Loading...
1/*
2 * raid1.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5 *
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7 *
8 * RAID-1 management functions.
9 *
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11 *
12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14 *
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
17 *
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
20 *
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
23 *
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
27 * any later version.
28 *
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32 */
33
34#include <linux/slab.h>
35#include <linux/delay.h>
36#include <linux/blkdev.h>
37#include <linux/module.h>
38#include <linux/seq_file.h>
39#include <linux/ratelimit.h>
40#include "md.h"
41#include "raid1.h"
42#include "bitmap.h"
43
44/*
45 * Number of guaranteed r1bios in case of extreme VM load:
46 */
47#define NR_RAID1_BIOS 256
48
49/* When there are this many requests queue to be written by
50 * the raid1 thread, we become 'congested' to provide back-pressure
51 * for writeback.
52 */
53static int max_queued_requests = 1024;
54
55static void allow_barrier(struct r1conf *conf);
56static void lower_barrier(struct r1conf *conf);
57
58static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
59{
60 struct pool_info *pi = data;
61 int size = offsetof(struct r1bio, bios[pi->raid_disks]);
62
63 /* allocate a r1bio with room for raid_disks entries in the bios array */
64 return kzalloc(size, gfp_flags);
65}
66
67static void r1bio_pool_free(void *r1_bio, void *data)
68{
69 kfree(r1_bio);
70}
71
72#define RESYNC_BLOCK_SIZE (64*1024)
73//#define RESYNC_BLOCK_SIZE PAGE_SIZE
74#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
75#define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
76#define RESYNC_WINDOW (2048*1024)
77
78static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
79{
80 struct pool_info *pi = data;
81 struct page *page;
82 struct r1bio *r1_bio;
83 struct bio *bio;
84 int i, j;
85
86 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
87 if (!r1_bio)
88 return NULL;
89
90 /*
91 * Allocate bios : 1 for reading, n-1 for writing
92 */
93 for (j = pi->raid_disks ; j-- ; ) {
94 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
95 if (!bio)
96 goto out_free_bio;
97 r1_bio->bios[j] = bio;
98 }
99 /*
100 * Allocate RESYNC_PAGES data pages and attach them to
101 * the first bio.
102 * If this is a user-requested check/repair, allocate
103 * RESYNC_PAGES for each bio.
104 */
105 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
106 j = pi->raid_disks;
107 else
108 j = 1;
109 while(j--) {
110 bio = r1_bio->bios[j];
111 for (i = 0; i < RESYNC_PAGES; i++) {
112 page = alloc_page(gfp_flags);
113 if (unlikely(!page))
114 goto out_free_pages;
115
116 bio->bi_io_vec[i].bv_page = page;
117 bio->bi_vcnt = i+1;
118 }
119 }
120 /* If not user-requests, copy the page pointers to all bios */
121 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
122 for (i=0; i<RESYNC_PAGES ; i++)
123 for (j=1; j<pi->raid_disks; j++)
124 r1_bio->bios[j]->bi_io_vec[i].bv_page =
125 r1_bio->bios[0]->bi_io_vec[i].bv_page;
126 }
127
128 r1_bio->master_bio = NULL;
129
130 return r1_bio;
131
132out_free_pages:
133 for (j=0 ; j < pi->raid_disks; j++)
134 for (i=0; i < r1_bio->bios[j]->bi_vcnt ; i++)
135 put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page);
136 j = -1;
137out_free_bio:
138 while (++j < pi->raid_disks)
139 bio_put(r1_bio->bios[j]);
140 r1bio_pool_free(r1_bio, data);
141 return NULL;
142}
143
144static void r1buf_pool_free(void *__r1_bio, void *data)
145{
146 struct pool_info *pi = data;
147 int i,j;
148 struct r1bio *r1bio = __r1_bio;
149
150 for (i = 0; i < RESYNC_PAGES; i++)
151 for (j = pi->raid_disks; j-- ;) {
152 if (j == 0 ||
153 r1bio->bios[j]->bi_io_vec[i].bv_page !=
154 r1bio->bios[0]->bi_io_vec[i].bv_page)
155 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
156 }
157 for (i=0 ; i < pi->raid_disks; i++)
158 bio_put(r1bio->bios[i]);
159
160 r1bio_pool_free(r1bio, data);
161}
162
163static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
164{
165 int i;
166
167 for (i = 0; i < conf->raid_disks * 2; i++) {
168 struct bio **bio = r1_bio->bios + i;
169 if (!BIO_SPECIAL(*bio))
170 bio_put(*bio);
171 *bio = NULL;
172 }
173}
174
175static void free_r1bio(struct r1bio *r1_bio)
176{
177 struct r1conf *conf = r1_bio->mddev->private;
178
179 put_all_bios(conf, r1_bio);
180 mempool_free(r1_bio, conf->r1bio_pool);
181}
182
183static void put_buf(struct r1bio *r1_bio)
184{
185 struct r1conf *conf = r1_bio->mddev->private;
186 int i;
187
188 for (i = 0; i < conf->raid_disks * 2; i++) {
189 struct bio *bio = r1_bio->bios[i];
190 if (bio->bi_end_io)
191 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
192 }
193
194 mempool_free(r1_bio, conf->r1buf_pool);
195
196 lower_barrier(conf);
197}
198
199static void reschedule_retry(struct r1bio *r1_bio)
200{
201 unsigned long flags;
202 struct mddev *mddev = r1_bio->mddev;
203 struct r1conf *conf = mddev->private;
204
205 spin_lock_irqsave(&conf->device_lock, flags);
206 list_add(&r1_bio->retry_list, &conf->retry_list);
207 conf->nr_queued ++;
208 spin_unlock_irqrestore(&conf->device_lock, flags);
209
210 wake_up(&conf->wait_barrier);
211 md_wakeup_thread(mddev->thread);
212}
213
214/*
215 * raid_end_bio_io() is called when we have finished servicing a mirrored
216 * operation and are ready to return a success/failure code to the buffer
217 * cache layer.
218 */
219static void call_bio_endio(struct r1bio *r1_bio)
220{
221 struct bio *bio = r1_bio->master_bio;
222 int done;
223 struct r1conf *conf = r1_bio->mddev->private;
224
225 if (bio->bi_phys_segments) {
226 unsigned long flags;
227 spin_lock_irqsave(&conf->device_lock, flags);
228 bio->bi_phys_segments--;
229 done = (bio->bi_phys_segments == 0);
230 spin_unlock_irqrestore(&conf->device_lock, flags);
231 } else
232 done = 1;
233
234 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
235 clear_bit(BIO_UPTODATE, &bio->bi_flags);
236 if (done) {
237 bio_endio(bio, 0);
238 /*
239 * Wake up any possible resync thread that waits for the device
240 * to go idle.
241 */
242 allow_barrier(conf);
243 }
244}
245
246static void raid_end_bio_io(struct r1bio *r1_bio)
247{
248 struct bio *bio = r1_bio->master_bio;
249
250 /* if nobody has done the final endio yet, do it now */
251 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
252 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
253 (bio_data_dir(bio) == WRITE) ? "write" : "read",
254 (unsigned long long) bio->bi_sector,
255 (unsigned long long) bio->bi_sector +
256 (bio->bi_size >> 9) - 1);
257
258 call_bio_endio(r1_bio);
259 }
260 free_r1bio(r1_bio);
261}
262
263/*
264 * Update disk head position estimator based on IRQ completion info.
265 */
266static inline void update_head_pos(int disk, struct r1bio *r1_bio)
267{
268 struct r1conf *conf = r1_bio->mddev->private;
269
270 conf->mirrors[disk].head_position =
271 r1_bio->sector + (r1_bio->sectors);
272}
273
274/*
275 * Find the disk number which triggered given bio
276 */
277static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
278{
279 int mirror;
280 struct r1conf *conf = r1_bio->mddev->private;
281 int raid_disks = conf->raid_disks;
282
283 for (mirror = 0; mirror < raid_disks * 2; mirror++)
284 if (r1_bio->bios[mirror] == bio)
285 break;
286
287 BUG_ON(mirror == raid_disks * 2);
288 update_head_pos(mirror, r1_bio);
289
290 return mirror;
291}
292
293static void raid1_end_read_request(struct bio *bio, int error)
294{
295 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
296 struct r1bio *r1_bio = bio->bi_private;
297 int mirror;
298 struct r1conf *conf = r1_bio->mddev->private;
299
300 mirror = r1_bio->read_disk;
301 /*
302 * this branch is our 'one mirror IO has finished' event handler:
303 */
304 update_head_pos(mirror, r1_bio);
305
306 if (uptodate)
307 set_bit(R1BIO_Uptodate, &r1_bio->state);
308 else {
309 /* If all other devices have failed, we want to return
310 * the error upwards rather than fail the last device.
311 * Here we redefine "uptodate" to mean "Don't want to retry"
312 */
313 unsigned long flags;
314 spin_lock_irqsave(&conf->device_lock, flags);
315 if (r1_bio->mddev->degraded == conf->raid_disks ||
316 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
317 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
318 uptodate = 1;
319 spin_unlock_irqrestore(&conf->device_lock, flags);
320 }
321
322 if (uptodate)
323 raid_end_bio_io(r1_bio);
324 else {
325 /*
326 * oops, read error:
327 */
328 char b[BDEVNAME_SIZE];
329 printk_ratelimited(
330 KERN_ERR "md/raid1:%s: %s: "
331 "rescheduling sector %llu\n",
332 mdname(conf->mddev),
333 bdevname(conf->mirrors[mirror].rdev->bdev,
334 b),
335 (unsigned long long)r1_bio->sector);
336 set_bit(R1BIO_ReadError, &r1_bio->state);
337 reschedule_retry(r1_bio);
338 }
339
340 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
341}
342
343static void close_write(struct r1bio *r1_bio)
344{
345 /* it really is the end of this request */
346 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
347 /* free extra copy of the data pages */
348 int i = r1_bio->behind_page_count;
349 while (i--)
350 safe_put_page(r1_bio->behind_bvecs[i].bv_page);
351 kfree(r1_bio->behind_bvecs);
352 r1_bio->behind_bvecs = NULL;
353 }
354 /* clear the bitmap if all writes complete successfully */
355 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
356 r1_bio->sectors,
357 !test_bit(R1BIO_Degraded, &r1_bio->state),
358 test_bit(R1BIO_BehindIO, &r1_bio->state));
359 md_write_end(r1_bio->mddev);
360}
361
362static void r1_bio_write_done(struct r1bio *r1_bio)
363{
364 if (!atomic_dec_and_test(&r1_bio->remaining))
365 return;
366
367 if (test_bit(R1BIO_WriteError, &r1_bio->state))
368 reschedule_retry(r1_bio);
369 else {
370 close_write(r1_bio);
371 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
372 reschedule_retry(r1_bio);
373 else
374 raid_end_bio_io(r1_bio);
375 }
376}
377
378static void raid1_end_write_request(struct bio *bio, int error)
379{
380 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
381 struct r1bio *r1_bio = bio->bi_private;
382 int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
383 struct r1conf *conf = r1_bio->mddev->private;
384 struct bio *to_put = NULL;
385
386 mirror = find_bio_disk(r1_bio, bio);
387
388 /*
389 * 'one mirror IO has finished' event handler:
390 */
391 if (!uptodate) {
392 set_bit(WriteErrorSeen,
393 &conf->mirrors[mirror].rdev->flags);
394 if (!test_and_set_bit(WantReplacement,
395 &conf->mirrors[mirror].rdev->flags))
396 set_bit(MD_RECOVERY_NEEDED, &
397 conf->mddev->recovery);
398
399 set_bit(R1BIO_WriteError, &r1_bio->state);
400 } else {
401 /*
402 * Set R1BIO_Uptodate in our master bio, so that we
403 * will return a good error code for to the higher
404 * levels even if IO on some other mirrored buffer
405 * fails.
406 *
407 * The 'master' represents the composite IO operation
408 * to user-side. So if something waits for IO, then it
409 * will wait for the 'master' bio.
410 */
411 sector_t first_bad;
412 int bad_sectors;
413
414 r1_bio->bios[mirror] = NULL;
415 to_put = bio;
416 set_bit(R1BIO_Uptodate, &r1_bio->state);
417
418 /* Maybe we can clear some bad blocks. */
419 if (is_badblock(conf->mirrors[mirror].rdev,
420 r1_bio->sector, r1_bio->sectors,
421 &first_bad, &bad_sectors)) {
422 r1_bio->bios[mirror] = IO_MADE_GOOD;
423 set_bit(R1BIO_MadeGood, &r1_bio->state);
424 }
425 }
426
427 if (behind) {
428 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
429 atomic_dec(&r1_bio->behind_remaining);
430
431 /*
432 * In behind mode, we ACK the master bio once the I/O
433 * has safely reached all non-writemostly
434 * disks. Setting the Returned bit ensures that this
435 * gets done only once -- we don't ever want to return
436 * -EIO here, instead we'll wait
437 */
438 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
439 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
440 /* Maybe we can return now */
441 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
442 struct bio *mbio = r1_bio->master_bio;
443 pr_debug("raid1: behind end write sectors"
444 " %llu-%llu\n",
445 (unsigned long long) mbio->bi_sector,
446 (unsigned long long) mbio->bi_sector +
447 (mbio->bi_size >> 9) - 1);
448 call_bio_endio(r1_bio);
449 }
450 }
451 }
452 if (r1_bio->bios[mirror] == NULL)
453 rdev_dec_pending(conf->mirrors[mirror].rdev,
454 conf->mddev);
455
456 /*
457 * Let's see if all mirrored write operations have finished
458 * already.
459 */
460 r1_bio_write_done(r1_bio);
461
462 if (to_put)
463 bio_put(to_put);
464}
465
466
467/*
468 * This routine returns the disk from which the requested read should
469 * be done. There is a per-array 'next expected sequential IO' sector
470 * number - if this matches on the next IO then we use the last disk.
471 * There is also a per-disk 'last know head position' sector that is
472 * maintained from IRQ contexts, both the normal and the resync IO
473 * completion handlers update this position correctly. If there is no
474 * perfect sequential match then we pick the disk whose head is closest.
475 *
476 * If there are 2 mirrors in the same 2 devices, performance degrades
477 * because position is mirror, not device based.
478 *
479 * The rdev for the device selected will have nr_pending incremented.
480 */
481static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
482{
483 const sector_t this_sector = r1_bio->sector;
484 int sectors;
485 int best_good_sectors;
486 int start_disk;
487 int best_disk;
488 int i;
489 sector_t best_dist;
490 struct md_rdev *rdev;
491 int choose_first;
492
493 rcu_read_lock();
494 /*
495 * Check if we can balance. We can balance on the whole
496 * device if no resync is going on, or below the resync window.
497 * We take the first readable disk when above the resync window.
498 */
499 retry:
500 sectors = r1_bio->sectors;
501 best_disk = -1;
502 best_dist = MaxSector;
503 best_good_sectors = 0;
504
505 if (conf->mddev->recovery_cp < MaxSector &&
506 (this_sector + sectors >= conf->next_resync)) {
507 choose_first = 1;
508 start_disk = 0;
509 } else {
510 choose_first = 0;
511 start_disk = conf->last_used;
512 }
513
514 for (i = 0 ; i < conf->raid_disks * 2 ; i++) {
515 sector_t dist;
516 sector_t first_bad;
517 int bad_sectors;
518
519 int disk = start_disk + i;
520 if (disk >= conf->raid_disks * 2)
521 disk -= conf->raid_disks * 2;
522
523 rdev = rcu_dereference(conf->mirrors[disk].rdev);
524 if (r1_bio->bios[disk] == IO_BLOCKED
525 || rdev == NULL
526 || test_bit(Unmerged, &rdev->flags)
527 || test_bit(Faulty, &rdev->flags))
528 continue;
529 if (!test_bit(In_sync, &rdev->flags) &&
530 rdev->recovery_offset < this_sector + sectors)
531 continue;
532 if (test_bit(WriteMostly, &rdev->flags)) {
533 /* Don't balance among write-mostly, just
534 * use the first as a last resort */
535 if (best_disk < 0) {
536 if (is_badblock(rdev, this_sector, sectors,
537 &first_bad, &bad_sectors)) {
538 if (first_bad < this_sector)
539 /* Cannot use this */
540 continue;
541 best_good_sectors = first_bad - this_sector;
542 } else
543 best_good_sectors = sectors;
544 best_disk = disk;
545 }
546 continue;
547 }
548 /* This is a reasonable device to use. It might
549 * even be best.
550 */
551 if (is_badblock(rdev, this_sector, sectors,
552 &first_bad, &bad_sectors)) {
553 if (best_dist < MaxSector)
554 /* already have a better device */
555 continue;
556 if (first_bad <= this_sector) {
557 /* cannot read here. If this is the 'primary'
558 * device, then we must not read beyond
559 * bad_sectors from another device..
560 */
561 bad_sectors -= (this_sector - first_bad);
562 if (choose_first && sectors > bad_sectors)
563 sectors = bad_sectors;
564 if (best_good_sectors > sectors)
565 best_good_sectors = sectors;
566
567 } else {
568 sector_t good_sectors = first_bad - this_sector;
569 if (good_sectors > best_good_sectors) {
570 best_good_sectors = good_sectors;
571 best_disk = disk;
572 }
573 if (choose_first)
574 break;
575 }
576 continue;
577 } else
578 best_good_sectors = sectors;
579
580 dist = abs(this_sector - conf->mirrors[disk].head_position);
581 if (choose_first
582 /* Don't change to another disk for sequential reads */
583 || conf->next_seq_sect == this_sector
584 || dist == 0
585 /* If device is idle, use it */
586 || atomic_read(&rdev->nr_pending) == 0) {
587 best_disk = disk;
588 break;
589 }
590 if (dist < best_dist) {
591 best_dist = dist;
592 best_disk = disk;
593 }
594 }
595
596 if (best_disk >= 0) {
597 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
598 if (!rdev)
599 goto retry;
600 atomic_inc(&rdev->nr_pending);
601 if (test_bit(Faulty, &rdev->flags)) {
602 /* cannot risk returning a device that failed
603 * before we inc'ed nr_pending
604 */
605 rdev_dec_pending(rdev, conf->mddev);
606 goto retry;
607 }
608 sectors = best_good_sectors;
609 conf->next_seq_sect = this_sector + sectors;
610 conf->last_used = best_disk;
611 }
612 rcu_read_unlock();
613 *max_sectors = sectors;
614
615 return best_disk;
616}
617
618static int raid1_mergeable_bvec(struct request_queue *q,
619 struct bvec_merge_data *bvm,
620 struct bio_vec *biovec)
621{
622 struct mddev *mddev = q->queuedata;
623 struct r1conf *conf = mddev->private;
624 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
625 int max = biovec->bv_len;
626
627 if (mddev->merge_check_needed) {
628 int disk;
629 rcu_read_lock();
630 for (disk = 0; disk < conf->raid_disks * 2; disk++) {
631 struct md_rdev *rdev = rcu_dereference(
632 conf->mirrors[disk].rdev);
633 if (rdev && !test_bit(Faulty, &rdev->flags)) {
634 struct request_queue *q =
635 bdev_get_queue(rdev->bdev);
636 if (q->merge_bvec_fn) {
637 bvm->bi_sector = sector +
638 rdev->data_offset;
639 bvm->bi_bdev = rdev->bdev;
640 max = min(max, q->merge_bvec_fn(
641 q, bvm, biovec));
642 }
643 }
644 }
645 rcu_read_unlock();
646 }
647 return max;
648
649}
650
651int md_raid1_congested(struct mddev *mddev, int bits)
652{
653 struct r1conf *conf = mddev->private;
654 int i, ret = 0;
655
656 if ((bits & (1 << BDI_async_congested)) &&
657 conf->pending_count >= max_queued_requests)
658 return 1;
659
660 rcu_read_lock();
661 for (i = 0; i < conf->raid_disks * 2; i++) {
662 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
663 if (rdev && !test_bit(Faulty, &rdev->flags)) {
664 struct request_queue *q = bdev_get_queue(rdev->bdev);
665
666 BUG_ON(!q);
667
668 /* Note the '|| 1' - when read_balance prefers
669 * non-congested targets, it can be removed
670 */
671 if ((bits & (1<<BDI_async_congested)) || 1)
672 ret |= bdi_congested(&q->backing_dev_info, bits);
673 else
674 ret &= bdi_congested(&q->backing_dev_info, bits);
675 }
676 }
677 rcu_read_unlock();
678 return ret;
679}
680EXPORT_SYMBOL_GPL(md_raid1_congested);
681
682static int raid1_congested(void *data, int bits)
683{
684 struct mddev *mddev = data;
685
686 return mddev_congested(mddev, bits) ||
687 md_raid1_congested(mddev, bits);
688}
689
690static void flush_pending_writes(struct r1conf *conf)
691{
692 /* Any writes that have been queued but are awaiting
693 * bitmap updates get flushed here.
694 */
695 spin_lock_irq(&conf->device_lock);
696
697 if (conf->pending_bio_list.head) {
698 struct bio *bio;
699 bio = bio_list_get(&conf->pending_bio_list);
700 conf->pending_count = 0;
701 spin_unlock_irq(&conf->device_lock);
702 /* flush any pending bitmap writes to
703 * disk before proceeding w/ I/O */
704 bitmap_unplug(conf->mddev->bitmap);
705 wake_up(&conf->wait_barrier);
706
707 while (bio) { /* submit pending writes */
708 struct bio *next = bio->bi_next;
709 bio->bi_next = NULL;
710 generic_make_request(bio);
711 bio = next;
712 }
713 } else
714 spin_unlock_irq(&conf->device_lock);
715}
716
717/* Barriers....
718 * Sometimes we need to suspend IO while we do something else,
719 * either some resync/recovery, or reconfigure the array.
720 * To do this we raise a 'barrier'.
721 * The 'barrier' is a counter that can be raised multiple times
722 * to count how many activities are happening which preclude
723 * normal IO.
724 * We can only raise the barrier if there is no pending IO.
725 * i.e. if nr_pending == 0.
726 * We choose only to raise the barrier if no-one is waiting for the
727 * barrier to go down. This means that as soon as an IO request
728 * is ready, no other operations which require a barrier will start
729 * until the IO request has had a chance.
730 *
731 * So: regular IO calls 'wait_barrier'. When that returns there
732 * is no backgroup IO happening, It must arrange to call
733 * allow_barrier when it has finished its IO.
734 * backgroup IO calls must call raise_barrier. Once that returns
735 * there is no normal IO happeing. It must arrange to call
736 * lower_barrier when the particular background IO completes.
737 */
738#define RESYNC_DEPTH 32
739
740static void raise_barrier(struct r1conf *conf)
741{
742 spin_lock_irq(&conf->resync_lock);
743
744 /* Wait until no block IO is waiting */
745 wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
746 conf->resync_lock, );
747
748 /* block any new IO from starting */
749 conf->barrier++;
750
751 /* Now wait for all pending IO to complete */
752 wait_event_lock_irq(conf->wait_barrier,
753 !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
754 conf->resync_lock, );
755
756 spin_unlock_irq(&conf->resync_lock);
757}
758
759static void lower_barrier(struct r1conf *conf)
760{
761 unsigned long flags;
762 BUG_ON(conf->barrier <= 0);
763 spin_lock_irqsave(&conf->resync_lock, flags);
764 conf->barrier--;
765 spin_unlock_irqrestore(&conf->resync_lock, flags);
766 wake_up(&conf->wait_barrier);
767}
768
769static void wait_barrier(struct r1conf *conf)
770{
771 spin_lock_irq(&conf->resync_lock);
772 if (conf->barrier) {
773 conf->nr_waiting++;
774 /* Wait for the barrier to drop.
775 * However if there are already pending
776 * requests (preventing the barrier from
777 * rising completely), and the
778 * pre-process bio queue isn't empty,
779 * then don't wait, as we need to empty
780 * that queue to get the nr_pending
781 * count down.
782 */
783 wait_event_lock_irq(conf->wait_barrier,
784 !conf->barrier ||
785 (conf->nr_pending &&
786 current->bio_list &&
787 !bio_list_empty(current->bio_list)),
788 conf->resync_lock,
789 );
790 conf->nr_waiting--;
791 }
792 conf->nr_pending++;
793 spin_unlock_irq(&conf->resync_lock);
794}
795
796static void allow_barrier(struct r1conf *conf)
797{
798 unsigned long flags;
799 spin_lock_irqsave(&conf->resync_lock, flags);
800 conf->nr_pending--;
801 spin_unlock_irqrestore(&conf->resync_lock, flags);
802 wake_up(&conf->wait_barrier);
803}
804
805static void freeze_array(struct r1conf *conf)
806{
807 /* stop syncio and normal IO and wait for everything to
808 * go quite.
809 * We increment barrier and nr_waiting, and then
810 * wait until nr_pending match nr_queued+1
811 * This is called in the context of one normal IO request
812 * that has failed. Thus any sync request that might be pending
813 * will be blocked by nr_pending, and we need to wait for
814 * pending IO requests to complete or be queued for re-try.
815 * Thus the number queued (nr_queued) plus this request (1)
816 * must match the number of pending IOs (nr_pending) before
817 * we continue.
818 */
819 spin_lock_irq(&conf->resync_lock);
820 conf->barrier++;
821 conf->nr_waiting++;
822 wait_event_lock_irq(conf->wait_barrier,
823 conf->nr_pending == conf->nr_queued+1,
824 conf->resync_lock,
825 flush_pending_writes(conf));
826 spin_unlock_irq(&conf->resync_lock);
827}
828static void unfreeze_array(struct r1conf *conf)
829{
830 /* reverse the effect of the freeze */
831 spin_lock_irq(&conf->resync_lock);
832 conf->barrier--;
833 conf->nr_waiting--;
834 wake_up(&conf->wait_barrier);
835 spin_unlock_irq(&conf->resync_lock);
836}
837
838
839/* duplicate the data pages for behind I/O
840 */
841static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
842{
843 int i;
844 struct bio_vec *bvec;
845 struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
846 GFP_NOIO);
847 if (unlikely(!bvecs))
848 return;
849
850 bio_for_each_segment(bvec, bio, i) {
851 bvecs[i] = *bvec;
852 bvecs[i].bv_page = alloc_page(GFP_NOIO);
853 if (unlikely(!bvecs[i].bv_page))
854 goto do_sync_io;
855 memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
856 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
857 kunmap(bvecs[i].bv_page);
858 kunmap(bvec->bv_page);
859 }
860 r1_bio->behind_bvecs = bvecs;
861 r1_bio->behind_page_count = bio->bi_vcnt;
862 set_bit(R1BIO_BehindIO, &r1_bio->state);
863 return;
864
865do_sync_io:
866 for (i = 0; i < bio->bi_vcnt; i++)
867 if (bvecs[i].bv_page)
868 put_page(bvecs[i].bv_page);
869 kfree(bvecs);
870 pr_debug("%dB behind alloc failed, doing sync I/O\n", bio->bi_size);
871}
872
873static void make_request(struct mddev *mddev, struct bio * bio)
874{
875 struct r1conf *conf = mddev->private;
876 struct mirror_info *mirror;
877 struct r1bio *r1_bio;
878 struct bio *read_bio;
879 int i, disks;
880 struct bitmap *bitmap;
881 unsigned long flags;
882 const int rw = bio_data_dir(bio);
883 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
884 const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
885 struct md_rdev *blocked_rdev;
886 int first_clone;
887 int sectors_handled;
888 int max_sectors;
889
890 /*
891 * Register the new request and wait if the reconstruction
892 * thread has put up a bar for new requests.
893 * Continue immediately if no resync is active currently.
894 */
895
896 md_write_start(mddev, bio); /* wait on superblock update early */
897
898 if (bio_data_dir(bio) == WRITE &&
899 bio->bi_sector + bio->bi_size/512 > mddev->suspend_lo &&
900 bio->bi_sector < mddev->suspend_hi) {
901 /* As the suspend_* range is controlled by
902 * userspace, we want an interruptible
903 * wait.
904 */
905 DEFINE_WAIT(w);
906 for (;;) {
907 flush_signals(current);
908 prepare_to_wait(&conf->wait_barrier,
909 &w, TASK_INTERRUPTIBLE);
910 if (bio->bi_sector + bio->bi_size/512 <= mddev->suspend_lo ||
911 bio->bi_sector >= mddev->suspend_hi)
912 break;
913 schedule();
914 }
915 finish_wait(&conf->wait_barrier, &w);
916 }
917
918 wait_barrier(conf);
919
920 bitmap = mddev->bitmap;
921
922 /*
923 * make_request() can abort the operation when READA is being
924 * used and no empty request is available.
925 *
926 */
927 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
928
929 r1_bio->master_bio = bio;
930 r1_bio->sectors = bio->bi_size >> 9;
931 r1_bio->state = 0;
932 r1_bio->mddev = mddev;
933 r1_bio->sector = bio->bi_sector;
934
935 /* We might need to issue multiple reads to different
936 * devices if there are bad blocks around, so we keep
937 * track of the number of reads in bio->bi_phys_segments.
938 * If this is 0, there is only one r1_bio and no locking
939 * will be needed when requests complete. If it is
940 * non-zero, then it is the number of not-completed requests.
941 */
942 bio->bi_phys_segments = 0;
943 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
944
945 if (rw == READ) {
946 /*
947 * read balancing logic:
948 */
949 int rdisk;
950
951read_again:
952 rdisk = read_balance(conf, r1_bio, &max_sectors);
953
954 if (rdisk < 0) {
955 /* couldn't find anywhere to read from */
956 raid_end_bio_io(r1_bio);
957 return;
958 }
959 mirror = conf->mirrors + rdisk;
960
961 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
962 bitmap) {
963 /* Reading from a write-mostly device must
964 * take care not to over-take any writes
965 * that are 'behind'
966 */
967 wait_event(bitmap->behind_wait,
968 atomic_read(&bitmap->behind_writes) == 0);
969 }
970 r1_bio->read_disk = rdisk;
971
972 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
973 md_trim_bio(read_bio, r1_bio->sector - bio->bi_sector,
974 max_sectors);
975
976 r1_bio->bios[rdisk] = read_bio;
977
978 read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
979 read_bio->bi_bdev = mirror->rdev->bdev;
980 read_bio->bi_end_io = raid1_end_read_request;
981 read_bio->bi_rw = READ | do_sync;
982 read_bio->bi_private = r1_bio;
983
984 if (max_sectors < r1_bio->sectors) {
985 /* could not read all from this device, so we will
986 * need another r1_bio.
987 */
988
989 sectors_handled = (r1_bio->sector + max_sectors
990 - bio->bi_sector);
991 r1_bio->sectors = max_sectors;
992 spin_lock_irq(&conf->device_lock);
993 if (bio->bi_phys_segments == 0)
994 bio->bi_phys_segments = 2;
995 else
996 bio->bi_phys_segments++;
997 spin_unlock_irq(&conf->device_lock);
998 /* Cannot call generic_make_request directly
999 * as that will be queued in __make_request
1000 * and subsequent mempool_alloc might block waiting
1001 * for it. So hand bio over to raid1d.
1002 */
1003 reschedule_retry(r1_bio);
1004
1005 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1006
1007 r1_bio->master_bio = bio;
1008 r1_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
1009 r1_bio->state = 0;
1010 r1_bio->mddev = mddev;
1011 r1_bio->sector = bio->bi_sector + sectors_handled;
1012 goto read_again;
1013 } else
1014 generic_make_request(read_bio);
1015 return;
1016 }
1017
1018 /*
1019 * WRITE:
1020 */
1021 if (conf->pending_count >= max_queued_requests) {
1022 md_wakeup_thread(mddev->thread);
1023 wait_event(conf->wait_barrier,
1024 conf->pending_count < max_queued_requests);
1025 }
1026 /* first select target devices under rcu_lock and
1027 * inc refcount on their rdev. Record them by setting
1028 * bios[x] to bio
1029 * If there are known/acknowledged bad blocks on any device on
1030 * which we have seen a write error, we want to avoid writing those
1031 * blocks.
1032 * This potentially requires several writes to write around
1033 * the bad blocks. Each set of writes gets it's own r1bio
1034 * with a set of bios attached.
1035 */
1036
1037 disks = conf->raid_disks * 2;
1038 retry_write:
1039 blocked_rdev = NULL;
1040 rcu_read_lock();
1041 max_sectors = r1_bio->sectors;
1042 for (i = 0; i < disks; i++) {
1043 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1044 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1045 atomic_inc(&rdev->nr_pending);
1046 blocked_rdev = rdev;
1047 break;
1048 }
1049 r1_bio->bios[i] = NULL;
1050 if (!rdev || test_bit(Faulty, &rdev->flags)
1051 || test_bit(Unmerged, &rdev->flags)) {
1052 if (i < conf->raid_disks)
1053 set_bit(R1BIO_Degraded, &r1_bio->state);
1054 continue;
1055 }
1056
1057 atomic_inc(&rdev->nr_pending);
1058 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1059 sector_t first_bad;
1060 int bad_sectors;
1061 int is_bad;
1062
1063 is_bad = is_badblock(rdev, r1_bio->sector,
1064 max_sectors,
1065 &first_bad, &bad_sectors);
1066 if (is_bad < 0) {
1067 /* mustn't write here until the bad block is
1068 * acknowledged*/
1069 set_bit(BlockedBadBlocks, &rdev->flags);
1070 blocked_rdev = rdev;
1071 break;
1072 }
1073 if (is_bad && first_bad <= r1_bio->sector) {
1074 /* Cannot write here at all */
1075 bad_sectors -= (r1_bio->sector - first_bad);
1076 if (bad_sectors < max_sectors)
1077 /* mustn't write more than bad_sectors
1078 * to other devices yet
1079 */
1080 max_sectors = bad_sectors;
1081 rdev_dec_pending(rdev, mddev);
1082 /* We don't set R1BIO_Degraded as that
1083 * only applies if the disk is
1084 * missing, so it might be re-added,
1085 * and we want to know to recover this
1086 * chunk.
1087 * In this case the device is here,
1088 * and the fact that this chunk is not
1089 * in-sync is recorded in the bad
1090 * block log
1091 */
1092 continue;
1093 }
1094 if (is_bad) {
1095 int good_sectors = first_bad - r1_bio->sector;
1096 if (good_sectors < max_sectors)
1097 max_sectors = good_sectors;
1098 }
1099 }
1100 r1_bio->bios[i] = bio;
1101 }
1102 rcu_read_unlock();
1103
1104 if (unlikely(blocked_rdev)) {
1105 /* Wait for this device to become unblocked */
1106 int j;
1107
1108 for (j = 0; j < i; j++)
1109 if (r1_bio->bios[j])
1110 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1111 r1_bio->state = 0;
1112 allow_barrier(conf);
1113 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1114 wait_barrier(conf);
1115 goto retry_write;
1116 }
1117
1118 if (max_sectors < r1_bio->sectors) {
1119 /* We are splitting this write into multiple parts, so
1120 * we need to prepare for allocating another r1_bio.
1121 */
1122 r1_bio->sectors = max_sectors;
1123 spin_lock_irq(&conf->device_lock);
1124 if (bio->bi_phys_segments == 0)
1125 bio->bi_phys_segments = 2;
1126 else
1127 bio->bi_phys_segments++;
1128 spin_unlock_irq(&conf->device_lock);
1129 }
1130 sectors_handled = r1_bio->sector + max_sectors - bio->bi_sector;
1131
1132 atomic_set(&r1_bio->remaining, 1);
1133 atomic_set(&r1_bio->behind_remaining, 0);
1134
1135 first_clone = 1;
1136 for (i = 0; i < disks; i++) {
1137 struct bio *mbio;
1138 if (!r1_bio->bios[i])
1139 continue;
1140
1141 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1142 md_trim_bio(mbio, r1_bio->sector - bio->bi_sector, max_sectors);
1143
1144 if (first_clone) {
1145 /* do behind I/O ?
1146 * Not if there are too many, or cannot
1147 * allocate memory, or a reader on WriteMostly
1148 * is waiting for behind writes to flush */
1149 if (bitmap &&
1150 (atomic_read(&bitmap->behind_writes)
1151 < mddev->bitmap_info.max_write_behind) &&
1152 !waitqueue_active(&bitmap->behind_wait))
1153 alloc_behind_pages(mbio, r1_bio);
1154
1155 bitmap_startwrite(bitmap, r1_bio->sector,
1156 r1_bio->sectors,
1157 test_bit(R1BIO_BehindIO,
1158 &r1_bio->state));
1159 first_clone = 0;
1160 }
1161 if (r1_bio->behind_bvecs) {
1162 struct bio_vec *bvec;
1163 int j;
1164
1165 /* Yes, I really want the '__' version so that
1166 * we clear any unused pointer in the io_vec, rather
1167 * than leave them unchanged. This is important
1168 * because when we come to free the pages, we won't
1169 * know the original bi_idx, so we just free
1170 * them all
1171 */
1172 __bio_for_each_segment(bvec, mbio, j, 0)
1173 bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
1174 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1175 atomic_inc(&r1_bio->behind_remaining);
1176 }
1177
1178 r1_bio->bios[i] = mbio;
1179
1180 mbio->bi_sector = (r1_bio->sector +
1181 conf->mirrors[i].rdev->data_offset);
1182 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1183 mbio->bi_end_io = raid1_end_write_request;
1184 mbio->bi_rw = WRITE | do_flush_fua | do_sync;
1185 mbio->bi_private = r1_bio;
1186
1187 atomic_inc(&r1_bio->remaining);
1188 spin_lock_irqsave(&conf->device_lock, flags);
1189 bio_list_add(&conf->pending_bio_list, mbio);
1190 conf->pending_count++;
1191 spin_unlock_irqrestore(&conf->device_lock, flags);
1192 if (!mddev_check_plugged(mddev))
1193 md_wakeup_thread(mddev->thread);
1194 }
1195 /* Mustn't call r1_bio_write_done before this next test,
1196 * as it could result in the bio being freed.
1197 */
1198 if (sectors_handled < (bio->bi_size >> 9)) {
1199 r1_bio_write_done(r1_bio);
1200 /* We need another r1_bio. It has already been counted
1201 * in bio->bi_phys_segments
1202 */
1203 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1204 r1_bio->master_bio = bio;
1205 r1_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
1206 r1_bio->state = 0;
1207 r1_bio->mddev = mddev;
1208 r1_bio->sector = bio->bi_sector + sectors_handled;
1209 goto retry_write;
1210 }
1211
1212 r1_bio_write_done(r1_bio);
1213
1214 /* In case raid1d snuck in to freeze_array */
1215 wake_up(&conf->wait_barrier);
1216}
1217
1218static void status(struct seq_file *seq, struct mddev *mddev)
1219{
1220 struct r1conf *conf = mddev->private;
1221 int i;
1222
1223 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1224 conf->raid_disks - mddev->degraded);
1225 rcu_read_lock();
1226 for (i = 0; i < conf->raid_disks; i++) {
1227 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1228 seq_printf(seq, "%s",
1229 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1230 }
1231 rcu_read_unlock();
1232 seq_printf(seq, "]");
1233}
1234
1235
1236static void error(struct mddev *mddev, struct md_rdev *rdev)
1237{
1238 char b[BDEVNAME_SIZE];
1239 struct r1conf *conf = mddev->private;
1240
1241 /*
1242 * If it is not operational, then we have already marked it as dead
1243 * else if it is the last working disks, ignore the error, let the
1244 * next level up know.
1245 * else mark the drive as failed
1246 */
1247 if (test_bit(In_sync, &rdev->flags)
1248 && (conf->raid_disks - mddev->degraded) == 1) {
1249 /*
1250 * Don't fail the drive, act as though we were just a
1251 * normal single drive.
1252 * However don't try a recovery from this drive as
1253 * it is very likely to fail.
1254 */
1255 conf->recovery_disabled = mddev->recovery_disabled;
1256 return;
1257 }
1258 set_bit(Blocked, &rdev->flags);
1259 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1260 unsigned long flags;
1261 spin_lock_irqsave(&conf->device_lock, flags);
1262 mddev->degraded++;
1263 set_bit(Faulty, &rdev->flags);
1264 spin_unlock_irqrestore(&conf->device_lock, flags);
1265 /*
1266 * if recovery is running, make sure it aborts.
1267 */
1268 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1269 } else
1270 set_bit(Faulty, &rdev->flags);
1271 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1272 printk(KERN_ALERT
1273 "md/raid1:%s: Disk failure on %s, disabling device.\n"
1274 "md/raid1:%s: Operation continuing on %d devices.\n",
1275 mdname(mddev), bdevname(rdev->bdev, b),
1276 mdname(mddev), conf->raid_disks - mddev->degraded);
1277}
1278
1279static void print_conf(struct r1conf *conf)
1280{
1281 int i;
1282
1283 printk(KERN_DEBUG "RAID1 conf printout:\n");
1284 if (!conf) {
1285 printk(KERN_DEBUG "(!conf)\n");
1286 return;
1287 }
1288 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1289 conf->raid_disks);
1290
1291 rcu_read_lock();
1292 for (i = 0; i < conf->raid_disks; i++) {
1293 char b[BDEVNAME_SIZE];
1294 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1295 if (rdev)
1296 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1297 i, !test_bit(In_sync, &rdev->flags),
1298 !test_bit(Faulty, &rdev->flags),
1299 bdevname(rdev->bdev,b));
1300 }
1301 rcu_read_unlock();
1302}
1303
1304static void close_sync(struct r1conf *conf)
1305{
1306 wait_barrier(conf);
1307 allow_barrier(conf);
1308
1309 mempool_destroy(conf->r1buf_pool);
1310 conf->r1buf_pool = NULL;
1311}
1312
1313static int raid1_spare_active(struct mddev *mddev)
1314{
1315 int i;
1316 struct r1conf *conf = mddev->private;
1317 int count = 0;
1318 unsigned long flags;
1319
1320 /*
1321 * Find all failed disks within the RAID1 configuration
1322 * and mark them readable.
1323 * Called under mddev lock, so rcu protection not needed.
1324 */
1325 for (i = 0; i < conf->raid_disks; i++) {
1326 struct md_rdev *rdev = conf->mirrors[i].rdev;
1327 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1328 if (repl
1329 && repl->recovery_offset == MaxSector
1330 && !test_bit(Faulty, &repl->flags)
1331 && !test_and_set_bit(In_sync, &repl->flags)) {
1332 /* replacement has just become active */
1333 if (!rdev ||
1334 !test_and_clear_bit(In_sync, &rdev->flags))
1335 count++;
1336 if (rdev) {
1337 /* Replaced device not technically
1338 * faulty, but we need to be sure
1339 * it gets removed and never re-added
1340 */
1341 set_bit(Faulty, &rdev->flags);
1342 sysfs_notify_dirent_safe(
1343 rdev->sysfs_state);
1344 }
1345 }
1346 if (rdev
1347 && !test_bit(Faulty, &rdev->flags)
1348 && !test_and_set_bit(In_sync, &rdev->flags)) {
1349 count++;
1350 sysfs_notify_dirent_safe(rdev->sysfs_state);
1351 }
1352 }
1353 spin_lock_irqsave(&conf->device_lock, flags);
1354 mddev->degraded -= count;
1355 spin_unlock_irqrestore(&conf->device_lock, flags);
1356
1357 print_conf(conf);
1358 return count;
1359}
1360
1361
1362static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1363{
1364 struct r1conf *conf = mddev->private;
1365 int err = -EEXIST;
1366 int mirror = 0;
1367 struct mirror_info *p;
1368 int first = 0;
1369 int last = conf->raid_disks - 1;
1370 struct request_queue *q = bdev_get_queue(rdev->bdev);
1371
1372 if (mddev->recovery_disabled == conf->recovery_disabled)
1373 return -EBUSY;
1374
1375 if (rdev->raid_disk >= 0)
1376 first = last = rdev->raid_disk;
1377
1378 if (q->merge_bvec_fn) {
1379 set_bit(Unmerged, &rdev->flags);
1380 mddev->merge_check_needed = 1;
1381 }
1382
1383 for (mirror = first; mirror <= last; mirror++) {
1384 p = conf->mirrors+mirror;
1385 if (!p->rdev) {
1386
1387 disk_stack_limits(mddev->gendisk, rdev->bdev,
1388 rdev->data_offset << 9);
1389
1390 p->head_position = 0;
1391 rdev->raid_disk = mirror;
1392 err = 0;
1393 /* As all devices are equivalent, we don't need a full recovery
1394 * if this was recently any drive of the array
1395 */
1396 if (rdev->saved_raid_disk < 0)
1397 conf->fullsync = 1;
1398 rcu_assign_pointer(p->rdev, rdev);
1399 break;
1400 }
1401 if (test_bit(WantReplacement, &p->rdev->flags) &&
1402 p[conf->raid_disks].rdev == NULL) {
1403 /* Add this device as a replacement */
1404 clear_bit(In_sync, &rdev->flags);
1405 set_bit(Replacement, &rdev->flags);
1406 rdev->raid_disk = mirror;
1407 err = 0;
1408 conf->fullsync = 1;
1409 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1410 break;
1411 }
1412 }
1413 if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1414 /* Some requests might not have seen this new
1415 * merge_bvec_fn. We must wait for them to complete
1416 * before merging the device fully.
1417 * First we make sure any code which has tested
1418 * our function has submitted the request, then
1419 * we wait for all outstanding requests to complete.
1420 */
1421 synchronize_sched();
1422 raise_barrier(conf);
1423 lower_barrier(conf);
1424 clear_bit(Unmerged, &rdev->flags);
1425 }
1426 md_integrity_add_rdev(rdev, mddev);
1427 print_conf(conf);
1428 return err;
1429}
1430
1431static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1432{
1433 struct r1conf *conf = mddev->private;
1434 int err = 0;
1435 int number = rdev->raid_disk;
1436 struct mirror_info *p = conf->mirrors+ number;
1437
1438 if (rdev != p->rdev)
1439 p = conf->mirrors + conf->raid_disks + number;
1440
1441 print_conf(conf);
1442 if (rdev == p->rdev) {
1443 if (test_bit(In_sync, &rdev->flags) ||
1444 atomic_read(&rdev->nr_pending)) {
1445 err = -EBUSY;
1446 goto abort;
1447 }
1448 /* Only remove non-faulty devices if recovery
1449 * is not possible.
1450 */
1451 if (!test_bit(Faulty, &rdev->flags) &&
1452 mddev->recovery_disabled != conf->recovery_disabled &&
1453 mddev->degraded < conf->raid_disks) {
1454 err = -EBUSY;
1455 goto abort;
1456 }
1457 p->rdev = NULL;
1458 synchronize_rcu();
1459 if (atomic_read(&rdev->nr_pending)) {
1460 /* lost the race, try later */
1461 err = -EBUSY;
1462 p->rdev = rdev;
1463 goto abort;
1464 } else if (conf->mirrors[conf->raid_disks + number].rdev) {
1465 /* We just removed a device that is being replaced.
1466 * Move down the replacement. We drain all IO before
1467 * doing this to avoid confusion.
1468 */
1469 struct md_rdev *repl =
1470 conf->mirrors[conf->raid_disks + number].rdev;
1471 raise_barrier(conf);
1472 clear_bit(Replacement, &repl->flags);
1473 p->rdev = repl;
1474 conf->mirrors[conf->raid_disks + number].rdev = NULL;
1475 lower_barrier(conf);
1476 clear_bit(WantReplacement, &rdev->flags);
1477 } else
1478 clear_bit(WantReplacement, &rdev->flags);
1479 err = md_integrity_register(mddev);
1480 }
1481abort:
1482
1483 print_conf(conf);
1484 return err;
1485}
1486
1487
1488static void end_sync_read(struct bio *bio, int error)
1489{
1490 struct r1bio *r1_bio = bio->bi_private;
1491
1492 update_head_pos(r1_bio->read_disk, r1_bio);
1493
1494 /*
1495 * we have read a block, now it needs to be re-written,
1496 * or re-read if the read failed.
1497 * We don't do much here, just schedule handling by raid1d
1498 */
1499 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1500 set_bit(R1BIO_Uptodate, &r1_bio->state);
1501
1502 if (atomic_dec_and_test(&r1_bio->remaining))
1503 reschedule_retry(r1_bio);
1504}
1505
1506static void end_sync_write(struct bio *bio, int error)
1507{
1508 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1509 struct r1bio *r1_bio = bio->bi_private;
1510 struct mddev *mddev = r1_bio->mddev;
1511 struct r1conf *conf = mddev->private;
1512 int mirror=0;
1513 sector_t first_bad;
1514 int bad_sectors;
1515
1516 mirror = find_bio_disk(r1_bio, bio);
1517
1518 if (!uptodate) {
1519 sector_t sync_blocks = 0;
1520 sector_t s = r1_bio->sector;
1521 long sectors_to_go = r1_bio->sectors;
1522 /* make sure these bits doesn't get cleared. */
1523 do {
1524 bitmap_end_sync(mddev->bitmap, s,
1525 &sync_blocks, 1);
1526 s += sync_blocks;
1527 sectors_to_go -= sync_blocks;
1528 } while (sectors_to_go > 0);
1529 set_bit(WriteErrorSeen,
1530 &conf->mirrors[mirror].rdev->flags);
1531 if (!test_and_set_bit(WantReplacement,
1532 &conf->mirrors[mirror].rdev->flags))
1533 set_bit(MD_RECOVERY_NEEDED, &
1534 mddev->recovery);
1535 set_bit(R1BIO_WriteError, &r1_bio->state);
1536 } else if (is_badblock(conf->mirrors[mirror].rdev,
1537 r1_bio->sector,
1538 r1_bio->sectors,
1539 &first_bad, &bad_sectors) &&
1540 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1541 r1_bio->sector,
1542 r1_bio->sectors,
1543 &first_bad, &bad_sectors)
1544 )
1545 set_bit(R1BIO_MadeGood, &r1_bio->state);
1546
1547 if (atomic_dec_and_test(&r1_bio->remaining)) {
1548 int s = r1_bio->sectors;
1549 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1550 test_bit(R1BIO_WriteError, &r1_bio->state))
1551 reschedule_retry(r1_bio);
1552 else {
1553 put_buf(r1_bio);
1554 md_done_sync(mddev, s, uptodate);
1555 }
1556 }
1557}
1558
1559static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1560 int sectors, struct page *page, int rw)
1561{
1562 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1563 /* success */
1564 return 1;
1565 if (rw == WRITE) {
1566 set_bit(WriteErrorSeen, &rdev->flags);
1567 if (!test_and_set_bit(WantReplacement,
1568 &rdev->flags))
1569 set_bit(MD_RECOVERY_NEEDED, &
1570 rdev->mddev->recovery);
1571 }
1572 /* need to record an error - either for the block or the device */
1573 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1574 md_error(rdev->mddev, rdev);
1575 return 0;
1576}
1577
1578static int fix_sync_read_error(struct r1bio *r1_bio)
1579{
1580 /* Try some synchronous reads of other devices to get
1581 * good data, much like with normal read errors. Only
1582 * read into the pages we already have so we don't
1583 * need to re-issue the read request.
1584 * We don't need to freeze the array, because being in an
1585 * active sync request, there is no normal IO, and
1586 * no overlapping syncs.
1587 * We don't need to check is_badblock() again as we
1588 * made sure that anything with a bad block in range
1589 * will have bi_end_io clear.
1590 */
1591 struct mddev *mddev = r1_bio->mddev;
1592 struct r1conf *conf = mddev->private;
1593 struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1594 sector_t sect = r1_bio->sector;
1595 int sectors = r1_bio->sectors;
1596 int idx = 0;
1597
1598 while(sectors) {
1599 int s = sectors;
1600 int d = r1_bio->read_disk;
1601 int success = 0;
1602 struct md_rdev *rdev;
1603 int start;
1604
1605 if (s > (PAGE_SIZE>>9))
1606 s = PAGE_SIZE >> 9;
1607 do {
1608 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1609 /* No rcu protection needed here devices
1610 * can only be removed when no resync is
1611 * active, and resync is currently active
1612 */
1613 rdev = conf->mirrors[d].rdev;
1614 if (sync_page_io(rdev, sect, s<<9,
1615 bio->bi_io_vec[idx].bv_page,
1616 READ, false)) {
1617 success = 1;
1618 break;
1619 }
1620 }
1621 d++;
1622 if (d == conf->raid_disks * 2)
1623 d = 0;
1624 } while (!success && d != r1_bio->read_disk);
1625
1626 if (!success) {
1627 char b[BDEVNAME_SIZE];
1628 int abort = 0;
1629 /* Cannot read from anywhere, this block is lost.
1630 * Record a bad block on each device. If that doesn't
1631 * work just disable and interrupt the recovery.
1632 * Don't fail devices as that won't really help.
1633 */
1634 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1635 " for block %llu\n",
1636 mdname(mddev),
1637 bdevname(bio->bi_bdev, b),
1638 (unsigned long long)r1_bio->sector);
1639 for (d = 0; d < conf->raid_disks * 2; d++) {
1640 rdev = conf->mirrors[d].rdev;
1641 if (!rdev || test_bit(Faulty, &rdev->flags))
1642 continue;
1643 if (!rdev_set_badblocks(rdev, sect, s, 0))
1644 abort = 1;
1645 }
1646 if (abort) {
1647 conf->recovery_disabled =
1648 mddev->recovery_disabled;
1649 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1650 md_done_sync(mddev, r1_bio->sectors, 0);
1651 put_buf(r1_bio);
1652 return 0;
1653 }
1654 /* Try next page */
1655 sectors -= s;
1656 sect += s;
1657 idx++;
1658 continue;
1659 }
1660
1661 start = d;
1662 /* write it back and re-read */
1663 while (d != r1_bio->read_disk) {
1664 if (d == 0)
1665 d = conf->raid_disks * 2;
1666 d--;
1667 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1668 continue;
1669 rdev = conf->mirrors[d].rdev;
1670 if (r1_sync_page_io(rdev, sect, s,
1671 bio->bi_io_vec[idx].bv_page,
1672 WRITE) == 0) {
1673 r1_bio->bios[d]->bi_end_io = NULL;
1674 rdev_dec_pending(rdev, mddev);
1675 }
1676 }
1677 d = start;
1678 while (d != r1_bio->read_disk) {
1679 if (d == 0)
1680 d = conf->raid_disks * 2;
1681 d--;
1682 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1683 continue;
1684 rdev = conf->mirrors[d].rdev;
1685 if (r1_sync_page_io(rdev, sect, s,
1686 bio->bi_io_vec[idx].bv_page,
1687 READ) != 0)
1688 atomic_add(s, &rdev->corrected_errors);
1689 }
1690 sectors -= s;
1691 sect += s;
1692 idx ++;
1693 }
1694 set_bit(R1BIO_Uptodate, &r1_bio->state);
1695 set_bit(BIO_UPTODATE, &bio->bi_flags);
1696 return 1;
1697}
1698
1699static int process_checks(struct r1bio *r1_bio)
1700{
1701 /* We have read all readable devices. If we haven't
1702 * got the block, then there is no hope left.
1703 * If we have, then we want to do a comparison
1704 * and skip the write if everything is the same.
1705 * If any blocks failed to read, then we need to
1706 * attempt an over-write
1707 */
1708 struct mddev *mddev = r1_bio->mddev;
1709 struct r1conf *conf = mddev->private;
1710 int primary;
1711 int i;
1712 int vcnt;
1713
1714 for (primary = 0; primary < conf->raid_disks * 2; primary++)
1715 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1716 test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1717 r1_bio->bios[primary]->bi_end_io = NULL;
1718 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1719 break;
1720 }
1721 r1_bio->read_disk = primary;
1722 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
1723 for (i = 0; i < conf->raid_disks * 2; i++) {
1724 int j;
1725 struct bio *pbio = r1_bio->bios[primary];
1726 struct bio *sbio = r1_bio->bios[i];
1727 int size;
1728
1729 if (r1_bio->bios[i]->bi_end_io != end_sync_read)
1730 continue;
1731
1732 if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) {
1733 for (j = vcnt; j-- ; ) {
1734 struct page *p, *s;
1735 p = pbio->bi_io_vec[j].bv_page;
1736 s = sbio->bi_io_vec[j].bv_page;
1737 if (memcmp(page_address(p),
1738 page_address(s),
1739 sbio->bi_io_vec[j].bv_len))
1740 break;
1741 }
1742 } else
1743 j = 0;
1744 if (j >= 0)
1745 mddev->resync_mismatches += r1_bio->sectors;
1746 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
1747 && test_bit(BIO_UPTODATE, &sbio->bi_flags))) {
1748 /* No need to write to this device. */
1749 sbio->bi_end_io = NULL;
1750 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1751 continue;
1752 }
1753 /* fixup the bio for reuse */
1754 sbio->bi_vcnt = vcnt;
1755 sbio->bi_size = r1_bio->sectors << 9;
1756 sbio->bi_idx = 0;
1757 sbio->bi_phys_segments = 0;
1758 sbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1759 sbio->bi_flags |= 1 << BIO_UPTODATE;
1760 sbio->bi_next = NULL;
1761 sbio->bi_sector = r1_bio->sector +
1762 conf->mirrors[i].rdev->data_offset;
1763 sbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1764 size = sbio->bi_size;
1765 for (j = 0; j < vcnt ; j++) {
1766 struct bio_vec *bi;
1767 bi = &sbio->bi_io_vec[j];
1768 bi->bv_offset = 0;
1769 if (size > PAGE_SIZE)
1770 bi->bv_len = PAGE_SIZE;
1771 else
1772 bi->bv_len = size;
1773 size -= PAGE_SIZE;
1774 memcpy(page_address(bi->bv_page),
1775 page_address(pbio->bi_io_vec[j].bv_page),
1776 PAGE_SIZE);
1777 }
1778 }
1779 return 0;
1780}
1781
1782static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
1783{
1784 struct r1conf *conf = mddev->private;
1785 int i;
1786 int disks = conf->raid_disks * 2;
1787 struct bio *bio, *wbio;
1788
1789 bio = r1_bio->bios[r1_bio->read_disk];
1790
1791 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
1792 /* ouch - failed to read all of that. */
1793 if (!fix_sync_read_error(r1_bio))
1794 return;
1795
1796 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
1797 if (process_checks(r1_bio) < 0)
1798 return;
1799 /*
1800 * schedule writes
1801 */
1802 atomic_set(&r1_bio->remaining, 1);
1803 for (i = 0; i < disks ; i++) {
1804 wbio = r1_bio->bios[i];
1805 if (wbio->bi_end_io == NULL ||
1806 (wbio->bi_end_io == end_sync_read &&
1807 (i == r1_bio->read_disk ||
1808 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1809 continue;
1810
1811 wbio->bi_rw = WRITE;
1812 wbio->bi_end_io = end_sync_write;
1813 atomic_inc(&r1_bio->remaining);
1814 md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9);
1815
1816 generic_make_request(wbio);
1817 }
1818
1819 if (atomic_dec_and_test(&r1_bio->remaining)) {
1820 /* if we're here, all write(s) have completed, so clean up */
1821 int s = r1_bio->sectors;
1822 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1823 test_bit(R1BIO_WriteError, &r1_bio->state))
1824 reschedule_retry(r1_bio);
1825 else {
1826 put_buf(r1_bio);
1827 md_done_sync(mddev, s, 1);
1828 }
1829 }
1830}
1831
1832/*
1833 * This is a kernel thread which:
1834 *
1835 * 1. Retries failed read operations on working mirrors.
1836 * 2. Updates the raid superblock when problems encounter.
1837 * 3. Performs writes following reads for array synchronising.
1838 */
1839
1840static void fix_read_error(struct r1conf *conf, int read_disk,
1841 sector_t sect, int sectors)
1842{
1843 struct mddev *mddev = conf->mddev;
1844 while(sectors) {
1845 int s = sectors;
1846 int d = read_disk;
1847 int success = 0;
1848 int start;
1849 struct md_rdev *rdev;
1850
1851 if (s > (PAGE_SIZE>>9))
1852 s = PAGE_SIZE >> 9;
1853
1854 do {
1855 /* Note: no rcu protection needed here
1856 * as this is synchronous in the raid1d thread
1857 * which is the thread that might remove
1858 * a device. If raid1d ever becomes multi-threaded....
1859 */
1860 sector_t first_bad;
1861 int bad_sectors;
1862
1863 rdev = conf->mirrors[d].rdev;
1864 if (rdev &&
1865 (test_bit(In_sync, &rdev->flags) ||
1866 (!test_bit(Faulty, &rdev->flags) &&
1867 rdev->recovery_offset >= sect + s)) &&
1868 is_badblock(rdev, sect, s,
1869 &first_bad, &bad_sectors) == 0 &&
1870 sync_page_io(rdev, sect, s<<9,
1871 conf->tmppage, READ, false))
1872 success = 1;
1873 else {
1874 d++;
1875 if (d == conf->raid_disks * 2)
1876 d = 0;
1877 }
1878 } while (!success && d != read_disk);
1879
1880 if (!success) {
1881 /* Cannot read from anywhere - mark it bad */
1882 struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
1883 if (!rdev_set_badblocks(rdev, sect, s, 0))
1884 md_error(mddev, rdev);
1885 break;
1886 }
1887 /* write it back and re-read */
1888 start = d;
1889 while (d != read_disk) {
1890 if (d==0)
1891 d = conf->raid_disks * 2;
1892 d--;
1893 rdev = conf->mirrors[d].rdev;
1894 if (rdev &&
1895 test_bit(In_sync, &rdev->flags))
1896 r1_sync_page_io(rdev, sect, s,
1897 conf->tmppage, WRITE);
1898 }
1899 d = start;
1900 while (d != read_disk) {
1901 char b[BDEVNAME_SIZE];
1902 if (d==0)
1903 d = conf->raid_disks * 2;
1904 d--;
1905 rdev = conf->mirrors[d].rdev;
1906 if (rdev &&
1907 test_bit(In_sync, &rdev->flags)) {
1908 if (r1_sync_page_io(rdev, sect, s,
1909 conf->tmppage, READ)) {
1910 atomic_add(s, &rdev->corrected_errors);
1911 printk(KERN_INFO
1912 "md/raid1:%s: read error corrected "
1913 "(%d sectors at %llu on %s)\n",
1914 mdname(mddev), s,
1915 (unsigned long long)(sect +
1916 rdev->data_offset),
1917 bdevname(rdev->bdev, b));
1918 }
1919 }
1920 }
1921 sectors -= s;
1922 sect += s;
1923 }
1924}
1925
1926static void bi_complete(struct bio *bio, int error)
1927{
1928 complete((struct completion *)bio->bi_private);
1929}
1930
1931static int submit_bio_wait(int rw, struct bio *bio)
1932{
1933 struct completion event;
1934 rw |= REQ_SYNC;
1935
1936 init_completion(&event);
1937 bio->bi_private = &event;
1938 bio->bi_end_io = bi_complete;
1939 submit_bio(rw, bio);
1940 wait_for_completion(&event);
1941
1942 return test_bit(BIO_UPTODATE, &bio->bi_flags);
1943}
1944
1945static int narrow_write_error(struct r1bio *r1_bio, int i)
1946{
1947 struct mddev *mddev = r1_bio->mddev;
1948 struct r1conf *conf = mddev->private;
1949 struct md_rdev *rdev = conf->mirrors[i].rdev;
1950 int vcnt, idx;
1951 struct bio_vec *vec;
1952
1953 /* bio has the data to be written to device 'i' where
1954 * we just recently had a write error.
1955 * We repeatedly clone the bio and trim down to one block,
1956 * then try the write. Where the write fails we record
1957 * a bad block.
1958 * It is conceivable that the bio doesn't exactly align with
1959 * blocks. We must handle this somehow.
1960 *
1961 * We currently own a reference on the rdev.
1962 */
1963
1964 int block_sectors;
1965 sector_t sector;
1966 int sectors;
1967 int sect_to_write = r1_bio->sectors;
1968 int ok = 1;
1969
1970 if (rdev->badblocks.shift < 0)
1971 return 0;
1972
1973 block_sectors = 1 << rdev->badblocks.shift;
1974 sector = r1_bio->sector;
1975 sectors = ((sector + block_sectors)
1976 & ~(sector_t)(block_sectors - 1))
1977 - sector;
1978
1979 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
1980 vcnt = r1_bio->behind_page_count;
1981 vec = r1_bio->behind_bvecs;
1982 idx = 0;
1983 while (vec[idx].bv_page == NULL)
1984 idx++;
1985 } else {
1986 vcnt = r1_bio->master_bio->bi_vcnt;
1987 vec = r1_bio->master_bio->bi_io_vec;
1988 idx = r1_bio->master_bio->bi_idx;
1989 }
1990 while (sect_to_write) {
1991 struct bio *wbio;
1992 if (sectors > sect_to_write)
1993 sectors = sect_to_write;
1994 /* Write at 'sector' for 'sectors'*/
1995
1996 wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
1997 memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
1998 wbio->bi_sector = r1_bio->sector;
1999 wbio->bi_rw = WRITE;
2000 wbio->bi_vcnt = vcnt;
2001 wbio->bi_size = r1_bio->sectors << 9;
2002 wbio->bi_idx = idx;
2003
2004 md_trim_bio(wbio, sector - r1_bio->sector, sectors);
2005 wbio->bi_sector += rdev->data_offset;
2006 wbio->bi_bdev = rdev->bdev;
2007 if (submit_bio_wait(WRITE, wbio) == 0)
2008 /* failure! */
2009 ok = rdev_set_badblocks(rdev, sector,
2010 sectors, 0)
2011 && ok;
2012
2013 bio_put(wbio);
2014 sect_to_write -= sectors;
2015 sector += sectors;
2016 sectors = block_sectors;
2017 }
2018 return ok;
2019}
2020
2021static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2022{
2023 int m;
2024 int s = r1_bio->sectors;
2025 for (m = 0; m < conf->raid_disks * 2 ; m++) {
2026 struct md_rdev *rdev = conf->mirrors[m].rdev;
2027 struct bio *bio = r1_bio->bios[m];
2028 if (bio->bi_end_io == NULL)
2029 continue;
2030 if (test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2031 test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2032 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2033 }
2034 if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2035 test_bit(R1BIO_WriteError, &r1_bio->state)) {
2036 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2037 md_error(conf->mddev, rdev);
2038 }
2039 }
2040 put_buf(r1_bio);
2041 md_done_sync(conf->mddev, s, 1);
2042}
2043
2044static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2045{
2046 int m;
2047 for (m = 0; m < conf->raid_disks * 2 ; m++)
2048 if (r1_bio->bios[m] == IO_MADE_GOOD) {
2049 struct md_rdev *rdev = conf->mirrors[m].rdev;
2050 rdev_clear_badblocks(rdev,
2051 r1_bio->sector,
2052 r1_bio->sectors, 0);
2053 rdev_dec_pending(rdev, conf->mddev);
2054 } else if (r1_bio->bios[m] != NULL) {
2055 /* This drive got a write error. We need to
2056 * narrow down and record precise write
2057 * errors.
2058 */
2059 if (!narrow_write_error(r1_bio, m)) {
2060 md_error(conf->mddev,
2061 conf->mirrors[m].rdev);
2062 /* an I/O failed, we can't clear the bitmap */
2063 set_bit(R1BIO_Degraded, &r1_bio->state);
2064 }
2065 rdev_dec_pending(conf->mirrors[m].rdev,
2066 conf->mddev);
2067 }
2068 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2069 close_write(r1_bio);
2070 raid_end_bio_io(r1_bio);
2071}
2072
2073static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2074{
2075 int disk;
2076 int max_sectors;
2077 struct mddev *mddev = conf->mddev;
2078 struct bio *bio;
2079 char b[BDEVNAME_SIZE];
2080 struct md_rdev *rdev;
2081
2082 clear_bit(R1BIO_ReadError, &r1_bio->state);
2083 /* we got a read error. Maybe the drive is bad. Maybe just
2084 * the block and we can fix it.
2085 * We freeze all other IO, and try reading the block from
2086 * other devices. When we find one, we re-write
2087 * and check it that fixes the read error.
2088 * This is all done synchronously while the array is
2089 * frozen
2090 */
2091 if (mddev->ro == 0) {
2092 freeze_array(conf);
2093 fix_read_error(conf, r1_bio->read_disk,
2094 r1_bio->sector, r1_bio->sectors);
2095 unfreeze_array(conf);
2096 } else
2097 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
2098
2099 bio = r1_bio->bios[r1_bio->read_disk];
2100 bdevname(bio->bi_bdev, b);
2101read_more:
2102 disk = read_balance(conf, r1_bio, &max_sectors);
2103 if (disk == -1) {
2104 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
2105 " read error for block %llu\n",
2106 mdname(mddev), b, (unsigned long long)r1_bio->sector);
2107 raid_end_bio_io(r1_bio);
2108 } else {
2109 const unsigned long do_sync
2110 = r1_bio->master_bio->bi_rw & REQ_SYNC;
2111 if (bio) {
2112 r1_bio->bios[r1_bio->read_disk] =
2113 mddev->ro ? IO_BLOCKED : NULL;
2114 bio_put(bio);
2115 }
2116 r1_bio->read_disk = disk;
2117 bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2118 md_trim_bio(bio, r1_bio->sector - bio->bi_sector, max_sectors);
2119 r1_bio->bios[r1_bio->read_disk] = bio;
2120 rdev = conf->mirrors[disk].rdev;
2121 printk_ratelimited(KERN_ERR
2122 "md/raid1:%s: redirecting sector %llu"
2123 " to other mirror: %s\n",
2124 mdname(mddev),
2125 (unsigned long long)r1_bio->sector,
2126 bdevname(rdev->bdev, b));
2127 bio->bi_sector = r1_bio->sector + rdev->data_offset;
2128 bio->bi_bdev = rdev->bdev;
2129 bio->bi_end_io = raid1_end_read_request;
2130 bio->bi_rw = READ | do_sync;
2131 bio->bi_private = r1_bio;
2132 if (max_sectors < r1_bio->sectors) {
2133 /* Drat - have to split this up more */
2134 struct bio *mbio = r1_bio->master_bio;
2135 int sectors_handled = (r1_bio->sector + max_sectors
2136 - mbio->bi_sector);
2137 r1_bio->sectors = max_sectors;
2138 spin_lock_irq(&conf->device_lock);
2139 if (mbio->bi_phys_segments == 0)
2140 mbio->bi_phys_segments = 2;
2141 else
2142 mbio->bi_phys_segments++;
2143 spin_unlock_irq(&conf->device_lock);
2144 generic_make_request(bio);
2145 bio = NULL;
2146
2147 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
2148
2149 r1_bio->master_bio = mbio;
2150 r1_bio->sectors = (mbio->bi_size >> 9)
2151 - sectors_handled;
2152 r1_bio->state = 0;
2153 set_bit(R1BIO_ReadError, &r1_bio->state);
2154 r1_bio->mddev = mddev;
2155 r1_bio->sector = mbio->bi_sector + sectors_handled;
2156
2157 goto read_more;
2158 } else
2159 generic_make_request(bio);
2160 }
2161}
2162
2163static void raid1d(struct mddev *mddev)
2164{
2165 struct r1bio *r1_bio;
2166 unsigned long flags;
2167 struct r1conf *conf = mddev->private;
2168 struct list_head *head = &conf->retry_list;
2169 struct blk_plug plug;
2170
2171 md_check_recovery(mddev);
2172
2173 blk_start_plug(&plug);
2174 for (;;) {
2175
2176 if (atomic_read(&mddev->plug_cnt) == 0)
2177 flush_pending_writes(conf);
2178
2179 spin_lock_irqsave(&conf->device_lock, flags);
2180 if (list_empty(head)) {
2181 spin_unlock_irqrestore(&conf->device_lock, flags);
2182 break;
2183 }
2184 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2185 list_del(head->prev);
2186 conf->nr_queued--;
2187 spin_unlock_irqrestore(&conf->device_lock, flags);
2188
2189 mddev = r1_bio->mddev;
2190 conf = mddev->private;
2191 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2192 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2193 test_bit(R1BIO_WriteError, &r1_bio->state))
2194 handle_sync_write_finished(conf, r1_bio);
2195 else
2196 sync_request_write(mddev, r1_bio);
2197 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2198 test_bit(R1BIO_WriteError, &r1_bio->state))
2199 handle_write_finished(conf, r1_bio);
2200 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2201 handle_read_error(conf, r1_bio);
2202 else
2203 /* just a partial read to be scheduled from separate
2204 * context
2205 */
2206 generic_make_request(r1_bio->bios[r1_bio->read_disk]);
2207
2208 cond_resched();
2209 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2210 md_check_recovery(mddev);
2211 }
2212 blk_finish_plug(&plug);
2213}
2214
2215
2216static int init_resync(struct r1conf *conf)
2217{
2218 int buffs;
2219
2220 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2221 BUG_ON(conf->r1buf_pool);
2222 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2223 conf->poolinfo);
2224 if (!conf->r1buf_pool)
2225 return -ENOMEM;
2226 conf->next_resync = 0;
2227 return 0;
2228}
2229
2230/*
2231 * perform a "sync" on one "block"
2232 *
2233 * We need to make sure that no normal I/O request - particularly write
2234 * requests - conflict with active sync requests.
2235 *
2236 * This is achieved by tracking pending requests and a 'barrier' concept
2237 * that can be installed to exclude normal IO requests.
2238 */
2239
2240static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
2241{
2242 struct r1conf *conf = mddev->private;
2243 struct r1bio *r1_bio;
2244 struct bio *bio;
2245 sector_t max_sector, nr_sectors;
2246 int disk = -1;
2247 int i;
2248 int wonly = -1;
2249 int write_targets = 0, read_targets = 0;
2250 sector_t sync_blocks;
2251 int still_degraded = 0;
2252 int good_sectors = RESYNC_SECTORS;
2253 int min_bad = 0; /* number of sectors that are bad in all devices */
2254
2255 if (!conf->r1buf_pool)
2256 if (init_resync(conf))
2257 return 0;
2258
2259 max_sector = mddev->dev_sectors;
2260 if (sector_nr >= max_sector) {
2261 /* If we aborted, we need to abort the
2262 * sync on the 'current' bitmap chunk (there will
2263 * only be one in raid1 resync.
2264 * We can find the current addess in mddev->curr_resync
2265 */
2266 if (mddev->curr_resync < max_sector) /* aborted */
2267 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2268 &sync_blocks, 1);
2269 else /* completed sync */
2270 conf->fullsync = 0;
2271
2272 bitmap_close_sync(mddev->bitmap);
2273 close_sync(conf);
2274 return 0;
2275 }
2276
2277 if (mddev->bitmap == NULL &&
2278 mddev->recovery_cp == MaxSector &&
2279 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2280 conf->fullsync == 0) {
2281 *skipped = 1;
2282 return max_sector - sector_nr;
2283 }
2284 /* before building a request, check if we can skip these blocks..
2285 * This call the bitmap_start_sync doesn't actually record anything
2286 */
2287 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2288 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2289 /* We can skip this block, and probably several more */
2290 *skipped = 1;
2291 return sync_blocks;
2292 }
2293 /*
2294 * If there is non-resync activity waiting for a turn,
2295 * and resync is going fast enough,
2296 * then let it though before starting on this new sync request.
2297 */
2298 if (!go_faster && conf->nr_waiting)
2299 msleep_interruptible(1000);
2300
2301 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
2302 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2303 raise_barrier(conf);
2304
2305 conf->next_resync = sector_nr;
2306
2307 rcu_read_lock();
2308 /*
2309 * If we get a correctably read error during resync or recovery,
2310 * we might want to read from a different device. So we
2311 * flag all drives that could conceivably be read from for READ,
2312 * and any others (which will be non-In_sync devices) for WRITE.
2313 * If a read fails, we try reading from something else for which READ
2314 * is OK.
2315 */
2316
2317 r1_bio->mddev = mddev;
2318 r1_bio->sector = sector_nr;
2319 r1_bio->state = 0;
2320 set_bit(R1BIO_IsSync, &r1_bio->state);
2321
2322 for (i = 0; i < conf->raid_disks * 2; i++) {
2323 struct md_rdev *rdev;
2324 bio = r1_bio->bios[i];
2325
2326 /* take from bio_init */
2327 bio->bi_next = NULL;
2328 bio->bi_flags &= ~(BIO_POOL_MASK-1);
2329 bio->bi_flags |= 1 << BIO_UPTODATE;
2330 bio->bi_rw = READ;
2331 bio->bi_vcnt = 0;
2332 bio->bi_idx = 0;
2333 bio->bi_phys_segments = 0;
2334 bio->bi_size = 0;
2335 bio->bi_end_io = NULL;
2336 bio->bi_private = NULL;
2337
2338 rdev = rcu_dereference(conf->mirrors[i].rdev);
2339 if (rdev == NULL ||
2340 test_bit(Faulty, &rdev->flags)) {
2341 if (i < conf->raid_disks)
2342 still_degraded = 1;
2343 } else if (!test_bit(In_sync, &rdev->flags)) {
2344 bio->bi_rw = WRITE;
2345 bio->bi_end_io = end_sync_write;
2346 write_targets ++;
2347 } else {
2348 /* may need to read from here */
2349 sector_t first_bad = MaxSector;
2350 int bad_sectors;
2351
2352 if (is_badblock(rdev, sector_nr, good_sectors,
2353 &first_bad, &bad_sectors)) {
2354 if (first_bad > sector_nr)
2355 good_sectors = first_bad - sector_nr;
2356 else {
2357 bad_sectors -= (sector_nr - first_bad);
2358 if (min_bad == 0 ||
2359 min_bad > bad_sectors)
2360 min_bad = bad_sectors;
2361 }
2362 }
2363 if (sector_nr < first_bad) {
2364 if (test_bit(WriteMostly, &rdev->flags)) {
2365 if (wonly < 0)
2366 wonly = i;
2367 } else {
2368 if (disk < 0)
2369 disk = i;
2370 }
2371 bio->bi_rw = READ;
2372 bio->bi_end_io = end_sync_read;
2373 read_targets++;
2374 }
2375 }
2376 if (bio->bi_end_io) {
2377 atomic_inc(&rdev->nr_pending);
2378 bio->bi_sector = sector_nr + rdev->data_offset;
2379 bio->bi_bdev = rdev->bdev;
2380 bio->bi_private = r1_bio;
2381 }
2382 }
2383 rcu_read_unlock();
2384 if (disk < 0)
2385 disk = wonly;
2386 r1_bio->read_disk = disk;
2387
2388 if (read_targets == 0 && min_bad > 0) {
2389 /* These sectors are bad on all InSync devices, so we
2390 * need to mark them bad on all write targets
2391 */
2392 int ok = 1;
2393 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2394 if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2395 struct md_rdev *rdev = conf->mirrors[i].rdev;
2396 ok = rdev_set_badblocks(rdev, sector_nr,
2397 min_bad, 0
2398 ) && ok;
2399 }
2400 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2401 *skipped = 1;
2402 put_buf(r1_bio);
2403
2404 if (!ok) {
2405 /* Cannot record the badblocks, so need to
2406 * abort the resync.
2407 * If there are multiple read targets, could just
2408 * fail the really bad ones ???
2409 */
2410 conf->recovery_disabled = mddev->recovery_disabled;
2411 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2412 return 0;
2413 } else
2414 return min_bad;
2415
2416 }
2417 if (min_bad > 0 && min_bad < good_sectors) {
2418 /* only resync enough to reach the next bad->good
2419 * transition */
2420 good_sectors = min_bad;
2421 }
2422
2423 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2424 /* extra read targets are also write targets */
2425 write_targets += read_targets-1;
2426
2427 if (write_targets == 0 || read_targets == 0) {
2428 /* There is nowhere to write, so all non-sync
2429 * drives must be failed - so we are finished
2430 */
2431 sector_t rv;
2432 if (min_bad > 0)
2433 max_sector = sector_nr + min_bad;
2434 rv = max_sector - sector_nr;
2435 *skipped = 1;
2436 put_buf(r1_bio);
2437 return rv;
2438 }
2439
2440 if (max_sector > mddev->resync_max)
2441 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2442 if (max_sector > sector_nr + good_sectors)
2443 max_sector = sector_nr + good_sectors;
2444 nr_sectors = 0;
2445 sync_blocks = 0;
2446 do {
2447 struct page *page;
2448 int len = PAGE_SIZE;
2449 if (sector_nr + (len>>9) > max_sector)
2450 len = (max_sector - sector_nr) << 9;
2451 if (len == 0)
2452 break;
2453 if (sync_blocks == 0) {
2454 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2455 &sync_blocks, still_degraded) &&
2456 !conf->fullsync &&
2457 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2458 break;
2459 BUG_ON(sync_blocks < (PAGE_SIZE>>9));
2460 if ((len >> 9) > sync_blocks)
2461 len = sync_blocks<<9;
2462 }
2463
2464 for (i = 0 ; i < conf->raid_disks * 2; i++) {
2465 bio = r1_bio->bios[i];
2466 if (bio->bi_end_io) {
2467 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2468 if (bio_add_page(bio, page, len, 0) == 0) {
2469 /* stop here */
2470 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2471 while (i > 0) {
2472 i--;
2473 bio = r1_bio->bios[i];
2474 if (bio->bi_end_io==NULL)
2475 continue;
2476 /* remove last page from this bio */
2477 bio->bi_vcnt--;
2478 bio->bi_size -= len;
2479 bio->bi_flags &= ~(1<< BIO_SEG_VALID);
2480 }
2481 goto bio_full;
2482 }
2483 }
2484 }
2485 nr_sectors += len>>9;
2486 sector_nr += len>>9;
2487 sync_blocks -= (len>>9);
2488 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2489 bio_full:
2490 r1_bio->sectors = nr_sectors;
2491
2492 /* For a user-requested sync, we read all readable devices and do a
2493 * compare
2494 */
2495 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2496 atomic_set(&r1_bio->remaining, read_targets);
2497 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2498 bio = r1_bio->bios[i];
2499 if (bio->bi_end_io == end_sync_read) {
2500 read_targets--;
2501 md_sync_acct(bio->bi_bdev, nr_sectors);
2502 generic_make_request(bio);
2503 }
2504 }
2505 } else {
2506 atomic_set(&r1_bio->remaining, 1);
2507 bio = r1_bio->bios[r1_bio->read_disk];
2508 md_sync_acct(bio->bi_bdev, nr_sectors);
2509 generic_make_request(bio);
2510
2511 }
2512 return nr_sectors;
2513}
2514
2515static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2516{
2517 if (sectors)
2518 return sectors;
2519
2520 return mddev->dev_sectors;
2521}
2522
2523static struct r1conf *setup_conf(struct mddev *mddev)
2524{
2525 struct r1conf *conf;
2526 int i;
2527 struct mirror_info *disk;
2528 struct md_rdev *rdev;
2529 int err = -ENOMEM;
2530
2531 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2532 if (!conf)
2533 goto abort;
2534
2535 conf->mirrors = kzalloc(sizeof(struct mirror_info)
2536 * mddev->raid_disks * 2,
2537 GFP_KERNEL);
2538 if (!conf->mirrors)
2539 goto abort;
2540
2541 conf->tmppage = alloc_page(GFP_KERNEL);
2542 if (!conf->tmppage)
2543 goto abort;
2544
2545 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2546 if (!conf->poolinfo)
2547 goto abort;
2548 conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2549 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2550 r1bio_pool_free,
2551 conf->poolinfo);
2552 if (!conf->r1bio_pool)
2553 goto abort;
2554
2555 conf->poolinfo->mddev = mddev;
2556
2557 err = -EINVAL;
2558 spin_lock_init(&conf->device_lock);
2559 rdev_for_each(rdev, mddev) {
2560 struct request_queue *q;
2561 int disk_idx = rdev->raid_disk;
2562 if (disk_idx >= mddev->raid_disks
2563 || disk_idx < 0)
2564 continue;
2565 if (test_bit(Replacement, &rdev->flags))
2566 disk = conf->mirrors + conf->raid_disks + disk_idx;
2567 else
2568 disk = conf->mirrors + disk_idx;
2569
2570 if (disk->rdev)
2571 goto abort;
2572 disk->rdev = rdev;
2573 q = bdev_get_queue(rdev->bdev);
2574 if (q->merge_bvec_fn)
2575 mddev->merge_check_needed = 1;
2576
2577 disk->head_position = 0;
2578 }
2579 conf->raid_disks = mddev->raid_disks;
2580 conf->mddev = mddev;
2581 INIT_LIST_HEAD(&conf->retry_list);
2582
2583 spin_lock_init(&conf->resync_lock);
2584 init_waitqueue_head(&conf->wait_barrier);
2585
2586 bio_list_init(&conf->pending_bio_list);
2587 conf->pending_count = 0;
2588 conf->recovery_disabled = mddev->recovery_disabled - 1;
2589
2590 err = -EIO;
2591 conf->last_used = -1;
2592 for (i = 0; i < conf->raid_disks * 2; i++) {
2593
2594 disk = conf->mirrors + i;
2595
2596 if (i < conf->raid_disks &&
2597 disk[conf->raid_disks].rdev) {
2598 /* This slot has a replacement. */
2599 if (!disk->rdev) {
2600 /* No original, just make the replacement
2601 * a recovering spare
2602 */
2603 disk->rdev =
2604 disk[conf->raid_disks].rdev;
2605 disk[conf->raid_disks].rdev = NULL;
2606 } else if (!test_bit(In_sync, &disk->rdev->flags))
2607 /* Original is not in_sync - bad */
2608 goto abort;
2609 }
2610
2611 if (!disk->rdev ||
2612 !test_bit(In_sync, &disk->rdev->flags)) {
2613 disk->head_position = 0;
2614 if (disk->rdev &&
2615 (disk->rdev->saved_raid_disk < 0))
2616 conf->fullsync = 1;
2617 } else if (conf->last_used < 0)
2618 /*
2619 * The first working device is used as a
2620 * starting point to read balancing.
2621 */
2622 conf->last_used = i;
2623 }
2624
2625 if (conf->last_used < 0) {
2626 printk(KERN_ERR "md/raid1:%s: no operational mirrors\n",
2627 mdname(mddev));
2628 goto abort;
2629 }
2630 err = -ENOMEM;
2631 conf->thread = md_register_thread(raid1d, mddev, "raid1");
2632 if (!conf->thread) {
2633 printk(KERN_ERR
2634 "md/raid1:%s: couldn't allocate thread\n",
2635 mdname(mddev));
2636 goto abort;
2637 }
2638
2639 return conf;
2640
2641 abort:
2642 if (conf) {
2643 if (conf->r1bio_pool)
2644 mempool_destroy(conf->r1bio_pool);
2645 kfree(conf->mirrors);
2646 safe_put_page(conf->tmppage);
2647 kfree(conf->poolinfo);
2648 kfree(conf);
2649 }
2650 return ERR_PTR(err);
2651}
2652
2653static int stop(struct mddev *mddev);
2654static int run(struct mddev *mddev)
2655{
2656 struct r1conf *conf;
2657 int i;
2658 struct md_rdev *rdev;
2659 int ret;
2660
2661 if (mddev->level != 1) {
2662 printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
2663 mdname(mddev), mddev->level);
2664 return -EIO;
2665 }
2666 if (mddev->reshape_position != MaxSector) {
2667 printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
2668 mdname(mddev));
2669 return -EIO;
2670 }
2671 /*
2672 * copy the already verified devices into our private RAID1
2673 * bookkeeping area. [whatever we allocate in run(),
2674 * should be freed in stop()]
2675 */
2676 if (mddev->private == NULL)
2677 conf = setup_conf(mddev);
2678 else
2679 conf = mddev->private;
2680
2681 if (IS_ERR(conf))
2682 return PTR_ERR(conf);
2683
2684 rdev_for_each(rdev, mddev) {
2685 if (!mddev->gendisk)
2686 continue;
2687 disk_stack_limits(mddev->gendisk, rdev->bdev,
2688 rdev->data_offset << 9);
2689 }
2690
2691 mddev->degraded = 0;
2692 for (i=0; i < conf->raid_disks; i++)
2693 if (conf->mirrors[i].rdev == NULL ||
2694 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2695 test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2696 mddev->degraded++;
2697
2698 if (conf->raid_disks - mddev->degraded == 1)
2699 mddev->recovery_cp = MaxSector;
2700
2701 if (mddev->recovery_cp != MaxSector)
2702 printk(KERN_NOTICE "md/raid1:%s: not clean"
2703 " -- starting background reconstruction\n",
2704 mdname(mddev));
2705 printk(KERN_INFO
2706 "md/raid1:%s: active with %d out of %d mirrors\n",
2707 mdname(mddev), mddev->raid_disks - mddev->degraded,
2708 mddev->raid_disks);
2709
2710 /*
2711 * Ok, everything is just fine now
2712 */
2713 mddev->thread = conf->thread;
2714 conf->thread = NULL;
2715 mddev->private = conf;
2716
2717 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2718
2719 if (mddev->queue) {
2720 mddev->queue->backing_dev_info.congested_fn = raid1_congested;
2721 mddev->queue->backing_dev_info.congested_data = mddev;
2722 blk_queue_merge_bvec(mddev->queue, raid1_mergeable_bvec);
2723 }
2724
2725 ret = md_integrity_register(mddev);
2726 if (ret)
2727 stop(mddev);
2728 return ret;
2729}
2730
2731static int stop(struct mddev *mddev)
2732{
2733 struct r1conf *conf = mddev->private;
2734 struct bitmap *bitmap = mddev->bitmap;
2735
2736 /* wait for behind writes to complete */
2737 if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
2738 printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n",
2739 mdname(mddev));
2740 /* need to kick something here to make sure I/O goes? */
2741 wait_event(bitmap->behind_wait,
2742 atomic_read(&bitmap->behind_writes) == 0);
2743 }
2744
2745 raise_barrier(conf);
2746 lower_barrier(conf);
2747
2748 md_unregister_thread(&mddev->thread);
2749 if (conf->r1bio_pool)
2750 mempool_destroy(conf->r1bio_pool);
2751 kfree(conf->mirrors);
2752 kfree(conf->poolinfo);
2753 kfree(conf);
2754 mddev->private = NULL;
2755 return 0;
2756}
2757
2758static int raid1_resize(struct mddev *mddev, sector_t sectors)
2759{
2760 /* no resync is happening, and there is enough space
2761 * on all devices, so we can resize.
2762 * We need to make sure resync covers any new space.
2763 * If the array is shrinking we should possibly wait until
2764 * any io in the removed space completes, but it hardly seems
2765 * worth it.
2766 */
2767 sector_t newsize = raid1_size(mddev, sectors, 0);
2768 if (mddev->external_size &&
2769 mddev->array_sectors > newsize)
2770 return -EINVAL;
2771 if (mddev->bitmap) {
2772 int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
2773 if (ret)
2774 return ret;
2775 }
2776 md_set_array_sectors(mddev, newsize);
2777 set_capacity(mddev->gendisk, mddev->array_sectors);
2778 revalidate_disk(mddev->gendisk);
2779 if (sectors > mddev->dev_sectors &&
2780 mddev->recovery_cp > mddev->dev_sectors) {
2781 mddev->recovery_cp = mddev->dev_sectors;
2782 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2783 }
2784 mddev->dev_sectors = sectors;
2785 mddev->resync_max_sectors = sectors;
2786 return 0;
2787}
2788
2789static int raid1_reshape(struct mddev *mddev)
2790{
2791 /* We need to:
2792 * 1/ resize the r1bio_pool
2793 * 2/ resize conf->mirrors
2794 *
2795 * We allocate a new r1bio_pool if we can.
2796 * Then raise a device barrier and wait until all IO stops.
2797 * Then resize conf->mirrors and swap in the new r1bio pool.
2798 *
2799 * At the same time, we "pack" the devices so that all the missing
2800 * devices have the higher raid_disk numbers.
2801 */
2802 mempool_t *newpool, *oldpool;
2803 struct pool_info *newpoolinfo;
2804 struct mirror_info *newmirrors;
2805 struct r1conf *conf = mddev->private;
2806 int cnt, raid_disks;
2807 unsigned long flags;
2808 int d, d2, err;
2809
2810 /* Cannot change chunk_size, layout, or level */
2811 if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
2812 mddev->layout != mddev->new_layout ||
2813 mddev->level != mddev->new_level) {
2814 mddev->new_chunk_sectors = mddev->chunk_sectors;
2815 mddev->new_layout = mddev->layout;
2816 mddev->new_level = mddev->level;
2817 return -EINVAL;
2818 }
2819
2820 err = md_allow_write(mddev);
2821 if (err)
2822 return err;
2823
2824 raid_disks = mddev->raid_disks + mddev->delta_disks;
2825
2826 if (raid_disks < conf->raid_disks) {
2827 cnt=0;
2828 for (d= 0; d < conf->raid_disks; d++)
2829 if (conf->mirrors[d].rdev)
2830 cnt++;
2831 if (cnt > raid_disks)
2832 return -EBUSY;
2833 }
2834
2835 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
2836 if (!newpoolinfo)
2837 return -ENOMEM;
2838 newpoolinfo->mddev = mddev;
2839 newpoolinfo->raid_disks = raid_disks * 2;
2840
2841 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2842 r1bio_pool_free, newpoolinfo);
2843 if (!newpool) {
2844 kfree(newpoolinfo);
2845 return -ENOMEM;
2846 }
2847 newmirrors = kzalloc(sizeof(struct mirror_info) * raid_disks * 2,
2848 GFP_KERNEL);
2849 if (!newmirrors) {
2850 kfree(newpoolinfo);
2851 mempool_destroy(newpool);
2852 return -ENOMEM;
2853 }
2854
2855 raise_barrier(conf);
2856
2857 /* ok, everything is stopped */
2858 oldpool = conf->r1bio_pool;
2859 conf->r1bio_pool = newpool;
2860
2861 for (d = d2 = 0; d < conf->raid_disks; d++) {
2862 struct md_rdev *rdev = conf->mirrors[d].rdev;
2863 if (rdev && rdev->raid_disk != d2) {
2864 sysfs_unlink_rdev(mddev, rdev);
2865 rdev->raid_disk = d2;
2866 sysfs_unlink_rdev(mddev, rdev);
2867 if (sysfs_link_rdev(mddev, rdev))
2868 printk(KERN_WARNING
2869 "md/raid1:%s: cannot register rd%d\n",
2870 mdname(mddev), rdev->raid_disk);
2871 }
2872 if (rdev)
2873 newmirrors[d2++].rdev = rdev;
2874 }
2875 kfree(conf->mirrors);
2876 conf->mirrors = newmirrors;
2877 kfree(conf->poolinfo);
2878 conf->poolinfo = newpoolinfo;
2879
2880 spin_lock_irqsave(&conf->device_lock, flags);
2881 mddev->degraded += (raid_disks - conf->raid_disks);
2882 spin_unlock_irqrestore(&conf->device_lock, flags);
2883 conf->raid_disks = mddev->raid_disks = raid_disks;
2884 mddev->delta_disks = 0;
2885
2886 conf->last_used = 0; /* just make sure it is in-range */
2887 lower_barrier(conf);
2888
2889 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2890 md_wakeup_thread(mddev->thread);
2891
2892 mempool_destroy(oldpool);
2893 return 0;
2894}
2895
2896static void raid1_quiesce(struct mddev *mddev, int state)
2897{
2898 struct r1conf *conf = mddev->private;
2899
2900 switch(state) {
2901 case 2: /* wake for suspend */
2902 wake_up(&conf->wait_barrier);
2903 break;
2904 case 1:
2905 raise_barrier(conf);
2906 break;
2907 case 0:
2908 lower_barrier(conf);
2909 break;
2910 }
2911}
2912
2913static void *raid1_takeover(struct mddev *mddev)
2914{
2915 /* raid1 can take over:
2916 * raid5 with 2 devices, any layout or chunk size
2917 */
2918 if (mddev->level == 5 && mddev->raid_disks == 2) {
2919 struct r1conf *conf;
2920 mddev->new_level = 1;
2921 mddev->new_layout = 0;
2922 mddev->new_chunk_sectors = 0;
2923 conf = setup_conf(mddev);
2924 if (!IS_ERR(conf))
2925 conf->barrier = 1;
2926 return conf;
2927 }
2928 return ERR_PTR(-EINVAL);
2929}
2930
2931static struct md_personality raid1_personality =
2932{
2933 .name = "raid1",
2934 .level = 1,
2935 .owner = THIS_MODULE,
2936 .make_request = make_request,
2937 .run = run,
2938 .stop = stop,
2939 .status = status,
2940 .error_handler = error,
2941 .hot_add_disk = raid1_add_disk,
2942 .hot_remove_disk= raid1_remove_disk,
2943 .spare_active = raid1_spare_active,
2944 .sync_request = sync_request,
2945 .resize = raid1_resize,
2946 .size = raid1_size,
2947 .check_reshape = raid1_reshape,
2948 .quiesce = raid1_quiesce,
2949 .takeover = raid1_takeover,
2950};
2951
2952static int __init raid_init(void)
2953{
2954 return register_md_personality(&raid1_personality);
2955}
2956
2957static void raid_exit(void)
2958{
2959 unregister_md_personality(&raid1_personality);
2960}
2961
2962module_init(raid_init);
2963module_exit(raid_exit);
2964MODULE_LICENSE("GPL");
2965MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
2966MODULE_ALIAS("md-personality-3"); /* RAID1 */
2967MODULE_ALIAS("md-raid1");
2968MODULE_ALIAS("md-level-1");
2969
2970module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * raid1.c : Multiple Devices driver for Linux
4 *
5 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
6 *
7 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
8 *
9 * RAID-1 management functions.
10 *
11 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
12 *
13 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
14 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
15 *
16 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
17 * bitmapped intelligence in resync:
18 *
19 * - bitmap marked during normal i/o
20 * - bitmap used to skip nondirty blocks during sync
21 *
22 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
23 * - persistent bitmap code
24 */
25
26#include <linux/slab.h>
27#include <linux/delay.h>
28#include <linux/blkdev.h>
29#include <linux/module.h>
30#include <linux/seq_file.h>
31#include <linux/ratelimit.h>
32
33#include <trace/events/block.h>
34
35#include "md.h"
36#include "raid1.h"
37#include "md-bitmap.h"
38
39#define UNSUPPORTED_MDDEV_FLAGS \
40 ((1L << MD_HAS_JOURNAL) | \
41 (1L << MD_JOURNAL_CLEAN) | \
42 (1L << MD_HAS_PPL) | \
43 (1L << MD_HAS_MULTIPLE_PPLS))
44
45static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
46static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
47
48#define raid1_log(md, fmt, args...) \
49 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0)
50
51#include "raid1-10.c"
52
53static int check_and_add_wb(struct md_rdev *rdev, sector_t lo, sector_t hi)
54{
55 struct wb_info *wi, *temp_wi;
56 unsigned long flags;
57 int ret = 0;
58 struct mddev *mddev = rdev->mddev;
59
60 wi = mempool_alloc(mddev->wb_info_pool, GFP_NOIO);
61
62 spin_lock_irqsave(&rdev->wb_list_lock, flags);
63 list_for_each_entry(temp_wi, &rdev->wb_list, list) {
64 /* collision happened */
65 if (hi > temp_wi->lo && lo < temp_wi->hi) {
66 ret = -EBUSY;
67 break;
68 }
69 }
70
71 if (!ret) {
72 wi->lo = lo;
73 wi->hi = hi;
74 list_add(&wi->list, &rdev->wb_list);
75 } else
76 mempool_free(wi, mddev->wb_info_pool);
77 spin_unlock_irqrestore(&rdev->wb_list_lock, flags);
78
79 return ret;
80}
81
82static void remove_wb(struct md_rdev *rdev, sector_t lo, sector_t hi)
83{
84 struct wb_info *wi;
85 unsigned long flags;
86 int found = 0;
87 struct mddev *mddev = rdev->mddev;
88
89 spin_lock_irqsave(&rdev->wb_list_lock, flags);
90 list_for_each_entry(wi, &rdev->wb_list, list)
91 if (hi == wi->hi && lo == wi->lo) {
92 list_del(&wi->list);
93 mempool_free(wi, mddev->wb_info_pool);
94 found = 1;
95 break;
96 }
97
98 if (!found)
99 WARN(1, "The write behind IO is not recorded\n");
100 spin_unlock_irqrestore(&rdev->wb_list_lock, flags);
101 wake_up(&rdev->wb_io_wait);
102}
103
104/*
105 * for resync bio, r1bio pointer can be retrieved from the per-bio
106 * 'struct resync_pages'.
107 */
108static inline struct r1bio *get_resync_r1bio(struct bio *bio)
109{
110 return get_resync_pages(bio)->raid_bio;
111}
112
113static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
114{
115 struct pool_info *pi = data;
116 int size = offsetof(struct r1bio, bios[pi->raid_disks]);
117
118 /* allocate a r1bio with room for raid_disks entries in the bios array */
119 return kzalloc(size, gfp_flags);
120}
121
122#define RESYNC_DEPTH 32
123#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
124#define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
125#define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
126#define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
127#define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
128
129static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
130{
131 struct pool_info *pi = data;
132 struct r1bio *r1_bio;
133 struct bio *bio;
134 int need_pages;
135 int j;
136 struct resync_pages *rps;
137
138 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
139 if (!r1_bio)
140 return NULL;
141
142 rps = kmalloc_array(pi->raid_disks, sizeof(struct resync_pages),
143 gfp_flags);
144 if (!rps)
145 goto out_free_r1bio;
146
147 /*
148 * Allocate bios : 1 for reading, n-1 for writing
149 */
150 for (j = pi->raid_disks ; j-- ; ) {
151 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
152 if (!bio)
153 goto out_free_bio;
154 r1_bio->bios[j] = bio;
155 }
156 /*
157 * Allocate RESYNC_PAGES data pages and attach them to
158 * the first bio.
159 * If this is a user-requested check/repair, allocate
160 * RESYNC_PAGES for each bio.
161 */
162 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
163 need_pages = pi->raid_disks;
164 else
165 need_pages = 1;
166 for (j = 0; j < pi->raid_disks; j++) {
167 struct resync_pages *rp = &rps[j];
168
169 bio = r1_bio->bios[j];
170
171 if (j < need_pages) {
172 if (resync_alloc_pages(rp, gfp_flags))
173 goto out_free_pages;
174 } else {
175 memcpy(rp, &rps[0], sizeof(*rp));
176 resync_get_all_pages(rp);
177 }
178
179 rp->raid_bio = r1_bio;
180 bio->bi_private = rp;
181 }
182
183 r1_bio->master_bio = NULL;
184
185 return r1_bio;
186
187out_free_pages:
188 while (--j >= 0)
189 resync_free_pages(&rps[j]);
190
191out_free_bio:
192 while (++j < pi->raid_disks)
193 bio_put(r1_bio->bios[j]);
194 kfree(rps);
195
196out_free_r1bio:
197 rbio_pool_free(r1_bio, data);
198 return NULL;
199}
200
201static void r1buf_pool_free(void *__r1_bio, void *data)
202{
203 struct pool_info *pi = data;
204 int i;
205 struct r1bio *r1bio = __r1_bio;
206 struct resync_pages *rp = NULL;
207
208 for (i = pi->raid_disks; i--; ) {
209 rp = get_resync_pages(r1bio->bios[i]);
210 resync_free_pages(rp);
211 bio_put(r1bio->bios[i]);
212 }
213
214 /* resync pages array stored in the 1st bio's .bi_private */
215 kfree(rp);
216
217 rbio_pool_free(r1bio, data);
218}
219
220static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
221{
222 int i;
223
224 for (i = 0; i < conf->raid_disks * 2; i++) {
225 struct bio **bio = r1_bio->bios + i;
226 if (!BIO_SPECIAL(*bio))
227 bio_put(*bio);
228 *bio = NULL;
229 }
230}
231
232static void free_r1bio(struct r1bio *r1_bio)
233{
234 struct r1conf *conf = r1_bio->mddev->private;
235
236 put_all_bios(conf, r1_bio);
237 mempool_free(r1_bio, &conf->r1bio_pool);
238}
239
240static void put_buf(struct r1bio *r1_bio)
241{
242 struct r1conf *conf = r1_bio->mddev->private;
243 sector_t sect = r1_bio->sector;
244 int i;
245
246 for (i = 0; i < conf->raid_disks * 2; i++) {
247 struct bio *bio = r1_bio->bios[i];
248 if (bio->bi_end_io)
249 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
250 }
251
252 mempool_free(r1_bio, &conf->r1buf_pool);
253
254 lower_barrier(conf, sect);
255}
256
257static void reschedule_retry(struct r1bio *r1_bio)
258{
259 unsigned long flags;
260 struct mddev *mddev = r1_bio->mddev;
261 struct r1conf *conf = mddev->private;
262 int idx;
263
264 idx = sector_to_idx(r1_bio->sector);
265 spin_lock_irqsave(&conf->device_lock, flags);
266 list_add(&r1_bio->retry_list, &conf->retry_list);
267 atomic_inc(&conf->nr_queued[idx]);
268 spin_unlock_irqrestore(&conf->device_lock, flags);
269
270 wake_up(&conf->wait_barrier);
271 md_wakeup_thread(mddev->thread);
272}
273
274/*
275 * raid_end_bio_io() is called when we have finished servicing a mirrored
276 * operation and are ready to return a success/failure code to the buffer
277 * cache layer.
278 */
279static void call_bio_endio(struct r1bio *r1_bio)
280{
281 struct bio *bio = r1_bio->master_bio;
282 struct r1conf *conf = r1_bio->mddev->private;
283
284 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
285 bio->bi_status = BLK_STS_IOERR;
286
287 bio_endio(bio);
288 /*
289 * Wake up any possible resync thread that waits for the device
290 * to go idle.
291 */
292 allow_barrier(conf, r1_bio->sector);
293}
294
295static void raid_end_bio_io(struct r1bio *r1_bio)
296{
297 struct bio *bio = r1_bio->master_bio;
298
299 /* if nobody has done the final endio yet, do it now */
300 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
301 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
302 (bio_data_dir(bio) == WRITE) ? "write" : "read",
303 (unsigned long long) bio->bi_iter.bi_sector,
304 (unsigned long long) bio_end_sector(bio) - 1);
305
306 call_bio_endio(r1_bio);
307 }
308 free_r1bio(r1_bio);
309}
310
311/*
312 * Update disk head position estimator based on IRQ completion info.
313 */
314static inline void update_head_pos(int disk, struct r1bio *r1_bio)
315{
316 struct r1conf *conf = r1_bio->mddev->private;
317
318 conf->mirrors[disk].head_position =
319 r1_bio->sector + (r1_bio->sectors);
320}
321
322/*
323 * Find the disk number which triggered given bio
324 */
325static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
326{
327 int mirror;
328 struct r1conf *conf = r1_bio->mddev->private;
329 int raid_disks = conf->raid_disks;
330
331 for (mirror = 0; mirror < raid_disks * 2; mirror++)
332 if (r1_bio->bios[mirror] == bio)
333 break;
334
335 BUG_ON(mirror == raid_disks * 2);
336 update_head_pos(mirror, r1_bio);
337
338 return mirror;
339}
340
341static void raid1_end_read_request(struct bio *bio)
342{
343 int uptodate = !bio->bi_status;
344 struct r1bio *r1_bio = bio->bi_private;
345 struct r1conf *conf = r1_bio->mddev->private;
346 struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
347
348 /*
349 * this branch is our 'one mirror IO has finished' event handler:
350 */
351 update_head_pos(r1_bio->read_disk, r1_bio);
352
353 if (uptodate)
354 set_bit(R1BIO_Uptodate, &r1_bio->state);
355 else if (test_bit(FailFast, &rdev->flags) &&
356 test_bit(R1BIO_FailFast, &r1_bio->state))
357 /* This was a fail-fast read so we definitely
358 * want to retry */
359 ;
360 else {
361 /* If all other devices have failed, we want to return
362 * the error upwards rather than fail the last device.
363 * Here we redefine "uptodate" to mean "Don't want to retry"
364 */
365 unsigned long flags;
366 spin_lock_irqsave(&conf->device_lock, flags);
367 if (r1_bio->mddev->degraded == conf->raid_disks ||
368 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
369 test_bit(In_sync, &rdev->flags)))
370 uptodate = 1;
371 spin_unlock_irqrestore(&conf->device_lock, flags);
372 }
373
374 if (uptodate) {
375 raid_end_bio_io(r1_bio);
376 rdev_dec_pending(rdev, conf->mddev);
377 } else {
378 /*
379 * oops, read error:
380 */
381 char b[BDEVNAME_SIZE];
382 pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n",
383 mdname(conf->mddev),
384 bdevname(rdev->bdev, b),
385 (unsigned long long)r1_bio->sector);
386 set_bit(R1BIO_ReadError, &r1_bio->state);
387 reschedule_retry(r1_bio);
388 /* don't drop the reference on read_disk yet */
389 }
390}
391
392static void close_write(struct r1bio *r1_bio)
393{
394 /* it really is the end of this request */
395 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
396 bio_free_pages(r1_bio->behind_master_bio);
397 bio_put(r1_bio->behind_master_bio);
398 r1_bio->behind_master_bio = NULL;
399 }
400 /* clear the bitmap if all writes complete successfully */
401 md_bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
402 r1_bio->sectors,
403 !test_bit(R1BIO_Degraded, &r1_bio->state),
404 test_bit(R1BIO_BehindIO, &r1_bio->state));
405 md_write_end(r1_bio->mddev);
406}
407
408static void r1_bio_write_done(struct r1bio *r1_bio)
409{
410 if (!atomic_dec_and_test(&r1_bio->remaining))
411 return;
412
413 if (test_bit(R1BIO_WriteError, &r1_bio->state))
414 reschedule_retry(r1_bio);
415 else {
416 close_write(r1_bio);
417 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
418 reschedule_retry(r1_bio);
419 else
420 raid_end_bio_io(r1_bio);
421 }
422}
423
424static void raid1_end_write_request(struct bio *bio)
425{
426 struct r1bio *r1_bio = bio->bi_private;
427 int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
428 struct r1conf *conf = r1_bio->mddev->private;
429 struct bio *to_put = NULL;
430 int mirror = find_bio_disk(r1_bio, bio);
431 struct md_rdev *rdev = conf->mirrors[mirror].rdev;
432 bool discard_error;
433
434 discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
435
436 /*
437 * 'one mirror IO has finished' event handler:
438 */
439 if (bio->bi_status && !discard_error) {
440 set_bit(WriteErrorSeen, &rdev->flags);
441 if (!test_and_set_bit(WantReplacement, &rdev->flags))
442 set_bit(MD_RECOVERY_NEEDED, &
443 conf->mddev->recovery);
444
445 if (test_bit(FailFast, &rdev->flags) &&
446 (bio->bi_opf & MD_FAILFAST) &&
447 /* We never try FailFast to WriteMostly devices */
448 !test_bit(WriteMostly, &rdev->flags)) {
449 md_error(r1_bio->mddev, rdev);
450 }
451
452 /*
453 * When the device is faulty, it is not necessary to
454 * handle write error.
455 * For failfast, this is the only remaining device,
456 * We need to retry the write without FailFast.
457 */
458 if (!test_bit(Faulty, &rdev->flags))
459 set_bit(R1BIO_WriteError, &r1_bio->state);
460 else {
461 /* Finished with this branch */
462 r1_bio->bios[mirror] = NULL;
463 to_put = bio;
464 }
465 } else {
466 /*
467 * Set R1BIO_Uptodate in our master bio, so that we
468 * will return a good error code for to the higher
469 * levels even if IO on some other mirrored buffer
470 * fails.
471 *
472 * The 'master' represents the composite IO operation
473 * to user-side. So if something waits for IO, then it
474 * will wait for the 'master' bio.
475 */
476 sector_t first_bad;
477 int bad_sectors;
478
479 r1_bio->bios[mirror] = NULL;
480 to_put = bio;
481 /*
482 * Do not set R1BIO_Uptodate if the current device is
483 * rebuilding or Faulty. This is because we cannot use
484 * such device for properly reading the data back (we could
485 * potentially use it, if the current write would have felt
486 * before rdev->recovery_offset, but for simplicity we don't
487 * check this here.
488 */
489 if (test_bit(In_sync, &rdev->flags) &&
490 !test_bit(Faulty, &rdev->flags))
491 set_bit(R1BIO_Uptodate, &r1_bio->state);
492
493 /* Maybe we can clear some bad blocks. */
494 if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
495 &first_bad, &bad_sectors) && !discard_error) {
496 r1_bio->bios[mirror] = IO_MADE_GOOD;
497 set_bit(R1BIO_MadeGood, &r1_bio->state);
498 }
499 }
500
501 if (behind) {
502 if (test_bit(WBCollisionCheck, &rdev->flags)) {
503 sector_t lo = r1_bio->sector;
504 sector_t hi = r1_bio->sector + r1_bio->sectors;
505
506 remove_wb(rdev, lo, hi);
507 }
508 if (test_bit(WriteMostly, &rdev->flags))
509 atomic_dec(&r1_bio->behind_remaining);
510
511 /*
512 * In behind mode, we ACK the master bio once the I/O
513 * has safely reached all non-writemostly
514 * disks. Setting the Returned bit ensures that this
515 * gets done only once -- we don't ever want to return
516 * -EIO here, instead we'll wait
517 */
518 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
519 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
520 /* Maybe we can return now */
521 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
522 struct bio *mbio = r1_bio->master_bio;
523 pr_debug("raid1: behind end write sectors"
524 " %llu-%llu\n",
525 (unsigned long long) mbio->bi_iter.bi_sector,
526 (unsigned long long) bio_end_sector(mbio) - 1);
527 call_bio_endio(r1_bio);
528 }
529 }
530 }
531 if (r1_bio->bios[mirror] == NULL)
532 rdev_dec_pending(rdev, conf->mddev);
533
534 /*
535 * Let's see if all mirrored write operations have finished
536 * already.
537 */
538 r1_bio_write_done(r1_bio);
539
540 if (to_put)
541 bio_put(to_put);
542}
543
544static sector_t align_to_barrier_unit_end(sector_t start_sector,
545 sector_t sectors)
546{
547 sector_t len;
548
549 WARN_ON(sectors == 0);
550 /*
551 * len is the number of sectors from start_sector to end of the
552 * barrier unit which start_sector belongs to.
553 */
554 len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
555 start_sector;
556
557 if (len > sectors)
558 len = sectors;
559
560 return len;
561}
562
563/*
564 * This routine returns the disk from which the requested read should
565 * be done. There is a per-array 'next expected sequential IO' sector
566 * number - if this matches on the next IO then we use the last disk.
567 * There is also a per-disk 'last know head position' sector that is
568 * maintained from IRQ contexts, both the normal and the resync IO
569 * completion handlers update this position correctly. If there is no
570 * perfect sequential match then we pick the disk whose head is closest.
571 *
572 * If there are 2 mirrors in the same 2 devices, performance degrades
573 * because position is mirror, not device based.
574 *
575 * The rdev for the device selected will have nr_pending incremented.
576 */
577static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
578{
579 const sector_t this_sector = r1_bio->sector;
580 int sectors;
581 int best_good_sectors;
582 int best_disk, best_dist_disk, best_pending_disk;
583 int has_nonrot_disk;
584 int disk;
585 sector_t best_dist;
586 unsigned int min_pending;
587 struct md_rdev *rdev;
588 int choose_first;
589 int choose_next_idle;
590
591 rcu_read_lock();
592 /*
593 * Check if we can balance. We can balance on the whole
594 * device if no resync is going on, or below the resync window.
595 * We take the first readable disk when above the resync window.
596 */
597 retry:
598 sectors = r1_bio->sectors;
599 best_disk = -1;
600 best_dist_disk = -1;
601 best_dist = MaxSector;
602 best_pending_disk = -1;
603 min_pending = UINT_MAX;
604 best_good_sectors = 0;
605 has_nonrot_disk = 0;
606 choose_next_idle = 0;
607 clear_bit(R1BIO_FailFast, &r1_bio->state);
608
609 if ((conf->mddev->recovery_cp < this_sector + sectors) ||
610 (mddev_is_clustered(conf->mddev) &&
611 md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
612 this_sector + sectors)))
613 choose_first = 1;
614 else
615 choose_first = 0;
616
617 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
618 sector_t dist;
619 sector_t first_bad;
620 int bad_sectors;
621 unsigned int pending;
622 bool nonrot;
623
624 rdev = rcu_dereference(conf->mirrors[disk].rdev);
625 if (r1_bio->bios[disk] == IO_BLOCKED
626 || rdev == NULL
627 || test_bit(Faulty, &rdev->flags))
628 continue;
629 if (!test_bit(In_sync, &rdev->flags) &&
630 rdev->recovery_offset < this_sector + sectors)
631 continue;
632 if (test_bit(WriteMostly, &rdev->flags)) {
633 /* Don't balance among write-mostly, just
634 * use the first as a last resort */
635 if (best_dist_disk < 0) {
636 if (is_badblock(rdev, this_sector, sectors,
637 &first_bad, &bad_sectors)) {
638 if (first_bad <= this_sector)
639 /* Cannot use this */
640 continue;
641 best_good_sectors = first_bad - this_sector;
642 } else
643 best_good_sectors = sectors;
644 best_dist_disk = disk;
645 best_pending_disk = disk;
646 }
647 continue;
648 }
649 /* This is a reasonable device to use. It might
650 * even be best.
651 */
652 if (is_badblock(rdev, this_sector, sectors,
653 &first_bad, &bad_sectors)) {
654 if (best_dist < MaxSector)
655 /* already have a better device */
656 continue;
657 if (first_bad <= this_sector) {
658 /* cannot read here. If this is the 'primary'
659 * device, then we must not read beyond
660 * bad_sectors from another device..
661 */
662 bad_sectors -= (this_sector - first_bad);
663 if (choose_first && sectors > bad_sectors)
664 sectors = bad_sectors;
665 if (best_good_sectors > sectors)
666 best_good_sectors = sectors;
667
668 } else {
669 sector_t good_sectors = first_bad - this_sector;
670 if (good_sectors > best_good_sectors) {
671 best_good_sectors = good_sectors;
672 best_disk = disk;
673 }
674 if (choose_first)
675 break;
676 }
677 continue;
678 } else {
679 if ((sectors > best_good_sectors) && (best_disk >= 0))
680 best_disk = -1;
681 best_good_sectors = sectors;
682 }
683
684 if (best_disk >= 0)
685 /* At least two disks to choose from so failfast is OK */
686 set_bit(R1BIO_FailFast, &r1_bio->state);
687
688 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
689 has_nonrot_disk |= nonrot;
690 pending = atomic_read(&rdev->nr_pending);
691 dist = abs(this_sector - conf->mirrors[disk].head_position);
692 if (choose_first) {
693 best_disk = disk;
694 break;
695 }
696 /* Don't change to another disk for sequential reads */
697 if (conf->mirrors[disk].next_seq_sect == this_sector
698 || dist == 0) {
699 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
700 struct raid1_info *mirror = &conf->mirrors[disk];
701
702 best_disk = disk;
703 /*
704 * If buffered sequential IO size exceeds optimal
705 * iosize, check if there is idle disk. If yes, choose
706 * the idle disk. read_balance could already choose an
707 * idle disk before noticing it's a sequential IO in
708 * this disk. This doesn't matter because this disk
709 * will idle, next time it will be utilized after the
710 * first disk has IO size exceeds optimal iosize. In
711 * this way, iosize of the first disk will be optimal
712 * iosize at least. iosize of the second disk might be
713 * small, but not a big deal since when the second disk
714 * starts IO, the first disk is likely still busy.
715 */
716 if (nonrot && opt_iosize > 0 &&
717 mirror->seq_start != MaxSector &&
718 mirror->next_seq_sect > opt_iosize &&
719 mirror->next_seq_sect - opt_iosize >=
720 mirror->seq_start) {
721 choose_next_idle = 1;
722 continue;
723 }
724 break;
725 }
726
727 if (choose_next_idle)
728 continue;
729
730 if (min_pending > pending) {
731 min_pending = pending;
732 best_pending_disk = disk;
733 }
734
735 if (dist < best_dist) {
736 best_dist = dist;
737 best_dist_disk = disk;
738 }
739 }
740
741 /*
742 * If all disks are rotational, choose the closest disk. If any disk is
743 * non-rotational, choose the disk with less pending request even the
744 * disk is rotational, which might/might not be optimal for raids with
745 * mixed ratation/non-rotational disks depending on workload.
746 */
747 if (best_disk == -1) {
748 if (has_nonrot_disk || min_pending == 0)
749 best_disk = best_pending_disk;
750 else
751 best_disk = best_dist_disk;
752 }
753
754 if (best_disk >= 0) {
755 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
756 if (!rdev)
757 goto retry;
758 atomic_inc(&rdev->nr_pending);
759 sectors = best_good_sectors;
760
761 if (conf->mirrors[best_disk].next_seq_sect != this_sector)
762 conf->mirrors[best_disk].seq_start = this_sector;
763
764 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
765 }
766 rcu_read_unlock();
767 *max_sectors = sectors;
768
769 return best_disk;
770}
771
772static int raid1_congested(struct mddev *mddev, int bits)
773{
774 struct r1conf *conf = mddev->private;
775 int i, ret = 0;
776
777 if ((bits & (1 << WB_async_congested)) &&
778 conf->pending_count >= max_queued_requests)
779 return 1;
780
781 rcu_read_lock();
782 for (i = 0; i < conf->raid_disks * 2; i++) {
783 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
784 if (rdev && !test_bit(Faulty, &rdev->flags)) {
785 struct request_queue *q = bdev_get_queue(rdev->bdev);
786
787 BUG_ON(!q);
788
789 /* Note the '|| 1' - when read_balance prefers
790 * non-congested targets, it can be removed
791 */
792 if ((bits & (1 << WB_async_congested)) || 1)
793 ret |= bdi_congested(q->backing_dev_info, bits);
794 else
795 ret &= bdi_congested(q->backing_dev_info, bits);
796 }
797 }
798 rcu_read_unlock();
799 return ret;
800}
801
802static void flush_bio_list(struct r1conf *conf, struct bio *bio)
803{
804 /* flush any pending bitmap writes to disk before proceeding w/ I/O */
805 md_bitmap_unplug(conf->mddev->bitmap);
806 wake_up(&conf->wait_barrier);
807
808 while (bio) { /* submit pending writes */
809 struct bio *next = bio->bi_next;
810 struct md_rdev *rdev = (void *)bio->bi_disk;
811 bio->bi_next = NULL;
812 bio_set_dev(bio, rdev->bdev);
813 if (test_bit(Faulty, &rdev->flags)) {
814 bio_io_error(bio);
815 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
816 !blk_queue_discard(bio->bi_disk->queue)))
817 /* Just ignore it */
818 bio_endio(bio);
819 else
820 generic_make_request(bio);
821 bio = next;
822 }
823}
824
825static void flush_pending_writes(struct r1conf *conf)
826{
827 /* Any writes that have been queued but are awaiting
828 * bitmap updates get flushed here.
829 */
830 spin_lock_irq(&conf->device_lock);
831
832 if (conf->pending_bio_list.head) {
833 struct blk_plug plug;
834 struct bio *bio;
835
836 bio = bio_list_get(&conf->pending_bio_list);
837 conf->pending_count = 0;
838 spin_unlock_irq(&conf->device_lock);
839
840 /*
841 * As this is called in a wait_event() loop (see freeze_array),
842 * current->state might be TASK_UNINTERRUPTIBLE which will
843 * cause a warning when we prepare to wait again. As it is
844 * rare that this path is taken, it is perfectly safe to force
845 * us to go around the wait_event() loop again, so the warning
846 * is a false-positive. Silence the warning by resetting
847 * thread state
848 */
849 __set_current_state(TASK_RUNNING);
850 blk_start_plug(&plug);
851 flush_bio_list(conf, bio);
852 blk_finish_plug(&plug);
853 } else
854 spin_unlock_irq(&conf->device_lock);
855}
856
857/* Barriers....
858 * Sometimes we need to suspend IO while we do something else,
859 * either some resync/recovery, or reconfigure the array.
860 * To do this we raise a 'barrier'.
861 * The 'barrier' is a counter that can be raised multiple times
862 * to count how many activities are happening which preclude
863 * normal IO.
864 * We can only raise the barrier if there is no pending IO.
865 * i.e. if nr_pending == 0.
866 * We choose only to raise the barrier if no-one is waiting for the
867 * barrier to go down. This means that as soon as an IO request
868 * is ready, no other operations which require a barrier will start
869 * until the IO request has had a chance.
870 *
871 * So: regular IO calls 'wait_barrier'. When that returns there
872 * is no backgroup IO happening, It must arrange to call
873 * allow_barrier when it has finished its IO.
874 * backgroup IO calls must call raise_barrier. Once that returns
875 * there is no normal IO happeing. It must arrange to call
876 * lower_barrier when the particular background IO completes.
877 *
878 * If resync/recovery is interrupted, returns -EINTR;
879 * Otherwise, returns 0.
880 */
881static int raise_barrier(struct r1conf *conf, sector_t sector_nr)
882{
883 int idx = sector_to_idx(sector_nr);
884
885 spin_lock_irq(&conf->resync_lock);
886
887 /* Wait until no block IO is waiting */
888 wait_event_lock_irq(conf->wait_barrier,
889 !atomic_read(&conf->nr_waiting[idx]),
890 conf->resync_lock);
891
892 /* block any new IO from starting */
893 atomic_inc(&conf->barrier[idx]);
894 /*
895 * In raise_barrier() we firstly increase conf->barrier[idx] then
896 * check conf->nr_pending[idx]. In _wait_barrier() we firstly
897 * increase conf->nr_pending[idx] then check conf->barrier[idx].
898 * A memory barrier here to make sure conf->nr_pending[idx] won't
899 * be fetched before conf->barrier[idx] is increased. Otherwise
900 * there will be a race between raise_barrier() and _wait_barrier().
901 */
902 smp_mb__after_atomic();
903
904 /* For these conditions we must wait:
905 * A: while the array is in frozen state
906 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
907 * existing in corresponding I/O barrier bucket.
908 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
909 * max resync count which allowed on current I/O barrier bucket.
910 */
911 wait_event_lock_irq(conf->wait_barrier,
912 (!conf->array_frozen &&
913 !atomic_read(&conf->nr_pending[idx]) &&
914 atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH) ||
915 test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery),
916 conf->resync_lock);
917
918 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
919 atomic_dec(&conf->barrier[idx]);
920 spin_unlock_irq(&conf->resync_lock);
921 wake_up(&conf->wait_barrier);
922 return -EINTR;
923 }
924
925 atomic_inc(&conf->nr_sync_pending);
926 spin_unlock_irq(&conf->resync_lock);
927
928 return 0;
929}
930
931static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
932{
933 int idx = sector_to_idx(sector_nr);
934
935 BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
936
937 atomic_dec(&conf->barrier[idx]);
938 atomic_dec(&conf->nr_sync_pending);
939 wake_up(&conf->wait_barrier);
940}
941
942static void _wait_barrier(struct r1conf *conf, int idx)
943{
944 /*
945 * We need to increase conf->nr_pending[idx] very early here,
946 * then raise_barrier() can be blocked when it waits for
947 * conf->nr_pending[idx] to be 0. Then we can avoid holding
948 * conf->resync_lock when there is no barrier raised in same
949 * barrier unit bucket. Also if the array is frozen, I/O
950 * should be blocked until array is unfrozen.
951 */
952 atomic_inc(&conf->nr_pending[idx]);
953 /*
954 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
955 * check conf->barrier[idx]. In raise_barrier() we firstly increase
956 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
957 * barrier is necessary here to make sure conf->barrier[idx] won't be
958 * fetched before conf->nr_pending[idx] is increased. Otherwise there
959 * will be a race between _wait_barrier() and raise_barrier().
960 */
961 smp_mb__after_atomic();
962
963 /*
964 * Don't worry about checking two atomic_t variables at same time
965 * here. If during we check conf->barrier[idx], the array is
966 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
967 * 0, it is safe to return and make the I/O continue. Because the
968 * array is frozen, all I/O returned here will eventually complete
969 * or be queued, no race will happen. See code comment in
970 * frozen_array().
971 */
972 if (!READ_ONCE(conf->array_frozen) &&
973 !atomic_read(&conf->barrier[idx]))
974 return;
975
976 /*
977 * After holding conf->resync_lock, conf->nr_pending[idx]
978 * should be decreased before waiting for barrier to drop.
979 * Otherwise, we may encounter a race condition because
980 * raise_barrer() might be waiting for conf->nr_pending[idx]
981 * to be 0 at same time.
982 */
983 spin_lock_irq(&conf->resync_lock);
984 atomic_inc(&conf->nr_waiting[idx]);
985 atomic_dec(&conf->nr_pending[idx]);
986 /*
987 * In case freeze_array() is waiting for
988 * get_unqueued_pending() == extra
989 */
990 wake_up(&conf->wait_barrier);
991 /* Wait for the barrier in same barrier unit bucket to drop. */
992 wait_event_lock_irq(conf->wait_barrier,
993 !conf->array_frozen &&
994 !atomic_read(&conf->barrier[idx]),
995 conf->resync_lock);
996 atomic_inc(&conf->nr_pending[idx]);
997 atomic_dec(&conf->nr_waiting[idx]);
998 spin_unlock_irq(&conf->resync_lock);
999}
1000
1001static void wait_read_barrier(struct r1conf *conf, sector_t sector_nr)
1002{
1003 int idx = sector_to_idx(sector_nr);
1004
1005 /*
1006 * Very similar to _wait_barrier(). The difference is, for read
1007 * I/O we don't need wait for sync I/O, but if the whole array
1008 * is frozen, the read I/O still has to wait until the array is
1009 * unfrozen. Since there is no ordering requirement with
1010 * conf->barrier[idx] here, memory barrier is unnecessary as well.
1011 */
1012 atomic_inc(&conf->nr_pending[idx]);
1013
1014 if (!READ_ONCE(conf->array_frozen))
1015 return;
1016
1017 spin_lock_irq(&conf->resync_lock);
1018 atomic_inc(&conf->nr_waiting[idx]);
1019 atomic_dec(&conf->nr_pending[idx]);
1020 /*
1021 * In case freeze_array() is waiting for
1022 * get_unqueued_pending() == extra
1023 */
1024 wake_up(&conf->wait_barrier);
1025 /* Wait for array to be unfrozen */
1026 wait_event_lock_irq(conf->wait_barrier,
1027 !conf->array_frozen,
1028 conf->resync_lock);
1029 atomic_inc(&conf->nr_pending[idx]);
1030 atomic_dec(&conf->nr_waiting[idx]);
1031 spin_unlock_irq(&conf->resync_lock);
1032}
1033
1034static void wait_barrier(struct r1conf *conf, sector_t sector_nr)
1035{
1036 int idx = sector_to_idx(sector_nr);
1037
1038 _wait_barrier(conf, idx);
1039}
1040
1041static void _allow_barrier(struct r1conf *conf, int idx)
1042{
1043 atomic_dec(&conf->nr_pending[idx]);
1044 wake_up(&conf->wait_barrier);
1045}
1046
1047static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
1048{
1049 int idx = sector_to_idx(sector_nr);
1050
1051 _allow_barrier(conf, idx);
1052}
1053
1054/* conf->resync_lock should be held */
1055static int get_unqueued_pending(struct r1conf *conf)
1056{
1057 int idx, ret;
1058
1059 ret = atomic_read(&conf->nr_sync_pending);
1060 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1061 ret += atomic_read(&conf->nr_pending[idx]) -
1062 atomic_read(&conf->nr_queued[idx]);
1063
1064 return ret;
1065}
1066
1067static void freeze_array(struct r1conf *conf, int extra)
1068{
1069 /* Stop sync I/O and normal I/O and wait for everything to
1070 * go quiet.
1071 * This is called in two situations:
1072 * 1) management command handlers (reshape, remove disk, quiesce).
1073 * 2) one normal I/O request failed.
1074
1075 * After array_frozen is set to 1, new sync IO will be blocked at
1076 * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1077 * or wait_read_barrier(). The flying I/Os will either complete or be
1078 * queued. When everything goes quite, there are only queued I/Os left.
1079
1080 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1081 * barrier bucket index which this I/O request hits. When all sync and
1082 * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1083 * of all conf->nr_queued[]. But normal I/O failure is an exception,
1084 * in handle_read_error(), we may call freeze_array() before trying to
1085 * fix the read error. In this case, the error read I/O is not queued,
1086 * so get_unqueued_pending() == 1.
1087 *
1088 * Therefore before this function returns, we need to wait until
1089 * get_unqueued_pendings(conf) gets equal to extra. For
1090 * normal I/O context, extra is 1, in rested situations extra is 0.
1091 */
1092 spin_lock_irq(&conf->resync_lock);
1093 conf->array_frozen = 1;
1094 raid1_log(conf->mddev, "wait freeze");
1095 wait_event_lock_irq_cmd(
1096 conf->wait_barrier,
1097 get_unqueued_pending(conf) == extra,
1098 conf->resync_lock,
1099 flush_pending_writes(conf));
1100 spin_unlock_irq(&conf->resync_lock);
1101}
1102static void unfreeze_array(struct r1conf *conf)
1103{
1104 /* reverse the effect of the freeze */
1105 spin_lock_irq(&conf->resync_lock);
1106 conf->array_frozen = 0;
1107 spin_unlock_irq(&conf->resync_lock);
1108 wake_up(&conf->wait_barrier);
1109}
1110
1111static void alloc_behind_master_bio(struct r1bio *r1_bio,
1112 struct bio *bio)
1113{
1114 int size = bio->bi_iter.bi_size;
1115 unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1116 int i = 0;
1117 struct bio *behind_bio = NULL;
1118
1119 behind_bio = bio_alloc_mddev(GFP_NOIO, vcnt, r1_bio->mddev);
1120 if (!behind_bio)
1121 return;
1122
1123 /* discard op, we don't support writezero/writesame yet */
1124 if (!bio_has_data(bio)) {
1125 behind_bio->bi_iter.bi_size = size;
1126 goto skip_copy;
1127 }
1128
1129 behind_bio->bi_write_hint = bio->bi_write_hint;
1130
1131 while (i < vcnt && size) {
1132 struct page *page;
1133 int len = min_t(int, PAGE_SIZE, size);
1134
1135 page = alloc_page(GFP_NOIO);
1136 if (unlikely(!page))
1137 goto free_pages;
1138
1139 bio_add_page(behind_bio, page, len, 0);
1140
1141 size -= len;
1142 i++;
1143 }
1144
1145 bio_copy_data(behind_bio, bio);
1146skip_copy:
1147 r1_bio->behind_master_bio = behind_bio;
1148 set_bit(R1BIO_BehindIO, &r1_bio->state);
1149
1150 return;
1151
1152free_pages:
1153 pr_debug("%dB behind alloc failed, doing sync I/O\n",
1154 bio->bi_iter.bi_size);
1155 bio_free_pages(behind_bio);
1156 bio_put(behind_bio);
1157}
1158
1159struct raid1_plug_cb {
1160 struct blk_plug_cb cb;
1161 struct bio_list pending;
1162 int pending_cnt;
1163};
1164
1165static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1166{
1167 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1168 cb);
1169 struct mddev *mddev = plug->cb.data;
1170 struct r1conf *conf = mddev->private;
1171 struct bio *bio;
1172
1173 if (from_schedule || current->bio_list) {
1174 spin_lock_irq(&conf->device_lock);
1175 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1176 conf->pending_count += plug->pending_cnt;
1177 spin_unlock_irq(&conf->device_lock);
1178 wake_up(&conf->wait_barrier);
1179 md_wakeup_thread(mddev->thread);
1180 kfree(plug);
1181 return;
1182 }
1183
1184 /* we aren't scheduling, so we can do the write-out directly. */
1185 bio = bio_list_get(&plug->pending);
1186 flush_bio_list(conf, bio);
1187 kfree(plug);
1188}
1189
1190static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio)
1191{
1192 r1_bio->master_bio = bio;
1193 r1_bio->sectors = bio_sectors(bio);
1194 r1_bio->state = 0;
1195 r1_bio->mddev = mddev;
1196 r1_bio->sector = bio->bi_iter.bi_sector;
1197}
1198
1199static inline struct r1bio *
1200alloc_r1bio(struct mddev *mddev, struct bio *bio)
1201{
1202 struct r1conf *conf = mddev->private;
1203 struct r1bio *r1_bio;
1204
1205 r1_bio = mempool_alloc(&conf->r1bio_pool, GFP_NOIO);
1206 /* Ensure no bio records IO_BLOCKED */
1207 memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0]));
1208 init_r1bio(r1_bio, mddev, bio);
1209 return r1_bio;
1210}
1211
1212static void raid1_read_request(struct mddev *mddev, struct bio *bio,
1213 int max_read_sectors, struct r1bio *r1_bio)
1214{
1215 struct r1conf *conf = mddev->private;
1216 struct raid1_info *mirror;
1217 struct bio *read_bio;
1218 struct bitmap *bitmap = mddev->bitmap;
1219 const int op = bio_op(bio);
1220 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1221 int max_sectors;
1222 int rdisk;
1223 bool print_msg = !!r1_bio;
1224 char b[BDEVNAME_SIZE];
1225
1226 /*
1227 * If r1_bio is set, we are blocking the raid1d thread
1228 * so there is a tiny risk of deadlock. So ask for
1229 * emergency memory if needed.
1230 */
1231 gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO;
1232
1233 if (print_msg) {
1234 /* Need to get the block device name carefully */
1235 struct md_rdev *rdev;
1236 rcu_read_lock();
1237 rdev = rcu_dereference(conf->mirrors[r1_bio->read_disk].rdev);
1238 if (rdev)
1239 bdevname(rdev->bdev, b);
1240 else
1241 strcpy(b, "???");
1242 rcu_read_unlock();
1243 }
1244
1245 /*
1246 * Still need barrier for READ in case that whole
1247 * array is frozen.
1248 */
1249 wait_read_barrier(conf, bio->bi_iter.bi_sector);
1250
1251 if (!r1_bio)
1252 r1_bio = alloc_r1bio(mddev, bio);
1253 else
1254 init_r1bio(r1_bio, mddev, bio);
1255 r1_bio->sectors = max_read_sectors;
1256
1257 /*
1258 * make_request() can abort the operation when read-ahead is being
1259 * used and no empty request is available.
1260 */
1261 rdisk = read_balance(conf, r1_bio, &max_sectors);
1262
1263 if (rdisk < 0) {
1264 /* couldn't find anywhere to read from */
1265 if (print_msg) {
1266 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1267 mdname(mddev),
1268 b,
1269 (unsigned long long)r1_bio->sector);
1270 }
1271 raid_end_bio_io(r1_bio);
1272 return;
1273 }
1274 mirror = conf->mirrors + rdisk;
1275
1276 if (print_msg)
1277 pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n",
1278 mdname(mddev),
1279 (unsigned long long)r1_bio->sector,
1280 bdevname(mirror->rdev->bdev, b));
1281
1282 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1283 bitmap) {
1284 /*
1285 * Reading from a write-mostly device must take care not to
1286 * over-take any writes that are 'behind'
1287 */
1288 raid1_log(mddev, "wait behind writes");
1289 wait_event(bitmap->behind_wait,
1290 atomic_read(&bitmap->behind_writes) == 0);
1291 }
1292
1293 if (max_sectors < bio_sectors(bio)) {
1294 struct bio *split = bio_split(bio, max_sectors,
1295 gfp, &conf->bio_split);
1296 bio_chain(split, bio);
1297 generic_make_request(bio);
1298 bio = split;
1299 r1_bio->master_bio = bio;
1300 r1_bio->sectors = max_sectors;
1301 }
1302
1303 r1_bio->read_disk = rdisk;
1304
1305 read_bio = bio_clone_fast(bio, gfp, &mddev->bio_set);
1306
1307 r1_bio->bios[rdisk] = read_bio;
1308
1309 read_bio->bi_iter.bi_sector = r1_bio->sector +
1310 mirror->rdev->data_offset;
1311 bio_set_dev(read_bio, mirror->rdev->bdev);
1312 read_bio->bi_end_io = raid1_end_read_request;
1313 bio_set_op_attrs(read_bio, op, do_sync);
1314 if (test_bit(FailFast, &mirror->rdev->flags) &&
1315 test_bit(R1BIO_FailFast, &r1_bio->state))
1316 read_bio->bi_opf |= MD_FAILFAST;
1317 read_bio->bi_private = r1_bio;
1318
1319 if (mddev->gendisk)
1320 trace_block_bio_remap(read_bio->bi_disk->queue, read_bio,
1321 disk_devt(mddev->gendisk), r1_bio->sector);
1322
1323 generic_make_request(read_bio);
1324}
1325
1326static void raid1_write_request(struct mddev *mddev, struct bio *bio,
1327 int max_write_sectors)
1328{
1329 struct r1conf *conf = mddev->private;
1330 struct r1bio *r1_bio;
1331 int i, disks;
1332 struct bitmap *bitmap = mddev->bitmap;
1333 unsigned long flags;
1334 struct md_rdev *blocked_rdev;
1335 struct blk_plug_cb *cb;
1336 struct raid1_plug_cb *plug = NULL;
1337 int first_clone;
1338 int max_sectors;
1339
1340 if (mddev_is_clustered(mddev) &&
1341 md_cluster_ops->area_resyncing(mddev, WRITE,
1342 bio->bi_iter.bi_sector, bio_end_sector(bio))) {
1343
1344 DEFINE_WAIT(w);
1345 for (;;) {
1346 prepare_to_wait(&conf->wait_barrier,
1347 &w, TASK_IDLE);
1348 if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1349 bio->bi_iter.bi_sector,
1350 bio_end_sector(bio)))
1351 break;
1352 schedule();
1353 }
1354 finish_wait(&conf->wait_barrier, &w);
1355 }
1356
1357 /*
1358 * Register the new request and wait if the reconstruction
1359 * thread has put up a bar for new requests.
1360 * Continue immediately if no resync is active currently.
1361 */
1362 wait_barrier(conf, bio->bi_iter.bi_sector);
1363
1364 r1_bio = alloc_r1bio(mddev, bio);
1365 r1_bio->sectors = max_write_sectors;
1366
1367 if (conf->pending_count >= max_queued_requests) {
1368 md_wakeup_thread(mddev->thread);
1369 raid1_log(mddev, "wait queued");
1370 wait_event(conf->wait_barrier,
1371 conf->pending_count < max_queued_requests);
1372 }
1373 /* first select target devices under rcu_lock and
1374 * inc refcount on their rdev. Record them by setting
1375 * bios[x] to bio
1376 * If there are known/acknowledged bad blocks on any device on
1377 * which we have seen a write error, we want to avoid writing those
1378 * blocks.
1379 * This potentially requires several writes to write around
1380 * the bad blocks. Each set of writes gets it's own r1bio
1381 * with a set of bios attached.
1382 */
1383
1384 disks = conf->raid_disks * 2;
1385 retry_write:
1386 blocked_rdev = NULL;
1387 rcu_read_lock();
1388 max_sectors = r1_bio->sectors;
1389 for (i = 0; i < disks; i++) {
1390 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1391 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1392 atomic_inc(&rdev->nr_pending);
1393 blocked_rdev = rdev;
1394 break;
1395 }
1396 r1_bio->bios[i] = NULL;
1397 if (!rdev || test_bit(Faulty, &rdev->flags)) {
1398 if (i < conf->raid_disks)
1399 set_bit(R1BIO_Degraded, &r1_bio->state);
1400 continue;
1401 }
1402
1403 atomic_inc(&rdev->nr_pending);
1404 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1405 sector_t first_bad;
1406 int bad_sectors;
1407 int is_bad;
1408
1409 is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
1410 &first_bad, &bad_sectors);
1411 if (is_bad < 0) {
1412 /* mustn't write here until the bad block is
1413 * acknowledged*/
1414 set_bit(BlockedBadBlocks, &rdev->flags);
1415 blocked_rdev = rdev;
1416 break;
1417 }
1418 if (is_bad && first_bad <= r1_bio->sector) {
1419 /* Cannot write here at all */
1420 bad_sectors -= (r1_bio->sector - first_bad);
1421 if (bad_sectors < max_sectors)
1422 /* mustn't write more than bad_sectors
1423 * to other devices yet
1424 */
1425 max_sectors = bad_sectors;
1426 rdev_dec_pending(rdev, mddev);
1427 /* We don't set R1BIO_Degraded as that
1428 * only applies if the disk is
1429 * missing, so it might be re-added,
1430 * and we want to know to recover this
1431 * chunk.
1432 * In this case the device is here,
1433 * and the fact that this chunk is not
1434 * in-sync is recorded in the bad
1435 * block log
1436 */
1437 continue;
1438 }
1439 if (is_bad) {
1440 int good_sectors = first_bad - r1_bio->sector;
1441 if (good_sectors < max_sectors)
1442 max_sectors = good_sectors;
1443 }
1444 }
1445 r1_bio->bios[i] = bio;
1446 }
1447 rcu_read_unlock();
1448
1449 if (unlikely(blocked_rdev)) {
1450 /* Wait for this device to become unblocked */
1451 int j;
1452
1453 for (j = 0; j < i; j++)
1454 if (r1_bio->bios[j])
1455 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1456 r1_bio->state = 0;
1457 allow_barrier(conf, bio->bi_iter.bi_sector);
1458 raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1459 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1460 wait_barrier(conf, bio->bi_iter.bi_sector);
1461 goto retry_write;
1462 }
1463
1464 if (max_sectors < bio_sectors(bio)) {
1465 struct bio *split = bio_split(bio, max_sectors,
1466 GFP_NOIO, &conf->bio_split);
1467 bio_chain(split, bio);
1468 generic_make_request(bio);
1469 bio = split;
1470 r1_bio->master_bio = bio;
1471 r1_bio->sectors = max_sectors;
1472 }
1473
1474 atomic_set(&r1_bio->remaining, 1);
1475 atomic_set(&r1_bio->behind_remaining, 0);
1476
1477 first_clone = 1;
1478
1479 for (i = 0; i < disks; i++) {
1480 struct bio *mbio = NULL;
1481 if (!r1_bio->bios[i])
1482 continue;
1483
1484 if (first_clone) {
1485 /* do behind I/O ?
1486 * Not if there are too many, or cannot
1487 * allocate memory, or a reader on WriteMostly
1488 * is waiting for behind writes to flush */
1489 if (bitmap &&
1490 (atomic_read(&bitmap->behind_writes)
1491 < mddev->bitmap_info.max_write_behind) &&
1492 !waitqueue_active(&bitmap->behind_wait)) {
1493 alloc_behind_master_bio(r1_bio, bio);
1494 }
1495
1496 md_bitmap_startwrite(bitmap, r1_bio->sector, r1_bio->sectors,
1497 test_bit(R1BIO_BehindIO, &r1_bio->state));
1498 first_clone = 0;
1499 }
1500
1501 if (r1_bio->behind_master_bio)
1502 mbio = bio_clone_fast(r1_bio->behind_master_bio,
1503 GFP_NOIO, &mddev->bio_set);
1504 else
1505 mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
1506
1507 if (r1_bio->behind_master_bio) {
1508 struct md_rdev *rdev = conf->mirrors[i].rdev;
1509
1510 if (test_bit(WBCollisionCheck, &rdev->flags)) {
1511 sector_t lo = r1_bio->sector;
1512 sector_t hi = r1_bio->sector + r1_bio->sectors;
1513
1514 wait_event(rdev->wb_io_wait,
1515 check_and_add_wb(rdev, lo, hi) == 0);
1516 }
1517 if (test_bit(WriteMostly, &rdev->flags))
1518 atomic_inc(&r1_bio->behind_remaining);
1519 }
1520
1521 r1_bio->bios[i] = mbio;
1522
1523 mbio->bi_iter.bi_sector = (r1_bio->sector +
1524 conf->mirrors[i].rdev->data_offset);
1525 bio_set_dev(mbio, conf->mirrors[i].rdev->bdev);
1526 mbio->bi_end_io = raid1_end_write_request;
1527 mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA));
1528 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags) &&
1529 !test_bit(WriteMostly, &conf->mirrors[i].rdev->flags) &&
1530 conf->raid_disks - mddev->degraded > 1)
1531 mbio->bi_opf |= MD_FAILFAST;
1532 mbio->bi_private = r1_bio;
1533
1534 atomic_inc(&r1_bio->remaining);
1535
1536 if (mddev->gendisk)
1537 trace_block_bio_remap(mbio->bi_disk->queue,
1538 mbio, disk_devt(mddev->gendisk),
1539 r1_bio->sector);
1540 /* flush_pending_writes() needs access to the rdev so...*/
1541 mbio->bi_disk = (void *)conf->mirrors[i].rdev;
1542
1543 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1544 if (cb)
1545 plug = container_of(cb, struct raid1_plug_cb, cb);
1546 else
1547 plug = NULL;
1548 if (plug) {
1549 bio_list_add(&plug->pending, mbio);
1550 plug->pending_cnt++;
1551 } else {
1552 spin_lock_irqsave(&conf->device_lock, flags);
1553 bio_list_add(&conf->pending_bio_list, mbio);
1554 conf->pending_count++;
1555 spin_unlock_irqrestore(&conf->device_lock, flags);
1556 md_wakeup_thread(mddev->thread);
1557 }
1558 }
1559
1560 r1_bio_write_done(r1_bio);
1561
1562 /* In case raid1d snuck in to freeze_array */
1563 wake_up(&conf->wait_barrier);
1564}
1565
1566static bool raid1_make_request(struct mddev *mddev, struct bio *bio)
1567{
1568 sector_t sectors;
1569
1570 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1571 md_flush_request(mddev, bio);
1572 return true;
1573 }
1574
1575 /*
1576 * There is a limit to the maximum size, but
1577 * the read/write handler might find a lower limit
1578 * due to bad blocks. To avoid multiple splits,
1579 * we pass the maximum number of sectors down
1580 * and let the lower level perform the split.
1581 */
1582 sectors = align_to_barrier_unit_end(
1583 bio->bi_iter.bi_sector, bio_sectors(bio));
1584
1585 if (bio_data_dir(bio) == READ)
1586 raid1_read_request(mddev, bio, sectors, NULL);
1587 else {
1588 if (!md_write_start(mddev,bio))
1589 return false;
1590 raid1_write_request(mddev, bio, sectors);
1591 }
1592 return true;
1593}
1594
1595static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1596{
1597 struct r1conf *conf = mddev->private;
1598 int i;
1599
1600 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1601 conf->raid_disks - mddev->degraded);
1602 rcu_read_lock();
1603 for (i = 0; i < conf->raid_disks; i++) {
1604 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1605 seq_printf(seq, "%s",
1606 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1607 }
1608 rcu_read_unlock();
1609 seq_printf(seq, "]");
1610}
1611
1612static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1613{
1614 char b[BDEVNAME_SIZE];
1615 struct r1conf *conf = mddev->private;
1616 unsigned long flags;
1617
1618 /*
1619 * If it is not operational, then we have already marked it as dead
1620 * else if it is the last working disks with "fail_last_dev == false",
1621 * ignore the error, let the next level up know.
1622 * else mark the drive as failed
1623 */
1624 spin_lock_irqsave(&conf->device_lock, flags);
1625 if (test_bit(In_sync, &rdev->flags) && !mddev->fail_last_dev
1626 && (conf->raid_disks - mddev->degraded) == 1) {
1627 /*
1628 * Don't fail the drive, act as though we were just a
1629 * normal single drive.
1630 * However don't try a recovery from this drive as
1631 * it is very likely to fail.
1632 */
1633 conf->recovery_disabled = mddev->recovery_disabled;
1634 spin_unlock_irqrestore(&conf->device_lock, flags);
1635 return;
1636 }
1637 set_bit(Blocked, &rdev->flags);
1638 if (test_and_clear_bit(In_sync, &rdev->flags))
1639 mddev->degraded++;
1640 set_bit(Faulty, &rdev->flags);
1641 spin_unlock_irqrestore(&conf->device_lock, flags);
1642 /*
1643 * if recovery is running, make sure it aborts.
1644 */
1645 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1646 set_mask_bits(&mddev->sb_flags, 0,
1647 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1648 pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n"
1649 "md/raid1:%s: Operation continuing on %d devices.\n",
1650 mdname(mddev), bdevname(rdev->bdev, b),
1651 mdname(mddev), conf->raid_disks - mddev->degraded);
1652}
1653
1654static void print_conf(struct r1conf *conf)
1655{
1656 int i;
1657
1658 pr_debug("RAID1 conf printout:\n");
1659 if (!conf) {
1660 pr_debug("(!conf)\n");
1661 return;
1662 }
1663 pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1664 conf->raid_disks);
1665
1666 rcu_read_lock();
1667 for (i = 0; i < conf->raid_disks; i++) {
1668 char b[BDEVNAME_SIZE];
1669 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1670 if (rdev)
1671 pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1672 i, !test_bit(In_sync, &rdev->flags),
1673 !test_bit(Faulty, &rdev->flags),
1674 bdevname(rdev->bdev,b));
1675 }
1676 rcu_read_unlock();
1677}
1678
1679static void close_sync(struct r1conf *conf)
1680{
1681 int idx;
1682
1683 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) {
1684 _wait_barrier(conf, idx);
1685 _allow_barrier(conf, idx);
1686 }
1687
1688 mempool_exit(&conf->r1buf_pool);
1689}
1690
1691static int raid1_spare_active(struct mddev *mddev)
1692{
1693 int i;
1694 struct r1conf *conf = mddev->private;
1695 int count = 0;
1696 unsigned long flags;
1697
1698 /*
1699 * Find all failed disks within the RAID1 configuration
1700 * and mark them readable.
1701 * Called under mddev lock, so rcu protection not needed.
1702 * device_lock used to avoid races with raid1_end_read_request
1703 * which expects 'In_sync' flags and ->degraded to be consistent.
1704 */
1705 spin_lock_irqsave(&conf->device_lock, flags);
1706 for (i = 0; i < conf->raid_disks; i++) {
1707 struct md_rdev *rdev = conf->mirrors[i].rdev;
1708 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1709 if (repl
1710 && !test_bit(Candidate, &repl->flags)
1711 && repl->recovery_offset == MaxSector
1712 && !test_bit(Faulty, &repl->flags)
1713 && !test_and_set_bit(In_sync, &repl->flags)) {
1714 /* replacement has just become active */
1715 if (!rdev ||
1716 !test_and_clear_bit(In_sync, &rdev->flags))
1717 count++;
1718 if (rdev) {
1719 /* Replaced device not technically
1720 * faulty, but we need to be sure
1721 * it gets removed and never re-added
1722 */
1723 set_bit(Faulty, &rdev->flags);
1724 sysfs_notify_dirent_safe(
1725 rdev->sysfs_state);
1726 }
1727 }
1728 if (rdev
1729 && rdev->recovery_offset == MaxSector
1730 && !test_bit(Faulty, &rdev->flags)
1731 && !test_and_set_bit(In_sync, &rdev->flags)) {
1732 count++;
1733 sysfs_notify_dirent_safe(rdev->sysfs_state);
1734 }
1735 }
1736 mddev->degraded -= count;
1737 spin_unlock_irqrestore(&conf->device_lock, flags);
1738
1739 print_conf(conf);
1740 return count;
1741}
1742
1743static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1744{
1745 struct r1conf *conf = mddev->private;
1746 int err = -EEXIST;
1747 int mirror = 0;
1748 struct raid1_info *p;
1749 int first = 0;
1750 int last = conf->raid_disks - 1;
1751
1752 if (mddev->recovery_disabled == conf->recovery_disabled)
1753 return -EBUSY;
1754
1755 if (md_integrity_add_rdev(rdev, mddev))
1756 return -ENXIO;
1757
1758 if (rdev->raid_disk >= 0)
1759 first = last = rdev->raid_disk;
1760
1761 /*
1762 * find the disk ... but prefer rdev->saved_raid_disk
1763 * if possible.
1764 */
1765 if (rdev->saved_raid_disk >= 0 &&
1766 rdev->saved_raid_disk >= first &&
1767 rdev->saved_raid_disk < conf->raid_disks &&
1768 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1769 first = last = rdev->saved_raid_disk;
1770
1771 for (mirror = first; mirror <= last; mirror++) {
1772 p = conf->mirrors + mirror;
1773 if (!p->rdev) {
1774 if (mddev->gendisk)
1775 disk_stack_limits(mddev->gendisk, rdev->bdev,
1776 rdev->data_offset << 9);
1777
1778 p->head_position = 0;
1779 rdev->raid_disk = mirror;
1780 err = 0;
1781 /* As all devices are equivalent, we don't need a full recovery
1782 * if this was recently any drive of the array
1783 */
1784 if (rdev->saved_raid_disk < 0)
1785 conf->fullsync = 1;
1786 rcu_assign_pointer(p->rdev, rdev);
1787 break;
1788 }
1789 if (test_bit(WantReplacement, &p->rdev->flags) &&
1790 p[conf->raid_disks].rdev == NULL) {
1791 /* Add this device as a replacement */
1792 clear_bit(In_sync, &rdev->flags);
1793 set_bit(Replacement, &rdev->flags);
1794 rdev->raid_disk = mirror;
1795 err = 0;
1796 conf->fullsync = 1;
1797 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1798 break;
1799 }
1800 }
1801 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1802 blk_queue_flag_set(QUEUE_FLAG_DISCARD, mddev->queue);
1803 print_conf(conf);
1804 return err;
1805}
1806
1807static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1808{
1809 struct r1conf *conf = mddev->private;
1810 int err = 0;
1811 int number = rdev->raid_disk;
1812 struct raid1_info *p = conf->mirrors + number;
1813
1814 if (rdev != p->rdev)
1815 p = conf->mirrors + conf->raid_disks + number;
1816
1817 print_conf(conf);
1818 if (rdev == p->rdev) {
1819 if (test_bit(In_sync, &rdev->flags) ||
1820 atomic_read(&rdev->nr_pending)) {
1821 err = -EBUSY;
1822 goto abort;
1823 }
1824 /* Only remove non-faulty devices if recovery
1825 * is not possible.
1826 */
1827 if (!test_bit(Faulty, &rdev->flags) &&
1828 mddev->recovery_disabled != conf->recovery_disabled &&
1829 mddev->degraded < conf->raid_disks) {
1830 err = -EBUSY;
1831 goto abort;
1832 }
1833 p->rdev = NULL;
1834 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1835 synchronize_rcu();
1836 if (atomic_read(&rdev->nr_pending)) {
1837 /* lost the race, try later */
1838 err = -EBUSY;
1839 p->rdev = rdev;
1840 goto abort;
1841 }
1842 }
1843 if (conf->mirrors[conf->raid_disks + number].rdev) {
1844 /* We just removed a device that is being replaced.
1845 * Move down the replacement. We drain all IO before
1846 * doing this to avoid confusion.
1847 */
1848 struct md_rdev *repl =
1849 conf->mirrors[conf->raid_disks + number].rdev;
1850 freeze_array(conf, 0);
1851 if (atomic_read(&repl->nr_pending)) {
1852 /* It means that some queued IO of retry_list
1853 * hold repl. Thus, we cannot set replacement
1854 * as NULL, avoiding rdev NULL pointer
1855 * dereference in sync_request_write and
1856 * handle_write_finished.
1857 */
1858 err = -EBUSY;
1859 unfreeze_array(conf);
1860 goto abort;
1861 }
1862 clear_bit(Replacement, &repl->flags);
1863 p->rdev = repl;
1864 conf->mirrors[conf->raid_disks + number].rdev = NULL;
1865 unfreeze_array(conf);
1866 }
1867
1868 clear_bit(WantReplacement, &rdev->flags);
1869 err = md_integrity_register(mddev);
1870 }
1871abort:
1872
1873 print_conf(conf);
1874 return err;
1875}
1876
1877static void end_sync_read(struct bio *bio)
1878{
1879 struct r1bio *r1_bio = get_resync_r1bio(bio);
1880
1881 update_head_pos(r1_bio->read_disk, r1_bio);
1882
1883 /*
1884 * we have read a block, now it needs to be re-written,
1885 * or re-read if the read failed.
1886 * We don't do much here, just schedule handling by raid1d
1887 */
1888 if (!bio->bi_status)
1889 set_bit(R1BIO_Uptodate, &r1_bio->state);
1890
1891 if (atomic_dec_and_test(&r1_bio->remaining))
1892 reschedule_retry(r1_bio);
1893}
1894
1895static void abort_sync_write(struct mddev *mddev, struct r1bio *r1_bio)
1896{
1897 sector_t sync_blocks = 0;
1898 sector_t s = r1_bio->sector;
1899 long sectors_to_go = r1_bio->sectors;
1900
1901 /* make sure these bits don't get cleared. */
1902 do {
1903 md_bitmap_end_sync(mddev->bitmap, s, &sync_blocks, 1);
1904 s += sync_blocks;
1905 sectors_to_go -= sync_blocks;
1906 } while (sectors_to_go > 0);
1907}
1908
1909static void put_sync_write_buf(struct r1bio *r1_bio, int uptodate)
1910{
1911 if (atomic_dec_and_test(&r1_bio->remaining)) {
1912 struct mddev *mddev = r1_bio->mddev;
1913 int s = r1_bio->sectors;
1914
1915 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1916 test_bit(R1BIO_WriteError, &r1_bio->state))
1917 reschedule_retry(r1_bio);
1918 else {
1919 put_buf(r1_bio);
1920 md_done_sync(mddev, s, uptodate);
1921 }
1922 }
1923}
1924
1925static void end_sync_write(struct bio *bio)
1926{
1927 int uptodate = !bio->bi_status;
1928 struct r1bio *r1_bio = get_resync_r1bio(bio);
1929 struct mddev *mddev = r1_bio->mddev;
1930 struct r1conf *conf = mddev->private;
1931 sector_t first_bad;
1932 int bad_sectors;
1933 struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
1934
1935 if (!uptodate) {
1936 abort_sync_write(mddev, r1_bio);
1937 set_bit(WriteErrorSeen, &rdev->flags);
1938 if (!test_and_set_bit(WantReplacement, &rdev->flags))
1939 set_bit(MD_RECOVERY_NEEDED, &
1940 mddev->recovery);
1941 set_bit(R1BIO_WriteError, &r1_bio->state);
1942 } else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
1943 &first_bad, &bad_sectors) &&
1944 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1945 r1_bio->sector,
1946 r1_bio->sectors,
1947 &first_bad, &bad_sectors)
1948 )
1949 set_bit(R1BIO_MadeGood, &r1_bio->state);
1950
1951 put_sync_write_buf(r1_bio, uptodate);
1952}
1953
1954static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1955 int sectors, struct page *page, int rw)
1956{
1957 if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
1958 /* success */
1959 return 1;
1960 if (rw == WRITE) {
1961 set_bit(WriteErrorSeen, &rdev->flags);
1962 if (!test_and_set_bit(WantReplacement,
1963 &rdev->flags))
1964 set_bit(MD_RECOVERY_NEEDED, &
1965 rdev->mddev->recovery);
1966 }
1967 /* need to record an error - either for the block or the device */
1968 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1969 md_error(rdev->mddev, rdev);
1970 return 0;
1971}
1972
1973static int fix_sync_read_error(struct r1bio *r1_bio)
1974{
1975 /* Try some synchronous reads of other devices to get
1976 * good data, much like with normal read errors. Only
1977 * read into the pages we already have so we don't
1978 * need to re-issue the read request.
1979 * We don't need to freeze the array, because being in an
1980 * active sync request, there is no normal IO, and
1981 * no overlapping syncs.
1982 * We don't need to check is_badblock() again as we
1983 * made sure that anything with a bad block in range
1984 * will have bi_end_io clear.
1985 */
1986 struct mddev *mddev = r1_bio->mddev;
1987 struct r1conf *conf = mddev->private;
1988 struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1989 struct page **pages = get_resync_pages(bio)->pages;
1990 sector_t sect = r1_bio->sector;
1991 int sectors = r1_bio->sectors;
1992 int idx = 0;
1993 struct md_rdev *rdev;
1994
1995 rdev = conf->mirrors[r1_bio->read_disk].rdev;
1996 if (test_bit(FailFast, &rdev->flags)) {
1997 /* Don't try recovering from here - just fail it
1998 * ... unless it is the last working device of course */
1999 md_error(mddev, rdev);
2000 if (test_bit(Faulty, &rdev->flags))
2001 /* Don't try to read from here, but make sure
2002 * put_buf does it's thing
2003 */
2004 bio->bi_end_io = end_sync_write;
2005 }
2006
2007 while(sectors) {
2008 int s = sectors;
2009 int d = r1_bio->read_disk;
2010 int success = 0;
2011 int start;
2012
2013 if (s > (PAGE_SIZE>>9))
2014 s = PAGE_SIZE >> 9;
2015 do {
2016 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
2017 /* No rcu protection needed here devices
2018 * can only be removed when no resync is
2019 * active, and resync is currently active
2020 */
2021 rdev = conf->mirrors[d].rdev;
2022 if (sync_page_io(rdev, sect, s<<9,
2023 pages[idx],
2024 REQ_OP_READ, 0, false)) {
2025 success = 1;
2026 break;
2027 }
2028 }
2029 d++;
2030 if (d == conf->raid_disks * 2)
2031 d = 0;
2032 } while (!success && d != r1_bio->read_disk);
2033
2034 if (!success) {
2035 char b[BDEVNAME_SIZE];
2036 int abort = 0;
2037 /* Cannot read from anywhere, this block is lost.
2038 * Record a bad block on each device. If that doesn't
2039 * work just disable and interrupt the recovery.
2040 * Don't fail devices as that won't really help.
2041 */
2042 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
2043 mdname(mddev), bio_devname(bio, b),
2044 (unsigned long long)r1_bio->sector);
2045 for (d = 0; d < conf->raid_disks * 2; d++) {
2046 rdev = conf->mirrors[d].rdev;
2047 if (!rdev || test_bit(Faulty, &rdev->flags))
2048 continue;
2049 if (!rdev_set_badblocks(rdev, sect, s, 0))
2050 abort = 1;
2051 }
2052 if (abort) {
2053 conf->recovery_disabled =
2054 mddev->recovery_disabled;
2055 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2056 md_done_sync(mddev, r1_bio->sectors, 0);
2057 put_buf(r1_bio);
2058 return 0;
2059 }
2060 /* Try next page */
2061 sectors -= s;
2062 sect += s;
2063 idx++;
2064 continue;
2065 }
2066
2067 start = d;
2068 /* write it back and re-read */
2069 while (d != r1_bio->read_disk) {
2070 if (d == 0)
2071 d = conf->raid_disks * 2;
2072 d--;
2073 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2074 continue;
2075 rdev = conf->mirrors[d].rdev;
2076 if (r1_sync_page_io(rdev, sect, s,
2077 pages[idx],
2078 WRITE) == 0) {
2079 r1_bio->bios[d]->bi_end_io = NULL;
2080 rdev_dec_pending(rdev, mddev);
2081 }
2082 }
2083 d = start;
2084 while (d != r1_bio->read_disk) {
2085 if (d == 0)
2086 d = conf->raid_disks * 2;
2087 d--;
2088 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2089 continue;
2090 rdev = conf->mirrors[d].rdev;
2091 if (r1_sync_page_io(rdev, sect, s,
2092 pages[idx],
2093 READ) != 0)
2094 atomic_add(s, &rdev->corrected_errors);
2095 }
2096 sectors -= s;
2097 sect += s;
2098 idx ++;
2099 }
2100 set_bit(R1BIO_Uptodate, &r1_bio->state);
2101 bio->bi_status = 0;
2102 return 1;
2103}
2104
2105static void process_checks(struct r1bio *r1_bio)
2106{
2107 /* We have read all readable devices. If we haven't
2108 * got the block, then there is no hope left.
2109 * If we have, then we want to do a comparison
2110 * and skip the write if everything is the same.
2111 * If any blocks failed to read, then we need to
2112 * attempt an over-write
2113 */
2114 struct mddev *mddev = r1_bio->mddev;
2115 struct r1conf *conf = mddev->private;
2116 int primary;
2117 int i;
2118 int vcnt;
2119
2120 /* Fix variable parts of all bios */
2121 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
2122 for (i = 0; i < conf->raid_disks * 2; i++) {
2123 blk_status_t status;
2124 struct bio *b = r1_bio->bios[i];
2125 struct resync_pages *rp = get_resync_pages(b);
2126 if (b->bi_end_io != end_sync_read)
2127 continue;
2128 /* fixup the bio for reuse, but preserve errno */
2129 status = b->bi_status;
2130 bio_reset(b);
2131 b->bi_status = status;
2132 b->bi_iter.bi_sector = r1_bio->sector +
2133 conf->mirrors[i].rdev->data_offset;
2134 bio_set_dev(b, conf->mirrors[i].rdev->bdev);
2135 b->bi_end_io = end_sync_read;
2136 rp->raid_bio = r1_bio;
2137 b->bi_private = rp;
2138
2139 /* initialize bvec table again */
2140 md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9);
2141 }
2142 for (primary = 0; primary < conf->raid_disks * 2; primary++)
2143 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
2144 !r1_bio->bios[primary]->bi_status) {
2145 r1_bio->bios[primary]->bi_end_io = NULL;
2146 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2147 break;
2148 }
2149 r1_bio->read_disk = primary;
2150 for (i = 0; i < conf->raid_disks * 2; i++) {
2151 int j = 0;
2152 struct bio *pbio = r1_bio->bios[primary];
2153 struct bio *sbio = r1_bio->bios[i];
2154 blk_status_t status = sbio->bi_status;
2155 struct page **ppages = get_resync_pages(pbio)->pages;
2156 struct page **spages = get_resync_pages(sbio)->pages;
2157 struct bio_vec *bi;
2158 int page_len[RESYNC_PAGES] = { 0 };
2159 struct bvec_iter_all iter_all;
2160
2161 if (sbio->bi_end_io != end_sync_read)
2162 continue;
2163 /* Now we can 'fixup' the error value */
2164 sbio->bi_status = 0;
2165
2166 bio_for_each_segment_all(bi, sbio, iter_all)
2167 page_len[j++] = bi->bv_len;
2168
2169 if (!status) {
2170 for (j = vcnt; j-- ; ) {
2171 if (memcmp(page_address(ppages[j]),
2172 page_address(spages[j]),
2173 page_len[j]))
2174 break;
2175 }
2176 } else
2177 j = 0;
2178 if (j >= 0)
2179 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2180 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2181 && !status)) {
2182 /* No need to write to this device. */
2183 sbio->bi_end_io = NULL;
2184 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2185 continue;
2186 }
2187
2188 bio_copy_data(sbio, pbio);
2189 }
2190}
2191
2192static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2193{
2194 struct r1conf *conf = mddev->private;
2195 int i;
2196 int disks = conf->raid_disks * 2;
2197 struct bio *wbio;
2198
2199 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2200 /* ouch - failed to read all of that. */
2201 if (!fix_sync_read_error(r1_bio))
2202 return;
2203
2204 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2205 process_checks(r1_bio);
2206
2207 /*
2208 * schedule writes
2209 */
2210 atomic_set(&r1_bio->remaining, 1);
2211 for (i = 0; i < disks ; i++) {
2212 wbio = r1_bio->bios[i];
2213 if (wbio->bi_end_io == NULL ||
2214 (wbio->bi_end_io == end_sync_read &&
2215 (i == r1_bio->read_disk ||
2216 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2217 continue;
2218 if (test_bit(Faulty, &conf->mirrors[i].rdev->flags)) {
2219 abort_sync_write(mddev, r1_bio);
2220 continue;
2221 }
2222
2223 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2224 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2225 wbio->bi_opf |= MD_FAILFAST;
2226
2227 wbio->bi_end_io = end_sync_write;
2228 atomic_inc(&r1_bio->remaining);
2229 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2230
2231 generic_make_request(wbio);
2232 }
2233
2234 put_sync_write_buf(r1_bio, 1);
2235}
2236
2237/*
2238 * This is a kernel thread which:
2239 *
2240 * 1. Retries failed read operations on working mirrors.
2241 * 2. Updates the raid superblock when problems encounter.
2242 * 3. Performs writes following reads for array synchronising.
2243 */
2244
2245static void fix_read_error(struct r1conf *conf, int read_disk,
2246 sector_t sect, int sectors)
2247{
2248 struct mddev *mddev = conf->mddev;
2249 while(sectors) {
2250 int s = sectors;
2251 int d = read_disk;
2252 int success = 0;
2253 int start;
2254 struct md_rdev *rdev;
2255
2256 if (s > (PAGE_SIZE>>9))
2257 s = PAGE_SIZE >> 9;
2258
2259 do {
2260 sector_t first_bad;
2261 int bad_sectors;
2262
2263 rcu_read_lock();
2264 rdev = rcu_dereference(conf->mirrors[d].rdev);
2265 if (rdev &&
2266 (test_bit(In_sync, &rdev->flags) ||
2267 (!test_bit(Faulty, &rdev->flags) &&
2268 rdev->recovery_offset >= sect + s)) &&
2269 is_badblock(rdev, sect, s,
2270 &first_bad, &bad_sectors) == 0) {
2271 atomic_inc(&rdev->nr_pending);
2272 rcu_read_unlock();
2273 if (sync_page_io(rdev, sect, s<<9,
2274 conf->tmppage, REQ_OP_READ, 0, false))
2275 success = 1;
2276 rdev_dec_pending(rdev, mddev);
2277 if (success)
2278 break;
2279 } else
2280 rcu_read_unlock();
2281 d++;
2282 if (d == conf->raid_disks * 2)
2283 d = 0;
2284 } while (!success && d != read_disk);
2285
2286 if (!success) {
2287 /* Cannot read from anywhere - mark it bad */
2288 struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2289 if (!rdev_set_badblocks(rdev, sect, s, 0))
2290 md_error(mddev, rdev);
2291 break;
2292 }
2293 /* write it back and re-read */
2294 start = d;
2295 while (d != read_disk) {
2296 if (d==0)
2297 d = conf->raid_disks * 2;
2298 d--;
2299 rcu_read_lock();
2300 rdev = rcu_dereference(conf->mirrors[d].rdev);
2301 if (rdev &&
2302 !test_bit(Faulty, &rdev->flags)) {
2303 atomic_inc(&rdev->nr_pending);
2304 rcu_read_unlock();
2305 r1_sync_page_io(rdev, sect, s,
2306 conf->tmppage, WRITE);
2307 rdev_dec_pending(rdev, mddev);
2308 } else
2309 rcu_read_unlock();
2310 }
2311 d = start;
2312 while (d != read_disk) {
2313 char b[BDEVNAME_SIZE];
2314 if (d==0)
2315 d = conf->raid_disks * 2;
2316 d--;
2317 rcu_read_lock();
2318 rdev = rcu_dereference(conf->mirrors[d].rdev);
2319 if (rdev &&
2320 !test_bit(Faulty, &rdev->flags)) {
2321 atomic_inc(&rdev->nr_pending);
2322 rcu_read_unlock();
2323 if (r1_sync_page_io(rdev, sect, s,
2324 conf->tmppage, READ)) {
2325 atomic_add(s, &rdev->corrected_errors);
2326 pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n",
2327 mdname(mddev), s,
2328 (unsigned long long)(sect +
2329 rdev->data_offset),
2330 bdevname(rdev->bdev, b));
2331 }
2332 rdev_dec_pending(rdev, mddev);
2333 } else
2334 rcu_read_unlock();
2335 }
2336 sectors -= s;
2337 sect += s;
2338 }
2339}
2340
2341static int narrow_write_error(struct r1bio *r1_bio, int i)
2342{
2343 struct mddev *mddev = r1_bio->mddev;
2344 struct r1conf *conf = mddev->private;
2345 struct md_rdev *rdev = conf->mirrors[i].rdev;
2346
2347 /* bio has the data to be written to device 'i' where
2348 * we just recently had a write error.
2349 * We repeatedly clone the bio and trim down to one block,
2350 * then try the write. Where the write fails we record
2351 * a bad block.
2352 * It is conceivable that the bio doesn't exactly align with
2353 * blocks. We must handle this somehow.
2354 *
2355 * We currently own a reference on the rdev.
2356 */
2357
2358 int block_sectors;
2359 sector_t sector;
2360 int sectors;
2361 int sect_to_write = r1_bio->sectors;
2362 int ok = 1;
2363
2364 if (rdev->badblocks.shift < 0)
2365 return 0;
2366
2367 block_sectors = roundup(1 << rdev->badblocks.shift,
2368 bdev_logical_block_size(rdev->bdev) >> 9);
2369 sector = r1_bio->sector;
2370 sectors = ((sector + block_sectors)
2371 & ~(sector_t)(block_sectors - 1))
2372 - sector;
2373
2374 while (sect_to_write) {
2375 struct bio *wbio;
2376 if (sectors > sect_to_write)
2377 sectors = sect_to_write;
2378 /* Write at 'sector' for 'sectors'*/
2379
2380 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2381 wbio = bio_clone_fast(r1_bio->behind_master_bio,
2382 GFP_NOIO,
2383 &mddev->bio_set);
2384 } else {
2385 wbio = bio_clone_fast(r1_bio->master_bio, GFP_NOIO,
2386 &mddev->bio_set);
2387 }
2388
2389 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2390 wbio->bi_iter.bi_sector = r1_bio->sector;
2391 wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2392
2393 bio_trim(wbio, sector - r1_bio->sector, sectors);
2394 wbio->bi_iter.bi_sector += rdev->data_offset;
2395 bio_set_dev(wbio, rdev->bdev);
2396
2397 if (submit_bio_wait(wbio) < 0)
2398 /* failure! */
2399 ok = rdev_set_badblocks(rdev, sector,
2400 sectors, 0)
2401 && ok;
2402
2403 bio_put(wbio);
2404 sect_to_write -= sectors;
2405 sector += sectors;
2406 sectors = block_sectors;
2407 }
2408 return ok;
2409}
2410
2411static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2412{
2413 int m;
2414 int s = r1_bio->sectors;
2415 for (m = 0; m < conf->raid_disks * 2 ; m++) {
2416 struct md_rdev *rdev = conf->mirrors[m].rdev;
2417 struct bio *bio = r1_bio->bios[m];
2418 if (bio->bi_end_io == NULL)
2419 continue;
2420 if (!bio->bi_status &&
2421 test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2422 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2423 }
2424 if (bio->bi_status &&
2425 test_bit(R1BIO_WriteError, &r1_bio->state)) {
2426 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2427 md_error(conf->mddev, rdev);
2428 }
2429 }
2430 put_buf(r1_bio);
2431 md_done_sync(conf->mddev, s, 1);
2432}
2433
2434static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2435{
2436 int m, idx;
2437 bool fail = false;
2438
2439 for (m = 0; m < conf->raid_disks * 2 ; m++)
2440 if (r1_bio->bios[m] == IO_MADE_GOOD) {
2441 struct md_rdev *rdev = conf->mirrors[m].rdev;
2442 rdev_clear_badblocks(rdev,
2443 r1_bio->sector,
2444 r1_bio->sectors, 0);
2445 rdev_dec_pending(rdev, conf->mddev);
2446 } else if (r1_bio->bios[m] != NULL) {
2447 /* This drive got a write error. We need to
2448 * narrow down and record precise write
2449 * errors.
2450 */
2451 fail = true;
2452 if (!narrow_write_error(r1_bio, m)) {
2453 md_error(conf->mddev,
2454 conf->mirrors[m].rdev);
2455 /* an I/O failed, we can't clear the bitmap */
2456 set_bit(R1BIO_Degraded, &r1_bio->state);
2457 }
2458 rdev_dec_pending(conf->mirrors[m].rdev,
2459 conf->mddev);
2460 }
2461 if (fail) {
2462 spin_lock_irq(&conf->device_lock);
2463 list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2464 idx = sector_to_idx(r1_bio->sector);
2465 atomic_inc(&conf->nr_queued[idx]);
2466 spin_unlock_irq(&conf->device_lock);
2467 /*
2468 * In case freeze_array() is waiting for condition
2469 * get_unqueued_pending() == extra to be true.
2470 */
2471 wake_up(&conf->wait_barrier);
2472 md_wakeup_thread(conf->mddev->thread);
2473 } else {
2474 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2475 close_write(r1_bio);
2476 raid_end_bio_io(r1_bio);
2477 }
2478}
2479
2480static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2481{
2482 struct mddev *mddev = conf->mddev;
2483 struct bio *bio;
2484 struct md_rdev *rdev;
2485
2486 clear_bit(R1BIO_ReadError, &r1_bio->state);
2487 /* we got a read error. Maybe the drive is bad. Maybe just
2488 * the block and we can fix it.
2489 * We freeze all other IO, and try reading the block from
2490 * other devices. When we find one, we re-write
2491 * and check it that fixes the read error.
2492 * This is all done synchronously while the array is
2493 * frozen
2494 */
2495
2496 bio = r1_bio->bios[r1_bio->read_disk];
2497 bio_put(bio);
2498 r1_bio->bios[r1_bio->read_disk] = NULL;
2499
2500 rdev = conf->mirrors[r1_bio->read_disk].rdev;
2501 if (mddev->ro == 0
2502 && !test_bit(FailFast, &rdev->flags)) {
2503 freeze_array(conf, 1);
2504 fix_read_error(conf, r1_bio->read_disk,
2505 r1_bio->sector, r1_bio->sectors);
2506 unfreeze_array(conf);
2507 } else if (mddev->ro == 0 && test_bit(FailFast, &rdev->flags)) {
2508 md_error(mddev, rdev);
2509 } else {
2510 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2511 }
2512
2513 rdev_dec_pending(rdev, conf->mddev);
2514 allow_barrier(conf, r1_bio->sector);
2515 bio = r1_bio->master_bio;
2516
2517 /* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */
2518 r1_bio->state = 0;
2519 raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio);
2520}
2521
2522static void raid1d(struct md_thread *thread)
2523{
2524 struct mddev *mddev = thread->mddev;
2525 struct r1bio *r1_bio;
2526 unsigned long flags;
2527 struct r1conf *conf = mddev->private;
2528 struct list_head *head = &conf->retry_list;
2529 struct blk_plug plug;
2530 int idx;
2531
2532 md_check_recovery(mddev);
2533
2534 if (!list_empty_careful(&conf->bio_end_io_list) &&
2535 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2536 LIST_HEAD(tmp);
2537 spin_lock_irqsave(&conf->device_lock, flags);
2538 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
2539 list_splice_init(&conf->bio_end_io_list, &tmp);
2540 spin_unlock_irqrestore(&conf->device_lock, flags);
2541 while (!list_empty(&tmp)) {
2542 r1_bio = list_first_entry(&tmp, struct r1bio,
2543 retry_list);
2544 list_del(&r1_bio->retry_list);
2545 idx = sector_to_idx(r1_bio->sector);
2546 atomic_dec(&conf->nr_queued[idx]);
2547 if (mddev->degraded)
2548 set_bit(R1BIO_Degraded, &r1_bio->state);
2549 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2550 close_write(r1_bio);
2551 raid_end_bio_io(r1_bio);
2552 }
2553 }
2554
2555 blk_start_plug(&plug);
2556 for (;;) {
2557
2558 flush_pending_writes(conf);
2559
2560 spin_lock_irqsave(&conf->device_lock, flags);
2561 if (list_empty(head)) {
2562 spin_unlock_irqrestore(&conf->device_lock, flags);
2563 break;
2564 }
2565 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2566 list_del(head->prev);
2567 idx = sector_to_idx(r1_bio->sector);
2568 atomic_dec(&conf->nr_queued[idx]);
2569 spin_unlock_irqrestore(&conf->device_lock, flags);
2570
2571 mddev = r1_bio->mddev;
2572 conf = mddev->private;
2573 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2574 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2575 test_bit(R1BIO_WriteError, &r1_bio->state))
2576 handle_sync_write_finished(conf, r1_bio);
2577 else
2578 sync_request_write(mddev, r1_bio);
2579 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2580 test_bit(R1BIO_WriteError, &r1_bio->state))
2581 handle_write_finished(conf, r1_bio);
2582 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2583 handle_read_error(conf, r1_bio);
2584 else
2585 WARN_ON_ONCE(1);
2586
2587 cond_resched();
2588 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2589 md_check_recovery(mddev);
2590 }
2591 blk_finish_plug(&plug);
2592}
2593
2594static int init_resync(struct r1conf *conf)
2595{
2596 int buffs;
2597
2598 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2599 BUG_ON(mempool_initialized(&conf->r1buf_pool));
2600
2601 return mempool_init(&conf->r1buf_pool, buffs, r1buf_pool_alloc,
2602 r1buf_pool_free, conf->poolinfo);
2603}
2604
2605static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf)
2606{
2607 struct r1bio *r1bio = mempool_alloc(&conf->r1buf_pool, GFP_NOIO);
2608 struct resync_pages *rps;
2609 struct bio *bio;
2610 int i;
2611
2612 for (i = conf->poolinfo->raid_disks; i--; ) {
2613 bio = r1bio->bios[i];
2614 rps = bio->bi_private;
2615 bio_reset(bio);
2616 bio->bi_private = rps;
2617 }
2618 r1bio->master_bio = NULL;
2619 return r1bio;
2620}
2621
2622/*
2623 * perform a "sync" on one "block"
2624 *
2625 * We need to make sure that no normal I/O request - particularly write
2626 * requests - conflict with active sync requests.
2627 *
2628 * This is achieved by tracking pending requests and a 'barrier' concept
2629 * that can be installed to exclude normal IO requests.
2630 */
2631
2632static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2633 int *skipped)
2634{
2635 struct r1conf *conf = mddev->private;
2636 struct r1bio *r1_bio;
2637 struct bio *bio;
2638 sector_t max_sector, nr_sectors;
2639 int disk = -1;
2640 int i;
2641 int wonly = -1;
2642 int write_targets = 0, read_targets = 0;
2643 sector_t sync_blocks;
2644 int still_degraded = 0;
2645 int good_sectors = RESYNC_SECTORS;
2646 int min_bad = 0; /* number of sectors that are bad in all devices */
2647 int idx = sector_to_idx(sector_nr);
2648 int page_idx = 0;
2649
2650 if (!mempool_initialized(&conf->r1buf_pool))
2651 if (init_resync(conf))
2652 return 0;
2653
2654 max_sector = mddev->dev_sectors;
2655 if (sector_nr >= max_sector) {
2656 /* If we aborted, we need to abort the
2657 * sync on the 'current' bitmap chunk (there will
2658 * only be one in raid1 resync.
2659 * We can find the current addess in mddev->curr_resync
2660 */
2661 if (mddev->curr_resync < max_sector) /* aborted */
2662 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2663 &sync_blocks, 1);
2664 else /* completed sync */
2665 conf->fullsync = 0;
2666
2667 md_bitmap_close_sync(mddev->bitmap);
2668 close_sync(conf);
2669
2670 if (mddev_is_clustered(mddev)) {
2671 conf->cluster_sync_low = 0;
2672 conf->cluster_sync_high = 0;
2673 }
2674 return 0;
2675 }
2676
2677 if (mddev->bitmap == NULL &&
2678 mddev->recovery_cp == MaxSector &&
2679 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2680 conf->fullsync == 0) {
2681 *skipped = 1;
2682 return max_sector - sector_nr;
2683 }
2684 /* before building a request, check if we can skip these blocks..
2685 * This call the bitmap_start_sync doesn't actually record anything
2686 */
2687 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2688 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2689 /* We can skip this block, and probably several more */
2690 *skipped = 1;
2691 return sync_blocks;
2692 }
2693
2694 /*
2695 * If there is non-resync activity waiting for a turn, then let it
2696 * though before starting on this new sync request.
2697 */
2698 if (atomic_read(&conf->nr_waiting[idx]))
2699 schedule_timeout_uninterruptible(1);
2700
2701 /* we are incrementing sector_nr below. To be safe, we check against
2702 * sector_nr + two times RESYNC_SECTORS
2703 */
2704
2705 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2706 mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2707
2708
2709 if (raise_barrier(conf, sector_nr))
2710 return 0;
2711
2712 r1_bio = raid1_alloc_init_r1buf(conf);
2713
2714 rcu_read_lock();
2715 /*
2716 * If we get a correctably read error during resync or recovery,
2717 * we might want to read from a different device. So we
2718 * flag all drives that could conceivably be read from for READ,
2719 * and any others (which will be non-In_sync devices) for WRITE.
2720 * If a read fails, we try reading from something else for which READ
2721 * is OK.
2722 */
2723
2724 r1_bio->mddev = mddev;
2725 r1_bio->sector = sector_nr;
2726 r1_bio->state = 0;
2727 set_bit(R1BIO_IsSync, &r1_bio->state);
2728 /* make sure good_sectors won't go across barrier unit boundary */
2729 good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
2730
2731 for (i = 0; i < conf->raid_disks * 2; i++) {
2732 struct md_rdev *rdev;
2733 bio = r1_bio->bios[i];
2734
2735 rdev = rcu_dereference(conf->mirrors[i].rdev);
2736 if (rdev == NULL ||
2737 test_bit(Faulty, &rdev->flags)) {
2738 if (i < conf->raid_disks)
2739 still_degraded = 1;
2740 } else if (!test_bit(In_sync, &rdev->flags)) {
2741 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2742 bio->bi_end_io = end_sync_write;
2743 write_targets ++;
2744 } else {
2745 /* may need to read from here */
2746 sector_t first_bad = MaxSector;
2747 int bad_sectors;
2748
2749 if (is_badblock(rdev, sector_nr, good_sectors,
2750 &first_bad, &bad_sectors)) {
2751 if (first_bad > sector_nr)
2752 good_sectors = first_bad - sector_nr;
2753 else {
2754 bad_sectors -= (sector_nr - first_bad);
2755 if (min_bad == 0 ||
2756 min_bad > bad_sectors)
2757 min_bad = bad_sectors;
2758 }
2759 }
2760 if (sector_nr < first_bad) {
2761 if (test_bit(WriteMostly, &rdev->flags)) {
2762 if (wonly < 0)
2763 wonly = i;
2764 } else {
2765 if (disk < 0)
2766 disk = i;
2767 }
2768 bio_set_op_attrs(bio, REQ_OP_READ, 0);
2769 bio->bi_end_io = end_sync_read;
2770 read_targets++;
2771 } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2772 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2773 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2774 /*
2775 * The device is suitable for reading (InSync),
2776 * but has bad block(s) here. Let's try to correct them,
2777 * if we are doing resync or repair. Otherwise, leave
2778 * this device alone for this sync request.
2779 */
2780 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2781 bio->bi_end_io = end_sync_write;
2782 write_targets++;
2783 }
2784 }
2785 if (bio->bi_end_io) {
2786 atomic_inc(&rdev->nr_pending);
2787 bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2788 bio_set_dev(bio, rdev->bdev);
2789 if (test_bit(FailFast, &rdev->flags))
2790 bio->bi_opf |= MD_FAILFAST;
2791 }
2792 }
2793 rcu_read_unlock();
2794 if (disk < 0)
2795 disk = wonly;
2796 r1_bio->read_disk = disk;
2797
2798 if (read_targets == 0 && min_bad > 0) {
2799 /* These sectors are bad on all InSync devices, so we
2800 * need to mark them bad on all write targets
2801 */
2802 int ok = 1;
2803 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2804 if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2805 struct md_rdev *rdev = conf->mirrors[i].rdev;
2806 ok = rdev_set_badblocks(rdev, sector_nr,
2807 min_bad, 0
2808 ) && ok;
2809 }
2810 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2811 *skipped = 1;
2812 put_buf(r1_bio);
2813
2814 if (!ok) {
2815 /* Cannot record the badblocks, so need to
2816 * abort the resync.
2817 * If there are multiple read targets, could just
2818 * fail the really bad ones ???
2819 */
2820 conf->recovery_disabled = mddev->recovery_disabled;
2821 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2822 return 0;
2823 } else
2824 return min_bad;
2825
2826 }
2827 if (min_bad > 0 && min_bad < good_sectors) {
2828 /* only resync enough to reach the next bad->good
2829 * transition */
2830 good_sectors = min_bad;
2831 }
2832
2833 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2834 /* extra read targets are also write targets */
2835 write_targets += read_targets-1;
2836
2837 if (write_targets == 0 || read_targets == 0) {
2838 /* There is nowhere to write, so all non-sync
2839 * drives must be failed - so we are finished
2840 */
2841 sector_t rv;
2842 if (min_bad > 0)
2843 max_sector = sector_nr + min_bad;
2844 rv = max_sector - sector_nr;
2845 *skipped = 1;
2846 put_buf(r1_bio);
2847 return rv;
2848 }
2849
2850 if (max_sector > mddev->resync_max)
2851 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2852 if (max_sector > sector_nr + good_sectors)
2853 max_sector = sector_nr + good_sectors;
2854 nr_sectors = 0;
2855 sync_blocks = 0;
2856 do {
2857 struct page *page;
2858 int len = PAGE_SIZE;
2859 if (sector_nr + (len>>9) > max_sector)
2860 len = (max_sector - sector_nr) << 9;
2861 if (len == 0)
2862 break;
2863 if (sync_blocks == 0) {
2864 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
2865 &sync_blocks, still_degraded) &&
2866 !conf->fullsync &&
2867 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2868 break;
2869 if ((len >> 9) > sync_blocks)
2870 len = sync_blocks<<9;
2871 }
2872
2873 for (i = 0 ; i < conf->raid_disks * 2; i++) {
2874 struct resync_pages *rp;
2875
2876 bio = r1_bio->bios[i];
2877 rp = get_resync_pages(bio);
2878 if (bio->bi_end_io) {
2879 page = resync_fetch_page(rp, page_idx);
2880
2881 /*
2882 * won't fail because the vec table is big
2883 * enough to hold all these pages
2884 */
2885 bio_add_page(bio, page, len, 0);
2886 }
2887 }
2888 nr_sectors += len>>9;
2889 sector_nr += len>>9;
2890 sync_blocks -= (len>>9);
2891 } while (++page_idx < RESYNC_PAGES);
2892
2893 r1_bio->sectors = nr_sectors;
2894
2895 if (mddev_is_clustered(mddev) &&
2896 conf->cluster_sync_high < sector_nr + nr_sectors) {
2897 conf->cluster_sync_low = mddev->curr_resync_completed;
2898 conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2899 /* Send resync message */
2900 md_cluster_ops->resync_info_update(mddev,
2901 conf->cluster_sync_low,
2902 conf->cluster_sync_high);
2903 }
2904
2905 /* For a user-requested sync, we read all readable devices and do a
2906 * compare
2907 */
2908 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2909 atomic_set(&r1_bio->remaining, read_targets);
2910 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2911 bio = r1_bio->bios[i];
2912 if (bio->bi_end_io == end_sync_read) {
2913 read_targets--;
2914 md_sync_acct_bio(bio, nr_sectors);
2915 if (read_targets == 1)
2916 bio->bi_opf &= ~MD_FAILFAST;
2917 generic_make_request(bio);
2918 }
2919 }
2920 } else {
2921 atomic_set(&r1_bio->remaining, 1);
2922 bio = r1_bio->bios[r1_bio->read_disk];
2923 md_sync_acct_bio(bio, nr_sectors);
2924 if (read_targets == 1)
2925 bio->bi_opf &= ~MD_FAILFAST;
2926 generic_make_request(bio);
2927 }
2928 return nr_sectors;
2929}
2930
2931static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2932{
2933 if (sectors)
2934 return sectors;
2935
2936 return mddev->dev_sectors;
2937}
2938
2939static struct r1conf *setup_conf(struct mddev *mddev)
2940{
2941 struct r1conf *conf;
2942 int i;
2943 struct raid1_info *disk;
2944 struct md_rdev *rdev;
2945 int err = -ENOMEM;
2946
2947 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2948 if (!conf)
2949 goto abort;
2950
2951 conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
2952 sizeof(atomic_t), GFP_KERNEL);
2953 if (!conf->nr_pending)
2954 goto abort;
2955
2956 conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
2957 sizeof(atomic_t), GFP_KERNEL);
2958 if (!conf->nr_waiting)
2959 goto abort;
2960
2961 conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
2962 sizeof(atomic_t), GFP_KERNEL);
2963 if (!conf->nr_queued)
2964 goto abort;
2965
2966 conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
2967 sizeof(atomic_t), GFP_KERNEL);
2968 if (!conf->barrier)
2969 goto abort;
2970
2971 conf->mirrors = kzalloc(array3_size(sizeof(struct raid1_info),
2972 mddev->raid_disks, 2),
2973 GFP_KERNEL);
2974 if (!conf->mirrors)
2975 goto abort;
2976
2977 conf->tmppage = alloc_page(GFP_KERNEL);
2978 if (!conf->tmppage)
2979 goto abort;
2980
2981 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2982 if (!conf->poolinfo)
2983 goto abort;
2984 conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2985 err = mempool_init(&conf->r1bio_pool, NR_RAID_BIOS, r1bio_pool_alloc,
2986 rbio_pool_free, conf->poolinfo);
2987 if (err)
2988 goto abort;
2989
2990 err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
2991 if (err)
2992 goto abort;
2993
2994 conf->poolinfo->mddev = mddev;
2995
2996 err = -EINVAL;
2997 spin_lock_init(&conf->device_lock);
2998 rdev_for_each(rdev, mddev) {
2999 int disk_idx = rdev->raid_disk;
3000 if (disk_idx >= mddev->raid_disks
3001 || disk_idx < 0)
3002 continue;
3003 if (test_bit(Replacement, &rdev->flags))
3004 disk = conf->mirrors + mddev->raid_disks + disk_idx;
3005 else
3006 disk = conf->mirrors + disk_idx;
3007
3008 if (disk->rdev)
3009 goto abort;
3010 disk->rdev = rdev;
3011 disk->head_position = 0;
3012 disk->seq_start = MaxSector;
3013 }
3014 conf->raid_disks = mddev->raid_disks;
3015 conf->mddev = mddev;
3016 INIT_LIST_HEAD(&conf->retry_list);
3017 INIT_LIST_HEAD(&conf->bio_end_io_list);
3018
3019 spin_lock_init(&conf->resync_lock);
3020 init_waitqueue_head(&conf->wait_barrier);
3021
3022 bio_list_init(&conf->pending_bio_list);
3023 conf->pending_count = 0;
3024 conf->recovery_disabled = mddev->recovery_disabled - 1;
3025
3026 err = -EIO;
3027 for (i = 0; i < conf->raid_disks * 2; i++) {
3028
3029 disk = conf->mirrors + i;
3030
3031 if (i < conf->raid_disks &&
3032 disk[conf->raid_disks].rdev) {
3033 /* This slot has a replacement. */
3034 if (!disk->rdev) {
3035 /* No original, just make the replacement
3036 * a recovering spare
3037 */
3038 disk->rdev =
3039 disk[conf->raid_disks].rdev;
3040 disk[conf->raid_disks].rdev = NULL;
3041 } else if (!test_bit(In_sync, &disk->rdev->flags))
3042 /* Original is not in_sync - bad */
3043 goto abort;
3044 }
3045
3046 if (!disk->rdev ||
3047 !test_bit(In_sync, &disk->rdev->flags)) {
3048 disk->head_position = 0;
3049 if (disk->rdev &&
3050 (disk->rdev->saved_raid_disk < 0))
3051 conf->fullsync = 1;
3052 }
3053 }
3054
3055 err = -ENOMEM;
3056 conf->thread = md_register_thread(raid1d, mddev, "raid1");
3057 if (!conf->thread)
3058 goto abort;
3059
3060 return conf;
3061
3062 abort:
3063 if (conf) {
3064 mempool_exit(&conf->r1bio_pool);
3065 kfree(conf->mirrors);
3066 safe_put_page(conf->tmppage);
3067 kfree(conf->poolinfo);
3068 kfree(conf->nr_pending);
3069 kfree(conf->nr_waiting);
3070 kfree(conf->nr_queued);
3071 kfree(conf->barrier);
3072 bioset_exit(&conf->bio_split);
3073 kfree(conf);
3074 }
3075 return ERR_PTR(err);
3076}
3077
3078static void raid1_free(struct mddev *mddev, void *priv);
3079static int raid1_run(struct mddev *mddev)
3080{
3081 struct r1conf *conf;
3082 int i;
3083 struct md_rdev *rdev;
3084 int ret;
3085 bool discard_supported = false;
3086
3087 if (mddev->level != 1) {
3088 pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3089 mdname(mddev), mddev->level);
3090 return -EIO;
3091 }
3092 if (mddev->reshape_position != MaxSector) {
3093 pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3094 mdname(mddev));
3095 return -EIO;
3096 }
3097 if (mddev_init_writes_pending(mddev) < 0)
3098 return -ENOMEM;
3099 /*
3100 * copy the already verified devices into our private RAID1
3101 * bookkeeping area. [whatever we allocate in run(),
3102 * should be freed in raid1_free()]
3103 */
3104 if (mddev->private == NULL)
3105 conf = setup_conf(mddev);
3106 else
3107 conf = mddev->private;
3108
3109 if (IS_ERR(conf))
3110 return PTR_ERR(conf);
3111
3112 if (mddev->queue) {
3113 blk_queue_max_write_same_sectors(mddev->queue, 0);
3114 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3115 }
3116
3117 rdev_for_each(rdev, mddev) {
3118 if (!mddev->gendisk)
3119 continue;
3120 disk_stack_limits(mddev->gendisk, rdev->bdev,
3121 rdev->data_offset << 9);
3122 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3123 discard_supported = true;
3124 }
3125
3126 mddev->degraded = 0;
3127 for (i = 0; i < conf->raid_disks; i++)
3128 if (conf->mirrors[i].rdev == NULL ||
3129 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3130 test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3131 mddev->degraded++;
3132 /*
3133 * RAID1 needs at least one disk in active
3134 */
3135 if (conf->raid_disks - mddev->degraded < 1) {
3136 ret = -EINVAL;
3137 goto abort;
3138 }
3139
3140 if (conf->raid_disks - mddev->degraded == 1)
3141 mddev->recovery_cp = MaxSector;
3142
3143 if (mddev->recovery_cp != MaxSector)
3144 pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3145 mdname(mddev));
3146 pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
3147 mdname(mddev), mddev->raid_disks - mddev->degraded,
3148 mddev->raid_disks);
3149
3150 /*
3151 * Ok, everything is just fine now
3152 */
3153 mddev->thread = conf->thread;
3154 conf->thread = NULL;
3155 mddev->private = conf;
3156 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3157
3158 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
3159
3160 if (mddev->queue) {
3161 if (discard_supported)
3162 blk_queue_flag_set(QUEUE_FLAG_DISCARD,
3163 mddev->queue);
3164 else
3165 blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
3166 mddev->queue);
3167 }
3168
3169 ret = md_integrity_register(mddev);
3170 if (ret) {
3171 md_unregister_thread(&mddev->thread);
3172 goto abort;
3173 }
3174 return 0;
3175
3176abort:
3177 raid1_free(mddev, conf);
3178 return ret;
3179}
3180
3181static void raid1_free(struct mddev *mddev, void *priv)
3182{
3183 struct r1conf *conf = priv;
3184
3185 mempool_exit(&conf->r1bio_pool);
3186 kfree(conf->mirrors);
3187 safe_put_page(conf->tmppage);
3188 kfree(conf->poolinfo);
3189 kfree(conf->nr_pending);
3190 kfree(conf->nr_waiting);
3191 kfree(conf->nr_queued);
3192 kfree(conf->barrier);
3193 bioset_exit(&conf->bio_split);
3194 kfree(conf);
3195}
3196
3197static int raid1_resize(struct mddev *mddev, sector_t sectors)
3198{
3199 /* no resync is happening, and there is enough space
3200 * on all devices, so we can resize.
3201 * We need to make sure resync covers any new space.
3202 * If the array is shrinking we should possibly wait until
3203 * any io in the removed space completes, but it hardly seems
3204 * worth it.
3205 */
3206 sector_t newsize = raid1_size(mddev, sectors, 0);
3207 if (mddev->external_size &&
3208 mddev->array_sectors > newsize)
3209 return -EINVAL;
3210 if (mddev->bitmap) {
3211 int ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
3212 if (ret)
3213 return ret;
3214 }
3215 md_set_array_sectors(mddev, newsize);
3216 if (sectors > mddev->dev_sectors &&
3217 mddev->recovery_cp > mddev->dev_sectors) {
3218 mddev->recovery_cp = mddev->dev_sectors;
3219 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3220 }
3221 mddev->dev_sectors = sectors;
3222 mddev->resync_max_sectors = sectors;
3223 return 0;
3224}
3225
3226static int raid1_reshape(struct mddev *mddev)
3227{
3228 /* We need to:
3229 * 1/ resize the r1bio_pool
3230 * 2/ resize conf->mirrors
3231 *
3232 * We allocate a new r1bio_pool if we can.
3233 * Then raise a device barrier and wait until all IO stops.
3234 * Then resize conf->mirrors and swap in the new r1bio pool.
3235 *
3236 * At the same time, we "pack" the devices so that all the missing
3237 * devices have the higher raid_disk numbers.
3238 */
3239 mempool_t newpool, oldpool;
3240 struct pool_info *newpoolinfo;
3241 struct raid1_info *newmirrors;
3242 struct r1conf *conf = mddev->private;
3243 int cnt, raid_disks;
3244 unsigned long flags;
3245 int d, d2;
3246 int ret;
3247
3248 memset(&newpool, 0, sizeof(newpool));
3249 memset(&oldpool, 0, sizeof(oldpool));
3250
3251 /* Cannot change chunk_size, layout, or level */
3252 if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3253 mddev->layout != mddev->new_layout ||
3254 mddev->level != mddev->new_level) {
3255 mddev->new_chunk_sectors = mddev->chunk_sectors;
3256 mddev->new_layout = mddev->layout;
3257 mddev->new_level = mddev->level;
3258 return -EINVAL;
3259 }
3260
3261 if (!mddev_is_clustered(mddev))
3262 md_allow_write(mddev);
3263
3264 raid_disks = mddev->raid_disks + mddev->delta_disks;
3265
3266 if (raid_disks < conf->raid_disks) {
3267 cnt=0;
3268 for (d= 0; d < conf->raid_disks; d++)
3269 if (conf->mirrors[d].rdev)
3270 cnt++;
3271 if (cnt > raid_disks)
3272 return -EBUSY;
3273 }
3274
3275 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3276 if (!newpoolinfo)
3277 return -ENOMEM;
3278 newpoolinfo->mddev = mddev;
3279 newpoolinfo->raid_disks = raid_disks * 2;
3280
3281 ret = mempool_init(&newpool, NR_RAID_BIOS, r1bio_pool_alloc,
3282 rbio_pool_free, newpoolinfo);
3283 if (ret) {
3284 kfree(newpoolinfo);
3285 return ret;
3286 }
3287 newmirrors = kzalloc(array3_size(sizeof(struct raid1_info),
3288 raid_disks, 2),
3289 GFP_KERNEL);
3290 if (!newmirrors) {
3291 kfree(newpoolinfo);
3292 mempool_exit(&newpool);
3293 return -ENOMEM;
3294 }
3295
3296 freeze_array(conf, 0);
3297
3298 /* ok, everything is stopped */
3299 oldpool = conf->r1bio_pool;
3300 conf->r1bio_pool = newpool;
3301
3302 for (d = d2 = 0; d < conf->raid_disks; d++) {
3303 struct md_rdev *rdev = conf->mirrors[d].rdev;
3304 if (rdev && rdev->raid_disk != d2) {
3305 sysfs_unlink_rdev(mddev, rdev);
3306 rdev->raid_disk = d2;
3307 sysfs_unlink_rdev(mddev, rdev);
3308 if (sysfs_link_rdev(mddev, rdev))
3309 pr_warn("md/raid1:%s: cannot register rd%d\n",
3310 mdname(mddev), rdev->raid_disk);
3311 }
3312 if (rdev)
3313 newmirrors[d2++].rdev = rdev;
3314 }
3315 kfree(conf->mirrors);
3316 conf->mirrors = newmirrors;
3317 kfree(conf->poolinfo);
3318 conf->poolinfo = newpoolinfo;
3319
3320 spin_lock_irqsave(&conf->device_lock, flags);
3321 mddev->degraded += (raid_disks - conf->raid_disks);
3322 spin_unlock_irqrestore(&conf->device_lock, flags);
3323 conf->raid_disks = mddev->raid_disks = raid_disks;
3324 mddev->delta_disks = 0;
3325
3326 unfreeze_array(conf);
3327
3328 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3329 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3330 md_wakeup_thread(mddev->thread);
3331
3332 mempool_exit(&oldpool);
3333 return 0;
3334}
3335
3336static void raid1_quiesce(struct mddev *mddev, int quiesce)
3337{
3338 struct r1conf *conf = mddev->private;
3339
3340 if (quiesce)
3341 freeze_array(conf, 0);
3342 else
3343 unfreeze_array(conf);
3344}
3345
3346static void *raid1_takeover(struct mddev *mddev)
3347{
3348 /* raid1 can take over:
3349 * raid5 with 2 devices, any layout or chunk size
3350 */
3351 if (mddev->level == 5 && mddev->raid_disks == 2) {
3352 struct r1conf *conf;
3353 mddev->new_level = 1;
3354 mddev->new_layout = 0;
3355 mddev->new_chunk_sectors = 0;
3356 conf = setup_conf(mddev);
3357 if (!IS_ERR(conf)) {
3358 /* Array must appear to be quiesced */
3359 conf->array_frozen = 1;
3360 mddev_clear_unsupported_flags(mddev,
3361 UNSUPPORTED_MDDEV_FLAGS);
3362 }
3363 return conf;
3364 }
3365 return ERR_PTR(-EINVAL);
3366}
3367
3368static struct md_personality raid1_personality =
3369{
3370 .name = "raid1",
3371 .level = 1,
3372 .owner = THIS_MODULE,
3373 .make_request = raid1_make_request,
3374 .run = raid1_run,
3375 .free = raid1_free,
3376 .status = raid1_status,
3377 .error_handler = raid1_error,
3378 .hot_add_disk = raid1_add_disk,
3379 .hot_remove_disk= raid1_remove_disk,
3380 .spare_active = raid1_spare_active,
3381 .sync_request = raid1_sync_request,
3382 .resize = raid1_resize,
3383 .size = raid1_size,
3384 .check_reshape = raid1_reshape,
3385 .quiesce = raid1_quiesce,
3386 .takeover = raid1_takeover,
3387 .congested = raid1_congested,
3388};
3389
3390static int __init raid_init(void)
3391{
3392 return register_md_personality(&raid1_personality);
3393}
3394
3395static void raid_exit(void)
3396{
3397 unregister_md_personality(&raid1_personality);
3398}
3399
3400module_init(raid_init);
3401module_exit(raid_exit);
3402MODULE_LICENSE("GPL");
3403MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3404MODULE_ALIAS("md-personality-3"); /* RAID1 */
3405MODULE_ALIAS("md-raid1");
3406MODULE_ALIAS("md-level-1");
3407
3408module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);