Linux Audio

Check our new training course

Linux BSP upgrade and security maintenance

Need help to get security updates for your Linux BSP?
Loading...
v3.5.6
 
   1/*
   2 *  NSA Security-Enhanced Linux (SELinux) security module
   3 *
   4 *  This file contains the SELinux hook function implementations.
   5 *
   6 *  Authors:  Stephen Smalley, <sds@epoch.ncsc.mil>
   7 *	      Chris Vance, <cvance@nai.com>
   8 *	      Wayne Salamon, <wsalamon@nai.com>
   9 *	      James Morris <jmorris@redhat.com>
  10 *
  11 *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
  12 *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
  13 *					   Eric Paris <eparis@redhat.com>
  14 *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
  15 *			    <dgoeddel@trustedcs.com>
  16 *  Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
  17 *	Paul Moore <paul@paul-moore.com>
  18 *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
  19 *		       Yuichi Nakamura <ynakam@hitachisoft.jp>
  20 *
  21 *	This program is free software; you can redistribute it and/or modify
  22 *	it under the terms of the GNU General Public License version 2,
  23 *	as published by the Free Software Foundation.
  24 */
  25
  26#include <linux/init.h>
  27#include <linux/kd.h>
  28#include <linux/kernel.h>
  29#include <linux/tracehook.h>
  30#include <linux/errno.h>
  31#include <linux/sched.h>
  32#include <linux/security.h>
 
  33#include <linux/xattr.h>
  34#include <linux/capability.h>
  35#include <linux/unistd.h>
  36#include <linux/mm.h>
  37#include <linux/mman.h>
  38#include <linux/slab.h>
  39#include <linux/pagemap.h>
  40#include <linux/proc_fs.h>
  41#include <linux/swap.h>
  42#include <linux/spinlock.h>
  43#include <linux/syscalls.h>
  44#include <linux/dcache.h>
  45#include <linux/file.h>
  46#include <linux/fdtable.h>
  47#include <linux/namei.h>
  48#include <linux/mount.h>
 
 
  49#include <linux/netfilter_ipv4.h>
  50#include <linux/netfilter_ipv6.h>
  51#include <linux/tty.h>
  52#include <net/icmp.h>
  53#include <net/ip.h>		/* for local_port_range[] */
  54#include <net/tcp.h>		/* struct or_callable used in sock_rcv_skb */
 
  55#include <net/net_namespace.h>
  56#include <net/netlabel.h>
  57#include <linux/uaccess.h>
  58#include <asm/ioctls.h>
  59#include <linux/atomic.h>
  60#include <linux/bitops.h>
  61#include <linux/interrupt.h>
  62#include <linux/netdevice.h>	/* for network interface checks */
  63#include <linux/netlink.h>
  64#include <linux/tcp.h>
  65#include <linux/udp.h>
  66#include <linux/dccp.h>
 
 
  67#include <linux/quota.h>
  68#include <linux/un.h>		/* for Unix socket types */
  69#include <net/af_unix.h>	/* for Unix socket types */
  70#include <linux/parser.h>
  71#include <linux/nfs_mount.h>
  72#include <net/ipv6.h>
  73#include <linux/hugetlb.h>
  74#include <linux/personality.h>
  75#include <linux/audit.h>
  76#include <linux/string.h>
  77#include <linux/selinux.h>
  78#include <linux/mutex.h>
  79#include <linux/posix-timers.h>
  80#include <linux/syslog.h>
  81#include <linux/user_namespace.h>
  82#include <linux/export.h>
  83#include <linux/msg.h>
  84#include <linux/shm.h>
 
 
 
 
 
 
  85
  86#include "avc.h"
  87#include "objsec.h"
  88#include "netif.h"
  89#include "netnode.h"
  90#include "netport.h"
 
  91#include "xfrm.h"
  92#include "netlabel.h"
  93#include "audit.h"
  94#include "avc_ss.h"
  95
  96#define NUM_SEL_MNT_OPTS 5
  97
  98extern struct security_operations *security_ops;
  99
 100/* SECMARK reference count */
 101static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
 102
 103#ifdef CONFIG_SECURITY_SELINUX_DEVELOP
 104int selinux_enforcing;
 105
 106static int __init enforcing_setup(char *str)
 107{
 108	unsigned long enforcing;
 109	if (!strict_strtoul(str, 0, &enforcing))
 110		selinux_enforcing = enforcing ? 1 : 0;
 111	return 1;
 112}
 113__setup("enforcing=", enforcing_setup);
 
 
 114#endif
 115
 
 116#ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
 117int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
 118
 119static int __init selinux_enabled_setup(char *str)
 120{
 121	unsigned long enabled;
 122	if (!strict_strtoul(str, 0, &enabled))
 123		selinux_enabled = enabled ? 1 : 0;
 124	return 1;
 125}
 126__setup("selinux=", selinux_enabled_setup);
 127#else
 128int selinux_enabled = 1;
 129#endif
 130
 131static struct kmem_cache *sel_inode_cache;
 
 
 
 
 
 
 
 
 
 
 
 132
 133/**
 134 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
 135 *
 136 * Description:
 137 * This function checks the SECMARK reference counter to see if any SECMARK
 138 * targets are currently configured, if the reference counter is greater than
 139 * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
 140 * enabled, false (0) if SECMARK is disabled.
 
 141 *
 142 */
 143static int selinux_secmark_enabled(void)
 144{
 145	return (atomic_read(&selinux_secmark_refcount) > 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 146}
 147
 148/*
 149 * initialise the security for the init task
 150 */
 151static void cred_init_security(void)
 152{
 153	struct cred *cred = (struct cred *) current->real_cred;
 154	struct task_security_struct *tsec;
 155
 156	tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
 157	if (!tsec)
 158		panic("SELinux:  Failed to initialize initial task.\n");
 159
 160	tsec->osid = tsec->sid = SECINITSID_KERNEL;
 161	cred->security = tsec;
 162}
 163
 164/*
 165 * get the security ID of a set of credentials
 166 */
 167static inline u32 cred_sid(const struct cred *cred)
 168{
 169	const struct task_security_struct *tsec;
 170
 171	tsec = cred->security;
 172	return tsec->sid;
 173}
 174
 175/*
 176 * get the objective security ID of a task
 177 */
 178static inline u32 task_sid(const struct task_struct *task)
 179{
 180	u32 sid;
 181
 182	rcu_read_lock();
 183	sid = cred_sid(__task_cred(task));
 184	rcu_read_unlock();
 185	return sid;
 186}
 187
 188/*
 189 * get the subjective security ID of the current task
 190 */
 191static inline u32 current_sid(void)
 192{
 193	const struct task_security_struct *tsec = current_security();
 194
 195	return tsec->sid;
 196}
 197
 198/* Allocate and free functions for each kind of security blob. */
 199
 200static int inode_alloc_security(struct inode *inode)
 201{
 202	struct inode_security_struct *isec;
 203	u32 sid = current_sid();
 204
 205	isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
 206	if (!isec)
 207		return -ENOMEM;
 208
 209	mutex_init(&isec->lock);
 210	INIT_LIST_HEAD(&isec->list);
 211	isec->inode = inode;
 212	isec->sid = SECINITSID_UNLABELED;
 213	isec->sclass = SECCLASS_FILE;
 214	isec->task_sid = sid;
 215	inode->i_security = isec;
 216
 217	return 0;
 218}
 219
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 220static void inode_free_security(struct inode *inode)
 221{
 222	struct inode_security_struct *isec = inode->i_security;
 223	struct superblock_security_struct *sbsec = inode->i_sb->s_security;
 224
 225	spin_lock(&sbsec->isec_lock);
 226	if (!list_empty(&isec->list))
 
 
 
 
 
 
 
 
 
 
 
 
 
 227		list_del_init(&isec->list);
 228	spin_unlock(&sbsec->isec_lock);
 229
 230	inode->i_security = NULL;
 231	kmem_cache_free(sel_inode_cache, isec);
 232}
 233
 234static int file_alloc_security(struct file *file)
 235{
 236	struct file_security_struct *fsec;
 237	u32 sid = current_sid();
 238
 239	fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL);
 240	if (!fsec)
 241		return -ENOMEM;
 242
 243	fsec->sid = sid;
 244	fsec->fown_sid = sid;
 245	file->f_security = fsec;
 246
 247	return 0;
 248}
 249
 250static void file_free_security(struct file *file)
 251{
 252	struct file_security_struct *fsec = file->f_security;
 253	file->f_security = NULL;
 254	kfree(fsec);
 255}
 256
 257static int superblock_alloc_security(struct super_block *sb)
 258{
 259	struct superblock_security_struct *sbsec;
 260
 261	sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
 262	if (!sbsec)
 263		return -ENOMEM;
 264
 265	mutex_init(&sbsec->lock);
 266	INIT_LIST_HEAD(&sbsec->isec_head);
 267	spin_lock_init(&sbsec->isec_lock);
 268	sbsec->sb = sb;
 269	sbsec->sid = SECINITSID_UNLABELED;
 270	sbsec->def_sid = SECINITSID_FILE;
 271	sbsec->mntpoint_sid = SECINITSID_UNLABELED;
 272	sb->s_security = sbsec;
 273
 274	return 0;
 275}
 276
 277static void superblock_free_security(struct super_block *sb)
 278{
 279	struct superblock_security_struct *sbsec = sb->s_security;
 280	sb->s_security = NULL;
 281	kfree(sbsec);
 282}
 283
 284/* The file system's label must be initialized prior to use. */
 285
 286static const char *labeling_behaviors[6] = {
 287	"uses xattr",
 288	"uses transition SIDs",
 289	"uses task SIDs",
 290	"uses genfs_contexts",
 291	"not configured for labeling",
 292	"uses mountpoint labeling",
 293};
 294
 295static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
 
 
 
 
 
 
 
 
 296
 297static inline int inode_doinit(struct inode *inode)
 298{
 299	return inode_doinit_with_dentry(inode, NULL);
 300}
 301
 302enum {
 303	Opt_error = -1,
 304	Opt_context = 1,
 
 305	Opt_fscontext = 2,
 306	Opt_defcontext = 3,
 307	Opt_rootcontext = 4,
 308	Opt_labelsupport = 5,
 309};
 310
 311static const match_table_t tokens = {
 312	{Opt_context, CONTEXT_STR "%s"},
 313	{Opt_fscontext, FSCONTEXT_STR "%s"},
 314	{Opt_defcontext, DEFCONTEXT_STR "%s"},
 315	{Opt_rootcontext, ROOTCONTEXT_STR "%s"},
 316	{Opt_labelsupport, LABELSUPP_STR},
 317	{Opt_error, NULL},
 
 
 
 
 
 318};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 319
 320#define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
 321
 322static int may_context_mount_sb_relabel(u32 sid,
 323			struct superblock_security_struct *sbsec,
 324			const struct cred *cred)
 325{
 326	const struct task_security_struct *tsec = cred->security;
 327	int rc;
 328
 329	rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
 
 330			  FILESYSTEM__RELABELFROM, NULL);
 331	if (rc)
 332		return rc;
 333
 334	rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
 
 335			  FILESYSTEM__RELABELTO, NULL);
 336	return rc;
 337}
 338
 339static int may_context_mount_inode_relabel(u32 sid,
 340			struct superblock_security_struct *sbsec,
 341			const struct cred *cred)
 342{
 343	const struct task_security_struct *tsec = cred->security;
 344	int rc;
 345	rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
 
 346			  FILESYSTEM__RELABELFROM, NULL);
 347	if (rc)
 348		return rc;
 349
 350	rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
 
 351			  FILESYSTEM__ASSOCIATE, NULL);
 352	return rc;
 353}
 354
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 355static int sb_finish_set_opts(struct super_block *sb)
 356{
 357	struct superblock_security_struct *sbsec = sb->s_security;
 358	struct dentry *root = sb->s_root;
 359	struct inode *root_inode = root->d_inode;
 360	int rc = 0;
 361
 362	if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
 363		/* Make sure that the xattr handler exists and that no
 364		   error other than -ENODATA is returned by getxattr on
 365		   the root directory.  -ENODATA is ok, as this may be
 366		   the first boot of the SELinux kernel before we have
 367		   assigned xattr values to the filesystem. */
 368		if (!root_inode->i_op->getxattr) {
 369			printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
 370			       "xattr support\n", sb->s_id, sb->s_type->name);
 371			rc = -EOPNOTSUPP;
 372			goto out;
 373		}
 374		rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
 
 375		if (rc < 0 && rc != -ENODATA) {
 376			if (rc == -EOPNOTSUPP)
 377				printk(KERN_WARNING "SELinux: (dev %s, type "
 378				       "%s) has no security xattr handler\n",
 379				       sb->s_id, sb->s_type->name);
 380			else
 381				printk(KERN_WARNING "SELinux: (dev %s, type "
 382				       "%s) getxattr errno %d\n", sb->s_id,
 383				       sb->s_type->name, -rc);
 384			goto out;
 385		}
 386	}
 387
 388	sbsec->flags |= (SE_SBINITIALIZED | SE_SBLABELSUPP);
 389
 390	if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
 391		printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n",
 392		       sb->s_id, sb->s_type->name);
 
 
 
 
 393	else
 394		printk(KERN_DEBUG "SELinux: initialized (dev %s, type %s), %s\n",
 395		       sb->s_id, sb->s_type->name,
 396		       labeling_behaviors[sbsec->behavior-1]);
 397
 398	if (sbsec->behavior == SECURITY_FS_USE_GENFS ||
 399	    sbsec->behavior == SECURITY_FS_USE_MNTPOINT ||
 400	    sbsec->behavior == SECURITY_FS_USE_NONE ||
 401	    sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
 402		sbsec->flags &= ~SE_SBLABELSUPP;
 403
 404	/* Special handling for sysfs. Is genfs but also has setxattr handler*/
 405	if (strncmp(sb->s_type->name, "sysfs", sizeof("sysfs")) == 0)
 406		sbsec->flags |= SE_SBLABELSUPP;
 407
 408	/* Initialize the root inode. */
 409	rc = inode_doinit_with_dentry(root_inode, root);
 410
 411	/* Initialize any other inodes associated with the superblock, e.g.
 412	   inodes created prior to initial policy load or inodes created
 413	   during get_sb by a pseudo filesystem that directly
 414	   populates itself. */
 415	spin_lock(&sbsec->isec_lock);
 416next_inode:
 417	if (!list_empty(&sbsec->isec_head)) {
 418		struct inode_security_struct *isec =
 419				list_entry(sbsec->isec_head.next,
 420					   struct inode_security_struct, list);
 421		struct inode *inode = isec->inode;
 
 422		spin_unlock(&sbsec->isec_lock);
 423		inode = igrab(inode);
 424		if (inode) {
 425			if (!IS_PRIVATE(inode))
 426				inode_doinit(inode);
 427			iput(inode);
 428		}
 429		spin_lock(&sbsec->isec_lock);
 430		list_del_init(&isec->list);
 431		goto next_inode;
 432	}
 433	spin_unlock(&sbsec->isec_lock);
 434out:
 435	return rc;
 436}
 437
 438/*
 439 * This function should allow an FS to ask what it's mount security
 440 * options were so it can use those later for submounts, displaying
 441 * mount options, or whatever.
 442 */
 443static int selinux_get_mnt_opts(const struct super_block *sb,
 444				struct security_mnt_opts *opts)
 445{
 446	int rc = 0, i;
 447	struct superblock_security_struct *sbsec = sb->s_security;
 448	char *context = NULL;
 449	u32 len;
 450	char tmp;
 451
 452	security_init_mnt_opts(opts);
 453
 454	if (!(sbsec->flags & SE_SBINITIALIZED))
 455		return -EINVAL;
 456
 457	if (!ss_initialized)
 458		return -EINVAL;
 459
 460	tmp = sbsec->flags & SE_MNTMASK;
 461	/* count the number of mount options for this sb */
 462	for (i = 0; i < 8; i++) {
 463		if (tmp & 0x01)
 464			opts->num_mnt_opts++;
 465		tmp >>= 1;
 466	}
 467	/* Check if the Label support flag is set */
 468	if (sbsec->flags & SE_SBLABELSUPP)
 469		opts->num_mnt_opts++;
 470
 471	opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
 472	if (!opts->mnt_opts) {
 473		rc = -ENOMEM;
 474		goto out_free;
 475	}
 476
 477	opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
 478	if (!opts->mnt_opts_flags) {
 479		rc = -ENOMEM;
 480		goto out_free;
 481	}
 482
 483	i = 0;
 484	if (sbsec->flags & FSCONTEXT_MNT) {
 485		rc = security_sid_to_context(sbsec->sid, &context, &len);
 486		if (rc)
 487			goto out_free;
 488		opts->mnt_opts[i] = context;
 489		opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
 490	}
 491	if (sbsec->flags & CONTEXT_MNT) {
 492		rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len);
 493		if (rc)
 494			goto out_free;
 495		opts->mnt_opts[i] = context;
 496		opts->mnt_opts_flags[i++] = CONTEXT_MNT;
 497	}
 498	if (sbsec->flags & DEFCONTEXT_MNT) {
 499		rc = security_sid_to_context(sbsec->def_sid, &context, &len);
 500		if (rc)
 501			goto out_free;
 502		opts->mnt_opts[i] = context;
 503		opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
 504	}
 505	if (sbsec->flags & ROOTCONTEXT_MNT) {
 506		struct inode *root = sbsec->sb->s_root->d_inode;
 507		struct inode_security_struct *isec = root->i_security;
 508
 509		rc = security_sid_to_context(isec->sid, &context, &len);
 510		if (rc)
 511			goto out_free;
 512		opts->mnt_opts[i] = context;
 513		opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
 514	}
 515	if (sbsec->flags & SE_SBLABELSUPP) {
 516		opts->mnt_opts[i] = NULL;
 517		opts->mnt_opts_flags[i++] = SE_SBLABELSUPP;
 518	}
 519
 520	BUG_ON(i != opts->num_mnt_opts);
 521
 522	return 0;
 523
 524out_free:
 525	security_free_mnt_opts(opts);
 526	return rc;
 527}
 528
 529static int bad_option(struct superblock_security_struct *sbsec, char flag,
 530		      u32 old_sid, u32 new_sid)
 531{
 532	char mnt_flags = sbsec->flags & SE_MNTMASK;
 533
 534	/* check if the old mount command had the same options */
 535	if (sbsec->flags & SE_SBINITIALIZED)
 536		if (!(sbsec->flags & flag) ||
 537		    (old_sid != new_sid))
 538			return 1;
 539
 540	/* check if we were passed the same options twice,
 541	 * aka someone passed context=a,context=b
 542	 */
 543	if (!(sbsec->flags & SE_SBINITIALIZED))
 544		if (mnt_flags & flag)
 545			return 1;
 546	return 0;
 547}
 548
 
 
 
 
 
 
 
 
 
 
 
 549/*
 550 * Allow filesystems with binary mount data to explicitly set mount point
 551 * labeling information.
 552 */
 553static int selinux_set_mnt_opts(struct super_block *sb,
 554				struct security_mnt_opts *opts)
 
 
 555{
 556	const struct cred *cred = current_cred();
 557	int rc = 0, i;
 558	struct superblock_security_struct *sbsec = sb->s_security;
 559	const char *name = sb->s_type->name;
 560	struct inode *inode = sbsec->sb->s_root->d_inode;
 561	struct inode_security_struct *root_isec = inode->i_security;
 562	u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
 563	u32 defcontext_sid = 0;
 564	char **mount_options = opts->mnt_opts;
 565	int *flags = opts->mnt_opts_flags;
 566	int num_opts = opts->num_mnt_opts;
 567
 568	mutex_lock(&sbsec->lock);
 569
 570	if (!ss_initialized) {
 571		if (!num_opts) {
 572			/* Defer initialization until selinux_complete_init,
 573			   after the initial policy is loaded and the security
 574			   server is ready to handle calls. */
 575			goto out;
 576		}
 577		rc = -EINVAL;
 578		printk(KERN_WARNING "SELinux: Unable to set superblock options "
 579			"before the security server is initialized\n");
 580		goto out;
 581	}
 
 
 
 
 
 
 582
 583	/*
 584	 * Binary mount data FS will come through this function twice.  Once
 585	 * from an explicit call and once from the generic calls from the vfs.
 586	 * Since the generic VFS calls will not contain any security mount data
 587	 * we need to skip the double mount verification.
 588	 *
 589	 * This does open a hole in which we will not notice if the first
 590	 * mount using this sb set explict options and a second mount using
 591	 * this sb does not set any security options.  (The first options
 592	 * will be used for both mounts)
 593	 */
 594	if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
 595	    && (num_opts == 0))
 596		goto out;
 597
 
 
 598	/*
 599	 * parse the mount options, check if they are valid sids.
 600	 * also check if someone is trying to mount the same sb more
 601	 * than once with different security options.
 602	 */
 603	for (i = 0; i < num_opts; i++) {
 604		u32 sid;
 605
 606		if (flags[i] == SE_SBLABELSUPP)
 607			continue;
 608		rc = security_context_to_sid(mount_options[i],
 609					     strlen(mount_options[i]), &sid);
 610		if (rc) {
 611			printk(KERN_WARNING "SELinux: security_context_to_sid"
 612			       "(%s) failed for (dev %s, type %s) errno=%d\n",
 613			       mount_options[i], sb->s_id, name, rc);
 614			goto out;
 615		}
 616		switch (flags[i]) {
 617		case FSCONTEXT_MNT:
 618			fscontext_sid = sid;
 619
 620			if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
 621					fscontext_sid))
 622				goto out_double_mount;
 623
 624			sbsec->flags |= FSCONTEXT_MNT;
 625			break;
 626		case CONTEXT_MNT:
 627			context_sid = sid;
 628
 
 629			if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
 630					context_sid))
 631				goto out_double_mount;
 632
 633			sbsec->flags |= CONTEXT_MNT;
 634			break;
 635		case ROOTCONTEXT_MNT:
 636			rootcontext_sid = sid;
 637
 
 638			if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
 639					rootcontext_sid))
 640				goto out_double_mount;
 641
 642			sbsec->flags |= ROOTCONTEXT_MNT;
 643
 644			break;
 645		case DEFCONTEXT_MNT:
 646			defcontext_sid = sid;
 647
 648			if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
 649					defcontext_sid))
 650				goto out_double_mount;
 651
 652			sbsec->flags |= DEFCONTEXT_MNT;
 653
 654			break;
 655		default:
 656			rc = -EINVAL;
 657			goto out;
 658		}
 659	}
 660
 661	if (sbsec->flags & SE_SBINITIALIZED) {
 662		/* previously mounted with options, but not on this attempt? */
 663		if ((sbsec->flags & SE_MNTMASK) && !num_opts)
 664			goto out_double_mount;
 665		rc = 0;
 666		goto out;
 667	}
 668
 669	if (strcmp(sb->s_type->name, "proc") == 0)
 670		sbsec->flags |= SE_SBPROC;
 671
 672	/* Determine the labeling behavior to use for this filesystem type. */
 673	rc = security_fs_use((sbsec->flags & SE_SBPROC) ? "proc" : sb->s_type->name, &sbsec->behavior, &sbsec->sid);
 674	if (rc) {
 675		printk(KERN_WARNING "%s: security_fs_use(%s) returned %d\n",
 676		       __func__, sb->s_type->name, rc);
 677		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 678	}
 679
 680	/* sets the context of the superblock for the fs being mounted. */
 681	if (fscontext_sid) {
 682		rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
 683		if (rc)
 684			goto out;
 685
 686		sbsec->sid = fscontext_sid;
 687	}
 688
 689	/*
 690	 * Switch to using mount point labeling behavior.
 691	 * sets the label used on all file below the mountpoint, and will set
 692	 * the superblock context if not already set.
 693	 */
 
 
 
 
 
 694	if (context_sid) {
 695		if (!fscontext_sid) {
 696			rc = may_context_mount_sb_relabel(context_sid, sbsec,
 697							  cred);
 698			if (rc)
 699				goto out;
 700			sbsec->sid = context_sid;
 701		} else {
 702			rc = may_context_mount_inode_relabel(context_sid, sbsec,
 703							     cred);
 704			if (rc)
 705				goto out;
 706		}
 707		if (!rootcontext_sid)
 708			rootcontext_sid = context_sid;
 709
 710		sbsec->mntpoint_sid = context_sid;
 711		sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
 712	}
 713
 714	if (rootcontext_sid) {
 715		rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
 716						     cred);
 717		if (rc)
 718			goto out;
 719
 720		root_isec->sid = rootcontext_sid;
 721		root_isec->initialized = 1;
 722	}
 723
 724	if (defcontext_sid) {
 725		if (sbsec->behavior != SECURITY_FS_USE_XATTR) {
 
 726			rc = -EINVAL;
 727			printk(KERN_WARNING "SELinux: defcontext option is "
 728			       "invalid for this filesystem type\n");
 729			goto out;
 730		}
 731
 732		if (defcontext_sid != sbsec->def_sid) {
 733			rc = may_context_mount_inode_relabel(defcontext_sid,
 734							     sbsec, cred);
 735			if (rc)
 736				goto out;
 737		}
 738
 739		sbsec->def_sid = defcontext_sid;
 740	}
 741
 
 742	rc = sb_finish_set_opts(sb);
 743out:
 744	mutex_unlock(&sbsec->lock);
 745	return rc;
 746out_double_mount:
 747	rc = -EINVAL;
 748	printk(KERN_WARNING "SELinux: mount invalid.  Same superblock, different "
 749	       "security settings for (dev %s, type %s)\n", sb->s_id, name);
 
 750	goto out;
 751}
 752
 753static void selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
 754					struct super_block *newsb)
 755{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 756	const struct superblock_security_struct *oldsbsec = oldsb->s_security;
 757	struct superblock_security_struct *newsbsec = newsb->s_security;
 758
 759	int set_fscontext =	(oldsbsec->flags & FSCONTEXT_MNT);
 760	int set_context =	(oldsbsec->flags & CONTEXT_MNT);
 761	int set_rootcontext =	(oldsbsec->flags & ROOTCONTEXT_MNT);
 762
 763	/*
 764	 * if the parent was able to be mounted it clearly had no special lsm
 765	 * mount options.  thus we can safely deal with this superblock later
 766	 */
 767	if (!ss_initialized)
 768		return;
 
 
 
 
 
 
 
 769
 770	/* how can we clone if the old one wasn't set up?? */
 771	BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
 772
 773	/* if fs is reusing a sb, just let its options stand... */
 774	if (newsbsec->flags & SE_SBINITIALIZED)
 775		return;
 
 
 
 776
 777	mutex_lock(&newsbsec->lock);
 778
 779	newsbsec->flags = oldsbsec->flags;
 780
 781	newsbsec->sid = oldsbsec->sid;
 782	newsbsec->def_sid = oldsbsec->def_sid;
 783	newsbsec->behavior = oldsbsec->behavior;
 784
 
 
 
 
 
 
 
 
 
 
 
 
 785	if (set_context) {
 786		u32 sid = oldsbsec->mntpoint_sid;
 787
 788		if (!set_fscontext)
 789			newsbsec->sid = sid;
 790		if (!set_rootcontext) {
 791			struct inode *newinode = newsb->s_root->d_inode;
 792			struct inode_security_struct *newisec = newinode->i_security;
 793			newisec->sid = sid;
 794		}
 795		newsbsec->mntpoint_sid = sid;
 796	}
 797	if (set_rootcontext) {
 798		const struct inode *oldinode = oldsb->s_root->d_inode;
 799		const struct inode_security_struct *oldisec = oldinode->i_security;
 800		struct inode *newinode = newsb->s_root->d_inode;
 801		struct inode_security_struct *newisec = newinode->i_security;
 802
 803		newisec->sid = oldisec->sid;
 804	}
 805
 806	sb_finish_set_opts(newsb);
 
 807	mutex_unlock(&newsbsec->lock);
 
 808}
 809
 810static int selinux_parse_opts_str(char *options,
 811				  struct security_mnt_opts *opts)
 812{
 813	char *p;
 814	char *context = NULL, *defcontext = NULL;
 815	char *fscontext = NULL, *rootcontext = NULL;
 816	int rc, num_mnt_opts = 0;
 817
 818	opts->num_mnt_opts = 0;
 819
 820	/* Standard string-based options. */
 821	while ((p = strsep(&options, "|")) != NULL) {
 822		int token;
 823		substring_t args[MAX_OPT_ARGS];
 824
 825		if (!*p)
 826			continue;
 827
 828		token = match_token(p, tokens, args);
 829
 830		switch (token) {
 831		case Opt_context:
 832			if (context || defcontext) {
 833				rc = -EINVAL;
 834				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
 835				goto out_err;
 836			}
 837			context = match_strdup(&args[0]);
 838			if (!context) {
 839				rc = -ENOMEM;
 840				goto out_err;
 841			}
 842			break;
 843
 844		case Opt_fscontext:
 845			if (fscontext) {
 846				rc = -EINVAL;
 847				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
 848				goto out_err;
 849			}
 850			fscontext = match_strdup(&args[0]);
 851			if (!fscontext) {
 852				rc = -ENOMEM;
 853				goto out_err;
 854			}
 855			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 856
 857		case Opt_rootcontext:
 858			if (rootcontext) {
 859				rc = -EINVAL;
 860				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
 861				goto out_err;
 862			}
 863			rootcontext = match_strdup(&args[0]);
 864			if (!rootcontext) {
 865				rc = -ENOMEM;
 866				goto out_err;
 867			}
 868			break;
 869
 870		case Opt_defcontext:
 871			if (context || defcontext) {
 872				rc = -EINVAL;
 873				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
 874				goto out_err;
 875			}
 876			defcontext = match_strdup(&args[0]);
 877			if (!defcontext) {
 878				rc = -ENOMEM;
 879				goto out_err;
 880			}
 881			break;
 882		case Opt_labelsupport:
 883			break;
 884		default:
 885			rc = -EINVAL;
 886			printk(KERN_WARNING "SELinux:  unknown mount option\n");
 887			goto out_err;
 888
 889		}
 890	}
 891
 892	rc = -ENOMEM;
 893	opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC);
 894	if (!opts->mnt_opts)
 895		goto out_err;
 896
 897	opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC);
 898	if (!opts->mnt_opts_flags) {
 899		kfree(opts->mnt_opts);
 900		goto out_err;
 901	}
 902
 903	if (fscontext) {
 904		opts->mnt_opts[num_mnt_opts] = fscontext;
 905		opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
 906	}
 907	if (context) {
 908		opts->mnt_opts[num_mnt_opts] = context;
 909		opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
 910	}
 911	if (rootcontext) {
 912		opts->mnt_opts[num_mnt_opts] = rootcontext;
 913		opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
 914	}
 915	if (defcontext) {
 916		opts->mnt_opts[num_mnt_opts] = defcontext;
 917		opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
 
 918	}
 919
 920	opts->num_mnt_opts = num_mnt_opts;
 921	return 0;
 922
 923out_err:
 924	kfree(context);
 925	kfree(defcontext);
 926	kfree(fscontext);
 927	kfree(rootcontext);
 928	return rc;
 929}
 930/*
 931 * string mount options parsing and call set the sbsec
 932 */
 933static int superblock_doinit(struct super_block *sb, void *data)
 934{
 935	int rc = 0;
 936	char *options = data;
 937	struct security_mnt_opts opts;
 938
 939	security_init_mnt_opts(&opts);
 940
 941	if (!data)
 942		goto out;
 943
 944	BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
 945
 946	rc = selinux_parse_opts_str(options, &opts);
 947	if (rc)
 948		goto out_err;
 949
 950out:
 951	rc = selinux_set_mnt_opts(sb, &opts);
 952
 953out_err:
 954	security_free_mnt_opts(&opts);
 955	return rc;
 956}
 957
 958static void selinux_write_opts(struct seq_file *m,
 959			       struct security_mnt_opts *opts)
 960{
 961	int i;
 962	char *prefix;
 963
 964	for (i = 0; i < opts->num_mnt_opts; i++) {
 965		char *has_comma;
 966
 967		if (opts->mnt_opts[i])
 968			has_comma = strchr(opts->mnt_opts[i], ',');
 969		else
 970			has_comma = NULL;
 971
 972		switch (opts->mnt_opts_flags[i]) {
 973		case CONTEXT_MNT:
 974			prefix = CONTEXT_STR;
 975			break;
 976		case FSCONTEXT_MNT:
 977			prefix = FSCONTEXT_STR;
 978			break;
 979		case ROOTCONTEXT_MNT:
 980			prefix = ROOTCONTEXT_STR;
 981			break;
 982		case DEFCONTEXT_MNT:
 983			prefix = DEFCONTEXT_STR;
 984			break;
 985		case SE_SBLABELSUPP:
 986			seq_putc(m, ',');
 987			seq_puts(m, LABELSUPP_STR);
 988			continue;
 989		default:
 990			BUG();
 991			return;
 992		};
 993		/* we need a comma before each option */
 994		seq_putc(m, ',');
 995		seq_puts(m, prefix);
 996		if (has_comma)
 997			seq_putc(m, '\"');
 998		seq_puts(m, opts->mnt_opts[i]);
 999		if (has_comma)
1000			seq_putc(m, '\"');
1001	}
 
 
1002}
1003
1004static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1005{
1006	struct security_mnt_opts opts;
1007	int rc;
1008
1009	rc = selinux_get_mnt_opts(sb, &opts);
1010	if (rc) {
1011		/* before policy load we may get EINVAL, don't show anything */
1012		if (rc == -EINVAL)
1013			rc = 0;
1014		return rc;
1015	}
1016
1017	selinux_write_opts(m, &opts);
1018
1019	security_free_mnt_opts(&opts);
 
1020
1021	return rc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1022}
1023
1024static inline u16 inode_mode_to_security_class(umode_t mode)
1025{
1026	switch (mode & S_IFMT) {
1027	case S_IFSOCK:
1028		return SECCLASS_SOCK_FILE;
1029	case S_IFLNK:
1030		return SECCLASS_LNK_FILE;
1031	case S_IFREG:
1032		return SECCLASS_FILE;
1033	case S_IFBLK:
1034		return SECCLASS_BLK_FILE;
1035	case S_IFDIR:
1036		return SECCLASS_DIR;
1037	case S_IFCHR:
1038		return SECCLASS_CHR_FILE;
1039	case S_IFIFO:
1040		return SECCLASS_FIFO_FILE;
1041
1042	}
1043
1044	return SECCLASS_FILE;
1045}
1046
1047static inline int default_protocol_stream(int protocol)
1048{
1049	return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1050}
1051
1052static inline int default_protocol_dgram(int protocol)
1053{
1054	return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1055}
1056
1057static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1058{
 
 
1059	switch (family) {
1060	case PF_UNIX:
1061		switch (type) {
1062		case SOCK_STREAM:
1063		case SOCK_SEQPACKET:
1064			return SECCLASS_UNIX_STREAM_SOCKET;
1065		case SOCK_DGRAM:
 
1066			return SECCLASS_UNIX_DGRAM_SOCKET;
1067		}
1068		break;
1069	case PF_INET:
1070	case PF_INET6:
1071		switch (type) {
1072		case SOCK_STREAM:
 
1073			if (default_protocol_stream(protocol))
1074				return SECCLASS_TCP_SOCKET;
 
 
1075			else
1076				return SECCLASS_RAWIP_SOCKET;
1077		case SOCK_DGRAM:
1078			if (default_protocol_dgram(protocol))
1079				return SECCLASS_UDP_SOCKET;
 
 
 
1080			else
1081				return SECCLASS_RAWIP_SOCKET;
1082		case SOCK_DCCP:
1083			return SECCLASS_DCCP_SOCKET;
1084		default:
1085			return SECCLASS_RAWIP_SOCKET;
1086		}
1087		break;
1088	case PF_NETLINK:
1089		switch (protocol) {
1090		case NETLINK_ROUTE:
1091			return SECCLASS_NETLINK_ROUTE_SOCKET;
1092		case NETLINK_FIREWALL:
1093			return SECCLASS_NETLINK_FIREWALL_SOCKET;
1094		case NETLINK_SOCK_DIAG:
1095			return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1096		case NETLINK_NFLOG:
1097			return SECCLASS_NETLINK_NFLOG_SOCKET;
1098		case NETLINK_XFRM:
1099			return SECCLASS_NETLINK_XFRM_SOCKET;
1100		case NETLINK_SELINUX:
1101			return SECCLASS_NETLINK_SELINUX_SOCKET;
 
 
1102		case NETLINK_AUDIT:
1103			return SECCLASS_NETLINK_AUDIT_SOCKET;
1104		case NETLINK_IP6_FW:
1105			return SECCLASS_NETLINK_IP6FW_SOCKET;
 
 
 
 
1106		case NETLINK_DNRTMSG:
1107			return SECCLASS_NETLINK_DNRT_SOCKET;
1108		case NETLINK_KOBJECT_UEVENT:
1109			return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
 
 
 
 
 
 
 
 
1110		default:
1111			return SECCLASS_NETLINK_SOCKET;
1112		}
1113	case PF_PACKET:
1114		return SECCLASS_PACKET_SOCKET;
1115	case PF_KEY:
1116		return SECCLASS_KEY_SOCKET;
1117	case PF_APPLETALK:
1118		return SECCLASS_APPLETALK_SOCKET;
1119	}
1120
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1121	return SECCLASS_SOCKET;
1122}
1123
1124#ifdef CONFIG_PROC_FS
1125static int selinux_proc_get_sid(struct dentry *dentry,
1126				u16 tclass,
1127				u32 *sid)
1128{
1129	int rc;
 
1130	char *buffer, *path;
1131
1132	buffer = (char *)__get_free_page(GFP_KERNEL);
1133	if (!buffer)
1134		return -ENOMEM;
1135
1136	path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1137	if (IS_ERR(path))
1138		rc = PTR_ERR(path);
1139	else {
1140		/* each process gets a /proc/PID/ entry. Strip off the
1141		 * PID part to get a valid selinux labeling.
1142		 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1143		while (path[1] >= '0' && path[1] <= '9') {
1144			path[1] = '/';
1145			path++;
 
 
 
 
 
 
 
 
 
1146		}
1147		rc = security_genfs_sid("proc", path, tclass, sid);
1148	}
1149	free_page((unsigned long)buffer);
1150	return rc;
1151}
1152#else
1153static int selinux_proc_get_sid(struct dentry *dentry,
1154				u16 tclass,
1155				u32 *sid)
1156{
1157	return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1158}
1159#endif
1160
1161/* The inode's security attributes must be initialized before first use. */
1162static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1163{
1164	struct superblock_security_struct *sbsec = NULL;
1165	struct inode_security_struct *isec = inode->i_security;
1166	u32 sid;
 
1167	struct dentry *dentry;
1168#define INITCONTEXTLEN 255
1169	char *context = NULL;
1170	unsigned len = 0;
1171	int rc = 0;
1172
1173	if (isec->initialized)
1174		goto out;
1175
1176	mutex_lock(&isec->lock);
1177	if (isec->initialized)
1178		goto out_unlock;
1179
 
 
 
1180	sbsec = inode->i_sb->s_security;
1181	if (!(sbsec->flags & SE_SBINITIALIZED)) {
1182		/* Defer initialization until selinux_complete_init,
1183		   after the initial policy is loaded and the security
1184		   server is ready to handle calls. */
1185		spin_lock(&sbsec->isec_lock);
1186		if (list_empty(&isec->list))
1187			list_add(&isec->list, &sbsec->isec_head);
1188		spin_unlock(&sbsec->isec_lock);
1189		goto out_unlock;
1190	}
1191
 
 
 
 
 
 
1192	switch (sbsec->behavior) {
 
 
1193	case SECURITY_FS_USE_XATTR:
1194		if (!inode->i_op->getxattr) {
1195			isec->sid = sbsec->def_sid;
1196			break;
1197		}
1198
1199		/* Need a dentry, since the xattr API requires one.
1200		   Life would be simpler if we could just pass the inode. */
1201		if (opt_dentry) {
1202			/* Called from d_instantiate or d_splice_alias. */
1203			dentry = dget(opt_dentry);
1204		} else {
1205			/* Called from selinux_complete_init, try to find a dentry. */
 
 
 
 
 
1206			dentry = d_find_alias(inode);
 
 
1207		}
1208		if (!dentry) {
1209			/*
1210			 * this is can be hit on boot when a file is accessed
1211			 * before the policy is loaded.  When we load policy we
1212			 * may find inodes that have no dentry on the
1213			 * sbsec->isec_head list.  No reason to complain as these
1214			 * will get fixed up the next time we go through
1215			 * inode_doinit with a dentry, before these inodes could
1216			 * be used again by userspace.
1217			 */
1218			goto out_unlock;
1219		}
1220
1221		len = INITCONTEXTLEN;
1222		context = kmalloc(len+1, GFP_NOFS);
1223		if (!context) {
1224			rc = -ENOMEM;
1225			dput(dentry);
1226			goto out_unlock;
1227		}
1228		context[len] = '\0';
1229		rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1230					   context, len);
1231		if (rc == -ERANGE) {
1232			kfree(context);
1233
1234			/* Need a larger buffer.  Query for the right size. */
1235			rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1236						   NULL, 0);
1237			if (rc < 0) {
1238				dput(dentry);
1239				goto out_unlock;
1240			}
1241			len = rc;
1242			context = kmalloc(len+1, GFP_NOFS);
1243			if (!context) {
1244				rc = -ENOMEM;
1245				dput(dentry);
1246				goto out_unlock;
1247			}
1248			context[len] = '\0';
1249			rc = inode->i_op->getxattr(dentry,
1250						   XATTR_NAME_SELINUX,
1251						   context, len);
1252		}
1253		dput(dentry);
1254		if (rc < 0) {
1255			if (rc != -ENODATA) {
1256				printk(KERN_WARNING "SELinux: %s:  getxattr returned "
1257				       "%d for dev=%s ino=%ld\n", __func__,
1258				       -rc, inode->i_sb->s_id, inode->i_ino);
1259				kfree(context);
1260				goto out_unlock;
1261			}
1262			/* Map ENODATA to the default file SID */
1263			sid = sbsec->def_sid;
1264			rc = 0;
1265		} else {
1266			rc = security_context_to_sid_default(context, rc, &sid,
1267							     sbsec->def_sid,
1268							     GFP_NOFS);
1269			if (rc) {
1270				char *dev = inode->i_sb->s_id;
1271				unsigned long ino = inode->i_ino;
1272
1273				if (rc == -EINVAL) {
1274					if (printk_ratelimit())
1275						printk(KERN_NOTICE "SELinux: inode=%lu on dev=%s was found to have an invalid "
1276							"context=%s.  This indicates you may need to relabel the inode or the "
1277							"filesystem in question.\n", ino, dev, context);
1278				} else {
1279					printk(KERN_WARNING "SELinux: %s:  context_to_sid(%s) "
1280					       "returned %d for dev=%s ino=%ld\n",
1281					       __func__, context, -rc, dev, ino);
1282				}
1283				kfree(context);
1284				/* Leave with the unlabeled SID */
1285				rc = 0;
1286				break;
1287			}
1288		}
1289		kfree(context);
1290		isec->sid = sid;
1291		break;
1292	case SECURITY_FS_USE_TASK:
1293		isec->sid = isec->task_sid;
1294		break;
1295	case SECURITY_FS_USE_TRANS:
1296		/* Default to the fs SID. */
1297		isec->sid = sbsec->sid;
1298
1299		/* Try to obtain a transition SID. */
1300		isec->sclass = inode_mode_to_security_class(inode->i_mode);
1301		rc = security_transition_sid(isec->task_sid, sbsec->sid,
1302					     isec->sclass, NULL, &sid);
1303		if (rc)
1304			goto out_unlock;
1305		isec->sid = sid;
1306		break;
1307	case SECURITY_FS_USE_MNTPOINT:
1308		isec->sid = sbsec->mntpoint_sid;
1309		break;
1310	default:
1311		/* Default to the fs superblock SID. */
1312		isec->sid = sbsec->sid;
1313
1314		if ((sbsec->flags & SE_SBPROC) && !S_ISLNK(inode->i_mode)) {
 
 
1315			if (opt_dentry) {
1316				isec->sclass = inode_mode_to_security_class(inode->i_mode);
1317				rc = selinux_proc_get_sid(opt_dentry,
1318							  isec->sclass,
1319							  &sid);
1320				if (rc)
1321					goto out_unlock;
1322				isec->sid = sid;
 
 
 
 
1323			}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1324		}
1325		break;
1326	}
1327
1328	isec->initialized = 1;
 
 
 
 
 
 
 
 
 
 
1329
1330out_unlock:
1331	mutex_unlock(&isec->lock);
1332out:
1333	if (isec->sclass == SECCLASS_FILE)
1334		isec->sclass = inode_mode_to_security_class(inode->i_mode);
1335	return rc;
1336}
1337
1338/* Convert a Linux signal to an access vector. */
1339static inline u32 signal_to_av(int sig)
1340{
1341	u32 perm = 0;
1342
1343	switch (sig) {
1344	case SIGCHLD:
1345		/* Commonly granted from child to parent. */
1346		perm = PROCESS__SIGCHLD;
1347		break;
1348	case SIGKILL:
1349		/* Cannot be caught or ignored */
1350		perm = PROCESS__SIGKILL;
1351		break;
1352	case SIGSTOP:
1353		/* Cannot be caught or ignored */
1354		perm = PROCESS__SIGSTOP;
1355		break;
1356	default:
1357		/* All other signals. */
1358		perm = PROCESS__SIGNAL;
1359		break;
1360	}
1361
1362	return perm;
1363}
1364
1365/*
1366 * Check permission between a pair of credentials
1367 * fork check, ptrace check, etc.
1368 */
1369static int cred_has_perm(const struct cred *actor,
1370			 const struct cred *target,
1371			 u32 perms)
1372{
1373	u32 asid = cred_sid(actor), tsid = cred_sid(target);
1374
1375	return avc_has_perm(asid, tsid, SECCLASS_PROCESS, perms, NULL);
1376}
1377
1378/*
1379 * Check permission between a pair of tasks, e.g. signal checks,
1380 * fork check, ptrace check, etc.
1381 * tsk1 is the actor and tsk2 is the target
1382 * - this uses the default subjective creds of tsk1
1383 */
1384static int task_has_perm(const struct task_struct *tsk1,
1385			 const struct task_struct *tsk2,
1386			 u32 perms)
1387{
1388	const struct task_security_struct *__tsec1, *__tsec2;
1389	u32 sid1, sid2;
1390
1391	rcu_read_lock();
1392	__tsec1 = __task_cred(tsk1)->security;	sid1 = __tsec1->sid;
1393	__tsec2 = __task_cred(tsk2)->security;	sid2 = __tsec2->sid;
1394	rcu_read_unlock();
1395	return avc_has_perm(sid1, sid2, SECCLASS_PROCESS, perms, NULL);
1396}
1397
1398/*
1399 * Check permission between current and another task, e.g. signal checks,
1400 * fork check, ptrace check, etc.
1401 * current is the actor and tsk2 is the target
1402 * - this uses current's subjective creds
1403 */
1404static int current_has_perm(const struct task_struct *tsk,
1405			    u32 perms)
1406{
1407	u32 sid, tsid;
1408
1409	sid = current_sid();
1410	tsid = task_sid(tsk);
1411	return avc_has_perm(sid, tsid, SECCLASS_PROCESS, perms, NULL);
1412}
1413
1414#if CAP_LAST_CAP > 63
1415#error Fix SELinux to handle capabilities > 63.
1416#endif
1417
1418/* Check whether a task is allowed to use a capability. */
1419static int cred_has_capability(const struct cred *cred,
1420			       int cap, int audit)
1421{
1422	struct common_audit_data ad;
1423	struct av_decision avd;
1424	u16 sclass;
1425	u32 sid = cred_sid(cred);
1426	u32 av = CAP_TO_MASK(cap);
1427	int rc;
1428
1429	ad.type = LSM_AUDIT_DATA_CAP;
1430	ad.u.cap = cap;
1431
1432	switch (CAP_TO_INDEX(cap)) {
1433	case 0:
1434		sclass = SECCLASS_CAPABILITY;
1435		break;
1436	case 1:
1437		sclass = SECCLASS_CAPABILITY2;
1438		break;
1439	default:
1440		printk(KERN_ERR
1441		       "SELinux:  out of range capability %d\n", cap);
1442		BUG();
1443		return -EINVAL;
1444	}
1445
1446	rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd);
1447	if (audit == SECURITY_CAP_AUDIT) {
1448		int rc2 = avc_audit(sid, sid, sclass, av, &avd, rc, &ad, 0);
 
 
1449		if (rc2)
1450			return rc2;
1451	}
1452	return rc;
1453}
1454
1455/* Check whether a task is allowed to use a system operation. */
1456static int task_has_system(struct task_struct *tsk,
1457			   u32 perms)
1458{
1459	u32 sid = task_sid(tsk);
1460
1461	return avc_has_perm(sid, SECINITSID_KERNEL,
1462			    SECCLASS_SYSTEM, perms, NULL);
1463}
1464
1465/* Check whether a task has a particular permission to an inode.
1466   The 'adp' parameter is optional and allows other audit
1467   data to be passed (e.g. the dentry). */
1468static int inode_has_perm(const struct cred *cred,
1469			  struct inode *inode,
1470			  u32 perms,
1471			  struct common_audit_data *adp,
1472			  unsigned flags)
1473{
1474	struct inode_security_struct *isec;
1475	u32 sid;
1476
1477	validate_creds(cred);
1478
1479	if (unlikely(IS_PRIVATE(inode)))
1480		return 0;
1481
1482	sid = cred_sid(cred);
1483	isec = inode->i_security;
1484
1485	return avc_has_perm_flags(sid, isec->sid, isec->sclass, perms, adp, flags);
 
1486}
1487
1488/* Same as inode_has_perm, but pass explicit audit data containing
1489   the dentry to help the auditing code to more easily generate the
1490   pathname if needed. */
1491static inline int dentry_has_perm(const struct cred *cred,
1492				  struct dentry *dentry,
1493				  u32 av)
1494{
1495	struct inode *inode = dentry->d_inode;
1496	struct common_audit_data ad;
1497
1498	ad.type = LSM_AUDIT_DATA_DENTRY;
1499	ad.u.dentry = dentry;
1500	return inode_has_perm(cred, inode, av, &ad, 0);
 
1501}
1502
1503/* Same as inode_has_perm, but pass explicit audit data containing
1504   the path to help the auditing code to more easily generate the
1505   pathname if needed. */
1506static inline int path_has_perm(const struct cred *cred,
1507				struct path *path,
1508				u32 av)
1509{
1510	struct inode *inode = path->dentry->d_inode;
1511	struct common_audit_data ad;
1512
1513	ad.type = LSM_AUDIT_DATA_PATH;
1514	ad.u.path = *path;
1515	return inode_has_perm(cred, inode, av, &ad, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
1516}
1517
 
 
 
 
1518/* Check whether a task can use an open file descriptor to
1519   access an inode in a given way.  Check access to the
1520   descriptor itself, and then use dentry_has_perm to
1521   check a particular permission to the file.
1522   Access to the descriptor is implicitly granted if it
1523   has the same SID as the process.  If av is zero, then
1524   access to the file is not checked, e.g. for cases
1525   where only the descriptor is affected like seek. */
1526static int file_has_perm(const struct cred *cred,
1527			 struct file *file,
1528			 u32 av)
1529{
1530	struct file_security_struct *fsec = file->f_security;
1531	struct inode *inode = file->f_path.dentry->d_inode;
1532	struct common_audit_data ad;
1533	u32 sid = cred_sid(cred);
1534	int rc;
1535
1536	ad.type = LSM_AUDIT_DATA_PATH;
1537	ad.u.path = file->f_path;
1538
1539	if (sid != fsec->sid) {
1540		rc = avc_has_perm(sid, fsec->sid,
 
1541				  SECCLASS_FD,
1542				  FD__USE,
1543				  &ad);
1544		if (rc)
1545			goto out;
1546	}
1547
 
 
 
 
 
 
1548	/* av is zero if only checking access to the descriptor. */
1549	rc = 0;
1550	if (av)
1551		rc = inode_has_perm(cred, inode, av, &ad, 0);
1552
1553out:
1554	return rc;
1555}
1556
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1557/* Check whether a task can create a file. */
1558static int may_create(struct inode *dir,
1559		      struct dentry *dentry,
1560		      u16 tclass)
1561{
1562	const struct task_security_struct *tsec = current_security();
1563	struct inode_security_struct *dsec;
1564	struct superblock_security_struct *sbsec;
1565	u32 sid, newsid;
1566	struct common_audit_data ad;
1567	int rc;
1568
1569	dsec = dir->i_security;
1570	sbsec = dir->i_sb->s_security;
1571
1572	sid = tsec->sid;
1573	newsid = tsec->create_sid;
1574
1575	ad.type = LSM_AUDIT_DATA_DENTRY;
1576	ad.u.dentry = dentry;
1577
1578	rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR,
 
1579			  DIR__ADD_NAME | DIR__SEARCH,
1580			  &ad);
1581	if (rc)
1582		return rc;
1583
1584	if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) {
1585		rc = security_transition_sid(sid, dsec->sid, tclass,
1586					     &dentry->d_name, &newsid);
1587		if (rc)
1588			return rc;
1589	}
1590
1591	rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad);
 
1592	if (rc)
1593		return rc;
1594
1595	return avc_has_perm(newsid, sbsec->sid,
 
1596			    SECCLASS_FILESYSTEM,
1597			    FILESYSTEM__ASSOCIATE, &ad);
1598}
1599
1600/* Check whether a task can create a key. */
1601static int may_create_key(u32 ksid,
1602			  struct task_struct *ctx)
1603{
1604	u32 sid = task_sid(ctx);
1605
1606	return avc_has_perm(sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1607}
1608
1609#define MAY_LINK	0
1610#define MAY_UNLINK	1
1611#define MAY_RMDIR	2
1612
1613/* Check whether a task can link, unlink, or rmdir a file/directory. */
1614static int may_link(struct inode *dir,
1615		    struct dentry *dentry,
1616		    int kind)
1617
1618{
1619	struct inode_security_struct *dsec, *isec;
1620	struct common_audit_data ad;
1621	u32 sid = current_sid();
1622	u32 av;
1623	int rc;
1624
1625	dsec = dir->i_security;
1626	isec = dentry->d_inode->i_security;
1627
1628	ad.type = LSM_AUDIT_DATA_DENTRY;
1629	ad.u.dentry = dentry;
1630
1631	av = DIR__SEARCH;
1632	av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1633	rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad);
 
1634	if (rc)
1635		return rc;
1636
1637	switch (kind) {
1638	case MAY_LINK:
1639		av = FILE__LINK;
1640		break;
1641	case MAY_UNLINK:
1642		av = FILE__UNLINK;
1643		break;
1644	case MAY_RMDIR:
1645		av = DIR__RMDIR;
1646		break;
1647	default:
1648		printk(KERN_WARNING "SELinux: %s:  unrecognized kind %d\n",
1649			__func__, kind);
1650		return 0;
1651	}
1652
1653	rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad);
 
1654	return rc;
1655}
1656
1657static inline int may_rename(struct inode *old_dir,
1658			     struct dentry *old_dentry,
1659			     struct inode *new_dir,
1660			     struct dentry *new_dentry)
1661{
1662	struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1663	struct common_audit_data ad;
1664	u32 sid = current_sid();
1665	u32 av;
1666	int old_is_dir, new_is_dir;
1667	int rc;
1668
1669	old_dsec = old_dir->i_security;
1670	old_isec = old_dentry->d_inode->i_security;
1671	old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
1672	new_dsec = new_dir->i_security;
1673
1674	ad.type = LSM_AUDIT_DATA_DENTRY;
1675
1676	ad.u.dentry = old_dentry;
1677	rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR,
 
1678			  DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1679	if (rc)
1680		return rc;
1681	rc = avc_has_perm(sid, old_isec->sid,
 
1682			  old_isec->sclass, FILE__RENAME, &ad);
1683	if (rc)
1684		return rc;
1685	if (old_is_dir && new_dir != old_dir) {
1686		rc = avc_has_perm(sid, old_isec->sid,
 
1687				  old_isec->sclass, DIR__REPARENT, &ad);
1688		if (rc)
1689			return rc;
1690	}
1691
1692	ad.u.dentry = new_dentry;
1693	av = DIR__ADD_NAME | DIR__SEARCH;
1694	if (new_dentry->d_inode)
1695		av |= DIR__REMOVE_NAME;
1696	rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
 
1697	if (rc)
1698		return rc;
1699	if (new_dentry->d_inode) {
1700		new_isec = new_dentry->d_inode->i_security;
1701		new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
1702		rc = avc_has_perm(sid, new_isec->sid,
 
1703				  new_isec->sclass,
1704				  (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1705		if (rc)
1706			return rc;
1707	}
1708
1709	return 0;
1710}
1711
1712/* Check whether a task can perform a filesystem operation. */
1713static int superblock_has_perm(const struct cred *cred,
1714			       struct super_block *sb,
1715			       u32 perms,
1716			       struct common_audit_data *ad)
1717{
1718	struct superblock_security_struct *sbsec;
1719	u32 sid = cred_sid(cred);
1720
1721	sbsec = sb->s_security;
1722	return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
 
1723}
1724
1725/* Convert a Linux mode and permission mask to an access vector. */
1726static inline u32 file_mask_to_av(int mode, int mask)
1727{
1728	u32 av = 0;
1729
1730	if (!S_ISDIR(mode)) {
1731		if (mask & MAY_EXEC)
1732			av |= FILE__EXECUTE;
1733		if (mask & MAY_READ)
1734			av |= FILE__READ;
1735
1736		if (mask & MAY_APPEND)
1737			av |= FILE__APPEND;
1738		else if (mask & MAY_WRITE)
1739			av |= FILE__WRITE;
1740
1741	} else {
1742		if (mask & MAY_EXEC)
1743			av |= DIR__SEARCH;
1744		if (mask & MAY_WRITE)
1745			av |= DIR__WRITE;
1746		if (mask & MAY_READ)
1747			av |= DIR__READ;
1748	}
1749
1750	return av;
1751}
1752
1753/* Convert a Linux file to an access vector. */
1754static inline u32 file_to_av(struct file *file)
1755{
1756	u32 av = 0;
1757
1758	if (file->f_mode & FMODE_READ)
1759		av |= FILE__READ;
1760	if (file->f_mode & FMODE_WRITE) {
1761		if (file->f_flags & O_APPEND)
1762			av |= FILE__APPEND;
1763		else
1764			av |= FILE__WRITE;
1765	}
1766	if (!av) {
1767		/*
1768		 * Special file opened with flags 3 for ioctl-only use.
1769		 */
1770		av = FILE__IOCTL;
1771	}
1772
1773	return av;
1774}
1775
1776/*
1777 * Convert a file to an access vector and include the correct open
1778 * open permission.
1779 */
1780static inline u32 open_file_to_av(struct file *file)
1781{
1782	u32 av = file_to_av(file);
 
1783
1784	if (selinux_policycap_openperm)
 
1785		av |= FILE__OPEN;
1786
1787	return av;
1788}
1789
1790/* Hook functions begin here. */
1791
1792static int selinux_ptrace_access_check(struct task_struct *child,
1793				     unsigned int mode)
1794{
1795	int rc;
 
1796
1797	rc = cap_ptrace_access_check(child, mode);
1798	if (rc)
1799		return rc;
 
1800
1801	if (mode & PTRACE_MODE_READ) {
1802		u32 sid = current_sid();
1803		u32 csid = task_sid(child);
1804		return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ, NULL);
 
 
 
 
 
 
 
 
 
 
1805	}
1806
1807	return current_has_perm(child, PROCESS__PTRACE);
 
 
1808}
1809
1810static int selinux_ptrace_traceme(struct task_struct *parent)
 
1811{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1812	int rc;
1813
1814	rc = cap_ptrace_traceme(parent);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1815	if (rc)
1816		return rc;
 
1817
1818	return task_has_perm(parent, current, PROCESS__PTRACE);
 
 
 
 
 
 
1819}
1820
1821static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
1822			  kernel_cap_t *inheritable, kernel_cap_t *permitted)
1823{
1824	int error;
 
1825
1826	error = current_has_perm(target, PROCESS__GETCAP);
1827	if (error)
1828		return error;
 
 
 
 
 
 
 
 
 
 
 
1829
1830	return cap_capget(target, effective, inheritable, permitted);
 
 
 
 
 
1831}
1832
1833static int selinux_capset(struct cred *new, const struct cred *old,
1834			  const kernel_cap_t *effective,
1835			  const kernel_cap_t *inheritable,
1836			  const kernel_cap_t *permitted)
1837{
1838	int error;
1839
1840	error = cap_capset(new, old,
1841				      effective, inheritable, permitted);
1842	if (error)
1843		return error;
1844
1845	return cred_has_perm(old, new, PROCESS__SETCAP);
1846}
1847
1848/*
1849 * (This comment used to live with the selinux_task_setuid hook,
1850 * which was removed).
1851 *
1852 * Since setuid only affects the current process, and since the SELinux
1853 * controls are not based on the Linux identity attributes, SELinux does not
1854 * need to control this operation.  However, SELinux does control the use of
1855 * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
1856 */
1857
1858static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
1859			   int cap, int audit)
1860{
1861	int rc;
1862
1863	rc = cap_capable(cred, ns, cap, audit);
1864	if (rc)
1865		return rc;
1866
1867	return cred_has_capability(cred, cap, audit);
1868}
1869
1870static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
1871{
1872	const struct cred *cred = current_cred();
1873	int rc = 0;
1874
1875	if (!sb)
1876		return 0;
1877
1878	switch (cmds) {
1879	case Q_SYNC:
1880	case Q_QUOTAON:
1881	case Q_QUOTAOFF:
1882	case Q_SETINFO:
1883	case Q_SETQUOTA:
1884		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
1885		break;
1886	case Q_GETFMT:
1887	case Q_GETINFO:
1888	case Q_GETQUOTA:
1889		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
1890		break;
1891	default:
1892		rc = 0;  /* let the kernel handle invalid cmds */
1893		break;
1894	}
1895	return rc;
1896}
1897
1898static int selinux_quota_on(struct dentry *dentry)
1899{
1900	const struct cred *cred = current_cred();
1901
1902	return dentry_has_perm(cred, dentry, FILE__QUOTAON);
1903}
1904
1905static int selinux_syslog(int type)
1906{
1907	int rc;
1908
1909	switch (type) {
1910	case SYSLOG_ACTION_READ_ALL:	/* Read last kernel messages */
1911	case SYSLOG_ACTION_SIZE_BUFFER:	/* Return size of the log buffer */
1912		rc = task_has_system(current, SYSTEM__SYSLOG_READ);
1913		break;
 
1914	case SYSLOG_ACTION_CONSOLE_OFF:	/* Disable logging to console */
1915	case SYSLOG_ACTION_CONSOLE_ON:	/* Enable logging to console */
1916	/* Set level of messages printed to console */
1917	case SYSLOG_ACTION_CONSOLE_LEVEL:
1918		rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
1919		break;
1920	case SYSLOG_ACTION_CLOSE:	/* Close log */
1921	case SYSLOG_ACTION_OPEN:	/* Open log */
1922	case SYSLOG_ACTION_READ:	/* Read from log */
1923	case SYSLOG_ACTION_READ_CLEAR:	/* Read/clear last kernel messages */
1924	case SYSLOG_ACTION_CLEAR:	/* Clear ring buffer */
1925	default:
1926		rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
1927		break;
1928	}
1929	return rc;
1930}
1931
1932/*
1933 * Check that a process has enough memory to allocate a new virtual
1934 * mapping. 0 means there is enough memory for the allocation to
1935 * succeed and -ENOMEM implies there is not.
1936 *
1937 * Do not audit the selinux permission check, as this is applied to all
1938 * processes that allocate mappings.
1939 */
1940static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
1941{
1942	int rc, cap_sys_admin = 0;
1943
1944	rc = selinux_capable(current_cred(), &init_user_ns, CAP_SYS_ADMIN,
1945			     SECURITY_CAP_NOAUDIT);
1946	if (rc == 0)
1947		cap_sys_admin = 1;
1948
1949	return __vm_enough_memory(mm, pages, cap_sys_admin);
1950}
1951
1952/* binprm security operations */
1953
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1954static int selinux_bprm_set_creds(struct linux_binprm *bprm)
1955{
1956	const struct task_security_struct *old_tsec;
1957	struct task_security_struct *new_tsec;
1958	struct inode_security_struct *isec;
1959	struct common_audit_data ad;
1960	struct inode *inode = bprm->file->f_path.dentry->d_inode;
1961	int rc;
1962
1963	rc = cap_bprm_set_creds(bprm);
1964	if (rc)
1965		return rc;
1966
1967	/* SELinux context only depends on initial program or script and not
1968	 * the script interpreter */
1969	if (bprm->cred_prepared)
1970		return 0;
1971
1972	old_tsec = current_security();
1973	new_tsec = bprm->cred->security;
1974	isec = inode->i_security;
1975
1976	/* Default to the current task SID. */
1977	new_tsec->sid = old_tsec->sid;
1978	new_tsec->osid = old_tsec->sid;
1979
1980	/* Reset fs, key, and sock SIDs on execve. */
1981	new_tsec->create_sid = 0;
1982	new_tsec->keycreate_sid = 0;
1983	new_tsec->sockcreate_sid = 0;
1984
1985	if (old_tsec->exec_sid) {
1986		new_tsec->sid = old_tsec->exec_sid;
1987		/* Reset exec SID on execve. */
1988		new_tsec->exec_sid = 0;
1989
1990		/*
1991		 * Minimize confusion: if no_new_privs and a transition is
1992		 * explicitly requested, then fail the exec.
1993		 */
1994		if (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS)
1995			return -EPERM;
1996	} else {
1997		/* Check for a default transition on this program. */
1998		rc = security_transition_sid(old_tsec->sid, isec->sid,
1999					     SECCLASS_PROCESS, NULL,
2000					     &new_tsec->sid);
2001		if (rc)
2002			return rc;
2003	}
2004
2005	ad.type = LSM_AUDIT_DATA_PATH;
2006	ad.u.path = bprm->file->f_path;
 
 
 
 
 
 
2007
2008	if ((bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID) ||
2009	    (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS))
2010		new_tsec->sid = old_tsec->sid;
2011
2012	if (new_tsec->sid == old_tsec->sid) {
2013		rc = avc_has_perm(old_tsec->sid, isec->sid,
 
2014				  SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2015		if (rc)
2016			return rc;
2017	} else {
2018		/* Check permissions for the transition. */
2019		rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
 
2020				  SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2021		if (rc)
2022			return rc;
2023
2024		rc = avc_has_perm(new_tsec->sid, isec->sid,
 
2025				  SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2026		if (rc)
2027			return rc;
2028
2029		/* Check for shared state */
2030		if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2031			rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
 
2032					  SECCLASS_PROCESS, PROCESS__SHARE,
2033					  NULL);
2034			if (rc)
2035				return -EPERM;
2036		}
2037
2038		/* Make sure that anyone attempting to ptrace over a task that
2039		 * changes its SID has the appropriate permit */
2040		if (bprm->unsafe &
2041		    (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
2042			struct task_struct *tracer;
2043			struct task_security_struct *sec;
2044			u32 ptsid = 0;
2045
2046			rcu_read_lock();
2047			tracer = ptrace_parent(current);
2048			if (likely(tracer != NULL)) {
2049				sec = __task_cred(tracer)->security;
2050				ptsid = sec->sid;
2051			}
2052			rcu_read_unlock();
2053
2054			if (ptsid != 0) {
2055				rc = avc_has_perm(ptsid, new_tsec->sid,
 
2056						  SECCLASS_PROCESS,
2057						  PROCESS__PTRACE, NULL);
2058				if (rc)
2059					return -EPERM;
2060			}
2061		}
2062
2063		/* Clear any possibly unsafe personality bits on exec: */
2064		bprm->per_clear |= PER_CLEAR_ON_SETID;
2065	}
2066
2067	return 0;
2068}
2069
2070static int selinux_bprm_secureexec(struct linux_binprm *bprm)
2071{
2072	const struct task_security_struct *tsec = current_security();
2073	u32 sid, osid;
2074	int atsecure = 0;
2075
2076	sid = tsec->sid;
2077	osid = tsec->osid;
2078
2079	if (osid != sid) {
2080		/* Enable secure mode for SIDs transitions unless
2081		   the noatsecure permission is granted between
2082		   the two SIDs, i.e. ahp returns 0. */
2083		atsecure = avc_has_perm(osid, sid,
2084					SECCLASS_PROCESS,
2085					PROCESS__NOATSECURE, NULL);
 
 
2086	}
2087
2088	return (atsecure || cap_bprm_secureexec(bprm));
 
 
 
 
 
2089}
2090
2091/* Derived from fs/exec.c:flush_old_files. */
2092static inline void flush_unauthorized_files(const struct cred *cred,
2093					    struct files_struct *files)
2094{
2095	struct file *file, *devnull = NULL;
2096	struct tty_struct *tty;
2097	struct fdtable *fdt;
2098	long j = -1;
2099	int drop_tty = 0;
 
2100
2101	tty = get_current_tty();
2102	if (tty) {
2103		spin_lock(&tty_files_lock);
2104		if (!list_empty(&tty->tty_files)) {
2105			struct tty_file_private *file_priv;
2106
2107			/* Revalidate access to controlling tty.
2108			   Use path_has_perm on the tty path directly rather
2109			   than using file_has_perm, as this particular open
2110			   file may belong to another process and we are only
2111			   interested in the inode-based check here. */
2112			file_priv = list_first_entry(&tty->tty_files,
2113						struct tty_file_private, list);
2114			file = file_priv->file;
2115			if (path_has_perm(cred, &file->f_path, FILE__READ | FILE__WRITE))
2116				drop_tty = 1;
2117		}
2118		spin_unlock(&tty_files_lock);
2119		tty_kref_put(tty);
2120	}
2121	/* Reset controlling tty. */
2122	if (drop_tty)
2123		no_tty();
2124
2125	/* Revalidate access to inherited open files. */
2126	spin_lock(&files->file_lock);
2127	for (;;) {
2128		unsigned long set, i;
2129		int fd;
2130
2131		j++;
2132		i = j * BITS_PER_LONG;
2133		fdt = files_fdtable(files);
2134		if (i >= fdt->max_fds)
2135			break;
2136		set = fdt->open_fds[j];
2137		if (!set)
2138			continue;
2139		spin_unlock(&files->file_lock);
2140		for ( ; set ; i++, set >>= 1) {
2141			if (set & 1) {
2142				file = fget(i);
2143				if (!file)
2144					continue;
2145				if (file_has_perm(cred,
2146						  file,
2147						  file_to_av(file))) {
2148					sys_close(i);
2149					fd = get_unused_fd();
2150					if (fd != i) {
2151						if (fd >= 0)
2152							put_unused_fd(fd);
2153						fput(file);
2154						continue;
2155					}
2156					if (devnull) {
2157						get_file(devnull);
2158					} else {
2159						devnull = dentry_open(
2160							dget(selinux_null),
2161							mntget(selinuxfs_mount),
2162							O_RDWR, cred);
2163						if (IS_ERR(devnull)) {
2164							devnull = NULL;
2165							put_unused_fd(fd);
2166							fput(file);
2167							continue;
2168						}
2169					}
2170					fd_install(fd, devnull);
2171				}
2172				fput(file);
2173			}
2174		}
2175		spin_lock(&files->file_lock);
2176
2177	}
2178	spin_unlock(&files->file_lock);
 
 
 
 
 
 
 
2179}
2180
2181/*
2182 * Prepare a process for imminent new credential changes due to exec
2183 */
2184static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2185{
2186	struct task_security_struct *new_tsec;
2187	struct rlimit *rlim, *initrlim;
2188	int rc, i;
2189
2190	new_tsec = bprm->cred->security;
2191	if (new_tsec->sid == new_tsec->osid)
2192		return;
2193
2194	/* Close files for which the new task SID is not authorized. */
2195	flush_unauthorized_files(bprm->cred, current->files);
2196
2197	/* Always clear parent death signal on SID transitions. */
2198	current->pdeath_signal = 0;
2199
2200	/* Check whether the new SID can inherit resource limits from the old
2201	 * SID.  If not, reset all soft limits to the lower of the current
2202	 * task's hard limit and the init task's soft limit.
2203	 *
2204	 * Note that the setting of hard limits (even to lower them) can be
2205	 * controlled by the setrlimit check.  The inclusion of the init task's
2206	 * soft limit into the computation is to avoid resetting soft limits
2207	 * higher than the default soft limit for cases where the default is
2208	 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2209	 */
2210	rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
 
2211			  PROCESS__RLIMITINH, NULL);
2212	if (rc) {
2213		/* protect against do_prlimit() */
2214		task_lock(current);
2215		for (i = 0; i < RLIM_NLIMITS; i++) {
2216			rlim = current->signal->rlim + i;
2217			initrlim = init_task.signal->rlim + i;
2218			rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2219		}
2220		task_unlock(current);
2221		update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
 
2222	}
2223}
2224
2225/*
2226 * Clean up the process immediately after the installation of new credentials
2227 * due to exec
2228 */
2229static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2230{
2231	const struct task_security_struct *tsec = current_security();
2232	struct itimerval itimer;
2233	u32 osid, sid;
2234	int rc, i;
2235
2236	osid = tsec->osid;
2237	sid = tsec->sid;
2238
2239	if (sid == osid)
2240		return;
2241
2242	/* Check whether the new SID can inherit signal state from the old SID.
2243	 * If not, clear itimers to avoid subsequent signal generation and
2244	 * flush and unblock signals.
2245	 *
2246	 * This must occur _after_ the task SID has been updated so that any
2247	 * kill done after the flush will be checked against the new SID.
2248	 */
2249	rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
 
2250	if (rc) {
2251		memset(&itimer, 0, sizeof itimer);
2252		for (i = 0; i < 3; i++)
2253			do_setitimer(i, &itimer, NULL);
 
 
2254		spin_lock_irq(&current->sighand->siglock);
2255		if (!(current->signal->flags & SIGNAL_GROUP_EXIT)) {
2256			__flush_signals(current);
 
2257			flush_signal_handlers(current, 1);
2258			sigemptyset(&current->blocked);
 
2259		}
2260		spin_unlock_irq(&current->sighand->siglock);
2261	}
2262
2263	/* Wake up the parent if it is waiting so that it can recheck
2264	 * wait permission to the new task SID. */
2265	read_lock(&tasklist_lock);
2266	__wake_up_parent(current, current->real_parent);
2267	read_unlock(&tasklist_lock);
2268}
2269
2270/* superblock security operations */
2271
2272static int selinux_sb_alloc_security(struct super_block *sb)
2273{
2274	return superblock_alloc_security(sb);
2275}
2276
2277static void selinux_sb_free_security(struct super_block *sb)
2278{
2279	superblock_free_security(sb);
2280}
2281
2282static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2283{
2284	if (plen > olen)
2285		return 0;
 
2286
2287	return !memcmp(prefix, option, plen);
 
 
 
 
 
 
2288}
2289
2290static inline int selinux_option(char *option, int len)
2291{
2292	return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2293		match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2294		match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2295		match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) ||
2296		match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len));
2297}
2298
2299static inline void take_option(char **to, char *from, int *first, int len)
2300{
2301	if (!*first) {
2302		**to = ',';
2303		*to += 1;
2304	} else
2305		*first = 0;
2306	memcpy(*to, from, len);
2307	*to += len;
2308}
2309
2310static inline void take_selinux_option(char **to, char *from, int *first,
2311				       int len)
2312{
2313	int current_size = 0;
2314
2315	if (!*first) {
2316		**to = '|';
2317		*to += 1;
2318	} else
2319		*first = 0;
2320
2321	while (current_size < len) {
2322		if (*from != '"') {
2323			**to = *from;
2324			*to += 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2325		}
2326		from += 1;
2327		current_size += 1;
 
2328	}
2329}
2330
2331static int selinux_sb_copy_data(char *orig, char *copy)
2332{
2333	int fnosec, fsec, rc = 0;
2334	char *in_save, *in_curr, *in_end;
2335	char *sec_curr, *nosec_save, *nosec;
2336	int open_quote = 0;
2337
2338	in_curr = orig;
2339	sec_curr = copy;
2340
2341	nosec = (char *)get_zeroed_page(GFP_KERNEL);
2342	if (!nosec) {
2343		rc = -ENOMEM;
2344		goto out;
2345	}
2346
2347	nosec_save = nosec;
2348	fnosec = fsec = 1;
2349	in_save = in_end = orig;
2350
2351	do {
2352		if (*in_end == '"')
2353			open_quote = !open_quote;
2354		if ((*in_end == ',' && open_quote == 0) ||
2355				*in_end == '\0') {
2356			int len = in_end - in_curr;
2357
2358			if (selinux_option(in_curr, len))
2359				take_selinux_option(&sec_curr, in_curr, &fsec, len);
2360			else
2361				take_option(&nosec, in_curr, &fnosec, len);
2362
2363			in_curr = in_end + 1;
2364		}
2365	} while (*in_end++);
2366
2367	strcpy(in_save, nosec_save);
2368	free_page((unsigned long)nosec_save);
2369out:
2370	return rc;
2371}
2372
2373static int selinux_sb_remount(struct super_block *sb, void *data)
2374{
2375	int rc, i, *flags;
2376	struct security_mnt_opts opts;
2377	char *secdata, **mount_options;
2378	struct superblock_security_struct *sbsec = sb->s_security;
 
 
2379
2380	if (!(sbsec->flags & SE_SBINITIALIZED))
2381		return 0;
2382
2383	if (!data)
2384		return 0;
2385
2386	if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
2387		return 0;
2388
2389	security_init_mnt_opts(&opts);
2390	secdata = alloc_secdata();
2391	if (!secdata)
2392		return -ENOMEM;
2393	rc = selinux_sb_copy_data(data, secdata);
2394	if (rc)
2395		goto out_free_secdata;
2396
2397	rc = selinux_parse_opts_str(secdata, &opts);
2398	if (rc)
2399		goto out_free_secdata;
2400
2401	mount_options = opts.mnt_opts;
2402	flags = opts.mnt_opts_flags;
2403
2404	for (i = 0; i < opts.num_mnt_opts; i++) {
2405		u32 sid;
2406		size_t len;
2407
2408		if (flags[i] == SE_SBLABELSUPP)
2409			continue;
2410		len = strlen(mount_options[i]);
2411		rc = security_context_to_sid(mount_options[i], len, &sid);
2412		if (rc) {
2413			printk(KERN_WARNING "SELinux: security_context_to_sid"
2414			       "(%s) failed for (dev %s, type %s) errno=%d\n",
2415			       mount_options[i], sb->s_id, sb->s_type->name, rc);
2416			goto out_free_opts;
2417		}
2418		rc = -EINVAL;
2419		switch (flags[i]) {
2420		case FSCONTEXT_MNT:
2421			if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid))
2422				goto out_bad_option;
2423			break;
2424		case CONTEXT_MNT:
2425			if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid))
2426				goto out_bad_option;
2427			break;
2428		case ROOTCONTEXT_MNT: {
2429			struct inode_security_struct *root_isec;
2430			root_isec = sb->s_root->d_inode->i_security;
2431
2432			if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid))
2433				goto out_bad_option;
2434			break;
2435		}
2436		case DEFCONTEXT_MNT:
2437			if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid))
2438				goto out_bad_option;
2439			break;
2440		default:
2441			goto out_free_opts;
2442		}
2443	}
 
 
 
 
 
 
 
 
2444
2445	rc = 0;
2446out_free_opts:
2447	security_free_mnt_opts(&opts);
2448out_free_secdata:
2449	free_secdata(secdata);
2450	return rc;
2451out_bad_option:
2452	printk(KERN_WARNING "SELinux: unable to change security options "
2453	       "during remount (dev %s, type=%s)\n", sb->s_id,
2454	       sb->s_type->name);
2455	goto out_free_opts;
2456}
2457
2458static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data)
2459{
2460	const struct cred *cred = current_cred();
2461	struct common_audit_data ad;
2462	int rc;
2463
2464	rc = superblock_doinit(sb, data);
2465	if (rc)
2466		return rc;
2467
2468	/* Allow all mounts performed by the kernel */
2469	if (flags & MS_KERNMOUNT)
2470		return 0;
2471
2472	ad.type = LSM_AUDIT_DATA_DENTRY;
2473	ad.u.dentry = sb->s_root;
2474	return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2475}
2476
2477static int selinux_sb_statfs(struct dentry *dentry)
2478{
2479	const struct cred *cred = current_cred();
2480	struct common_audit_data ad;
2481
2482	ad.type = LSM_AUDIT_DATA_DENTRY;
2483	ad.u.dentry = dentry->d_sb->s_root;
2484	return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2485}
2486
2487static int selinux_mount(char *dev_name,
2488			 struct path *path,
2489			 char *type,
2490			 unsigned long flags,
2491			 void *data)
2492{
2493	const struct cred *cred = current_cred();
2494
2495	if (flags & MS_REMOUNT)
2496		return superblock_has_perm(cred, path->dentry->d_sb,
2497					   FILESYSTEM__REMOUNT, NULL);
2498	else
2499		return path_has_perm(cred, path, FILE__MOUNTON);
2500}
2501
2502static int selinux_umount(struct vfsmount *mnt, int flags)
2503{
2504	const struct cred *cred = current_cred();
2505
2506	return superblock_has_perm(cred, mnt->mnt_sb,
2507				   FILESYSTEM__UNMOUNT, NULL);
2508}
2509
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2510/* inode security operations */
2511
2512static int selinux_inode_alloc_security(struct inode *inode)
2513{
2514	return inode_alloc_security(inode);
2515}
2516
2517static void selinux_inode_free_security(struct inode *inode)
2518{
2519	inode_free_security(inode);
2520}
2521
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2522static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2523				       const struct qstr *qstr, char **name,
 
2524				       void **value, size_t *len)
2525{
2526	const struct task_security_struct *tsec = current_security();
2527	struct inode_security_struct *dsec;
2528	struct superblock_security_struct *sbsec;
2529	u32 sid, newsid, clen;
2530	int rc;
2531	char *namep = NULL, *context;
2532
2533	dsec = dir->i_security;
2534	sbsec = dir->i_sb->s_security;
2535
2536	sid = tsec->sid;
2537	newsid = tsec->create_sid;
2538
2539	if ((sbsec->flags & SE_SBINITIALIZED) &&
2540	    (sbsec->behavior == SECURITY_FS_USE_MNTPOINT))
2541		newsid = sbsec->mntpoint_sid;
2542	else if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) {
2543		rc = security_transition_sid(sid, dsec->sid,
2544					     inode_mode_to_security_class(inode->i_mode),
2545					     qstr, &newsid);
2546		if (rc) {
2547			printk(KERN_WARNING "%s:  "
2548			       "security_transition_sid failed, rc=%d (dev=%s "
2549			       "ino=%ld)\n",
2550			       __func__,
2551			       -rc, inode->i_sb->s_id, inode->i_ino);
2552			return rc;
2553		}
2554	}
2555
2556	/* Possibly defer initialization to selinux_complete_init. */
2557	if (sbsec->flags & SE_SBINITIALIZED) {
2558		struct inode_security_struct *isec = inode->i_security;
2559		isec->sclass = inode_mode_to_security_class(inode->i_mode);
2560		isec->sid = newsid;
2561		isec->initialized = 1;
2562	}
2563
2564	if (!ss_initialized || !(sbsec->flags & SE_SBLABELSUPP))
2565		return -EOPNOTSUPP;
2566
2567	if (name) {
2568		namep = kstrdup(XATTR_SELINUX_SUFFIX, GFP_NOFS);
2569		if (!namep)
2570			return -ENOMEM;
2571		*name = namep;
2572	}
2573
2574	if (value && len) {
2575		rc = security_sid_to_context_force(newsid, &context, &clen);
2576		if (rc) {
2577			kfree(namep);
2578			return rc;
2579		}
2580		*value = context;
2581		*len = clen;
2582	}
2583
2584	return 0;
2585}
2586
2587static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
2588{
2589	return may_create(dir, dentry, SECCLASS_FILE);
2590}
2591
2592static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2593{
2594	return may_link(dir, old_dentry, MAY_LINK);
2595}
2596
2597static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2598{
2599	return may_link(dir, dentry, MAY_UNLINK);
2600}
2601
2602static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2603{
2604	return may_create(dir, dentry, SECCLASS_LNK_FILE);
2605}
2606
2607static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
2608{
2609	return may_create(dir, dentry, SECCLASS_DIR);
2610}
2611
2612static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2613{
2614	return may_link(dir, dentry, MAY_RMDIR);
2615}
2616
2617static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2618{
2619	return may_create(dir, dentry, inode_mode_to_security_class(mode));
2620}
2621
2622static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2623				struct inode *new_inode, struct dentry *new_dentry)
2624{
2625	return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2626}
2627
2628static int selinux_inode_readlink(struct dentry *dentry)
2629{
2630	const struct cred *cred = current_cred();
2631
2632	return dentry_has_perm(cred, dentry, FILE__READ);
2633}
2634
2635static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata)
 
2636{
2637	const struct cred *cred = current_cred();
 
 
 
2638
2639	return dentry_has_perm(cred, dentry, FILE__READ);
 
 
 
 
 
 
 
 
 
 
2640}
2641
2642static noinline int audit_inode_permission(struct inode *inode,
2643					   u32 perms, u32 audited, u32 denied,
 
2644					   unsigned flags)
2645{
2646	struct common_audit_data ad;
2647	struct inode_security_struct *isec = inode->i_security;
2648	int rc;
2649
2650	ad.type = LSM_AUDIT_DATA_INODE;
2651	ad.u.inode = inode;
2652
2653	rc = slow_avc_audit(current_sid(), isec->sid, isec->sclass, perms,
2654			    audited, denied, &ad, flags);
 
2655	if (rc)
2656		return rc;
2657	return 0;
2658}
2659
2660static int selinux_inode_permission(struct inode *inode, int mask)
2661{
2662	const struct cred *cred = current_cred();
2663	u32 perms;
2664	bool from_access;
2665	unsigned flags = mask & MAY_NOT_BLOCK;
2666	struct inode_security_struct *isec;
2667	u32 sid;
2668	struct av_decision avd;
2669	int rc, rc2;
2670	u32 audited, denied;
2671
2672	from_access = mask & MAY_ACCESS;
2673	mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
2674
2675	/* No permission to check.  Existence test. */
2676	if (!mask)
2677		return 0;
2678
2679	validate_creds(cred);
2680
2681	if (unlikely(IS_PRIVATE(inode)))
2682		return 0;
2683
2684	perms = file_mask_to_av(inode->i_mode, mask);
2685
2686	sid = cred_sid(cred);
2687	isec = inode->i_security;
2688
2689	rc = avc_has_perm_noaudit(sid, isec->sid, isec->sclass, perms, 0, &avd);
 
 
 
 
 
2690	audited = avc_audit_required(perms, &avd, rc,
2691				     from_access ? FILE__AUDIT_ACCESS : 0,
2692				     &denied);
2693	if (likely(!audited))
2694		return rc;
2695
2696	rc2 = audit_inode_permission(inode, perms, audited, denied, flags);
2697	if (rc2)
2698		return rc2;
2699	return rc;
2700}
2701
2702static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2703{
2704	const struct cred *cred = current_cred();
 
2705	unsigned int ia_valid = iattr->ia_valid;
2706	__u32 av = FILE__WRITE;
2707
2708	/* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
2709	if (ia_valid & ATTR_FORCE) {
2710		ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
2711			      ATTR_FORCE);
2712		if (!ia_valid)
2713			return 0;
2714	}
2715
2716	if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2717			ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
2718		return dentry_has_perm(cred, dentry, FILE__SETATTR);
2719
2720	if (selinux_policycap_openperm && (ia_valid & ATTR_SIZE))
 
 
 
2721		av |= FILE__OPEN;
2722
2723	return dentry_has_perm(cred, dentry, av);
2724}
2725
2726static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
2727{
2728	const struct cred *cred = current_cred();
2729	struct path path;
2730
2731	path.dentry = dentry;
2732	path.mnt = mnt;
2733
2734	return path_has_perm(cred, &path, FILE__GETATTR);
2735}
2736
2737static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name)
2738{
2739	const struct cred *cred = current_cred();
 
2740
2741	if (!strncmp(name, XATTR_SECURITY_PREFIX,
2742		     sizeof XATTR_SECURITY_PREFIX - 1)) {
2743		if (!strcmp(name, XATTR_NAME_CAPS)) {
2744			if (!capable(CAP_SETFCAP))
2745				return -EPERM;
2746		} else if (!capable(CAP_SYS_ADMIN)) {
2747			/* A different attribute in the security namespace.
2748			   Restrict to administrator. */
2749			return -EPERM;
2750		}
2751	}
2752
2753	/* Not an attribute we recognize, so just check the
2754	   ordinary setattr permission. */
2755	return dentry_has_perm(cred, dentry, FILE__SETATTR);
2756}
2757
2758static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
2759				  const void *value, size_t size, int flags)
2760{
2761	struct inode *inode = dentry->d_inode;
2762	struct inode_security_struct *isec = inode->i_security;
2763	struct superblock_security_struct *sbsec;
2764	struct common_audit_data ad;
2765	u32 newsid, sid = current_sid();
2766	int rc = 0;
2767
2768	if (strcmp(name, XATTR_NAME_SELINUX))
2769		return selinux_inode_setotherxattr(dentry, name);
 
 
 
 
 
 
 
2770
2771	sbsec = inode->i_sb->s_security;
2772	if (!(sbsec->flags & SE_SBLABELSUPP))
2773		return -EOPNOTSUPP;
2774
2775	if (!inode_owner_or_capable(inode))
2776		return -EPERM;
2777
2778	ad.type = LSM_AUDIT_DATA_DENTRY;
2779	ad.u.dentry = dentry;
2780
2781	rc = avc_has_perm(sid, isec->sid, isec->sclass,
 
 
2782			  FILE__RELABELFROM, &ad);
2783	if (rc)
2784		return rc;
2785
2786	rc = security_context_to_sid(value, size, &newsid);
 
2787	if (rc == -EINVAL) {
2788		if (!capable(CAP_MAC_ADMIN)) {
2789			struct audit_buffer *ab;
2790			size_t audit_size;
2791			const char *str;
2792
2793			/* We strip a nul only if it is at the end, otherwise the
2794			 * context contains a nul and we should audit that */
2795			if (value) {
2796				str = value;
 
2797				if (str[size - 1] == '\0')
2798					audit_size = size - 1;
2799				else
2800					audit_size = size;
2801			} else {
2802				str = "";
2803				audit_size = 0;
2804			}
2805			ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
 
2806			audit_log_format(ab, "op=setxattr invalid_context=");
2807			audit_log_n_untrustedstring(ab, value, audit_size);
2808			audit_log_end(ab);
2809
2810			return rc;
2811		}
2812		rc = security_context_to_sid_force(value, size, &newsid);
 
2813	}
2814	if (rc)
2815		return rc;
2816
2817	rc = avc_has_perm(sid, newsid, isec->sclass,
 
2818			  FILE__RELABELTO, &ad);
2819	if (rc)
2820		return rc;
2821
2822	rc = security_validate_transition(isec->sid, newsid, sid,
2823					  isec->sclass);
2824	if (rc)
2825		return rc;
2826
2827	return avc_has_perm(newsid,
 
2828			    sbsec->sid,
2829			    SECCLASS_FILESYSTEM,
2830			    FILESYSTEM__ASSOCIATE,
2831			    &ad);
2832}
2833
2834static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
2835					const void *value, size_t size,
2836					int flags)
2837{
2838	struct inode *inode = dentry->d_inode;
2839	struct inode_security_struct *isec = inode->i_security;
2840	u32 newsid;
2841	int rc;
2842
2843	if (strcmp(name, XATTR_NAME_SELINUX)) {
2844		/* Not an attribute we recognize, so nothing to do. */
2845		return;
2846	}
2847
2848	rc = security_context_to_sid_force(value, size, &newsid);
 
2849	if (rc) {
2850		printk(KERN_ERR "SELinux:  unable to map context to SID"
2851		       "for (%s, %lu), rc=%d\n",
2852		       inode->i_sb->s_id, inode->i_ino, -rc);
2853		return;
2854	}
2855
 
 
 
2856	isec->sid = newsid;
 
 
 
2857	return;
2858}
2859
2860static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
2861{
2862	const struct cred *cred = current_cred();
2863
2864	return dentry_has_perm(cred, dentry, FILE__GETATTR);
2865}
2866
2867static int selinux_inode_listxattr(struct dentry *dentry)
2868{
2869	const struct cred *cred = current_cred();
2870
2871	return dentry_has_perm(cred, dentry, FILE__GETATTR);
2872}
2873
2874static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
2875{
2876	if (strcmp(name, XATTR_NAME_SELINUX))
2877		return selinux_inode_setotherxattr(dentry, name);
 
 
 
 
 
 
 
2878
2879	/* No one is allowed to remove a SELinux security label.
2880	   You can change the label, but all data must be labeled. */
2881	return -EACCES;
2882}
2883
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2884/*
2885 * Copy the inode security context value to the user.
2886 *
2887 * Permission check is handled by selinux_inode_getxattr hook.
2888 */
2889static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
2890{
2891	u32 size;
2892	int error;
2893	char *context = NULL;
2894	struct inode_security_struct *isec = inode->i_security;
2895
2896	if (strcmp(name, XATTR_SELINUX_SUFFIX))
2897		return -EOPNOTSUPP;
2898
2899	/*
2900	 * If the caller has CAP_MAC_ADMIN, then get the raw context
2901	 * value even if it is not defined by current policy; otherwise,
2902	 * use the in-core value under current policy.
2903	 * Use the non-auditing forms of the permission checks since
2904	 * getxattr may be called by unprivileged processes commonly
2905	 * and lack of permission just means that we fall back to the
2906	 * in-core context value, not a denial.
2907	 */
2908	error = selinux_capable(current_cred(), &init_user_ns, CAP_MAC_ADMIN,
2909				SECURITY_CAP_NOAUDIT);
2910	if (!error)
2911		error = security_sid_to_context_force(isec->sid, &context,
2912						      &size);
2913	else
2914		error = security_sid_to_context(isec->sid, &context, &size);
 
2915	if (error)
2916		return error;
2917	error = size;
2918	if (alloc) {
2919		*buffer = context;
2920		goto out_nofree;
2921	}
2922	kfree(context);
2923out_nofree:
2924	return error;
2925}
2926
2927static int selinux_inode_setsecurity(struct inode *inode, const char *name,
2928				     const void *value, size_t size, int flags)
2929{
2930	struct inode_security_struct *isec = inode->i_security;
 
2931	u32 newsid;
2932	int rc;
2933
2934	if (strcmp(name, XATTR_SELINUX_SUFFIX))
2935		return -EOPNOTSUPP;
2936
 
 
 
2937	if (!value || !size)
2938		return -EACCES;
2939
2940	rc = security_context_to_sid((void *)value, size, &newsid);
 
2941	if (rc)
2942		return rc;
2943
 
 
2944	isec->sid = newsid;
2945	isec->initialized = 1;
 
2946	return 0;
2947}
2948
2949static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
2950{
2951	const int len = sizeof(XATTR_NAME_SELINUX);
2952	if (buffer && len <= buffer_size)
2953		memcpy(buffer, XATTR_NAME_SELINUX, len);
2954	return len;
2955}
2956
2957static void selinux_inode_getsecid(const struct inode *inode, u32 *secid)
2958{
2959	struct inode_security_struct *isec = inode->i_security;
2960	*secid = isec->sid;
2961}
2962
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2963/* file security operations */
2964
2965static int selinux_revalidate_file_permission(struct file *file, int mask)
2966{
2967	const struct cred *cred = current_cred();
2968	struct inode *inode = file->f_path.dentry->d_inode;
2969
2970	/* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
2971	if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
2972		mask |= MAY_APPEND;
2973
2974	return file_has_perm(cred, file,
2975			     file_mask_to_av(inode->i_mode, mask));
2976}
2977
2978static int selinux_file_permission(struct file *file, int mask)
2979{
2980	struct inode *inode = file->f_path.dentry->d_inode;
2981	struct file_security_struct *fsec = file->f_security;
2982	struct inode_security_struct *isec = inode->i_security;
2983	u32 sid = current_sid();
2984
2985	if (!mask)
2986		/* No permission to check.  Existence test. */
2987		return 0;
2988
 
2989	if (sid == fsec->sid && fsec->isid == isec->sid &&
2990	    fsec->pseqno == avc_policy_seqno())
2991		/* No change since file_open check. */
2992		return 0;
2993
2994	return selinux_revalidate_file_permission(file, mask);
2995}
2996
2997static int selinux_file_alloc_security(struct file *file)
2998{
2999	return file_alloc_security(file);
3000}
3001
3002static void selinux_file_free_security(struct file *file)
 
 
 
 
 
3003{
3004	file_free_security(file);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3005}
3006
3007static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3008			      unsigned long arg)
3009{
3010	const struct cred *cred = current_cred();
3011	int error = 0;
3012
3013	switch (cmd) {
3014	case FIONREAD:
3015	/* fall through */
3016	case FIBMAP:
3017	/* fall through */
3018	case FIGETBSZ:
3019	/* fall through */
3020	case FS_IOC_GETFLAGS:
3021	/* fall through */
3022	case FS_IOC_GETVERSION:
3023		error = file_has_perm(cred, file, FILE__GETATTR);
3024		break;
3025
3026	case FS_IOC_SETFLAGS:
3027	/* fall through */
3028	case FS_IOC_SETVERSION:
3029		error = file_has_perm(cred, file, FILE__SETATTR);
3030		break;
3031
3032	/* sys_ioctl() checks */
3033	case FIONBIO:
3034	/* fall through */
3035	case FIOASYNC:
3036		error = file_has_perm(cred, file, 0);
3037		break;
3038
3039	case KDSKBENT:
3040	case KDSKBSENT:
3041		error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3042					    SECURITY_CAP_AUDIT);
3043		break;
3044
3045	/* default case assumes that the command will go
3046	 * to the file's ioctl() function.
3047	 */
3048	default:
3049		error = file_has_perm(cred, file, FILE__IOCTL);
3050	}
3051	return error;
3052}
3053
3054static int default_noexec;
3055
3056static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3057{
3058	const struct cred *cred = current_cred();
 
3059	int rc = 0;
3060
3061	if (default_noexec &&
3062	    (prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) {
 
3063		/*
3064		 * We are making executable an anonymous mapping or a
3065		 * private file mapping that will also be writable.
3066		 * This has an additional check.
3067		 */
3068		rc = cred_has_perm(cred, cred, PROCESS__EXECMEM);
 
 
3069		if (rc)
3070			goto error;
3071	}
3072
3073	if (file) {
3074		/* read access is always possible with a mapping */
3075		u32 av = FILE__READ;
3076
3077		/* write access only matters if the mapping is shared */
3078		if (shared && (prot & PROT_WRITE))
3079			av |= FILE__WRITE;
3080
3081		if (prot & PROT_EXEC)
3082			av |= FILE__EXECUTE;
3083
3084		return file_has_perm(cred, file, av);
3085	}
3086
3087error:
3088	return rc;
3089}
3090
3091static int selinux_mmap_addr(unsigned long addr)
3092{
3093	int rc = 0;
3094	u32 sid = current_sid();
3095
3096	/*
3097	 * notice that we are intentionally putting the SELinux check before
3098	 * the secondary cap_file_mmap check.  This is such a likely attempt
3099	 * at bad behaviour/exploit that we always want to get the AVC, even
3100	 * if DAC would have also denied the operation.
3101	 */
3102	if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3103		rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
 
 
3104				  MEMPROTECT__MMAP_ZERO, NULL);
3105		if (rc)
3106			return rc;
3107	}
3108
3109	/* do DAC check on address space usage */
3110	return cap_mmap_addr(addr);
3111}
3112
3113static int selinux_mmap_file(struct file *file, unsigned long reqprot,
3114			     unsigned long prot, unsigned long flags)
3115{
3116	if (selinux_checkreqprot)
 
 
 
 
 
 
 
 
 
 
 
 
3117		prot = reqprot;
3118
3119	return file_map_prot_check(file, prot,
3120				   (flags & MAP_TYPE) == MAP_SHARED);
3121}
3122
3123static int selinux_file_mprotect(struct vm_area_struct *vma,
3124				 unsigned long reqprot,
3125				 unsigned long prot)
3126{
3127	const struct cred *cred = current_cred();
 
3128
3129	if (selinux_checkreqprot)
3130		prot = reqprot;
3131
3132	if (default_noexec &&
3133	    (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3134		int rc = 0;
3135		if (vma->vm_start >= vma->vm_mm->start_brk &&
3136		    vma->vm_end <= vma->vm_mm->brk) {
3137			rc = cred_has_perm(cred, cred, PROCESS__EXECHEAP);
 
 
3138		} else if (!vma->vm_file &&
3139			   vma->vm_start <= vma->vm_mm->start_stack &&
3140			   vma->vm_end >= vma->vm_mm->start_stack) {
3141			rc = current_has_perm(current, PROCESS__EXECSTACK);
 
 
 
3142		} else if (vma->vm_file && vma->anon_vma) {
3143			/*
3144			 * We are making executable a file mapping that has
3145			 * had some COW done. Since pages might have been
3146			 * written, check ability to execute the possibly
3147			 * modified content.  This typically should only
3148			 * occur for text relocations.
3149			 */
3150			rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3151		}
3152		if (rc)
3153			return rc;
3154	}
3155
3156	return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3157}
3158
3159static int selinux_file_lock(struct file *file, unsigned int cmd)
3160{
3161	const struct cred *cred = current_cred();
3162
3163	return file_has_perm(cred, file, FILE__LOCK);
3164}
3165
3166static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3167			      unsigned long arg)
3168{
3169	const struct cred *cred = current_cred();
3170	int err = 0;
3171
3172	switch (cmd) {
3173	case F_SETFL:
3174		if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3175			err = -EINVAL;
3176			break;
3177		}
3178
3179		if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3180			err = file_has_perm(cred, file, FILE__WRITE);
3181			break;
3182		}
3183		/* fall through */
3184	case F_SETOWN:
3185	case F_SETSIG:
3186	case F_GETFL:
3187	case F_GETOWN:
3188	case F_GETSIG:
 
3189		/* Just check FD__USE permission */
3190		err = file_has_perm(cred, file, 0);
3191		break;
3192	case F_GETLK:
3193	case F_SETLK:
3194	case F_SETLKW:
 
 
 
3195#if BITS_PER_LONG == 32
3196	case F_GETLK64:
3197	case F_SETLK64:
3198	case F_SETLKW64:
3199#endif
3200		if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3201			err = -EINVAL;
3202			break;
3203		}
3204		err = file_has_perm(cred, file, FILE__LOCK);
3205		break;
3206	}
3207
3208	return err;
3209}
3210
3211static int selinux_file_set_fowner(struct file *file)
3212{
3213	struct file_security_struct *fsec;
3214
3215	fsec = file->f_security;
3216	fsec->fown_sid = current_sid();
3217
3218	return 0;
3219}
3220
3221static int selinux_file_send_sigiotask(struct task_struct *tsk,
3222				       struct fown_struct *fown, int signum)
3223{
3224	struct file *file;
3225	u32 sid = task_sid(tsk);
3226	u32 perm;
3227	struct file_security_struct *fsec;
3228
3229	/* struct fown_struct is never outside the context of a struct file */
3230	file = container_of(fown, struct file, f_owner);
3231
3232	fsec = file->f_security;
3233
3234	if (!signum)
3235		perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3236	else
3237		perm = signal_to_av(signum);
3238
3239	return avc_has_perm(fsec->fown_sid, sid,
 
3240			    SECCLASS_PROCESS, perm, NULL);
3241}
3242
3243static int selinux_file_receive(struct file *file)
3244{
3245	const struct cred *cred = current_cred();
3246
3247	return file_has_perm(cred, file, file_to_av(file));
3248}
3249
3250static int selinux_file_open(struct file *file, const struct cred *cred)
3251{
3252	struct file_security_struct *fsec;
3253	struct inode_security_struct *isec;
3254
3255	fsec = file->f_security;
3256	isec = file->f_path.dentry->d_inode->i_security;
3257	/*
3258	 * Save inode label and policy sequence number
3259	 * at open-time so that selinux_file_permission
3260	 * can determine whether revalidation is necessary.
3261	 * Task label is already saved in the file security
3262	 * struct as its SID.
3263	 */
3264	fsec->isid = isec->sid;
3265	fsec->pseqno = avc_policy_seqno();
3266	/*
3267	 * Since the inode label or policy seqno may have changed
3268	 * between the selinux_inode_permission check and the saving
3269	 * of state above, recheck that access is still permitted.
3270	 * Otherwise, access might never be revalidated against the
3271	 * new inode label or new policy.
3272	 * This check is not redundant - do not remove.
3273	 */
3274	return path_has_perm(cred, &file->f_path, open_file_to_av(file));
3275}
3276
3277/* task security operations */
3278
3279static int selinux_task_create(unsigned long clone_flags)
3280{
3281	return current_has_perm(current, PROCESS__FORK);
3282}
3283
3284/*
3285 * allocate the SELinux part of blank credentials
3286 */
3287static int selinux_cred_alloc_blank(struct cred *cred, gfp_t gfp)
3288{
3289	struct task_security_struct *tsec;
3290
3291	tsec = kzalloc(sizeof(struct task_security_struct), gfp);
3292	if (!tsec)
3293		return -ENOMEM;
3294
3295	cred->security = tsec;
3296	return 0;
3297}
3298
3299/*
3300 * detach and free the LSM part of a set of credentials
3301 */
3302static void selinux_cred_free(struct cred *cred)
3303{
3304	struct task_security_struct *tsec = cred->security;
3305
3306	/*
3307	 * cred->security == NULL if security_cred_alloc_blank() or
3308	 * security_prepare_creds() returned an error.
3309	 */
3310	BUG_ON(cred->security && (unsigned long) cred->security < PAGE_SIZE);
3311	cred->security = (void *) 0x7UL;
3312	kfree(tsec);
3313}
3314
3315/*
3316 * prepare a new set of credentials for modification
3317 */
3318static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3319				gfp_t gfp)
3320{
3321	const struct task_security_struct *old_tsec;
3322	struct task_security_struct *tsec;
3323
3324	old_tsec = old->security;
3325
3326	tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp);
3327	if (!tsec)
3328		return -ENOMEM;
3329
3330	new->security = tsec;
3331	return 0;
3332}
3333
3334/*
3335 * transfer the SELinux data to a blank set of creds
3336 */
3337static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3338{
3339	const struct task_security_struct *old_tsec = old->security;
3340	struct task_security_struct *tsec = new->security;
3341
3342	*tsec = *old_tsec;
3343}
3344
 
 
 
 
 
3345/*
3346 * set the security data for a kernel service
3347 * - all the creation contexts are set to unlabelled
3348 */
3349static int selinux_kernel_act_as(struct cred *new, u32 secid)
3350{
3351	struct task_security_struct *tsec = new->security;
3352	u32 sid = current_sid();
3353	int ret;
3354
3355	ret = avc_has_perm(sid, secid,
 
3356			   SECCLASS_KERNEL_SERVICE,
3357			   KERNEL_SERVICE__USE_AS_OVERRIDE,
3358			   NULL);
3359	if (ret == 0) {
3360		tsec->sid = secid;
3361		tsec->create_sid = 0;
3362		tsec->keycreate_sid = 0;
3363		tsec->sockcreate_sid = 0;
3364	}
3365	return ret;
3366}
3367
3368/*
3369 * set the file creation context in a security record to the same as the
3370 * objective context of the specified inode
3371 */
3372static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3373{
3374	struct inode_security_struct *isec = inode->i_security;
3375	struct task_security_struct *tsec = new->security;
3376	u32 sid = current_sid();
3377	int ret;
3378
3379	ret = avc_has_perm(sid, isec->sid,
 
3380			   SECCLASS_KERNEL_SERVICE,
3381			   KERNEL_SERVICE__CREATE_FILES_AS,
3382			   NULL);
3383
3384	if (ret == 0)
3385		tsec->create_sid = isec->sid;
3386	return ret;
3387}
3388
3389static int selinux_kernel_module_request(char *kmod_name)
3390{
3391	u32 sid;
3392	struct common_audit_data ad;
3393
3394	sid = task_sid(current);
3395
3396	ad.type = LSM_AUDIT_DATA_KMOD;
3397	ad.u.kmod_name = kmod_name;
3398
3399	return avc_has_perm(sid, SECINITSID_KERNEL, SECCLASS_SYSTEM,
 
3400			    SYSTEM__MODULE_REQUEST, &ad);
3401}
3402
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3403static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
3404{
3405	return current_has_perm(p, PROCESS__SETPGID);
 
 
3406}
3407
3408static int selinux_task_getpgid(struct task_struct *p)
3409{
3410	return current_has_perm(p, PROCESS__GETPGID);
 
 
3411}
3412
3413static int selinux_task_getsid(struct task_struct *p)
3414{
3415	return current_has_perm(p, PROCESS__GETSESSION);
 
 
3416}
3417
3418static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
3419{
3420	*secid = task_sid(p);
3421}
3422
3423static int selinux_task_setnice(struct task_struct *p, int nice)
3424{
3425	int rc;
3426
3427	rc = cap_task_setnice(p, nice);
3428	if (rc)
3429		return rc;
3430
3431	return current_has_perm(p, PROCESS__SETSCHED);
3432}
3433
3434static int selinux_task_setioprio(struct task_struct *p, int ioprio)
3435{
3436	int rc;
3437
3438	rc = cap_task_setioprio(p, ioprio);
3439	if (rc)
3440		return rc;
3441
3442	return current_has_perm(p, PROCESS__SETSCHED);
3443}
3444
3445static int selinux_task_getioprio(struct task_struct *p)
3446{
3447	return current_has_perm(p, PROCESS__GETSCHED);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3448}
3449
3450static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
3451		struct rlimit *new_rlim)
3452{
3453	struct rlimit *old_rlim = p->signal->rlim + resource;
3454
3455	/* Control the ability to change the hard limit (whether
3456	   lowering or raising it), so that the hard limit can
3457	   later be used as a safe reset point for the soft limit
3458	   upon context transitions.  See selinux_bprm_committing_creds. */
3459	if (old_rlim->rlim_max != new_rlim->rlim_max)
3460		return current_has_perm(p, PROCESS__SETRLIMIT);
 
 
3461
3462	return 0;
3463}
3464
3465static int selinux_task_setscheduler(struct task_struct *p)
3466{
3467	int rc;
3468
3469	rc = cap_task_setscheduler(p);
3470	if (rc)
3471		return rc;
3472
3473	return current_has_perm(p, PROCESS__SETSCHED);
3474}
3475
3476static int selinux_task_getscheduler(struct task_struct *p)
3477{
3478	return current_has_perm(p, PROCESS__GETSCHED);
 
 
3479}
3480
3481static int selinux_task_movememory(struct task_struct *p)
3482{
3483	return current_has_perm(p, PROCESS__SETSCHED);
 
 
3484}
3485
3486static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
3487				int sig, u32 secid)
3488{
 
3489	u32 perm;
3490	int rc;
3491
3492	if (!sig)
3493		perm = PROCESS__SIGNULL; /* null signal; existence test */
3494	else
3495		perm = signal_to_av(sig);
3496	if (secid)
3497		rc = avc_has_perm(secid, task_sid(p),
3498				  SECCLASS_PROCESS, perm, NULL);
3499	else
3500		rc = current_has_perm(p, perm);
3501	return rc;
3502}
3503
3504static int selinux_task_wait(struct task_struct *p)
3505{
3506	return task_has_perm(p, current, PROCESS__SIGCHLD);
3507}
3508
3509static void selinux_task_to_inode(struct task_struct *p,
3510				  struct inode *inode)
3511{
3512	struct inode_security_struct *isec = inode->i_security;
3513	u32 sid = task_sid(p);
3514
 
 
3515	isec->sid = sid;
3516	isec->initialized = 1;
 
3517}
3518
3519/* Returns error only if unable to parse addresses */
3520static int selinux_parse_skb_ipv4(struct sk_buff *skb,
3521			struct common_audit_data *ad, u8 *proto)
3522{
3523	int offset, ihlen, ret = -EINVAL;
3524	struct iphdr _iph, *ih;
3525
3526	offset = skb_network_offset(skb);
3527	ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
3528	if (ih == NULL)
3529		goto out;
3530
3531	ihlen = ih->ihl * 4;
3532	if (ihlen < sizeof(_iph))
3533		goto out;
3534
3535	ad->u.net->v4info.saddr = ih->saddr;
3536	ad->u.net->v4info.daddr = ih->daddr;
3537	ret = 0;
3538
3539	if (proto)
3540		*proto = ih->protocol;
3541
3542	switch (ih->protocol) {
3543	case IPPROTO_TCP: {
3544		struct tcphdr _tcph, *th;
3545
3546		if (ntohs(ih->frag_off) & IP_OFFSET)
3547			break;
3548
3549		offset += ihlen;
3550		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3551		if (th == NULL)
3552			break;
3553
3554		ad->u.net->sport = th->source;
3555		ad->u.net->dport = th->dest;
3556		break;
3557	}
3558
3559	case IPPROTO_UDP: {
3560		struct udphdr _udph, *uh;
3561
3562		if (ntohs(ih->frag_off) & IP_OFFSET)
3563			break;
3564
3565		offset += ihlen;
3566		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3567		if (uh == NULL)
3568			break;
3569
3570		ad->u.net->sport = uh->source;
3571		ad->u.net->dport = uh->dest;
3572		break;
3573	}
3574
3575	case IPPROTO_DCCP: {
3576		struct dccp_hdr _dccph, *dh;
3577
3578		if (ntohs(ih->frag_off) & IP_OFFSET)
3579			break;
3580
3581		offset += ihlen;
3582		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3583		if (dh == NULL)
3584			break;
3585
3586		ad->u.net->sport = dh->dccph_sport;
3587		ad->u.net->dport = dh->dccph_dport;
3588		break;
3589	}
3590
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3591	default:
3592		break;
3593	}
3594out:
3595	return ret;
3596}
3597
3598#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3599
3600/* Returns error only if unable to parse addresses */
3601static int selinux_parse_skb_ipv6(struct sk_buff *skb,
3602			struct common_audit_data *ad, u8 *proto)
3603{
3604	u8 nexthdr;
3605	int ret = -EINVAL, offset;
3606	struct ipv6hdr _ipv6h, *ip6;
3607	__be16 frag_off;
3608
3609	offset = skb_network_offset(skb);
3610	ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
3611	if (ip6 == NULL)
3612		goto out;
3613
3614	ad->u.net->v6info.saddr = ip6->saddr;
3615	ad->u.net->v6info.daddr = ip6->daddr;
3616	ret = 0;
3617
3618	nexthdr = ip6->nexthdr;
3619	offset += sizeof(_ipv6h);
3620	offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
3621	if (offset < 0)
3622		goto out;
3623
3624	if (proto)
3625		*proto = nexthdr;
3626
3627	switch (nexthdr) {
3628	case IPPROTO_TCP: {
3629		struct tcphdr _tcph, *th;
3630
3631		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3632		if (th == NULL)
3633			break;
3634
3635		ad->u.net->sport = th->source;
3636		ad->u.net->dport = th->dest;
3637		break;
3638	}
3639
3640	case IPPROTO_UDP: {
3641		struct udphdr _udph, *uh;
3642
3643		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3644		if (uh == NULL)
3645			break;
3646
3647		ad->u.net->sport = uh->source;
3648		ad->u.net->dport = uh->dest;
3649		break;
3650	}
3651
3652	case IPPROTO_DCCP: {
3653		struct dccp_hdr _dccph, *dh;
3654
3655		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3656		if (dh == NULL)
3657			break;
3658
3659		ad->u.net->sport = dh->dccph_sport;
3660		ad->u.net->dport = dh->dccph_dport;
3661		break;
3662	}
3663
 
 
 
 
 
 
 
 
 
 
 
 
 
3664	/* includes fragments */
3665	default:
3666		break;
3667	}
3668out:
3669	return ret;
3670}
3671
3672#endif /* IPV6 */
3673
3674static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
3675			     char **_addrp, int src, u8 *proto)
3676{
3677	char *addrp;
3678	int ret;
3679
3680	switch (ad->u.net->family) {
3681	case PF_INET:
3682		ret = selinux_parse_skb_ipv4(skb, ad, proto);
3683		if (ret)
3684			goto parse_error;
3685		addrp = (char *)(src ? &ad->u.net->v4info.saddr :
3686				       &ad->u.net->v4info.daddr);
3687		goto okay;
3688
3689#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3690	case PF_INET6:
3691		ret = selinux_parse_skb_ipv6(skb, ad, proto);
3692		if (ret)
3693			goto parse_error;
3694		addrp = (char *)(src ? &ad->u.net->v6info.saddr :
3695				       &ad->u.net->v6info.daddr);
3696		goto okay;
3697#endif	/* IPV6 */
3698	default:
3699		addrp = NULL;
3700		goto okay;
3701	}
3702
3703parse_error:
3704	printk(KERN_WARNING
3705	       "SELinux: failure in selinux_parse_skb(),"
3706	       " unable to parse packet\n");
3707	return ret;
3708
3709okay:
3710	if (_addrp)
3711		*_addrp = addrp;
3712	return 0;
3713}
3714
3715/**
3716 * selinux_skb_peerlbl_sid - Determine the peer label of a packet
3717 * @skb: the packet
3718 * @family: protocol family
3719 * @sid: the packet's peer label SID
3720 *
3721 * Description:
3722 * Check the various different forms of network peer labeling and determine
3723 * the peer label/SID for the packet; most of the magic actually occurs in
3724 * the security server function security_net_peersid_cmp().  The function
3725 * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
3726 * or -EACCES if @sid is invalid due to inconsistencies with the different
3727 * peer labels.
3728 *
3729 */
3730static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
3731{
3732	int err;
3733	u32 xfrm_sid;
3734	u32 nlbl_sid;
3735	u32 nlbl_type;
3736
3737	selinux_skb_xfrm_sid(skb, &xfrm_sid);
3738	selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
 
 
 
 
3739
3740	err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid);
 
3741	if (unlikely(err)) {
3742		printk(KERN_WARNING
3743		       "SELinux: failure in selinux_skb_peerlbl_sid(),"
3744		       " unable to determine packet's peer label\n");
3745		return -EACCES;
3746	}
3747
3748	return 0;
3749}
3750
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3751/* socket security operations */
3752
3753static int socket_sockcreate_sid(const struct task_security_struct *tsec,
3754				 u16 secclass, u32 *socksid)
3755{
3756	if (tsec->sockcreate_sid > SECSID_NULL) {
3757		*socksid = tsec->sockcreate_sid;
3758		return 0;
3759	}
3760
3761	return security_transition_sid(tsec->sid, tsec->sid, secclass, NULL,
3762				       socksid);
3763}
3764
3765static int sock_has_perm(struct task_struct *task, struct sock *sk, u32 perms)
3766{
3767	struct sk_security_struct *sksec = sk->sk_security;
3768	struct common_audit_data ad;
3769	struct lsm_network_audit net = {0,};
3770	u32 tsid = task_sid(task);
3771
3772	if (sksec->sid == SECINITSID_KERNEL)
3773		return 0;
3774
3775	ad.type = LSM_AUDIT_DATA_NET;
3776	ad.u.net = &net;
3777	ad.u.net->sk = sk;
3778
3779	return avc_has_perm(tsid, sksec->sid, sksec->sclass, perms, &ad);
 
 
3780}
3781
3782static int selinux_socket_create(int family, int type,
3783				 int protocol, int kern)
3784{
3785	const struct task_security_struct *tsec = current_security();
3786	u32 newsid;
3787	u16 secclass;
3788	int rc;
3789
3790	if (kern)
3791		return 0;
3792
3793	secclass = socket_type_to_security_class(family, type, protocol);
3794	rc = socket_sockcreate_sid(tsec, secclass, &newsid);
3795	if (rc)
3796		return rc;
3797
3798	return avc_has_perm(tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
 
3799}
3800
3801static int selinux_socket_post_create(struct socket *sock, int family,
3802				      int type, int protocol, int kern)
3803{
3804	const struct task_security_struct *tsec = current_security();
3805	struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
3806	struct sk_security_struct *sksec;
 
 
3807	int err = 0;
3808
3809	isec->sclass = socket_type_to_security_class(family, type, protocol);
3810
3811	if (kern)
3812		isec->sid = SECINITSID_KERNEL;
3813	else {
3814		err = socket_sockcreate_sid(tsec, isec->sclass, &(isec->sid));
3815		if (err)
3816			return err;
3817	}
3818
3819	isec->initialized = 1;
 
 
3820
3821	if (sock->sk) {
3822		sksec = sock->sk->sk_security;
3823		sksec->sid = isec->sid;
3824		sksec->sclass = isec->sclass;
 
 
 
 
3825		err = selinux_netlbl_socket_post_create(sock->sk, family);
3826	}
3827
3828	return err;
3829}
3830
 
 
 
 
 
 
 
 
 
 
 
 
3831/* Range of port numbers used to automatically bind.
3832   Need to determine whether we should perform a name_bind
3833   permission check between the socket and the port number. */
3834
3835static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
3836{
3837	struct sock *sk = sock->sk;
 
3838	u16 family;
3839	int err;
3840
3841	err = sock_has_perm(current, sk, SOCKET__BIND);
3842	if (err)
3843		goto out;
3844
3845	/*
3846	 * If PF_INET or PF_INET6, check name_bind permission for the port.
3847	 * Multiple address binding for SCTP is not supported yet: we just
3848	 * check the first address now.
3849	 */
3850	family = sk->sk_family;
3851	if (family == PF_INET || family == PF_INET6) {
3852		char *addrp;
3853		struct sk_security_struct *sksec = sk->sk_security;
3854		struct common_audit_data ad;
3855		struct lsm_network_audit net = {0,};
3856		struct sockaddr_in *addr4 = NULL;
3857		struct sockaddr_in6 *addr6 = NULL;
 
3858		unsigned short snum;
3859		u32 sid, node_perm;
3860
3861		if (family == PF_INET) {
 
 
 
 
 
 
 
 
 
 
 
 
 
3862			addr4 = (struct sockaddr_in *)address;
 
 
 
 
 
 
 
 
3863			snum = ntohs(addr4->sin_port);
3864			addrp = (char *)&addr4->sin_addr.s_addr;
3865		} else {
 
 
 
3866			addr6 = (struct sockaddr_in6 *)address;
3867			snum = ntohs(addr6->sin6_port);
3868			addrp = (char *)&addr6->sin6_addr.s6_addr;
 
 
 
3869		}
3870
 
 
 
 
 
3871		if (snum) {
3872			int low, high;
3873
3874			inet_get_local_port_range(&low, &high);
3875
3876			if (snum < max(PROT_SOCK, low) || snum > high) {
 
3877				err = sel_netport_sid(sk->sk_protocol,
3878						      snum, &sid);
3879				if (err)
3880					goto out;
3881				ad.type = LSM_AUDIT_DATA_NET;
3882				ad.u.net = &net;
3883				ad.u.net->sport = htons(snum);
3884				ad.u.net->family = family;
3885				err = avc_has_perm(sksec->sid, sid,
3886						   sksec->sclass,
3887						   SOCKET__NAME_BIND, &ad);
3888				if (err)
3889					goto out;
3890			}
3891		}
3892
3893		switch (sksec->sclass) {
3894		case SECCLASS_TCP_SOCKET:
3895			node_perm = TCP_SOCKET__NODE_BIND;
3896			break;
3897
3898		case SECCLASS_UDP_SOCKET:
3899			node_perm = UDP_SOCKET__NODE_BIND;
3900			break;
3901
3902		case SECCLASS_DCCP_SOCKET:
3903			node_perm = DCCP_SOCKET__NODE_BIND;
3904			break;
3905
 
 
 
 
3906		default:
3907			node_perm = RAWIP_SOCKET__NODE_BIND;
3908			break;
3909		}
3910
3911		err = sel_netnode_sid(addrp, family, &sid);
3912		if (err)
3913			goto out;
3914
3915		ad.type = LSM_AUDIT_DATA_NET;
3916		ad.u.net = &net;
3917		ad.u.net->sport = htons(snum);
3918		ad.u.net->family = family;
3919
3920		if (family == PF_INET)
3921			ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
3922		else
3923			ad.u.net->v6info.saddr = addr6->sin6_addr;
3924
3925		err = avc_has_perm(sksec->sid, sid,
 
3926				   sksec->sclass, node_perm, &ad);
3927		if (err)
3928			goto out;
3929	}
3930out:
3931	return err;
 
 
 
 
 
3932}
3933
3934static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
 
 
 
 
3935{
3936	struct sock *sk = sock->sk;
3937	struct sk_security_struct *sksec = sk->sk_security;
3938	int err;
3939
3940	err = sock_has_perm(current, sk, SOCKET__CONNECT);
3941	if (err)
3942		return err;
 
 
 
 
 
 
 
 
3943
3944	/*
3945	 * If a TCP or DCCP socket, check name_connect permission for the port.
 
3946	 */
3947	if (sksec->sclass == SECCLASS_TCP_SOCKET ||
3948	    sksec->sclass == SECCLASS_DCCP_SOCKET) {
 
3949		struct common_audit_data ad;
3950		struct lsm_network_audit net = {0,};
3951		struct sockaddr_in *addr4 = NULL;
3952		struct sockaddr_in6 *addr6 = NULL;
3953		unsigned short snum;
3954		u32 sid, perm;
3955
3956		if (sk->sk_family == PF_INET) {
 
 
 
 
 
 
3957			addr4 = (struct sockaddr_in *)address;
3958			if (addrlen < sizeof(struct sockaddr_in))
3959				return -EINVAL;
3960			snum = ntohs(addr4->sin_port);
3961		} else {
 
3962			addr6 = (struct sockaddr_in6 *)address;
3963			if (addrlen < SIN6_LEN_RFC2133)
3964				return -EINVAL;
3965			snum = ntohs(addr6->sin6_port);
 
 
 
 
 
 
 
 
 
3966		}
3967
3968		err = sel_netport_sid(sk->sk_protocol, snum, &sid);
3969		if (err)
3970			goto out;
3971
3972		perm = (sksec->sclass == SECCLASS_TCP_SOCKET) ?
3973		       TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
 
 
 
 
 
 
 
 
 
3974
3975		ad.type = LSM_AUDIT_DATA_NET;
3976		ad.u.net = &net;
3977		ad.u.net->dport = htons(snum);
3978		ad.u.net->family = sk->sk_family;
3979		err = avc_has_perm(sksec->sid, sid, sksec->sclass, perm, &ad);
 
3980		if (err)
3981			goto out;
3982	}
3983
3984	err = selinux_netlbl_socket_connect(sk, address);
 
3985
3986out:
3987	return err;
 
 
 
 
 
 
 
 
 
 
3988}
3989
3990static int selinux_socket_listen(struct socket *sock, int backlog)
3991{
3992	return sock_has_perm(current, sock->sk, SOCKET__LISTEN);
3993}
3994
3995static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
3996{
3997	int err;
3998	struct inode_security_struct *isec;
3999	struct inode_security_struct *newisec;
 
 
4000
4001	err = sock_has_perm(current, sock->sk, SOCKET__ACCEPT);
4002	if (err)
4003		return err;
4004
4005	newisec = SOCK_INODE(newsock)->i_security;
4006
4007	isec = SOCK_INODE(sock)->i_security;
4008	newisec->sclass = isec->sclass;
4009	newisec->sid = isec->sid;
4010	newisec->initialized = 1;
 
 
 
 
4011
4012	return 0;
4013}
4014
4015static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
4016				  int size)
4017{
4018	return sock_has_perm(current, sock->sk, SOCKET__WRITE);
4019}
4020
4021static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4022				  int size, int flags)
4023{
4024	return sock_has_perm(current, sock->sk, SOCKET__READ);
4025}
4026
4027static int selinux_socket_getsockname(struct socket *sock)
4028{
4029	return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
4030}
4031
4032static int selinux_socket_getpeername(struct socket *sock)
4033{
4034	return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
4035}
4036
4037static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
4038{
4039	int err;
4040
4041	err = sock_has_perm(current, sock->sk, SOCKET__SETOPT);
4042	if (err)
4043		return err;
4044
4045	return selinux_netlbl_socket_setsockopt(sock, level, optname);
4046}
4047
4048static int selinux_socket_getsockopt(struct socket *sock, int level,
4049				     int optname)
4050{
4051	return sock_has_perm(current, sock->sk, SOCKET__GETOPT);
4052}
4053
4054static int selinux_socket_shutdown(struct socket *sock, int how)
4055{
4056	return sock_has_perm(current, sock->sk, SOCKET__SHUTDOWN);
4057}
4058
4059static int selinux_socket_unix_stream_connect(struct sock *sock,
4060					      struct sock *other,
4061					      struct sock *newsk)
4062{
4063	struct sk_security_struct *sksec_sock = sock->sk_security;
4064	struct sk_security_struct *sksec_other = other->sk_security;
4065	struct sk_security_struct *sksec_new = newsk->sk_security;
4066	struct common_audit_data ad;
4067	struct lsm_network_audit net = {0,};
4068	int err;
4069
4070	ad.type = LSM_AUDIT_DATA_NET;
4071	ad.u.net = &net;
4072	ad.u.net->sk = other;
4073
4074	err = avc_has_perm(sksec_sock->sid, sksec_other->sid,
 
4075			   sksec_other->sclass,
4076			   UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4077	if (err)
4078		return err;
4079
4080	/* server child socket */
4081	sksec_new->peer_sid = sksec_sock->sid;
4082	err = security_sid_mls_copy(sksec_other->sid, sksec_sock->sid,
4083				    &sksec_new->sid);
4084	if (err)
4085		return err;
4086
4087	/* connecting socket */
4088	sksec_sock->peer_sid = sksec_new->sid;
4089
4090	return 0;
4091}
4092
4093static int selinux_socket_unix_may_send(struct socket *sock,
4094					struct socket *other)
4095{
4096	struct sk_security_struct *ssec = sock->sk->sk_security;
4097	struct sk_security_struct *osec = other->sk->sk_security;
4098	struct common_audit_data ad;
4099	struct lsm_network_audit net = {0,};
4100
4101	ad.type = LSM_AUDIT_DATA_NET;
4102	ad.u.net = &net;
4103	ad.u.net->sk = other->sk;
4104
4105	return avc_has_perm(ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
 
4106			    &ad);
4107}
4108
4109static int selinux_inet_sys_rcv_skb(int ifindex, char *addrp, u16 family,
4110				    u32 peer_sid,
4111				    struct common_audit_data *ad)
4112{
4113	int err;
4114	u32 if_sid;
4115	u32 node_sid;
4116
4117	err = sel_netif_sid(ifindex, &if_sid);
4118	if (err)
4119		return err;
4120	err = avc_has_perm(peer_sid, if_sid,
 
4121			   SECCLASS_NETIF, NETIF__INGRESS, ad);
4122	if (err)
4123		return err;
4124
4125	err = sel_netnode_sid(addrp, family, &node_sid);
4126	if (err)
4127		return err;
4128	return avc_has_perm(peer_sid, node_sid,
 
4129			    SECCLASS_NODE, NODE__RECVFROM, ad);
4130}
4131
4132static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4133				       u16 family)
4134{
4135	int err = 0;
4136	struct sk_security_struct *sksec = sk->sk_security;
4137	u32 sk_sid = sksec->sid;
4138	struct common_audit_data ad;
4139	struct lsm_network_audit net = {0,};
4140	char *addrp;
4141
4142	ad.type = LSM_AUDIT_DATA_NET;
4143	ad.u.net = &net;
4144	ad.u.net->netif = skb->skb_iif;
4145	ad.u.net->family = family;
4146	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4147	if (err)
4148		return err;
4149
4150	if (selinux_secmark_enabled()) {
4151		err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
 
4152				   PACKET__RECV, &ad);
4153		if (err)
4154			return err;
4155	}
4156
4157	err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4158	if (err)
4159		return err;
4160	err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4161
4162	return err;
4163}
4164
4165static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4166{
4167	int err;
4168	struct sk_security_struct *sksec = sk->sk_security;
4169	u16 family = sk->sk_family;
4170	u32 sk_sid = sksec->sid;
4171	struct common_audit_data ad;
4172	struct lsm_network_audit net = {0,};
4173	char *addrp;
4174	u8 secmark_active;
4175	u8 peerlbl_active;
4176
4177	if (family != PF_INET && family != PF_INET6)
4178		return 0;
4179
4180	/* Handle mapped IPv4 packets arriving via IPv6 sockets */
4181	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4182		family = PF_INET;
4183
4184	/* If any sort of compatibility mode is enabled then handoff processing
4185	 * to the selinux_sock_rcv_skb_compat() function to deal with the
4186	 * special handling.  We do this in an attempt to keep this function
4187	 * as fast and as clean as possible. */
4188	if (!selinux_policycap_netpeer)
4189		return selinux_sock_rcv_skb_compat(sk, skb, family);
4190
4191	secmark_active = selinux_secmark_enabled();
4192	peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4193	if (!secmark_active && !peerlbl_active)
4194		return 0;
4195
4196	ad.type = LSM_AUDIT_DATA_NET;
4197	ad.u.net = &net;
4198	ad.u.net->netif = skb->skb_iif;
4199	ad.u.net->family = family;
4200	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4201	if (err)
4202		return err;
4203
4204	if (peerlbl_active) {
4205		u32 peer_sid;
4206
4207		err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4208		if (err)
4209			return err;
4210		err = selinux_inet_sys_rcv_skb(skb->skb_iif, addrp, family,
4211					       peer_sid, &ad);
4212		if (err) {
4213			selinux_netlbl_err(skb, err, 0);
4214			return err;
4215		}
4216		err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
 
4217				   PEER__RECV, &ad);
4218		if (err)
4219			selinux_netlbl_err(skb, err, 0);
 
 
4220	}
4221
4222	if (secmark_active) {
4223		err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
 
4224				   PACKET__RECV, &ad);
4225		if (err)
4226			return err;
4227	}
4228
4229	return err;
4230}
4231
4232static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
4233					    int __user *optlen, unsigned len)
4234{
4235	int err = 0;
4236	char *scontext;
4237	u32 scontext_len;
4238	struct sk_security_struct *sksec = sock->sk->sk_security;
4239	u32 peer_sid = SECSID_NULL;
4240
4241	if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
4242	    sksec->sclass == SECCLASS_TCP_SOCKET)
 
4243		peer_sid = sksec->peer_sid;
4244	if (peer_sid == SECSID_NULL)
4245		return -ENOPROTOOPT;
4246
4247	err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
 
4248	if (err)
4249		return err;
4250
4251	if (scontext_len > len) {
4252		err = -ERANGE;
4253		goto out_len;
4254	}
4255
4256	if (copy_to_user(optval, scontext, scontext_len))
4257		err = -EFAULT;
4258
4259out_len:
4260	if (put_user(scontext_len, optlen))
4261		err = -EFAULT;
4262	kfree(scontext);
4263	return err;
4264}
4265
4266static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
4267{
4268	u32 peer_secid = SECSID_NULL;
4269	u16 family;
 
4270
4271	if (skb && skb->protocol == htons(ETH_P_IP))
4272		family = PF_INET;
4273	else if (skb && skb->protocol == htons(ETH_P_IPV6))
4274		family = PF_INET6;
4275	else if (sock)
4276		family = sock->sk->sk_family;
4277	else
4278		goto out;
4279
4280	if (sock && family == PF_UNIX)
4281		selinux_inode_getsecid(SOCK_INODE(sock), &peer_secid);
4282	else if (skb)
 
4283		selinux_skb_peerlbl_sid(skb, family, &peer_secid);
4284
4285out:
4286	*secid = peer_secid;
4287	if (peer_secid == SECSID_NULL)
4288		return -EINVAL;
4289	return 0;
4290}
4291
4292static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
4293{
4294	struct sk_security_struct *sksec;
4295
4296	sksec = kzalloc(sizeof(*sksec), priority);
4297	if (!sksec)
4298		return -ENOMEM;
4299
4300	sksec->peer_sid = SECINITSID_UNLABELED;
4301	sksec->sid = SECINITSID_UNLABELED;
 
4302	selinux_netlbl_sk_security_reset(sksec);
4303	sk->sk_security = sksec;
4304
4305	return 0;
4306}
4307
4308static void selinux_sk_free_security(struct sock *sk)
4309{
4310	struct sk_security_struct *sksec = sk->sk_security;
4311
4312	sk->sk_security = NULL;
4313	selinux_netlbl_sk_security_free(sksec);
4314	kfree(sksec);
4315}
4316
4317static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
4318{
4319	struct sk_security_struct *sksec = sk->sk_security;
4320	struct sk_security_struct *newsksec = newsk->sk_security;
4321
4322	newsksec->sid = sksec->sid;
4323	newsksec->peer_sid = sksec->peer_sid;
4324	newsksec->sclass = sksec->sclass;
4325
4326	selinux_netlbl_sk_security_reset(newsksec);
4327}
4328
4329static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
4330{
4331	if (!sk)
4332		*secid = SECINITSID_ANY_SOCKET;
4333	else {
4334		struct sk_security_struct *sksec = sk->sk_security;
4335
4336		*secid = sksec->sid;
4337	}
4338}
4339
4340static void selinux_sock_graft(struct sock *sk, struct socket *parent)
4341{
4342	struct inode_security_struct *isec = SOCK_INODE(parent)->i_security;
 
4343	struct sk_security_struct *sksec = sk->sk_security;
4344
4345	if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
4346	    sk->sk_family == PF_UNIX)
4347		isec->sid = sksec->sid;
4348	sksec->sclass = isec->sclass;
4349}
4350
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4351static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
4352				     struct request_sock *req)
4353{
4354	struct sk_security_struct *sksec = sk->sk_security;
4355	int err;
4356	u16 family = sk->sk_family;
4357	u32 newsid;
4358	u32 peersid;
4359
4360	/* handle mapped IPv4 packets arriving via IPv6 sockets */
4361	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4362		family = PF_INET;
4363
4364	err = selinux_skb_peerlbl_sid(skb, family, &peersid);
4365	if (err)
4366		return err;
4367	if (peersid == SECSID_NULL) {
4368		req->secid = sksec->sid;
4369		req->peer_secid = SECSID_NULL;
4370	} else {
4371		err = security_sid_mls_copy(sksec->sid, peersid, &newsid);
4372		if (err)
4373			return err;
4374		req->secid = newsid;
4375		req->peer_secid = peersid;
4376	}
4377
4378	return selinux_netlbl_inet_conn_request(req, family);
4379}
4380
4381static void selinux_inet_csk_clone(struct sock *newsk,
4382				   const struct request_sock *req)
4383{
4384	struct sk_security_struct *newsksec = newsk->sk_security;
4385
4386	newsksec->sid = req->secid;
4387	newsksec->peer_sid = req->peer_secid;
4388	/* NOTE: Ideally, we should also get the isec->sid for the
4389	   new socket in sync, but we don't have the isec available yet.
4390	   So we will wait until sock_graft to do it, by which
4391	   time it will have been created and available. */
4392
4393	/* We don't need to take any sort of lock here as we are the only
4394	 * thread with access to newsksec */
4395	selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
4396}
4397
4398static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
4399{
4400	u16 family = sk->sk_family;
4401	struct sk_security_struct *sksec = sk->sk_security;
4402
4403	/* handle mapped IPv4 packets arriving via IPv6 sockets */
4404	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4405		family = PF_INET;
4406
4407	selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
4408}
4409
4410static int selinux_secmark_relabel_packet(u32 sid)
4411{
4412	const struct task_security_struct *__tsec;
4413	u32 tsid;
4414
4415	__tsec = current_security();
4416	tsid = __tsec->sid;
4417
4418	return avc_has_perm(tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO, NULL);
 
 
4419}
4420
4421static void selinux_secmark_refcount_inc(void)
4422{
4423	atomic_inc(&selinux_secmark_refcount);
4424}
4425
4426static void selinux_secmark_refcount_dec(void)
4427{
4428	atomic_dec(&selinux_secmark_refcount);
4429}
4430
4431static void selinux_req_classify_flow(const struct request_sock *req,
4432				      struct flowi *fl)
4433{
4434	fl->flowi_secid = req->secid;
4435}
4436
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4437static int selinux_tun_dev_create(void)
4438{
4439	u32 sid = current_sid();
4440
4441	/* we aren't taking into account the "sockcreate" SID since the socket
4442	 * that is being created here is not a socket in the traditional sense,
4443	 * instead it is a private sock, accessible only to the kernel, and
4444	 * representing a wide range of network traffic spanning multiple
4445	 * connections unlike traditional sockets - check the TUN driver to
4446	 * get a better understanding of why this socket is special */
4447
4448	return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
 
4449			    NULL);
4450}
4451
4452static void selinux_tun_dev_post_create(struct sock *sk)
 
 
 
 
 
 
 
 
 
4453{
 
4454	struct sk_security_struct *sksec = sk->sk_security;
4455
4456	/* we don't currently perform any NetLabel based labeling here and it
4457	 * isn't clear that we would want to do so anyway; while we could apply
4458	 * labeling without the support of the TUN user the resulting labeled
4459	 * traffic from the other end of the connection would almost certainly
4460	 * cause confusion to the TUN user that had no idea network labeling
4461	 * protocols were being used */
4462
4463	/* see the comments in selinux_tun_dev_create() about why we don't use
4464	 * the sockcreate SID here */
4465
4466	sksec->sid = current_sid();
4467	sksec->sclass = SECCLASS_TUN_SOCKET;
 
 
4468}
4469
4470static int selinux_tun_dev_attach(struct sock *sk)
4471{
4472	struct sk_security_struct *sksec = sk->sk_security;
4473	u32 sid = current_sid();
4474	int err;
4475
4476	err = avc_has_perm(sid, sksec->sid, SECCLASS_TUN_SOCKET,
 
4477			   TUN_SOCKET__RELABELFROM, NULL);
4478	if (err)
4479		return err;
4480	err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET,
 
4481			   TUN_SOCKET__RELABELTO, NULL);
4482	if (err)
4483		return err;
4484
4485	sksec->sid = sid;
4486
4487	return 0;
4488}
4489
4490static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
4491{
4492	int err = 0;
4493	u32 perm;
4494	struct nlmsghdr *nlh;
4495	struct sk_security_struct *sksec = sk->sk_security;
4496
4497	if (skb->len < NLMSG_SPACE(0)) {
4498		err = -EINVAL;
4499		goto out;
4500	}
4501	nlh = nlmsg_hdr(skb);
4502
4503	err = selinux_nlmsg_lookup(sksec->sclass, nlh->nlmsg_type, &perm);
4504	if (err) {
4505		if (err == -EINVAL) {
4506			audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR,
4507				  "SELinux:  unrecognized netlink message"
4508				  " type=%hu for sclass=%hu\n",
4509				  nlh->nlmsg_type, sksec->sclass);
4510			if (!selinux_enforcing || security_get_allow_unknown())
 
 
 
4511				err = 0;
4512		}
4513
4514		/* Ignore */
4515		if (err == -ENOENT)
4516			err = 0;
4517		goto out;
4518	}
4519
4520	err = sock_has_perm(current, sk, perm);
4521out:
4522	return err;
4523}
4524
4525#ifdef CONFIG_NETFILTER
4526
4527static unsigned int selinux_ip_forward(struct sk_buff *skb, int ifindex,
 
4528				       u16 family)
4529{
4530	int err;
4531	char *addrp;
4532	u32 peer_sid;
4533	struct common_audit_data ad;
4534	struct lsm_network_audit net = {0,};
4535	u8 secmark_active;
4536	u8 netlbl_active;
4537	u8 peerlbl_active;
4538
4539	if (!selinux_policycap_netpeer)
4540		return NF_ACCEPT;
4541
4542	secmark_active = selinux_secmark_enabled();
4543	netlbl_active = netlbl_enabled();
4544	peerlbl_active = netlbl_active || selinux_xfrm_enabled();
4545	if (!secmark_active && !peerlbl_active)
4546		return NF_ACCEPT;
4547
4548	if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
4549		return NF_DROP;
4550
4551	ad.type = LSM_AUDIT_DATA_NET;
4552	ad.u.net = &net;
4553	ad.u.net->netif = ifindex;
4554	ad.u.net->family = family;
4555	if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
4556		return NF_DROP;
4557
4558	if (peerlbl_active) {
4559		err = selinux_inet_sys_rcv_skb(ifindex, addrp, family,
4560					       peer_sid, &ad);
4561		if (err) {
4562			selinux_netlbl_err(skb, err, 1);
4563			return NF_DROP;
4564		}
4565	}
4566
4567	if (secmark_active)
4568		if (avc_has_perm(peer_sid, skb->secmark,
 
4569				 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
4570			return NF_DROP;
4571
4572	if (netlbl_active)
4573		/* we do this in the FORWARD path and not the POST_ROUTING
4574		 * path because we want to make sure we apply the necessary
4575		 * labeling before IPsec is applied so we can leverage AH
4576		 * protection */
4577		if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
4578			return NF_DROP;
4579
4580	return NF_ACCEPT;
4581}
4582
4583static unsigned int selinux_ipv4_forward(unsigned int hooknum,
4584					 struct sk_buff *skb,
4585					 const struct net_device *in,
4586					 const struct net_device *out,
4587					 int (*okfn)(struct sk_buff *))
4588{
4589	return selinux_ip_forward(skb, in->ifindex, PF_INET);
4590}
4591
4592#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4593static unsigned int selinux_ipv6_forward(unsigned int hooknum,
4594					 struct sk_buff *skb,
4595					 const struct net_device *in,
4596					 const struct net_device *out,
4597					 int (*okfn)(struct sk_buff *))
4598{
4599	return selinux_ip_forward(skb, in->ifindex, PF_INET6);
4600}
4601#endif	/* IPV6 */
4602
4603static unsigned int selinux_ip_output(struct sk_buff *skb,
4604				      u16 family)
4605{
 
4606	u32 sid;
4607
4608	if (!netlbl_enabled())
4609		return NF_ACCEPT;
4610
4611	/* we do this in the LOCAL_OUT path and not the POST_ROUTING path
4612	 * because we want to make sure we apply the necessary labeling
4613	 * before IPsec is applied so we can leverage AH protection */
4614	if (skb->sk) {
4615		struct sk_security_struct *sksec = skb->sk->sk_security;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4616		sid = sksec->sid;
4617	} else
4618		sid = SECINITSID_KERNEL;
4619	if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
4620		return NF_DROP;
4621
4622	return NF_ACCEPT;
4623}
4624
4625static unsigned int selinux_ipv4_output(unsigned int hooknum,
4626					struct sk_buff *skb,
4627					const struct net_device *in,
4628					const struct net_device *out,
4629					int (*okfn)(struct sk_buff *))
4630{
4631	return selinux_ip_output(skb, PF_INET);
4632}
4633
 
 
 
 
 
 
 
 
 
4634static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
4635						int ifindex,
4636						u16 family)
4637{
4638	struct sock *sk = skb->sk;
4639	struct sk_security_struct *sksec;
4640	struct common_audit_data ad;
4641	struct lsm_network_audit net = {0,};
4642	char *addrp;
4643	u8 proto;
4644
4645	if (sk == NULL)
4646		return NF_ACCEPT;
4647	sksec = sk->sk_security;
4648
4649	ad.type = LSM_AUDIT_DATA_NET;
4650	ad.u.net = &net;
4651	ad.u.net->netif = ifindex;
4652	ad.u.net->family = family;
4653	if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
4654		return NF_DROP;
4655
4656	if (selinux_secmark_enabled())
4657		if (avc_has_perm(sksec->sid, skb->secmark,
 
4658				 SECCLASS_PACKET, PACKET__SEND, &ad))
4659			return NF_DROP_ERR(-ECONNREFUSED);
4660
4661	if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
4662		return NF_DROP_ERR(-ECONNREFUSED);
4663
4664	return NF_ACCEPT;
4665}
4666
4667static unsigned int selinux_ip_postroute(struct sk_buff *skb, int ifindex,
 
4668					 u16 family)
4669{
4670	u32 secmark_perm;
4671	u32 peer_sid;
 
4672	struct sock *sk;
4673	struct common_audit_data ad;
4674	struct lsm_network_audit net = {0,};
4675	char *addrp;
4676	u8 secmark_active;
4677	u8 peerlbl_active;
4678
4679	/* If any sort of compatibility mode is enabled then handoff processing
4680	 * to the selinux_ip_postroute_compat() function to deal with the
4681	 * special handling.  We do this in an attempt to keep this function
4682	 * as fast and as clean as possible. */
4683	if (!selinux_policycap_netpeer)
4684		return selinux_ip_postroute_compat(skb, ifindex, family);
 
 
 
 
 
 
 
 
4685#ifdef CONFIG_XFRM
4686	/* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
4687	 * packet transformation so allow the packet to pass without any checks
4688	 * since we'll have another chance to perform access control checks
4689	 * when the packet is on it's final way out.
4690	 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
4691	 *       is NULL, in this case go ahead and apply access control. */
4692	if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL)
 
 
 
 
 
 
4693		return NF_ACCEPT;
4694#endif
4695	secmark_active = selinux_secmark_enabled();
4696	peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4697	if (!secmark_active && !peerlbl_active)
4698		return NF_ACCEPT;
4699
4700	/* if the packet is being forwarded then get the peer label from the
4701	 * packet itself; otherwise check to see if it is from a local
4702	 * application or the kernel, if from an application get the peer label
4703	 * from the sending socket, otherwise use the kernel's sid */
4704	sk = skb->sk;
4705	if (sk == NULL) {
 
 
 
 
4706		if (skb->skb_iif) {
4707			secmark_perm = PACKET__FORWARD_OUT;
4708			if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
4709				return NF_DROP;
4710		} else {
4711			secmark_perm = PACKET__SEND;
4712			peer_sid = SECINITSID_KERNEL;
4713		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4714	} else {
 
 
4715		struct sk_security_struct *sksec = sk->sk_security;
4716		peer_sid = sksec->sid;
4717		secmark_perm = PACKET__SEND;
4718	}
4719
4720	ad.type = LSM_AUDIT_DATA_NET;
4721	ad.u.net = &net;
4722	ad.u.net->netif = ifindex;
4723	ad.u.net->family = family;
4724	if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
4725		return NF_DROP;
4726
4727	if (secmark_active)
4728		if (avc_has_perm(peer_sid, skb->secmark,
 
4729				 SECCLASS_PACKET, secmark_perm, &ad))
4730			return NF_DROP_ERR(-ECONNREFUSED);
4731
4732	if (peerlbl_active) {
4733		u32 if_sid;
4734		u32 node_sid;
4735
4736		if (sel_netif_sid(ifindex, &if_sid))
4737			return NF_DROP;
4738		if (avc_has_perm(peer_sid, if_sid,
 
4739				 SECCLASS_NETIF, NETIF__EGRESS, &ad))
4740			return NF_DROP_ERR(-ECONNREFUSED);
4741
4742		if (sel_netnode_sid(addrp, family, &node_sid))
4743			return NF_DROP;
4744		if (avc_has_perm(peer_sid, node_sid,
 
4745				 SECCLASS_NODE, NODE__SENDTO, &ad))
4746			return NF_DROP_ERR(-ECONNREFUSED);
4747	}
4748
4749	return NF_ACCEPT;
4750}
4751
4752static unsigned int selinux_ipv4_postroute(unsigned int hooknum,
4753					   struct sk_buff *skb,
4754					   const struct net_device *in,
4755					   const struct net_device *out,
4756					   int (*okfn)(struct sk_buff *))
4757{
4758	return selinux_ip_postroute(skb, out->ifindex, PF_INET);
4759}
4760
4761#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4762static unsigned int selinux_ipv6_postroute(unsigned int hooknum,
4763					   struct sk_buff *skb,
4764					   const struct net_device *in,
4765					   const struct net_device *out,
4766					   int (*okfn)(struct sk_buff *))
4767{
4768	return selinux_ip_postroute(skb, out->ifindex, PF_INET6);
4769}
4770#endif	/* IPV6 */
4771
4772#endif	/* CONFIG_NETFILTER */
4773
4774static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
4775{
4776	int err;
4777
4778	err = cap_netlink_send(sk, skb);
4779	if (err)
4780		return err;
4781
4782	return selinux_nlmsg_perm(sk, skb);
4783}
4784
4785static int ipc_alloc_security(struct task_struct *task,
4786			      struct kern_ipc_perm *perm,
4787			      u16 sclass)
4788{
4789	struct ipc_security_struct *isec;
4790	u32 sid;
4791
4792	isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
4793	if (!isec)
4794		return -ENOMEM;
4795
4796	sid = task_sid(task);
4797	isec->sclass = sclass;
4798	isec->sid = sid;
4799	perm->security = isec;
4800
4801	return 0;
4802}
4803
4804static void ipc_free_security(struct kern_ipc_perm *perm)
4805{
4806	struct ipc_security_struct *isec = perm->security;
4807	perm->security = NULL;
4808	kfree(isec);
4809}
4810
4811static int msg_msg_alloc_security(struct msg_msg *msg)
4812{
4813	struct msg_security_struct *msec;
4814
4815	msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
4816	if (!msec)
4817		return -ENOMEM;
4818
4819	msec->sid = SECINITSID_UNLABELED;
4820	msg->security = msec;
4821
4822	return 0;
4823}
4824
4825static void msg_msg_free_security(struct msg_msg *msg)
4826{
4827	struct msg_security_struct *msec = msg->security;
4828
4829	msg->security = NULL;
4830	kfree(msec);
4831}
4832
4833static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
4834			u32 perms)
4835{
4836	struct ipc_security_struct *isec;
4837	struct common_audit_data ad;
4838	u32 sid = current_sid();
4839
4840	isec = ipc_perms->security;
4841
4842	ad.type = LSM_AUDIT_DATA_IPC;
4843	ad.u.ipc_id = ipc_perms->key;
4844
4845	return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
 
4846}
4847
4848static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
4849{
4850	return msg_msg_alloc_security(msg);
4851}
4852
4853static void selinux_msg_msg_free_security(struct msg_msg *msg)
4854{
4855	msg_msg_free_security(msg);
4856}
4857
4858/* message queue security operations */
4859static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
4860{
4861	struct ipc_security_struct *isec;
4862	struct common_audit_data ad;
4863	u32 sid = current_sid();
4864	int rc;
4865
4866	rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
4867	if (rc)
4868		return rc;
4869
4870	isec = msq->q_perm.security;
4871
4872	ad.type = LSM_AUDIT_DATA_IPC;
4873	ad.u.ipc_id = msq->q_perm.key;
4874
4875	rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
 
4876			  MSGQ__CREATE, &ad);
4877	if (rc) {
4878		ipc_free_security(&msq->q_perm);
4879		return rc;
4880	}
4881	return 0;
4882}
4883
4884static void selinux_msg_queue_free_security(struct msg_queue *msq)
4885{
4886	ipc_free_security(&msq->q_perm);
4887}
4888
4889static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
4890{
4891	struct ipc_security_struct *isec;
4892	struct common_audit_data ad;
4893	u32 sid = current_sid();
4894
4895	isec = msq->q_perm.security;
4896
4897	ad.type = LSM_AUDIT_DATA_IPC;
4898	ad.u.ipc_id = msq->q_perm.key;
4899
4900	return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
 
4901			    MSGQ__ASSOCIATE, &ad);
4902}
4903
4904static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
4905{
4906	int err;
4907	int perms;
4908
4909	switch (cmd) {
4910	case IPC_INFO:
4911	case MSG_INFO:
4912		/* No specific object, just general system-wide information. */
4913		return task_has_system(current, SYSTEM__IPC_INFO);
 
 
4914	case IPC_STAT:
4915	case MSG_STAT:
 
4916		perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
4917		break;
4918	case IPC_SET:
4919		perms = MSGQ__SETATTR;
4920		break;
4921	case IPC_RMID:
4922		perms = MSGQ__DESTROY;
4923		break;
4924	default:
4925		return 0;
4926	}
4927
4928	err = ipc_has_perm(&msq->q_perm, perms);
4929	return err;
4930}
4931
4932static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
4933{
4934	struct ipc_security_struct *isec;
4935	struct msg_security_struct *msec;
4936	struct common_audit_data ad;
4937	u32 sid = current_sid();
4938	int rc;
4939
4940	isec = msq->q_perm.security;
4941	msec = msg->security;
4942
4943	/*
4944	 * First time through, need to assign label to the message
4945	 */
4946	if (msec->sid == SECINITSID_UNLABELED) {
4947		/*
4948		 * Compute new sid based on current process and
4949		 * message queue this message will be stored in
4950		 */
4951		rc = security_transition_sid(sid, isec->sid, SECCLASS_MSG,
4952					     NULL, &msec->sid);
4953		if (rc)
4954			return rc;
4955	}
4956
4957	ad.type = LSM_AUDIT_DATA_IPC;
4958	ad.u.ipc_id = msq->q_perm.key;
4959
4960	/* Can this process write to the queue? */
4961	rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
 
4962			  MSGQ__WRITE, &ad);
4963	if (!rc)
4964		/* Can this process send the message */
4965		rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG,
 
4966				  MSG__SEND, &ad);
4967	if (!rc)
4968		/* Can the message be put in the queue? */
4969		rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ,
 
4970				  MSGQ__ENQUEUE, &ad);
4971
4972	return rc;
4973}
4974
4975static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
4976				    struct task_struct *target,
4977				    long type, int mode)
4978{
4979	struct ipc_security_struct *isec;
4980	struct msg_security_struct *msec;
4981	struct common_audit_data ad;
4982	u32 sid = task_sid(target);
4983	int rc;
4984
4985	isec = msq->q_perm.security;
4986	msec = msg->security;
4987
4988	ad.type = LSM_AUDIT_DATA_IPC;
4989	ad.u.ipc_id = msq->q_perm.key;
4990
4991	rc = avc_has_perm(sid, isec->sid,
 
4992			  SECCLASS_MSGQ, MSGQ__READ, &ad);
4993	if (!rc)
4994		rc = avc_has_perm(sid, msec->sid,
 
4995				  SECCLASS_MSG, MSG__RECEIVE, &ad);
4996	return rc;
4997}
4998
4999/* Shared Memory security operations */
5000static int selinux_shm_alloc_security(struct shmid_kernel *shp)
5001{
5002	struct ipc_security_struct *isec;
5003	struct common_audit_data ad;
5004	u32 sid = current_sid();
5005	int rc;
5006
5007	rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
5008	if (rc)
5009		return rc;
5010
5011	isec = shp->shm_perm.security;
5012
5013	ad.type = LSM_AUDIT_DATA_IPC;
5014	ad.u.ipc_id = shp->shm_perm.key;
5015
5016	rc = avc_has_perm(sid, isec->sid, SECCLASS_SHM,
 
5017			  SHM__CREATE, &ad);
5018	if (rc) {
5019		ipc_free_security(&shp->shm_perm);
5020		return rc;
5021	}
5022	return 0;
5023}
5024
5025static void selinux_shm_free_security(struct shmid_kernel *shp)
5026{
5027	ipc_free_security(&shp->shm_perm);
5028}
5029
5030static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
5031{
5032	struct ipc_security_struct *isec;
5033	struct common_audit_data ad;
5034	u32 sid = current_sid();
5035
5036	isec = shp->shm_perm.security;
5037
5038	ad.type = LSM_AUDIT_DATA_IPC;
5039	ad.u.ipc_id = shp->shm_perm.key;
5040
5041	return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
 
5042			    SHM__ASSOCIATE, &ad);
5043}
5044
5045/* Note, at this point, shp is locked down */
5046static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
5047{
5048	int perms;
5049	int err;
5050
5051	switch (cmd) {
5052	case IPC_INFO:
5053	case SHM_INFO:
5054		/* No specific object, just general system-wide information. */
5055		return task_has_system(current, SYSTEM__IPC_INFO);
 
 
5056	case IPC_STAT:
5057	case SHM_STAT:
 
5058		perms = SHM__GETATTR | SHM__ASSOCIATE;
5059		break;
5060	case IPC_SET:
5061		perms = SHM__SETATTR;
5062		break;
5063	case SHM_LOCK:
5064	case SHM_UNLOCK:
5065		perms = SHM__LOCK;
5066		break;
5067	case IPC_RMID:
5068		perms = SHM__DESTROY;
5069		break;
5070	default:
5071		return 0;
5072	}
5073
5074	err = ipc_has_perm(&shp->shm_perm, perms);
5075	return err;
5076}
5077
5078static int selinux_shm_shmat(struct shmid_kernel *shp,
5079			     char __user *shmaddr, int shmflg)
5080{
5081	u32 perms;
5082
5083	if (shmflg & SHM_RDONLY)
5084		perms = SHM__READ;
5085	else
5086		perms = SHM__READ | SHM__WRITE;
5087
5088	return ipc_has_perm(&shp->shm_perm, perms);
5089}
5090
5091/* Semaphore security operations */
5092static int selinux_sem_alloc_security(struct sem_array *sma)
5093{
5094	struct ipc_security_struct *isec;
5095	struct common_audit_data ad;
5096	u32 sid = current_sid();
5097	int rc;
5098
5099	rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
5100	if (rc)
5101		return rc;
5102
5103	isec = sma->sem_perm.security;
5104
5105	ad.type = LSM_AUDIT_DATA_IPC;
5106	ad.u.ipc_id = sma->sem_perm.key;
5107
5108	rc = avc_has_perm(sid, isec->sid, SECCLASS_SEM,
 
5109			  SEM__CREATE, &ad);
5110	if (rc) {
5111		ipc_free_security(&sma->sem_perm);
5112		return rc;
5113	}
5114	return 0;
5115}
5116
5117static void selinux_sem_free_security(struct sem_array *sma)
5118{
5119	ipc_free_security(&sma->sem_perm);
5120}
5121
5122static int selinux_sem_associate(struct sem_array *sma, int semflg)
5123{
5124	struct ipc_security_struct *isec;
5125	struct common_audit_data ad;
5126	u32 sid = current_sid();
5127
5128	isec = sma->sem_perm.security;
5129
5130	ad.type = LSM_AUDIT_DATA_IPC;
5131	ad.u.ipc_id = sma->sem_perm.key;
5132
5133	return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
 
5134			    SEM__ASSOCIATE, &ad);
5135}
5136
5137/* Note, at this point, sma is locked down */
5138static int selinux_sem_semctl(struct sem_array *sma, int cmd)
5139{
5140	int err;
5141	u32 perms;
5142
5143	switch (cmd) {
5144	case IPC_INFO:
5145	case SEM_INFO:
5146		/* No specific object, just general system-wide information. */
5147		return task_has_system(current, SYSTEM__IPC_INFO);
 
 
5148	case GETPID:
5149	case GETNCNT:
5150	case GETZCNT:
5151		perms = SEM__GETATTR;
5152		break;
5153	case GETVAL:
5154	case GETALL:
5155		perms = SEM__READ;
5156		break;
5157	case SETVAL:
5158	case SETALL:
5159		perms = SEM__WRITE;
5160		break;
5161	case IPC_RMID:
5162		perms = SEM__DESTROY;
5163		break;
5164	case IPC_SET:
5165		perms = SEM__SETATTR;
5166		break;
5167	case IPC_STAT:
5168	case SEM_STAT:
 
5169		perms = SEM__GETATTR | SEM__ASSOCIATE;
5170		break;
5171	default:
5172		return 0;
5173	}
5174
5175	err = ipc_has_perm(&sma->sem_perm, perms);
5176	return err;
5177}
5178
5179static int selinux_sem_semop(struct sem_array *sma,
5180			     struct sembuf *sops, unsigned nsops, int alter)
5181{
5182	u32 perms;
5183
5184	if (alter)
5185		perms = SEM__READ | SEM__WRITE;
5186	else
5187		perms = SEM__READ;
5188
5189	return ipc_has_perm(&sma->sem_perm, perms);
5190}
5191
5192static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
5193{
5194	u32 av = 0;
5195
5196	av = 0;
5197	if (flag & S_IRUGO)
5198		av |= IPC__UNIX_READ;
5199	if (flag & S_IWUGO)
5200		av |= IPC__UNIX_WRITE;
5201
5202	if (av == 0)
5203		return 0;
5204
5205	return ipc_has_perm(ipcp, av);
5206}
5207
5208static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
5209{
5210	struct ipc_security_struct *isec = ipcp->security;
5211	*secid = isec->sid;
5212}
5213
5214static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
5215{
5216	if (inode)
5217		inode_doinit_with_dentry(inode, dentry);
5218}
5219
5220static int selinux_getprocattr(struct task_struct *p,
5221			       char *name, char **value)
5222{
5223	const struct task_security_struct *__tsec;
5224	u32 sid;
5225	int error;
5226	unsigned len;
5227
 
 
 
5228	if (current != p) {
5229		error = current_has_perm(p, PROCESS__GETATTR);
 
 
5230		if (error)
5231			return error;
5232	}
5233
5234	rcu_read_lock();
5235	__tsec = __task_cred(p)->security;
5236
5237	if (!strcmp(name, "current"))
5238		sid = __tsec->sid;
5239	else if (!strcmp(name, "prev"))
5240		sid = __tsec->osid;
5241	else if (!strcmp(name, "exec"))
5242		sid = __tsec->exec_sid;
5243	else if (!strcmp(name, "fscreate"))
5244		sid = __tsec->create_sid;
5245	else if (!strcmp(name, "keycreate"))
5246		sid = __tsec->keycreate_sid;
5247	else if (!strcmp(name, "sockcreate"))
5248		sid = __tsec->sockcreate_sid;
5249	else
5250		goto invalid;
 
 
5251	rcu_read_unlock();
5252
5253	if (!sid)
5254		return 0;
5255
5256	error = security_sid_to_context(sid, value, &len);
5257	if (error)
5258		return error;
5259	return len;
5260
5261invalid:
5262	rcu_read_unlock();
5263	return -EINVAL;
5264}
5265
5266static int selinux_setprocattr(struct task_struct *p,
5267			       char *name, void *value, size_t size)
5268{
5269	struct task_security_struct *tsec;
5270	struct task_struct *tracer;
5271	struct cred *new;
5272	u32 sid = 0, ptsid;
5273	int error;
5274	char *str = value;
5275
5276	if (current != p) {
5277		/* SELinux only allows a process to change its own
5278		   security attributes. */
5279		return -EACCES;
5280	}
5281
5282	/*
5283	 * Basic control over ability to set these attributes at all.
5284	 * current == p, but we'll pass them separately in case the
5285	 * above restriction is ever removed.
5286	 */
5287	if (!strcmp(name, "exec"))
5288		error = current_has_perm(p, PROCESS__SETEXEC);
 
 
5289	else if (!strcmp(name, "fscreate"))
5290		error = current_has_perm(p, PROCESS__SETFSCREATE);
 
 
5291	else if (!strcmp(name, "keycreate"))
5292		error = current_has_perm(p, PROCESS__SETKEYCREATE);
 
 
5293	else if (!strcmp(name, "sockcreate"))
5294		error = current_has_perm(p, PROCESS__SETSOCKCREATE);
 
 
5295	else if (!strcmp(name, "current"))
5296		error = current_has_perm(p, PROCESS__SETCURRENT);
 
 
5297	else
5298		error = -EINVAL;
5299	if (error)
5300		return error;
5301
5302	/* Obtain a SID for the context, if one was specified. */
5303	if (size && str[1] && str[1] != '\n') {
5304		if (str[size-1] == '\n') {
5305			str[size-1] = 0;
5306			size--;
5307		}
5308		error = security_context_to_sid(value, size, &sid);
 
5309		if (error == -EINVAL && !strcmp(name, "fscreate")) {
5310			if (!capable(CAP_MAC_ADMIN)) {
5311				struct audit_buffer *ab;
5312				size_t audit_size;
5313
5314				/* We strip a nul only if it is at the end, otherwise the
5315				 * context contains a nul and we should audit that */
5316				if (str[size - 1] == '\0')
5317					audit_size = size - 1;
5318				else
5319					audit_size = size;
5320				ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
 
 
5321				audit_log_format(ab, "op=fscreate invalid_context=");
5322				audit_log_n_untrustedstring(ab, value, audit_size);
5323				audit_log_end(ab);
5324
5325				return error;
5326			}
5327			error = security_context_to_sid_force(value, size,
5328							      &sid);
 
5329		}
5330		if (error)
5331			return error;
5332	}
5333
5334	new = prepare_creds();
5335	if (!new)
5336		return -ENOMEM;
5337
5338	/* Permission checking based on the specified context is
5339	   performed during the actual operation (execve,
5340	   open/mkdir/...), when we know the full context of the
5341	   operation.  See selinux_bprm_set_creds for the execve
5342	   checks and may_create for the file creation checks. The
5343	   operation will then fail if the context is not permitted. */
5344	tsec = new->security;
5345	if (!strcmp(name, "exec")) {
5346		tsec->exec_sid = sid;
5347	} else if (!strcmp(name, "fscreate")) {
5348		tsec->create_sid = sid;
5349	} else if (!strcmp(name, "keycreate")) {
5350		error = may_create_key(sid, p);
5351		if (error)
5352			goto abort_change;
 
 
 
5353		tsec->keycreate_sid = sid;
5354	} else if (!strcmp(name, "sockcreate")) {
5355		tsec->sockcreate_sid = sid;
5356	} else if (!strcmp(name, "current")) {
5357		error = -EINVAL;
5358		if (sid == 0)
5359			goto abort_change;
5360
5361		/* Only allow single threaded processes to change context */
5362		error = -EPERM;
5363		if (!current_is_single_threaded()) {
5364			error = security_bounded_transition(tsec->sid, sid);
 
5365			if (error)
5366				goto abort_change;
5367		}
5368
5369		/* Check permissions for the transition. */
5370		error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
 
5371				     PROCESS__DYNTRANSITION, NULL);
5372		if (error)
5373			goto abort_change;
5374
5375		/* Check for ptracing, and update the task SID if ok.
5376		   Otherwise, leave SID unchanged and fail. */
5377		ptsid = 0;
5378		task_lock(p);
5379		tracer = ptrace_parent(p);
5380		if (tracer)
5381			ptsid = task_sid(tracer);
5382		task_unlock(p);
5383
5384		if (tracer) {
5385			error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
5386					     PROCESS__PTRACE, NULL);
5387			if (error)
5388				goto abort_change;
5389		}
5390
5391		tsec->sid = sid;
5392	} else {
5393		error = -EINVAL;
5394		goto abort_change;
5395	}
5396
5397	commit_creds(new);
5398	return size;
5399
5400abort_change:
5401	abort_creds(new);
5402	return error;
5403}
5404
 
 
 
 
 
5405static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
5406{
5407	return security_sid_to_context(secid, secdata, seclen);
 
5408}
5409
5410static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
5411{
5412	return security_context_to_sid(secdata, seclen, secid);
 
5413}
5414
5415static void selinux_release_secctx(char *secdata, u32 seclen)
5416{
5417	kfree(secdata);
5418}
5419
 
 
 
 
 
 
 
 
 
5420/*
5421 *	called with inode->i_mutex locked
5422 */
5423static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
5424{
5425	return selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, ctx, ctxlen, 0);
 
 
 
5426}
5427
5428/*
5429 *	called with inode->i_mutex locked
5430 */
5431static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
5432{
5433	return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0);
5434}
5435
5436static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
5437{
5438	int len = 0;
5439	len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX,
5440						ctx, true);
5441	if (len < 0)
5442		return len;
5443	*ctxlen = len;
5444	return 0;
5445}
5446#ifdef CONFIG_KEYS
5447
5448static int selinux_key_alloc(struct key *k, const struct cred *cred,
5449			     unsigned long flags)
5450{
5451	const struct task_security_struct *tsec;
5452	struct key_security_struct *ksec;
5453
5454	ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
5455	if (!ksec)
5456		return -ENOMEM;
5457
5458	tsec = cred->security;
5459	if (tsec->keycreate_sid)
5460		ksec->sid = tsec->keycreate_sid;
5461	else
5462		ksec->sid = tsec->sid;
5463
5464	k->security = ksec;
5465	return 0;
5466}
5467
5468static void selinux_key_free(struct key *k)
5469{
5470	struct key_security_struct *ksec = k->security;
5471
5472	k->security = NULL;
5473	kfree(ksec);
5474}
5475
5476static int selinux_key_permission(key_ref_t key_ref,
5477				  const struct cred *cred,
5478				  key_perm_t perm)
5479{
5480	struct key *key;
5481	struct key_security_struct *ksec;
5482	u32 sid;
5483
5484	/* if no specific permissions are requested, we skip the
5485	   permission check. No serious, additional covert channels
5486	   appear to be created. */
5487	if (perm == 0)
5488		return 0;
5489
5490	sid = cred_sid(cred);
5491
5492	key = key_ref_to_ptr(key_ref);
5493	ksec = key->security;
5494
5495	return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL);
 
5496}
5497
5498static int selinux_key_getsecurity(struct key *key, char **_buffer)
5499{
5500	struct key_security_struct *ksec = key->security;
5501	char *context = NULL;
5502	unsigned len;
5503	int rc;
5504
5505	rc = security_sid_to_context(ksec->sid, &context, &len);
 
5506	if (!rc)
5507		rc = len;
5508	*_buffer = context;
5509	return rc;
5510}
 
5511
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5512#endif
5513
5514static struct security_operations selinux_ops = {
5515	.name =				"selinux",
 
 
 
 
5516
5517	.ptrace_access_check =		selinux_ptrace_access_check,
5518	.ptrace_traceme =		selinux_ptrace_traceme,
5519	.capget =			selinux_capget,
5520	.capset =			selinux_capset,
5521	.capable =			selinux_capable,
5522	.quotactl =			selinux_quotactl,
5523	.quota_on =			selinux_quota_on,
5524	.syslog =			selinux_syslog,
5525	.vm_enough_memory =		selinux_vm_enough_memory,
5526
5527	.netlink_send =			selinux_netlink_send,
5528
5529	.bprm_set_creds =		selinux_bprm_set_creds,
5530	.bprm_committing_creds =	selinux_bprm_committing_creds,
5531	.bprm_committed_creds =		selinux_bprm_committed_creds,
5532	.bprm_secureexec =		selinux_bprm_secureexec,
5533
5534	.sb_alloc_security =		selinux_sb_alloc_security,
5535	.sb_free_security =		selinux_sb_free_security,
5536	.sb_copy_data =			selinux_sb_copy_data,
5537	.sb_remount =			selinux_sb_remount,
5538	.sb_kern_mount =		selinux_sb_kern_mount,
5539	.sb_show_options =		selinux_sb_show_options,
5540	.sb_statfs =			selinux_sb_statfs,
5541	.sb_mount =			selinux_mount,
5542	.sb_umount =			selinux_umount,
5543	.sb_set_mnt_opts =		selinux_set_mnt_opts,
5544	.sb_clone_mnt_opts =		selinux_sb_clone_mnt_opts,
5545	.sb_parse_opts_str = 		selinux_parse_opts_str,
5546
5547
5548	.inode_alloc_security =		selinux_inode_alloc_security,
5549	.inode_free_security =		selinux_inode_free_security,
5550	.inode_init_security =		selinux_inode_init_security,
5551	.inode_create =			selinux_inode_create,
5552	.inode_link =			selinux_inode_link,
5553	.inode_unlink =			selinux_inode_unlink,
5554	.inode_symlink =		selinux_inode_symlink,
5555	.inode_mkdir =			selinux_inode_mkdir,
5556	.inode_rmdir =			selinux_inode_rmdir,
5557	.inode_mknod =			selinux_inode_mknod,
5558	.inode_rename =			selinux_inode_rename,
5559	.inode_readlink =		selinux_inode_readlink,
5560	.inode_follow_link =		selinux_inode_follow_link,
5561	.inode_permission =		selinux_inode_permission,
5562	.inode_setattr =		selinux_inode_setattr,
5563	.inode_getattr =		selinux_inode_getattr,
5564	.inode_setxattr =		selinux_inode_setxattr,
5565	.inode_post_setxattr =		selinux_inode_post_setxattr,
5566	.inode_getxattr =		selinux_inode_getxattr,
5567	.inode_listxattr =		selinux_inode_listxattr,
5568	.inode_removexattr =		selinux_inode_removexattr,
5569	.inode_getsecurity =		selinux_inode_getsecurity,
5570	.inode_setsecurity =		selinux_inode_setsecurity,
5571	.inode_listsecurity =		selinux_inode_listsecurity,
5572	.inode_getsecid =		selinux_inode_getsecid,
5573
5574	.file_permission =		selinux_file_permission,
5575	.file_alloc_security =		selinux_file_alloc_security,
5576	.file_free_security =		selinux_file_free_security,
5577	.file_ioctl =			selinux_file_ioctl,
5578	.mmap_file =			selinux_mmap_file,
5579	.mmap_addr =			selinux_mmap_addr,
5580	.file_mprotect =		selinux_file_mprotect,
5581	.file_lock =			selinux_file_lock,
5582	.file_fcntl =			selinux_file_fcntl,
5583	.file_set_fowner =		selinux_file_set_fowner,
5584	.file_send_sigiotask =		selinux_file_send_sigiotask,
5585	.file_receive =			selinux_file_receive,
5586
5587	.file_open =			selinux_file_open,
5588
5589	.task_create =			selinux_task_create,
5590	.cred_alloc_blank =		selinux_cred_alloc_blank,
5591	.cred_free =			selinux_cred_free,
5592	.cred_prepare =			selinux_cred_prepare,
5593	.cred_transfer =		selinux_cred_transfer,
5594	.kernel_act_as =		selinux_kernel_act_as,
5595	.kernel_create_files_as =	selinux_kernel_create_files_as,
5596	.kernel_module_request =	selinux_kernel_module_request,
5597	.task_setpgid =			selinux_task_setpgid,
5598	.task_getpgid =			selinux_task_getpgid,
5599	.task_getsid =			selinux_task_getsid,
5600	.task_getsecid =		selinux_task_getsecid,
5601	.task_setnice =			selinux_task_setnice,
5602	.task_setioprio =		selinux_task_setioprio,
5603	.task_getioprio =		selinux_task_getioprio,
5604	.task_setrlimit =		selinux_task_setrlimit,
5605	.task_setscheduler =		selinux_task_setscheduler,
5606	.task_getscheduler =		selinux_task_getscheduler,
5607	.task_movememory =		selinux_task_movememory,
5608	.task_kill =			selinux_task_kill,
5609	.task_wait =			selinux_task_wait,
5610	.task_to_inode =		selinux_task_to_inode,
5611
5612	.ipc_permission =		selinux_ipc_permission,
5613	.ipc_getsecid =			selinux_ipc_getsecid,
5614
5615	.msg_msg_alloc_security =	selinux_msg_msg_alloc_security,
5616	.msg_msg_free_security =	selinux_msg_msg_free_security,
5617
5618	.msg_queue_alloc_security =	selinux_msg_queue_alloc_security,
5619	.msg_queue_free_security =	selinux_msg_queue_free_security,
5620	.msg_queue_associate =		selinux_msg_queue_associate,
5621	.msg_queue_msgctl =		selinux_msg_queue_msgctl,
5622	.msg_queue_msgsnd =		selinux_msg_queue_msgsnd,
5623	.msg_queue_msgrcv =		selinux_msg_queue_msgrcv,
5624
5625	.shm_alloc_security =		selinux_shm_alloc_security,
5626	.shm_free_security =		selinux_shm_free_security,
5627	.shm_associate =		selinux_shm_associate,
5628	.shm_shmctl =			selinux_shm_shmctl,
5629	.shm_shmat =			selinux_shm_shmat,
5630
5631	.sem_alloc_security =		selinux_sem_alloc_security,
5632	.sem_free_security =		selinux_sem_free_security,
5633	.sem_associate =		selinux_sem_associate,
5634	.sem_semctl =			selinux_sem_semctl,
5635	.sem_semop =			selinux_sem_semop,
5636
5637	.d_instantiate =		selinux_d_instantiate,
5638
5639	.getprocattr =			selinux_getprocattr,
5640	.setprocattr =			selinux_setprocattr,
5641
5642	.secid_to_secctx =		selinux_secid_to_secctx,
5643	.secctx_to_secid =		selinux_secctx_to_secid,
5644	.release_secctx =		selinux_release_secctx,
5645	.inode_notifysecctx =		selinux_inode_notifysecctx,
5646	.inode_setsecctx =		selinux_inode_setsecctx,
5647	.inode_getsecctx =		selinux_inode_getsecctx,
5648
5649	.unix_stream_connect =		selinux_socket_unix_stream_connect,
5650	.unix_may_send =		selinux_socket_unix_may_send,
5651
5652	.socket_create =		selinux_socket_create,
5653	.socket_post_create =		selinux_socket_post_create,
5654	.socket_bind =			selinux_socket_bind,
5655	.socket_connect =		selinux_socket_connect,
5656	.socket_listen =		selinux_socket_listen,
5657	.socket_accept =		selinux_socket_accept,
5658	.socket_sendmsg =		selinux_socket_sendmsg,
5659	.socket_recvmsg =		selinux_socket_recvmsg,
5660	.socket_getsockname =		selinux_socket_getsockname,
5661	.socket_getpeername =		selinux_socket_getpeername,
5662	.socket_getsockopt =		selinux_socket_getsockopt,
5663	.socket_setsockopt =		selinux_socket_setsockopt,
5664	.socket_shutdown =		selinux_socket_shutdown,
5665	.socket_sock_rcv_skb =		selinux_socket_sock_rcv_skb,
5666	.socket_getpeersec_stream =	selinux_socket_getpeersec_stream,
5667	.socket_getpeersec_dgram =	selinux_socket_getpeersec_dgram,
5668	.sk_alloc_security =		selinux_sk_alloc_security,
5669	.sk_free_security =		selinux_sk_free_security,
5670	.sk_clone_security =		selinux_sk_clone_security,
5671	.sk_getsecid =			selinux_sk_getsecid,
5672	.sock_graft =			selinux_sock_graft,
5673	.inet_conn_request =		selinux_inet_conn_request,
5674	.inet_csk_clone =		selinux_inet_csk_clone,
5675	.inet_conn_established =	selinux_inet_conn_established,
5676	.secmark_relabel_packet =	selinux_secmark_relabel_packet,
5677	.secmark_refcount_inc =		selinux_secmark_refcount_inc,
5678	.secmark_refcount_dec =		selinux_secmark_refcount_dec,
5679	.req_classify_flow =		selinux_req_classify_flow,
5680	.tun_dev_create =		selinux_tun_dev_create,
5681	.tun_dev_post_create = 		selinux_tun_dev_post_create,
5682	.tun_dev_attach =		selinux_tun_dev_attach,
5683
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5684#ifdef CONFIG_SECURITY_NETWORK_XFRM
5685	.xfrm_policy_alloc_security =	selinux_xfrm_policy_alloc,
5686	.xfrm_policy_clone_security =	selinux_xfrm_policy_clone,
5687	.xfrm_policy_free_security =	selinux_xfrm_policy_free,
5688	.xfrm_policy_delete_security =	selinux_xfrm_policy_delete,
5689	.xfrm_state_alloc_security =	selinux_xfrm_state_alloc,
5690	.xfrm_state_free_security =	selinux_xfrm_state_free,
5691	.xfrm_state_delete_security =	selinux_xfrm_state_delete,
5692	.xfrm_policy_lookup =		selinux_xfrm_policy_lookup,
5693	.xfrm_state_pol_flow_match =	selinux_xfrm_state_pol_flow_match,
5694	.xfrm_decode_session =		selinux_xfrm_decode_session,
 
 
 
5695#endif
5696
5697#ifdef CONFIG_KEYS
5698	.key_alloc =			selinux_key_alloc,
5699	.key_free =			selinux_key_free,
5700	.key_permission =		selinux_key_permission,
5701	.key_getsecurity =		selinux_key_getsecurity,
5702#endif
5703
5704#ifdef CONFIG_AUDIT
5705	.audit_rule_init =		selinux_audit_rule_init,
5706	.audit_rule_known =		selinux_audit_rule_known,
5707	.audit_rule_match =		selinux_audit_rule_match,
5708	.audit_rule_free =		selinux_audit_rule_free,
 
 
 
 
 
 
 
 
 
 
5709#endif
5710};
5711
5712static __init int selinux_init(void)
5713{
5714	if (!security_module_enable(&selinux_ops)) {
5715		selinux_enabled = 0;
5716		return 0;
5717	}
5718
5719	if (!selinux_enabled) {
5720		printk(KERN_INFO "SELinux:  Disabled at boot.\n");
5721		return 0;
5722	}
5723
5724	printk(KERN_INFO "SELinux:  Initializing.\n");
 
 
 
 
5725
5726	/* Set the security state for the initial task. */
5727	cred_init_security();
5728
5729	default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
5730
5731	sel_inode_cache = kmem_cache_create("selinux_inode_security",
5732					    sizeof(struct inode_security_struct),
5733					    0, SLAB_PANIC, NULL);
5734	avc_init();
5735
5736	if (register_security(&selinux_ops))
5737		panic("SELinux: Unable to register with kernel.\n");
5738
5739	if (selinux_enforcing)
5740		printk(KERN_DEBUG "SELinux:  Starting in enforcing mode\n");
 
 
 
 
 
 
 
 
 
 
 
 
5741	else
5742		printk(KERN_DEBUG "SELinux:  Starting in permissive mode\n");
 
 
5743
5744	return 0;
5745}
5746
5747static void delayed_superblock_init(struct super_block *sb, void *unused)
5748{
5749	superblock_doinit(sb, NULL);
5750}
5751
5752void selinux_complete_init(void)
5753{
5754	printk(KERN_DEBUG "SELinux:  Completing initialization.\n");
5755
5756	/* Set up any superblocks initialized prior to the policy load. */
5757	printk(KERN_DEBUG "SELinux:  Setting up existing superblocks.\n");
5758	iterate_supers(delayed_superblock_init, NULL);
5759}
5760
5761/* SELinux requires early initialization in order to label
5762   all processes and objects when they are created. */
5763security_initcall(selinux_init);
 
 
 
 
 
 
5764
5765#if defined(CONFIG_NETFILTER)
5766
5767static struct nf_hook_ops selinux_ipv4_ops[] = {
5768	{
5769		.hook =		selinux_ipv4_postroute,
5770		.owner =	THIS_MODULE,
5771		.pf =		PF_INET,
5772		.hooknum =	NF_INET_POST_ROUTING,
5773		.priority =	NF_IP_PRI_SELINUX_LAST,
5774	},
5775	{
5776		.hook =		selinux_ipv4_forward,
5777		.owner =	THIS_MODULE,
5778		.pf =		PF_INET,
5779		.hooknum =	NF_INET_FORWARD,
5780		.priority =	NF_IP_PRI_SELINUX_FIRST,
5781	},
5782	{
5783		.hook =		selinux_ipv4_output,
5784		.owner =	THIS_MODULE,
5785		.pf =		PF_INET,
5786		.hooknum =	NF_INET_LOCAL_OUT,
5787		.priority =	NF_IP_PRI_SELINUX_FIRST,
5788	}
5789};
5790
5791#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5792
5793static struct nf_hook_ops selinux_ipv6_ops[] = {
5794	{
5795		.hook =		selinux_ipv6_postroute,
5796		.owner =	THIS_MODULE,
5797		.pf =		PF_INET6,
5798		.hooknum =	NF_INET_POST_ROUTING,
5799		.priority =	NF_IP6_PRI_SELINUX_LAST,
5800	},
5801	{
5802		.hook =		selinux_ipv6_forward,
5803		.owner =	THIS_MODULE,
5804		.pf =		PF_INET6,
5805		.hooknum =	NF_INET_FORWARD,
5806		.priority =	NF_IP6_PRI_SELINUX_FIRST,
5807	}
 
 
 
 
 
 
 
5808};
5809
5810#endif	/* IPV6 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5811
5812static int __init selinux_nf_ip_init(void)
5813{
5814	int err = 0;
5815
5816	if (!selinux_enabled)
5817		goto out;
5818
5819	printk(KERN_DEBUG "SELinux:  Registering netfilter hooks\n");
5820
5821	err = nf_register_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5822	if (err)
5823		panic("SELinux: nf_register_hooks for IPv4: error %d\n", err);
5824
5825#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5826	err = nf_register_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5827	if (err)
5828		panic("SELinux: nf_register_hooks for IPv6: error %d\n", err);
5829#endif	/* IPV6 */
5830
5831out:
5832	return err;
5833}
5834
5835__initcall(selinux_nf_ip_init);
5836
5837#ifdef CONFIG_SECURITY_SELINUX_DISABLE
5838static void selinux_nf_ip_exit(void)
5839{
5840	printk(KERN_DEBUG "SELinux:  Unregistering netfilter hooks\n");
5841
5842	nf_unregister_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5843#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5844	nf_unregister_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5845#endif	/* IPV6 */
5846}
5847#endif
5848
5849#else /* CONFIG_NETFILTER */
5850
5851#ifdef CONFIG_SECURITY_SELINUX_DISABLE
5852#define selinux_nf_ip_exit()
5853#endif
5854
5855#endif /* CONFIG_NETFILTER */
5856
5857#ifdef CONFIG_SECURITY_SELINUX_DISABLE
5858static int selinux_disabled;
5859
5860int selinux_disable(void)
5861{
5862	if (ss_initialized) {
5863		/* Not permitted after initial policy load. */
5864		return -EINVAL;
5865	}
5866
5867	if (selinux_disabled) {
5868		/* Only do this once. */
5869		return -EINVAL;
5870	}
5871
5872	printk(KERN_INFO "SELinux:  Disabled at runtime.\n");
 
 
5873
5874	selinux_disabled = 1;
5875	selinux_enabled = 0;
5876
5877	reset_security_ops();
5878
5879	/* Try to destroy the avc node cache */
5880	avc_disable();
5881
5882	/* Unregister netfilter hooks. */
5883	selinux_nf_ip_exit();
5884
5885	/* Unregister selinuxfs. */
5886	exit_sel_fs();
5887
5888	return 0;
5889}
5890#endif
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  NSA Security-Enhanced Linux (SELinux) security module
   4 *
   5 *  This file contains the SELinux hook function implementations.
   6 *
   7 *  Authors:  Stephen Smalley, <sds@tycho.nsa.gov>
   8 *	      Chris Vance, <cvance@nai.com>
   9 *	      Wayne Salamon, <wsalamon@nai.com>
  10 *	      James Morris <jmorris@redhat.com>
  11 *
  12 *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
  13 *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
  14 *					   Eric Paris <eparis@redhat.com>
  15 *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
  16 *			    <dgoeddel@trustedcs.com>
  17 *  Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
  18 *	Paul Moore <paul@paul-moore.com>
  19 *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
  20 *		       Yuichi Nakamura <ynakam@hitachisoft.jp>
  21 *  Copyright (C) 2016 Mellanox Technologies
 
 
 
  22 */
  23
  24#include <linux/init.h>
  25#include <linux/kd.h>
  26#include <linux/kernel.h>
  27#include <linux/tracehook.h>
  28#include <linux/errno.h>
  29#include <linux/sched/signal.h>
  30#include <linux/sched/task.h>
  31#include <linux/lsm_hooks.h>
  32#include <linux/xattr.h>
  33#include <linux/capability.h>
  34#include <linux/unistd.h>
  35#include <linux/mm.h>
  36#include <linux/mman.h>
  37#include <linux/slab.h>
  38#include <linux/pagemap.h>
  39#include <linux/proc_fs.h>
  40#include <linux/swap.h>
  41#include <linux/spinlock.h>
  42#include <linux/syscalls.h>
  43#include <linux/dcache.h>
  44#include <linux/file.h>
  45#include <linux/fdtable.h>
  46#include <linux/namei.h>
  47#include <linux/mount.h>
  48#include <linux/fs_context.h>
  49#include <linux/fs_parser.h>
  50#include <linux/netfilter_ipv4.h>
  51#include <linux/netfilter_ipv6.h>
  52#include <linux/tty.h>
  53#include <net/icmp.h>
  54#include <net/ip.h>		/* for local_port_range[] */
  55#include <net/tcp.h>		/* struct or_callable used in sock_rcv_skb */
  56#include <net/inet_connection_sock.h>
  57#include <net/net_namespace.h>
  58#include <net/netlabel.h>
  59#include <linux/uaccess.h>
  60#include <asm/ioctls.h>
  61#include <linux/atomic.h>
  62#include <linux/bitops.h>
  63#include <linux/interrupt.h>
  64#include <linux/netdevice.h>	/* for network interface checks */
  65#include <net/netlink.h>
  66#include <linux/tcp.h>
  67#include <linux/udp.h>
  68#include <linux/dccp.h>
  69#include <linux/sctp.h>
  70#include <net/sctp/structs.h>
  71#include <linux/quota.h>
  72#include <linux/un.h>		/* for Unix socket types */
  73#include <net/af_unix.h>	/* for Unix socket types */
  74#include <linux/parser.h>
  75#include <linux/nfs_mount.h>
  76#include <net/ipv6.h>
  77#include <linux/hugetlb.h>
  78#include <linux/personality.h>
  79#include <linux/audit.h>
  80#include <linux/string.h>
 
  81#include <linux/mutex.h>
  82#include <linux/posix-timers.h>
  83#include <linux/syslog.h>
  84#include <linux/user_namespace.h>
  85#include <linux/export.h>
  86#include <linux/msg.h>
  87#include <linux/shm.h>
  88#include <linux/bpf.h>
  89#include <linux/kernfs.h>
  90#include <linux/stringhash.h>	/* for hashlen_string() */
  91#include <uapi/linux/mount.h>
  92#include <linux/fsnotify.h>
  93#include <linux/fanotify.h>
  94
  95#include "avc.h"
  96#include "objsec.h"
  97#include "netif.h"
  98#include "netnode.h"
  99#include "netport.h"
 100#include "ibpkey.h"
 101#include "xfrm.h"
 102#include "netlabel.h"
 103#include "audit.h"
 104#include "avc_ss.h"
 105
 106struct selinux_state selinux_state;
 
 
 107
 108/* SECMARK reference count */
 109static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
 110
 111#ifdef CONFIG_SECURITY_SELINUX_DEVELOP
 112static int selinux_enforcing_boot;
 113
 114static int __init enforcing_setup(char *str)
 115{
 116	unsigned long enforcing;
 117	if (!kstrtoul(str, 0, &enforcing))
 118		selinux_enforcing_boot = enforcing ? 1 : 0;
 119	return 1;
 120}
 121__setup("enforcing=", enforcing_setup);
 122#else
 123#define selinux_enforcing_boot 1
 124#endif
 125
 126int selinux_enabled __lsm_ro_after_init = 1;
 127#ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
 
 
 128static int __init selinux_enabled_setup(char *str)
 129{
 130	unsigned long enabled;
 131	if (!kstrtoul(str, 0, &enabled))
 132		selinux_enabled = enabled ? 1 : 0;
 133	return 1;
 134}
 135__setup("selinux=", selinux_enabled_setup);
 
 
 136#endif
 137
 138static unsigned int selinux_checkreqprot_boot =
 139	CONFIG_SECURITY_SELINUX_CHECKREQPROT_VALUE;
 140
 141static int __init checkreqprot_setup(char *str)
 142{
 143	unsigned long checkreqprot;
 144
 145	if (!kstrtoul(str, 0, &checkreqprot))
 146		selinux_checkreqprot_boot = checkreqprot ? 1 : 0;
 147	return 1;
 148}
 149__setup("checkreqprot=", checkreqprot_setup);
 150
 151/**
 152 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
 153 *
 154 * Description:
 155 * This function checks the SECMARK reference counter to see if any SECMARK
 156 * targets are currently configured, if the reference counter is greater than
 157 * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
 158 * enabled, false (0) if SECMARK is disabled.  If the always_check_network
 159 * policy capability is enabled, SECMARK is always considered enabled.
 160 *
 161 */
 162static int selinux_secmark_enabled(void)
 163{
 164	return (selinux_policycap_alwaysnetwork() ||
 165		atomic_read(&selinux_secmark_refcount));
 166}
 167
 168/**
 169 * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled
 170 *
 171 * Description:
 172 * This function checks if NetLabel or labeled IPSEC is enabled.  Returns true
 173 * (1) if any are enabled or false (0) if neither are enabled.  If the
 174 * always_check_network policy capability is enabled, peer labeling
 175 * is always considered enabled.
 176 *
 177 */
 178static int selinux_peerlbl_enabled(void)
 179{
 180	return (selinux_policycap_alwaysnetwork() ||
 181		netlbl_enabled() || selinux_xfrm_enabled());
 182}
 183
 184static int selinux_netcache_avc_callback(u32 event)
 185{
 186	if (event == AVC_CALLBACK_RESET) {
 187		sel_netif_flush();
 188		sel_netnode_flush();
 189		sel_netport_flush();
 190		synchronize_net();
 191	}
 192	return 0;
 193}
 194
 195static int selinux_lsm_notifier_avc_callback(u32 event)
 196{
 197	if (event == AVC_CALLBACK_RESET) {
 198		sel_ib_pkey_flush();
 199		call_blocking_lsm_notifier(LSM_POLICY_CHANGE, NULL);
 200	}
 201
 202	return 0;
 203}
 204
 205/*
 206 * initialise the security for the init task
 207 */
 208static void cred_init_security(void)
 209{
 210	struct cred *cred = (struct cred *) current->real_cred;
 211	struct task_security_struct *tsec;
 212
 213	tsec = selinux_cred(cred);
 
 
 
 214	tsec->osid = tsec->sid = SECINITSID_KERNEL;
 
 215}
 216
 217/*
 218 * get the security ID of a set of credentials
 219 */
 220static inline u32 cred_sid(const struct cred *cred)
 221{
 222	const struct task_security_struct *tsec;
 223
 224	tsec = selinux_cred(cred);
 225	return tsec->sid;
 226}
 227
 228/*
 229 * get the objective security ID of a task
 230 */
 231static inline u32 task_sid(const struct task_struct *task)
 232{
 233	u32 sid;
 234
 235	rcu_read_lock();
 236	sid = cred_sid(__task_cred(task));
 237	rcu_read_unlock();
 238	return sid;
 239}
 240
 
 
 
 
 
 
 
 
 
 
 241/* Allocate and free functions for each kind of security blob. */
 242
 243static int inode_alloc_security(struct inode *inode)
 244{
 245	struct inode_security_struct *isec = selinux_inode(inode);
 246	u32 sid = current_sid();
 247
 248	spin_lock_init(&isec->lock);
 
 
 
 
 249	INIT_LIST_HEAD(&isec->list);
 250	isec->inode = inode;
 251	isec->sid = SECINITSID_UNLABELED;
 252	isec->sclass = SECCLASS_FILE;
 253	isec->task_sid = sid;
 254	isec->initialized = LABEL_INVALID;
 255
 256	return 0;
 257}
 258
 259static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
 260
 261/*
 262 * Try reloading inode security labels that have been marked as invalid.  The
 263 * @may_sleep parameter indicates when sleeping and thus reloading labels is
 264 * allowed; when set to false, returns -ECHILD when the label is
 265 * invalid.  The @dentry parameter should be set to a dentry of the inode.
 266 */
 267static int __inode_security_revalidate(struct inode *inode,
 268				       struct dentry *dentry,
 269				       bool may_sleep)
 270{
 271	struct inode_security_struct *isec = selinux_inode(inode);
 272
 273	might_sleep_if(may_sleep);
 274
 275	if (selinux_state.initialized &&
 276	    isec->initialized != LABEL_INITIALIZED) {
 277		if (!may_sleep)
 278			return -ECHILD;
 279
 280		/*
 281		 * Try reloading the inode security label.  This will fail if
 282		 * @opt_dentry is NULL and no dentry for this inode can be
 283		 * found; in that case, continue using the old label.
 284		 */
 285		inode_doinit_with_dentry(inode, dentry);
 286	}
 287	return 0;
 288}
 289
 290static struct inode_security_struct *inode_security_novalidate(struct inode *inode)
 291{
 292	return selinux_inode(inode);
 293}
 294
 295static struct inode_security_struct *inode_security_rcu(struct inode *inode, bool rcu)
 296{
 297	int error;
 298
 299	error = __inode_security_revalidate(inode, NULL, !rcu);
 300	if (error)
 301		return ERR_PTR(error);
 302	return selinux_inode(inode);
 303}
 304
 305/*
 306 * Get the security label of an inode.
 307 */
 308static struct inode_security_struct *inode_security(struct inode *inode)
 309{
 310	__inode_security_revalidate(inode, NULL, true);
 311	return selinux_inode(inode);
 312}
 313
 314static struct inode_security_struct *backing_inode_security_novalidate(struct dentry *dentry)
 315{
 316	struct inode *inode = d_backing_inode(dentry);
 317
 318	return selinux_inode(inode);
 319}
 320
 321/*
 322 * Get the security label of a dentry's backing inode.
 323 */
 324static struct inode_security_struct *backing_inode_security(struct dentry *dentry)
 325{
 326	struct inode *inode = d_backing_inode(dentry);
 327
 328	__inode_security_revalidate(inode, dentry, true);
 329	return selinux_inode(inode);
 330}
 331
 332static void inode_free_security(struct inode *inode)
 333{
 334	struct inode_security_struct *isec = selinux_inode(inode);
 335	struct superblock_security_struct *sbsec;
 336
 337	if (!isec)
 338		return;
 339	sbsec = inode->i_sb->s_security;
 340	/*
 341	 * As not all inode security structures are in a list, we check for
 342	 * empty list outside of the lock to make sure that we won't waste
 343	 * time taking a lock doing nothing.
 344	 *
 345	 * The list_del_init() function can be safely called more than once.
 346	 * It should not be possible for this function to be called with
 347	 * concurrent list_add(), but for better safety against future changes
 348	 * in the code, we use list_empty_careful() here.
 349	 */
 350	if (!list_empty_careful(&isec->list)) {
 351		spin_lock(&sbsec->isec_lock);
 352		list_del_init(&isec->list);
 353		spin_unlock(&sbsec->isec_lock);
 354	}
 
 
 355}
 356
 357static int file_alloc_security(struct file *file)
 358{
 359	struct file_security_struct *fsec = selinux_file(file);
 360	u32 sid = current_sid();
 361
 
 
 
 
 362	fsec->sid = sid;
 363	fsec->fown_sid = sid;
 
 364
 365	return 0;
 366}
 367
 
 
 
 
 
 
 
 368static int superblock_alloc_security(struct super_block *sb)
 369{
 370	struct superblock_security_struct *sbsec;
 371
 372	sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
 373	if (!sbsec)
 374		return -ENOMEM;
 375
 376	mutex_init(&sbsec->lock);
 377	INIT_LIST_HEAD(&sbsec->isec_head);
 378	spin_lock_init(&sbsec->isec_lock);
 379	sbsec->sb = sb;
 380	sbsec->sid = SECINITSID_UNLABELED;
 381	sbsec->def_sid = SECINITSID_FILE;
 382	sbsec->mntpoint_sid = SECINITSID_UNLABELED;
 383	sb->s_security = sbsec;
 384
 385	return 0;
 386}
 387
 388static void superblock_free_security(struct super_block *sb)
 389{
 390	struct superblock_security_struct *sbsec = sb->s_security;
 391	sb->s_security = NULL;
 392	kfree(sbsec);
 393}
 394
 395struct selinux_mnt_opts {
 396	const char *fscontext, *context, *rootcontext, *defcontext;
 
 
 
 
 
 
 
 397};
 398
 399static void selinux_free_mnt_opts(void *mnt_opts)
 400{
 401	struct selinux_mnt_opts *opts = mnt_opts;
 402	kfree(opts->fscontext);
 403	kfree(opts->context);
 404	kfree(opts->rootcontext);
 405	kfree(opts->defcontext);
 406	kfree(opts);
 407}
 408
 409static inline int inode_doinit(struct inode *inode)
 410{
 411	return inode_doinit_with_dentry(inode, NULL);
 412}
 413
 414enum {
 415	Opt_error = -1,
 416	Opt_context = 0,
 417	Opt_defcontext = 1,
 418	Opt_fscontext = 2,
 419	Opt_rootcontext = 3,
 420	Opt_seclabel = 4,
 
 421};
 422
 423#define A(s, has_arg) {#s, sizeof(#s) - 1, Opt_##s, has_arg}
 424static struct {
 425	const char *name;
 426	int len;
 427	int opt;
 428	bool has_arg;
 429} tokens[] = {
 430	A(context, true),
 431	A(fscontext, true),
 432	A(defcontext, true),
 433	A(rootcontext, true),
 434	A(seclabel, false),
 435};
 436#undef A
 437
 438static int match_opt_prefix(char *s, int l, char **arg)
 439{
 440	int i;
 441
 442	for (i = 0; i < ARRAY_SIZE(tokens); i++) {
 443		size_t len = tokens[i].len;
 444		if (len > l || memcmp(s, tokens[i].name, len))
 445			continue;
 446		if (tokens[i].has_arg) {
 447			if (len == l || s[len] != '=')
 448				continue;
 449			*arg = s + len + 1;
 450		} else if (len != l)
 451			continue;
 452		return tokens[i].opt;
 453	}
 454	return Opt_error;
 455}
 456
 457#define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
 458
 459static int may_context_mount_sb_relabel(u32 sid,
 460			struct superblock_security_struct *sbsec,
 461			const struct cred *cred)
 462{
 463	const struct task_security_struct *tsec = selinux_cred(cred);
 464	int rc;
 465
 466	rc = avc_has_perm(&selinux_state,
 467			  tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
 468			  FILESYSTEM__RELABELFROM, NULL);
 469	if (rc)
 470		return rc;
 471
 472	rc = avc_has_perm(&selinux_state,
 473			  tsec->sid, sid, SECCLASS_FILESYSTEM,
 474			  FILESYSTEM__RELABELTO, NULL);
 475	return rc;
 476}
 477
 478static int may_context_mount_inode_relabel(u32 sid,
 479			struct superblock_security_struct *sbsec,
 480			const struct cred *cred)
 481{
 482	const struct task_security_struct *tsec = selinux_cred(cred);
 483	int rc;
 484	rc = avc_has_perm(&selinux_state,
 485			  tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
 486			  FILESYSTEM__RELABELFROM, NULL);
 487	if (rc)
 488		return rc;
 489
 490	rc = avc_has_perm(&selinux_state,
 491			  sid, sbsec->sid, SECCLASS_FILESYSTEM,
 492			  FILESYSTEM__ASSOCIATE, NULL);
 493	return rc;
 494}
 495
 496static int selinux_is_genfs_special_handling(struct super_block *sb)
 497{
 498	/* Special handling. Genfs but also in-core setxattr handler */
 499	return	!strcmp(sb->s_type->name, "sysfs") ||
 500		!strcmp(sb->s_type->name, "pstore") ||
 501		!strcmp(sb->s_type->name, "debugfs") ||
 502		!strcmp(sb->s_type->name, "tracefs") ||
 503		!strcmp(sb->s_type->name, "rootfs") ||
 504		(selinux_policycap_cgroupseclabel() &&
 505		 (!strcmp(sb->s_type->name, "cgroup") ||
 506		  !strcmp(sb->s_type->name, "cgroup2")));
 507}
 508
 509static int selinux_is_sblabel_mnt(struct super_block *sb)
 510{
 511	struct superblock_security_struct *sbsec = sb->s_security;
 512
 513	/*
 514	 * IMPORTANT: Double-check logic in this function when adding a new
 515	 * SECURITY_FS_USE_* definition!
 516	 */
 517	BUILD_BUG_ON(SECURITY_FS_USE_MAX != 7);
 518
 519	switch (sbsec->behavior) {
 520	case SECURITY_FS_USE_XATTR:
 521	case SECURITY_FS_USE_TRANS:
 522	case SECURITY_FS_USE_TASK:
 523	case SECURITY_FS_USE_NATIVE:
 524		return 1;
 525
 526	case SECURITY_FS_USE_GENFS:
 527		return selinux_is_genfs_special_handling(sb);
 528
 529	/* Never allow relabeling on context mounts */
 530	case SECURITY_FS_USE_MNTPOINT:
 531	case SECURITY_FS_USE_NONE:
 532	default:
 533		return 0;
 534	}
 535}
 536
 537static int sb_finish_set_opts(struct super_block *sb)
 538{
 539	struct superblock_security_struct *sbsec = sb->s_security;
 540	struct dentry *root = sb->s_root;
 541	struct inode *root_inode = d_backing_inode(root);
 542	int rc = 0;
 543
 544	if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
 545		/* Make sure that the xattr handler exists and that no
 546		   error other than -ENODATA is returned by getxattr on
 547		   the root directory.  -ENODATA is ok, as this may be
 548		   the first boot of the SELinux kernel before we have
 549		   assigned xattr values to the filesystem. */
 550		if (!(root_inode->i_opflags & IOP_XATTR)) {
 551			pr_warn("SELinux: (dev %s, type %s) has no "
 552			       "xattr support\n", sb->s_id, sb->s_type->name);
 553			rc = -EOPNOTSUPP;
 554			goto out;
 555		}
 556
 557		rc = __vfs_getxattr(root, root_inode, XATTR_NAME_SELINUX, NULL, 0);
 558		if (rc < 0 && rc != -ENODATA) {
 559			if (rc == -EOPNOTSUPP)
 560				pr_warn("SELinux: (dev %s, type "
 561				       "%s) has no security xattr handler\n",
 562				       sb->s_id, sb->s_type->name);
 563			else
 564				pr_warn("SELinux: (dev %s, type "
 565				       "%s) getxattr errno %d\n", sb->s_id,
 566				       sb->s_type->name, -rc);
 567			goto out;
 568		}
 569	}
 570
 571	sbsec->flags |= SE_SBINITIALIZED;
 572
 573	/*
 574	 * Explicitly set or clear SBLABEL_MNT.  It's not sufficient to simply
 575	 * leave the flag untouched because sb_clone_mnt_opts might be handing
 576	 * us a superblock that needs the flag to be cleared.
 577	 */
 578	if (selinux_is_sblabel_mnt(sb))
 579		sbsec->flags |= SBLABEL_MNT;
 580	else
 581		sbsec->flags &= ~SBLABEL_MNT;
 
 
 
 
 
 
 
 
 
 
 
 
 582
 583	/* Initialize the root inode. */
 584	rc = inode_doinit_with_dentry(root_inode, root);
 585
 586	/* Initialize any other inodes associated with the superblock, e.g.
 587	   inodes created prior to initial policy load or inodes created
 588	   during get_sb by a pseudo filesystem that directly
 589	   populates itself. */
 590	spin_lock(&sbsec->isec_lock);
 591	while (!list_empty(&sbsec->isec_head)) {
 
 592		struct inode_security_struct *isec =
 593				list_first_entry(&sbsec->isec_head,
 594					   struct inode_security_struct, list);
 595		struct inode *inode = isec->inode;
 596		list_del_init(&isec->list);
 597		spin_unlock(&sbsec->isec_lock);
 598		inode = igrab(inode);
 599		if (inode) {
 600			if (!IS_PRIVATE(inode))
 601				inode_doinit(inode);
 602			iput(inode);
 603		}
 604		spin_lock(&sbsec->isec_lock);
 
 
 605	}
 606	spin_unlock(&sbsec->isec_lock);
 607out:
 608	return rc;
 609}
 610
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 611static int bad_option(struct superblock_security_struct *sbsec, char flag,
 612		      u32 old_sid, u32 new_sid)
 613{
 614	char mnt_flags = sbsec->flags & SE_MNTMASK;
 615
 616	/* check if the old mount command had the same options */
 617	if (sbsec->flags & SE_SBINITIALIZED)
 618		if (!(sbsec->flags & flag) ||
 619		    (old_sid != new_sid))
 620			return 1;
 621
 622	/* check if we were passed the same options twice,
 623	 * aka someone passed context=a,context=b
 624	 */
 625	if (!(sbsec->flags & SE_SBINITIALIZED))
 626		if (mnt_flags & flag)
 627			return 1;
 628	return 0;
 629}
 630
 631static int parse_sid(struct super_block *sb, const char *s, u32 *sid)
 632{
 633	int rc = security_context_str_to_sid(&selinux_state, s,
 634					     sid, GFP_KERNEL);
 635	if (rc)
 636		pr_warn("SELinux: security_context_str_to_sid"
 637		       "(%s) failed for (dev %s, type %s) errno=%d\n",
 638		       s, sb->s_id, sb->s_type->name, rc);
 639	return rc;
 640}
 641
 642/*
 643 * Allow filesystems with binary mount data to explicitly set mount point
 644 * labeling information.
 645 */
 646static int selinux_set_mnt_opts(struct super_block *sb,
 647				void *mnt_opts,
 648				unsigned long kern_flags,
 649				unsigned long *set_kern_flags)
 650{
 651	const struct cred *cred = current_cred();
 
 652	struct superblock_security_struct *sbsec = sb->s_security;
 653	struct dentry *root = sbsec->sb->s_root;
 654	struct selinux_mnt_opts *opts = mnt_opts;
 655	struct inode_security_struct *root_isec;
 656	u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
 657	u32 defcontext_sid = 0;
 658	int rc = 0;
 
 
 659
 660	mutex_lock(&sbsec->lock);
 661
 662	if (!selinux_state.initialized) {
 663		if (!opts) {
 664			/* Defer initialization until selinux_complete_init,
 665			   after the initial policy is loaded and the security
 666			   server is ready to handle calls. */
 667			goto out;
 668		}
 669		rc = -EINVAL;
 670		pr_warn("SELinux: Unable to set superblock options "
 671			"before the security server is initialized\n");
 672		goto out;
 673	}
 674	if (kern_flags && !set_kern_flags) {
 675		/* Specifying internal flags without providing a place to
 676		 * place the results is not allowed */
 677		rc = -EINVAL;
 678		goto out;
 679	}
 680
 681	/*
 682	 * Binary mount data FS will come through this function twice.  Once
 683	 * from an explicit call and once from the generic calls from the vfs.
 684	 * Since the generic VFS calls will not contain any security mount data
 685	 * we need to skip the double mount verification.
 686	 *
 687	 * This does open a hole in which we will not notice if the first
 688	 * mount using this sb set explict options and a second mount using
 689	 * this sb does not set any security options.  (The first options
 690	 * will be used for both mounts)
 691	 */
 692	if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
 693	    && !opts)
 694		goto out;
 695
 696	root_isec = backing_inode_security_novalidate(root);
 697
 698	/*
 699	 * parse the mount options, check if they are valid sids.
 700	 * also check if someone is trying to mount the same sb more
 701	 * than once with different security options.
 702	 */
 703	if (opts) {
 704		if (opts->fscontext) {
 705			rc = parse_sid(sb, opts->fscontext, &fscontext_sid);
 706			if (rc)
 707				goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 708			if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
 709					fscontext_sid))
 710				goto out_double_mount;
 
 711			sbsec->flags |= FSCONTEXT_MNT;
 712		}
 713		if (opts->context) {
 714			rc = parse_sid(sb, opts->context, &context_sid);
 715			if (rc)
 716				goto out;
 717			if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
 718					context_sid))
 719				goto out_double_mount;
 
 720			sbsec->flags |= CONTEXT_MNT;
 721		}
 722		if (opts->rootcontext) {
 723			rc = parse_sid(sb, opts->rootcontext, &rootcontext_sid);
 724			if (rc)
 725				goto out;
 726			if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
 727					rootcontext_sid))
 728				goto out_double_mount;
 
 729			sbsec->flags |= ROOTCONTEXT_MNT;
 730		}
 731		if (opts->defcontext) {
 732			rc = parse_sid(sb, opts->defcontext, &defcontext_sid);
 733			if (rc)
 734				goto out;
 735			if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
 736					defcontext_sid))
 737				goto out_double_mount;
 
 738			sbsec->flags |= DEFCONTEXT_MNT;
 
 
 
 
 
 739		}
 740	}
 741
 742	if (sbsec->flags & SE_SBINITIALIZED) {
 743		/* previously mounted with options, but not on this attempt? */
 744		if ((sbsec->flags & SE_MNTMASK) && !opts)
 745			goto out_double_mount;
 746		rc = 0;
 747		goto out;
 748	}
 749
 750	if (strcmp(sb->s_type->name, "proc") == 0)
 751		sbsec->flags |= SE_SBPROC | SE_SBGENFS;
 752
 753	if (!strcmp(sb->s_type->name, "debugfs") ||
 754	    !strcmp(sb->s_type->name, "tracefs") ||
 755	    !strcmp(sb->s_type->name, "pstore"))
 756		sbsec->flags |= SE_SBGENFS;
 757
 758	if (!strcmp(sb->s_type->name, "sysfs") ||
 759	    !strcmp(sb->s_type->name, "cgroup") ||
 760	    !strcmp(sb->s_type->name, "cgroup2"))
 761		sbsec->flags |= SE_SBGENFS | SE_SBGENFS_XATTR;
 762
 763	if (!sbsec->behavior) {
 764		/*
 765		 * Determine the labeling behavior to use for this
 766		 * filesystem type.
 767		 */
 768		rc = security_fs_use(&selinux_state, sb);
 769		if (rc) {
 770			pr_warn("%s: security_fs_use(%s) returned %d\n",
 771					__func__, sb->s_type->name, rc);
 772			goto out;
 773		}
 774	}
 775
 776	/*
 777	 * If this is a user namespace mount and the filesystem type is not
 778	 * explicitly whitelisted, then no contexts are allowed on the command
 779	 * line and security labels must be ignored.
 780	 */
 781	if (sb->s_user_ns != &init_user_ns &&
 782	    strcmp(sb->s_type->name, "tmpfs") &&
 783	    strcmp(sb->s_type->name, "ramfs") &&
 784	    strcmp(sb->s_type->name, "devpts")) {
 785		if (context_sid || fscontext_sid || rootcontext_sid ||
 786		    defcontext_sid) {
 787			rc = -EACCES;
 788			goto out;
 789		}
 790		if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
 791			sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
 792			rc = security_transition_sid(&selinux_state,
 793						     current_sid(),
 794						     current_sid(),
 795						     SECCLASS_FILE, NULL,
 796						     &sbsec->mntpoint_sid);
 797			if (rc)
 798				goto out;
 799		}
 800		goto out_set_opts;
 801	}
 802
 803	/* sets the context of the superblock for the fs being mounted. */
 804	if (fscontext_sid) {
 805		rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
 806		if (rc)
 807			goto out;
 808
 809		sbsec->sid = fscontext_sid;
 810	}
 811
 812	/*
 813	 * Switch to using mount point labeling behavior.
 814	 * sets the label used on all file below the mountpoint, and will set
 815	 * the superblock context if not already set.
 816	 */
 817	if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) {
 818		sbsec->behavior = SECURITY_FS_USE_NATIVE;
 819		*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
 820	}
 821
 822	if (context_sid) {
 823		if (!fscontext_sid) {
 824			rc = may_context_mount_sb_relabel(context_sid, sbsec,
 825							  cred);
 826			if (rc)
 827				goto out;
 828			sbsec->sid = context_sid;
 829		} else {
 830			rc = may_context_mount_inode_relabel(context_sid, sbsec,
 831							     cred);
 832			if (rc)
 833				goto out;
 834		}
 835		if (!rootcontext_sid)
 836			rootcontext_sid = context_sid;
 837
 838		sbsec->mntpoint_sid = context_sid;
 839		sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
 840	}
 841
 842	if (rootcontext_sid) {
 843		rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
 844						     cred);
 845		if (rc)
 846			goto out;
 847
 848		root_isec->sid = rootcontext_sid;
 849		root_isec->initialized = LABEL_INITIALIZED;
 850	}
 851
 852	if (defcontext_sid) {
 853		if (sbsec->behavior != SECURITY_FS_USE_XATTR &&
 854			sbsec->behavior != SECURITY_FS_USE_NATIVE) {
 855			rc = -EINVAL;
 856			pr_warn("SELinux: defcontext option is "
 857			       "invalid for this filesystem type\n");
 858			goto out;
 859		}
 860
 861		if (defcontext_sid != sbsec->def_sid) {
 862			rc = may_context_mount_inode_relabel(defcontext_sid,
 863							     sbsec, cred);
 864			if (rc)
 865				goto out;
 866		}
 867
 868		sbsec->def_sid = defcontext_sid;
 869	}
 870
 871out_set_opts:
 872	rc = sb_finish_set_opts(sb);
 873out:
 874	mutex_unlock(&sbsec->lock);
 875	return rc;
 876out_double_mount:
 877	rc = -EINVAL;
 878	pr_warn("SELinux: mount invalid.  Same superblock, different "
 879	       "security settings for (dev %s, type %s)\n", sb->s_id,
 880	       sb->s_type->name);
 881	goto out;
 882}
 883
 884static int selinux_cmp_sb_context(const struct super_block *oldsb,
 885				    const struct super_block *newsb)
 886{
 887	struct superblock_security_struct *old = oldsb->s_security;
 888	struct superblock_security_struct *new = newsb->s_security;
 889	char oldflags = old->flags & SE_MNTMASK;
 890	char newflags = new->flags & SE_MNTMASK;
 891
 892	if (oldflags != newflags)
 893		goto mismatch;
 894	if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid)
 895		goto mismatch;
 896	if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid)
 897		goto mismatch;
 898	if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid)
 899		goto mismatch;
 900	if (oldflags & ROOTCONTEXT_MNT) {
 901		struct inode_security_struct *oldroot = backing_inode_security(oldsb->s_root);
 902		struct inode_security_struct *newroot = backing_inode_security(newsb->s_root);
 903		if (oldroot->sid != newroot->sid)
 904			goto mismatch;
 905	}
 906	return 0;
 907mismatch:
 908	pr_warn("SELinux: mount invalid.  Same superblock, "
 909			    "different security settings for (dev %s, "
 910			    "type %s)\n", newsb->s_id, newsb->s_type->name);
 911	return -EBUSY;
 912}
 913
 914static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
 915					struct super_block *newsb,
 916					unsigned long kern_flags,
 917					unsigned long *set_kern_flags)
 918{
 919	int rc = 0;
 920	const struct superblock_security_struct *oldsbsec = oldsb->s_security;
 921	struct superblock_security_struct *newsbsec = newsb->s_security;
 922
 923	int set_fscontext =	(oldsbsec->flags & FSCONTEXT_MNT);
 924	int set_context =	(oldsbsec->flags & CONTEXT_MNT);
 925	int set_rootcontext =	(oldsbsec->flags & ROOTCONTEXT_MNT);
 926
 927	/*
 928	 * if the parent was able to be mounted it clearly had no special lsm
 929	 * mount options.  thus we can safely deal with this superblock later
 930	 */
 931	if (!selinux_state.initialized)
 932		return 0;
 933
 934	/*
 935	 * Specifying internal flags without providing a place to
 936	 * place the results is not allowed.
 937	 */
 938	if (kern_flags && !set_kern_flags)
 939		return -EINVAL;
 940
 941	/* how can we clone if the old one wasn't set up?? */
 942	BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
 943
 944	/* if fs is reusing a sb, make sure that the contexts match */
 945	if (newsbsec->flags & SE_SBINITIALIZED) {
 946		if ((kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context)
 947			*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
 948		return selinux_cmp_sb_context(oldsb, newsb);
 949	}
 950
 951	mutex_lock(&newsbsec->lock);
 952
 953	newsbsec->flags = oldsbsec->flags;
 954
 955	newsbsec->sid = oldsbsec->sid;
 956	newsbsec->def_sid = oldsbsec->def_sid;
 957	newsbsec->behavior = oldsbsec->behavior;
 958
 959	if (newsbsec->behavior == SECURITY_FS_USE_NATIVE &&
 960		!(kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context) {
 961		rc = security_fs_use(&selinux_state, newsb);
 962		if (rc)
 963			goto out;
 964	}
 965
 966	if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !set_context) {
 967		newsbsec->behavior = SECURITY_FS_USE_NATIVE;
 968		*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
 969	}
 970
 971	if (set_context) {
 972		u32 sid = oldsbsec->mntpoint_sid;
 973
 974		if (!set_fscontext)
 975			newsbsec->sid = sid;
 976		if (!set_rootcontext) {
 977			struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
 
 978			newisec->sid = sid;
 979		}
 980		newsbsec->mntpoint_sid = sid;
 981	}
 982	if (set_rootcontext) {
 983		const struct inode_security_struct *oldisec = backing_inode_security(oldsb->s_root);
 984		struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
 
 
 985
 986		newisec->sid = oldisec->sid;
 987	}
 988
 989	sb_finish_set_opts(newsb);
 990out:
 991	mutex_unlock(&newsbsec->lock);
 992	return rc;
 993}
 994
 995static int selinux_add_opt(int token, const char *s, void **mnt_opts)
 
 996{
 997	struct selinux_mnt_opts *opts = *mnt_opts;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 998
 999	if (token == Opt_seclabel)	/* eaten and completely ignored */
1000		return 0;
 
 
 
 
 
 
 
 
 
 
 
1001
1002	if (!opts) {
1003		opts = kzalloc(sizeof(struct selinux_mnt_opts), GFP_KERNEL);
1004		if (!opts)
1005			return -ENOMEM;
1006		*mnt_opts = opts;
1007	}
1008	if (!s)
1009		return -ENOMEM;
1010	switch (token) {
1011	case Opt_context:
1012		if (opts->context || opts->defcontext)
1013			goto Einval;
1014		opts->context = s;
1015		break;
1016	case Opt_fscontext:
1017		if (opts->fscontext)
1018			goto Einval;
1019		opts->fscontext = s;
1020		break;
1021	case Opt_rootcontext:
1022		if (opts->rootcontext)
1023			goto Einval;
1024		opts->rootcontext = s;
1025		break;
1026	case Opt_defcontext:
1027		if (opts->context || opts->defcontext)
1028			goto Einval;
1029		opts->defcontext = s;
1030		break;
1031	}
1032	return 0;
1033Einval:
1034	pr_warn(SEL_MOUNT_FAIL_MSG);
1035	return -EINVAL;
1036}
1037
1038static int selinux_add_mnt_opt(const char *option, const char *val, int len,
1039			       void **mnt_opts)
1040{
1041	int token = Opt_error;
1042	int rc, i;
 
 
 
 
 
 
 
1043
1044	for (i = 0; i < ARRAY_SIZE(tokens); i++) {
1045		if (strcmp(option, tokens[i].name) == 0) {
1046			token = tokens[i].opt;
 
 
 
 
 
 
 
 
 
 
1047			break;
 
 
 
 
 
1048		}
1049	}
1050
1051	if (token == Opt_error)
1052		return -EINVAL;
 
 
 
 
 
 
 
 
1053
1054	if (token != Opt_seclabel) {
1055		val = kmemdup_nul(val, len, GFP_KERNEL);
1056		if (!val) {
1057			rc = -ENOMEM;
1058			goto free_opt;
1059		}
 
 
 
 
 
1060	}
1061	rc = selinux_add_opt(token, val, mnt_opts);
1062	if (unlikely(rc)) {
1063		kfree(val);
1064		goto free_opt;
1065	}
 
 
 
 
 
 
 
 
 
1066	return rc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1067
1068free_opt:
1069	if (*mnt_opts) {
1070		selinux_free_mnt_opts(*mnt_opts);
1071		*mnt_opts = NULL;
1072	}
 
 
 
 
1073	return rc;
1074}
1075
1076static int show_sid(struct seq_file *m, u32 sid)
 
1077{
1078	char *context = NULL;
1079	u32 len;
1080	int rc;
 
 
1081
1082	rc = security_sid_to_context(&selinux_state, sid,
1083					     &context, &len);
1084	if (!rc) {
1085		bool has_comma = context && strchr(context, ',');
1086
1087		seq_putc(m, '=');
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1088		if (has_comma)
1089			seq_putc(m, '\"');
1090		seq_escape(m, context, "\"\n\\");
1091		if (has_comma)
1092			seq_putc(m, '\"');
1093	}
1094	kfree(context);
1095	return rc;
1096}
1097
1098static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1099{
1100	struct superblock_security_struct *sbsec = sb->s_security;
1101	int rc;
1102
1103	if (!(sbsec->flags & SE_SBINITIALIZED))
1104		return 0;
 
 
 
 
 
 
 
1105
1106	if (!selinux_state.initialized)
1107		return 0;
1108
1109	if (sbsec->flags & FSCONTEXT_MNT) {
1110		seq_putc(m, ',');
1111		seq_puts(m, FSCONTEXT_STR);
1112		rc = show_sid(m, sbsec->sid);
1113		if (rc)
1114			return rc;
1115	}
1116	if (sbsec->flags & CONTEXT_MNT) {
1117		seq_putc(m, ',');
1118		seq_puts(m, CONTEXT_STR);
1119		rc = show_sid(m, sbsec->mntpoint_sid);
1120		if (rc)
1121			return rc;
1122	}
1123	if (sbsec->flags & DEFCONTEXT_MNT) {
1124		seq_putc(m, ',');
1125		seq_puts(m, DEFCONTEXT_STR);
1126		rc = show_sid(m, sbsec->def_sid);
1127		if (rc)
1128			return rc;
1129	}
1130	if (sbsec->flags & ROOTCONTEXT_MNT) {
1131		struct dentry *root = sbsec->sb->s_root;
1132		struct inode_security_struct *isec = backing_inode_security(root);
1133		seq_putc(m, ',');
1134		seq_puts(m, ROOTCONTEXT_STR);
1135		rc = show_sid(m, isec->sid);
1136		if (rc)
1137			return rc;
1138	}
1139	if (sbsec->flags & SBLABEL_MNT) {
1140		seq_putc(m, ',');
1141		seq_puts(m, SECLABEL_STR);
1142	}
1143	return 0;
1144}
1145
1146static inline u16 inode_mode_to_security_class(umode_t mode)
1147{
1148	switch (mode & S_IFMT) {
1149	case S_IFSOCK:
1150		return SECCLASS_SOCK_FILE;
1151	case S_IFLNK:
1152		return SECCLASS_LNK_FILE;
1153	case S_IFREG:
1154		return SECCLASS_FILE;
1155	case S_IFBLK:
1156		return SECCLASS_BLK_FILE;
1157	case S_IFDIR:
1158		return SECCLASS_DIR;
1159	case S_IFCHR:
1160		return SECCLASS_CHR_FILE;
1161	case S_IFIFO:
1162		return SECCLASS_FIFO_FILE;
1163
1164	}
1165
1166	return SECCLASS_FILE;
1167}
1168
1169static inline int default_protocol_stream(int protocol)
1170{
1171	return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1172}
1173
1174static inline int default_protocol_dgram(int protocol)
1175{
1176	return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1177}
1178
1179static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1180{
1181	int extsockclass = selinux_policycap_extsockclass();
1182
1183	switch (family) {
1184	case PF_UNIX:
1185		switch (type) {
1186		case SOCK_STREAM:
1187		case SOCK_SEQPACKET:
1188			return SECCLASS_UNIX_STREAM_SOCKET;
1189		case SOCK_DGRAM:
1190		case SOCK_RAW:
1191			return SECCLASS_UNIX_DGRAM_SOCKET;
1192		}
1193		break;
1194	case PF_INET:
1195	case PF_INET6:
1196		switch (type) {
1197		case SOCK_STREAM:
1198		case SOCK_SEQPACKET:
1199			if (default_protocol_stream(protocol))
1200				return SECCLASS_TCP_SOCKET;
1201			else if (extsockclass && protocol == IPPROTO_SCTP)
1202				return SECCLASS_SCTP_SOCKET;
1203			else
1204				return SECCLASS_RAWIP_SOCKET;
1205		case SOCK_DGRAM:
1206			if (default_protocol_dgram(protocol))
1207				return SECCLASS_UDP_SOCKET;
1208			else if (extsockclass && (protocol == IPPROTO_ICMP ||
1209						  protocol == IPPROTO_ICMPV6))
1210				return SECCLASS_ICMP_SOCKET;
1211			else
1212				return SECCLASS_RAWIP_SOCKET;
1213		case SOCK_DCCP:
1214			return SECCLASS_DCCP_SOCKET;
1215		default:
1216			return SECCLASS_RAWIP_SOCKET;
1217		}
1218		break;
1219	case PF_NETLINK:
1220		switch (protocol) {
1221		case NETLINK_ROUTE:
1222			return SECCLASS_NETLINK_ROUTE_SOCKET;
 
 
1223		case NETLINK_SOCK_DIAG:
1224			return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1225		case NETLINK_NFLOG:
1226			return SECCLASS_NETLINK_NFLOG_SOCKET;
1227		case NETLINK_XFRM:
1228			return SECCLASS_NETLINK_XFRM_SOCKET;
1229		case NETLINK_SELINUX:
1230			return SECCLASS_NETLINK_SELINUX_SOCKET;
1231		case NETLINK_ISCSI:
1232			return SECCLASS_NETLINK_ISCSI_SOCKET;
1233		case NETLINK_AUDIT:
1234			return SECCLASS_NETLINK_AUDIT_SOCKET;
1235		case NETLINK_FIB_LOOKUP:
1236			return SECCLASS_NETLINK_FIB_LOOKUP_SOCKET;
1237		case NETLINK_CONNECTOR:
1238			return SECCLASS_NETLINK_CONNECTOR_SOCKET;
1239		case NETLINK_NETFILTER:
1240			return SECCLASS_NETLINK_NETFILTER_SOCKET;
1241		case NETLINK_DNRTMSG:
1242			return SECCLASS_NETLINK_DNRT_SOCKET;
1243		case NETLINK_KOBJECT_UEVENT:
1244			return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1245		case NETLINK_GENERIC:
1246			return SECCLASS_NETLINK_GENERIC_SOCKET;
1247		case NETLINK_SCSITRANSPORT:
1248			return SECCLASS_NETLINK_SCSITRANSPORT_SOCKET;
1249		case NETLINK_RDMA:
1250			return SECCLASS_NETLINK_RDMA_SOCKET;
1251		case NETLINK_CRYPTO:
1252			return SECCLASS_NETLINK_CRYPTO_SOCKET;
1253		default:
1254			return SECCLASS_NETLINK_SOCKET;
1255		}
1256	case PF_PACKET:
1257		return SECCLASS_PACKET_SOCKET;
1258	case PF_KEY:
1259		return SECCLASS_KEY_SOCKET;
1260	case PF_APPLETALK:
1261		return SECCLASS_APPLETALK_SOCKET;
1262	}
1263
1264	if (extsockclass) {
1265		switch (family) {
1266		case PF_AX25:
1267			return SECCLASS_AX25_SOCKET;
1268		case PF_IPX:
1269			return SECCLASS_IPX_SOCKET;
1270		case PF_NETROM:
1271			return SECCLASS_NETROM_SOCKET;
1272		case PF_ATMPVC:
1273			return SECCLASS_ATMPVC_SOCKET;
1274		case PF_X25:
1275			return SECCLASS_X25_SOCKET;
1276		case PF_ROSE:
1277			return SECCLASS_ROSE_SOCKET;
1278		case PF_DECnet:
1279			return SECCLASS_DECNET_SOCKET;
1280		case PF_ATMSVC:
1281			return SECCLASS_ATMSVC_SOCKET;
1282		case PF_RDS:
1283			return SECCLASS_RDS_SOCKET;
1284		case PF_IRDA:
1285			return SECCLASS_IRDA_SOCKET;
1286		case PF_PPPOX:
1287			return SECCLASS_PPPOX_SOCKET;
1288		case PF_LLC:
1289			return SECCLASS_LLC_SOCKET;
1290		case PF_CAN:
1291			return SECCLASS_CAN_SOCKET;
1292		case PF_TIPC:
1293			return SECCLASS_TIPC_SOCKET;
1294		case PF_BLUETOOTH:
1295			return SECCLASS_BLUETOOTH_SOCKET;
1296		case PF_IUCV:
1297			return SECCLASS_IUCV_SOCKET;
1298		case PF_RXRPC:
1299			return SECCLASS_RXRPC_SOCKET;
1300		case PF_ISDN:
1301			return SECCLASS_ISDN_SOCKET;
1302		case PF_PHONET:
1303			return SECCLASS_PHONET_SOCKET;
1304		case PF_IEEE802154:
1305			return SECCLASS_IEEE802154_SOCKET;
1306		case PF_CAIF:
1307			return SECCLASS_CAIF_SOCKET;
1308		case PF_ALG:
1309			return SECCLASS_ALG_SOCKET;
1310		case PF_NFC:
1311			return SECCLASS_NFC_SOCKET;
1312		case PF_VSOCK:
1313			return SECCLASS_VSOCK_SOCKET;
1314		case PF_KCM:
1315			return SECCLASS_KCM_SOCKET;
1316		case PF_QIPCRTR:
1317			return SECCLASS_QIPCRTR_SOCKET;
1318		case PF_SMC:
1319			return SECCLASS_SMC_SOCKET;
1320		case PF_XDP:
1321			return SECCLASS_XDP_SOCKET;
1322#if PF_MAX > 45
1323#error New address family defined, please update this function.
1324#endif
1325		}
1326	}
1327
1328	return SECCLASS_SOCKET;
1329}
1330
1331static int selinux_genfs_get_sid(struct dentry *dentry,
1332				 u16 tclass,
1333				 u16 flags,
1334				 u32 *sid)
1335{
1336	int rc;
1337	struct super_block *sb = dentry->d_sb;
1338	char *buffer, *path;
1339
1340	buffer = (char *)__get_free_page(GFP_KERNEL);
1341	if (!buffer)
1342		return -ENOMEM;
1343
1344	path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1345	if (IS_ERR(path))
1346		rc = PTR_ERR(path);
1347	else {
1348		if (flags & SE_SBPROC) {
1349			/* each process gets a /proc/PID/ entry. Strip off the
1350			 * PID part to get a valid selinux labeling.
1351			 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1352			while (path[1] >= '0' && path[1] <= '9') {
1353				path[1] = '/';
1354				path++;
1355			}
1356		}
1357		rc = security_genfs_sid(&selinux_state, sb->s_type->name,
1358					path, tclass, sid);
1359		if (rc == -ENOENT) {
1360			/* No match in policy, mark as unlabeled. */
1361			*sid = SECINITSID_UNLABELED;
1362			rc = 0;
1363		}
 
1364	}
1365	free_page((unsigned long)buffer);
1366	return rc;
1367}
1368
1369static int inode_doinit_use_xattr(struct inode *inode, struct dentry *dentry,
1370				  u32 def_sid, u32 *sid)
 
1371{
1372#define INITCONTEXTLEN 255
1373	char *context;
1374	unsigned int len;
1375	int rc;
1376
1377	len = INITCONTEXTLEN;
1378	context = kmalloc(len + 1, GFP_NOFS);
1379	if (!context)
1380		return -ENOMEM;
1381
1382	context[len] = '\0';
1383	rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len);
1384	if (rc == -ERANGE) {
1385		kfree(context);
1386
1387		/* Need a larger buffer.  Query for the right size. */
1388		rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, NULL, 0);
1389		if (rc < 0)
1390			return rc;
1391
1392		len = rc;
1393		context = kmalloc(len + 1, GFP_NOFS);
1394		if (!context)
1395			return -ENOMEM;
1396
1397		context[len] = '\0';
1398		rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX,
1399				    context, len);
1400	}
1401	if (rc < 0) {
1402		kfree(context);
1403		if (rc != -ENODATA) {
1404			pr_warn("SELinux: %s:  getxattr returned %d for dev=%s ino=%ld\n",
1405				__func__, -rc, inode->i_sb->s_id, inode->i_ino);
1406			return rc;
1407		}
1408		*sid = def_sid;
1409		return 0;
1410	}
1411
1412	rc = security_context_to_sid_default(&selinux_state, context, rc, sid,
1413					     def_sid, GFP_NOFS);
1414	if (rc) {
1415		char *dev = inode->i_sb->s_id;
1416		unsigned long ino = inode->i_ino;
1417
1418		if (rc == -EINVAL) {
1419			pr_notice_ratelimited("SELinux: inode=%lu on dev=%s was found to have an invalid context=%s.  This indicates you may need to relabel the inode or the filesystem in question.\n",
1420					      ino, dev, context);
1421		} else {
1422			pr_warn("SELinux: %s:  context_to_sid(%s) returned %d for dev=%s ino=%ld\n",
1423				__func__, context, -rc, dev, ino);
1424		}
1425	}
1426	kfree(context);
1427	return 0;
1428}
 
1429
1430/* The inode's security attributes must be initialized before first use. */
1431static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1432{
1433	struct superblock_security_struct *sbsec = NULL;
1434	struct inode_security_struct *isec = selinux_inode(inode);
1435	u32 task_sid, sid = 0;
1436	u16 sclass;
1437	struct dentry *dentry;
 
 
 
1438	int rc = 0;
1439
1440	if (isec->initialized == LABEL_INITIALIZED)
1441		return 0;
1442
1443	spin_lock(&isec->lock);
1444	if (isec->initialized == LABEL_INITIALIZED)
1445		goto out_unlock;
1446
1447	if (isec->sclass == SECCLASS_FILE)
1448		isec->sclass = inode_mode_to_security_class(inode->i_mode);
1449
1450	sbsec = inode->i_sb->s_security;
1451	if (!(sbsec->flags & SE_SBINITIALIZED)) {
1452		/* Defer initialization until selinux_complete_init,
1453		   after the initial policy is loaded and the security
1454		   server is ready to handle calls. */
1455		spin_lock(&sbsec->isec_lock);
1456		if (list_empty(&isec->list))
1457			list_add(&isec->list, &sbsec->isec_head);
1458		spin_unlock(&sbsec->isec_lock);
1459		goto out_unlock;
1460	}
1461
1462	sclass = isec->sclass;
1463	task_sid = isec->task_sid;
1464	sid = isec->sid;
1465	isec->initialized = LABEL_PENDING;
1466	spin_unlock(&isec->lock);
1467
1468	switch (sbsec->behavior) {
1469	case SECURITY_FS_USE_NATIVE:
1470		break;
1471	case SECURITY_FS_USE_XATTR:
1472		if (!(inode->i_opflags & IOP_XATTR)) {
1473			sid = sbsec->def_sid;
1474			break;
1475		}
 
1476		/* Need a dentry, since the xattr API requires one.
1477		   Life would be simpler if we could just pass the inode. */
1478		if (opt_dentry) {
1479			/* Called from d_instantiate or d_splice_alias. */
1480			dentry = dget(opt_dentry);
1481		} else {
1482			/*
1483			 * Called from selinux_complete_init, try to find a dentry.
1484			 * Some filesystems really want a connected one, so try
1485			 * that first.  We could split SECURITY_FS_USE_XATTR in
1486			 * two, depending upon that...
1487			 */
1488			dentry = d_find_alias(inode);
1489			if (!dentry)
1490				dentry = d_find_any_alias(inode);
1491		}
1492		if (!dentry) {
1493			/*
1494			 * this is can be hit on boot when a file is accessed
1495			 * before the policy is loaded.  When we load policy we
1496			 * may find inodes that have no dentry on the
1497			 * sbsec->isec_head list.  No reason to complain as these
1498			 * will get fixed up the next time we go through
1499			 * inode_doinit with a dentry, before these inodes could
1500			 * be used again by userspace.
1501			 */
1502			goto out;
1503		}
1504
1505		rc = inode_doinit_use_xattr(inode, dentry, sbsec->def_sid,
1506					    &sid);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1507		dput(dentry);
1508		if (rc)
1509			goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1510		break;
1511	case SECURITY_FS_USE_TASK:
1512		sid = task_sid;
1513		break;
1514	case SECURITY_FS_USE_TRANS:
1515		/* Default to the fs SID. */
1516		sid = sbsec->sid;
1517
1518		/* Try to obtain a transition SID. */
1519		rc = security_transition_sid(&selinux_state, task_sid, sid,
1520					     sclass, NULL, &sid);
 
1521		if (rc)
1522			goto out;
 
1523		break;
1524	case SECURITY_FS_USE_MNTPOINT:
1525		sid = sbsec->mntpoint_sid;
1526		break;
1527	default:
1528		/* Default to the fs superblock SID. */
1529		sid = sbsec->sid;
1530
1531		if ((sbsec->flags & SE_SBGENFS) && !S_ISLNK(inode->i_mode)) {
1532			/* We must have a dentry to determine the label on
1533			 * procfs inodes */
1534			if (opt_dentry) {
1535				/* Called from d_instantiate or
1536				 * d_splice_alias. */
1537				dentry = dget(opt_dentry);
1538			} else {
1539				/* Called from selinux_complete_init, try to
1540				 * find a dentry.  Some filesystems really want
1541				 * a connected one, so try that first.
1542				 */
1543				dentry = d_find_alias(inode);
1544				if (!dentry)
1545					dentry = d_find_any_alias(inode);
1546			}
1547			/*
1548			 * This can be hit on boot when a file is accessed
1549			 * before the policy is loaded.  When we load policy we
1550			 * may find inodes that have no dentry on the
1551			 * sbsec->isec_head list.  No reason to complain as
1552			 * these will get fixed up the next time we go through
1553			 * inode_doinit() with a dentry, before these inodes
1554			 * could be used again by userspace.
1555			 */
1556			if (!dentry)
1557				goto out;
1558			rc = selinux_genfs_get_sid(dentry, sclass,
1559						   sbsec->flags, &sid);
1560			if (rc) {
1561				dput(dentry);
1562				goto out;
1563			}
1564
1565			if ((sbsec->flags & SE_SBGENFS_XATTR) &&
1566			    (inode->i_opflags & IOP_XATTR)) {
1567				rc = inode_doinit_use_xattr(inode, dentry,
1568							    sid, &sid);
1569				if (rc) {
1570					dput(dentry);
1571					goto out;
1572				}
1573			}
1574			dput(dentry);
1575		}
1576		break;
1577	}
1578
1579out:
1580	spin_lock(&isec->lock);
1581	if (isec->initialized == LABEL_PENDING) {
1582		if (!sid || rc) {
1583			isec->initialized = LABEL_INVALID;
1584			goto out_unlock;
1585		}
1586
1587		isec->initialized = LABEL_INITIALIZED;
1588		isec->sid = sid;
1589	}
1590
1591out_unlock:
1592	spin_unlock(&isec->lock);
 
 
 
1593	return rc;
1594}
1595
1596/* Convert a Linux signal to an access vector. */
1597static inline u32 signal_to_av(int sig)
1598{
1599	u32 perm = 0;
1600
1601	switch (sig) {
1602	case SIGCHLD:
1603		/* Commonly granted from child to parent. */
1604		perm = PROCESS__SIGCHLD;
1605		break;
1606	case SIGKILL:
1607		/* Cannot be caught or ignored */
1608		perm = PROCESS__SIGKILL;
1609		break;
1610	case SIGSTOP:
1611		/* Cannot be caught or ignored */
1612		perm = PROCESS__SIGSTOP;
1613		break;
1614	default:
1615		/* All other signals. */
1616		perm = PROCESS__SIGNAL;
1617		break;
1618	}
1619
1620	return perm;
1621}
1622
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1623#if CAP_LAST_CAP > 63
1624#error Fix SELinux to handle capabilities > 63.
1625#endif
1626
1627/* Check whether a task is allowed to use a capability. */
1628static int cred_has_capability(const struct cred *cred,
1629			       int cap, unsigned int opts, bool initns)
1630{
1631	struct common_audit_data ad;
1632	struct av_decision avd;
1633	u16 sclass;
1634	u32 sid = cred_sid(cred);
1635	u32 av = CAP_TO_MASK(cap);
1636	int rc;
1637
1638	ad.type = LSM_AUDIT_DATA_CAP;
1639	ad.u.cap = cap;
1640
1641	switch (CAP_TO_INDEX(cap)) {
1642	case 0:
1643		sclass = initns ? SECCLASS_CAPABILITY : SECCLASS_CAP_USERNS;
1644		break;
1645	case 1:
1646		sclass = initns ? SECCLASS_CAPABILITY2 : SECCLASS_CAP2_USERNS;
1647		break;
1648	default:
1649		pr_err("SELinux:  out of range capability %d\n", cap);
 
1650		BUG();
1651		return -EINVAL;
1652	}
1653
1654	rc = avc_has_perm_noaudit(&selinux_state,
1655				  sid, sid, sclass, av, 0, &avd);
1656	if (!(opts & CAP_OPT_NOAUDIT)) {
1657		int rc2 = avc_audit(&selinux_state,
1658				    sid, sid, sclass, av, &avd, rc, &ad, 0);
1659		if (rc2)
1660			return rc2;
1661	}
1662	return rc;
1663}
1664
 
 
 
 
 
 
 
 
 
 
1665/* Check whether a task has a particular permission to an inode.
1666   The 'adp' parameter is optional and allows other audit
1667   data to be passed (e.g. the dentry). */
1668static int inode_has_perm(const struct cred *cred,
1669			  struct inode *inode,
1670			  u32 perms,
1671			  struct common_audit_data *adp)
 
1672{
1673	struct inode_security_struct *isec;
1674	u32 sid;
1675
1676	validate_creds(cred);
1677
1678	if (unlikely(IS_PRIVATE(inode)))
1679		return 0;
1680
1681	sid = cred_sid(cred);
1682	isec = selinux_inode(inode);
1683
1684	return avc_has_perm(&selinux_state,
1685			    sid, isec->sid, isec->sclass, perms, adp);
1686}
1687
1688/* Same as inode_has_perm, but pass explicit audit data containing
1689   the dentry to help the auditing code to more easily generate the
1690   pathname if needed. */
1691static inline int dentry_has_perm(const struct cred *cred,
1692				  struct dentry *dentry,
1693				  u32 av)
1694{
1695	struct inode *inode = d_backing_inode(dentry);
1696	struct common_audit_data ad;
1697
1698	ad.type = LSM_AUDIT_DATA_DENTRY;
1699	ad.u.dentry = dentry;
1700	__inode_security_revalidate(inode, dentry, true);
1701	return inode_has_perm(cred, inode, av, &ad);
1702}
1703
1704/* Same as inode_has_perm, but pass explicit audit data containing
1705   the path to help the auditing code to more easily generate the
1706   pathname if needed. */
1707static inline int path_has_perm(const struct cred *cred,
1708				const struct path *path,
1709				u32 av)
1710{
1711	struct inode *inode = d_backing_inode(path->dentry);
1712	struct common_audit_data ad;
1713
1714	ad.type = LSM_AUDIT_DATA_PATH;
1715	ad.u.path = *path;
1716	__inode_security_revalidate(inode, path->dentry, true);
1717	return inode_has_perm(cred, inode, av, &ad);
1718}
1719
1720/* Same as path_has_perm, but uses the inode from the file struct. */
1721static inline int file_path_has_perm(const struct cred *cred,
1722				     struct file *file,
1723				     u32 av)
1724{
1725	struct common_audit_data ad;
1726
1727	ad.type = LSM_AUDIT_DATA_FILE;
1728	ad.u.file = file;
1729	return inode_has_perm(cred, file_inode(file), av, &ad);
1730}
1731
1732#ifdef CONFIG_BPF_SYSCALL
1733static int bpf_fd_pass(struct file *file, u32 sid);
1734#endif
1735
1736/* Check whether a task can use an open file descriptor to
1737   access an inode in a given way.  Check access to the
1738   descriptor itself, and then use dentry_has_perm to
1739   check a particular permission to the file.
1740   Access to the descriptor is implicitly granted if it
1741   has the same SID as the process.  If av is zero, then
1742   access to the file is not checked, e.g. for cases
1743   where only the descriptor is affected like seek. */
1744static int file_has_perm(const struct cred *cred,
1745			 struct file *file,
1746			 u32 av)
1747{
1748	struct file_security_struct *fsec = selinux_file(file);
1749	struct inode *inode = file_inode(file);
1750	struct common_audit_data ad;
1751	u32 sid = cred_sid(cred);
1752	int rc;
1753
1754	ad.type = LSM_AUDIT_DATA_FILE;
1755	ad.u.file = file;
1756
1757	if (sid != fsec->sid) {
1758		rc = avc_has_perm(&selinux_state,
1759				  sid, fsec->sid,
1760				  SECCLASS_FD,
1761				  FD__USE,
1762				  &ad);
1763		if (rc)
1764			goto out;
1765	}
1766
1767#ifdef CONFIG_BPF_SYSCALL
1768	rc = bpf_fd_pass(file, cred_sid(cred));
1769	if (rc)
1770		return rc;
1771#endif
1772
1773	/* av is zero if only checking access to the descriptor. */
1774	rc = 0;
1775	if (av)
1776		rc = inode_has_perm(cred, inode, av, &ad);
1777
1778out:
1779	return rc;
1780}
1781
1782/*
1783 * Determine the label for an inode that might be unioned.
1784 */
1785static int
1786selinux_determine_inode_label(const struct task_security_struct *tsec,
1787				 struct inode *dir,
1788				 const struct qstr *name, u16 tclass,
1789				 u32 *_new_isid)
1790{
1791	const struct superblock_security_struct *sbsec = dir->i_sb->s_security;
1792
1793	if ((sbsec->flags & SE_SBINITIALIZED) &&
1794	    (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)) {
1795		*_new_isid = sbsec->mntpoint_sid;
1796	} else if ((sbsec->flags & SBLABEL_MNT) &&
1797		   tsec->create_sid) {
1798		*_new_isid = tsec->create_sid;
1799	} else {
1800		const struct inode_security_struct *dsec = inode_security(dir);
1801		return security_transition_sid(&selinux_state, tsec->sid,
1802					       dsec->sid, tclass,
1803					       name, _new_isid);
1804	}
1805
1806	return 0;
1807}
1808
1809/* Check whether a task can create a file. */
1810static int may_create(struct inode *dir,
1811		      struct dentry *dentry,
1812		      u16 tclass)
1813{
1814	const struct task_security_struct *tsec = selinux_cred(current_cred());
1815	struct inode_security_struct *dsec;
1816	struct superblock_security_struct *sbsec;
1817	u32 sid, newsid;
1818	struct common_audit_data ad;
1819	int rc;
1820
1821	dsec = inode_security(dir);
1822	sbsec = dir->i_sb->s_security;
1823
1824	sid = tsec->sid;
 
1825
1826	ad.type = LSM_AUDIT_DATA_DENTRY;
1827	ad.u.dentry = dentry;
1828
1829	rc = avc_has_perm(&selinux_state,
1830			  sid, dsec->sid, SECCLASS_DIR,
1831			  DIR__ADD_NAME | DIR__SEARCH,
1832			  &ad);
1833	if (rc)
1834		return rc;
1835
1836	rc = selinux_determine_inode_label(selinux_cred(current_cred()), dir,
1837					   &dentry->d_name, tclass, &newsid);
1838	if (rc)
1839		return rc;
 
 
1840
1841	rc = avc_has_perm(&selinux_state,
1842			  sid, newsid, tclass, FILE__CREATE, &ad);
1843	if (rc)
1844		return rc;
1845
1846	return avc_has_perm(&selinux_state,
1847			    newsid, sbsec->sid,
1848			    SECCLASS_FILESYSTEM,
1849			    FILESYSTEM__ASSOCIATE, &ad);
1850}
1851
 
 
 
 
 
 
 
 
 
1852#define MAY_LINK	0
1853#define MAY_UNLINK	1
1854#define MAY_RMDIR	2
1855
1856/* Check whether a task can link, unlink, or rmdir a file/directory. */
1857static int may_link(struct inode *dir,
1858		    struct dentry *dentry,
1859		    int kind)
1860
1861{
1862	struct inode_security_struct *dsec, *isec;
1863	struct common_audit_data ad;
1864	u32 sid = current_sid();
1865	u32 av;
1866	int rc;
1867
1868	dsec = inode_security(dir);
1869	isec = backing_inode_security(dentry);
1870
1871	ad.type = LSM_AUDIT_DATA_DENTRY;
1872	ad.u.dentry = dentry;
1873
1874	av = DIR__SEARCH;
1875	av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1876	rc = avc_has_perm(&selinux_state,
1877			  sid, dsec->sid, SECCLASS_DIR, av, &ad);
1878	if (rc)
1879		return rc;
1880
1881	switch (kind) {
1882	case MAY_LINK:
1883		av = FILE__LINK;
1884		break;
1885	case MAY_UNLINK:
1886		av = FILE__UNLINK;
1887		break;
1888	case MAY_RMDIR:
1889		av = DIR__RMDIR;
1890		break;
1891	default:
1892		pr_warn("SELinux: %s:  unrecognized kind %d\n",
1893			__func__, kind);
1894		return 0;
1895	}
1896
1897	rc = avc_has_perm(&selinux_state,
1898			  sid, isec->sid, isec->sclass, av, &ad);
1899	return rc;
1900}
1901
1902static inline int may_rename(struct inode *old_dir,
1903			     struct dentry *old_dentry,
1904			     struct inode *new_dir,
1905			     struct dentry *new_dentry)
1906{
1907	struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1908	struct common_audit_data ad;
1909	u32 sid = current_sid();
1910	u32 av;
1911	int old_is_dir, new_is_dir;
1912	int rc;
1913
1914	old_dsec = inode_security(old_dir);
1915	old_isec = backing_inode_security(old_dentry);
1916	old_is_dir = d_is_dir(old_dentry);
1917	new_dsec = inode_security(new_dir);
1918
1919	ad.type = LSM_AUDIT_DATA_DENTRY;
1920
1921	ad.u.dentry = old_dentry;
1922	rc = avc_has_perm(&selinux_state,
1923			  sid, old_dsec->sid, SECCLASS_DIR,
1924			  DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1925	if (rc)
1926		return rc;
1927	rc = avc_has_perm(&selinux_state,
1928			  sid, old_isec->sid,
1929			  old_isec->sclass, FILE__RENAME, &ad);
1930	if (rc)
1931		return rc;
1932	if (old_is_dir && new_dir != old_dir) {
1933		rc = avc_has_perm(&selinux_state,
1934				  sid, old_isec->sid,
1935				  old_isec->sclass, DIR__REPARENT, &ad);
1936		if (rc)
1937			return rc;
1938	}
1939
1940	ad.u.dentry = new_dentry;
1941	av = DIR__ADD_NAME | DIR__SEARCH;
1942	if (d_is_positive(new_dentry))
1943		av |= DIR__REMOVE_NAME;
1944	rc = avc_has_perm(&selinux_state,
1945			  sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1946	if (rc)
1947		return rc;
1948	if (d_is_positive(new_dentry)) {
1949		new_isec = backing_inode_security(new_dentry);
1950		new_is_dir = d_is_dir(new_dentry);
1951		rc = avc_has_perm(&selinux_state,
1952				  sid, new_isec->sid,
1953				  new_isec->sclass,
1954				  (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1955		if (rc)
1956			return rc;
1957	}
1958
1959	return 0;
1960}
1961
1962/* Check whether a task can perform a filesystem operation. */
1963static int superblock_has_perm(const struct cred *cred,
1964			       struct super_block *sb,
1965			       u32 perms,
1966			       struct common_audit_data *ad)
1967{
1968	struct superblock_security_struct *sbsec;
1969	u32 sid = cred_sid(cred);
1970
1971	sbsec = sb->s_security;
1972	return avc_has_perm(&selinux_state,
1973			    sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1974}
1975
1976/* Convert a Linux mode and permission mask to an access vector. */
1977static inline u32 file_mask_to_av(int mode, int mask)
1978{
1979	u32 av = 0;
1980
1981	if (!S_ISDIR(mode)) {
1982		if (mask & MAY_EXEC)
1983			av |= FILE__EXECUTE;
1984		if (mask & MAY_READ)
1985			av |= FILE__READ;
1986
1987		if (mask & MAY_APPEND)
1988			av |= FILE__APPEND;
1989		else if (mask & MAY_WRITE)
1990			av |= FILE__WRITE;
1991
1992	} else {
1993		if (mask & MAY_EXEC)
1994			av |= DIR__SEARCH;
1995		if (mask & MAY_WRITE)
1996			av |= DIR__WRITE;
1997		if (mask & MAY_READ)
1998			av |= DIR__READ;
1999	}
2000
2001	return av;
2002}
2003
2004/* Convert a Linux file to an access vector. */
2005static inline u32 file_to_av(struct file *file)
2006{
2007	u32 av = 0;
2008
2009	if (file->f_mode & FMODE_READ)
2010		av |= FILE__READ;
2011	if (file->f_mode & FMODE_WRITE) {
2012		if (file->f_flags & O_APPEND)
2013			av |= FILE__APPEND;
2014		else
2015			av |= FILE__WRITE;
2016	}
2017	if (!av) {
2018		/*
2019		 * Special file opened with flags 3 for ioctl-only use.
2020		 */
2021		av = FILE__IOCTL;
2022	}
2023
2024	return av;
2025}
2026
2027/*
2028 * Convert a file to an access vector and include the correct open
2029 * open permission.
2030 */
2031static inline u32 open_file_to_av(struct file *file)
2032{
2033	u32 av = file_to_av(file);
2034	struct inode *inode = file_inode(file);
2035
2036	if (selinux_policycap_openperm() &&
2037	    inode->i_sb->s_magic != SOCKFS_MAGIC)
2038		av |= FILE__OPEN;
2039
2040	return av;
2041}
2042
2043/* Hook functions begin here. */
2044
2045static int selinux_binder_set_context_mgr(struct task_struct *mgr)
 
2046{
2047	u32 mysid = current_sid();
2048	u32 mgrsid = task_sid(mgr);
2049
2050	return avc_has_perm(&selinux_state,
2051			    mysid, mgrsid, SECCLASS_BINDER,
2052			    BINDER__SET_CONTEXT_MGR, NULL);
2053}
2054
2055static int selinux_binder_transaction(struct task_struct *from,
2056				      struct task_struct *to)
2057{
2058	u32 mysid = current_sid();
2059	u32 fromsid = task_sid(from);
2060	u32 tosid = task_sid(to);
2061	int rc;
2062
2063	if (mysid != fromsid) {
2064		rc = avc_has_perm(&selinux_state,
2065				  mysid, fromsid, SECCLASS_BINDER,
2066				  BINDER__IMPERSONATE, NULL);
2067		if (rc)
2068			return rc;
2069	}
2070
2071	return avc_has_perm(&selinux_state,
2072			    fromsid, tosid, SECCLASS_BINDER, BINDER__CALL,
2073			    NULL);
2074}
2075
2076static int selinux_binder_transfer_binder(struct task_struct *from,
2077					  struct task_struct *to)
2078{
2079	u32 fromsid = task_sid(from);
2080	u32 tosid = task_sid(to);
2081
2082	return avc_has_perm(&selinux_state,
2083			    fromsid, tosid, SECCLASS_BINDER, BINDER__TRANSFER,
2084			    NULL);
2085}
2086
2087static int selinux_binder_transfer_file(struct task_struct *from,
2088					struct task_struct *to,
2089					struct file *file)
2090{
2091	u32 sid = task_sid(to);
2092	struct file_security_struct *fsec = selinux_file(file);
2093	struct dentry *dentry = file->f_path.dentry;
2094	struct inode_security_struct *isec;
2095	struct common_audit_data ad;
2096	int rc;
2097
2098	ad.type = LSM_AUDIT_DATA_PATH;
2099	ad.u.path = file->f_path;
2100
2101	if (sid != fsec->sid) {
2102		rc = avc_has_perm(&selinux_state,
2103				  sid, fsec->sid,
2104				  SECCLASS_FD,
2105				  FD__USE,
2106				  &ad);
2107		if (rc)
2108			return rc;
2109	}
2110
2111#ifdef CONFIG_BPF_SYSCALL
2112	rc = bpf_fd_pass(file, sid);
2113	if (rc)
2114		return rc;
2115#endif
2116
2117	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2118		return 0;
2119
2120	isec = backing_inode_security(dentry);
2121	return avc_has_perm(&selinux_state,
2122			    sid, isec->sid, isec->sclass, file_to_av(file),
2123			    &ad);
2124}
2125
2126static int selinux_ptrace_access_check(struct task_struct *child,
2127				     unsigned int mode)
2128{
2129	u32 sid = current_sid();
2130	u32 csid = task_sid(child);
2131
2132	if (mode & PTRACE_MODE_READ)
2133		return avc_has_perm(&selinux_state,
2134				    sid, csid, SECCLASS_FILE, FILE__READ, NULL);
2135
2136	return avc_has_perm(&selinux_state,
2137			    sid, csid, SECCLASS_PROCESS, PROCESS__PTRACE, NULL);
2138}
2139
2140static int selinux_ptrace_traceme(struct task_struct *parent)
2141{
2142	return avc_has_perm(&selinux_state,
2143			    task_sid(parent), current_sid(), SECCLASS_PROCESS,
2144			    PROCESS__PTRACE, NULL);
2145}
2146
2147static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
2148			  kernel_cap_t *inheritable, kernel_cap_t *permitted)
2149{
2150	return avc_has_perm(&selinux_state,
2151			    current_sid(), task_sid(target), SECCLASS_PROCESS,
2152			    PROCESS__GETCAP, NULL);
2153}
2154
2155static int selinux_capset(struct cred *new, const struct cred *old,
2156			  const kernel_cap_t *effective,
2157			  const kernel_cap_t *inheritable,
2158			  const kernel_cap_t *permitted)
2159{
2160	return avc_has_perm(&selinux_state,
2161			    cred_sid(old), cred_sid(new), SECCLASS_PROCESS,
2162			    PROCESS__SETCAP, NULL);
 
 
 
 
 
2163}
2164
2165/*
2166 * (This comment used to live with the selinux_task_setuid hook,
2167 * which was removed).
2168 *
2169 * Since setuid only affects the current process, and since the SELinux
2170 * controls are not based on the Linux identity attributes, SELinux does not
2171 * need to control this operation.  However, SELinux does control the use of
2172 * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
2173 */
2174
2175static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
2176			   int cap, unsigned int opts)
2177{
2178	return cred_has_capability(cred, cap, opts, ns == &init_user_ns);
 
 
 
 
 
 
2179}
2180
2181static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
2182{
2183	const struct cred *cred = current_cred();
2184	int rc = 0;
2185
2186	if (!sb)
2187		return 0;
2188
2189	switch (cmds) {
2190	case Q_SYNC:
2191	case Q_QUOTAON:
2192	case Q_QUOTAOFF:
2193	case Q_SETINFO:
2194	case Q_SETQUOTA:
2195		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2196		break;
2197	case Q_GETFMT:
2198	case Q_GETINFO:
2199	case Q_GETQUOTA:
2200		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2201		break;
2202	default:
2203		rc = 0;  /* let the kernel handle invalid cmds */
2204		break;
2205	}
2206	return rc;
2207}
2208
2209static int selinux_quota_on(struct dentry *dentry)
2210{
2211	const struct cred *cred = current_cred();
2212
2213	return dentry_has_perm(cred, dentry, FILE__QUOTAON);
2214}
2215
2216static int selinux_syslog(int type)
2217{
 
 
2218	switch (type) {
2219	case SYSLOG_ACTION_READ_ALL:	/* Read last kernel messages */
2220	case SYSLOG_ACTION_SIZE_BUFFER:	/* Return size of the log buffer */
2221		return avc_has_perm(&selinux_state,
2222				    current_sid(), SECINITSID_KERNEL,
2223				    SECCLASS_SYSTEM, SYSTEM__SYSLOG_READ, NULL);
2224	case SYSLOG_ACTION_CONSOLE_OFF:	/* Disable logging to console */
2225	case SYSLOG_ACTION_CONSOLE_ON:	/* Enable logging to console */
2226	/* Set level of messages printed to console */
2227	case SYSLOG_ACTION_CONSOLE_LEVEL:
2228		return avc_has_perm(&selinux_state,
2229				    current_sid(), SECINITSID_KERNEL,
2230				    SECCLASS_SYSTEM, SYSTEM__SYSLOG_CONSOLE,
2231				    NULL);
2232	}
2233	/* All other syslog types */
2234	return avc_has_perm(&selinux_state,
2235			    current_sid(), SECINITSID_KERNEL,
2236			    SECCLASS_SYSTEM, SYSTEM__SYSLOG_MOD, NULL);
 
 
 
2237}
2238
2239/*
2240 * Check that a process has enough memory to allocate a new virtual
2241 * mapping. 0 means there is enough memory for the allocation to
2242 * succeed and -ENOMEM implies there is not.
2243 *
2244 * Do not audit the selinux permission check, as this is applied to all
2245 * processes that allocate mappings.
2246 */
2247static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2248{
2249	int rc, cap_sys_admin = 0;
2250
2251	rc = cred_has_capability(current_cred(), CAP_SYS_ADMIN,
2252				 CAP_OPT_NOAUDIT, true);
2253	if (rc == 0)
2254		cap_sys_admin = 1;
2255
2256	return cap_sys_admin;
2257}
2258
2259/* binprm security operations */
2260
2261static u32 ptrace_parent_sid(void)
2262{
2263	u32 sid = 0;
2264	struct task_struct *tracer;
2265
2266	rcu_read_lock();
2267	tracer = ptrace_parent(current);
2268	if (tracer)
2269		sid = task_sid(tracer);
2270	rcu_read_unlock();
2271
2272	return sid;
2273}
2274
2275static int check_nnp_nosuid(const struct linux_binprm *bprm,
2276			    const struct task_security_struct *old_tsec,
2277			    const struct task_security_struct *new_tsec)
2278{
2279	int nnp = (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS);
2280	int nosuid = !mnt_may_suid(bprm->file->f_path.mnt);
2281	int rc;
2282	u32 av;
2283
2284	if (!nnp && !nosuid)
2285		return 0; /* neither NNP nor nosuid */
2286
2287	if (new_tsec->sid == old_tsec->sid)
2288		return 0; /* No change in credentials */
2289
2290	/*
2291	 * If the policy enables the nnp_nosuid_transition policy capability,
2292	 * then we permit transitions under NNP or nosuid if the
2293	 * policy allows the corresponding permission between
2294	 * the old and new contexts.
2295	 */
2296	if (selinux_policycap_nnp_nosuid_transition()) {
2297		av = 0;
2298		if (nnp)
2299			av |= PROCESS2__NNP_TRANSITION;
2300		if (nosuid)
2301			av |= PROCESS2__NOSUID_TRANSITION;
2302		rc = avc_has_perm(&selinux_state,
2303				  old_tsec->sid, new_tsec->sid,
2304				  SECCLASS_PROCESS2, av, NULL);
2305		if (!rc)
2306			return 0;
2307	}
2308
2309	/*
2310	 * We also permit NNP or nosuid transitions to bounded SIDs,
2311	 * i.e. SIDs that are guaranteed to only be allowed a subset
2312	 * of the permissions of the current SID.
2313	 */
2314	rc = security_bounded_transition(&selinux_state, old_tsec->sid,
2315					 new_tsec->sid);
2316	if (!rc)
2317		return 0;
2318
2319	/*
2320	 * On failure, preserve the errno values for NNP vs nosuid.
2321	 * NNP:  Operation not permitted for caller.
2322	 * nosuid:  Permission denied to file.
2323	 */
2324	if (nnp)
2325		return -EPERM;
2326	return -EACCES;
2327}
2328
2329static int selinux_bprm_set_creds(struct linux_binprm *bprm)
2330{
2331	const struct task_security_struct *old_tsec;
2332	struct task_security_struct *new_tsec;
2333	struct inode_security_struct *isec;
2334	struct common_audit_data ad;
2335	struct inode *inode = file_inode(bprm->file);
2336	int rc;
2337
 
 
 
 
2338	/* SELinux context only depends on initial program or script and not
2339	 * the script interpreter */
2340	if (bprm->called_set_creds)
2341		return 0;
2342
2343	old_tsec = selinux_cred(current_cred());
2344	new_tsec = selinux_cred(bprm->cred);
2345	isec = inode_security(inode);
2346
2347	/* Default to the current task SID. */
2348	new_tsec->sid = old_tsec->sid;
2349	new_tsec->osid = old_tsec->sid;
2350
2351	/* Reset fs, key, and sock SIDs on execve. */
2352	new_tsec->create_sid = 0;
2353	new_tsec->keycreate_sid = 0;
2354	new_tsec->sockcreate_sid = 0;
2355
2356	if (old_tsec->exec_sid) {
2357		new_tsec->sid = old_tsec->exec_sid;
2358		/* Reset exec SID on execve. */
2359		new_tsec->exec_sid = 0;
2360
2361		/* Fail on NNP or nosuid if not an allowed transition. */
2362		rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2363		if (rc)
2364			return rc;
 
 
2365	} else {
2366		/* Check for a default transition on this program. */
2367		rc = security_transition_sid(&selinux_state, old_tsec->sid,
2368					     isec->sid, SECCLASS_PROCESS, NULL,
2369					     &new_tsec->sid);
2370		if (rc)
2371			return rc;
 
2372
2373		/*
2374		 * Fallback to old SID on NNP or nosuid if not an allowed
2375		 * transition.
2376		 */
2377		rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2378		if (rc)
2379			new_tsec->sid = old_tsec->sid;
2380	}
2381
2382	ad.type = LSM_AUDIT_DATA_FILE;
2383	ad.u.file = bprm->file;
 
2384
2385	if (new_tsec->sid == old_tsec->sid) {
2386		rc = avc_has_perm(&selinux_state,
2387				  old_tsec->sid, isec->sid,
2388				  SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2389		if (rc)
2390			return rc;
2391	} else {
2392		/* Check permissions for the transition. */
2393		rc = avc_has_perm(&selinux_state,
2394				  old_tsec->sid, new_tsec->sid,
2395				  SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2396		if (rc)
2397			return rc;
2398
2399		rc = avc_has_perm(&selinux_state,
2400				  new_tsec->sid, isec->sid,
2401				  SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2402		if (rc)
2403			return rc;
2404
2405		/* Check for shared state */
2406		if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2407			rc = avc_has_perm(&selinux_state,
2408					  old_tsec->sid, new_tsec->sid,
2409					  SECCLASS_PROCESS, PROCESS__SHARE,
2410					  NULL);
2411			if (rc)
2412				return -EPERM;
2413		}
2414
2415		/* Make sure that anyone attempting to ptrace over a task that
2416		 * changes its SID has the appropriate permit */
2417		if (bprm->unsafe & LSM_UNSAFE_PTRACE) {
2418			u32 ptsid = ptrace_parent_sid();
 
 
 
 
 
 
 
 
 
 
 
 
2419			if (ptsid != 0) {
2420				rc = avc_has_perm(&selinux_state,
2421						  ptsid, new_tsec->sid,
2422						  SECCLASS_PROCESS,
2423						  PROCESS__PTRACE, NULL);
2424				if (rc)
2425					return -EPERM;
2426			}
2427		}
2428
2429		/* Clear any possibly unsafe personality bits on exec: */
2430		bprm->per_clear |= PER_CLEAR_ON_SETID;
 
 
 
 
 
 
 
 
 
 
2431
 
 
 
 
2432		/* Enable secure mode for SIDs transitions unless
2433		   the noatsecure permission is granted between
2434		   the two SIDs, i.e. ahp returns 0. */
2435		rc = avc_has_perm(&selinux_state,
2436				  old_tsec->sid, new_tsec->sid,
2437				  SECCLASS_PROCESS, PROCESS__NOATSECURE,
2438				  NULL);
2439		bprm->secureexec |= !!rc;
2440	}
2441
2442	return 0;
2443}
2444
2445static int match_file(const void *p, struct file *file, unsigned fd)
2446{
2447	return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0;
2448}
2449
2450/* Derived from fs/exec.c:flush_old_files. */
2451static inline void flush_unauthorized_files(const struct cred *cred,
2452					    struct files_struct *files)
2453{
2454	struct file *file, *devnull = NULL;
2455	struct tty_struct *tty;
 
 
2456	int drop_tty = 0;
2457	unsigned n;
2458
2459	tty = get_current_tty();
2460	if (tty) {
2461		spin_lock(&tty->files_lock);
2462		if (!list_empty(&tty->tty_files)) {
2463			struct tty_file_private *file_priv;
2464
2465			/* Revalidate access to controlling tty.
2466			   Use file_path_has_perm on the tty path directly
2467			   rather than using file_has_perm, as this particular
2468			   open file may belong to another process and we are
2469			   only interested in the inode-based check here. */
2470			file_priv = list_first_entry(&tty->tty_files,
2471						struct tty_file_private, list);
2472			file = file_priv->file;
2473			if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE))
2474				drop_tty = 1;
2475		}
2476		spin_unlock(&tty->files_lock);
2477		tty_kref_put(tty);
2478	}
2479	/* Reset controlling tty. */
2480	if (drop_tty)
2481		no_tty();
2482
2483	/* Revalidate access to inherited open files. */
2484	n = iterate_fd(files, 0, match_file, cred);
2485	if (!n) /* none found? */
2486		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2487
2488	devnull = dentry_open(&selinux_null, O_RDWR, cred);
2489	if (IS_ERR(devnull))
2490		devnull = NULL;
2491	/* replace all the matching ones with this */
2492	do {
2493		replace_fd(n - 1, devnull, 0);
2494	} while ((n = iterate_fd(files, n, match_file, cred)) != 0);
2495	if (devnull)
2496		fput(devnull);
2497}
2498
2499/*
2500 * Prepare a process for imminent new credential changes due to exec
2501 */
2502static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2503{
2504	struct task_security_struct *new_tsec;
2505	struct rlimit *rlim, *initrlim;
2506	int rc, i;
2507
2508	new_tsec = selinux_cred(bprm->cred);
2509	if (new_tsec->sid == new_tsec->osid)
2510		return;
2511
2512	/* Close files for which the new task SID is not authorized. */
2513	flush_unauthorized_files(bprm->cred, current->files);
2514
2515	/* Always clear parent death signal on SID transitions. */
2516	current->pdeath_signal = 0;
2517
2518	/* Check whether the new SID can inherit resource limits from the old
2519	 * SID.  If not, reset all soft limits to the lower of the current
2520	 * task's hard limit and the init task's soft limit.
2521	 *
2522	 * Note that the setting of hard limits (even to lower them) can be
2523	 * controlled by the setrlimit check.  The inclusion of the init task's
2524	 * soft limit into the computation is to avoid resetting soft limits
2525	 * higher than the default soft limit for cases where the default is
2526	 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2527	 */
2528	rc = avc_has_perm(&selinux_state,
2529			  new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2530			  PROCESS__RLIMITINH, NULL);
2531	if (rc) {
2532		/* protect against do_prlimit() */
2533		task_lock(current);
2534		for (i = 0; i < RLIM_NLIMITS; i++) {
2535			rlim = current->signal->rlim + i;
2536			initrlim = init_task.signal->rlim + i;
2537			rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2538		}
2539		task_unlock(current);
2540		if (IS_ENABLED(CONFIG_POSIX_TIMERS))
2541			update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2542	}
2543}
2544
2545/*
2546 * Clean up the process immediately after the installation of new credentials
2547 * due to exec
2548 */
2549static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2550{
2551	const struct task_security_struct *tsec = selinux_cred(current_cred());
2552	struct itimerval itimer;
2553	u32 osid, sid;
2554	int rc, i;
2555
2556	osid = tsec->osid;
2557	sid = tsec->sid;
2558
2559	if (sid == osid)
2560		return;
2561
2562	/* Check whether the new SID can inherit signal state from the old SID.
2563	 * If not, clear itimers to avoid subsequent signal generation and
2564	 * flush and unblock signals.
2565	 *
2566	 * This must occur _after_ the task SID has been updated so that any
2567	 * kill done after the flush will be checked against the new SID.
2568	 */
2569	rc = avc_has_perm(&selinux_state,
2570			  osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2571	if (rc) {
2572		if (IS_ENABLED(CONFIG_POSIX_TIMERS)) {
2573			memset(&itimer, 0, sizeof itimer);
2574			for (i = 0; i < 3; i++)
2575				do_setitimer(i, &itimer, NULL);
2576		}
2577		spin_lock_irq(&current->sighand->siglock);
2578		if (!fatal_signal_pending(current)) {
2579			flush_sigqueue(&current->pending);
2580			flush_sigqueue(&current->signal->shared_pending);
2581			flush_signal_handlers(current, 1);
2582			sigemptyset(&current->blocked);
2583			recalc_sigpending();
2584		}
2585		spin_unlock_irq(&current->sighand->siglock);
2586	}
2587
2588	/* Wake up the parent if it is waiting so that it can recheck
2589	 * wait permission to the new task SID. */
2590	read_lock(&tasklist_lock);
2591	__wake_up_parent(current, current->real_parent);
2592	read_unlock(&tasklist_lock);
2593}
2594
2595/* superblock security operations */
2596
2597static int selinux_sb_alloc_security(struct super_block *sb)
2598{
2599	return superblock_alloc_security(sb);
2600}
2601
2602static void selinux_sb_free_security(struct super_block *sb)
2603{
2604	superblock_free_security(sb);
2605}
2606
2607static inline int opt_len(const char *s)
2608{
2609	bool open_quote = false;
2610	int len;
2611	char c;
2612
2613	for (len = 0; (c = s[len]) != '\0'; len++) {
2614		if (c == '"')
2615			open_quote = !open_quote;
2616		if (c == ',' && !open_quote)
2617			break;
2618	}
2619	return len;
2620}
2621
2622static int selinux_sb_eat_lsm_opts(char *options, void **mnt_opts)
2623{
2624	char *from = options;
2625	char *to = options;
2626	bool first = true;
2627	int rc;
 
 
2628
2629	while (1) {
2630		int len = opt_len(from);
2631		int token;
2632		char *arg = NULL;
 
 
 
 
 
 
2633
2634		token = match_opt_prefix(from, len, &arg);
 
 
 
2635
2636		if (token != Opt_error) {
2637			char *p, *q;
 
 
 
2638
2639			/* strip quotes */
2640			if (arg) {
2641				for (p = q = arg; p < from + len; p++) {
2642					char c = *p;
2643					if (c != '"')
2644						*q++ = c;
2645				}
2646				arg = kmemdup_nul(arg, q - arg, GFP_KERNEL);
2647				if (!arg) {
2648					rc = -ENOMEM;
2649					goto free_opt;
2650				}
2651			}
2652			rc = selinux_add_opt(token, arg, mnt_opts);
2653			if (unlikely(rc)) {
2654				kfree(arg);
2655				goto free_opt;
2656			}
2657		} else {
2658			if (!first) {	// copy with preceding comma
2659				from--;
2660				len++;
2661			}
2662			if (to != from)
2663				memmove(to, from, len);
2664			to += len;
2665			first = false;
2666		}
2667		if (!from[len])
2668			break;
2669		from += len + 1;
2670	}
2671	*to = '\0';
2672	return 0;
 
 
 
 
 
 
 
 
 
2673
2674free_opt:
2675	if (*mnt_opts) {
2676		selinux_free_mnt_opts(*mnt_opts);
2677		*mnt_opts = NULL;
2678	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2679	return rc;
2680}
2681
2682static int selinux_sb_remount(struct super_block *sb, void *mnt_opts)
2683{
2684	struct selinux_mnt_opts *opts = mnt_opts;
 
 
2685	struct superblock_security_struct *sbsec = sb->s_security;
2686	u32 sid;
2687	int rc;
2688
2689	if (!(sbsec->flags & SE_SBINITIALIZED))
2690		return 0;
2691
2692	if (!opts)
2693		return 0;
2694
2695	if (opts->fscontext) {
2696		rc = parse_sid(sb, opts->fscontext, &sid);
2697		if (rc)
2698			return rc;
2699		if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid))
2700			goto out_bad_option;
2701	}
2702	if (opts->context) {
2703		rc = parse_sid(sb, opts->context, &sid);
2704		if (rc)
2705			return rc;
2706		if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid))
2707			goto out_bad_option;
2708	}
2709	if (opts->rootcontext) {
2710		struct inode_security_struct *root_isec;
2711		root_isec = backing_inode_security(sb->s_root);
2712		rc = parse_sid(sb, opts->rootcontext, &sid);
2713		if (rc)
2714			return rc;
2715		if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid))
2716			goto out_bad_option;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2717	}
2718	if (opts->defcontext) {
2719		rc = parse_sid(sb, opts->defcontext, &sid);
2720		if (rc)
2721			return rc;
2722		if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid))
2723			goto out_bad_option;
2724	}
2725	return 0;
2726
 
 
 
 
 
 
2727out_bad_option:
2728	pr_warn("SELinux: unable to change security options "
2729	       "during remount (dev %s, type=%s)\n", sb->s_id,
2730	       sb->s_type->name);
2731	return -EINVAL;
2732}
2733
2734static int selinux_sb_kern_mount(struct super_block *sb)
2735{
2736	const struct cred *cred = current_cred();
2737	struct common_audit_data ad;
 
 
 
 
 
 
 
 
 
2738
2739	ad.type = LSM_AUDIT_DATA_DENTRY;
2740	ad.u.dentry = sb->s_root;
2741	return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2742}
2743
2744static int selinux_sb_statfs(struct dentry *dentry)
2745{
2746	const struct cred *cred = current_cred();
2747	struct common_audit_data ad;
2748
2749	ad.type = LSM_AUDIT_DATA_DENTRY;
2750	ad.u.dentry = dentry->d_sb->s_root;
2751	return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2752}
2753
2754static int selinux_mount(const char *dev_name,
2755			 const struct path *path,
2756			 const char *type,
2757			 unsigned long flags,
2758			 void *data)
2759{
2760	const struct cred *cred = current_cred();
2761
2762	if (flags & MS_REMOUNT)
2763		return superblock_has_perm(cred, path->dentry->d_sb,
2764					   FILESYSTEM__REMOUNT, NULL);
2765	else
2766		return path_has_perm(cred, path, FILE__MOUNTON);
2767}
2768
2769static int selinux_umount(struct vfsmount *mnt, int flags)
2770{
2771	const struct cred *cred = current_cred();
2772
2773	return superblock_has_perm(cred, mnt->mnt_sb,
2774				   FILESYSTEM__UNMOUNT, NULL);
2775}
2776
2777static int selinux_fs_context_dup(struct fs_context *fc,
2778				  struct fs_context *src_fc)
2779{
2780	const struct selinux_mnt_opts *src = src_fc->security;
2781	struct selinux_mnt_opts *opts;
2782
2783	if (!src)
2784		return 0;
2785
2786	fc->security = kzalloc(sizeof(struct selinux_mnt_opts), GFP_KERNEL);
2787	if (!fc->security)
2788		return -ENOMEM;
2789
2790	opts = fc->security;
2791
2792	if (src->fscontext) {
2793		opts->fscontext = kstrdup(src->fscontext, GFP_KERNEL);
2794		if (!opts->fscontext)
2795			return -ENOMEM;
2796	}
2797	if (src->context) {
2798		opts->context = kstrdup(src->context, GFP_KERNEL);
2799		if (!opts->context)
2800			return -ENOMEM;
2801	}
2802	if (src->rootcontext) {
2803		opts->rootcontext = kstrdup(src->rootcontext, GFP_KERNEL);
2804		if (!opts->rootcontext)
2805			return -ENOMEM;
2806	}
2807	if (src->defcontext) {
2808		opts->defcontext = kstrdup(src->defcontext, GFP_KERNEL);
2809		if (!opts->defcontext)
2810			return -ENOMEM;
2811	}
2812	return 0;
2813}
2814
2815static const struct fs_parameter_spec selinux_param_specs[] = {
2816	fsparam_string(CONTEXT_STR,	Opt_context),
2817	fsparam_string(DEFCONTEXT_STR,	Opt_defcontext),
2818	fsparam_string(FSCONTEXT_STR,	Opt_fscontext),
2819	fsparam_string(ROOTCONTEXT_STR,	Opt_rootcontext),
2820	fsparam_flag  (SECLABEL_STR,	Opt_seclabel),
2821	{}
2822};
2823
2824static const struct fs_parameter_description selinux_fs_parameters = {
2825	.name		= "SELinux",
2826	.specs		= selinux_param_specs,
2827};
2828
2829static int selinux_fs_context_parse_param(struct fs_context *fc,
2830					  struct fs_parameter *param)
2831{
2832	struct fs_parse_result result;
2833	int opt, rc;
2834
2835	opt = fs_parse(fc, &selinux_fs_parameters, param, &result);
2836	if (opt < 0)
2837		return opt;
2838
2839	rc = selinux_add_opt(opt, param->string, &fc->security);
2840	if (!rc) {
2841		param->string = NULL;
2842		rc = 1;
2843	}
2844	return rc;
2845}
2846
2847/* inode security operations */
2848
2849static int selinux_inode_alloc_security(struct inode *inode)
2850{
2851	return inode_alloc_security(inode);
2852}
2853
2854static void selinux_inode_free_security(struct inode *inode)
2855{
2856	inode_free_security(inode);
2857}
2858
2859static int selinux_dentry_init_security(struct dentry *dentry, int mode,
2860					const struct qstr *name, void **ctx,
2861					u32 *ctxlen)
2862{
2863	u32 newsid;
2864	int rc;
2865
2866	rc = selinux_determine_inode_label(selinux_cred(current_cred()),
2867					   d_inode(dentry->d_parent), name,
2868					   inode_mode_to_security_class(mode),
2869					   &newsid);
2870	if (rc)
2871		return rc;
2872
2873	return security_sid_to_context(&selinux_state, newsid, (char **)ctx,
2874				       ctxlen);
2875}
2876
2877static int selinux_dentry_create_files_as(struct dentry *dentry, int mode,
2878					  struct qstr *name,
2879					  const struct cred *old,
2880					  struct cred *new)
2881{
2882	u32 newsid;
2883	int rc;
2884	struct task_security_struct *tsec;
2885
2886	rc = selinux_determine_inode_label(selinux_cred(old),
2887					   d_inode(dentry->d_parent), name,
2888					   inode_mode_to_security_class(mode),
2889					   &newsid);
2890	if (rc)
2891		return rc;
2892
2893	tsec = selinux_cred(new);
2894	tsec->create_sid = newsid;
2895	return 0;
2896}
2897
2898static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2899				       const struct qstr *qstr,
2900				       const char **name,
2901				       void **value, size_t *len)
2902{
2903	const struct task_security_struct *tsec = selinux_cred(current_cred());
 
2904	struct superblock_security_struct *sbsec;
2905	u32 newsid, clen;
2906	int rc;
2907	char *context;
2908
 
2909	sbsec = dir->i_sb->s_security;
2910
 
2911	newsid = tsec->create_sid;
2912
2913	rc = selinux_determine_inode_label(selinux_cred(current_cred()),
2914		dir, qstr,
2915		inode_mode_to_security_class(inode->i_mode),
2916		&newsid);
2917	if (rc)
2918		return rc;
 
 
 
 
 
 
 
 
 
 
2919
2920	/* Possibly defer initialization to selinux_complete_init. */
2921	if (sbsec->flags & SE_SBINITIALIZED) {
2922		struct inode_security_struct *isec = selinux_inode(inode);
2923		isec->sclass = inode_mode_to_security_class(inode->i_mode);
2924		isec->sid = newsid;
2925		isec->initialized = LABEL_INITIALIZED;
2926	}
2927
2928	if (!selinux_state.initialized || !(sbsec->flags & SBLABEL_MNT))
2929		return -EOPNOTSUPP;
2930
2931	if (name)
2932		*name = XATTR_SELINUX_SUFFIX;
 
 
 
 
2933
2934	if (value && len) {
2935		rc = security_sid_to_context_force(&selinux_state, newsid,
2936						   &context, &clen);
2937		if (rc)
2938			return rc;
 
2939		*value = context;
2940		*len = clen;
2941	}
2942
2943	return 0;
2944}
2945
2946static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
2947{
2948	return may_create(dir, dentry, SECCLASS_FILE);
2949}
2950
2951static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2952{
2953	return may_link(dir, old_dentry, MAY_LINK);
2954}
2955
2956static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2957{
2958	return may_link(dir, dentry, MAY_UNLINK);
2959}
2960
2961static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2962{
2963	return may_create(dir, dentry, SECCLASS_LNK_FILE);
2964}
2965
2966static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
2967{
2968	return may_create(dir, dentry, SECCLASS_DIR);
2969}
2970
2971static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2972{
2973	return may_link(dir, dentry, MAY_RMDIR);
2974}
2975
2976static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2977{
2978	return may_create(dir, dentry, inode_mode_to_security_class(mode));
2979}
2980
2981static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2982				struct inode *new_inode, struct dentry *new_dentry)
2983{
2984	return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2985}
2986
2987static int selinux_inode_readlink(struct dentry *dentry)
2988{
2989	const struct cred *cred = current_cred();
2990
2991	return dentry_has_perm(cred, dentry, FILE__READ);
2992}
2993
2994static int selinux_inode_follow_link(struct dentry *dentry, struct inode *inode,
2995				     bool rcu)
2996{
2997	const struct cred *cred = current_cred();
2998	struct common_audit_data ad;
2999	struct inode_security_struct *isec;
3000	u32 sid;
3001
3002	validate_creds(cred);
3003
3004	ad.type = LSM_AUDIT_DATA_DENTRY;
3005	ad.u.dentry = dentry;
3006	sid = cred_sid(cred);
3007	isec = inode_security_rcu(inode, rcu);
3008	if (IS_ERR(isec))
3009		return PTR_ERR(isec);
3010
3011	return avc_has_perm(&selinux_state,
3012			    sid, isec->sid, isec->sclass, FILE__READ, &ad);
3013}
3014
3015static noinline int audit_inode_permission(struct inode *inode,
3016					   u32 perms, u32 audited, u32 denied,
3017					   int result,
3018					   unsigned flags)
3019{
3020	struct common_audit_data ad;
3021	struct inode_security_struct *isec = selinux_inode(inode);
3022	int rc;
3023
3024	ad.type = LSM_AUDIT_DATA_INODE;
3025	ad.u.inode = inode;
3026
3027	rc = slow_avc_audit(&selinux_state,
3028			    current_sid(), isec->sid, isec->sclass, perms,
3029			    audited, denied, result, &ad, flags);
3030	if (rc)
3031		return rc;
3032	return 0;
3033}
3034
3035static int selinux_inode_permission(struct inode *inode, int mask)
3036{
3037	const struct cred *cred = current_cred();
3038	u32 perms;
3039	bool from_access;
3040	unsigned flags = mask & MAY_NOT_BLOCK;
3041	struct inode_security_struct *isec;
3042	u32 sid;
3043	struct av_decision avd;
3044	int rc, rc2;
3045	u32 audited, denied;
3046
3047	from_access = mask & MAY_ACCESS;
3048	mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
3049
3050	/* No permission to check.  Existence test. */
3051	if (!mask)
3052		return 0;
3053
3054	validate_creds(cred);
3055
3056	if (unlikely(IS_PRIVATE(inode)))
3057		return 0;
3058
3059	perms = file_mask_to_av(inode->i_mode, mask);
3060
3061	sid = cred_sid(cred);
3062	isec = inode_security_rcu(inode, flags & MAY_NOT_BLOCK);
3063	if (IS_ERR(isec))
3064		return PTR_ERR(isec);
3065
3066	rc = avc_has_perm_noaudit(&selinux_state,
3067				  sid, isec->sid, isec->sclass, perms,
3068				  (flags & MAY_NOT_BLOCK) ? AVC_NONBLOCKING : 0,
3069				  &avd);
3070	audited = avc_audit_required(perms, &avd, rc,
3071				     from_access ? FILE__AUDIT_ACCESS : 0,
3072				     &denied);
3073	if (likely(!audited))
3074		return rc;
3075
3076	rc2 = audit_inode_permission(inode, perms, audited, denied, rc, flags);
3077	if (rc2)
3078		return rc2;
3079	return rc;
3080}
3081
3082static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
3083{
3084	const struct cred *cred = current_cred();
3085	struct inode *inode = d_backing_inode(dentry);
3086	unsigned int ia_valid = iattr->ia_valid;
3087	__u32 av = FILE__WRITE;
3088
3089	/* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
3090	if (ia_valid & ATTR_FORCE) {
3091		ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
3092			      ATTR_FORCE);
3093		if (!ia_valid)
3094			return 0;
3095	}
3096
3097	if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
3098			ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
3099		return dentry_has_perm(cred, dentry, FILE__SETATTR);
3100
3101	if (selinux_policycap_openperm() &&
3102	    inode->i_sb->s_magic != SOCKFS_MAGIC &&
3103	    (ia_valid & ATTR_SIZE) &&
3104	    !(ia_valid & ATTR_FILE))
3105		av |= FILE__OPEN;
3106
3107	return dentry_has_perm(cred, dentry, av);
3108}
3109
3110static int selinux_inode_getattr(const struct path *path)
3111{
3112	return path_has_perm(current_cred(), path, FILE__GETATTR);
 
 
 
 
 
 
3113}
3114
3115static bool has_cap_mac_admin(bool audit)
3116{
3117	const struct cred *cred = current_cred();
3118	unsigned int opts = audit ? CAP_OPT_NONE : CAP_OPT_NOAUDIT;
3119
3120	if (cap_capable(cred, &init_user_ns, CAP_MAC_ADMIN, opts))
3121		return false;
3122	if (cred_has_capability(cred, CAP_MAC_ADMIN, opts, true))
3123		return false;
3124	return true;
 
 
 
 
 
 
 
 
 
 
3125}
3126
3127static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
3128				  const void *value, size_t size, int flags)
3129{
3130	struct inode *inode = d_backing_inode(dentry);
3131	struct inode_security_struct *isec;
3132	struct superblock_security_struct *sbsec;
3133	struct common_audit_data ad;
3134	u32 newsid, sid = current_sid();
3135	int rc = 0;
3136
3137	if (strcmp(name, XATTR_NAME_SELINUX)) {
3138		rc = cap_inode_setxattr(dentry, name, value, size, flags);
3139		if (rc)
3140			return rc;
3141
3142		/* Not an attribute we recognize, so just check the
3143		   ordinary setattr permission. */
3144		return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3145	}
3146
3147	sbsec = inode->i_sb->s_security;
3148	if (!(sbsec->flags & SBLABEL_MNT))
3149		return -EOPNOTSUPP;
3150
3151	if (!inode_owner_or_capable(inode))
3152		return -EPERM;
3153
3154	ad.type = LSM_AUDIT_DATA_DENTRY;
3155	ad.u.dentry = dentry;
3156
3157	isec = backing_inode_security(dentry);
3158	rc = avc_has_perm(&selinux_state,
3159			  sid, isec->sid, isec->sclass,
3160			  FILE__RELABELFROM, &ad);
3161	if (rc)
3162		return rc;
3163
3164	rc = security_context_to_sid(&selinux_state, value, size, &newsid,
3165				     GFP_KERNEL);
3166	if (rc == -EINVAL) {
3167		if (!has_cap_mac_admin(true)) {
3168			struct audit_buffer *ab;
3169			size_t audit_size;
 
3170
3171			/* We strip a nul only if it is at the end, otherwise the
3172			 * context contains a nul and we should audit that */
3173			if (value) {
3174				const char *str = value;
3175
3176				if (str[size - 1] == '\0')
3177					audit_size = size - 1;
3178				else
3179					audit_size = size;
3180			} else {
 
3181				audit_size = 0;
3182			}
3183			ab = audit_log_start(audit_context(),
3184					     GFP_ATOMIC, AUDIT_SELINUX_ERR);
3185			audit_log_format(ab, "op=setxattr invalid_context=");
3186			audit_log_n_untrustedstring(ab, value, audit_size);
3187			audit_log_end(ab);
3188
3189			return rc;
3190		}
3191		rc = security_context_to_sid_force(&selinux_state, value,
3192						   size, &newsid);
3193	}
3194	if (rc)
3195		return rc;
3196
3197	rc = avc_has_perm(&selinux_state,
3198			  sid, newsid, isec->sclass,
3199			  FILE__RELABELTO, &ad);
3200	if (rc)
3201		return rc;
3202
3203	rc = security_validate_transition(&selinux_state, isec->sid, newsid,
3204					  sid, isec->sclass);
3205	if (rc)
3206		return rc;
3207
3208	return avc_has_perm(&selinux_state,
3209			    newsid,
3210			    sbsec->sid,
3211			    SECCLASS_FILESYSTEM,
3212			    FILESYSTEM__ASSOCIATE,
3213			    &ad);
3214}
3215
3216static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
3217					const void *value, size_t size,
3218					int flags)
3219{
3220	struct inode *inode = d_backing_inode(dentry);
3221	struct inode_security_struct *isec;
3222	u32 newsid;
3223	int rc;
3224
3225	if (strcmp(name, XATTR_NAME_SELINUX)) {
3226		/* Not an attribute we recognize, so nothing to do. */
3227		return;
3228	}
3229
3230	rc = security_context_to_sid_force(&selinux_state, value, size,
3231					   &newsid);
3232	if (rc) {
3233		pr_err("SELinux:  unable to map context to SID"
3234		       "for (%s, %lu), rc=%d\n",
3235		       inode->i_sb->s_id, inode->i_ino, -rc);
3236		return;
3237	}
3238
3239	isec = backing_inode_security(dentry);
3240	spin_lock(&isec->lock);
3241	isec->sclass = inode_mode_to_security_class(inode->i_mode);
3242	isec->sid = newsid;
3243	isec->initialized = LABEL_INITIALIZED;
3244	spin_unlock(&isec->lock);
3245
3246	return;
3247}
3248
3249static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
3250{
3251	const struct cred *cred = current_cred();
3252
3253	return dentry_has_perm(cred, dentry, FILE__GETATTR);
3254}
3255
3256static int selinux_inode_listxattr(struct dentry *dentry)
3257{
3258	const struct cred *cred = current_cred();
3259
3260	return dentry_has_perm(cred, dentry, FILE__GETATTR);
3261}
3262
3263static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
3264{
3265	if (strcmp(name, XATTR_NAME_SELINUX)) {
3266		int rc = cap_inode_removexattr(dentry, name);
3267		if (rc)
3268			return rc;
3269
3270		/* Not an attribute we recognize, so just check the
3271		   ordinary setattr permission. */
3272		return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3273	}
3274
3275	/* No one is allowed to remove a SELinux security label.
3276	   You can change the label, but all data must be labeled. */
3277	return -EACCES;
3278}
3279
3280static int selinux_path_notify(const struct path *path, u64 mask,
3281						unsigned int obj_type)
3282{
3283	int ret;
3284	u32 perm;
3285
3286	struct common_audit_data ad;
3287
3288	ad.type = LSM_AUDIT_DATA_PATH;
3289	ad.u.path = *path;
3290
3291	/*
3292	 * Set permission needed based on the type of mark being set.
3293	 * Performs an additional check for sb watches.
3294	 */
3295	switch (obj_type) {
3296	case FSNOTIFY_OBJ_TYPE_VFSMOUNT:
3297		perm = FILE__WATCH_MOUNT;
3298		break;
3299	case FSNOTIFY_OBJ_TYPE_SB:
3300		perm = FILE__WATCH_SB;
3301		ret = superblock_has_perm(current_cred(), path->dentry->d_sb,
3302						FILESYSTEM__WATCH, &ad);
3303		if (ret)
3304			return ret;
3305		break;
3306	case FSNOTIFY_OBJ_TYPE_INODE:
3307		perm = FILE__WATCH;
3308		break;
3309	default:
3310		return -EINVAL;
3311	}
3312
3313	/* blocking watches require the file:watch_with_perm permission */
3314	if (mask & (ALL_FSNOTIFY_PERM_EVENTS))
3315		perm |= FILE__WATCH_WITH_PERM;
3316
3317	/* watches on read-like events need the file:watch_reads permission */
3318	if (mask & (FS_ACCESS | FS_ACCESS_PERM | FS_CLOSE_NOWRITE))
3319		perm |= FILE__WATCH_READS;
3320
3321	return path_has_perm(current_cred(), path, perm);
3322}
3323
3324/*
3325 * Copy the inode security context value to the user.
3326 *
3327 * Permission check is handled by selinux_inode_getxattr hook.
3328 */
3329static int selinux_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc)
3330{
3331	u32 size;
3332	int error;
3333	char *context = NULL;
3334	struct inode_security_struct *isec;
3335
3336	if (strcmp(name, XATTR_SELINUX_SUFFIX))
3337		return -EOPNOTSUPP;
3338
3339	/*
3340	 * If the caller has CAP_MAC_ADMIN, then get the raw context
3341	 * value even if it is not defined by current policy; otherwise,
3342	 * use the in-core value under current policy.
3343	 * Use the non-auditing forms of the permission checks since
3344	 * getxattr may be called by unprivileged processes commonly
3345	 * and lack of permission just means that we fall back to the
3346	 * in-core context value, not a denial.
3347	 */
3348	isec = inode_security(inode);
3349	if (has_cap_mac_admin(false))
3350		error = security_sid_to_context_force(&selinux_state,
3351						      isec->sid, &context,
3352						      &size);
3353	else
3354		error = security_sid_to_context(&selinux_state, isec->sid,
3355						&context, &size);
3356	if (error)
3357		return error;
3358	error = size;
3359	if (alloc) {
3360		*buffer = context;
3361		goto out_nofree;
3362	}
3363	kfree(context);
3364out_nofree:
3365	return error;
3366}
3367
3368static int selinux_inode_setsecurity(struct inode *inode, const char *name,
3369				     const void *value, size_t size, int flags)
3370{
3371	struct inode_security_struct *isec = inode_security_novalidate(inode);
3372	struct superblock_security_struct *sbsec = inode->i_sb->s_security;
3373	u32 newsid;
3374	int rc;
3375
3376	if (strcmp(name, XATTR_SELINUX_SUFFIX))
3377		return -EOPNOTSUPP;
3378
3379	if (!(sbsec->flags & SBLABEL_MNT))
3380		return -EOPNOTSUPP;
3381
3382	if (!value || !size)
3383		return -EACCES;
3384
3385	rc = security_context_to_sid(&selinux_state, value, size, &newsid,
3386				     GFP_KERNEL);
3387	if (rc)
3388		return rc;
3389
3390	spin_lock(&isec->lock);
3391	isec->sclass = inode_mode_to_security_class(inode->i_mode);
3392	isec->sid = newsid;
3393	isec->initialized = LABEL_INITIALIZED;
3394	spin_unlock(&isec->lock);
3395	return 0;
3396}
3397
3398static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
3399{
3400	const int len = sizeof(XATTR_NAME_SELINUX);
3401	if (buffer && len <= buffer_size)
3402		memcpy(buffer, XATTR_NAME_SELINUX, len);
3403	return len;
3404}
3405
3406static void selinux_inode_getsecid(struct inode *inode, u32 *secid)
3407{
3408	struct inode_security_struct *isec = inode_security_novalidate(inode);
3409	*secid = isec->sid;
3410}
3411
3412static int selinux_inode_copy_up(struct dentry *src, struct cred **new)
3413{
3414	u32 sid;
3415	struct task_security_struct *tsec;
3416	struct cred *new_creds = *new;
3417
3418	if (new_creds == NULL) {
3419		new_creds = prepare_creds();
3420		if (!new_creds)
3421			return -ENOMEM;
3422	}
3423
3424	tsec = selinux_cred(new_creds);
3425	/* Get label from overlay inode and set it in create_sid */
3426	selinux_inode_getsecid(d_inode(src), &sid);
3427	tsec->create_sid = sid;
3428	*new = new_creds;
3429	return 0;
3430}
3431
3432static int selinux_inode_copy_up_xattr(const char *name)
3433{
3434	/* The copy_up hook above sets the initial context on an inode, but we
3435	 * don't then want to overwrite it by blindly copying all the lower
3436	 * xattrs up.  Instead, we have to filter out SELinux-related xattrs.
3437	 */
3438	if (strcmp(name, XATTR_NAME_SELINUX) == 0)
3439		return 1; /* Discard */
3440	/*
3441	 * Any other attribute apart from SELINUX is not claimed, supported
3442	 * by selinux.
3443	 */
3444	return -EOPNOTSUPP;
3445}
3446
3447/* kernfs node operations */
3448
3449static int selinux_kernfs_init_security(struct kernfs_node *kn_dir,
3450					struct kernfs_node *kn)
3451{
3452	const struct task_security_struct *tsec = selinux_cred(current_cred());
3453	u32 parent_sid, newsid, clen;
3454	int rc;
3455	char *context;
3456
3457	rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, NULL, 0);
3458	if (rc == -ENODATA)
3459		return 0;
3460	else if (rc < 0)
3461		return rc;
3462
3463	clen = (u32)rc;
3464	context = kmalloc(clen, GFP_KERNEL);
3465	if (!context)
3466		return -ENOMEM;
3467
3468	rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, context, clen);
3469	if (rc < 0) {
3470		kfree(context);
3471		return rc;
3472	}
3473
3474	rc = security_context_to_sid(&selinux_state, context, clen, &parent_sid,
3475				     GFP_KERNEL);
3476	kfree(context);
3477	if (rc)
3478		return rc;
3479
3480	if (tsec->create_sid) {
3481		newsid = tsec->create_sid;
3482	} else {
3483		u16 secclass = inode_mode_to_security_class(kn->mode);
3484		struct qstr q;
3485
3486		q.name = kn->name;
3487		q.hash_len = hashlen_string(kn_dir, kn->name);
3488
3489		rc = security_transition_sid(&selinux_state, tsec->sid,
3490					     parent_sid, secclass, &q,
3491					     &newsid);
3492		if (rc)
3493			return rc;
3494	}
3495
3496	rc = security_sid_to_context_force(&selinux_state, newsid,
3497					   &context, &clen);
3498	if (rc)
3499		return rc;
3500
3501	rc = kernfs_xattr_set(kn, XATTR_NAME_SELINUX, context, clen,
3502			      XATTR_CREATE);
3503	kfree(context);
3504	return rc;
3505}
3506
3507
3508/* file security operations */
3509
3510static int selinux_revalidate_file_permission(struct file *file, int mask)
3511{
3512	const struct cred *cred = current_cred();
3513	struct inode *inode = file_inode(file);
3514
3515	/* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
3516	if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
3517		mask |= MAY_APPEND;
3518
3519	return file_has_perm(cred, file,
3520			     file_mask_to_av(inode->i_mode, mask));
3521}
3522
3523static int selinux_file_permission(struct file *file, int mask)
3524{
3525	struct inode *inode = file_inode(file);
3526	struct file_security_struct *fsec = selinux_file(file);
3527	struct inode_security_struct *isec;
3528	u32 sid = current_sid();
3529
3530	if (!mask)
3531		/* No permission to check.  Existence test. */
3532		return 0;
3533
3534	isec = inode_security(inode);
3535	if (sid == fsec->sid && fsec->isid == isec->sid &&
3536	    fsec->pseqno == avc_policy_seqno(&selinux_state))
3537		/* No change since file_open check. */
3538		return 0;
3539
3540	return selinux_revalidate_file_permission(file, mask);
3541}
3542
3543static int selinux_file_alloc_security(struct file *file)
3544{
3545	return file_alloc_security(file);
3546}
3547
3548/*
3549 * Check whether a task has the ioctl permission and cmd
3550 * operation to an inode.
3551 */
3552static int ioctl_has_perm(const struct cred *cred, struct file *file,
3553		u32 requested, u16 cmd)
3554{
3555	struct common_audit_data ad;
3556	struct file_security_struct *fsec = selinux_file(file);
3557	struct inode *inode = file_inode(file);
3558	struct inode_security_struct *isec;
3559	struct lsm_ioctlop_audit ioctl;
3560	u32 ssid = cred_sid(cred);
3561	int rc;
3562	u8 driver = cmd >> 8;
3563	u8 xperm = cmd & 0xff;
3564
3565	ad.type = LSM_AUDIT_DATA_IOCTL_OP;
3566	ad.u.op = &ioctl;
3567	ad.u.op->cmd = cmd;
3568	ad.u.op->path = file->f_path;
3569
3570	if (ssid != fsec->sid) {
3571		rc = avc_has_perm(&selinux_state,
3572				  ssid, fsec->sid,
3573				SECCLASS_FD,
3574				FD__USE,
3575				&ad);
3576		if (rc)
3577			goto out;
3578	}
3579
3580	if (unlikely(IS_PRIVATE(inode)))
3581		return 0;
3582
3583	isec = inode_security(inode);
3584	rc = avc_has_extended_perms(&selinux_state,
3585				    ssid, isec->sid, isec->sclass,
3586				    requested, driver, xperm, &ad);
3587out:
3588	return rc;
3589}
3590
3591static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3592			      unsigned long arg)
3593{
3594	const struct cred *cred = current_cred();
3595	int error = 0;
3596
3597	switch (cmd) {
3598	case FIONREAD:
3599	/* fall through */
3600	case FIBMAP:
3601	/* fall through */
3602	case FIGETBSZ:
3603	/* fall through */
3604	case FS_IOC_GETFLAGS:
3605	/* fall through */
3606	case FS_IOC_GETVERSION:
3607		error = file_has_perm(cred, file, FILE__GETATTR);
3608		break;
3609
3610	case FS_IOC_SETFLAGS:
3611	/* fall through */
3612	case FS_IOC_SETVERSION:
3613		error = file_has_perm(cred, file, FILE__SETATTR);
3614		break;
3615
3616	/* sys_ioctl() checks */
3617	case FIONBIO:
3618	/* fall through */
3619	case FIOASYNC:
3620		error = file_has_perm(cred, file, 0);
3621		break;
3622
3623	case KDSKBENT:
3624	case KDSKBSENT:
3625		error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3626					    CAP_OPT_NONE, true);
3627		break;
3628
3629	/* default case assumes that the command will go
3630	 * to the file's ioctl() function.
3631	 */
3632	default:
3633		error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd);
3634	}
3635	return error;
3636}
3637
3638static int default_noexec;
3639
3640static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3641{
3642	const struct cred *cred = current_cred();
3643	u32 sid = cred_sid(cred);
3644	int rc = 0;
3645
3646	if (default_noexec &&
3647	    (prot & PROT_EXEC) && (!file || IS_PRIVATE(file_inode(file)) ||
3648				   (!shared && (prot & PROT_WRITE)))) {
3649		/*
3650		 * We are making executable an anonymous mapping or a
3651		 * private file mapping that will also be writable.
3652		 * This has an additional check.
3653		 */
3654		rc = avc_has_perm(&selinux_state,
3655				  sid, sid, SECCLASS_PROCESS,
3656				  PROCESS__EXECMEM, NULL);
3657		if (rc)
3658			goto error;
3659	}
3660
3661	if (file) {
3662		/* read access is always possible with a mapping */
3663		u32 av = FILE__READ;
3664
3665		/* write access only matters if the mapping is shared */
3666		if (shared && (prot & PROT_WRITE))
3667			av |= FILE__WRITE;
3668
3669		if (prot & PROT_EXEC)
3670			av |= FILE__EXECUTE;
3671
3672		return file_has_perm(cred, file, av);
3673	}
3674
3675error:
3676	return rc;
3677}
3678
3679static int selinux_mmap_addr(unsigned long addr)
3680{
3681	int rc = 0;
 
3682
 
 
 
 
 
 
3683	if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3684		u32 sid = current_sid();
3685		rc = avc_has_perm(&selinux_state,
3686				  sid, sid, SECCLASS_MEMPROTECT,
3687				  MEMPROTECT__MMAP_ZERO, NULL);
 
 
3688	}
3689
3690	return rc;
 
3691}
3692
3693static int selinux_mmap_file(struct file *file, unsigned long reqprot,
3694			     unsigned long prot, unsigned long flags)
3695{
3696	struct common_audit_data ad;
3697	int rc;
3698
3699	if (file) {
3700		ad.type = LSM_AUDIT_DATA_FILE;
3701		ad.u.file = file;
3702		rc = inode_has_perm(current_cred(), file_inode(file),
3703				    FILE__MAP, &ad);
3704		if (rc)
3705			return rc;
3706	}
3707
3708	if (selinux_state.checkreqprot)
3709		prot = reqprot;
3710
3711	return file_map_prot_check(file, prot,
3712				   (flags & MAP_TYPE) == MAP_SHARED);
3713}
3714
3715static int selinux_file_mprotect(struct vm_area_struct *vma,
3716				 unsigned long reqprot,
3717				 unsigned long prot)
3718{
3719	const struct cred *cred = current_cred();
3720	u32 sid = cred_sid(cred);
3721
3722	if (selinux_state.checkreqprot)
3723		prot = reqprot;
3724
3725	if (default_noexec &&
3726	    (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3727		int rc = 0;
3728		if (vma->vm_start >= vma->vm_mm->start_brk &&
3729		    vma->vm_end <= vma->vm_mm->brk) {
3730			rc = avc_has_perm(&selinux_state,
3731					  sid, sid, SECCLASS_PROCESS,
3732					  PROCESS__EXECHEAP, NULL);
3733		} else if (!vma->vm_file &&
3734			   ((vma->vm_start <= vma->vm_mm->start_stack &&
3735			     vma->vm_end >= vma->vm_mm->start_stack) ||
3736			    vma_is_stack_for_current(vma))) {
3737			rc = avc_has_perm(&selinux_state,
3738					  sid, sid, SECCLASS_PROCESS,
3739					  PROCESS__EXECSTACK, NULL);
3740		} else if (vma->vm_file && vma->anon_vma) {
3741			/*
3742			 * We are making executable a file mapping that has
3743			 * had some COW done. Since pages might have been
3744			 * written, check ability to execute the possibly
3745			 * modified content.  This typically should only
3746			 * occur for text relocations.
3747			 */
3748			rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3749		}
3750		if (rc)
3751			return rc;
3752	}
3753
3754	return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3755}
3756
3757static int selinux_file_lock(struct file *file, unsigned int cmd)
3758{
3759	const struct cred *cred = current_cred();
3760
3761	return file_has_perm(cred, file, FILE__LOCK);
3762}
3763
3764static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3765			      unsigned long arg)
3766{
3767	const struct cred *cred = current_cred();
3768	int err = 0;
3769
3770	switch (cmd) {
3771	case F_SETFL:
 
 
 
 
 
3772		if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3773			err = file_has_perm(cred, file, FILE__WRITE);
3774			break;
3775		}
3776		/* fall through */
3777	case F_SETOWN:
3778	case F_SETSIG:
3779	case F_GETFL:
3780	case F_GETOWN:
3781	case F_GETSIG:
3782	case F_GETOWNER_UIDS:
3783		/* Just check FD__USE permission */
3784		err = file_has_perm(cred, file, 0);
3785		break;
3786	case F_GETLK:
3787	case F_SETLK:
3788	case F_SETLKW:
3789	case F_OFD_GETLK:
3790	case F_OFD_SETLK:
3791	case F_OFD_SETLKW:
3792#if BITS_PER_LONG == 32
3793	case F_GETLK64:
3794	case F_SETLK64:
3795	case F_SETLKW64:
3796#endif
 
 
 
 
3797		err = file_has_perm(cred, file, FILE__LOCK);
3798		break;
3799	}
3800
3801	return err;
3802}
3803
3804static void selinux_file_set_fowner(struct file *file)
3805{
3806	struct file_security_struct *fsec;
3807
3808	fsec = selinux_file(file);
3809	fsec->fown_sid = current_sid();
 
 
3810}
3811
3812static int selinux_file_send_sigiotask(struct task_struct *tsk,
3813				       struct fown_struct *fown, int signum)
3814{
3815	struct file *file;
3816	u32 sid = task_sid(tsk);
3817	u32 perm;
3818	struct file_security_struct *fsec;
3819
3820	/* struct fown_struct is never outside the context of a struct file */
3821	file = container_of(fown, struct file, f_owner);
3822
3823	fsec = selinux_file(file);
3824
3825	if (!signum)
3826		perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3827	else
3828		perm = signal_to_av(signum);
3829
3830	return avc_has_perm(&selinux_state,
3831			    fsec->fown_sid, sid,
3832			    SECCLASS_PROCESS, perm, NULL);
3833}
3834
3835static int selinux_file_receive(struct file *file)
3836{
3837	const struct cred *cred = current_cred();
3838
3839	return file_has_perm(cred, file, file_to_av(file));
3840}
3841
3842static int selinux_file_open(struct file *file)
3843{
3844	struct file_security_struct *fsec;
3845	struct inode_security_struct *isec;
3846
3847	fsec = selinux_file(file);
3848	isec = inode_security(file_inode(file));
3849	/*
3850	 * Save inode label and policy sequence number
3851	 * at open-time so that selinux_file_permission
3852	 * can determine whether revalidation is necessary.
3853	 * Task label is already saved in the file security
3854	 * struct as its SID.
3855	 */
3856	fsec->isid = isec->sid;
3857	fsec->pseqno = avc_policy_seqno(&selinux_state);
3858	/*
3859	 * Since the inode label or policy seqno may have changed
3860	 * between the selinux_inode_permission check and the saving
3861	 * of state above, recheck that access is still permitted.
3862	 * Otherwise, access might never be revalidated against the
3863	 * new inode label or new policy.
3864	 * This check is not redundant - do not remove.
3865	 */
3866	return file_path_has_perm(file->f_cred, file, open_file_to_av(file));
3867}
3868
3869/* task security operations */
3870
3871static int selinux_task_alloc(struct task_struct *task,
3872			      unsigned long clone_flags)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3873{
3874	u32 sid = current_sid();
3875
3876	return avc_has_perm(&selinux_state,
3877			    sid, sid, SECCLASS_PROCESS, PROCESS__FORK, NULL);
 
 
 
 
 
3878}
3879
3880/*
3881 * prepare a new set of credentials for modification
3882 */
3883static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3884				gfp_t gfp)
3885{
3886	const struct task_security_struct *old_tsec = selinux_cred(old);
3887	struct task_security_struct *tsec = selinux_cred(new);
 
 
3888
3889	*tsec = *old_tsec;
 
 
 
 
3890	return 0;
3891}
3892
3893/*
3894 * transfer the SELinux data to a blank set of creds
3895 */
3896static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3897{
3898	const struct task_security_struct *old_tsec = selinux_cred(old);
3899	struct task_security_struct *tsec = selinux_cred(new);
3900
3901	*tsec = *old_tsec;
3902}
3903
3904static void selinux_cred_getsecid(const struct cred *c, u32 *secid)
3905{
3906	*secid = cred_sid(c);
3907}
3908
3909/*
3910 * set the security data for a kernel service
3911 * - all the creation contexts are set to unlabelled
3912 */
3913static int selinux_kernel_act_as(struct cred *new, u32 secid)
3914{
3915	struct task_security_struct *tsec = selinux_cred(new);
3916	u32 sid = current_sid();
3917	int ret;
3918
3919	ret = avc_has_perm(&selinux_state,
3920			   sid, secid,
3921			   SECCLASS_KERNEL_SERVICE,
3922			   KERNEL_SERVICE__USE_AS_OVERRIDE,
3923			   NULL);
3924	if (ret == 0) {
3925		tsec->sid = secid;
3926		tsec->create_sid = 0;
3927		tsec->keycreate_sid = 0;
3928		tsec->sockcreate_sid = 0;
3929	}
3930	return ret;
3931}
3932
3933/*
3934 * set the file creation context in a security record to the same as the
3935 * objective context of the specified inode
3936 */
3937static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3938{
3939	struct inode_security_struct *isec = inode_security(inode);
3940	struct task_security_struct *tsec = selinux_cred(new);
3941	u32 sid = current_sid();
3942	int ret;
3943
3944	ret = avc_has_perm(&selinux_state,
3945			   sid, isec->sid,
3946			   SECCLASS_KERNEL_SERVICE,
3947			   KERNEL_SERVICE__CREATE_FILES_AS,
3948			   NULL);
3949
3950	if (ret == 0)
3951		tsec->create_sid = isec->sid;
3952	return ret;
3953}
3954
3955static int selinux_kernel_module_request(char *kmod_name)
3956{
 
3957	struct common_audit_data ad;
3958
 
 
3959	ad.type = LSM_AUDIT_DATA_KMOD;
3960	ad.u.kmod_name = kmod_name;
3961
3962	return avc_has_perm(&selinux_state,
3963			    current_sid(), SECINITSID_KERNEL, SECCLASS_SYSTEM,
3964			    SYSTEM__MODULE_REQUEST, &ad);
3965}
3966
3967static int selinux_kernel_module_from_file(struct file *file)
3968{
3969	struct common_audit_data ad;
3970	struct inode_security_struct *isec;
3971	struct file_security_struct *fsec;
3972	u32 sid = current_sid();
3973	int rc;
3974
3975	/* init_module */
3976	if (file == NULL)
3977		return avc_has_perm(&selinux_state,
3978				    sid, sid, SECCLASS_SYSTEM,
3979					SYSTEM__MODULE_LOAD, NULL);
3980
3981	/* finit_module */
3982
3983	ad.type = LSM_AUDIT_DATA_FILE;
3984	ad.u.file = file;
3985
3986	fsec = selinux_file(file);
3987	if (sid != fsec->sid) {
3988		rc = avc_has_perm(&selinux_state,
3989				  sid, fsec->sid, SECCLASS_FD, FD__USE, &ad);
3990		if (rc)
3991			return rc;
3992	}
3993
3994	isec = inode_security(file_inode(file));
3995	return avc_has_perm(&selinux_state,
3996			    sid, isec->sid, SECCLASS_SYSTEM,
3997				SYSTEM__MODULE_LOAD, &ad);
3998}
3999
4000static int selinux_kernel_read_file(struct file *file,
4001				    enum kernel_read_file_id id)
4002{
4003	int rc = 0;
4004
4005	switch (id) {
4006	case READING_MODULE:
4007		rc = selinux_kernel_module_from_file(file);
4008		break;
4009	default:
4010		break;
4011	}
4012
4013	return rc;
4014}
4015
4016static int selinux_kernel_load_data(enum kernel_load_data_id id)
4017{
4018	int rc = 0;
4019
4020	switch (id) {
4021	case LOADING_MODULE:
4022		rc = selinux_kernel_module_from_file(NULL);
4023	default:
4024		break;
4025	}
4026
4027	return rc;
4028}
4029
4030static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
4031{
4032	return avc_has_perm(&selinux_state,
4033			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4034			    PROCESS__SETPGID, NULL);
4035}
4036
4037static int selinux_task_getpgid(struct task_struct *p)
4038{
4039	return avc_has_perm(&selinux_state,
4040			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4041			    PROCESS__GETPGID, NULL);
4042}
4043
4044static int selinux_task_getsid(struct task_struct *p)
4045{
4046	return avc_has_perm(&selinux_state,
4047			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4048			    PROCESS__GETSESSION, NULL);
4049}
4050
4051static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
4052{
4053	*secid = task_sid(p);
4054}
4055
4056static int selinux_task_setnice(struct task_struct *p, int nice)
4057{
4058	return avc_has_perm(&selinux_state,
4059			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4060			    PROCESS__SETSCHED, NULL);
 
 
 
 
4061}
4062
4063static int selinux_task_setioprio(struct task_struct *p, int ioprio)
4064{
4065	return avc_has_perm(&selinux_state,
4066			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4067			    PROCESS__SETSCHED, NULL);
 
 
 
 
4068}
4069
4070static int selinux_task_getioprio(struct task_struct *p)
4071{
4072	return avc_has_perm(&selinux_state,
4073			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4074			    PROCESS__GETSCHED, NULL);
4075}
4076
4077static int selinux_task_prlimit(const struct cred *cred, const struct cred *tcred,
4078				unsigned int flags)
4079{
4080	u32 av = 0;
4081
4082	if (!flags)
4083		return 0;
4084	if (flags & LSM_PRLIMIT_WRITE)
4085		av |= PROCESS__SETRLIMIT;
4086	if (flags & LSM_PRLIMIT_READ)
4087		av |= PROCESS__GETRLIMIT;
4088	return avc_has_perm(&selinux_state,
4089			    cred_sid(cred), cred_sid(tcred),
4090			    SECCLASS_PROCESS, av, NULL);
4091}
4092
4093static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
4094		struct rlimit *new_rlim)
4095{
4096	struct rlimit *old_rlim = p->signal->rlim + resource;
4097
4098	/* Control the ability to change the hard limit (whether
4099	   lowering or raising it), so that the hard limit can
4100	   later be used as a safe reset point for the soft limit
4101	   upon context transitions.  See selinux_bprm_committing_creds. */
4102	if (old_rlim->rlim_max != new_rlim->rlim_max)
4103		return avc_has_perm(&selinux_state,
4104				    current_sid(), task_sid(p),
4105				    SECCLASS_PROCESS, PROCESS__SETRLIMIT, NULL);
4106
4107	return 0;
4108}
4109
4110static int selinux_task_setscheduler(struct task_struct *p)
4111{
4112	return avc_has_perm(&selinux_state,
4113			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4114			    PROCESS__SETSCHED, NULL);
 
 
 
 
4115}
4116
4117static int selinux_task_getscheduler(struct task_struct *p)
4118{
4119	return avc_has_perm(&selinux_state,
4120			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4121			    PROCESS__GETSCHED, NULL);
4122}
4123
4124static int selinux_task_movememory(struct task_struct *p)
4125{
4126	return avc_has_perm(&selinux_state,
4127			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4128			    PROCESS__SETSCHED, NULL);
4129}
4130
4131static int selinux_task_kill(struct task_struct *p, struct kernel_siginfo *info,
4132				int sig, const struct cred *cred)
4133{
4134	u32 secid;
4135	u32 perm;
 
4136
4137	if (!sig)
4138		perm = PROCESS__SIGNULL; /* null signal; existence test */
4139	else
4140		perm = signal_to_av(sig);
4141	if (!cred)
4142		secid = current_sid();
 
4143	else
4144		secid = cred_sid(cred);
4145	return avc_has_perm(&selinux_state,
4146			    secid, task_sid(p), SECCLASS_PROCESS, perm, NULL);
 
 
 
 
4147}
4148
4149static void selinux_task_to_inode(struct task_struct *p,
4150				  struct inode *inode)
4151{
4152	struct inode_security_struct *isec = selinux_inode(inode);
4153	u32 sid = task_sid(p);
4154
4155	spin_lock(&isec->lock);
4156	isec->sclass = inode_mode_to_security_class(inode->i_mode);
4157	isec->sid = sid;
4158	isec->initialized = LABEL_INITIALIZED;
4159	spin_unlock(&isec->lock);
4160}
4161
4162/* Returns error only if unable to parse addresses */
4163static int selinux_parse_skb_ipv4(struct sk_buff *skb,
4164			struct common_audit_data *ad, u8 *proto)
4165{
4166	int offset, ihlen, ret = -EINVAL;
4167	struct iphdr _iph, *ih;
4168
4169	offset = skb_network_offset(skb);
4170	ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
4171	if (ih == NULL)
4172		goto out;
4173
4174	ihlen = ih->ihl * 4;
4175	if (ihlen < sizeof(_iph))
4176		goto out;
4177
4178	ad->u.net->v4info.saddr = ih->saddr;
4179	ad->u.net->v4info.daddr = ih->daddr;
4180	ret = 0;
4181
4182	if (proto)
4183		*proto = ih->protocol;
4184
4185	switch (ih->protocol) {
4186	case IPPROTO_TCP: {
4187		struct tcphdr _tcph, *th;
4188
4189		if (ntohs(ih->frag_off) & IP_OFFSET)
4190			break;
4191
4192		offset += ihlen;
4193		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4194		if (th == NULL)
4195			break;
4196
4197		ad->u.net->sport = th->source;
4198		ad->u.net->dport = th->dest;
4199		break;
4200	}
4201
4202	case IPPROTO_UDP: {
4203		struct udphdr _udph, *uh;
4204
4205		if (ntohs(ih->frag_off) & IP_OFFSET)
4206			break;
4207
4208		offset += ihlen;
4209		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4210		if (uh == NULL)
4211			break;
4212
4213		ad->u.net->sport = uh->source;
4214		ad->u.net->dport = uh->dest;
4215		break;
4216	}
4217
4218	case IPPROTO_DCCP: {
4219		struct dccp_hdr _dccph, *dh;
4220
4221		if (ntohs(ih->frag_off) & IP_OFFSET)
4222			break;
4223
4224		offset += ihlen;
4225		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4226		if (dh == NULL)
4227			break;
4228
4229		ad->u.net->sport = dh->dccph_sport;
4230		ad->u.net->dport = dh->dccph_dport;
4231		break;
4232	}
4233
4234#if IS_ENABLED(CONFIG_IP_SCTP)
4235	case IPPROTO_SCTP: {
4236		struct sctphdr _sctph, *sh;
4237
4238		if (ntohs(ih->frag_off) & IP_OFFSET)
4239			break;
4240
4241		offset += ihlen;
4242		sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4243		if (sh == NULL)
4244			break;
4245
4246		ad->u.net->sport = sh->source;
4247		ad->u.net->dport = sh->dest;
4248		break;
4249	}
4250#endif
4251	default:
4252		break;
4253	}
4254out:
4255	return ret;
4256}
4257
4258#if IS_ENABLED(CONFIG_IPV6)
4259
4260/* Returns error only if unable to parse addresses */
4261static int selinux_parse_skb_ipv6(struct sk_buff *skb,
4262			struct common_audit_data *ad, u8 *proto)
4263{
4264	u8 nexthdr;
4265	int ret = -EINVAL, offset;
4266	struct ipv6hdr _ipv6h, *ip6;
4267	__be16 frag_off;
4268
4269	offset = skb_network_offset(skb);
4270	ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
4271	if (ip6 == NULL)
4272		goto out;
4273
4274	ad->u.net->v6info.saddr = ip6->saddr;
4275	ad->u.net->v6info.daddr = ip6->daddr;
4276	ret = 0;
4277
4278	nexthdr = ip6->nexthdr;
4279	offset += sizeof(_ipv6h);
4280	offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
4281	if (offset < 0)
4282		goto out;
4283
4284	if (proto)
4285		*proto = nexthdr;
4286
4287	switch (nexthdr) {
4288	case IPPROTO_TCP: {
4289		struct tcphdr _tcph, *th;
4290
4291		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4292		if (th == NULL)
4293			break;
4294
4295		ad->u.net->sport = th->source;
4296		ad->u.net->dport = th->dest;
4297		break;
4298	}
4299
4300	case IPPROTO_UDP: {
4301		struct udphdr _udph, *uh;
4302
4303		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4304		if (uh == NULL)
4305			break;
4306
4307		ad->u.net->sport = uh->source;
4308		ad->u.net->dport = uh->dest;
4309		break;
4310	}
4311
4312	case IPPROTO_DCCP: {
4313		struct dccp_hdr _dccph, *dh;
4314
4315		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4316		if (dh == NULL)
4317			break;
4318
4319		ad->u.net->sport = dh->dccph_sport;
4320		ad->u.net->dport = dh->dccph_dport;
4321		break;
4322	}
4323
4324#if IS_ENABLED(CONFIG_IP_SCTP)
4325	case IPPROTO_SCTP: {
4326		struct sctphdr _sctph, *sh;
4327
4328		sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4329		if (sh == NULL)
4330			break;
4331
4332		ad->u.net->sport = sh->source;
4333		ad->u.net->dport = sh->dest;
4334		break;
4335	}
4336#endif
4337	/* includes fragments */
4338	default:
4339		break;
4340	}
4341out:
4342	return ret;
4343}
4344
4345#endif /* IPV6 */
4346
4347static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
4348			     char **_addrp, int src, u8 *proto)
4349{
4350	char *addrp;
4351	int ret;
4352
4353	switch (ad->u.net->family) {
4354	case PF_INET:
4355		ret = selinux_parse_skb_ipv4(skb, ad, proto);
4356		if (ret)
4357			goto parse_error;
4358		addrp = (char *)(src ? &ad->u.net->v4info.saddr :
4359				       &ad->u.net->v4info.daddr);
4360		goto okay;
4361
4362#if IS_ENABLED(CONFIG_IPV6)
4363	case PF_INET6:
4364		ret = selinux_parse_skb_ipv6(skb, ad, proto);
4365		if (ret)
4366			goto parse_error;
4367		addrp = (char *)(src ? &ad->u.net->v6info.saddr :
4368				       &ad->u.net->v6info.daddr);
4369		goto okay;
4370#endif	/* IPV6 */
4371	default:
4372		addrp = NULL;
4373		goto okay;
4374	}
4375
4376parse_error:
4377	pr_warn(
4378	       "SELinux: failure in selinux_parse_skb(),"
4379	       " unable to parse packet\n");
4380	return ret;
4381
4382okay:
4383	if (_addrp)
4384		*_addrp = addrp;
4385	return 0;
4386}
4387
4388/**
4389 * selinux_skb_peerlbl_sid - Determine the peer label of a packet
4390 * @skb: the packet
4391 * @family: protocol family
4392 * @sid: the packet's peer label SID
4393 *
4394 * Description:
4395 * Check the various different forms of network peer labeling and determine
4396 * the peer label/SID for the packet; most of the magic actually occurs in
4397 * the security server function security_net_peersid_cmp().  The function
4398 * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
4399 * or -EACCES if @sid is invalid due to inconsistencies with the different
4400 * peer labels.
4401 *
4402 */
4403static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
4404{
4405	int err;
4406	u32 xfrm_sid;
4407	u32 nlbl_sid;
4408	u32 nlbl_type;
4409
4410	err = selinux_xfrm_skb_sid(skb, &xfrm_sid);
4411	if (unlikely(err))
4412		return -EACCES;
4413	err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
4414	if (unlikely(err))
4415		return -EACCES;
4416
4417	err = security_net_peersid_resolve(&selinux_state, nlbl_sid,
4418					   nlbl_type, xfrm_sid, sid);
4419	if (unlikely(err)) {
4420		pr_warn(
4421		       "SELinux: failure in selinux_skb_peerlbl_sid(),"
4422		       " unable to determine packet's peer label\n");
4423		return -EACCES;
4424	}
4425
4426	return 0;
4427}
4428
4429/**
4430 * selinux_conn_sid - Determine the child socket label for a connection
4431 * @sk_sid: the parent socket's SID
4432 * @skb_sid: the packet's SID
4433 * @conn_sid: the resulting connection SID
4434 *
4435 * If @skb_sid is valid then the user:role:type information from @sk_sid is
4436 * combined with the MLS information from @skb_sid in order to create
4437 * @conn_sid.  If @skb_sid is not valid then then @conn_sid is simply a copy
4438 * of @sk_sid.  Returns zero on success, negative values on failure.
4439 *
4440 */
4441static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid)
4442{
4443	int err = 0;
4444
4445	if (skb_sid != SECSID_NULL)
4446		err = security_sid_mls_copy(&selinux_state, sk_sid, skb_sid,
4447					    conn_sid);
4448	else
4449		*conn_sid = sk_sid;
4450
4451	return err;
4452}
4453
4454/* socket security operations */
4455
4456static int socket_sockcreate_sid(const struct task_security_struct *tsec,
4457				 u16 secclass, u32 *socksid)
4458{
4459	if (tsec->sockcreate_sid > SECSID_NULL) {
4460		*socksid = tsec->sockcreate_sid;
4461		return 0;
4462	}
4463
4464	return security_transition_sid(&selinux_state, tsec->sid, tsec->sid,
4465				       secclass, NULL, socksid);
4466}
4467
4468static int sock_has_perm(struct sock *sk, u32 perms)
4469{
4470	struct sk_security_struct *sksec = sk->sk_security;
4471	struct common_audit_data ad;
4472	struct lsm_network_audit net = {0,};
 
4473
4474	if (sksec->sid == SECINITSID_KERNEL)
4475		return 0;
4476
4477	ad.type = LSM_AUDIT_DATA_NET;
4478	ad.u.net = &net;
4479	ad.u.net->sk = sk;
4480
4481	return avc_has_perm(&selinux_state,
4482			    current_sid(), sksec->sid, sksec->sclass, perms,
4483			    &ad);
4484}
4485
4486static int selinux_socket_create(int family, int type,
4487				 int protocol, int kern)
4488{
4489	const struct task_security_struct *tsec = selinux_cred(current_cred());
4490	u32 newsid;
4491	u16 secclass;
4492	int rc;
4493
4494	if (kern)
4495		return 0;
4496
4497	secclass = socket_type_to_security_class(family, type, protocol);
4498	rc = socket_sockcreate_sid(tsec, secclass, &newsid);
4499	if (rc)
4500		return rc;
4501
4502	return avc_has_perm(&selinux_state,
4503			    tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
4504}
4505
4506static int selinux_socket_post_create(struct socket *sock, int family,
4507				      int type, int protocol, int kern)
4508{
4509	const struct task_security_struct *tsec = selinux_cred(current_cred());
4510	struct inode_security_struct *isec = inode_security_novalidate(SOCK_INODE(sock));
4511	struct sk_security_struct *sksec;
4512	u16 sclass = socket_type_to_security_class(family, type, protocol);
4513	u32 sid = SECINITSID_KERNEL;
4514	int err = 0;
4515
4516	if (!kern) {
4517		err = socket_sockcreate_sid(tsec, sclass, &sid);
 
 
 
 
4518		if (err)
4519			return err;
4520	}
4521
4522	isec->sclass = sclass;
4523	isec->sid = sid;
4524	isec->initialized = LABEL_INITIALIZED;
4525
4526	if (sock->sk) {
4527		sksec = sock->sk->sk_security;
4528		sksec->sclass = sclass;
4529		sksec->sid = sid;
4530		/* Allows detection of the first association on this socket */
4531		if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4532			sksec->sctp_assoc_state = SCTP_ASSOC_UNSET;
4533
4534		err = selinux_netlbl_socket_post_create(sock->sk, family);
4535	}
4536
4537	return err;
4538}
4539
4540static int selinux_socket_socketpair(struct socket *socka,
4541				     struct socket *sockb)
4542{
4543	struct sk_security_struct *sksec_a = socka->sk->sk_security;
4544	struct sk_security_struct *sksec_b = sockb->sk->sk_security;
4545
4546	sksec_a->peer_sid = sksec_b->sid;
4547	sksec_b->peer_sid = sksec_a->sid;
4548
4549	return 0;
4550}
4551
4552/* Range of port numbers used to automatically bind.
4553   Need to determine whether we should perform a name_bind
4554   permission check between the socket and the port number. */
4555
4556static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
4557{
4558	struct sock *sk = sock->sk;
4559	struct sk_security_struct *sksec = sk->sk_security;
4560	u16 family;
4561	int err;
4562
4563	err = sock_has_perm(sk, SOCKET__BIND);
4564	if (err)
4565		goto out;
4566
4567	/* If PF_INET or PF_INET6, check name_bind permission for the port. */
 
 
 
 
4568	family = sk->sk_family;
4569	if (family == PF_INET || family == PF_INET6) {
4570		char *addrp;
 
4571		struct common_audit_data ad;
4572		struct lsm_network_audit net = {0,};
4573		struct sockaddr_in *addr4 = NULL;
4574		struct sockaddr_in6 *addr6 = NULL;
4575		u16 family_sa;
4576		unsigned short snum;
4577		u32 sid, node_perm;
4578
4579		/*
4580		 * sctp_bindx(3) calls via selinux_sctp_bind_connect()
4581		 * that validates multiple binding addresses. Because of this
4582		 * need to check address->sa_family as it is possible to have
4583		 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4584		 */
4585		if (addrlen < offsetofend(struct sockaddr, sa_family))
4586			return -EINVAL;
4587		family_sa = address->sa_family;
4588		switch (family_sa) {
4589		case AF_UNSPEC:
4590		case AF_INET:
4591			if (addrlen < sizeof(struct sockaddr_in))
4592				return -EINVAL;
4593			addr4 = (struct sockaddr_in *)address;
4594			if (family_sa == AF_UNSPEC) {
4595				/* see __inet_bind(), we only want to allow
4596				 * AF_UNSPEC if the address is INADDR_ANY
4597				 */
4598				if (addr4->sin_addr.s_addr != htonl(INADDR_ANY))
4599					goto err_af;
4600				family_sa = AF_INET;
4601			}
4602			snum = ntohs(addr4->sin_port);
4603			addrp = (char *)&addr4->sin_addr.s_addr;
4604			break;
4605		case AF_INET6:
4606			if (addrlen < SIN6_LEN_RFC2133)
4607				return -EINVAL;
4608			addr6 = (struct sockaddr_in6 *)address;
4609			snum = ntohs(addr6->sin6_port);
4610			addrp = (char *)&addr6->sin6_addr.s6_addr;
4611			break;
4612		default:
4613			goto err_af;
4614		}
4615
4616		ad.type = LSM_AUDIT_DATA_NET;
4617		ad.u.net = &net;
4618		ad.u.net->sport = htons(snum);
4619		ad.u.net->family = family_sa;
4620
4621		if (snum) {
4622			int low, high;
4623
4624			inet_get_local_port_range(sock_net(sk), &low, &high);
4625
4626			if (snum < max(inet_prot_sock(sock_net(sk)), low) ||
4627			    snum > high) {
4628				err = sel_netport_sid(sk->sk_protocol,
4629						      snum, &sid);
4630				if (err)
4631					goto out;
4632				err = avc_has_perm(&selinux_state,
4633						   sksec->sid, sid,
 
 
 
4634						   sksec->sclass,
4635						   SOCKET__NAME_BIND, &ad);
4636				if (err)
4637					goto out;
4638			}
4639		}
4640
4641		switch (sksec->sclass) {
4642		case SECCLASS_TCP_SOCKET:
4643			node_perm = TCP_SOCKET__NODE_BIND;
4644			break;
4645
4646		case SECCLASS_UDP_SOCKET:
4647			node_perm = UDP_SOCKET__NODE_BIND;
4648			break;
4649
4650		case SECCLASS_DCCP_SOCKET:
4651			node_perm = DCCP_SOCKET__NODE_BIND;
4652			break;
4653
4654		case SECCLASS_SCTP_SOCKET:
4655			node_perm = SCTP_SOCKET__NODE_BIND;
4656			break;
4657
4658		default:
4659			node_perm = RAWIP_SOCKET__NODE_BIND;
4660			break;
4661		}
4662
4663		err = sel_netnode_sid(addrp, family_sa, &sid);
4664		if (err)
4665			goto out;
4666
4667		if (family_sa == AF_INET)
 
 
 
 
 
4668			ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
4669		else
4670			ad.u.net->v6info.saddr = addr6->sin6_addr;
4671
4672		err = avc_has_perm(&selinux_state,
4673				   sksec->sid, sid,
4674				   sksec->sclass, node_perm, &ad);
4675		if (err)
4676			goto out;
4677	}
4678out:
4679	return err;
4680err_af:
4681	/* Note that SCTP services expect -EINVAL, others -EAFNOSUPPORT. */
4682	if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4683		return -EINVAL;
4684	return -EAFNOSUPPORT;
4685}
4686
4687/* This supports connect(2) and SCTP connect services such as sctp_connectx(3)
4688 * and sctp_sendmsg(3) as described in Documentation/security/SCTP.rst
4689 */
4690static int selinux_socket_connect_helper(struct socket *sock,
4691					 struct sockaddr *address, int addrlen)
4692{
4693	struct sock *sk = sock->sk;
4694	struct sk_security_struct *sksec = sk->sk_security;
4695	int err;
4696
4697	err = sock_has_perm(sk, SOCKET__CONNECT);
4698	if (err)
4699		return err;
4700	if (addrlen < offsetofend(struct sockaddr, sa_family))
4701		return -EINVAL;
4702
4703	/* connect(AF_UNSPEC) has special handling, as it is a documented
4704	 * way to disconnect the socket
4705	 */
4706	if (address->sa_family == AF_UNSPEC)
4707		return 0;
4708
4709	/*
4710	 * If a TCP, DCCP or SCTP socket, check name_connect permission
4711	 * for the port.
4712	 */
4713	if (sksec->sclass == SECCLASS_TCP_SOCKET ||
4714	    sksec->sclass == SECCLASS_DCCP_SOCKET ||
4715	    sksec->sclass == SECCLASS_SCTP_SOCKET) {
4716		struct common_audit_data ad;
4717		struct lsm_network_audit net = {0,};
4718		struct sockaddr_in *addr4 = NULL;
4719		struct sockaddr_in6 *addr6 = NULL;
4720		unsigned short snum;
4721		u32 sid, perm;
4722
4723		/* sctp_connectx(3) calls via selinux_sctp_bind_connect()
4724		 * that validates multiple connect addresses. Because of this
4725		 * need to check address->sa_family as it is possible to have
4726		 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4727		 */
4728		switch (address->sa_family) {
4729		case AF_INET:
4730			addr4 = (struct sockaddr_in *)address;
4731			if (addrlen < sizeof(struct sockaddr_in))
4732				return -EINVAL;
4733			snum = ntohs(addr4->sin_port);
4734			break;
4735		case AF_INET6:
4736			addr6 = (struct sockaddr_in6 *)address;
4737			if (addrlen < SIN6_LEN_RFC2133)
4738				return -EINVAL;
4739			snum = ntohs(addr6->sin6_port);
4740			break;
4741		default:
4742			/* Note that SCTP services expect -EINVAL, whereas
4743			 * others expect -EAFNOSUPPORT.
4744			 */
4745			if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4746				return -EINVAL;
4747			else
4748				return -EAFNOSUPPORT;
4749		}
4750
4751		err = sel_netport_sid(sk->sk_protocol, snum, &sid);
4752		if (err)
4753			return err;
4754
4755		switch (sksec->sclass) {
4756		case SECCLASS_TCP_SOCKET:
4757			perm = TCP_SOCKET__NAME_CONNECT;
4758			break;
4759		case SECCLASS_DCCP_SOCKET:
4760			perm = DCCP_SOCKET__NAME_CONNECT;
4761			break;
4762		case SECCLASS_SCTP_SOCKET:
4763			perm = SCTP_SOCKET__NAME_CONNECT;
4764			break;
4765		}
4766
4767		ad.type = LSM_AUDIT_DATA_NET;
4768		ad.u.net = &net;
4769		ad.u.net->dport = htons(snum);
4770		ad.u.net->family = address->sa_family;
4771		err = avc_has_perm(&selinux_state,
4772				   sksec->sid, sid, sksec->sclass, perm, &ad);
4773		if (err)
4774			return err;
4775	}
4776
4777	return 0;
4778}
4779
4780/* Supports connect(2), see comments in selinux_socket_connect_helper() */
4781static int selinux_socket_connect(struct socket *sock,
4782				  struct sockaddr *address, int addrlen)
4783{
4784	int err;
4785	struct sock *sk = sock->sk;
4786
4787	err = selinux_socket_connect_helper(sock, address, addrlen);
4788	if (err)
4789		return err;
4790
4791	return selinux_netlbl_socket_connect(sk, address);
4792}
4793
4794static int selinux_socket_listen(struct socket *sock, int backlog)
4795{
4796	return sock_has_perm(sock->sk, SOCKET__LISTEN);
4797}
4798
4799static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
4800{
4801	int err;
4802	struct inode_security_struct *isec;
4803	struct inode_security_struct *newisec;
4804	u16 sclass;
4805	u32 sid;
4806
4807	err = sock_has_perm(sock->sk, SOCKET__ACCEPT);
4808	if (err)
4809		return err;
4810
4811	isec = inode_security_novalidate(SOCK_INODE(sock));
4812	spin_lock(&isec->lock);
4813	sclass = isec->sclass;
4814	sid = isec->sid;
4815	spin_unlock(&isec->lock);
4816
4817	newisec = inode_security_novalidate(SOCK_INODE(newsock));
4818	newisec->sclass = sclass;
4819	newisec->sid = sid;
4820	newisec->initialized = LABEL_INITIALIZED;
4821
4822	return 0;
4823}
4824
4825static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
4826				  int size)
4827{
4828	return sock_has_perm(sock->sk, SOCKET__WRITE);
4829}
4830
4831static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4832				  int size, int flags)
4833{
4834	return sock_has_perm(sock->sk, SOCKET__READ);
4835}
4836
4837static int selinux_socket_getsockname(struct socket *sock)
4838{
4839	return sock_has_perm(sock->sk, SOCKET__GETATTR);
4840}
4841
4842static int selinux_socket_getpeername(struct socket *sock)
4843{
4844	return sock_has_perm(sock->sk, SOCKET__GETATTR);
4845}
4846
4847static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
4848{
4849	int err;
4850
4851	err = sock_has_perm(sock->sk, SOCKET__SETOPT);
4852	if (err)
4853		return err;
4854
4855	return selinux_netlbl_socket_setsockopt(sock, level, optname);
4856}
4857
4858static int selinux_socket_getsockopt(struct socket *sock, int level,
4859				     int optname)
4860{
4861	return sock_has_perm(sock->sk, SOCKET__GETOPT);
4862}
4863
4864static int selinux_socket_shutdown(struct socket *sock, int how)
4865{
4866	return sock_has_perm(sock->sk, SOCKET__SHUTDOWN);
4867}
4868
4869static int selinux_socket_unix_stream_connect(struct sock *sock,
4870					      struct sock *other,
4871					      struct sock *newsk)
4872{
4873	struct sk_security_struct *sksec_sock = sock->sk_security;
4874	struct sk_security_struct *sksec_other = other->sk_security;
4875	struct sk_security_struct *sksec_new = newsk->sk_security;
4876	struct common_audit_data ad;
4877	struct lsm_network_audit net = {0,};
4878	int err;
4879
4880	ad.type = LSM_AUDIT_DATA_NET;
4881	ad.u.net = &net;
4882	ad.u.net->sk = other;
4883
4884	err = avc_has_perm(&selinux_state,
4885			   sksec_sock->sid, sksec_other->sid,
4886			   sksec_other->sclass,
4887			   UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4888	if (err)
4889		return err;
4890
4891	/* server child socket */
4892	sksec_new->peer_sid = sksec_sock->sid;
4893	err = security_sid_mls_copy(&selinux_state, sksec_other->sid,
4894				    sksec_sock->sid, &sksec_new->sid);
4895	if (err)
4896		return err;
4897
4898	/* connecting socket */
4899	sksec_sock->peer_sid = sksec_new->sid;
4900
4901	return 0;
4902}
4903
4904static int selinux_socket_unix_may_send(struct socket *sock,
4905					struct socket *other)
4906{
4907	struct sk_security_struct *ssec = sock->sk->sk_security;
4908	struct sk_security_struct *osec = other->sk->sk_security;
4909	struct common_audit_data ad;
4910	struct lsm_network_audit net = {0,};
4911
4912	ad.type = LSM_AUDIT_DATA_NET;
4913	ad.u.net = &net;
4914	ad.u.net->sk = other->sk;
4915
4916	return avc_has_perm(&selinux_state,
4917			    ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
4918			    &ad);
4919}
4920
4921static int selinux_inet_sys_rcv_skb(struct net *ns, int ifindex,
4922				    char *addrp, u16 family, u32 peer_sid,
4923				    struct common_audit_data *ad)
4924{
4925	int err;
4926	u32 if_sid;
4927	u32 node_sid;
4928
4929	err = sel_netif_sid(ns, ifindex, &if_sid);
4930	if (err)
4931		return err;
4932	err = avc_has_perm(&selinux_state,
4933			   peer_sid, if_sid,
4934			   SECCLASS_NETIF, NETIF__INGRESS, ad);
4935	if (err)
4936		return err;
4937
4938	err = sel_netnode_sid(addrp, family, &node_sid);
4939	if (err)
4940		return err;
4941	return avc_has_perm(&selinux_state,
4942			    peer_sid, node_sid,
4943			    SECCLASS_NODE, NODE__RECVFROM, ad);
4944}
4945
4946static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4947				       u16 family)
4948{
4949	int err = 0;
4950	struct sk_security_struct *sksec = sk->sk_security;
4951	u32 sk_sid = sksec->sid;
4952	struct common_audit_data ad;
4953	struct lsm_network_audit net = {0,};
4954	char *addrp;
4955
4956	ad.type = LSM_AUDIT_DATA_NET;
4957	ad.u.net = &net;
4958	ad.u.net->netif = skb->skb_iif;
4959	ad.u.net->family = family;
4960	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4961	if (err)
4962		return err;
4963
4964	if (selinux_secmark_enabled()) {
4965		err = avc_has_perm(&selinux_state,
4966				   sk_sid, skb->secmark, SECCLASS_PACKET,
4967				   PACKET__RECV, &ad);
4968		if (err)
4969			return err;
4970	}
4971
4972	err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4973	if (err)
4974		return err;
4975	err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4976
4977	return err;
4978}
4979
4980static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4981{
4982	int err;
4983	struct sk_security_struct *sksec = sk->sk_security;
4984	u16 family = sk->sk_family;
4985	u32 sk_sid = sksec->sid;
4986	struct common_audit_data ad;
4987	struct lsm_network_audit net = {0,};
4988	char *addrp;
4989	u8 secmark_active;
4990	u8 peerlbl_active;
4991
4992	if (family != PF_INET && family != PF_INET6)
4993		return 0;
4994
4995	/* Handle mapped IPv4 packets arriving via IPv6 sockets */
4996	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4997		family = PF_INET;
4998
4999	/* If any sort of compatibility mode is enabled then handoff processing
5000	 * to the selinux_sock_rcv_skb_compat() function to deal with the
5001	 * special handling.  We do this in an attempt to keep this function
5002	 * as fast and as clean as possible. */
5003	if (!selinux_policycap_netpeer())
5004		return selinux_sock_rcv_skb_compat(sk, skb, family);
5005
5006	secmark_active = selinux_secmark_enabled();
5007	peerlbl_active = selinux_peerlbl_enabled();
5008	if (!secmark_active && !peerlbl_active)
5009		return 0;
5010
5011	ad.type = LSM_AUDIT_DATA_NET;
5012	ad.u.net = &net;
5013	ad.u.net->netif = skb->skb_iif;
5014	ad.u.net->family = family;
5015	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
5016	if (err)
5017		return err;
5018
5019	if (peerlbl_active) {
5020		u32 peer_sid;
5021
5022		err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
5023		if (err)
5024			return err;
5025		err = selinux_inet_sys_rcv_skb(sock_net(sk), skb->skb_iif,
5026					       addrp, family, peer_sid, &ad);
5027		if (err) {
5028			selinux_netlbl_err(skb, family, err, 0);
5029			return err;
5030		}
5031		err = avc_has_perm(&selinux_state,
5032				   sk_sid, peer_sid, SECCLASS_PEER,
5033				   PEER__RECV, &ad);
5034		if (err) {
5035			selinux_netlbl_err(skb, family, err, 0);
5036			return err;
5037		}
5038	}
5039
5040	if (secmark_active) {
5041		err = avc_has_perm(&selinux_state,
5042				   sk_sid, skb->secmark, SECCLASS_PACKET,
5043				   PACKET__RECV, &ad);
5044		if (err)
5045			return err;
5046	}
5047
5048	return err;
5049}
5050
5051static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
5052					    int __user *optlen, unsigned len)
5053{
5054	int err = 0;
5055	char *scontext;
5056	u32 scontext_len;
5057	struct sk_security_struct *sksec = sock->sk->sk_security;
5058	u32 peer_sid = SECSID_NULL;
5059
5060	if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
5061	    sksec->sclass == SECCLASS_TCP_SOCKET ||
5062	    sksec->sclass == SECCLASS_SCTP_SOCKET)
5063		peer_sid = sksec->peer_sid;
5064	if (peer_sid == SECSID_NULL)
5065		return -ENOPROTOOPT;
5066
5067	err = security_sid_to_context(&selinux_state, peer_sid, &scontext,
5068				      &scontext_len);
5069	if (err)
5070		return err;
5071
5072	if (scontext_len > len) {
5073		err = -ERANGE;
5074		goto out_len;
5075	}
5076
5077	if (copy_to_user(optval, scontext, scontext_len))
5078		err = -EFAULT;
5079
5080out_len:
5081	if (put_user(scontext_len, optlen))
5082		err = -EFAULT;
5083	kfree(scontext);
5084	return err;
5085}
5086
5087static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
5088{
5089	u32 peer_secid = SECSID_NULL;
5090	u16 family;
5091	struct inode_security_struct *isec;
5092
5093	if (skb && skb->protocol == htons(ETH_P_IP))
5094		family = PF_INET;
5095	else if (skb && skb->protocol == htons(ETH_P_IPV6))
5096		family = PF_INET6;
5097	else if (sock)
5098		family = sock->sk->sk_family;
5099	else
5100		goto out;
5101
5102	if (sock && family == PF_UNIX) {
5103		isec = inode_security_novalidate(SOCK_INODE(sock));
5104		peer_secid = isec->sid;
5105	} else if (skb)
5106		selinux_skb_peerlbl_sid(skb, family, &peer_secid);
5107
5108out:
5109	*secid = peer_secid;
5110	if (peer_secid == SECSID_NULL)
5111		return -EINVAL;
5112	return 0;
5113}
5114
5115static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
5116{
5117	struct sk_security_struct *sksec;
5118
5119	sksec = kzalloc(sizeof(*sksec), priority);
5120	if (!sksec)
5121		return -ENOMEM;
5122
5123	sksec->peer_sid = SECINITSID_UNLABELED;
5124	sksec->sid = SECINITSID_UNLABELED;
5125	sksec->sclass = SECCLASS_SOCKET;
5126	selinux_netlbl_sk_security_reset(sksec);
5127	sk->sk_security = sksec;
5128
5129	return 0;
5130}
5131
5132static void selinux_sk_free_security(struct sock *sk)
5133{
5134	struct sk_security_struct *sksec = sk->sk_security;
5135
5136	sk->sk_security = NULL;
5137	selinux_netlbl_sk_security_free(sksec);
5138	kfree(sksec);
5139}
5140
5141static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
5142{
5143	struct sk_security_struct *sksec = sk->sk_security;
5144	struct sk_security_struct *newsksec = newsk->sk_security;
5145
5146	newsksec->sid = sksec->sid;
5147	newsksec->peer_sid = sksec->peer_sid;
5148	newsksec->sclass = sksec->sclass;
5149
5150	selinux_netlbl_sk_security_reset(newsksec);
5151}
5152
5153static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
5154{
5155	if (!sk)
5156		*secid = SECINITSID_ANY_SOCKET;
5157	else {
5158		struct sk_security_struct *sksec = sk->sk_security;
5159
5160		*secid = sksec->sid;
5161	}
5162}
5163
5164static void selinux_sock_graft(struct sock *sk, struct socket *parent)
5165{
5166	struct inode_security_struct *isec =
5167		inode_security_novalidate(SOCK_INODE(parent));
5168	struct sk_security_struct *sksec = sk->sk_security;
5169
5170	if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
5171	    sk->sk_family == PF_UNIX)
5172		isec->sid = sksec->sid;
5173	sksec->sclass = isec->sclass;
5174}
5175
5176/* Called whenever SCTP receives an INIT chunk. This happens when an incoming
5177 * connect(2), sctp_connectx(3) or sctp_sendmsg(3) (with no association
5178 * already present).
5179 */
5180static int selinux_sctp_assoc_request(struct sctp_endpoint *ep,
5181				      struct sk_buff *skb)
5182{
5183	struct sk_security_struct *sksec = ep->base.sk->sk_security;
5184	struct common_audit_data ad;
5185	struct lsm_network_audit net = {0,};
5186	u8 peerlbl_active;
5187	u32 peer_sid = SECINITSID_UNLABELED;
5188	u32 conn_sid;
5189	int err = 0;
5190
5191	if (!selinux_policycap_extsockclass())
5192		return 0;
5193
5194	peerlbl_active = selinux_peerlbl_enabled();
5195
5196	if (peerlbl_active) {
5197		/* This will return peer_sid = SECSID_NULL if there are
5198		 * no peer labels, see security_net_peersid_resolve().
5199		 */
5200		err = selinux_skb_peerlbl_sid(skb, ep->base.sk->sk_family,
5201					      &peer_sid);
5202		if (err)
5203			return err;
5204
5205		if (peer_sid == SECSID_NULL)
5206			peer_sid = SECINITSID_UNLABELED;
5207	}
5208
5209	if (sksec->sctp_assoc_state == SCTP_ASSOC_UNSET) {
5210		sksec->sctp_assoc_state = SCTP_ASSOC_SET;
5211
5212		/* Here as first association on socket. As the peer SID
5213		 * was allowed by peer recv (and the netif/node checks),
5214		 * then it is approved by policy and used as the primary
5215		 * peer SID for getpeercon(3).
5216		 */
5217		sksec->peer_sid = peer_sid;
5218	} else if  (sksec->peer_sid != peer_sid) {
5219		/* Other association peer SIDs are checked to enforce
5220		 * consistency among the peer SIDs.
5221		 */
5222		ad.type = LSM_AUDIT_DATA_NET;
5223		ad.u.net = &net;
5224		ad.u.net->sk = ep->base.sk;
5225		err = avc_has_perm(&selinux_state,
5226				   sksec->peer_sid, peer_sid, sksec->sclass,
5227				   SCTP_SOCKET__ASSOCIATION, &ad);
5228		if (err)
5229			return err;
5230	}
5231
5232	/* Compute the MLS component for the connection and store
5233	 * the information in ep. This will be used by SCTP TCP type
5234	 * sockets and peeled off connections as they cause a new
5235	 * socket to be generated. selinux_sctp_sk_clone() will then
5236	 * plug this into the new socket.
5237	 */
5238	err = selinux_conn_sid(sksec->sid, peer_sid, &conn_sid);
5239	if (err)
5240		return err;
5241
5242	ep->secid = conn_sid;
5243	ep->peer_secid = peer_sid;
5244
5245	/* Set any NetLabel labels including CIPSO/CALIPSO options. */
5246	return selinux_netlbl_sctp_assoc_request(ep, skb);
5247}
5248
5249/* Check if sctp IPv4/IPv6 addresses are valid for binding or connecting
5250 * based on their @optname.
5251 */
5252static int selinux_sctp_bind_connect(struct sock *sk, int optname,
5253				     struct sockaddr *address,
5254				     int addrlen)
5255{
5256	int len, err = 0, walk_size = 0;
5257	void *addr_buf;
5258	struct sockaddr *addr;
5259	struct socket *sock;
5260
5261	if (!selinux_policycap_extsockclass())
5262		return 0;
5263
5264	/* Process one or more addresses that may be IPv4 or IPv6 */
5265	sock = sk->sk_socket;
5266	addr_buf = address;
5267
5268	while (walk_size < addrlen) {
5269		if (walk_size + sizeof(sa_family_t) > addrlen)
5270			return -EINVAL;
5271
5272		addr = addr_buf;
5273		switch (addr->sa_family) {
5274		case AF_UNSPEC:
5275		case AF_INET:
5276			len = sizeof(struct sockaddr_in);
5277			break;
5278		case AF_INET6:
5279			len = sizeof(struct sockaddr_in6);
5280			break;
5281		default:
5282			return -EINVAL;
5283		}
5284
5285		if (walk_size + len > addrlen)
5286			return -EINVAL;
5287
5288		err = -EINVAL;
5289		switch (optname) {
5290		/* Bind checks */
5291		case SCTP_PRIMARY_ADDR:
5292		case SCTP_SET_PEER_PRIMARY_ADDR:
5293		case SCTP_SOCKOPT_BINDX_ADD:
5294			err = selinux_socket_bind(sock, addr, len);
5295			break;
5296		/* Connect checks */
5297		case SCTP_SOCKOPT_CONNECTX:
5298		case SCTP_PARAM_SET_PRIMARY:
5299		case SCTP_PARAM_ADD_IP:
5300		case SCTP_SENDMSG_CONNECT:
5301			err = selinux_socket_connect_helper(sock, addr, len);
5302			if (err)
5303				return err;
5304
5305			/* As selinux_sctp_bind_connect() is called by the
5306			 * SCTP protocol layer, the socket is already locked,
5307			 * therefore selinux_netlbl_socket_connect_locked() is
5308			 * is called here. The situations handled are:
5309			 * sctp_connectx(3), sctp_sendmsg(3), sendmsg(2),
5310			 * whenever a new IP address is added or when a new
5311			 * primary address is selected.
5312			 * Note that an SCTP connect(2) call happens before
5313			 * the SCTP protocol layer and is handled via
5314			 * selinux_socket_connect().
5315			 */
5316			err = selinux_netlbl_socket_connect_locked(sk, addr);
5317			break;
5318		}
5319
5320		if (err)
5321			return err;
5322
5323		addr_buf += len;
5324		walk_size += len;
5325	}
5326
5327	return 0;
5328}
5329
5330/* Called whenever a new socket is created by accept(2) or sctp_peeloff(3). */
5331static void selinux_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk,
5332				  struct sock *newsk)
5333{
5334	struct sk_security_struct *sksec = sk->sk_security;
5335	struct sk_security_struct *newsksec = newsk->sk_security;
5336
5337	/* If policy does not support SECCLASS_SCTP_SOCKET then call
5338	 * the non-sctp clone version.
5339	 */
5340	if (!selinux_policycap_extsockclass())
5341		return selinux_sk_clone_security(sk, newsk);
5342
5343	newsksec->sid = ep->secid;
5344	newsksec->peer_sid = ep->peer_secid;
5345	newsksec->sclass = sksec->sclass;
5346	selinux_netlbl_sctp_sk_clone(sk, newsk);
5347}
5348
5349static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
5350				     struct request_sock *req)
5351{
5352	struct sk_security_struct *sksec = sk->sk_security;
5353	int err;
5354	u16 family = req->rsk_ops->family;
5355	u32 connsid;
5356	u32 peersid;
5357
 
 
 
 
5358	err = selinux_skb_peerlbl_sid(skb, family, &peersid);
5359	if (err)
5360		return err;
5361	err = selinux_conn_sid(sksec->sid, peersid, &connsid);
5362	if (err)
5363		return err;
5364	req->secid = connsid;
5365	req->peer_secid = peersid;
 
 
 
 
 
5366
5367	return selinux_netlbl_inet_conn_request(req, family);
5368}
5369
5370static void selinux_inet_csk_clone(struct sock *newsk,
5371				   const struct request_sock *req)
5372{
5373	struct sk_security_struct *newsksec = newsk->sk_security;
5374
5375	newsksec->sid = req->secid;
5376	newsksec->peer_sid = req->peer_secid;
5377	/* NOTE: Ideally, we should also get the isec->sid for the
5378	   new socket in sync, but we don't have the isec available yet.
5379	   So we will wait until sock_graft to do it, by which
5380	   time it will have been created and available. */
5381
5382	/* We don't need to take any sort of lock here as we are the only
5383	 * thread with access to newsksec */
5384	selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
5385}
5386
5387static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
5388{
5389	u16 family = sk->sk_family;
5390	struct sk_security_struct *sksec = sk->sk_security;
5391
5392	/* handle mapped IPv4 packets arriving via IPv6 sockets */
5393	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5394		family = PF_INET;
5395
5396	selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
5397}
5398
5399static int selinux_secmark_relabel_packet(u32 sid)
5400{
5401	const struct task_security_struct *__tsec;
5402	u32 tsid;
5403
5404	__tsec = selinux_cred(current_cred());
5405	tsid = __tsec->sid;
5406
5407	return avc_has_perm(&selinux_state,
5408			    tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO,
5409			    NULL);
5410}
5411
5412static void selinux_secmark_refcount_inc(void)
5413{
5414	atomic_inc(&selinux_secmark_refcount);
5415}
5416
5417static void selinux_secmark_refcount_dec(void)
5418{
5419	atomic_dec(&selinux_secmark_refcount);
5420}
5421
5422static void selinux_req_classify_flow(const struct request_sock *req,
5423				      struct flowi *fl)
5424{
5425	fl->flowi_secid = req->secid;
5426}
5427
5428static int selinux_tun_dev_alloc_security(void **security)
5429{
5430	struct tun_security_struct *tunsec;
5431
5432	tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL);
5433	if (!tunsec)
5434		return -ENOMEM;
5435	tunsec->sid = current_sid();
5436
5437	*security = tunsec;
5438	return 0;
5439}
5440
5441static void selinux_tun_dev_free_security(void *security)
5442{
5443	kfree(security);
5444}
5445
5446static int selinux_tun_dev_create(void)
5447{
5448	u32 sid = current_sid();
5449
5450	/* we aren't taking into account the "sockcreate" SID since the socket
5451	 * that is being created here is not a socket in the traditional sense,
5452	 * instead it is a private sock, accessible only to the kernel, and
5453	 * representing a wide range of network traffic spanning multiple
5454	 * connections unlike traditional sockets - check the TUN driver to
5455	 * get a better understanding of why this socket is special */
5456
5457	return avc_has_perm(&selinux_state,
5458			    sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
5459			    NULL);
5460}
5461
5462static int selinux_tun_dev_attach_queue(void *security)
5463{
5464	struct tun_security_struct *tunsec = security;
5465
5466	return avc_has_perm(&selinux_state,
5467			    current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET,
5468			    TUN_SOCKET__ATTACH_QUEUE, NULL);
5469}
5470
5471static int selinux_tun_dev_attach(struct sock *sk, void *security)
5472{
5473	struct tun_security_struct *tunsec = security;
5474	struct sk_security_struct *sksec = sk->sk_security;
5475
5476	/* we don't currently perform any NetLabel based labeling here and it
5477	 * isn't clear that we would want to do so anyway; while we could apply
5478	 * labeling without the support of the TUN user the resulting labeled
5479	 * traffic from the other end of the connection would almost certainly
5480	 * cause confusion to the TUN user that had no idea network labeling
5481	 * protocols were being used */
5482
5483	sksec->sid = tunsec->sid;
 
 
 
5484	sksec->sclass = SECCLASS_TUN_SOCKET;
5485
5486	return 0;
5487}
5488
5489static int selinux_tun_dev_open(void *security)
5490{
5491	struct tun_security_struct *tunsec = security;
5492	u32 sid = current_sid();
5493	int err;
5494
5495	err = avc_has_perm(&selinux_state,
5496			   sid, tunsec->sid, SECCLASS_TUN_SOCKET,
5497			   TUN_SOCKET__RELABELFROM, NULL);
5498	if (err)
5499		return err;
5500	err = avc_has_perm(&selinux_state,
5501			   sid, sid, SECCLASS_TUN_SOCKET,
5502			   TUN_SOCKET__RELABELTO, NULL);
5503	if (err)
5504		return err;
5505	tunsec->sid = sid;
 
5506
5507	return 0;
5508}
5509
5510static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
5511{
5512	int err = 0;
5513	u32 perm;
5514	struct nlmsghdr *nlh;
5515	struct sk_security_struct *sksec = sk->sk_security;
5516
5517	if (skb->len < NLMSG_HDRLEN) {
5518		err = -EINVAL;
5519		goto out;
5520	}
5521	nlh = nlmsg_hdr(skb);
5522
5523	err = selinux_nlmsg_lookup(sksec->sclass, nlh->nlmsg_type, &perm);
5524	if (err) {
5525		if (err == -EINVAL) {
5526			pr_warn_ratelimited("SELinux: unrecognized netlink"
5527			       " message: protocol=%hu nlmsg_type=%hu sclass=%s"
5528			       " pig=%d comm=%s\n",
5529			       sk->sk_protocol, nlh->nlmsg_type,
5530			       secclass_map[sksec->sclass - 1].name,
5531			       task_pid_nr(current), current->comm);
5532			if (!enforcing_enabled(&selinux_state) ||
5533			    security_get_allow_unknown(&selinux_state))
5534				err = 0;
5535		}
5536
5537		/* Ignore */
5538		if (err == -ENOENT)
5539			err = 0;
5540		goto out;
5541	}
5542
5543	err = sock_has_perm(sk, perm);
5544out:
5545	return err;
5546}
5547
5548#ifdef CONFIG_NETFILTER
5549
5550static unsigned int selinux_ip_forward(struct sk_buff *skb,
5551				       const struct net_device *indev,
5552				       u16 family)
5553{
5554	int err;
5555	char *addrp;
5556	u32 peer_sid;
5557	struct common_audit_data ad;
5558	struct lsm_network_audit net = {0,};
5559	u8 secmark_active;
5560	u8 netlbl_active;
5561	u8 peerlbl_active;
5562
5563	if (!selinux_policycap_netpeer())
5564		return NF_ACCEPT;
5565
5566	secmark_active = selinux_secmark_enabled();
5567	netlbl_active = netlbl_enabled();
5568	peerlbl_active = selinux_peerlbl_enabled();
5569	if (!secmark_active && !peerlbl_active)
5570		return NF_ACCEPT;
5571
5572	if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
5573		return NF_DROP;
5574
5575	ad.type = LSM_AUDIT_DATA_NET;
5576	ad.u.net = &net;
5577	ad.u.net->netif = indev->ifindex;
5578	ad.u.net->family = family;
5579	if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
5580		return NF_DROP;
5581
5582	if (peerlbl_active) {
5583		err = selinux_inet_sys_rcv_skb(dev_net(indev), indev->ifindex,
5584					       addrp, family, peer_sid, &ad);
5585		if (err) {
5586			selinux_netlbl_err(skb, family, err, 1);
5587			return NF_DROP;
5588		}
5589	}
5590
5591	if (secmark_active)
5592		if (avc_has_perm(&selinux_state,
5593				 peer_sid, skb->secmark,
5594				 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
5595			return NF_DROP;
5596
5597	if (netlbl_active)
5598		/* we do this in the FORWARD path and not the POST_ROUTING
5599		 * path because we want to make sure we apply the necessary
5600		 * labeling before IPsec is applied so we can leverage AH
5601		 * protection */
5602		if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
5603			return NF_DROP;
5604
5605	return NF_ACCEPT;
5606}
5607
5608static unsigned int selinux_ipv4_forward(void *priv,
5609					 struct sk_buff *skb,
5610					 const struct nf_hook_state *state)
 
 
5611{
5612	return selinux_ip_forward(skb, state->in, PF_INET);
5613}
5614
5615#if IS_ENABLED(CONFIG_IPV6)
5616static unsigned int selinux_ipv6_forward(void *priv,
5617					 struct sk_buff *skb,
5618					 const struct nf_hook_state *state)
 
 
5619{
5620	return selinux_ip_forward(skb, state->in, PF_INET6);
5621}
5622#endif	/* IPV6 */
5623
5624static unsigned int selinux_ip_output(struct sk_buff *skb,
5625				      u16 family)
5626{
5627	struct sock *sk;
5628	u32 sid;
5629
5630	if (!netlbl_enabled())
5631		return NF_ACCEPT;
5632
5633	/* we do this in the LOCAL_OUT path and not the POST_ROUTING path
5634	 * because we want to make sure we apply the necessary labeling
5635	 * before IPsec is applied so we can leverage AH protection */
5636	sk = skb->sk;
5637	if (sk) {
5638		struct sk_security_struct *sksec;
5639
5640		if (sk_listener(sk))
5641			/* if the socket is the listening state then this
5642			 * packet is a SYN-ACK packet which means it needs to
5643			 * be labeled based on the connection/request_sock and
5644			 * not the parent socket.  unfortunately, we can't
5645			 * lookup the request_sock yet as it isn't queued on
5646			 * the parent socket until after the SYN-ACK is sent.
5647			 * the "solution" is to simply pass the packet as-is
5648			 * as any IP option based labeling should be copied
5649			 * from the initial connection request (in the IP
5650			 * layer).  it is far from ideal, but until we get a
5651			 * security label in the packet itself this is the
5652			 * best we can do. */
5653			return NF_ACCEPT;
5654
5655		/* standard practice, label using the parent socket */
5656		sksec = sk->sk_security;
5657		sid = sksec->sid;
5658	} else
5659		sid = SECINITSID_KERNEL;
5660	if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
5661		return NF_DROP;
5662
5663	return NF_ACCEPT;
5664}
5665
5666static unsigned int selinux_ipv4_output(void *priv,
5667					struct sk_buff *skb,
5668					const struct nf_hook_state *state)
 
 
5669{
5670	return selinux_ip_output(skb, PF_INET);
5671}
5672
5673#if IS_ENABLED(CONFIG_IPV6)
5674static unsigned int selinux_ipv6_output(void *priv,
5675					struct sk_buff *skb,
5676					const struct nf_hook_state *state)
5677{
5678	return selinux_ip_output(skb, PF_INET6);
5679}
5680#endif	/* IPV6 */
5681
5682static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
5683						int ifindex,
5684						u16 family)
5685{
5686	struct sock *sk = skb_to_full_sk(skb);
5687	struct sk_security_struct *sksec;
5688	struct common_audit_data ad;
5689	struct lsm_network_audit net = {0,};
5690	char *addrp;
5691	u8 proto;
5692
5693	if (sk == NULL)
5694		return NF_ACCEPT;
5695	sksec = sk->sk_security;
5696
5697	ad.type = LSM_AUDIT_DATA_NET;
5698	ad.u.net = &net;
5699	ad.u.net->netif = ifindex;
5700	ad.u.net->family = family;
5701	if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
5702		return NF_DROP;
5703
5704	if (selinux_secmark_enabled())
5705		if (avc_has_perm(&selinux_state,
5706				 sksec->sid, skb->secmark,
5707				 SECCLASS_PACKET, PACKET__SEND, &ad))
5708			return NF_DROP_ERR(-ECONNREFUSED);
5709
5710	if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
5711		return NF_DROP_ERR(-ECONNREFUSED);
5712
5713	return NF_ACCEPT;
5714}
5715
5716static unsigned int selinux_ip_postroute(struct sk_buff *skb,
5717					 const struct net_device *outdev,
5718					 u16 family)
5719{
5720	u32 secmark_perm;
5721	u32 peer_sid;
5722	int ifindex = outdev->ifindex;
5723	struct sock *sk;
5724	struct common_audit_data ad;
5725	struct lsm_network_audit net = {0,};
5726	char *addrp;
5727	u8 secmark_active;
5728	u8 peerlbl_active;
5729
5730	/* If any sort of compatibility mode is enabled then handoff processing
5731	 * to the selinux_ip_postroute_compat() function to deal with the
5732	 * special handling.  We do this in an attempt to keep this function
5733	 * as fast and as clean as possible. */
5734	if (!selinux_policycap_netpeer())
5735		return selinux_ip_postroute_compat(skb, ifindex, family);
5736
5737	secmark_active = selinux_secmark_enabled();
5738	peerlbl_active = selinux_peerlbl_enabled();
5739	if (!secmark_active && !peerlbl_active)
5740		return NF_ACCEPT;
5741
5742	sk = skb_to_full_sk(skb);
5743
5744#ifdef CONFIG_XFRM
5745	/* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
5746	 * packet transformation so allow the packet to pass without any checks
5747	 * since we'll have another chance to perform access control checks
5748	 * when the packet is on it's final way out.
5749	 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
5750	 *       is NULL, in this case go ahead and apply access control.
5751	 * NOTE: if this is a local socket (skb->sk != NULL) that is in the
5752	 *       TCP listening state we cannot wait until the XFRM processing
5753	 *       is done as we will miss out on the SA label if we do;
5754	 *       unfortunately, this means more work, but it is only once per
5755	 *       connection. */
5756	if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL &&
5757	    !(sk && sk_listener(sk)))
5758		return NF_ACCEPT;
5759#endif
 
 
 
 
5760
 
 
 
 
 
5761	if (sk == NULL) {
5762		/* Without an associated socket the packet is either coming
5763		 * from the kernel or it is being forwarded; check the packet
5764		 * to determine which and if the packet is being forwarded
5765		 * query the packet directly to determine the security label. */
5766		if (skb->skb_iif) {
5767			secmark_perm = PACKET__FORWARD_OUT;
5768			if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
5769				return NF_DROP;
5770		} else {
5771			secmark_perm = PACKET__SEND;
5772			peer_sid = SECINITSID_KERNEL;
5773		}
5774	} else if (sk_listener(sk)) {
5775		/* Locally generated packet but the associated socket is in the
5776		 * listening state which means this is a SYN-ACK packet.  In
5777		 * this particular case the correct security label is assigned
5778		 * to the connection/request_sock but unfortunately we can't
5779		 * query the request_sock as it isn't queued on the parent
5780		 * socket until after the SYN-ACK packet is sent; the only
5781		 * viable choice is to regenerate the label like we do in
5782		 * selinux_inet_conn_request().  See also selinux_ip_output()
5783		 * for similar problems. */
5784		u32 skb_sid;
5785		struct sk_security_struct *sksec;
5786
5787		sksec = sk->sk_security;
5788		if (selinux_skb_peerlbl_sid(skb, family, &skb_sid))
5789			return NF_DROP;
5790		/* At this point, if the returned skb peerlbl is SECSID_NULL
5791		 * and the packet has been through at least one XFRM
5792		 * transformation then we must be dealing with the "final"
5793		 * form of labeled IPsec packet; since we've already applied
5794		 * all of our access controls on this packet we can safely
5795		 * pass the packet. */
5796		if (skb_sid == SECSID_NULL) {
5797			switch (family) {
5798			case PF_INET:
5799				if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
5800					return NF_ACCEPT;
5801				break;
5802			case PF_INET6:
5803				if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
5804					return NF_ACCEPT;
5805				break;
5806			default:
5807				return NF_DROP_ERR(-ECONNREFUSED);
5808			}
5809		}
5810		if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid))
5811			return NF_DROP;
5812		secmark_perm = PACKET__SEND;
5813	} else {
5814		/* Locally generated packet, fetch the security label from the
5815		 * associated socket. */
5816		struct sk_security_struct *sksec = sk->sk_security;
5817		peer_sid = sksec->sid;
5818		secmark_perm = PACKET__SEND;
5819	}
5820
5821	ad.type = LSM_AUDIT_DATA_NET;
5822	ad.u.net = &net;
5823	ad.u.net->netif = ifindex;
5824	ad.u.net->family = family;
5825	if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
5826		return NF_DROP;
5827
5828	if (secmark_active)
5829		if (avc_has_perm(&selinux_state,
5830				 peer_sid, skb->secmark,
5831				 SECCLASS_PACKET, secmark_perm, &ad))
5832			return NF_DROP_ERR(-ECONNREFUSED);
5833
5834	if (peerlbl_active) {
5835		u32 if_sid;
5836		u32 node_sid;
5837
5838		if (sel_netif_sid(dev_net(outdev), ifindex, &if_sid))
5839			return NF_DROP;
5840		if (avc_has_perm(&selinux_state,
5841				 peer_sid, if_sid,
5842				 SECCLASS_NETIF, NETIF__EGRESS, &ad))
5843			return NF_DROP_ERR(-ECONNREFUSED);
5844
5845		if (sel_netnode_sid(addrp, family, &node_sid))
5846			return NF_DROP;
5847		if (avc_has_perm(&selinux_state,
5848				 peer_sid, node_sid,
5849				 SECCLASS_NODE, NODE__SENDTO, &ad))
5850			return NF_DROP_ERR(-ECONNREFUSED);
5851	}
5852
5853	return NF_ACCEPT;
5854}
5855
5856static unsigned int selinux_ipv4_postroute(void *priv,
5857					   struct sk_buff *skb,
5858					   const struct nf_hook_state *state)
 
 
5859{
5860	return selinux_ip_postroute(skb, state->out, PF_INET);
5861}
5862
5863#if IS_ENABLED(CONFIG_IPV6)
5864static unsigned int selinux_ipv6_postroute(void *priv,
5865					   struct sk_buff *skb,
5866					   const struct nf_hook_state *state)
 
 
5867{
5868	return selinux_ip_postroute(skb, state->out, PF_INET6);
5869}
5870#endif	/* IPV6 */
5871
5872#endif	/* CONFIG_NETFILTER */
5873
5874static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
5875{
 
 
 
 
 
 
5876	return selinux_nlmsg_perm(sk, skb);
5877}
5878
5879static void ipc_init_security(struct ipc_security_struct *isec, u16 sclass)
 
 
5880{
 
 
 
 
 
 
 
 
5881	isec->sclass = sclass;
5882	isec->sid = current_sid();
 
 
 
 
 
 
 
 
 
 
5883}
5884
5885static int msg_msg_alloc_security(struct msg_msg *msg)
5886{
5887	struct msg_security_struct *msec;
5888
5889	msec = selinux_msg_msg(msg);
 
 
 
5890	msec->sid = SECINITSID_UNLABELED;
 
5891
5892	return 0;
5893}
5894
 
 
 
 
 
 
 
 
5895static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
5896			u32 perms)
5897{
5898	struct ipc_security_struct *isec;
5899	struct common_audit_data ad;
5900	u32 sid = current_sid();
5901
5902	isec = selinux_ipc(ipc_perms);
5903
5904	ad.type = LSM_AUDIT_DATA_IPC;
5905	ad.u.ipc_id = ipc_perms->key;
5906
5907	return avc_has_perm(&selinux_state,
5908			    sid, isec->sid, isec->sclass, perms, &ad);
5909}
5910
5911static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
5912{
5913	return msg_msg_alloc_security(msg);
5914}
5915
 
 
 
 
 
5916/* message queue security operations */
5917static int selinux_msg_queue_alloc_security(struct kern_ipc_perm *msq)
5918{
5919	struct ipc_security_struct *isec;
5920	struct common_audit_data ad;
5921	u32 sid = current_sid();
5922	int rc;
5923
5924	isec = selinux_ipc(msq);
5925	ipc_init_security(isec, SECCLASS_MSGQ);
 
 
 
5926
5927	ad.type = LSM_AUDIT_DATA_IPC;
5928	ad.u.ipc_id = msq->key;
5929
5930	rc = avc_has_perm(&selinux_state,
5931			  sid, isec->sid, SECCLASS_MSGQ,
5932			  MSGQ__CREATE, &ad);
5933	return rc;
 
 
 
 
 
 
 
 
 
5934}
5935
5936static int selinux_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
5937{
5938	struct ipc_security_struct *isec;
5939	struct common_audit_data ad;
5940	u32 sid = current_sid();
5941
5942	isec = selinux_ipc(msq);
5943
5944	ad.type = LSM_AUDIT_DATA_IPC;
5945	ad.u.ipc_id = msq->key;
5946
5947	return avc_has_perm(&selinux_state,
5948			    sid, isec->sid, SECCLASS_MSGQ,
5949			    MSGQ__ASSOCIATE, &ad);
5950}
5951
5952static int selinux_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
5953{
5954	int err;
5955	int perms;
5956
5957	switch (cmd) {
5958	case IPC_INFO:
5959	case MSG_INFO:
5960		/* No specific object, just general system-wide information. */
5961		return avc_has_perm(&selinux_state,
5962				    current_sid(), SECINITSID_KERNEL,
5963				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
5964	case IPC_STAT:
5965	case MSG_STAT:
5966	case MSG_STAT_ANY:
5967		perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
5968		break;
5969	case IPC_SET:
5970		perms = MSGQ__SETATTR;
5971		break;
5972	case IPC_RMID:
5973		perms = MSGQ__DESTROY;
5974		break;
5975	default:
5976		return 0;
5977	}
5978
5979	err = ipc_has_perm(msq, perms);
5980	return err;
5981}
5982
5983static int selinux_msg_queue_msgsnd(struct kern_ipc_perm *msq, struct msg_msg *msg, int msqflg)
5984{
5985	struct ipc_security_struct *isec;
5986	struct msg_security_struct *msec;
5987	struct common_audit_data ad;
5988	u32 sid = current_sid();
5989	int rc;
5990
5991	isec = selinux_ipc(msq);
5992	msec = selinux_msg_msg(msg);
5993
5994	/*
5995	 * First time through, need to assign label to the message
5996	 */
5997	if (msec->sid == SECINITSID_UNLABELED) {
5998		/*
5999		 * Compute new sid based on current process and
6000		 * message queue this message will be stored in
6001		 */
6002		rc = security_transition_sid(&selinux_state, sid, isec->sid,
6003					     SECCLASS_MSG, NULL, &msec->sid);
6004		if (rc)
6005			return rc;
6006	}
6007
6008	ad.type = LSM_AUDIT_DATA_IPC;
6009	ad.u.ipc_id = msq->key;
6010
6011	/* Can this process write to the queue? */
6012	rc = avc_has_perm(&selinux_state,
6013			  sid, isec->sid, SECCLASS_MSGQ,
6014			  MSGQ__WRITE, &ad);
6015	if (!rc)
6016		/* Can this process send the message */
6017		rc = avc_has_perm(&selinux_state,
6018				  sid, msec->sid, SECCLASS_MSG,
6019				  MSG__SEND, &ad);
6020	if (!rc)
6021		/* Can the message be put in the queue? */
6022		rc = avc_has_perm(&selinux_state,
6023				  msec->sid, isec->sid, SECCLASS_MSGQ,
6024				  MSGQ__ENQUEUE, &ad);
6025
6026	return rc;
6027}
6028
6029static int selinux_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
6030				    struct task_struct *target,
6031				    long type, int mode)
6032{
6033	struct ipc_security_struct *isec;
6034	struct msg_security_struct *msec;
6035	struct common_audit_data ad;
6036	u32 sid = task_sid(target);
6037	int rc;
6038
6039	isec = selinux_ipc(msq);
6040	msec = selinux_msg_msg(msg);
6041
6042	ad.type = LSM_AUDIT_DATA_IPC;
6043	ad.u.ipc_id = msq->key;
6044
6045	rc = avc_has_perm(&selinux_state,
6046			  sid, isec->sid,
6047			  SECCLASS_MSGQ, MSGQ__READ, &ad);
6048	if (!rc)
6049		rc = avc_has_perm(&selinux_state,
6050				  sid, msec->sid,
6051				  SECCLASS_MSG, MSG__RECEIVE, &ad);
6052	return rc;
6053}
6054
6055/* Shared Memory security operations */
6056static int selinux_shm_alloc_security(struct kern_ipc_perm *shp)
6057{
6058	struct ipc_security_struct *isec;
6059	struct common_audit_data ad;
6060	u32 sid = current_sid();
6061	int rc;
6062
6063	isec = selinux_ipc(shp);
6064	ipc_init_security(isec, SECCLASS_SHM);
 
 
 
6065
6066	ad.type = LSM_AUDIT_DATA_IPC;
6067	ad.u.ipc_id = shp->key;
6068
6069	rc = avc_has_perm(&selinux_state,
6070			  sid, isec->sid, SECCLASS_SHM,
6071			  SHM__CREATE, &ad);
6072	return rc;
 
 
 
 
 
 
 
 
 
6073}
6074
6075static int selinux_shm_associate(struct kern_ipc_perm *shp, int shmflg)
6076{
6077	struct ipc_security_struct *isec;
6078	struct common_audit_data ad;
6079	u32 sid = current_sid();
6080
6081	isec = selinux_ipc(shp);
6082
6083	ad.type = LSM_AUDIT_DATA_IPC;
6084	ad.u.ipc_id = shp->key;
6085
6086	return avc_has_perm(&selinux_state,
6087			    sid, isec->sid, SECCLASS_SHM,
6088			    SHM__ASSOCIATE, &ad);
6089}
6090
6091/* Note, at this point, shp is locked down */
6092static int selinux_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
6093{
6094	int perms;
6095	int err;
6096
6097	switch (cmd) {
6098	case IPC_INFO:
6099	case SHM_INFO:
6100		/* No specific object, just general system-wide information. */
6101		return avc_has_perm(&selinux_state,
6102				    current_sid(), SECINITSID_KERNEL,
6103				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6104	case IPC_STAT:
6105	case SHM_STAT:
6106	case SHM_STAT_ANY:
6107		perms = SHM__GETATTR | SHM__ASSOCIATE;
6108		break;
6109	case IPC_SET:
6110		perms = SHM__SETATTR;
6111		break;
6112	case SHM_LOCK:
6113	case SHM_UNLOCK:
6114		perms = SHM__LOCK;
6115		break;
6116	case IPC_RMID:
6117		perms = SHM__DESTROY;
6118		break;
6119	default:
6120		return 0;
6121	}
6122
6123	err = ipc_has_perm(shp, perms);
6124	return err;
6125}
6126
6127static int selinux_shm_shmat(struct kern_ipc_perm *shp,
6128			     char __user *shmaddr, int shmflg)
6129{
6130	u32 perms;
6131
6132	if (shmflg & SHM_RDONLY)
6133		perms = SHM__READ;
6134	else
6135		perms = SHM__READ | SHM__WRITE;
6136
6137	return ipc_has_perm(shp, perms);
6138}
6139
6140/* Semaphore security operations */
6141static int selinux_sem_alloc_security(struct kern_ipc_perm *sma)
6142{
6143	struct ipc_security_struct *isec;
6144	struct common_audit_data ad;
6145	u32 sid = current_sid();
6146	int rc;
6147
6148	isec = selinux_ipc(sma);
6149	ipc_init_security(isec, SECCLASS_SEM);
 
 
 
6150
6151	ad.type = LSM_AUDIT_DATA_IPC;
6152	ad.u.ipc_id = sma->key;
6153
6154	rc = avc_has_perm(&selinux_state,
6155			  sid, isec->sid, SECCLASS_SEM,
6156			  SEM__CREATE, &ad);
6157	return rc;
 
 
 
 
 
 
 
 
 
6158}
6159
6160static int selinux_sem_associate(struct kern_ipc_perm *sma, int semflg)
6161{
6162	struct ipc_security_struct *isec;
6163	struct common_audit_data ad;
6164	u32 sid = current_sid();
6165
6166	isec = selinux_ipc(sma);
6167
6168	ad.type = LSM_AUDIT_DATA_IPC;
6169	ad.u.ipc_id = sma->key;
6170
6171	return avc_has_perm(&selinux_state,
6172			    sid, isec->sid, SECCLASS_SEM,
6173			    SEM__ASSOCIATE, &ad);
6174}
6175
6176/* Note, at this point, sma is locked down */
6177static int selinux_sem_semctl(struct kern_ipc_perm *sma, int cmd)
6178{
6179	int err;
6180	u32 perms;
6181
6182	switch (cmd) {
6183	case IPC_INFO:
6184	case SEM_INFO:
6185		/* No specific object, just general system-wide information. */
6186		return avc_has_perm(&selinux_state,
6187				    current_sid(), SECINITSID_KERNEL,
6188				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6189	case GETPID:
6190	case GETNCNT:
6191	case GETZCNT:
6192		perms = SEM__GETATTR;
6193		break;
6194	case GETVAL:
6195	case GETALL:
6196		perms = SEM__READ;
6197		break;
6198	case SETVAL:
6199	case SETALL:
6200		perms = SEM__WRITE;
6201		break;
6202	case IPC_RMID:
6203		perms = SEM__DESTROY;
6204		break;
6205	case IPC_SET:
6206		perms = SEM__SETATTR;
6207		break;
6208	case IPC_STAT:
6209	case SEM_STAT:
6210	case SEM_STAT_ANY:
6211		perms = SEM__GETATTR | SEM__ASSOCIATE;
6212		break;
6213	default:
6214		return 0;
6215	}
6216
6217	err = ipc_has_perm(sma, perms);
6218	return err;
6219}
6220
6221static int selinux_sem_semop(struct kern_ipc_perm *sma,
6222			     struct sembuf *sops, unsigned nsops, int alter)
6223{
6224	u32 perms;
6225
6226	if (alter)
6227		perms = SEM__READ | SEM__WRITE;
6228	else
6229		perms = SEM__READ;
6230
6231	return ipc_has_perm(sma, perms);
6232}
6233
6234static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
6235{
6236	u32 av = 0;
6237
6238	av = 0;
6239	if (flag & S_IRUGO)
6240		av |= IPC__UNIX_READ;
6241	if (flag & S_IWUGO)
6242		av |= IPC__UNIX_WRITE;
6243
6244	if (av == 0)
6245		return 0;
6246
6247	return ipc_has_perm(ipcp, av);
6248}
6249
6250static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
6251{
6252	struct ipc_security_struct *isec = selinux_ipc(ipcp);
6253	*secid = isec->sid;
6254}
6255
6256static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
6257{
6258	if (inode)
6259		inode_doinit_with_dentry(inode, dentry);
6260}
6261
6262static int selinux_getprocattr(struct task_struct *p,
6263			       char *name, char **value)
6264{
6265	const struct task_security_struct *__tsec;
6266	u32 sid;
6267	int error;
6268	unsigned len;
6269
6270	rcu_read_lock();
6271	__tsec = selinux_cred(__task_cred(p));
6272
6273	if (current != p) {
6274		error = avc_has_perm(&selinux_state,
6275				     current_sid(), __tsec->sid,
6276				     SECCLASS_PROCESS, PROCESS__GETATTR, NULL);
6277		if (error)
6278			goto bad;
6279	}
6280
 
 
 
6281	if (!strcmp(name, "current"))
6282		sid = __tsec->sid;
6283	else if (!strcmp(name, "prev"))
6284		sid = __tsec->osid;
6285	else if (!strcmp(name, "exec"))
6286		sid = __tsec->exec_sid;
6287	else if (!strcmp(name, "fscreate"))
6288		sid = __tsec->create_sid;
6289	else if (!strcmp(name, "keycreate"))
6290		sid = __tsec->keycreate_sid;
6291	else if (!strcmp(name, "sockcreate"))
6292		sid = __tsec->sockcreate_sid;
6293	else {
6294		error = -EINVAL;
6295		goto bad;
6296	}
6297	rcu_read_unlock();
6298
6299	if (!sid)
6300		return 0;
6301
6302	error = security_sid_to_context(&selinux_state, sid, value, &len);
6303	if (error)
6304		return error;
6305	return len;
6306
6307bad:
6308	rcu_read_unlock();
6309	return error;
6310}
6311
6312static int selinux_setprocattr(const char *name, void *value, size_t size)
 
6313{
6314	struct task_security_struct *tsec;
 
6315	struct cred *new;
6316	u32 mysid = current_sid(), sid = 0, ptsid;
6317	int error;
6318	char *str = value;
6319
 
 
 
 
 
 
6320	/*
6321	 * Basic control over ability to set these attributes at all.
 
 
6322	 */
6323	if (!strcmp(name, "exec"))
6324		error = avc_has_perm(&selinux_state,
6325				     mysid, mysid, SECCLASS_PROCESS,
6326				     PROCESS__SETEXEC, NULL);
6327	else if (!strcmp(name, "fscreate"))
6328		error = avc_has_perm(&selinux_state,
6329				     mysid, mysid, SECCLASS_PROCESS,
6330				     PROCESS__SETFSCREATE, NULL);
6331	else if (!strcmp(name, "keycreate"))
6332		error = avc_has_perm(&selinux_state,
6333				     mysid, mysid, SECCLASS_PROCESS,
6334				     PROCESS__SETKEYCREATE, NULL);
6335	else if (!strcmp(name, "sockcreate"))
6336		error = avc_has_perm(&selinux_state,
6337				     mysid, mysid, SECCLASS_PROCESS,
6338				     PROCESS__SETSOCKCREATE, NULL);
6339	else if (!strcmp(name, "current"))
6340		error = avc_has_perm(&selinux_state,
6341				     mysid, mysid, SECCLASS_PROCESS,
6342				     PROCESS__SETCURRENT, NULL);
6343	else
6344		error = -EINVAL;
6345	if (error)
6346		return error;
6347
6348	/* Obtain a SID for the context, if one was specified. */
6349	if (size && str[0] && str[0] != '\n') {
6350		if (str[size-1] == '\n') {
6351			str[size-1] = 0;
6352			size--;
6353		}
6354		error = security_context_to_sid(&selinux_state, value, size,
6355						&sid, GFP_KERNEL);
6356		if (error == -EINVAL && !strcmp(name, "fscreate")) {
6357			if (!has_cap_mac_admin(true)) {
6358				struct audit_buffer *ab;
6359				size_t audit_size;
6360
6361				/* We strip a nul only if it is at the end, otherwise the
6362				 * context contains a nul and we should audit that */
6363				if (str[size - 1] == '\0')
6364					audit_size = size - 1;
6365				else
6366					audit_size = size;
6367				ab = audit_log_start(audit_context(),
6368						     GFP_ATOMIC,
6369						     AUDIT_SELINUX_ERR);
6370				audit_log_format(ab, "op=fscreate invalid_context=");
6371				audit_log_n_untrustedstring(ab, value, audit_size);
6372				audit_log_end(ab);
6373
6374				return error;
6375			}
6376			error = security_context_to_sid_force(
6377						      &selinux_state,
6378						      value, size, &sid);
6379		}
6380		if (error)
6381			return error;
6382	}
6383
6384	new = prepare_creds();
6385	if (!new)
6386		return -ENOMEM;
6387
6388	/* Permission checking based on the specified context is
6389	   performed during the actual operation (execve,
6390	   open/mkdir/...), when we know the full context of the
6391	   operation.  See selinux_bprm_set_creds for the execve
6392	   checks and may_create for the file creation checks. The
6393	   operation will then fail if the context is not permitted. */
6394	tsec = selinux_cred(new);
6395	if (!strcmp(name, "exec")) {
6396		tsec->exec_sid = sid;
6397	} else if (!strcmp(name, "fscreate")) {
6398		tsec->create_sid = sid;
6399	} else if (!strcmp(name, "keycreate")) {
6400		if (sid) {
6401			error = avc_has_perm(&selinux_state, mysid, sid,
6402					     SECCLASS_KEY, KEY__CREATE, NULL);
6403			if (error)
6404				goto abort_change;
6405		}
6406		tsec->keycreate_sid = sid;
6407	} else if (!strcmp(name, "sockcreate")) {
6408		tsec->sockcreate_sid = sid;
6409	} else if (!strcmp(name, "current")) {
6410		error = -EINVAL;
6411		if (sid == 0)
6412			goto abort_change;
6413
6414		/* Only allow single threaded processes to change context */
6415		error = -EPERM;
6416		if (!current_is_single_threaded()) {
6417			error = security_bounded_transition(&selinux_state,
6418							    tsec->sid, sid);
6419			if (error)
6420				goto abort_change;
6421		}
6422
6423		/* Check permissions for the transition. */
6424		error = avc_has_perm(&selinux_state,
6425				     tsec->sid, sid, SECCLASS_PROCESS,
6426				     PROCESS__DYNTRANSITION, NULL);
6427		if (error)
6428			goto abort_change;
6429
6430		/* Check for ptracing, and update the task SID if ok.
6431		   Otherwise, leave SID unchanged and fail. */
6432		ptsid = ptrace_parent_sid();
6433		if (ptsid != 0) {
6434			error = avc_has_perm(&selinux_state,
6435					     ptsid, sid, SECCLASS_PROCESS,
 
 
 
 
 
6436					     PROCESS__PTRACE, NULL);
6437			if (error)
6438				goto abort_change;
6439		}
6440
6441		tsec->sid = sid;
6442	} else {
6443		error = -EINVAL;
6444		goto abort_change;
6445	}
6446
6447	commit_creds(new);
6448	return size;
6449
6450abort_change:
6451	abort_creds(new);
6452	return error;
6453}
6454
6455static int selinux_ismaclabel(const char *name)
6456{
6457	return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0);
6458}
6459
6460static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
6461{
6462	return security_sid_to_context(&selinux_state, secid,
6463				       secdata, seclen);
6464}
6465
6466static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
6467{
6468	return security_context_to_sid(&selinux_state, secdata, seclen,
6469				       secid, GFP_KERNEL);
6470}
6471
6472static void selinux_release_secctx(char *secdata, u32 seclen)
6473{
6474	kfree(secdata);
6475}
6476
6477static void selinux_inode_invalidate_secctx(struct inode *inode)
6478{
6479	struct inode_security_struct *isec = selinux_inode(inode);
6480
6481	spin_lock(&isec->lock);
6482	isec->initialized = LABEL_INVALID;
6483	spin_unlock(&isec->lock);
6484}
6485
6486/*
6487 *	called with inode->i_mutex locked
6488 */
6489static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
6490{
6491	int rc = selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX,
6492					   ctx, ctxlen, 0);
6493	/* Do not return error when suppressing label (SBLABEL_MNT not set). */
6494	return rc == -EOPNOTSUPP ? 0 : rc;
6495}
6496
6497/*
6498 *	called with inode->i_mutex locked
6499 */
6500static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
6501{
6502	return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0);
6503}
6504
6505static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
6506{
6507	int len = 0;
6508	len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX,
6509						ctx, true);
6510	if (len < 0)
6511		return len;
6512	*ctxlen = len;
6513	return 0;
6514}
6515#ifdef CONFIG_KEYS
6516
6517static int selinux_key_alloc(struct key *k, const struct cred *cred,
6518			     unsigned long flags)
6519{
6520	const struct task_security_struct *tsec;
6521	struct key_security_struct *ksec;
6522
6523	ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
6524	if (!ksec)
6525		return -ENOMEM;
6526
6527	tsec = selinux_cred(cred);
6528	if (tsec->keycreate_sid)
6529		ksec->sid = tsec->keycreate_sid;
6530	else
6531		ksec->sid = tsec->sid;
6532
6533	k->security = ksec;
6534	return 0;
6535}
6536
6537static void selinux_key_free(struct key *k)
6538{
6539	struct key_security_struct *ksec = k->security;
6540
6541	k->security = NULL;
6542	kfree(ksec);
6543}
6544
6545static int selinux_key_permission(key_ref_t key_ref,
6546				  const struct cred *cred,
6547				  unsigned perm)
6548{
6549	struct key *key;
6550	struct key_security_struct *ksec;
6551	u32 sid;
6552
6553	/* if no specific permissions are requested, we skip the
6554	   permission check. No serious, additional covert channels
6555	   appear to be created. */
6556	if (perm == 0)
6557		return 0;
6558
6559	sid = cred_sid(cred);
6560
6561	key = key_ref_to_ptr(key_ref);
6562	ksec = key->security;
6563
6564	return avc_has_perm(&selinux_state,
6565			    sid, ksec->sid, SECCLASS_KEY, perm, NULL);
6566}
6567
6568static int selinux_key_getsecurity(struct key *key, char **_buffer)
6569{
6570	struct key_security_struct *ksec = key->security;
6571	char *context = NULL;
6572	unsigned len;
6573	int rc;
6574
6575	rc = security_sid_to_context(&selinux_state, ksec->sid,
6576				     &context, &len);
6577	if (!rc)
6578		rc = len;
6579	*_buffer = context;
6580	return rc;
6581}
6582#endif
6583
6584#ifdef CONFIG_SECURITY_INFINIBAND
6585static int selinux_ib_pkey_access(void *ib_sec, u64 subnet_prefix, u16 pkey_val)
6586{
6587	struct common_audit_data ad;
6588	int err;
6589	u32 sid = 0;
6590	struct ib_security_struct *sec = ib_sec;
6591	struct lsm_ibpkey_audit ibpkey;
6592
6593	err = sel_ib_pkey_sid(subnet_prefix, pkey_val, &sid);
6594	if (err)
6595		return err;
6596
6597	ad.type = LSM_AUDIT_DATA_IBPKEY;
6598	ibpkey.subnet_prefix = subnet_prefix;
6599	ibpkey.pkey = pkey_val;
6600	ad.u.ibpkey = &ibpkey;
6601	return avc_has_perm(&selinux_state,
6602			    sec->sid, sid,
6603			    SECCLASS_INFINIBAND_PKEY,
6604			    INFINIBAND_PKEY__ACCESS, &ad);
6605}
6606
6607static int selinux_ib_endport_manage_subnet(void *ib_sec, const char *dev_name,
6608					    u8 port_num)
6609{
6610	struct common_audit_data ad;
6611	int err;
6612	u32 sid = 0;
6613	struct ib_security_struct *sec = ib_sec;
6614	struct lsm_ibendport_audit ibendport;
6615
6616	err = security_ib_endport_sid(&selinux_state, dev_name, port_num,
6617				      &sid);
6618
6619	if (err)
6620		return err;
6621
6622	ad.type = LSM_AUDIT_DATA_IBENDPORT;
6623	strncpy(ibendport.dev_name, dev_name, sizeof(ibendport.dev_name));
6624	ibendport.port = port_num;
6625	ad.u.ibendport = &ibendport;
6626	return avc_has_perm(&selinux_state,
6627			    sec->sid, sid,
6628			    SECCLASS_INFINIBAND_ENDPORT,
6629			    INFINIBAND_ENDPORT__MANAGE_SUBNET, &ad);
6630}
6631
6632static int selinux_ib_alloc_security(void **ib_sec)
6633{
6634	struct ib_security_struct *sec;
6635
6636	sec = kzalloc(sizeof(*sec), GFP_KERNEL);
6637	if (!sec)
6638		return -ENOMEM;
6639	sec->sid = current_sid();
6640
6641	*ib_sec = sec;
6642	return 0;
6643}
6644
6645static void selinux_ib_free_security(void *ib_sec)
6646{
6647	kfree(ib_sec);
6648}
6649#endif
6650
6651#ifdef CONFIG_BPF_SYSCALL
6652static int selinux_bpf(int cmd, union bpf_attr *attr,
6653				     unsigned int size)
6654{
6655	u32 sid = current_sid();
6656	int ret;
6657
6658	switch (cmd) {
6659	case BPF_MAP_CREATE:
6660		ret = avc_has_perm(&selinux_state,
6661				   sid, sid, SECCLASS_BPF, BPF__MAP_CREATE,
6662				   NULL);
6663		break;
6664	case BPF_PROG_LOAD:
6665		ret = avc_has_perm(&selinux_state,
6666				   sid, sid, SECCLASS_BPF, BPF__PROG_LOAD,
6667				   NULL);
6668		break;
6669	default:
6670		ret = 0;
6671		break;
6672	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6673
6674	return ret;
6675}
6676
6677static u32 bpf_map_fmode_to_av(fmode_t fmode)
6678{
6679	u32 av = 0;
6680
6681	if (fmode & FMODE_READ)
6682		av |= BPF__MAP_READ;
6683	if (fmode & FMODE_WRITE)
6684		av |= BPF__MAP_WRITE;
6685	return av;
6686}
6687
6688/* This function will check the file pass through unix socket or binder to see
6689 * if it is a bpf related object. And apply correspinding checks on the bpf
6690 * object based on the type. The bpf maps and programs, not like other files and
6691 * socket, are using a shared anonymous inode inside the kernel as their inode.
6692 * So checking that inode cannot identify if the process have privilege to
6693 * access the bpf object and that's why we have to add this additional check in
6694 * selinux_file_receive and selinux_binder_transfer_files.
6695 */
6696static int bpf_fd_pass(struct file *file, u32 sid)
6697{
6698	struct bpf_security_struct *bpfsec;
6699	struct bpf_prog *prog;
6700	struct bpf_map *map;
6701	int ret;
6702
6703	if (file->f_op == &bpf_map_fops) {
6704		map = file->private_data;
6705		bpfsec = map->security;
6706		ret = avc_has_perm(&selinux_state,
6707				   sid, bpfsec->sid, SECCLASS_BPF,
6708				   bpf_map_fmode_to_av(file->f_mode), NULL);
6709		if (ret)
6710			return ret;
6711	} else if (file->f_op == &bpf_prog_fops) {
6712		prog = file->private_data;
6713		bpfsec = prog->aux->security;
6714		ret = avc_has_perm(&selinux_state,
6715				   sid, bpfsec->sid, SECCLASS_BPF,
6716				   BPF__PROG_RUN, NULL);
6717		if (ret)
6718			return ret;
6719	}
6720	return 0;
6721}
6722
6723static int selinux_bpf_map(struct bpf_map *map, fmode_t fmode)
6724{
6725	u32 sid = current_sid();
6726	struct bpf_security_struct *bpfsec;
6727
6728	bpfsec = map->security;
6729	return avc_has_perm(&selinux_state,
6730			    sid, bpfsec->sid, SECCLASS_BPF,
6731			    bpf_map_fmode_to_av(fmode), NULL);
6732}
6733
6734static int selinux_bpf_prog(struct bpf_prog *prog)
6735{
6736	u32 sid = current_sid();
6737	struct bpf_security_struct *bpfsec;
6738
6739	bpfsec = prog->aux->security;
6740	return avc_has_perm(&selinux_state,
6741			    sid, bpfsec->sid, SECCLASS_BPF,
6742			    BPF__PROG_RUN, NULL);
6743}
6744
6745static int selinux_bpf_map_alloc(struct bpf_map *map)
6746{
6747	struct bpf_security_struct *bpfsec;
6748
6749	bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6750	if (!bpfsec)
6751		return -ENOMEM;
6752
6753	bpfsec->sid = current_sid();
6754	map->security = bpfsec;
6755
6756	return 0;
6757}
6758
6759static void selinux_bpf_map_free(struct bpf_map *map)
6760{
6761	struct bpf_security_struct *bpfsec = map->security;
6762
6763	map->security = NULL;
6764	kfree(bpfsec);
6765}
6766
6767static int selinux_bpf_prog_alloc(struct bpf_prog_aux *aux)
6768{
6769	struct bpf_security_struct *bpfsec;
6770
6771	bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6772	if (!bpfsec)
6773		return -ENOMEM;
6774
6775	bpfsec->sid = current_sid();
6776	aux->security = bpfsec;
6777
6778	return 0;
6779}
6780
6781static void selinux_bpf_prog_free(struct bpf_prog_aux *aux)
6782{
6783	struct bpf_security_struct *bpfsec = aux->security;
6784
6785	aux->security = NULL;
6786	kfree(bpfsec);
6787}
6788#endif
6789
6790struct lsm_blob_sizes selinux_blob_sizes __lsm_ro_after_init = {
6791	.lbs_cred = sizeof(struct task_security_struct),
6792	.lbs_file = sizeof(struct file_security_struct),
6793	.lbs_inode = sizeof(struct inode_security_struct),
6794	.lbs_ipc = sizeof(struct ipc_security_struct),
6795	.lbs_msg_msg = sizeof(struct msg_security_struct),
6796};
6797
6798static struct security_hook_list selinux_hooks[] __lsm_ro_after_init = {
6799	LSM_HOOK_INIT(binder_set_context_mgr, selinux_binder_set_context_mgr),
6800	LSM_HOOK_INIT(binder_transaction, selinux_binder_transaction),
6801	LSM_HOOK_INIT(binder_transfer_binder, selinux_binder_transfer_binder),
6802	LSM_HOOK_INIT(binder_transfer_file, selinux_binder_transfer_file),
6803
6804	LSM_HOOK_INIT(ptrace_access_check, selinux_ptrace_access_check),
6805	LSM_HOOK_INIT(ptrace_traceme, selinux_ptrace_traceme),
6806	LSM_HOOK_INIT(capget, selinux_capget),
6807	LSM_HOOK_INIT(capset, selinux_capset),
6808	LSM_HOOK_INIT(capable, selinux_capable),
6809	LSM_HOOK_INIT(quotactl, selinux_quotactl),
6810	LSM_HOOK_INIT(quota_on, selinux_quota_on),
6811	LSM_HOOK_INIT(syslog, selinux_syslog),
6812	LSM_HOOK_INIT(vm_enough_memory, selinux_vm_enough_memory),
6813
6814	LSM_HOOK_INIT(netlink_send, selinux_netlink_send),
6815
6816	LSM_HOOK_INIT(bprm_set_creds, selinux_bprm_set_creds),
6817	LSM_HOOK_INIT(bprm_committing_creds, selinux_bprm_committing_creds),
6818	LSM_HOOK_INIT(bprm_committed_creds, selinux_bprm_committed_creds),
6819
6820	LSM_HOOK_INIT(fs_context_dup, selinux_fs_context_dup),
6821	LSM_HOOK_INIT(fs_context_parse_param, selinux_fs_context_parse_param),
6822
6823	LSM_HOOK_INIT(sb_alloc_security, selinux_sb_alloc_security),
6824	LSM_HOOK_INIT(sb_free_security, selinux_sb_free_security),
6825	LSM_HOOK_INIT(sb_eat_lsm_opts, selinux_sb_eat_lsm_opts),
6826	LSM_HOOK_INIT(sb_free_mnt_opts, selinux_free_mnt_opts),
6827	LSM_HOOK_INIT(sb_remount, selinux_sb_remount),
6828	LSM_HOOK_INIT(sb_kern_mount, selinux_sb_kern_mount),
6829	LSM_HOOK_INIT(sb_show_options, selinux_sb_show_options),
6830	LSM_HOOK_INIT(sb_statfs, selinux_sb_statfs),
6831	LSM_HOOK_INIT(sb_mount, selinux_mount),
6832	LSM_HOOK_INIT(sb_umount, selinux_umount),
6833	LSM_HOOK_INIT(sb_set_mnt_opts, selinux_set_mnt_opts),
6834	LSM_HOOK_INIT(sb_clone_mnt_opts, selinux_sb_clone_mnt_opts),
6835	LSM_HOOK_INIT(sb_add_mnt_opt, selinux_add_mnt_opt),
6836
6837	LSM_HOOK_INIT(dentry_init_security, selinux_dentry_init_security),
6838	LSM_HOOK_INIT(dentry_create_files_as, selinux_dentry_create_files_as),
6839
6840	LSM_HOOK_INIT(inode_alloc_security, selinux_inode_alloc_security),
6841	LSM_HOOK_INIT(inode_free_security, selinux_inode_free_security),
6842	LSM_HOOK_INIT(inode_init_security, selinux_inode_init_security),
6843	LSM_HOOK_INIT(inode_create, selinux_inode_create),
6844	LSM_HOOK_INIT(inode_link, selinux_inode_link),
6845	LSM_HOOK_INIT(inode_unlink, selinux_inode_unlink),
6846	LSM_HOOK_INIT(inode_symlink, selinux_inode_symlink),
6847	LSM_HOOK_INIT(inode_mkdir, selinux_inode_mkdir),
6848	LSM_HOOK_INIT(inode_rmdir, selinux_inode_rmdir),
6849	LSM_HOOK_INIT(inode_mknod, selinux_inode_mknod),
6850	LSM_HOOK_INIT(inode_rename, selinux_inode_rename),
6851	LSM_HOOK_INIT(inode_readlink, selinux_inode_readlink),
6852	LSM_HOOK_INIT(inode_follow_link, selinux_inode_follow_link),
6853	LSM_HOOK_INIT(inode_permission, selinux_inode_permission),
6854	LSM_HOOK_INIT(inode_setattr, selinux_inode_setattr),
6855	LSM_HOOK_INIT(inode_getattr, selinux_inode_getattr),
6856	LSM_HOOK_INIT(inode_setxattr, selinux_inode_setxattr),
6857	LSM_HOOK_INIT(inode_post_setxattr, selinux_inode_post_setxattr),
6858	LSM_HOOK_INIT(inode_getxattr, selinux_inode_getxattr),
6859	LSM_HOOK_INIT(inode_listxattr, selinux_inode_listxattr),
6860	LSM_HOOK_INIT(inode_removexattr, selinux_inode_removexattr),
6861	LSM_HOOK_INIT(inode_getsecurity, selinux_inode_getsecurity),
6862	LSM_HOOK_INIT(inode_setsecurity, selinux_inode_setsecurity),
6863	LSM_HOOK_INIT(inode_listsecurity, selinux_inode_listsecurity),
6864	LSM_HOOK_INIT(inode_getsecid, selinux_inode_getsecid),
6865	LSM_HOOK_INIT(inode_copy_up, selinux_inode_copy_up),
6866	LSM_HOOK_INIT(inode_copy_up_xattr, selinux_inode_copy_up_xattr),
6867	LSM_HOOK_INIT(path_notify, selinux_path_notify),
6868
6869	LSM_HOOK_INIT(kernfs_init_security, selinux_kernfs_init_security),
6870
6871	LSM_HOOK_INIT(file_permission, selinux_file_permission),
6872	LSM_HOOK_INIT(file_alloc_security, selinux_file_alloc_security),
6873	LSM_HOOK_INIT(file_ioctl, selinux_file_ioctl),
6874	LSM_HOOK_INIT(mmap_file, selinux_mmap_file),
6875	LSM_HOOK_INIT(mmap_addr, selinux_mmap_addr),
6876	LSM_HOOK_INIT(file_mprotect, selinux_file_mprotect),
6877	LSM_HOOK_INIT(file_lock, selinux_file_lock),
6878	LSM_HOOK_INIT(file_fcntl, selinux_file_fcntl),
6879	LSM_HOOK_INIT(file_set_fowner, selinux_file_set_fowner),
6880	LSM_HOOK_INIT(file_send_sigiotask, selinux_file_send_sigiotask),
6881	LSM_HOOK_INIT(file_receive, selinux_file_receive),
6882
6883	LSM_HOOK_INIT(file_open, selinux_file_open),
6884
6885	LSM_HOOK_INIT(task_alloc, selinux_task_alloc),
6886	LSM_HOOK_INIT(cred_prepare, selinux_cred_prepare),
6887	LSM_HOOK_INIT(cred_transfer, selinux_cred_transfer),
6888	LSM_HOOK_INIT(cred_getsecid, selinux_cred_getsecid),
6889	LSM_HOOK_INIT(kernel_act_as, selinux_kernel_act_as),
6890	LSM_HOOK_INIT(kernel_create_files_as, selinux_kernel_create_files_as),
6891	LSM_HOOK_INIT(kernel_module_request, selinux_kernel_module_request),
6892	LSM_HOOK_INIT(kernel_load_data, selinux_kernel_load_data),
6893	LSM_HOOK_INIT(kernel_read_file, selinux_kernel_read_file),
6894	LSM_HOOK_INIT(task_setpgid, selinux_task_setpgid),
6895	LSM_HOOK_INIT(task_getpgid, selinux_task_getpgid),
6896	LSM_HOOK_INIT(task_getsid, selinux_task_getsid),
6897	LSM_HOOK_INIT(task_getsecid, selinux_task_getsecid),
6898	LSM_HOOK_INIT(task_setnice, selinux_task_setnice),
6899	LSM_HOOK_INIT(task_setioprio, selinux_task_setioprio),
6900	LSM_HOOK_INIT(task_getioprio, selinux_task_getioprio),
6901	LSM_HOOK_INIT(task_prlimit, selinux_task_prlimit),
6902	LSM_HOOK_INIT(task_setrlimit, selinux_task_setrlimit),
6903	LSM_HOOK_INIT(task_setscheduler, selinux_task_setscheduler),
6904	LSM_HOOK_INIT(task_getscheduler, selinux_task_getscheduler),
6905	LSM_HOOK_INIT(task_movememory, selinux_task_movememory),
6906	LSM_HOOK_INIT(task_kill, selinux_task_kill),
6907	LSM_HOOK_INIT(task_to_inode, selinux_task_to_inode),
6908
6909	LSM_HOOK_INIT(ipc_permission, selinux_ipc_permission),
6910	LSM_HOOK_INIT(ipc_getsecid, selinux_ipc_getsecid),
6911
6912	LSM_HOOK_INIT(msg_msg_alloc_security, selinux_msg_msg_alloc_security),
6913
6914	LSM_HOOK_INIT(msg_queue_alloc_security,
6915			selinux_msg_queue_alloc_security),
6916	LSM_HOOK_INIT(msg_queue_associate, selinux_msg_queue_associate),
6917	LSM_HOOK_INIT(msg_queue_msgctl, selinux_msg_queue_msgctl),
6918	LSM_HOOK_INIT(msg_queue_msgsnd, selinux_msg_queue_msgsnd),
6919	LSM_HOOK_INIT(msg_queue_msgrcv, selinux_msg_queue_msgrcv),
6920
6921	LSM_HOOK_INIT(shm_alloc_security, selinux_shm_alloc_security),
6922	LSM_HOOK_INIT(shm_associate, selinux_shm_associate),
6923	LSM_HOOK_INIT(shm_shmctl, selinux_shm_shmctl),
6924	LSM_HOOK_INIT(shm_shmat, selinux_shm_shmat),
6925
6926	LSM_HOOK_INIT(sem_alloc_security, selinux_sem_alloc_security),
6927	LSM_HOOK_INIT(sem_associate, selinux_sem_associate),
6928	LSM_HOOK_INIT(sem_semctl, selinux_sem_semctl),
6929	LSM_HOOK_INIT(sem_semop, selinux_sem_semop),
6930
6931	LSM_HOOK_INIT(d_instantiate, selinux_d_instantiate),
6932
6933	LSM_HOOK_INIT(getprocattr, selinux_getprocattr),
6934	LSM_HOOK_INIT(setprocattr, selinux_setprocattr),
6935
6936	LSM_HOOK_INIT(ismaclabel, selinux_ismaclabel),
6937	LSM_HOOK_INIT(secid_to_secctx, selinux_secid_to_secctx),
6938	LSM_HOOK_INIT(secctx_to_secid, selinux_secctx_to_secid),
6939	LSM_HOOK_INIT(release_secctx, selinux_release_secctx),
6940	LSM_HOOK_INIT(inode_invalidate_secctx, selinux_inode_invalidate_secctx),
6941	LSM_HOOK_INIT(inode_notifysecctx, selinux_inode_notifysecctx),
6942	LSM_HOOK_INIT(inode_setsecctx, selinux_inode_setsecctx),
6943	LSM_HOOK_INIT(inode_getsecctx, selinux_inode_getsecctx),
6944
6945	LSM_HOOK_INIT(unix_stream_connect, selinux_socket_unix_stream_connect),
6946	LSM_HOOK_INIT(unix_may_send, selinux_socket_unix_may_send),
6947
6948	LSM_HOOK_INIT(socket_create, selinux_socket_create),
6949	LSM_HOOK_INIT(socket_post_create, selinux_socket_post_create),
6950	LSM_HOOK_INIT(socket_socketpair, selinux_socket_socketpair),
6951	LSM_HOOK_INIT(socket_bind, selinux_socket_bind),
6952	LSM_HOOK_INIT(socket_connect, selinux_socket_connect),
6953	LSM_HOOK_INIT(socket_listen, selinux_socket_listen),
6954	LSM_HOOK_INIT(socket_accept, selinux_socket_accept),
6955	LSM_HOOK_INIT(socket_sendmsg, selinux_socket_sendmsg),
6956	LSM_HOOK_INIT(socket_recvmsg, selinux_socket_recvmsg),
6957	LSM_HOOK_INIT(socket_getsockname, selinux_socket_getsockname),
6958	LSM_HOOK_INIT(socket_getpeername, selinux_socket_getpeername),
6959	LSM_HOOK_INIT(socket_getsockopt, selinux_socket_getsockopt),
6960	LSM_HOOK_INIT(socket_setsockopt, selinux_socket_setsockopt),
6961	LSM_HOOK_INIT(socket_shutdown, selinux_socket_shutdown),
6962	LSM_HOOK_INIT(socket_sock_rcv_skb, selinux_socket_sock_rcv_skb),
6963	LSM_HOOK_INIT(socket_getpeersec_stream,
6964			selinux_socket_getpeersec_stream),
6965	LSM_HOOK_INIT(socket_getpeersec_dgram, selinux_socket_getpeersec_dgram),
6966	LSM_HOOK_INIT(sk_alloc_security, selinux_sk_alloc_security),
6967	LSM_HOOK_INIT(sk_free_security, selinux_sk_free_security),
6968	LSM_HOOK_INIT(sk_clone_security, selinux_sk_clone_security),
6969	LSM_HOOK_INIT(sk_getsecid, selinux_sk_getsecid),
6970	LSM_HOOK_INIT(sock_graft, selinux_sock_graft),
6971	LSM_HOOK_INIT(sctp_assoc_request, selinux_sctp_assoc_request),
6972	LSM_HOOK_INIT(sctp_sk_clone, selinux_sctp_sk_clone),
6973	LSM_HOOK_INIT(sctp_bind_connect, selinux_sctp_bind_connect),
6974	LSM_HOOK_INIT(inet_conn_request, selinux_inet_conn_request),
6975	LSM_HOOK_INIT(inet_csk_clone, selinux_inet_csk_clone),
6976	LSM_HOOK_INIT(inet_conn_established, selinux_inet_conn_established),
6977	LSM_HOOK_INIT(secmark_relabel_packet, selinux_secmark_relabel_packet),
6978	LSM_HOOK_INIT(secmark_refcount_inc, selinux_secmark_refcount_inc),
6979	LSM_HOOK_INIT(secmark_refcount_dec, selinux_secmark_refcount_dec),
6980	LSM_HOOK_INIT(req_classify_flow, selinux_req_classify_flow),
6981	LSM_HOOK_INIT(tun_dev_alloc_security, selinux_tun_dev_alloc_security),
6982	LSM_HOOK_INIT(tun_dev_free_security, selinux_tun_dev_free_security),
6983	LSM_HOOK_INIT(tun_dev_create, selinux_tun_dev_create),
6984	LSM_HOOK_INIT(tun_dev_attach_queue, selinux_tun_dev_attach_queue),
6985	LSM_HOOK_INIT(tun_dev_attach, selinux_tun_dev_attach),
6986	LSM_HOOK_INIT(tun_dev_open, selinux_tun_dev_open),
6987#ifdef CONFIG_SECURITY_INFINIBAND
6988	LSM_HOOK_INIT(ib_pkey_access, selinux_ib_pkey_access),
6989	LSM_HOOK_INIT(ib_endport_manage_subnet,
6990		      selinux_ib_endport_manage_subnet),
6991	LSM_HOOK_INIT(ib_alloc_security, selinux_ib_alloc_security),
6992	LSM_HOOK_INIT(ib_free_security, selinux_ib_free_security),
6993#endif
6994#ifdef CONFIG_SECURITY_NETWORK_XFRM
6995	LSM_HOOK_INIT(xfrm_policy_alloc_security, selinux_xfrm_policy_alloc),
6996	LSM_HOOK_INIT(xfrm_policy_clone_security, selinux_xfrm_policy_clone),
6997	LSM_HOOK_INIT(xfrm_policy_free_security, selinux_xfrm_policy_free),
6998	LSM_HOOK_INIT(xfrm_policy_delete_security, selinux_xfrm_policy_delete),
6999	LSM_HOOK_INIT(xfrm_state_alloc, selinux_xfrm_state_alloc),
7000	LSM_HOOK_INIT(xfrm_state_alloc_acquire,
7001			selinux_xfrm_state_alloc_acquire),
7002	LSM_HOOK_INIT(xfrm_state_free_security, selinux_xfrm_state_free),
7003	LSM_HOOK_INIT(xfrm_state_delete_security, selinux_xfrm_state_delete),
7004	LSM_HOOK_INIT(xfrm_policy_lookup, selinux_xfrm_policy_lookup),
7005	LSM_HOOK_INIT(xfrm_state_pol_flow_match,
7006			selinux_xfrm_state_pol_flow_match),
7007	LSM_HOOK_INIT(xfrm_decode_session, selinux_xfrm_decode_session),
7008#endif
7009
7010#ifdef CONFIG_KEYS
7011	LSM_HOOK_INIT(key_alloc, selinux_key_alloc),
7012	LSM_HOOK_INIT(key_free, selinux_key_free),
7013	LSM_HOOK_INIT(key_permission, selinux_key_permission),
7014	LSM_HOOK_INIT(key_getsecurity, selinux_key_getsecurity),
7015#endif
7016
7017#ifdef CONFIG_AUDIT
7018	LSM_HOOK_INIT(audit_rule_init, selinux_audit_rule_init),
7019	LSM_HOOK_INIT(audit_rule_known, selinux_audit_rule_known),
7020	LSM_HOOK_INIT(audit_rule_match, selinux_audit_rule_match),
7021	LSM_HOOK_INIT(audit_rule_free, selinux_audit_rule_free),
7022#endif
7023
7024#ifdef CONFIG_BPF_SYSCALL
7025	LSM_HOOK_INIT(bpf, selinux_bpf),
7026	LSM_HOOK_INIT(bpf_map, selinux_bpf_map),
7027	LSM_HOOK_INIT(bpf_prog, selinux_bpf_prog),
7028	LSM_HOOK_INIT(bpf_map_alloc_security, selinux_bpf_map_alloc),
7029	LSM_HOOK_INIT(bpf_prog_alloc_security, selinux_bpf_prog_alloc),
7030	LSM_HOOK_INIT(bpf_map_free_security, selinux_bpf_map_free),
7031	LSM_HOOK_INIT(bpf_prog_free_security, selinux_bpf_prog_free),
7032#endif
7033};
7034
7035static __init int selinux_init(void)
7036{
7037	pr_info("SELinux:  Initializing.\n");
 
 
 
 
 
 
 
 
7038
7039	memset(&selinux_state, 0, sizeof(selinux_state));
7040	enforcing_set(&selinux_state, selinux_enforcing_boot);
7041	selinux_state.checkreqprot = selinux_checkreqprot_boot;
7042	selinux_ss_init(&selinux_state.ss);
7043	selinux_avc_init(&selinux_state.avc);
7044
7045	/* Set the security state for the initial task. */
7046	cred_init_security();
7047
7048	default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
7049
 
 
 
7050	avc_init();
7051
7052	avtab_cache_init();
 
7053
7054	ebitmap_cache_init();
7055
7056	hashtab_cache_init();
7057
7058	security_add_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks), "selinux");
7059
7060	if (avc_add_callback(selinux_netcache_avc_callback, AVC_CALLBACK_RESET))
7061		panic("SELinux: Unable to register AVC netcache callback\n");
7062
7063	if (avc_add_callback(selinux_lsm_notifier_avc_callback, AVC_CALLBACK_RESET))
7064		panic("SELinux: Unable to register AVC LSM notifier callback\n");
7065
7066	if (selinux_enforcing_boot)
7067		pr_debug("SELinux:  Starting in enforcing mode\n");
7068	else
7069		pr_debug("SELinux:  Starting in permissive mode\n");
7070
7071	fs_validate_description(&selinux_fs_parameters);
7072
7073	return 0;
7074}
7075
7076static void delayed_superblock_init(struct super_block *sb, void *unused)
7077{
7078	selinux_set_mnt_opts(sb, NULL, 0, NULL);
7079}
7080
7081void selinux_complete_init(void)
7082{
7083	pr_debug("SELinux:  Completing initialization.\n");
7084
7085	/* Set up any superblocks initialized prior to the policy load. */
7086	pr_debug("SELinux:  Setting up existing superblocks.\n");
7087	iterate_supers(delayed_superblock_init, NULL);
7088}
7089
7090/* SELinux requires early initialization in order to label
7091   all processes and objects when they are created. */
7092DEFINE_LSM(selinux) = {
7093	.name = "selinux",
7094	.flags = LSM_FLAG_LEGACY_MAJOR | LSM_FLAG_EXCLUSIVE,
7095	.enabled = &selinux_enabled,
7096	.blobs = &selinux_blob_sizes,
7097	.init = selinux_init,
7098};
7099
7100#if defined(CONFIG_NETFILTER)
7101
7102static const struct nf_hook_ops selinux_nf_ops[] = {
7103	{
7104		.hook =		selinux_ipv4_postroute,
7105		.pf =		NFPROTO_IPV4,
 
7106		.hooknum =	NF_INET_POST_ROUTING,
7107		.priority =	NF_IP_PRI_SELINUX_LAST,
7108	},
7109	{
7110		.hook =		selinux_ipv4_forward,
7111		.pf =		NFPROTO_IPV4,
 
7112		.hooknum =	NF_INET_FORWARD,
7113		.priority =	NF_IP_PRI_SELINUX_FIRST,
7114	},
7115	{
7116		.hook =		selinux_ipv4_output,
7117		.pf =		NFPROTO_IPV4,
 
7118		.hooknum =	NF_INET_LOCAL_OUT,
7119		.priority =	NF_IP_PRI_SELINUX_FIRST,
7120	},
7121#if IS_ENABLED(CONFIG_IPV6)
 
 
 
 
7122	{
7123		.hook =		selinux_ipv6_postroute,
7124		.pf =		NFPROTO_IPV6,
 
7125		.hooknum =	NF_INET_POST_ROUTING,
7126		.priority =	NF_IP6_PRI_SELINUX_LAST,
7127	},
7128	{
7129		.hook =		selinux_ipv6_forward,
7130		.pf =		NFPROTO_IPV6,
 
7131		.hooknum =	NF_INET_FORWARD,
7132		.priority =	NF_IP6_PRI_SELINUX_FIRST,
7133	},
7134	{
7135		.hook =		selinux_ipv6_output,
7136		.pf =		NFPROTO_IPV6,
7137		.hooknum =	NF_INET_LOCAL_OUT,
7138		.priority =	NF_IP6_PRI_SELINUX_FIRST,
7139	},
7140#endif	/* IPV6 */
7141};
7142
7143static int __net_init selinux_nf_register(struct net *net)
7144{
7145	return nf_register_net_hooks(net, selinux_nf_ops,
7146				     ARRAY_SIZE(selinux_nf_ops));
7147}
7148
7149static void __net_exit selinux_nf_unregister(struct net *net)
7150{
7151	nf_unregister_net_hooks(net, selinux_nf_ops,
7152				ARRAY_SIZE(selinux_nf_ops));
7153}
7154
7155static struct pernet_operations selinux_net_ops = {
7156	.init = selinux_nf_register,
7157	.exit = selinux_nf_unregister,
7158};
7159
7160static int __init selinux_nf_ip_init(void)
7161{
7162	int err;
7163
7164	if (!selinux_enabled)
7165		return 0;
 
 
7166
7167	pr_debug("SELinux:  Registering netfilter hooks\n");
 
 
7168
7169	err = register_pernet_subsys(&selinux_net_ops);
 
7170	if (err)
7171		panic("SELinux: register_pernet_subsys: error %d\n", err);
 
7172
7173	return 0;
 
7174}
 
7175__initcall(selinux_nf_ip_init);
7176
7177#ifdef CONFIG_SECURITY_SELINUX_DISABLE
7178static void selinux_nf_ip_exit(void)
7179{
7180	pr_debug("SELinux:  Unregistering netfilter hooks\n");
7181
7182	unregister_pernet_subsys(&selinux_net_ops);
 
 
 
7183}
7184#endif
7185
7186#else /* CONFIG_NETFILTER */
7187
7188#ifdef CONFIG_SECURITY_SELINUX_DISABLE
7189#define selinux_nf_ip_exit()
7190#endif
7191
7192#endif /* CONFIG_NETFILTER */
7193
7194#ifdef CONFIG_SECURITY_SELINUX_DISABLE
7195int selinux_disable(struct selinux_state *state)
 
 
7196{
7197	if (state->initialized) {
7198		/* Not permitted after initial policy load. */
7199		return -EINVAL;
7200	}
7201
7202	if (state->disabled) {
7203		/* Only do this once. */
7204		return -EINVAL;
7205	}
7206
7207	state->disabled = 1;
7208
7209	pr_info("SELinux:  Disabled at runtime.\n");
7210
 
7211	selinux_enabled = 0;
7212
7213	security_delete_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks));
7214
7215	/* Try to destroy the avc node cache */
7216	avc_disable();
7217
7218	/* Unregister netfilter hooks. */
7219	selinux_nf_ip_exit();
7220
7221	/* Unregister selinuxfs. */
7222	exit_sel_fs();
7223
7224	return 0;
7225}
7226#endif