Loading...
1/*
2 * Copyright (C) 2004 PathScale, Inc
3 * Copyright (C) 2004 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
4 * Licensed under the GPL
5 */
6
7#include <stdlib.h>
8#include <stdarg.h>
9#include <errno.h>
10#include <signal.h>
11#include <strings.h>
12#include "as-layout.h"
13#include "kern_util.h"
14#include "os.h"
15#include "sysdep/mcontext.h"
16
17void (*sig_info[NSIG])(int, struct uml_pt_regs *) = {
18 [SIGTRAP] = relay_signal,
19 [SIGFPE] = relay_signal,
20 [SIGILL] = relay_signal,
21 [SIGWINCH] = winch,
22 [SIGBUS] = bus_handler,
23 [SIGSEGV] = segv_handler,
24 [SIGIO] = sigio_handler,
25 [SIGVTALRM] = timer_handler };
26
27static void sig_handler_common(int sig, mcontext_t *mc)
28{
29 struct uml_pt_regs r;
30 int save_errno = errno;
31
32 r.is_user = 0;
33 if (sig == SIGSEGV) {
34 /* For segfaults, we want the data from the sigcontext. */
35 get_regs_from_mc(&r, mc);
36 GET_FAULTINFO_FROM_MC(r.faultinfo, mc);
37 }
38
39 /* enable signals if sig isn't IRQ signal */
40 if ((sig != SIGIO) && (sig != SIGWINCH) && (sig != SIGVTALRM))
41 unblock_signals();
42
43 (*sig_info[sig])(sig, &r);
44
45 errno = save_errno;
46}
47
48/*
49 * These are the asynchronous signals. SIGPROF is excluded because we want to
50 * be able to profile all of UML, not just the non-critical sections. If
51 * profiling is not thread-safe, then that is not my problem. We can disable
52 * profiling when SMP is enabled in that case.
53 */
54#define SIGIO_BIT 0
55#define SIGIO_MASK (1 << SIGIO_BIT)
56
57#define SIGVTALRM_BIT 1
58#define SIGVTALRM_MASK (1 << SIGVTALRM_BIT)
59
60static int signals_enabled;
61static unsigned int signals_pending;
62
63void sig_handler(int sig, mcontext_t *mc)
64{
65 int enabled;
66
67 enabled = signals_enabled;
68 if (!enabled && (sig == SIGIO)) {
69 signals_pending |= SIGIO_MASK;
70 return;
71 }
72
73 block_signals();
74
75 sig_handler_common(sig, mc);
76
77 set_signals(enabled);
78}
79
80static void real_alarm_handler(mcontext_t *mc)
81{
82 struct uml_pt_regs regs;
83
84 if (mc != NULL)
85 get_regs_from_mc(®s, mc);
86 regs.is_user = 0;
87 unblock_signals();
88 timer_handler(SIGVTALRM, ®s);
89}
90
91void alarm_handler(int sig, mcontext_t *mc)
92{
93 int enabled;
94
95 enabled = signals_enabled;
96 if (!signals_enabled) {
97 signals_pending |= SIGVTALRM_MASK;
98 return;
99 }
100
101 block_signals();
102
103 real_alarm_handler(mc);
104 set_signals(enabled);
105}
106
107void timer_init(void)
108{
109 set_handler(SIGVTALRM);
110}
111
112void set_sigstack(void *sig_stack, int size)
113{
114 stack_t stack = ((stack_t) { .ss_flags = 0,
115 .ss_sp = (__ptr_t) sig_stack,
116 .ss_size = size - sizeof(void *) });
117
118 if (sigaltstack(&stack, NULL) != 0)
119 panic("enabling signal stack failed, errno = %d\n", errno);
120}
121
122static void (*handlers[_NSIG])(int sig, mcontext_t *mc) = {
123 [SIGSEGV] = sig_handler,
124 [SIGBUS] = sig_handler,
125 [SIGILL] = sig_handler,
126 [SIGFPE] = sig_handler,
127 [SIGTRAP] = sig_handler,
128
129 [SIGIO] = sig_handler,
130 [SIGWINCH] = sig_handler,
131 [SIGVTALRM] = alarm_handler
132};
133
134
135static void hard_handler(int sig, siginfo_t *info, void *p)
136{
137 struct ucontext *uc = p;
138 mcontext_t *mc = &uc->uc_mcontext;
139 unsigned long pending = 1UL << sig;
140
141 do {
142 int nested, bail;
143
144 /*
145 * pending comes back with one bit set for each
146 * interrupt that arrived while setting up the stack,
147 * plus a bit for this interrupt, plus the zero bit is
148 * set if this is a nested interrupt.
149 * If bail is true, then we interrupted another
150 * handler setting up the stack. In this case, we
151 * have to return, and the upper handler will deal
152 * with this interrupt.
153 */
154 bail = to_irq_stack(&pending);
155 if (bail)
156 return;
157
158 nested = pending & 1;
159 pending &= ~1;
160
161 while ((sig = ffs(pending)) != 0){
162 sig--;
163 pending &= ~(1 << sig);
164 (*handlers[sig])(sig, mc);
165 }
166
167 /*
168 * Again, pending comes back with a mask of signals
169 * that arrived while tearing down the stack. If this
170 * is non-zero, we just go back, set up the stack
171 * again, and handle the new interrupts.
172 */
173 if (!nested)
174 pending = from_irq_stack(nested);
175 } while (pending);
176}
177
178void set_handler(int sig)
179{
180 struct sigaction action;
181 int flags = SA_SIGINFO | SA_ONSTACK;
182 sigset_t sig_mask;
183
184 action.sa_sigaction = hard_handler;
185
186 /* block irq ones */
187 sigemptyset(&action.sa_mask);
188 sigaddset(&action.sa_mask, SIGVTALRM);
189 sigaddset(&action.sa_mask, SIGIO);
190 sigaddset(&action.sa_mask, SIGWINCH);
191
192 if (sig == SIGSEGV)
193 flags |= SA_NODEFER;
194
195 if (sigismember(&action.sa_mask, sig))
196 flags |= SA_RESTART; /* if it's an irq signal */
197
198 action.sa_flags = flags;
199 action.sa_restorer = NULL;
200 if (sigaction(sig, &action, NULL) < 0)
201 panic("sigaction failed - errno = %d\n", errno);
202
203 sigemptyset(&sig_mask);
204 sigaddset(&sig_mask, sig);
205 if (sigprocmask(SIG_UNBLOCK, &sig_mask, NULL) < 0)
206 panic("sigprocmask failed - errno = %d\n", errno);
207}
208
209int change_sig(int signal, int on)
210{
211 sigset_t sigset;
212
213 sigemptyset(&sigset);
214 sigaddset(&sigset, signal);
215 if (sigprocmask(on ? SIG_UNBLOCK : SIG_BLOCK, &sigset, NULL) < 0)
216 return -errno;
217
218 return 0;
219}
220
221void block_signals(void)
222{
223 signals_enabled = 0;
224 /*
225 * This must return with signals disabled, so this barrier
226 * ensures that writes are flushed out before the return.
227 * This might matter if gcc figures out how to inline this and
228 * decides to shuffle this code into the caller.
229 */
230 barrier();
231}
232
233void unblock_signals(void)
234{
235 int save_pending;
236
237 if (signals_enabled == 1)
238 return;
239
240 /*
241 * We loop because the IRQ handler returns with interrupts off. So,
242 * interrupts may have arrived and we need to re-enable them and
243 * recheck signals_pending.
244 */
245 while (1) {
246 /*
247 * Save and reset save_pending after enabling signals. This
248 * way, signals_pending won't be changed while we're reading it.
249 */
250 signals_enabled = 1;
251
252 /*
253 * Setting signals_enabled and reading signals_pending must
254 * happen in this order.
255 */
256 barrier();
257
258 save_pending = signals_pending;
259 if (save_pending == 0)
260 return;
261
262 signals_pending = 0;
263
264 /*
265 * We have pending interrupts, so disable signals, as the
266 * handlers expect them off when they are called. They will
267 * be enabled again above.
268 */
269
270 signals_enabled = 0;
271
272 /*
273 * Deal with SIGIO first because the alarm handler might
274 * schedule, leaving the pending SIGIO stranded until we come
275 * back here.
276 */
277 if (save_pending & SIGIO_MASK)
278 sig_handler_common(SIGIO, NULL);
279
280 if (save_pending & SIGVTALRM_MASK)
281 real_alarm_handler(NULL);
282 }
283}
284
285int get_signals(void)
286{
287 return signals_enabled;
288}
289
290int set_signals(int enable)
291{
292 int ret;
293 if (signals_enabled == enable)
294 return enable;
295
296 ret = signals_enabled;
297 if (enable)
298 unblock_signals();
299 else block_signals();
300
301 return ret;
302}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2015 Anton Ivanov (aivanov@{brocade.com,kot-begemot.co.uk})
4 * Copyright (C) 2015 Thomas Meyer (thomas@m3y3r.de)
5 * Copyright (C) 2004 PathScale, Inc
6 * Copyright (C) 2004 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
7 */
8
9#include <stdlib.h>
10#include <stdarg.h>
11#include <errno.h>
12#include <signal.h>
13#include <string.h>
14#include <strings.h>
15#include <as-layout.h>
16#include <kern_util.h>
17#include <os.h>
18#include <sysdep/mcontext.h>
19#include <um_malloc.h>
20#include <sys/ucontext.h>
21
22void (*sig_info[NSIG])(int, struct siginfo *, struct uml_pt_regs *) = {
23 [SIGTRAP] = relay_signal,
24 [SIGFPE] = relay_signal,
25 [SIGILL] = relay_signal,
26 [SIGWINCH] = winch,
27 [SIGBUS] = bus_handler,
28 [SIGSEGV] = segv_handler,
29 [SIGIO] = sigio_handler,
30};
31
32static void sig_handler_common(int sig, struct siginfo *si, mcontext_t *mc)
33{
34 struct uml_pt_regs r;
35 int save_errno = errno;
36
37 r.is_user = 0;
38 if (sig == SIGSEGV) {
39 /* For segfaults, we want the data from the sigcontext. */
40 get_regs_from_mc(&r, mc);
41 GET_FAULTINFO_FROM_MC(r.faultinfo, mc);
42 }
43
44 /* enable signals if sig isn't IRQ signal */
45 if ((sig != SIGIO) && (sig != SIGWINCH))
46 unblock_signals_trace();
47
48 (*sig_info[sig])(sig, si, &r);
49
50 errno = save_errno;
51}
52
53/*
54 * These are the asynchronous signals. SIGPROF is excluded because we want to
55 * be able to profile all of UML, not just the non-critical sections. If
56 * profiling is not thread-safe, then that is not my problem. We can disable
57 * profiling when SMP is enabled in that case.
58 */
59#define SIGIO_BIT 0
60#define SIGIO_MASK (1 << SIGIO_BIT)
61
62#define SIGALRM_BIT 1
63#define SIGALRM_MASK (1 << SIGALRM_BIT)
64
65static int signals_enabled;
66static unsigned int signals_pending;
67static unsigned int signals_active = 0;
68
69void sig_handler(int sig, struct siginfo *si, mcontext_t *mc)
70{
71 int enabled;
72
73 enabled = signals_enabled;
74 if (!enabled && (sig == SIGIO)) {
75 signals_pending |= SIGIO_MASK;
76 return;
77 }
78
79 block_signals_trace();
80
81 sig_handler_common(sig, si, mc);
82
83 set_signals_trace(enabled);
84}
85
86static void timer_real_alarm_handler(mcontext_t *mc)
87{
88 struct uml_pt_regs regs;
89
90 if (mc != NULL)
91 get_regs_from_mc(®s, mc);
92 else
93 memset(®s, 0, sizeof(regs));
94 timer_handler(SIGALRM, NULL, ®s);
95}
96
97void timer_alarm_handler(int sig, struct siginfo *unused_si, mcontext_t *mc)
98{
99 int enabled;
100
101 enabled = signals_enabled;
102 if (!signals_enabled) {
103 signals_pending |= SIGALRM_MASK;
104 return;
105 }
106
107 block_signals_trace();
108
109 signals_active |= SIGALRM_MASK;
110
111 timer_real_alarm_handler(mc);
112
113 signals_active &= ~SIGALRM_MASK;
114
115 set_signals_trace(enabled);
116}
117
118void deliver_alarm(void) {
119 timer_alarm_handler(SIGALRM, NULL, NULL);
120}
121
122void timer_set_signal_handler(void)
123{
124 set_handler(SIGALRM);
125}
126
127void set_sigstack(void *sig_stack, int size)
128{
129 stack_t stack = {
130 .ss_flags = 0,
131 .ss_sp = sig_stack,
132 .ss_size = size - sizeof(void *)
133 };
134
135 if (sigaltstack(&stack, NULL) != 0)
136 panic("enabling signal stack failed, errno = %d\n", errno);
137}
138
139static void (*handlers[_NSIG])(int sig, struct siginfo *si, mcontext_t *mc) = {
140 [SIGSEGV] = sig_handler,
141 [SIGBUS] = sig_handler,
142 [SIGILL] = sig_handler,
143 [SIGFPE] = sig_handler,
144 [SIGTRAP] = sig_handler,
145
146 [SIGIO] = sig_handler,
147 [SIGWINCH] = sig_handler,
148 [SIGALRM] = timer_alarm_handler
149};
150
151static void hard_handler(int sig, siginfo_t *si, void *p)
152{
153 ucontext_t *uc = p;
154 mcontext_t *mc = &uc->uc_mcontext;
155 unsigned long pending = 1UL << sig;
156
157 do {
158 int nested, bail;
159
160 /*
161 * pending comes back with one bit set for each
162 * interrupt that arrived while setting up the stack,
163 * plus a bit for this interrupt, plus the zero bit is
164 * set if this is a nested interrupt.
165 * If bail is true, then we interrupted another
166 * handler setting up the stack. In this case, we
167 * have to return, and the upper handler will deal
168 * with this interrupt.
169 */
170 bail = to_irq_stack(&pending);
171 if (bail)
172 return;
173
174 nested = pending & 1;
175 pending &= ~1;
176
177 while ((sig = ffs(pending)) != 0){
178 sig--;
179 pending &= ~(1 << sig);
180 (*handlers[sig])(sig, (struct siginfo *)si, mc);
181 }
182
183 /*
184 * Again, pending comes back with a mask of signals
185 * that arrived while tearing down the stack. If this
186 * is non-zero, we just go back, set up the stack
187 * again, and handle the new interrupts.
188 */
189 if (!nested)
190 pending = from_irq_stack(nested);
191 } while (pending);
192}
193
194void set_handler(int sig)
195{
196 struct sigaction action;
197 int flags = SA_SIGINFO | SA_ONSTACK;
198 sigset_t sig_mask;
199
200 action.sa_sigaction = hard_handler;
201
202 /* block irq ones */
203 sigemptyset(&action.sa_mask);
204 sigaddset(&action.sa_mask, SIGIO);
205 sigaddset(&action.sa_mask, SIGWINCH);
206 sigaddset(&action.sa_mask, SIGALRM);
207
208 if (sig == SIGSEGV)
209 flags |= SA_NODEFER;
210
211 if (sigismember(&action.sa_mask, sig))
212 flags |= SA_RESTART; /* if it's an irq signal */
213
214 action.sa_flags = flags;
215 action.sa_restorer = NULL;
216 if (sigaction(sig, &action, NULL) < 0)
217 panic("sigaction failed - errno = %d\n", errno);
218
219 sigemptyset(&sig_mask);
220 sigaddset(&sig_mask, sig);
221 if (sigprocmask(SIG_UNBLOCK, &sig_mask, NULL) < 0)
222 panic("sigprocmask failed - errno = %d\n", errno);
223}
224
225int change_sig(int signal, int on)
226{
227 sigset_t sigset;
228
229 sigemptyset(&sigset);
230 sigaddset(&sigset, signal);
231 if (sigprocmask(on ? SIG_UNBLOCK : SIG_BLOCK, &sigset, NULL) < 0)
232 return -errno;
233
234 return 0;
235}
236
237void block_signals(void)
238{
239 signals_enabled = 0;
240 /*
241 * This must return with signals disabled, so this barrier
242 * ensures that writes are flushed out before the return.
243 * This might matter if gcc figures out how to inline this and
244 * decides to shuffle this code into the caller.
245 */
246 barrier();
247}
248
249void unblock_signals(void)
250{
251 int save_pending;
252
253 if (signals_enabled == 1)
254 return;
255
256 signals_enabled = 1;
257
258 /*
259 * We loop because the IRQ handler returns with interrupts off. So,
260 * interrupts may have arrived and we need to re-enable them and
261 * recheck signals_pending.
262 */
263 while (1) {
264 /*
265 * Save and reset save_pending after enabling signals. This
266 * way, signals_pending won't be changed while we're reading it.
267 *
268 * Setting signals_enabled and reading signals_pending must
269 * happen in this order, so have the barrier here.
270 */
271 barrier();
272
273 save_pending = signals_pending;
274 if (save_pending == 0)
275 return;
276
277 signals_pending = 0;
278
279 /*
280 * We have pending interrupts, so disable signals, as the
281 * handlers expect them off when they are called. They will
282 * be enabled again above. We need to trace this, as we're
283 * expected to be enabling interrupts already, but any more
284 * tracing that happens inside the handlers we call for the
285 * pending signals will mess up the tracing state.
286 */
287 signals_enabled = 0;
288 um_trace_signals_off();
289
290 /*
291 * Deal with SIGIO first because the alarm handler might
292 * schedule, leaving the pending SIGIO stranded until we come
293 * back here.
294 *
295 * SIGIO's handler doesn't use siginfo or mcontext,
296 * so they can be NULL.
297 */
298 if (save_pending & SIGIO_MASK)
299 sig_handler_common(SIGIO, NULL, NULL);
300
301 /* Do not reenter the handler */
302
303 if ((save_pending & SIGALRM_MASK) && (!(signals_active & SIGALRM_MASK)))
304 timer_real_alarm_handler(NULL);
305
306 /* Rerun the loop only if there is still pending SIGIO and not in TIMER handler */
307
308 if (!(signals_pending & SIGIO_MASK) && (signals_active & SIGALRM_MASK))
309 return;
310
311 /* Re-enable signals and trace that we're doing so. */
312 um_trace_signals_on();
313 signals_enabled = 1;
314 }
315}
316
317int get_signals(void)
318{
319 return signals_enabled;
320}
321
322int set_signals(int enable)
323{
324 int ret;
325 if (signals_enabled == enable)
326 return enable;
327
328 ret = signals_enabled;
329 if (enable)
330 unblock_signals();
331 else block_signals();
332
333 return ret;
334}
335
336int set_signals_trace(int enable)
337{
338 int ret;
339 if (signals_enabled == enable)
340 return enable;
341
342 ret = signals_enabled;
343 if (enable)
344 unblock_signals_trace();
345 else
346 block_signals_trace();
347
348 return ret;
349}
350
351int os_is_signal_stack(void)
352{
353 stack_t ss;
354 sigaltstack(NULL, &ss);
355
356 return ss.ss_flags & SS_ONSTACK;
357}