Linux Audio

Check our new training course

Loading...
v3.5.6
  1/*
 
 
  2 * Copyright (C) 2004 PathScale, Inc
  3 * Copyright (C) 2004 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
  4 * Licensed under the GPL
  5 */
  6
  7#include <stdlib.h>
  8#include <stdarg.h>
  9#include <errno.h>
 10#include <signal.h>
 11#include <strings.h>
 12#include "as-layout.h"
 13#include "kern_util.h"
 14#include "os.h"
 15#include "sysdep/mcontext.h"
 
 
 16
 17void (*sig_info[NSIG])(int, struct uml_pt_regs *) = {
 18	[SIGTRAP]	= relay_signal,
 19	[SIGFPE]	= relay_signal,
 20	[SIGILL]	= relay_signal,
 21	[SIGWINCH]	= winch,
 22	[SIGBUS]	= bus_handler,
 23	[SIGSEGV]	= segv_handler,
 24	[SIGIO]		= sigio_handler,
 25	[SIGVTALRM]	= timer_handler };
 
 26
 27static void sig_handler_common(int sig, mcontext_t *mc)
 28{
 29	struct uml_pt_regs r;
 30	int save_errno = errno;
 31
 32	r.is_user = 0;
 
 
 
 
 33	if (sig == SIGSEGV) {
 34		/* For segfaults, we want the data from the sigcontext. */
 35		get_regs_from_mc(&r, mc);
 36		GET_FAULTINFO_FROM_MC(r.faultinfo, mc);
 37	}
 38
 39	/* enable signals if sig isn't IRQ signal */
 40	if ((sig != SIGIO) && (sig != SIGWINCH) && (sig != SIGVTALRM))
 41		unblock_signals();
 42
 43	(*sig_info[sig])(sig, &r);
 44
 45	errno = save_errno;
 
 
 46}
 47
 48/*
 49 * These are the asynchronous signals.  SIGPROF is excluded because we want to
 50 * be able to profile all of UML, not just the non-critical sections.  If
 51 * profiling is not thread-safe, then that is not my problem.  We can disable
 52 * profiling when SMP is enabled in that case.
 53 */
 54#define SIGIO_BIT 0
 55#define SIGIO_MASK (1 << SIGIO_BIT)
 56
 57#define SIGVTALRM_BIT 1
 58#define SIGVTALRM_MASK (1 << SIGVTALRM_BIT)
 59
 60static int signals_enabled;
 61static unsigned int signals_pending;
 
 62
 63void sig_handler(int sig, mcontext_t *mc)
 64{
 65	int enabled;
 66
 67	enabled = signals_enabled;
 68	if (!enabled && (sig == SIGIO)) {
 69		signals_pending |= SIGIO_MASK;
 70		return;
 71	}
 72
 73	block_signals();
 74
 75	sig_handler_common(sig, mc);
 76
 77	set_signals(enabled);
 78}
 79
 80static void real_alarm_handler(mcontext_t *mc)
 81{
 82	struct uml_pt_regs regs;
 
 
 
 
 83
 84	if (mc != NULL)
 85		get_regs_from_mc(&regs, mc);
 86	regs.is_user = 0;
 87	unblock_signals();
 88	timer_handler(SIGVTALRM, &regs);
 89}
 90
 91void alarm_handler(int sig, mcontext_t *mc)
 92{
 93	int enabled;
 94
 95	enabled = signals_enabled;
 96	if (!signals_enabled) {
 97		signals_pending |= SIGVTALRM_MASK;
 98		return;
 99	}
100
101	block_signals();
102
103	real_alarm_handler(mc);
 
 
 
 
 
104	set_signals(enabled);
105}
106
107void timer_init(void)
 
 
 
 
108{
109	set_handler(SIGVTALRM);
110}
111
112void set_sigstack(void *sig_stack, int size)
113{
114	stack_t stack = ((stack_t) { .ss_flags	= 0,
115				     .ss_sp	= (__ptr_t) sig_stack,
116				     .ss_size 	= size - sizeof(void *) });
 
 
117
118	if (sigaltstack(&stack, NULL) != 0)
119		panic("enabling signal stack failed, errno = %d\n", errno);
120}
121
122static void (*handlers[_NSIG])(int sig, mcontext_t *mc) = {
123	[SIGSEGV] = sig_handler,
124	[SIGBUS] = sig_handler,
125	[SIGILL] = sig_handler,
126	[SIGFPE] = sig_handler,
127	[SIGTRAP] = sig_handler,
128
129	[SIGIO] = sig_handler,
130	[SIGWINCH] = sig_handler,
131	[SIGVTALRM] = alarm_handler
132};
133
134
135static void hard_handler(int sig, siginfo_t *info, void *p)
136{
137	struct ucontext *uc = p;
138	mcontext_t *mc = &uc->uc_mcontext;
139	unsigned long pending = 1UL << sig;
140
141	do {
142		int nested, bail;
143
144		/*
145		 * pending comes back with one bit set for each
146		 * interrupt that arrived while setting up the stack,
147		 * plus a bit for this interrupt, plus the zero bit is
148		 * set if this is a nested interrupt.
149		 * If bail is true, then we interrupted another
150		 * handler setting up the stack.  In this case, we
151		 * have to return, and the upper handler will deal
152		 * with this interrupt.
153		 */
154		bail = to_irq_stack(&pending);
155		if (bail)
156			return;
157
158		nested = pending & 1;
159		pending &= ~1;
160
161		while ((sig = ffs(pending)) != 0){
162			sig--;
163			pending &= ~(1 << sig);
164			(*handlers[sig])(sig, mc);
165		}
166
167		/*
168		 * Again, pending comes back with a mask of signals
169		 * that arrived while tearing down the stack.  If this
170		 * is non-zero, we just go back, set up the stack
171		 * again, and handle the new interrupts.
172		 */
173		if (!nested)
174			pending = from_irq_stack(nested);
175	} while (pending);
176}
177
178void set_handler(int sig)
179{
180	struct sigaction action;
181	int flags = SA_SIGINFO | SA_ONSTACK;
182	sigset_t sig_mask;
183
184	action.sa_sigaction = hard_handler;
185
186	/* block irq ones */
187	sigemptyset(&action.sa_mask);
188	sigaddset(&action.sa_mask, SIGVTALRM);
189	sigaddset(&action.sa_mask, SIGIO);
190	sigaddset(&action.sa_mask, SIGWINCH);
 
191
192	if (sig == SIGSEGV)
193		flags |= SA_NODEFER;
194
195	if (sigismember(&action.sa_mask, sig))
196		flags |= SA_RESTART; /* if it's an irq signal */
197
198	action.sa_flags = flags;
199	action.sa_restorer = NULL;
200	if (sigaction(sig, &action, NULL) < 0)
201		panic("sigaction failed - errno = %d\n", errno);
202
203	sigemptyset(&sig_mask);
204	sigaddset(&sig_mask, sig);
205	if (sigprocmask(SIG_UNBLOCK, &sig_mask, NULL) < 0)
206		panic("sigprocmask failed - errno = %d\n", errno);
207}
208
209int change_sig(int signal, int on)
210{
211	sigset_t sigset;
212
213	sigemptyset(&sigset);
214	sigaddset(&sigset, signal);
215	if (sigprocmask(on ? SIG_UNBLOCK : SIG_BLOCK, &sigset, NULL) < 0)
216		return -errno;
217
218	return 0;
219}
220
221void block_signals(void)
222{
223	signals_enabled = 0;
224	/*
225	 * This must return with signals disabled, so this barrier
226	 * ensures that writes are flushed out before the return.
227	 * This might matter if gcc figures out how to inline this and
228	 * decides to shuffle this code into the caller.
229	 */
230	barrier();
231}
232
233void unblock_signals(void)
234{
235	int save_pending;
236
237	if (signals_enabled == 1)
238		return;
239
240	/*
241	 * We loop because the IRQ handler returns with interrupts off.  So,
242	 * interrupts may have arrived and we need to re-enable them and
243	 * recheck signals_pending.
244	 */
245	while (1) {
246		/*
247		 * Save and reset save_pending after enabling signals.  This
248		 * way, signals_pending won't be changed while we're reading it.
249		 */
250		signals_enabled = 1;
251
252		/*
253		 * Setting signals_enabled and reading signals_pending must
254		 * happen in this order.
255		 */
256		barrier();
257
258		save_pending = signals_pending;
259		if (save_pending == 0)
260			return;
261
262		signals_pending = 0;
263
264		/*
265		 * We have pending interrupts, so disable signals, as the
266		 * handlers expect them off when they are called.  They will
267		 * be enabled again above.
268		 */
269
270		signals_enabled = 0;
271
272		/*
273		 * Deal with SIGIO first because the alarm handler might
274		 * schedule, leaving the pending SIGIO stranded until we come
275		 * back here.
 
 
 
276		 */
277		if (save_pending & SIGIO_MASK)
278			sig_handler_common(SIGIO, NULL);
 
 
 
 
 
 
 
 
 
 
279
280		if (save_pending & SIGVTALRM_MASK)
281			real_alarm_handler(NULL);
282	}
283}
284
285int get_signals(void)
286{
287	return signals_enabled;
288}
289
290int set_signals(int enable)
291{
292	int ret;
293	if (signals_enabled == enable)
294		return enable;
295
296	ret = signals_enabled;
297	if (enable)
298		unblock_signals();
299	else block_signals();
300
301	return ret;
 
 
 
 
 
 
 
 
302}
v4.17
  1/*
  2 * Copyright (C) 2015 Anton Ivanov (aivanov@{brocade.com,kot-begemot.co.uk})
  3 * Copyright (C) 2015 Thomas Meyer (thomas@m3y3r.de)
  4 * Copyright (C) 2004 PathScale, Inc
  5 * Copyright (C) 2004 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
  6 * Licensed under the GPL
  7 */
  8
  9#include <stdlib.h>
 10#include <stdarg.h>
 11#include <errno.h>
 12#include <signal.h>
 13#include <strings.h>
 14#include <as-layout.h>
 15#include <kern_util.h>
 16#include <os.h>
 17#include <sysdep/mcontext.h>
 18#include <um_malloc.h>
 19#include <sys/ucontext.h>
 20
 21void (*sig_info[NSIG])(int, struct siginfo *, struct uml_pt_regs *) = {
 22	[SIGTRAP]	= relay_signal,
 23	[SIGFPE]	= relay_signal,
 24	[SIGILL]	= relay_signal,
 25	[SIGWINCH]	= winch,
 26	[SIGBUS]	= bus_handler,
 27	[SIGSEGV]	= segv_handler,
 28	[SIGIO]		= sigio_handler,
 29	[SIGALRM]	= timer_handler
 30};
 31
 32static void sig_handler_common(int sig, struct siginfo *si, mcontext_t *mc)
 33{
 34	struct uml_pt_regs *r;
 35	int save_errno = errno;
 36
 37	r = uml_kmalloc(sizeof(struct uml_pt_regs), UM_GFP_ATOMIC);
 38	if (!r)
 39		panic("out of memory");
 40
 41	r->is_user = 0;
 42	if (sig == SIGSEGV) {
 43		/* For segfaults, we want the data from the sigcontext. */
 44		get_regs_from_mc(r, mc);
 45		GET_FAULTINFO_FROM_MC(r->faultinfo, mc);
 46	}
 47
 48	/* enable signals if sig isn't IRQ signal */
 49	if ((sig != SIGIO) && (sig != SIGWINCH) && (sig != SIGALRM))
 50		unblock_signals();
 51
 52	(*sig_info[sig])(sig, si, r);
 53
 54	errno = save_errno;
 55
 56	free(r);
 57}
 58
 59/*
 60 * These are the asynchronous signals.  SIGPROF is excluded because we want to
 61 * be able to profile all of UML, not just the non-critical sections.  If
 62 * profiling is not thread-safe, then that is not my problem.  We can disable
 63 * profiling when SMP is enabled in that case.
 64 */
 65#define SIGIO_BIT 0
 66#define SIGIO_MASK (1 << SIGIO_BIT)
 67
 68#define SIGALRM_BIT 1
 69#define SIGALRM_MASK (1 << SIGALRM_BIT)
 70
 71static int signals_enabled;
 72static unsigned int signals_pending;
 73static unsigned int signals_active = 0;
 74
 75void sig_handler(int sig, struct siginfo *si, mcontext_t *mc)
 76{
 77	int enabled;
 78
 79	enabled = signals_enabled;
 80	if (!enabled && (sig == SIGIO)) {
 81		signals_pending |= SIGIO_MASK;
 82		return;
 83	}
 84
 85	block_signals();
 86
 87	sig_handler_common(sig, si, mc);
 88
 89	set_signals(enabled);
 90}
 91
 92static void timer_real_alarm_handler(mcontext_t *mc)
 93{
 94	struct uml_pt_regs *regs;
 95
 96	regs = uml_kmalloc(sizeof(struct uml_pt_regs), UM_GFP_ATOMIC);
 97	if (!regs)
 98		panic("out of memory");
 99
100	if (mc != NULL)
101		get_regs_from_mc(regs, mc);
102	timer_handler(SIGALRM, NULL, regs);
103
104	free(regs);
105}
106
107void timer_alarm_handler(int sig, struct siginfo *unused_si, mcontext_t *mc)
108{
109	int enabled;
110
111	enabled = signals_enabled;
112	if (!signals_enabled) {
113		signals_pending |= SIGALRM_MASK;
114		return;
115	}
116
117	block_signals();
118
119	signals_active |= SIGALRM_MASK;
120
121	timer_real_alarm_handler(mc);
122
123	signals_active &= ~SIGALRM_MASK;
124
125	set_signals(enabled);
126}
127
128void deliver_alarm(void) {
129    timer_alarm_handler(SIGALRM, NULL, NULL);
130}
131
132void timer_set_signal_handler(void)
133{
134	set_handler(SIGALRM);
135}
136
137void set_sigstack(void *sig_stack, int size)
138{
139	stack_t stack = {
140		.ss_flags = 0,
141		.ss_sp = sig_stack,
142		.ss_size = size - sizeof(void *)
143	};
144
145	if (sigaltstack(&stack, NULL) != 0)
146		panic("enabling signal stack failed, errno = %d\n", errno);
147}
148
149static void (*handlers[_NSIG])(int sig, struct siginfo *si, mcontext_t *mc) = {
150	[SIGSEGV] = sig_handler,
151	[SIGBUS] = sig_handler,
152	[SIGILL] = sig_handler,
153	[SIGFPE] = sig_handler,
154	[SIGTRAP] = sig_handler,
155
156	[SIGIO] = sig_handler,
157	[SIGWINCH] = sig_handler,
158	[SIGALRM] = timer_alarm_handler
159};
160
161static void hard_handler(int sig, siginfo_t *si, void *p)
 
162{
163	ucontext_t *uc = p;
164	mcontext_t *mc = &uc->uc_mcontext;
165	unsigned long pending = 1UL << sig;
166
167	do {
168		int nested, bail;
169
170		/*
171		 * pending comes back with one bit set for each
172		 * interrupt that arrived while setting up the stack,
173		 * plus a bit for this interrupt, plus the zero bit is
174		 * set if this is a nested interrupt.
175		 * If bail is true, then we interrupted another
176		 * handler setting up the stack.  In this case, we
177		 * have to return, and the upper handler will deal
178		 * with this interrupt.
179		 */
180		bail = to_irq_stack(&pending);
181		if (bail)
182			return;
183
184		nested = pending & 1;
185		pending &= ~1;
186
187		while ((sig = ffs(pending)) != 0){
188			sig--;
189			pending &= ~(1 << sig);
190			(*handlers[sig])(sig, (struct siginfo *)si, mc);
191		}
192
193		/*
194		 * Again, pending comes back with a mask of signals
195		 * that arrived while tearing down the stack.  If this
196		 * is non-zero, we just go back, set up the stack
197		 * again, and handle the new interrupts.
198		 */
199		if (!nested)
200			pending = from_irq_stack(nested);
201	} while (pending);
202}
203
204void set_handler(int sig)
205{
206	struct sigaction action;
207	int flags = SA_SIGINFO | SA_ONSTACK;
208	sigset_t sig_mask;
209
210	action.sa_sigaction = hard_handler;
211
212	/* block irq ones */
213	sigemptyset(&action.sa_mask);
 
214	sigaddset(&action.sa_mask, SIGIO);
215	sigaddset(&action.sa_mask, SIGWINCH);
216	sigaddset(&action.sa_mask, SIGALRM);
217
218	if (sig == SIGSEGV)
219		flags |= SA_NODEFER;
220
221	if (sigismember(&action.sa_mask, sig))
222		flags |= SA_RESTART; /* if it's an irq signal */
223
224	action.sa_flags = flags;
225	action.sa_restorer = NULL;
226	if (sigaction(sig, &action, NULL) < 0)
227		panic("sigaction failed - errno = %d\n", errno);
228
229	sigemptyset(&sig_mask);
230	sigaddset(&sig_mask, sig);
231	if (sigprocmask(SIG_UNBLOCK, &sig_mask, NULL) < 0)
232		panic("sigprocmask failed - errno = %d\n", errno);
233}
234
235int change_sig(int signal, int on)
236{
237	sigset_t sigset;
238
239	sigemptyset(&sigset);
240	sigaddset(&sigset, signal);
241	if (sigprocmask(on ? SIG_UNBLOCK : SIG_BLOCK, &sigset, NULL) < 0)
242		return -errno;
243
244	return 0;
245}
246
247void block_signals(void)
248{
249	signals_enabled = 0;
250	/*
251	 * This must return with signals disabled, so this barrier
252	 * ensures that writes are flushed out before the return.
253	 * This might matter if gcc figures out how to inline this and
254	 * decides to shuffle this code into the caller.
255	 */
256	barrier();
257}
258
259void unblock_signals(void)
260{
261	int save_pending;
262
263	if (signals_enabled == 1)
264		return;
265
266	/*
267	 * We loop because the IRQ handler returns with interrupts off.  So,
268	 * interrupts may have arrived and we need to re-enable them and
269	 * recheck signals_pending.
270	 */
271	while (1) {
272		/*
273		 * Save and reset save_pending after enabling signals.  This
274		 * way, signals_pending won't be changed while we're reading it.
275		 */
276		signals_enabled = 1;
277
278		/*
279		 * Setting signals_enabled and reading signals_pending must
280		 * happen in this order.
281		 */
282		barrier();
283
284		save_pending = signals_pending;
285		if (save_pending == 0)
286			return;
287
288		signals_pending = 0;
289
290		/*
291		 * We have pending interrupts, so disable signals, as the
292		 * handlers expect them off when they are called.  They will
293		 * be enabled again above.
294		 */
295
296		signals_enabled = 0;
297
298		/*
299		 * Deal with SIGIO first because the alarm handler might
300		 * schedule, leaving the pending SIGIO stranded until we come
301		 * back here.
302		 *
303		 * SIGIO's handler doesn't use siginfo or mcontext,
304		 * so they can be NULL.
305		 */
306		if (save_pending & SIGIO_MASK)
307			sig_handler_common(SIGIO, NULL, NULL);
308
309		/* Do not reenter the handler */
310
311		if ((save_pending & SIGALRM_MASK) && (!(signals_active & SIGALRM_MASK)))
312			timer_real_alarm_handler(NULL);
313
314		/* Rerun the loop only if there is still pending SIGIO and not in TIMER handler */
315
316		if (!(signals_pending & SIGIO_MASK) && (signals_active & SIGALRM_MASK))
317			return;
318
 
 
319	}
320}
321
322int get_signals(void)
323{
324	return signals_enabled;
325}
326
327int set_signals(int enable)
328{
329	int ret;
330	if (signals_enabled == enable)
331		return enable;
332
333	ret = signals_enabled;
334	if (enable)
335		unblock_signals();
336	else block_signals();
337
338	return ret;
339}
340
341int os_is_signal_stack(void)
342{
343	stack_t ss;
344	sigaltstack(NULL, &ss);
345
346	return ss.ss_flags & SS_ONSTACK;
347}