mutex_lock(&shared->lock);
227
228			/* We should not own chip if it is already in FL_SYNCING
229			 * state. Put contender and retry. */
230			if (chip->state == FL_SYNCING) {
231				put_chip(map, contender);
232				mutex_unlock(&contender->mutex);
233				goto retry;
234			}
235			mutex_unlock(&contender->mutex);
236		}
237
238		/* Check if we have suspended erase on this chip.
239		   Must sleep in such a case. */
240		if (mode == FL_ERASING && shared->erasing
241		    && shared->erasing->oldstate == FL_ERASING) {
242			mutex_unlock(&shared->lock);
243			set_current_state(TASK_UNINTERRUPTIBLE);
244			add_wait_queue(&chip->wq, &wait);
245			mutex_unlock(&chip->mutex);
246			schedule();
247			remove_wait_queue(&chip->wq, &wait);
248			mutex_lock(&chip->mutex);
249			goto retry;
250		}
251
252		/* We now own it */
253		shared->writing = chip;
254		if (mode == FL_ERASING)
255			shared->erasing = chip;
256		mutex_unlock(&shared->lock);
257	}
258
259	ret = chip_ready(map, chip, mode);
260	if (ret == -EAGAIN)
261		goto retry;
262
263	return ret;
264}
265
266static int chip_ready(struct map_info *map, struct flchip *chip, int mode)
267{
268	struct lpddr_private *lpddr = map->fldrv_priv;
269	int ret = 0;
270	DECLARE_WAITQUEUE(wait, current);
271
272	/* Prevent setting state FL_SYNCING for chip in suspended state. */
273	if (FL_SYNCING == mode && FL_READY != chip->oldstate)
274		goto sleep;
275
276	switch (chip->state) {
277	case FL_READY:
278	case FL_JEDEC_QUERY:
279		return 0;
280
281	case FL_ERASING:
282		if (!lpddr->qinfo->SuspEraseSupp ||
283			!(mode == FL_READY || mode == FL_POINT))
284			goto sleep;
285
286		map_write(map, CMD(LPDDR_SUSPEND),
287			map->pfow_base + PFOW_PROGRAM_ERASE_SUSPEND);
288		chip->oldstate = FL_ERASING;
289		chip->state = FL_ERASE_SUSPENDING;
290		ret = wait_for_ready(map, chip, 0);
291		if (ret) {
292			/* Oops. something got wrong. */
293			/* Resume and pretend we weren't here.  */
294			put_chip(map, chip);
295			printk(KERN_ERR "%s: suspend operation failed."
296					"State may be wrong \n", map->name);
297			return -EIO;
298		}
299		chip->erase_suspended = 1;
300		chip->state = FL_READY;
301		return 0;
302		/* Erase suspend */
303	case FL_POINT:
304		/* Only if there's no operation suspended... */
305		if (mode == FL_READY && chip->oldstate == FL_READY)
306			return 0;
307		fallthrough;
308	default:
309sleep:
310		set_current_state(TASK_UNINTERRUPTIBLE);
311		add_wait_queue(&chip->wq, &wait);
312		mutex_unlock(&chip->mutex);
313		schedule();
314		remove_wait_queue(&chip->wq, &wait);
315		mutex_lock(&chip->mutex);
316		return -EAGAIN;
317	}
318}
319
320static void put_chip(struct map_info *map, struct flchip *chip)
321{
322	if (chip->priv) {
323		struct flchip_shared *shared = chip->priv;
324		mutex_lock(&shared->lock);
325		if (shared->writing == chip && chip->oldstate == FL_READY) {
326			/* We own the ability to write, but we're done */
327			shared->writing = shared->erasing;
328			if (shared->writing && shared->writing != chip) {
329				/* give back the ownership */
330				struct flchip *loaner = shared->writing;
331				mutex_lock(&loaner->mutex);
332				mutex_unlock(&shared->lock);
333				mutex_unlock(&chip->mutex);
334				put_chip(map, loaner);
335				mutex_lock(&chip->mutex);
336				mutex_unlock(&loaner->mutex);
337				wake_up(&chip->wq);
338				return;
339			}
340			shared->erasing = NULL;
341			shared->writing = NULL;
342		} else if (shared->erasing == chip && shared->writing != chip) {
343			/*
344			 * We own the ability to erase without the ability
345			 * to write, which means the erase was suspended
346			 * and some other partition is currently writing.
347			 * Don't let the switch below mess things up since
348			 * we don't have ownership to resume anything.
349			 */
350			mutex_unlock(&shared->lock);
351			wake_up(&chip->wq);
352			return;
353		}
354		mutex_unlock(&shared->lock);
355	}
356
357	switch (chip->oldstate) {
358	case FL_ERASING:
359		map_write(map, CMD(LPDDR_RESUME),
360				map->pfow_base + PFOW_COMMAND_CODE);
361		map_write(map, CMD(LPDDR_START_EXECUTION),
362				map->pfow_base + PFOW_COMMAND_EXECUTE);
363		chip->oldstate = FL_READY;
364		chip->state = FL_ERASING;
365		break;
366	case FL_READY:
367		break;
368	default:
369		printk(KERN_ERR "%s: put_chip() called with oldstate %d!\n",
370				map->name, chip->oldstate);
371	}
372	wake_up(&chip->wq);
373}
374
375static int do_write_buffer(struct map_info *map, struct flchip *chip,
376			unsigned long adr, const struct kvec **pvec,
377			unsigned long *pvec_seek, int len)
378{
379	struct lpddr_private *lpddr = map->fldrv_priv;
380	map_word datum;
381	int ret, wbufsize, word_gap, words;
382	const struct kvec *vec;
383	unsigned long vec_seek;
384	unsigned long prog_buf_ofs;
385
386	wbufsize = 1 << lpddr->qinfo->BufSizeShift;
387
388	mutex_lock(&chip->mutex);
389	ret = get_chip(map, chip, FL_WRITING);
390	if (ret) {
391		mutex_unlock(&chip->mutex);
392		return ret;
393	}
394	/* Figure out the number of words to write */
395	word_gap = (-adr & (map_bankwidth(map)-1));
396	words = (len - word_gap + map_bankwidth(map) - 1) / map_bankwidth(map);
397	if (!word_gap) {
398		words--;
399	} else {
400		word_gap = map_bankwidth(map) - word_gap;
401		adr -= word_gap;
402		datum = map_word_ff(map);
403	}
404	/* Write data */
405	/* Get the program buffer offset from PFOW register data first*/
406	prog_buf_ofs = map->pfow_base + CMDVAL(map_read(map,
407				map->pfow_base + PFOW_PROGRAM_BUFFER_OFFSET));
408	vec = *pvec;
409	vec_seek = *pvec_seek;
410	do {
411		int n = map_bankwidth(map) - word_gap;
412
413		if (n > vec->iov_len - vec_seek)
414			n = vec->iov_len - vec_seek;
415		if (n > len)
416			n = len;
417
418		if (!word_gap && (len < map_bankwidth(map)))
419			datum = map_word_ff(map);
420
421		datum = map_word_load_partial(map, datum,
422				vec->iov_base + vec_seek, word_gap, n);
423
424		len -= n;
425		word_gap += n;
426		if (!len || word_gap == map_bankwidth(map)) {
427			map_write(map, datum, prog_buf_ofs);
428			prog_buf_ofs += map_bankwidth(map);
429			word_gap = 0;
430		}
431
432		vec_seek += n;
433		if (vec_seek == vec->iov_len) {
434			vec++;
435			vec_seek = 0;
436		}
437	} while (len);
438	*pvec = vec;
439	*pvec_seek = vec_seek;
440
441	/* GO GO GO */
442	send_pfow_command(map, LPDDR_BUFF_PROGRAM, adr, wbufsize, NULL);
443	chip->state = FL_WRITING;
444	ret = wait_for_ready(map, chip, (1<<lpddr->qinfo->ProgBufferTime));
445	if (ret)	{
446		printk(KERN_WARNING"%s Buffer program error: %d at %lx; \n",
447			map->name, ret, adr);
448		goto out;
449	}
450
451 out:	put_chip(map, chip);
452	mutex_unlock(&chip->mutex);
453	return ret;
454}
455
456static int do_erase_oneblock(struct mtd_info *mtd, loff_t adr)
457{
458	struct map_info *map = mtd->priv;
459	struct lpddr_private *lpddr = map->fldrv_priv;
460	int chipnum = adr >> lpddr->chipshift;
461	struct flchip *chip = &lpddr->chips[chipnum];
462	int ret;
463
464	mutex_lock(&chip->mutex);
465	ret = get_chip(map, chip, FL_ERASING);
466	if (ret) {
467		mutex_unlock(&chip->mutex);
468		return ret;
469	}
470	send_pfow_command(map, LPDDR_BLOCK_ERASE, adr, 0, NULL);
471	chip->state = FL_ERASING;
472	ret = wait_for_ready(map, chip, (1<<lpddr->qinfo->BlockEraseTime)*1000);
473	if (ret) {
474		printk(KERN_WARNING"%s Erase block error %d at : %llx\n",
475			map->name, ret, adr);
476		goto out;
477	}
478 out:	put_chip(map, chip);
479	mutex_unlock(&chip->mutex);
480	return ret;
481}
482
483static int lpddr_read(struct mtd_info *mtd, loff_t adr, size_t len,
484			size_t *retlen, u_char *buf)
485{
486	struct map_info *map = mtd->priv;
487	struct lpddr_private *lpddr = map->fldrv_priv;
488	int chipnum = adr >> lpddr->chipshift;
489	struct flchip *chip = &lpddr->chips[chipnum];
490	int ret = 0;
491
492	mutex_lock(&chip->mutex);
493	ret = get_chip(map, chip, FL_READY);
494	if (ret) {
495		mutex_unlock(&chip->mutex);
496		return ret;
497	}
498
499	map_copy_from(map, buf, adr, len);
500	*retlen = len;
501
502	put_chip(map, chip);
503	mutex_unlock(&chip->mutex);
504	return ret;
505}
506
507static int lpddr_point(struct mtd_info *mtd, loff_t adr, size_t len,
508			size_t *retlen, void **mtdbuf, resource_size_t *phys)
509{
510	struct map_info *map = mtd->priv;
511	struct lpddr_private *lpddr = map->fldrv_priv;
512	int chipnum = adr >> lpddr->chipshift;
513	unsigned long ofs, last_end = 0;
514	struct flchip *chip = &lpddr->chips[chipnum];
515	int ret = 0;
516
517	if (!map->virt)
518		return -EINVAL;
519
520	/* ofs: offset within the first chip that the first read should start */
521	ofs = adr - (chipnum << lpddr->chipshift);
522	*mtdbuf = (void *)map->virt + chip->start + ofs;
523
524	while (len) {
525		unsigned long thislen;
526
527		if (chipnum >= lpddr->numchips)
528			break;
529
530		/* We cannot point across chips that are virtually disjoint */
531		if (!last_end)
532			last_end = chip->start;
533		else if (chip->start != last_end)
534			break;
535
536		if ((len + ofs - 1) >> lpddr->chipshift)
537			thislen = (1<<lpddr->chipshift) - ofs;
538		else
539			thislen = len;
540		/* get the chip */
541		mutex_lock(&chip->mutex);
542		ret = get_chip(map, chip, FL_POINT);
543		mutex_unlock(&chip->mutex);
544		if (ret)
545			break;
546
547		chip->state = FL_POINT;
548		chip->ref_point_counter++;
549		*retlen += thislen;
550		len -= thislen;
551
552		ofs = 0;
553		last_end += 1 << lpddr->chipshift;
554		chipnum++;
555		chip = &lpddr->chips[chipnum];
556	}
557	return 0;
558}
559
560static int lpddr_unpoint (struct mtd_info *mtd, loff_t adr, size_t len)
561{
562	struct map_info *map = mtd->priv;
563	struct lpddr_private *lpddr = map->fldrv_priv;
564	int chipnum = adr >> lpddr->chipshift, err = 0;
565	unsigned long ofs;
566
567	/* ofs: offset within the first chip that the first read should start */
568	ofs = adr - (chipnum << lpddr->chipshift);
569
570	while (len) {
571		unsigned long thislen;
572		struct flchip *chip;
573
574		chip = &lpddr->chips[chipnum];
575		if (chipnum >= lpddr->numchips)
576			break;
577
578		if ((len + ofs - 1) >> lpddr->chipshift)
579			thislen = (1<<lpddr->chipshift) - ofs;
580		else
581			thislen = len;
582
583		mutex_lock(&chip->mutex);
584		if (chip->state == FL_POINT) {
585			chip->ref_point_counter--;
586			if (chip->ref_point_counter == 0)
587				chip->state = FL_READY;
588		} else {
589			printk(KERN_WARNING "%s: Warning: unpoint called on non"
590					"pointed region\n", map->name);
591			err = -EINVAL;
592		}
593
594		put_chip(map, chip);
595		mutex_unlock(&chip->mutex);
596
597		len -= thislen;
598		ofs = 0;
599		chipnum++;
600	}
601
602	return err;
603}
604
605static int lpddr_write_buffers(struct mtd_info *mtd, loff_t to, size_t len,
606				size_t *retlen, const u_char *buf)
607{
608	struct kvec vec;
609
610	vec.iov_base = (void *) buf;
611	vec.iov_len = len;
612
613	return lpddr_writev(mtd, &vec, 1, to, retlen);
614}
615
616
617static int lpddr_writev(struct mtd_info *mtd, const struct kvec *vecs,
618				unsigned long count, loff_t to, size_t *retlen)
619{
620	struct map_info *map = mtd->priv;
621	struct lpddr_private *lpddr = map->fldrv_priv;
622	int ret = 0;
623	int chipnum;
624	unsigned long ofs, vec_seek, i;
625	int wbufsize = 1 << lpddr->qinfo->BufSizeShift;
626	size_t len = 0;
627
628	for (i = 0; i < count; i++)
629		len += vecs[i].iov_len;
630
631	if (!len)
632		return 0;
633
634	chipnum = to >> lpddr->chipshift;
635
636	ofs = to;
637	vec_seek = 0;
638
639	do {
640		/* We must not cross write block boundaries */
641		int size = wbufsize - (ofs & (wbufsize-1));
642
643		if (size > len)
644			size = len;
645
646		ret = do_write_buffer(map, &lpddr->chips[chipnum],
647					  ofs, &vecs, &vec_seek, size);
648		if (ret)
649			return ret;
650
651		ofs += size;
652		(*retlen) += size;
653		len -= size;
654
655		/* Be nice and reschedule with the chip in a usable
656		 * state for other processes */
657		cond_resched();
658
659	} while (len);
660
661	return 0;
662}
663
664static int lpddr_erase(struct mtd_info *mtd, struct erase_info *instr)
665{
666	unsigned long ofs, len;
667	int ret;
668	struct map_info *map = mtd->priv;
669	struct lpddr_private *lpddr = map->fldrv_priv;
670	int size = 1 << lpddr->qinfo->UniformBlockSizeShift;
671
672	ofs = instr->addr;
673	len = instr->len;
674
675	while (len > 0) {
676		ret = do_erase_oneblock(mtd, ofs);
677		if (ret)
678			return ret;
679		ofs += size;
680		len -= size;
681	}
 
 
682
683	return 0;
684}
685
686#define DO_XXLOCK_LOCK		1
687#define DO_XXLOCK_UNLOCK	2
688static int do_xxlock(struct mtd_info *mtd, loff_t adr, uint32_t len, int thunk)
689{
690	int ret = 0;
691	struct map_info *map = mtd->priv;
692	struct lpddr_private *lpddr = map->fldrv_priv;
693	int chipnum = adr >> lpddr->chipshift;
694	struct flchip *chip = &lpddr->chips[chipnum];
695
696	mutex_lock(&chip->mutex);
697	ret = get_chip(map, chip, FL_LOCKING);
698	if (ret) {
699		mutex_unlock(&chip->mutex);
700		return ret;
701	}
702
703	if (thunk == DO_XXLOCK_LOCK) {
704		send_pfow_command(map, LPDDR_LOCK_BLOCK, adr, adr + len, NULL);
705		chip->state = FL_LOCKING;
706	} else if (thunk == DO_XXLOCK_UNLOCK) {
707		send_pfow_command(map, LPDDR_UNLOCK_BLOCK, adr, adr + len, NULL);
708		chip->state = FL_UNLOCKING;
709	} else
710		BUG();
711
712	ret = wait_for_ready(map, chip, 1);
713	if (ret)	{
714		printk(KERN_ERR "%s: block unlock error status %d \n",
715				map->name, ret);
716		goto out;
717	}
718out:	put_chip(map, chip);
719	mutex_unlock(&chip->mutex);
720	return ret;
721}
722
723static int lpddr_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
724{
725	return do_xxlock(mtd, ofs, len, DO_XXLOCK_LOCK);
726}
727
728static int lpddr_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
729{
730	return do_xxlock(mtd, ofs, len, DO_XXLOCK_UNLOCK);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
731}
732
733MODULE_LICENSE("GPL");
734MODULE_AUTHOR("Alexey Korolev <akorolev@infradead.org>");
735MODULE_DESCRIPTION("MTD driver for LPDDR flash chips");