Linux Audio

Check our new training course

Loading...
v3.5.6
  1/*
  2 * LPDDR flash memory device operations. This module provides read, write,
  3 * erase, lock/unlock support for LPDDR flash memories
  4 * (C) 2008 Korolev Alexey <akorolev@infradead.org>
  5 * (C) 2008 Vasiliy Leonenko <vasiliy.leonenko@gmail.com>
  6 * Many thanks to Roman Borisov for initial enabling
  7 *
  8 * This program is free software; you can redistribute it and/or
  9 * modify it under the terms of the GNU General Public License
 10 * as published by the Free Software Foundation; either version 2
 11 * of the License, or (at your option) any later version.
 12 *
 13 * This program is distributed in the hope that it will be useful,
 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 16 * GNU General Public License for more details.
 17 *
 18 * You should have received a copy of the GNU General Public License
 19 * along with this program; if not, write to the Free Software
 20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
 21 * 02110-1301, USA.
 22 * TODO:
 23 * Implement VPP management
 24 * Implement XIP support
 25 * Implement OTP support
 26 */
 27#include <linux/mtd/pfow.h>
 28#include <linux/mtd/qinfo.h>
 29#include <linux/slab.h>
 30#include <linux/module.h>
 31
 32static int lpddr_read(struct mtd_info *mtd, loff_t adr, size_t len,
 33					size_t *retlen, u_char *buf);
 34static int lpddr_write_buffers(struct mtd_info *mtd, loff_t to,
 35				size_t len, size_t *retlen, const u_char *buf);
 36static int lpddr_writev(struct mtd_info *mtd, const struct kvec *vecs,
 37				unsigned long count, loff_t to, size_t *retlen);
 38static int lpddr_erase(struct mtd_info *mtd, struct erase_info *instr);
 39static int lpddr_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
 40static int lpddr_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
 41static int lpddr_point(struct mtd_info *mtd, loff_t adr, size_t len,
 42			size_t *retlen, void **mtdbuf, resource_size_t *phys);
 43static int lpddr_unpoint(struct mtd_info *mtd, loff_t adr, size_t len);
 44static int get_chip(struct map_info *map, struct flchip *chip, int mode);
 45static int chip_ready(struct map_info *map, struct flchip *chip, int mode);
 46static void put_chip(struct map_info *map, struct flchip *chip);
 47
 48struct mtd_info *lpddr_cmdset(struct map_info *map)
 49{
 50	struct lpddr_private *lpddr = map->fldrv_priv;
 51	struct flchip_shared *shared;
 52	struct flchip *chip;
 53	struct mtd_info *mtd;
 54	int numchips;
 55	int i, j;
 56
 57	mtd = kzalloc(sizeof(*mtd), GFP_KERNEL);
 58	if (!mtd) {
 59		printk(KERN_ERR "Failed to allocate memory for MTD device\n");
 60		return NULL;
 61	}
 62	mtd->priv = map;
 63	mtd->type = MTD_NORFLASH;
 64
 65	/* Fill in the default mtd operations */
 66	mtd->_read = lpddr_read;
 67	mtd->type = MTD_NORFLASH;
 68	mtd->flags = MTD_CAP_NORFLASH;
 69	mtd->flags &= ~MTD_BIT_WRITEABLE;
 70	mtd->_erase = lpddr_erase;
 71	mtd->_write = lpddr_write_buffers;
 72	mtd->_writev = lpddr_writev;
 73	mtd->_lock = lpddr_lock;
 74	mtd->_unlock = lpddr_unlock;
 75	if (map_is_linear(map)) {
 76		mtd->_point = lpddr_point;
 77		mtd->_unpoint = lpddr_unpoint;
 78	}
 79	mtd->size = 1 << lpddr->qinfo->DevSizeShift;
 80	mtd->erasesize = 1 << lpddr->qinfo->UniformBlockSizeShift;
 81	mtd->writesize = 1 << lpddr->qinfo->BufSizeShift;
 82
 83	shared = kmalloc(sizeof(struct flchip_shared) * lpddr->numchips,
 84						GFP_KERNEL);
 85	if (!shared) {
 86		kfree(lpddr);
 87		kfree(mtd);
 88		return NULL;
 89	}
 90
 91	chip = &lpddr->chips[0];
 92	numchips = lpddr->numchips / lpddr->qinfo->HWPartsNum;
 93	for (i = 0; i < numchips; i++) {
 94		shared[i].writing = shared[i].erasing = NULL;
 95		mutex_init(&shared[i].lock);
 96		for (j = 0; j < lpddr->qinfo->HWPartsNum; j++) {
 97			*chip = lpddr->chips[i];
 98			chip->start += j << lpddr->chipshift;
 99			chip->oldstate = chip->state = FL_READY;
100			chip->priv = &shared[i];
101			/* those should be reset too since
102			   they create memory references. */
103			init_waitqueue_head(&chip->wq);
104			mutex_init(&chip->mutex);
105			chip++;
106		}
107	}
108
109	return mtd;
110}
111EXPORT_SYMBOL(lpddr_cmdset);
112
113static int wait_for_ready(struct map_info *map, struct flchip *chip,
114		unsigned int chip_op_time)
115{
116	unsigned int timeo, reset_timeo, sleep_time;
117	unsigned int dsr;
118	flstate_t chip_state = chip->state;
119	int ret = 0;
120
121	/* set our timeout to 8 times the expected delay */
122	timeo = chip_op_time * 8;
123	if (!timeo)
124		timeo = 500000;
125	reset_timeo = timeo;
126	sleep_time = chip_op_time / 2;
127
128	for (;;) {
129		dsr = CMDVAL(map_read(map, map->pfow_base + PFOW_DSR));
130		if (dsr & DSR_READY_STATUS)
131			break;
132		if (!timeo) {
133			printk(KERN_ERR "%s: Flash timeout error state %d \n",
134							map->name, chip_state);
135			ret = -ETIME;
136			break;
137		}
138
139		/* OK Still waiting. Drop the lock, wait a while and retry. */
140		mutex_unlock(&chip->mutex);
141		if (sleep_time >= 1000000/HZ) {
142			/*
143			 * Half of the normal delay still remaining
144			 * can be performed with a sleeping delay instead
145			 * of busy waiting.
146			 */
147			msleep(sleep_time/1000);
148			timeo -= sleep_time;
149			sleep_time = 1000000/HZ;
150		} else {
151			udelay(1);
152			cond_resched();
153			timeo--;
154		}
155		mutex_lock(&chip->mutex);
156
157		while (chip->state != chip_state) {
158			/* Someone's suspended the operation: sleep */
159			DECLARE_WAITQUEUE(wait, current);
160			set_current_state(TASK_UNINTERRUPTIBLE);
161			add_wait_queue(&chip->wq, &wait);
162			mutex_unlock(&chip->mutex);
163			schedule();
164			remove_wait_queue(&chip->wq, &wait);
165			mutex_lock(&chip->mutex);
166		}
167		if (chip->erase_suspended || chip->write_suspended)  {
168			/* Suspend has occurred while sleep: reset timeout */
169			timeo = reset_timeo;
170			chip->erase_suspended = chip->write_suspended = 0;
171		}
172	}
173	/* check status for errors */
174	if (dsr & DSR_ERR) {
175		/* Clear DSR*/
176		map_write(map, CMD(~(DSR_ERR)), map->pfow_base + PFOW_DSR);
177		printk(KERN_WARNING"%s: Bad status on wait: 0x%x \n",
178				map->name, dsr);
179		print_drs_error(dsr);
180		ret = -EIO;
181	}
182	chip->state = FL_READY;
183	return ret;
184}
185
186static int get_chip(struct map_info *map, struct flchip *chip, int mode)
187{
188	int ret;
189	DECLARE_WAITQUEUE(wait, current);
190
191 retry:
192	if (chip->priv && (mode == FL_WRITING || mode == FL_ERASING)
193		&& chip->state != FL_SYNCING) {
194		/*
195		 * OK. We have possibility for contension on the write/erase
196		 * operations which are global to the real chip and not per
197		 * partition.  So let's fight it over in the partition which
198		 * currently has authority on the operation.
199		 *
200		 * The rules are as follows:
201		 *
202		 * - any write operation must own shared->writing.
203		 *
204		 * - any erase operation must own _both_ shared->writing and
205		 *   shared->erasing.
206		 *
207		 * - contension arbitration is handled in the owner's context.
208		 *
209		 * The 'shared' struct can be read and/or written only when
210		 * its lock is taken.
211		 */
212		struct flchip_shared *shared = chip->priv;
213		struct flchip *contender;
214		mutex_lock(&shared->lock);
215		contender = shared->writing;
216		if (contender && contender != chip) {
217			/*
218			 * The engine to perform desired operation on this
219			 * partition is already in use by someone else.
220			 * Let's fight over it in the context of the chip
221			 * currently using it.  If it is possible to suspend,
222			 * that other partition will do just that, otherwise
223			 * it'll happily send us to sleep.  In any case, when
224			 * get_chip returns success we're clear to go ahead.
225			 */
226			ret = mutex_trylock(&contender->mutex);
227			mutex_unlock(&shared->lock);
228			if (!ret)
229				goto retry;
230			mutex_unlock(&chip->mutex);
231			ret = chip_ready(map, contender, mode);
232			mutex_lock(&chip->mutex);
233
234			if (ret == -EAGAIN) {
235				mutex_unlock(&contender->mutex);
236				goto retry;
237			}
238			if (ret) {
239				mutex_unlock(&contender->mutex);
240				return ret;
241			}
242			mutex_lock(&shared->lock);
243
244			/* We should not own chip if it is already in FL_SYNCING
245			 * state. Put contender and retry. */
246			if (chip->state == FL_SYNCING) {
247				put_chip(map, contender);
248				mutex_unlock(&contender->mutex);
249				goto retry;
250			}
251			mutex_unlock(&contender->mutex);
252		}
253
254		/* Check if we have suspended erase on this chip.
255		   Must sleep in such a case. */
256		if (mode == FL_ERASING && shared->erasing
257		    && shared->erasing->oldstate == FL_ERASING) {
258			mutex_unlock(&shared->lock);
259			set_current_state(TASK_UNINTERRUPTIBLE);
260			add_wait_queue(&chip->wq, &wait);
261			mutex_unlock(&chip->mutex);
262			schedule();
263			remove_wait_queue(&chip->wq, &wait);
264			mutex_lock(&chip->mutex);
265			goto retry;
266		}
267
268		/* We now own it */
269		shared->writing = chip;
270		if (mode == FL_ERASING)
271			shared->erasing = chip;
272		mutex_unlock(&shared->lock);
273	}
274
275	ret = chip_ready(map, chip, mode);
276	if (ret == -EAGAIN)
277		goto retry;
278
279	return ret;
280}
281
282static int chip_ready(struct map_info *map, struct flchip *chip, int mode)
283{
284	struct lpddr_private *lpddr = map->fldrv_priv;
285	int ret = 0;
286	DECLARE_WAITQUEUE(wait, current);
287
288	/* Prevent setting state FL_SYNCING for chip in suspended state. */
289	if (FL_SYNCING == mode && FL_READY != chip->oldstate)
290		goto sleep;
291
292	switch (chip->state) {
293	case FL_READY:
294	case FL_JEDEC_QUERY:
295		return 0;
296
297	case FL_ERASING:
298		if (!lpddr->qinfo->SuspEraseSupp ||
299			!(mode == FL_READY || mode == FL_POINT))
300			goto sleep;
301
302		map_write(map, CMD(LPDDR_SUSPEND),
303			map->pfow_base + PFOW_PROGRAM_ERASE_SUSPEND);
304		chip->oldstate = FL_ERASING;
305		chip->state = FL_ERASE_SUSPENDING;
306		ret = wait_for_ready(map, chip, 0);
307		if (ret) {
308			/* Oops. something got wrong. */
309			/* Resume and pretend we weren't here.  */
310			put_chip(map, chip);
311			printk(KERN_ERR "%s: suspend operation failed."
312					"State may be wrong \n", map->name);
313			return -EIO;
314		}
315		chip->erase_suspended = 1;
316		chip->state = FL_READY;
317		return 0;
318		/* Erase suspend */
319	case FL_POINT:
320		/* Only if there's no operation suspended... */
321		if (mode == FL_READY && chip->oldstate == FL_READY)
322			return 0;
323
324	default:
325sleep:
326		set_current_state(TASK_UNINTERRUPTIBLE);
327		add_wait_queue(&chip->wq, &wait);
328		mutex_unlock(&chip->mutex);
329		schedule();
330		remove_wait_queue(&chip->wq, &wait);
331		mutex_lock(&chip->mutex);
332		return -EAGAIN;
333	}
334}
335
336static void put_chip(struct map_info *map, struct flchip *chip)
337{
338	if (chip->priv) {
339		struct flchip_shared *shared = chip->priv;
340		mutex_lock(&shared->lock);
341		if (shared->writing == chip && chip->oldstate == FL_READY) {
342			/* We own the ability to write, but we're done */
343			shared->writing = shared->erasing;
344			if (shared->writing && shared->writing != chip) {
345				/* give back the ownership */
346				struct flchip *loaner = shared->writing;
347				mutex_lock(&loaner->mutex);
348				mutex_unlock(&shared->lock);
349				mutex_unlock(&chip->mutex);
350				put_chip(map, loaner);
351				mutex_lock(&chip->mutex);
352				mutex_unlock(&loaner->mutex);
353				wake_up(&chip->wq);
354				return;
355			}
356			shared->erasing = NULL;
357			shared->writing = NULL;
358		} else if (shared->erasing == chip && shared->writing != chip) {
359			/*
360			 * We own the ability to erase without the ability
361			 * to write, which means the erase was suspended
362			 * and some other partition is currently writing.
363			 * Don't let the switch below mess things up since
364			 * we don't have ownership to resume anything.
365			 */
366			mutex_unlock(&shared->lock);
367			wake_up(&chip->wq);
368			return;
369		}
370		mutex_unlock(&shared->lock);
371	}
372
373	switch (chip->oldstate) {
374	case FL_ERASING:
375		map_write(map, CMD(LPDDR_RESUME),
376				map->pfow_base + PFOW_COMMAND_CODE);
377		map_write(map, CMD(LPDDR_START_EXECUTION),
378				map->pfow_base + PFOW_COMMAND_EXECUTE);
379		chip->oldstate = FL_READY;
380		chip->state = FL_ERASING;
381		break;
382	case FL_READY:
383		break;
384	default:
385		printk(KERN_ERR "%s: put_chip() called with oldstate %d!\n",
386				map->name, chip->oldstate);
387	}
388	wake_up(&chip->wq);
389}
390
391int do_write_buffer(struct map_info *map, struct flchip *chip,
392			unsigned long adr, const struct kvec **pvec,
393			unsigned long *pvec_seek, int len)
394{
395	struct lpddr_private *lpddr = map->fldrv_priv;
396	map_word datum;
397	int ret, wbufsize, word_gap, words;
398	const struct kvec *vec;
399	unsigned long vec_seek;
400	unsigned long prog_buf_ofs;
401
402	wbufsize = 1 << lpddr->qinfo->BufSizeShift;
403
404	mutex_lock(&chip->mutex);
405	ret = get_chip(map, chip, FL_WRITING);
406	if (ret) {
407		mutex_unlock(&chip->mutex);
408		return ret;
409	}
410	/* Figure out the number of words to write */
411	word_gap = (-adr & (map_bankwidth(map)-1));
412	words = (len - word_gap + map_bankwidth(map) - 1) / map_bankwidth(map);
413	if (!word_gap) {
414		words--;
415	} else {
416		word_gap = map_bankwidth(map) - word_gap;
417		adr -= word_gap;
418		datum = map_word_ff(map);
419	}
420	/* Write data */
421	/* Get the program buffer offset from PFOW register data first*/
422	prog_buf_ofs = map->pfow_base + CMDVAL(map_read(map,
423				map->pfow_base + PFOW_PROGRAM_BUFFER_OFFSET));
424	vec = *pvec;
425	vec_seek = *pvec_seek;
426	do {
427		int n = map_bankwidth(map) - word_gap;
428
429		if (n > vec->iov_len - vec_seek)
430			n = vec->iov_len - vec_seek;
431		if (n > len)
432			n = len;
433
434		if (!word_gap && (len < map_bankwidth(map)))
435			datum = map_word_ff(map);
436
437		datum = map_word_load_partial(map, datum,
438				vec->iov_base + vec_seek, word_gap, n);
439
440		len -= n;
441		word_gap += n;
442		if (!len || word_gap == map_bankwidth(map)) {
443			map_write(map, datum, prog_buf_ofs);
444			prog_buf_ofs += map_bankwidth(map);
445			word_gap = 0;
446		}
447
448		vec_seek += n;
449		if (vec_seek == vec->iov_len) {
450			vec++;
451			vec_seek = 0;
452		}
453	} while (len);
454	*pvec = vec;
455	*pvec_seek = vec_seek;
456
457	/* GO GO GO */
458	send_pfow_command(map, LPDDR_BUFF_PROGRAM, adr, wbufsize, NULL);
459	chip->state = FL_WRITING;
460	ret = wait_for_ready(map, chip, (1<<lpddr->qinfo->ProgBufferTime));
461	if (ret)	{
462		printk(KERN_WARNING"%s Buffer program error: %d at %lx; \n",
463			map->name, ret, adr);
464		goto out;
465	}
466
467 out:	put_chip(map, chip);
468	mutex_unlock(&chip->mutex);
469	return ret;
470}
471
472int do_erase_oneblock(struct mtd_info *mtd, loff_t adr)
473{
474	struct map_info *map = mtd->priv;
475	struct lpddr_private *lpddr = map->fldrv_priv;
476	int chipnum = adr >> lpddr->chipshift;
477	struct flchip *chip = &lpddr->chips[chipnum];
478	int ret;
479
480	mutex_lock(&chip->mutex);
481	ret = get_chip(map, chip, FL_ERASING);
482	if (ret) {
483		mutex_unlock(&chip->mutex);
484		return ret;
485	}
486	send_pfow_command(map, LPDDR_BLOCK_ERASE, adr, 0, NULL);
487	chip->state = FL_ERASING;
488	ret = wait_for_ready(map, chip, (1<<lpddr->qinfo->BlockEraseTime)*1000);
489	if (ret) {
490		printk(KERN_WARNING"%s Erase block error %d at : %llx\n",
491			map->name, ret, adr);
492		goto out;
493	}
494 out:	put_chip(map, chip);
495	mutex_unlock(&chip->mutex);
496	return ret;
497}
498
499static int lpddr_read(struct mtd_info *mtd, loff_t adr, size_t len,
500			size_t *retlen, u_char *buf)
501{
502	struct map_info *map = mtd->priv;
503	struct lpddr_private *lpddr = map->fldrv_priv;
504	int chipnum = adr >> lpddr->chipshift;
505	struct flchip *chip = &lpddr->chips[chipnum];
506	int ret = 0;
507
508	mutex_lock(&chip->mutex);
509	ret = get_chip(map, chip, FL_READY);
510	if (ret) {
511		mutex_unlock(&chip->mutex);
512		return ret;
513	}
514
515	map_copy_from(map, buf, adr, len);
516	*retlen = len;
517
518	put_chip(map, chip);
519	mutex_unlock(&chip->mutex);
520	return ret;
521}
522
523static int lpddr_point(struct mtd_info *mtd, loff_t adr, size_t len,
524			size_t *retlen, void **mtdbuf, resource_size_t *phys)
525{
526	struct map_info *map = mtd->priv;
527	struct lpddr_private *lpddr = map->fldrv_priv;
528	int chipnum = adr >> lpddr->chipshift;
529	unsigned long ofs, last_end = 0;
530	struct flchip *chip = &lpddr->chips[chipnum];
531	int ret = 0;
532
533	if (!map->virt)
534		return -EINVAL;
535
536	/* ofs: offset within the first chip that the first read should start */
537	ofs = adr - (chipnum << lpddr->chipshift);
538	*mtdbuf = (void *)map->virt + chip->start + ofs;
539
540	while (len) {
541		unsigned long thislen;
542
543		if (chipnum >= lpddr->numchips)
544			break;
545
546		/* We cannot point across chips that are virtually disjoint */
547		if (!last_end)
548			last_end = chip->start;
549		else if (chip->start != last_end)
550			break;
551
552		if ((len + ofs - 1) >> lpddr->chipshift)
553			thislen = (1<<lpddr->chipshift) - ofs;
554		else
555			thislen = len;
556		/* get the chip */
557		mutex_lock(&chip->mutex);
558		ret = get_chip(map, chip, FL_POINT);
559		mutex_unlock(&chip->mutex);
560		if (ret)
561			break;
562
563		chip->state = FL_POINT;
564		chip->ref_point_counter++;
565		*retlen += thislen;
566		len -= thislen;
567
568		ofs = 0;
569		last_end += 1 << lpddr->chipshift;
570		chipnum++;
571		chip = &lpddr->chips[chipnum];
572	}
573	return 0;
574}
575
576static int lpddr_unpoint (struct mtd_info *mtd, loff_t adr, size_t len)
577{
578	struct map_info *map = mtd->priv;
579	struct lpddr_private *lpddr = map->fldrv_priv;
580	int chipnum = adr >> lpddr->chipshift, err = 0;
581	unsigned long ofs;
582
583	/* ofs: offset within the first chip that the first read should start */
584	ofs = adr - (chipnum << lpddr->chipshift);
585
586	while (len) {
587		unsigned long thislen;
588		struct flchip *chip;
589
590		chip = &lpddr->chips[chipnum];
591		if (chipnum >= lpddr->numchips)
592			break;
593
594		if ((len + ofs - 1) >> lpddr->chipshift)
595			thislen = (1<<lpddr->chipshift) - ofs;
596		else
597			thislen = len;
598
599		mutex_lock(&chip->mutex);
600		if (chip->state == FL_POINT) {
601			chip->ref_point_counter--;
602			if (chip->ref_point_counter == 0)
603				chip->state = FL_READY;
604		} else {
605			printk(KERN_WARNING "%s: Warning: unpoint called on non"
606					"pointed region\n", map->name);
607			err = -EINVAL;
608		}
609
610		put_chip(map, chip);
611		mutex_unlock(&chip->mutex);
612
613		len -= thislen;
614		ofs = 0;
615		chipnum++;
616	}
617
618	return err;
619}
620
621static int lpddr_write_buffers(struct mtd_info *mtd, loff_t to, size_t len,
622				size_t *retlen, const u_char *buf)
623{
624	struct kvec vec;
625
626	vec.iov_base = (void *) buf;
627	vec.iov_len = len;
628
629	return lpddr_writev(mtd, &vec, 1, to, retlen);
630}
631
632
633static int lpddr_writev(struct mtd_info *mtd, const struct kvec *vecs,
634				unsigned long count, loff_t to, size_t *retlen)
635{
636	struct map_info *map = mtd->priv;
637	struct lpddr_private *lpddr = map->fldrv_priv;
638	int ret = 0;
639	int chipnum;
640	unsigned long ofs, vec_seek, i;
641	int wbufsize = 1 << lpddr->qinfo->BufSizeShift;
642	size_t len = 0;
643
644	for (i = 0; i < count; i++)
645		len += vecs[i].iov_len;
646
647	if (!len)
648		return 0;
649
650	chipnum = to >> lpddr->chipshift;
651
652	ofs = to;
653	vec_seek = 0;
654
655	do {
656		/* We must not cross write block boundaries */
657		int size = wbufsize - (ofs & (wbufsize-1));
658
659		if (size > len)
660			size = len;
661
662		ret = do_write_buffer(map, &lpddr->chips[chipnum],
663					  ofs, &vecs, &vec_seek, size);
664		if (ret)
665			return ret;
666
667		ofs += size;
668		(*retlen) += size;
669		len -= size;
670
671		/* Be nice and reschedule with the chip in a usable
672		 * state for other processes */
673		cond_resched();
674
675	} while (len);
676
677	return 0;
678}
679
680static int lpddr_erase(struct mtd_info *mtd, struct erase_info *instr)
681{
682	unsigned long ofs, len;
683	int ret;
684	struct map_info *map = mtd->priv;
685	struct lpddr_private *lpddr = map->fldrv_priv;
686	int size = 1 << lpddr->qinfo->UniformBlockSizeShift;
687
688	ofs = instr->addr;
689	len = instr->len;
690
691	while (len > 0) {
692		ret = do_erase_oneblock(mtd, ofs);
693		if (ret)
694			return ret;
695		ofs += size;
696		len -= size;
697	}
698	instr->state = MTD_ERASE_DONE;
699	mtd_erase_callback(instr);
700
701	return 0;
702}
703
704#define DO_XXLOCK_LOCK		1
705#define DO_XXLOCK_UNLOCK	2
706int do_xxlock(struct mtd_info *mtd, loff_t adr, uint32_t len, int thunk)
707{
708	int ret = 0;
709	struct map_info *map = mtd->priv;
710	struct lpddr_private *lpddr = map->fldrv_priv;
711	int chipnum = adr >> lpddr->chipshift;
712	struct flchip *chip = &lpddr->chips[chipnum];
713
714	mutex_lock(&chip->mutex);
715	ret = get_chip(map, chip, FL_LOCKING);
716	if (ret) {
717		mutex_unlock(&chip->mutex);
718		return ret;
719	}
720
721	if (thunk == DO_XXLOCK_LOCK) {
722		send_pfow_command(map, LPDDR_LOCK_BLOCK, adr, adr + len, NULL);
723		chip->state = FL_LOCKING;
724	} else if (thunk == DO_XXLOCK_UNLOCK) {
725		send_pfow_command(map, LPDDR_UNLOCK_BLOCK, adr, adr + len, NULL);
726		chip->state = FL_UNLOCKING;
727	} else
728		BUG();
729
730	ret = wait_for_ready(map, chip, 1);
731	if (ret)	{
732		printk(KERN_ERR "%s: block unlock error status %d \n",
733				map->name, ret);
734		goto out;
735	}
736out:	put_chip(map, chip);
737	mutex_unlock(&chip->mutex);
738	return ret;
739}
740
741static int lpddr_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
742{
743	return do_xxlock(mtd, ofs, len, DO_XXLOCK_LOCK);
744}
745
746static int lpddr_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
747{
748	return do_xxlock(mtd, ofs, len, DO_XXLOCK_UNLOCK);
749}
750
751int word_program(struct map_info *map, loff_t adr, uint32_t curval)
752{
753    int ret;
754	struct lpddr_private *lpddr = map->fldrv_priv;
755	int chipnum = adr >> lpddr->chipshift;
756	struct flchip *chip = &lpddr->chips[chipnum];
757
758	mutex_lock(&chip->mutex);
759	ret = get_chip(map, chip, FL_WRITING);
760	if (ret) {
761		mutex_unlock(&chip->mutex);
762		return ret;
763	}
764
765	send_pfow_command(map, LPDDR_WORD_PROGRAM, adr, 0x00, (map_word *)&curval);
766
767	ret = wait_for_ready(map, chip, (1<<lpddr->qinfo->SingleWordProgTime));
768	if (ret)	{
769		printk(KERN_WARNING"%s word_program error at: %llx; val: %x\n",
770			map->name, adr, curval);
771		goto out;
772	}
773
774out:	put_chip(map, chip);
775	mutex_unlock(&chip->mutex);
776	return ret;
777}
778
779MODULE_LICENSE("GPL");
780MODULE_AUTHOR("Alexey Korolev <akorolev@infradead.org>");
781MODULE_DESCRIPTION("MTD driver for LPDDR flash chips");
v4.6
  1/*
  2 * LPDDR flash memory device operations. This module provides read, write,
  3 * erase, lock/unlock support for LPDDR flash memories
  4 * (C) 2008 Korolev Alexey <akorolev@infradead.org>
  5 * (C) 2008 Vasiliy Leonenko <vasiliy.leonenko@gmail.com>
  6 * Many thanks to Roman Borisov for initial enabling
  7 *
  8 * This program is free software; you can redistribute it and/or
  9 * modify it under the terms of the GNU General Public License
 10 * as published by the Free Software Foundation; either version 2
 11 * of the License, or (at your option) any later version.
 12 *
 13 * This program is distributed in the hope that it will be useful,
 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 16 * GNU General Public License for more details.
 17 *
 18 * You should have received a copy of the GNU General Public License
 19 * along with this program; if not, write to the Free Software
 20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
 21 * 02110-1301, USA.
 22 * TODO:
 23 * Implement VPP management
 24 * Implement XIP support
 25 * Implement OTP support
 26 */
 27#include <linux/mtd/pfow.h>
 28#include <linux/mtd/qinfo.h>
 29#include <linux/slab.h>
 30#include <linux/module.h>
 31
 32static int lpddr_read(struct mtd_info *mtd, loff_t adr, size_t len,
 33					size_t *retlen, u_char *buf);
 34static int lpddr_write_buffers(struct mtd_info *mtd, loff_t to,
 35				size_t len, size_t *retlen, const u_char *buf);
 36static int lpddr_writev(struct mtd_info *mtd, const struct kvec *vecs,
 37				unsigned long count, loff_t to, size_t *retlen);
 38static int lpddr_erase(struct mtd_info *mtd, struct erase_info *instr);
 39static int lpddr_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
 40static int lpddr_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
 41static int lpddr_point(struct mtd_info *mtd, loff_t adr, size_t len,
 42			size_t *retlen, void **mtdbuf, resource_size_t *phys);
 43static int lpddr_unpoint(struct mtd_info *mtd, loff_t adr, size_t len);
 44static int get_chip(struct map_info *map, struct flchip *chip, int mode);
 45static int chip_ready(struct map_info *map, struct flchip *chip, int mode);
 46static void put_chip(struct map_info *map, struct flchip *chip);
 47
 48struct mtd_info *lpddr_cmdset(struct map_info *map)
 49{
 50	struct lpddr_private *lpddr = map->fldrv_priv;
 51	struct flchip_shared *shared;
 52	struct flchip *chip;
 53	struct mtd_info *mtd;
 54	int numchips;
 55	int i, j;
 56
 57	mtd = kzalloc(sizeof(*mtd), GFP_KERNEL);
 58	if (!mtd)
 
 59		return NULL;
 
 60	mtd->priv = map;
 61	mtd->type = MTD_NORFLASH;
 62
 63	/* Fill in the default mtd operations */
 64	mtd->_read = lpddr_read;
 65	mtd->type = MTD_NORFLASH;
 66	mtd->flags = MTD_CAP_NORFLASH;
 67	mtd->flags &= ~MTD_BIT_WRITEABLE;
 68	mtd->_erase = lpddr_erase;
 69	mtd->_write = lpddr_write_buffers;
 70	mtd->_writev = lpddr_writev;
 71	mtd->_lock = lpddr_lock;
 72	mtd->_unlock = lpddr_unlock;
 73	if (map_is_linear(map)) {
 74		mtd->_point = lpddr_point;
 75		mtd->_unpoint = lpddr_unpoint;
 76	}
 77	mtd->size = 1 << lpddr->qinfo->DevSizeShift;
 78	mtd->erasesize = 1 << lpddr->qinfo->UniformBlockSizeShift;
 79	mtd->writesize = 1 << lpddr->qinfo->BufSizeShift;
 80
 81	shared = kmalloc(sizeof(struct flchip_shared) * lpddr->numchips,
 82						GFP_KERNEL);
 83	if (!shared) {
 84		kfree(lpddr);
 85		kfree(mtd);
 86		return NULL;
 87	}
 88
 89	chip = &lpddr->chips[0];
 90	numchips = lpddr->numchips / lpddr->qinfo->HWPartsNum;
 91	for (i = 0; i < numchips; i++) {
 92		shared[i].writing = shared[i].erasing = NULL;
 93		mutex_init(&shared[i].lock);
 94		for (j = 0; j < lpddr->qinfo->HWPartsNum; j++) {
 95			*chip = lpddr->chips[i];
 96			chip->start += j << lpddr->chipshift;
 97			chip->oldstate = chip->state = FL_READY;
 98			chip->priv = &shared[i];
 99			/* those should be reset too since
100			   they create memory references. */
101			init_waitqueue_head(&chip->wq);
102			mutex_init(&chip->mutex);
103			chip++;
104		}
105	}
106
107	return mtd;
108}
109EXPORT_SYMBOL(lpddr_cmdset);
110
111static int wait_for_ready(struct map_info *map, struct flchip *chip,
112		unsigned int chip_op_time)
113{
114	unsigned int timeo, reset_timeo, sleep_time;
115	unsigned int dsr;
116	flstate_t chip_state = chip->state;
117	int ret = 0;
118
119	/* set our timeout to 8 times the expected delay */
120	timeo = chip_op_time * 8;
121	if (!timeo)
122		timeo = 500000;
123	reset_timeo = timeo;
124	sleep_time = chip_op_time / 2;
125
126	for (;;) {
127		dsr = CMDVAL(map_read(map, map->pfow_base + PFOW_DSR));
128		if (dsr & DSR_READY_STATUS)
129			break;
130		if (!timeo) {
131			printk(KERN_ERR "%s: Flash timeout error state %d \n",
132							map->name, chip_state);
133			ret = -ETIME;
134			break;
135		}
136
137		/* OK Still waiting. Drop the lock, wait a while and retry. */
138		mutex_unlock(&chip->mutex);
139		if (sleep_time >= 1000000/HZ) {
140			/*
141			 * Half of the normal delay still remaining
142			 * can be performed with a sleeping delay instead
143			 * of busy waiting.
144			 */
145			msleep(sleep_time/1000);
146			timeo -= sleep_time;
147			sleep_time = 1000000/HZ;
148		} else {
149			udelay(1);
150			cond_resched();
151			timeo--;
152		}
153		mutex_lock(&chip->mutex);
154
155		while (chip->state != chip_state) {
156			/* Someone's suspended the operation: sleep */
157			DECLARE_WAITQUEUE(wait, current);
158			set_current_state(TASK_UNINTERRUPTIBLE);
159			add_wait_queue(&chip->wq, &wait);
160			mutex_unlock(&chip->mutex);
161			schedule();
162			remove_wait_queue(&chip->wq, &wait);
163			mutex_lock(&chip->mutex);
164		}
165		if (chip->erase_suspended || chip->write_suspended)  {
166			/* Suspend has occurred while sleep: reset timeout */
167			timeo = reset_timeo;
168			chip->erase_suspended = chip->write_suspended = 0;
169		}
170	}
171	/* check status for errors */
172	if (dsr & DSR_ERR) {
173		/* Clear DSR*/
174		map_write(map, CMD(~(DSR_ERR)), map->pfow_base + PFOW_DSR);
175		printk(KERN_WARNING"%s: Bad status on wait: 0x%x \n",
176				map->name, dsr);
177		print_drs_error(dsr);
178		ret = -EIO;
179	}
180	chip->state = FL_READY;
181	return ret;
182}
183
184static int get_chip(struct map_info *map, struct flchip *chip, int mode)
185{
186	int ret;
187	DECLARE_WAITQUEUE(wait, current);
188
189 retry:
190	if (chip->priv && (mode == FL_WRITING || mode == FL_ERASING)
191		&& chip->state != FL_SYNCING) {
192		/*
193		 * OK. We have possibility for contension on the write/erase
194		 * operations which are global to the real chip and not per
195		 * partition.  So let's fight it over in the partition which
196		 * currently has authority on the operation.
197		 *
198		 * The rules are as follows:
199		 *
200		 * - any write operation must own shared->writing.
201		 *
202		 * - any erase operation must own _both_ shared->writing and
203		 *   shared->erasing.
204		 *
205		 * - contension arbitration is handled in the owner's context.
206		 *
207		 * The 'shared' struct can be read and/or written only when
208		 * its lock is taken.
209		 */
210		struct flchip_shared *shared = chip->priv;
211		struct flchip *contender;
212		mutex_lock(&shared->lock);
213		contender = shared->writing;
214		if (contender && contender != chip) {
215			/*
216			 * The engine to perform desired operation on this
217			 * partition is already in use by someone else.
218			 * Let's fight over it in the context of the chip
219			 * currently using it.  If it is possible to suspend,
220			 * that other partition will do just that, otherwise
221			 * it'll happily send us to sleep.  In any case, when
222			 * get_chip returns success we're clear to go ahead.
223			 */
224			ret = mutex_trylock(&contender->mutex);
225			mutex_unlock(&shared->lock);
226			if (!ret)
227				goto retry;
228			mutex_unlock(&chip->mutex);
229			ret = chip_ready(map, contender, mode);
230			mutex_lock(&chip->mutex);
231
232			if (ret == -EAGAIN) {
233				mutex_unlock(&contender->mutex);
234				goto retry;
235			}
236			if (ret) {
237				mutex_unlock(&contender->mutex);
238				return ret;
239			}
240			mutex_lock(&shared->lock);
241
242			/* We should not own chip if it is already in FL_SYNCING
243			 * state. Put contender and retry. */
244			if (chip->state == FL_SYNCING) {
245				put_chip(map, contender);
246				mutex_unlock(&contender->mutex);
247				goto retry;
248			}
249			mutex_unlock(&contender->mutex);
250		}
251
252		/* Check if we have suspended erase on this chip.
253		   Must sleep in such a case. */
254		if (mode == FL_ERASING && shared->erasing
255		    && shared->erasing->oldstate == FL_ERASING) {
256			mutex_unlock(&shared->lock);
257			set_current_state(TASK_UNINTERRUPTIBLE);
258			add_wait_queue(&chip->wq, &wait);
259			mutex_unlock(&chip->mutex);
260			schedule();
261			remove_wait_queue(&chip->wq, &wait);
262			mutex_lock(&chip->mutex);
263			goto retry;
264		}
265
266		/* We now own it */
267		shared->writing = chip;
268		if (mode == FL_ERASING)
269			shared->erasing = chip;
270		mutex_unlock(&shared->lock);
271	}
272
273	ret = chip_ready(map, chip, mode);
274	if (ret == -EAGAIN)
275		goto retry;
276
277	return ret;
278}
279
280static int chip_ready(struct map_info *map, struct flchip *chip, int mode)
281{
282	struct lpddr_private *lpddr = map->fldrv_priv;
283	int ret = 0;
284	DECLARE_WAITQUEUE(wait, current);
285
286	/* Prevent setting state FL_SYNCING for chip in suspended state. */
287	if (FL_SYNCING == mode && FL_READY != chip->oldstate)
288		goto sleep;
289
290	switch (chip->state) {
291	case FL_READY:
292	case FL_JEDEC_QUERY:
293		return 0;
294
295	case FL_ERASING:
296		if (!lpddr->qinfo->SuspEraseSupp ||
297			!(mode == FL_READY || mode == FL_POINT))
298			goto sleep;
299
300		map_write(map, CMD(LPDDR_SUSPEND),
301			map->pfow_base + PFOW_PROGRAM_ERASE_SUSPEND);
302		chip->oldstate = FL_ERASING;
303		chip->state = FL_ERASE_SUSPENDING;
304		ret = wait_for_ready(map, chip, 0);
305		if (ret) {
306			/* Oops. something got wrong. */
307			/* Resume and pretend we weren't here.  */
308			put_chip(map, chip);
309			printk(KERN_ERR "%s: suspend operation failed."
310					"State may be wrong \n", map->name);
311			return -EIO;
312		}
313		chip->erase_suspended = 1;
314		chip->state = FL_READY;
315		return 0;
316		/* Erase suspend */
317	case FL_POINT:
318		/* Only if there's no operation suspended... */
319		if (mode == FL_READY && chip->oldstate == FL_READY)
320			return 0;
321
322	default:
323sleep:
324		set_current_state(TASK_UNINTERRUPTIBLE);
325		add_wait_queue(&chip->wq, &wait);
326		mutex_unlock(&chip->mutex);
327		schedule();
328		remove_wait_queue(&chip->wq, &wait);
329		mutex_lock(&chip->mutex);
330		return -EAGAIN;
331	}
332}
333
334static void put_chip(struct map_info *map, struct flchip *chip)
335{
336	if (chip->priv) {
337		struct flchip_shared *shared = chip->priv;
338		mutex_lock(&shared->lock);
339		if (shared->writing == chip && chip->oldstate == FL_READY) {
340			/* We own the ability to write, but we're done */
341			shared->writing = shared->erasing;
342			if (shared->writing && shared->writing != chip) {
343				/* give back the ownership */
344				struct flchip *loaner = shared->writing;
345				mutex_lock(&loaner->mutex);
346				mutex_unlock(&shared->lock);
347				mutex_unlock(&chip->mutex);
348				put_chip(map, loaner);
349				mutex_lock(&chip->mutex);
350				mutex_unlock(&loaner->mutex);
351				wake_up(&chip->wq);
352				return;
353			}
354			shared->erasing = NULL;
355			shared->writing = NULL;
356		} else if (shared->erasing == chip && shared->writing != chip) {
357			/*
358			 * We own the ability to erase without the ability
359			 * to write, which means the erase was suspended
360			 * and some other partition is currently writing.
361			 * Don't let the switch below mess things up since
362			 * we don't have ownership to resume anything.
363			 */
364			mutex_unlock(&shared->lock);
365			wake_up(&chip->wq);
366			return;
367		}
368		mutex_unlock(&shared->lock);
369	}
370
371	switch (chip->oldstate) {
372	case FL_ERASING:
373		map_write(map, CMD(LPDDR_RESUME),
374				map->pfow_base + PFOW_COMMAND_CODE);
375		map_write(map, CMD(LPDDR_START_EXECUTION),
376				map->pfow_base + PFOW_COMMAND_EXECUTE);
377		chip->oldstate = FL_READY;
378		chip->state = FL_ERASING;
379		break;
380	case FL_READY:
381		break;
382	default:
383		printk(KERN_ERR "%s: put_chip() called with oldstate %d!\n",
384				map->name, chip->oldstate);
385	}
386	wake_up(&chip->wq);
387}
388
389static int do_write_buffer(struct map_info *map, struct flchip *chip,
390			unsigned long adr, const struct kvec **pvec,
391			unsigned long *pvec_seek, int len)
392{
393	struct lpddr_private *lpddr = map->fldrv_priv;
394	map_word datum;
395	int ret, wbufsize, word_gap, words;
396	const struct kvec *vec;
397	unsigned long vec_seek;
398	unsigned long prog_buf_ofs;
399
400	wbufsize = 1 << lpddr->qinfo->BufSizeShift;
401
402	mutex_lock(&chip->mutex);
403	ret = get_chip(map, chip, FL_WRITING);
404	if (ret) {
405		mutex_unlock(&chip->mutex);
406		return ret;
407	}
408	/* Figure out the number of words to write */
409	word_gap = (-adr & (map_bankwidth(map)-1));
410	words = (len - word_gap + map_bankwidth(map) - 1) / map_bankwidth(map);
411	if (!word_gap) {
412		words--;
413	} else {
414		word_gap = map_bankwidth(map) - word_gap;
415		adr -= word_gap;
416		datum = map_word_ff(map);
417	}
418	/* Write data */
419	/* Get the program buffer offset from PFOW register data first*/
420	prog_buf_ofs = map->pfow_base + CMDVAL(map_read(map,
421				map->pfow_base + PFOW_PROGRAM_BUFFER_OFFSET));
422	vec = *pvec;
423	vec_seek = *pvec_seek;
424	do {
425		int n = map_bankwidth(map) - word_gap;
426
427		if (n > vec->iov_len - vec_seek)
428			n = vec->iov_len - vec_seek;
429		if (n > len)
430			n = len;
431
432		if (!word_gap && (len < map_bankwidth(map)))
433			datum = map_word_ff(map);
434
435		datum = map_word_load_partial(map, datum,
436				vec->iov_base + vec_seek, word_gap, n);
437
438		len -= n;
439		word_gap += n;
440		if (!len || word_gap == map_bankwidth(map)) {
441			map_write(map, datum, prog_buf_ofs);
442			prog_buf_ofs += map_bankwidth(map);
443			word_gap = 0;
444		}
445
446		vec_seek += n;
447		if (vec_seek == vec->iov_len) {
448			vec++;
449			vec_seek = 0;
450		}
451	} while (len);
452	*pvec = vec;
453	*pvec_seek = vec_seek;
454
455	/* GO GO GO */
456	send_pfow_command(map, LPDDR_BUFF_PROGRAM, adr, wbufsize, NULL);
457	chip->state = FL_WRITING;
458	ret = wait_for_ready(map, chip, (1<<lpddr->qinfo->ProgBufferTime));
459	if (ret)	{
460		printk(KERN_WARNING"%s Buffer program error: %d at %lx; \n",
461			map->name, ret, adr);
462		goto out;
463	}
464
465 out:	put_chip(map, chip);
466	mutex_unlock(&chip->mutex);
467	return ret;
468}
469
470static int do_erase_oneblock(struct mtd_info *mtd, loff_t adr)
471{
472	struct map_info *map = mtd->priv;
473	struct lpddr_private *lpddr = map->fldrv_priv;
474	int chipnum = adr >> lpddr->chipshift;
475	struct flchip *chip = &lpddr->chips[chipnum];
476	int ret;
477
478	mutex_lock(&chip->mutex);
479	ret = get_chip(map, chip, FL_ERASING);
480	if (ret) {
481		mutex_unlock(&chip->mutex);
482		return ret;
483	}
484	send_pfow_command(map, LPDDR_BLOCK_ERASE, adr, 0, NULL);
485	chip->state = FL_ERASING;
486	ret = wait_for_ready(map, chip, (1<<lpddr->qinfo->BlockEraseTime)*1000);
487	if (ret) {
488		printk(KERN_WARNING"%s Erase block error %d at : %llx\n",
489			map->name, ret, adr);
490		goto out;
491	}
492 out:	put_chip(map, chip);
493	mutex_unlock(&chip->mutex);
494	return ret;
495}
496
497static int lpddr_read(struct mtd_info *mtd, loff_t adr, size_t len,
498			size_t *retlen, u_char *buf)
499{
500	struct map_info *map = mtd->priv;
501	struct lpddr_private *lpddr = map->fldrv_priv;
502	int chipnum = adr >> lpddr->chipshift;
503	struct flchip *chip = &lpddr->chips[chipnum];
504	int ret = 0;
505
506	mutex_lock(&chip->mutex);
507	ret = get_chip(map, chip, FL_READY);
508	if (ret) {
509		mutex_unlock(&chip->mutex);
510		return ret;
511	}
512
513	map_copy_from(map, buf, adr, len);
514	*retlen = len;
515
516	put_chip(map, chip);
517	mutex_unlock(&chip->mutex);
518	return ret;
519}
520
521static int lpddr_point(struct mtd_info *mtd, loff_t adr, size_t len,
522			size_t *retlen, void **mtdbuf, resource_size_t *phys)
523{
524	struct map_info *map = mtd->priv;
525	struct lpddr_private *lpddr = map->fldrv_priv;
526	int chipnum = adr >> lpddr->chipshift;
527	unsigned long ofs, last_end = 0;
528	struct flchip *chip = &lpddr->chips[chipnum];
529	int ret = 0;
530
531	if (!map->virt)
532		return -EINVAL;
533
534	/* ofs: offset within the first chip that the first read should start */
535	ofs = adr - (chipnum << lpddr->chipshift);
536	*mtdbuf = (void *)map->virt + chip->start + ofs;
537
538	while (len) {
539		unsigned long thislen;
540
541		if (chipnum >= lpddr->numchips)
542			break;
543
544		/* We cannot point across chips that are virtually disjoint */
545		if (!last_end)
546			last_end = chip->start;
547		else if (chip->start != last_end)
548			break;
549
550		if ((len + ofs - 1) >> lpddr->chipshift)
551			thislen = (1<<lpddr->chipshift) - ofs;
552		else
553			thislen = len;
554		/* get the chip */
555		mutex_lock(&chip->mutex);
556		ret = get_chip(map, chip, FL_POINT);
557		mutex_unlock(&chip->mutex);
558		if (ret)
559			break;
560
561		chip->state = FL_POINT;
562		chip->ref_point_counter++;
563		*retlen += thislen;
564		len -= thislen;
565
566		ofs = 0;
567		last_end += 1 << lpddr->chipshift;
568		chipnum++;
569		chip = &lpddr->chips[chipnum];
570	}
571	return 0;
572}
573
574static int lpddr_unpoint (struct mtd_info *mtd, loff_t adr, size_t len)
575{
576	struct map_info *map = mtd->priv;
577	struct lpddr_private *lpddr = map->fldrv_priv;
578	int chipnum = adr >> lpddr->chipshift, err = 0;
579	unsigned long ofs;
580
581	/* ofs: offset within the first chip that the first read should start */
582	ofs = adr - (chipnum << lpddr->chipshift);
583
584	while (len) {
585		unsigned long thislen;
586		struct flchip *chip;
587
588		chip = &lpddr->chips[chipnum];
589		if (chipnum >= lpddr->numchips)
590			break;
591
592		if ((len + ofs - 1) >> lpddr->chipshift)
593			thislen = (1<<lpddr->chipshift) - ofs;
594		else
595			thislen = len;
596
597		mutex_lock(&chip->mutex);
598		if (chip->state == FL_POINT) {
599			chip->ref_point_counter--;
600			if (chip->ref_point_counter == 0)
601				chip->state = FL_READY;
602		} else {
603			printk(KERN_WARNING "%s: Warning: unpoint called on non"
604					"pointed region\n", map->name);
605			err = -EINVAL;
606		}
607
608		put_chip(map, chip);
609		mutex_unlock(&chip->mutex);
610
611		len -= thislen;
612		ofs = 0;
613		chipnum++;
614	}
615
616	return err;
617}
618
619static int lpddr_write_buffers(struct mtd_info *mtd, loff_t to, size_t len,
620				size_t *retlen, const u_char *buf)
621{
622	struct kvec vec;
623
624	vec.iov_base = (void *) buf;
625	vec.iov_len = len;
626
627	return lpddr_writev(mtd, &vec, 1, to, retlen);
628}
629
630
631static int lpddr_writev(struct mtd_info *mtd, const struct kvec *vecs,
632				unsigned long count, loff_t to, size_t *retlen)
633{
634	struct map_info *map = mtd->priv;
635	struct lpddr_private *lpddr = map->fldrv_priv;
636	int ret = 0;
637	int chipnum;
638	unsigned long ofs, vec_seek, i;
639	int wbufsize = 1 << lpddr->qinfo->BufSizeShift;
640	size_t len = 0;
641
642	for (i = 0; i < count; i++)
643		len += vecs[i].iov_len;
644
645	if (!len)
646		return 0;
647
648	chipnum = to >> lpddr->chipshift;
649
650	ofs = to;
651	vec_seek = 0;
652
653	do {
654		/* We must not cross write block boundaries */
655		int size = wbufsize - (ofs & (wbufsize-1));
656
657		if (size > len)
658			size = len;
659
660		ret = do_write_buffer(map, &lpddr->chips[chipnum],
661					  ofs, &vecs, &vec_seek, size);
662		if (ret)
663			return ret;
664
665		ofs += size;
666		(*retlen) += size;
667		len -= size;
668
669		/* Be nice and reschedule with the chip in a usable
670		 * state for other processes */
671		cond_resched();
672
673	} while (len);
674
675	return 0;
676}
677
678static int lpddr_erase(struct mtd_info *mtd, struct erase_info *instr)
679{
680	unsigned long ofs, len;
681	int ret;
682	struct map_info *map = mtd->priv;
683	struct lpddr_private *lpddr = map->fldrv_priv;
684	int size = 1 << lpddr->qinfo->UniformBlockSizeShift;
685
686	ofs = instr->addr;
687	len = instr->len;
688
689	while (len > 0) {
690		ret = do_erase_oneblock(mtd, ofs);
691		if (ret)
692			return ret;
693		ofs += size;
694		len -= size;
695	}
696	instr->state = MTD_ERASE_DONE;
697	mtd_erase_callback(instr);
698
699	return 0;
700}
701
702#define DO_XXLOCK_LOCK		1
703#define DO_XXLOCK_UNLOCK	2
704static int do_xxlock(struct mtd_info *mtd, loff_t adr, uint32_t len, int thunk)
705{
706	int ret = 0;
707	struct map_info *map = mtd->priv;
708	struct lpddr_private *lpddr = map->fldrv_priv;
709	int chipnum = adr >> lpddr->chipshift;
710	struct flchip *chip = &lpddr->chips[chipnum];
711
712	mutex_lock(&chip->mutex);
713	ret = get_chip(map, chip, FL_LOCKING);
714	if (ret) {
715		mutex_unlock(&chip->mutex);
716		return ret;
717	}
718
719	if (thunk == DO_XXLOCK_LOCK) {
720		send_pfow_command(map, LPDDR_LOCK_BLOCK, adr, adr + len, NULL);
721		chip->state = FL_LOCKING;
722	} else if (thunk == DO_XXLOCK_UNLOCK) {
723		send_pfow_command(map, LPDDR_UNLOCK_BLOCK, adr, adr + len, NULL);
724		chip->state = FL_UNLOCKING;
725	} else
726		BUG();
727
728	ret = wait_for_ready(map, chip, 1);
729	if (ret)	{
730		printk(KERN_ERR "%s: block unlock error status %d \n",
731				map->name, ret);
732		goto out;
733	}
734out:	put_chip(map, chip);
735	mutex_unlock(&chip->mutex);
736	return ret;
737}
738
739static int lpddr_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
740{
741	return do_xxlock(mtd, ofs, len, DO_XXLOCK_LOCK);
742}
743
744static int lpddr_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
745{
746	return do_xxlock(mtd, ofs, len, DO_XXLOCK_UNLOCK);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
747}
748
749MODULE_LICENSE("GPL");
750MODULE_AUTHOR("Alexey Korolev <akorolev@infradead.org>");
751MODULE_DESCRIPTION("MTD driver for LPDDR flash chips");