Loading...
1/*
2 * Driver for OHCI 1394 controllers
3 *
4 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21#include <linux/bitops.h>
22#include <linux/bug.h>
23#include <linux/compiler.h>
24#include <linux/delay.h>
25#include <linux/device.h>
26#include <linux/dma-mapping.h>
27#include <linux/firewire.h>
28#include <linux/firewire-constants.h>
29#include <linux/init.h>
30#include <linux/interrupt.h>
31#include <linux/io.h>
32#include <linux/kernel.h>
33#include <linux/list.h>
34#include <linux/mm.h>
35#include <linux/module.h>
36#include <linux/moduleparam.h>
37#include <linux/mutex.h>
38#include <linux/pci.h>
39#include <linux/pci_ids.h>
40#include <linux/slab.h>
41#include <linux/spinlock.h>
42#include <linux/string.h>
43#include <linux/time.h>
44#include <linux/vmalloc.h>
45#include <linux/workqueue.h>
46
47#include <asm/byteorder.h>
48#include <asm/page.h>
49
50#ifdef CONFIG_PPC_PMAC
51#include <asm/pmac_feature.h>
52#endif
53
54#include "core.h"
55#include "ohci.h"
56
57#define DESCRIPTOR_OUTPUT_MORE 0
58#define DESCRIPTOR_OUTPUT_LAST (1 << 12)
59#define DESCRIPTOR_INPUT_MORE (2 << 12)
60#define DESCRIPTOR_INPUT_LAST (3 << 12)
61#define DESCRIPTOR_STATUS (1 << 11)
62#define DESCRIPTOR_KEY_IMMEDIATE (2 << 8)
63#define DESCRIPTOR_PING (1 << 7)
64#define DESCRIPTOR_YY (1 << 6)
65#define DESCRIPTOR_NO_IRQ (0 << 4)
66#define DESCRIPTOR_IRQ_ERROR (1 << 4)
67#define DESCRIPTOR_IRQ_ALWAYS (3 << 4)
68#define DESCRIPTOR_BRANCH_ALWAYS (3 << 2)
69#define DESCRIPTOR_WAIT (3 << 0)
70
71struct descriptor {
72 __le16 req_count;
73 __le16 control;
74 __le32 data_address;
75 __le32 branch_address;
76 __le16 res_count;
77 __le16 transfer_status;
78} __attribute__((aligned(16)));
79
80#define CONTROL_SET(regs) (regs)
81#define CONTROL_CLEAR(regs) ((regs) + 4)
82#define COMMAND_PTR(regs) ((regs) + 12)
83#define CONTEXT_MATCH(regs) ((regs) + 16)
84
85#define AR_BUFFER_SIZE (32*1024)
86#define AR_BUFFERS_MIN DIV_ROUND_UP(AR_BUFFER_SIZE, PAGE_SIZE)
87/* we need at least two pages for proper list management */
88#define AR_BUFFERS (AR_BUFFERS_MIN >= 2 ? AR_BUFFERS_MIN : 2)
89
90#define MAX_ASYNC_PAYLOAD 4096
91#define MAX_AR_PACKET_SIZE (16 + MAX_ASYNC_PAYLOAD + 4)
92#define AR_WRAPAROUND_PAGES DIV_ROUND_UP(MAX_AR_PACKET_SIZE, PAGE_SIZE)
93
94struct ar_context {
95 struct fw_ohci *ohci;
96 struct page *pages[AR_BUFFERS];
97 void *buffer;
98 struct descriptor *descriptors;
99 dma_addr_t descriptors_bus;
100 void *pointer;
101 unsigned int last_buffer_index;
102 u32 regs;
103 struct tasklet_struct tasklet;
104};
105
106struct context;
107
108typedef int (*descriptor_callback_t)(struct context *ctx,
109 struct descriptor *d,
110 struct descriptor *last);
111
112/*
113 * A buffer that contains a block of DMA-able coherent memory used for
114 * storing a portion of a DMA descriptor program.
115 */
116struct descriptor_buffer {
117 struct list_head list;
118 dma_addr_t buffer_bus;
119 size_t buffer_size;
120 size_t used;
121 struct descriptor buffer[0];
122};
123
124struct context {
125 struct fw_ohci *ohci;
126 u32 regs;
127 int total_allocation;
128 u32 current_bus;
129 bool running;
130 bool flushing;
131
132 /*
133 * List of page-sized buffers for storing DMA descriptors.
134 * Head of list contains buffers in use and tail of list contains
135 * free buffers.
136 */
137 struct list_head buffer_list;
138
139 /*
140 * Pointer to a buffer inside buffer_list that contains the tail
141 * end of the current DMA program.
142 */
143 struct descriptor_buffer *buffer_tail;
144
145 /*
146 * The descriptor containing the branch address of the first
147 * descriptor that has not yet been filled by the device.
148 */
149 struct descriptor *last;
150
151 /*
152 * The last descriptor in the DMA program. It contains the branch
153 * address that must be updated upon appending a new descriptor.
154 */
155 struct descriptor *prev;
156
157 descriptor_callback_t callback;
158
159 struct tasklet_struct tasklet;
160};
161
162#define IT_HEADER_SY(v) ((v) << 0)
163#define IT_HEADER_TCODE(v) ((v) << 4)
164#define IT_HEADER_CHANNEL(v) ((v) << 8)
165#define IT_HEADER_TAG(v) ((v) << 14)
166#define IT_HEADER_SPEED(v) ((v) << 16)
167#define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
168
169struct iso_context {
170 struct fw_iso_context base;
171 struct context context;
172 void *header;
173 size_t header_length;
174 unsigned long flushing_completions;
175 u32 mc_buffer_bus;
176 u16 mc_completed;
177 u16 last_timestamp;
178 u8 sync;
179 u8 tags;
180};
181
182#define CONFIG_ROM_SIZE 1024
183
184struct fw_ohci {
185 struct fw_card card;
186
187 __iomem char *registers;
188 int node_id;
189 int generation;
190 int request_generation; /* for timestamping incoming requests */
191 unsigned quirks;
192 unsigned int pri_req_max;
193 u32 bus_time;
194 bool is_root;
195 bool csr_state_setclear_abdicate;
196 int n_ir;
197 int n_it;
198 /*
199 * Spinlock for accessing fw_ohci data. Never call out of
200 * this driver with this lock held.
201 */
202 spinlock_t lock;
203
204 struct mutex phy_reg_mutex;
205
206 void *misc_buffer;
207 dma_addr_t misc_buffer_bus;
208
209 struct ar_context ar_request_ctx;
210 struct ar_context ar_response_ctx;
211 struct context at_request_ctx;
212 struct context at_response_ctx;
213
214 u32 it_context_support;
215 u32 it_context_mask; /* unoccupied IT contexts */
216 struct iso_context *it_context_list;
217 u64 ir_context_channels; /* unoccupied channels */
218 u32 ir_context_support;
219 u32 ir_context_mask; /* unoccupied IR contexts */
220 struct iso_context *ir_context_list;
221 u64 mc_channels; /* channels in use by the multichannel IR context */
222 bool mc_allocated;
223
224 __be32 *config_rom;
225 dma_addr_t config_rom_bus;
226 __be32 *next_config_rom;
227 dma_addr_t next_config_rom_bus;
228 __be32 next_header;
229
230 __le32 *self_id_cpu;
231 dma_addr_t self_id_bus;
232 struct work_struct bus_reset_work;
233
234 u32 self_id_buffer[512];
235};
236
237static inline struct fw_ohci *fw_ohci(struct fw_card *card)
238{
239 return container_of(card, struct fw_ohci, card);
240}
241
242#define IT_CONTEXT_CYCLE_MATCH_ENABLE 0x80000000
243#define IR_CONTEXT_BUFFER_FILL 0x80000000
244#define IR_CONTEXT_ISOCH_HEADER 0x40000000
245#define IR_CONTEXT_CYCLE_MATCH_ENABLE 0x20000000
246#define IR_CONTEXT_MULTI_CHANNEL_MODE 0x10000000
247#define IR_CONTEXT_DUAL_BUFFER_MODE 0x08000000
248
249#define CONTEXT_RUN 0x8000
250#define CONTEXT_WAKE 0x1000
251#define CONTEXT_DEAD 0x0800
252#define CONTEXT_ACTIVE 0x0400
253
254#define OHCI1394_MAX_AT_REQ_RETRIES 0xf
255#define OHCI1394_MAX_AT_RESP_RETRIES 0x2
256#define OHCI1394_MAX_PHYS_RESP_RETRIES 0x8
257
258#define OHCI1394_REGISTER_SIZE 0x800
259#define OHCI1394_PCI_HCI_Control 0x40
260#define SELF_ID_BUF_SIZE 0x800
261#define OHCI_TCODE_PHY_PACKET 0x0e
262#define OHCI_VERSION_1_1 0x010010
263
264static char ohci_driver_name[] = KBUILD_MODNAME;
265
266#define PCI_DEVICE_ID_AGERE_FW643 0x5901
267#define PCI_DEVICE_ID_CREATIVE_SB1394 0x4001
268#define PCI_DEVICE_ID_JMICRON_JMB38X_FW 0x2380
269#define PCI_DEVICE_ID_TI_TSB12LV22 0x8009
270#define PCI_DEVICE_ID_TI_TSB12LV26 0x8020
271#define PCI_DEVICE_ID_TI_TSB82AA2 0x8025
272#define PCI_VENDOR_ID_PINNACLE_SYSTEMS 0x11bd
273
274#define QUIRK_CYCLE_TIMER 1
275#define QUIRK_RESET_PACKET 2
276#define QUIRK_BE_HEADERS 4
277#define QUIRK_NO_1394A 8
278#define QUIRK_NO_MSI 16
279#define QUIRK_TI_SLLZ059 32
280
281/* In case of multiple matches in ohci_quirks[], only the first one is used. */
282static const struct {
283 unsigned short vendor, device, revision, flags;
284} ohci_quirks[] = {
285 {PCI_VENDOR_ID_AL, PCI_ANY_ID, PCI_ANY_ID,
286 QUIRK_CYCLE_TIMER},
287
288 {PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_FW, PCI_ANY_ID,
289 QUIRK_BE_HEADERS},
290
291 {PCI_VENDOR_ID_ATT, PCI_DEVICE_ID_AGERE_FW643, 6,
292 QUIRK_NO_MSI},
293
294 {PCI_VENDOR_ID_CREATIVE, PCI_DEVICE_ID_CREATIVE_SB1394, PCI_ANY_ID,
295 QUIRK_RESET_PACKET},
296
297 {PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB38X_FW, PCI_ANY_ID,
298 QUIRK_NO_MSI},
299
300 {PCI_VENDOR_ID_NEC, PCI_ANY_ID, PCI_ANY_ID,
301 QUIRK_CYCLE_TIMER},
302
303 {PCI_VENDOR_ID_O2, PCI_ANY_ID, PCI_ANY_ID,
304 QUIRK_NO_MSI},
305
306 {PCI_VENDOR_ID_RICOH, PCI_ANY_ID, PCI_ANY_ID,
307 QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
308
309 {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV22, PCI_ANY_ID,
310 QUIRK_CYCLE_TIMER | QUIRK_RESET_PACKET | QUIRK_NO_1394A},
311
312 {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV26, PCI_ANY_ID,
313 QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
314
315 {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB82AA2, PCI_ANY_ID,
316 QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
317
318 {PCI_VENDOR_ID_TI, PCI_ANY_ID, PCI_ANY_ID,
319 QUIRK_RESET_PACKET},
320
321 {PCI_VENDOR_ID_VIA, PCI_ANY_ID, PCI_ANY_ID,
322 QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
323};
324
325/* This overrides anything that was found in ohci_quirks[]. */
326static int param_quirks;
327module_param_named(quirks, param_quirks, int, 0644);
328MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
329 ", nonatomic cycle timer = " __stringify(QUIRK_CYCLE_TIMER)
330 ", reset packet generation = " __stringify(QUIRK_RESET_PACKET)
331 ", AR/selfID endianess = " __stringify(QUIRK_BE_HEADERS)
332 ", no 1394a enhancements = " __stringify(QUIRK_NO_1394A)
333 ", disable MSI = " __stringify(QUIRK_NO_MSI)
334 ", TI SLLZ059 erratum = " __stringify(QUIRK_TI_SLLZ059)
335 ")");
336
337#define OHCI_PARAM_DEBUG_AT_AR 1
338#define OHCI_PARAM_DEBUG_SELFIDS 2
339#define OHCI_PARAM_DEBUG_IRQS 4
340#define OHCI_PARAM_DEBUG_BUSRESETS 8 /* only effective before chip init */
341
342static int param_debug;
343module_param_named(debug, param_debug, int, 0644);
344MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
345 ", AT/AR events = " __stringify(OHCI_PARAM_DEBUG_AT_AR)
346 ", self-IDs = " __stringify(OHCI_PARAM_DEBUG_SELFIDS)
347 ", IRQs = " __stringify(OHCI_PARAM_DEBUG_IRQS)
348 ", busReset events = " __stringify(OHCI_PARAM_DEBUG_BUSRESETS)
349 ", or a combination, or all = -1)");
350
351static void log_irqs(struct fw_ohci *ohci, u32 evt)
352{
353 if (likely(!(param_debug &
354 (OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
355 return;
356
357 if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
358 !(evt & OHCI1394_busReset))
359 return;
360
361 dev_notice(ohci->card.device,
362 "IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
363 evt & OHCI1394_selfIDComplete ? " selfID" : "",
364 evt & OHCI1394_RQPkt ? " AR_req" : "",
365 evt & OHCI1394_RSPkt ? " AR_resp" : "",
366 evt & OHCI1394_reqTxComplete ? " AT_req" : "",
367 evt & OHCI1394_respTxComplete ? " AT_resp" : "",
368 evt & OHCI1394_isochRx ? " IR" : "",
369 evt & OHCI1394_isochTx ? " IT" : "",
370 evt & OHCI1394_postedWriteErr ? " postedWriteErr" : "",
371 evt & OHCI1394_cycleTooLong ? " cycleTooLong" : "",
372 evt & OHCI1394_cycle64Seconds ? " cycle64Seconds" : "",
373 evt & OHCI1394_cycleInconsistent ? " cycleInconsistent" : "",
374 evt & OHCI1394_regAccessFail ? " regAccessFail" : "",
375 evt & OHCI1394_unrecoverableError ? " unrecoverableError" : "",
376 evt & OHCI1394_busReset ? " busReset" : "",
377 evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
378 OHCI1394_RSPkt | OHCI1394_reqTxComplete |
379 OHCI1394_respTxComplete | OHCI1394_isochRx |
380 OHCI1394_isochTx | OHCI1394_postedWriteErr |
381 OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
382 OHCI1394_cycleInconsistent |
383 OHCI1394_regAccessFail | OHCI1394_busReset)
384 ? " ?" : "");
385}
386
387static const char *speed[] = {
388 [0] = "S100", [1] = "S200", [2] = "S400", [3] = "beta",
389};
390static const char *power[] = {
391 [0] = "+0W", [1] = "+15W", [2] = "+30W", [3] = "+45W",
392 [4] = "-3W", [5] = " ?W", [6] = "-3..-6W", [7] = "-3..-10W",
393};
394static const char port[] = { '.', '-', 'p', 'c', };
395
396static char _p(u32 *s, int shift)
397{
398 return port[*s >> shift & 3];
399}
400
401static void log_selfids(struct fw_ohci *ohci, int generation, int self_id_count)
402{
403 u32 *s;
404
405 if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
406 return;
407
408 dev_notice(ohci->card.device,
409 "%d selfIDs, generation %d, local node ID %04x\n",
410 self_id_count, generation, ohci->node_id);
411
412 for (s = ohci->self_id_buffer; self_id_count--; ++s)
413 if ((*s & 1 << 23) == 0)
414 dev_notice(ohci->card.device,
415 "selfID 0: %08x, phy %d [%c%c%c] "
416 "%s gc=%d %s %s%s%s\n",
417 *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
418 speed[*s >> 14 & 3], *s >> 16 & 63,
419 power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
420 *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
421 else
422 dev_notice(ohci->card.device,
423 "selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
424 *s, *s >> 24 & 63,
425 _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
426 _p(s, 8), _p(s, 6), _p(s, 4), _p(s, 2));
427}
428
429static const char *evts[] = {
430 [0x00] = "evt_no_status", [0x01] = "-reserved-",
431 [0x02] = "evt_long_packet", [0x03] = "evt_missing_ack",
432 [0x04] = "evt_underrun", [0x05] = "evt_overrun",
433 [0x06] = "evt_descriptor_read", [0x07] = "evt_data_read",
434 [0x08] = "evt_data_write", [0x09] = "evt_bus_reset",
435 [0x0a] = "evt_timeout", [0x0b] = "evt_tcode_err",
436 [0x0c] = "-reserved-", [0x0d] = "-reserved-",
437 [0x0e] = "evt_unknown", [0x0f] = "evt_flushed",
438 [0x10] = "-reserved-", [0x11] = "ack_complete",
439 [0x12] = "ack_pending ", [0x13] = "-reserved-",
440 [0x14] = "ack_busy_X", [0x15] = "ack_busy_A",
441 [0x16] = "ack_busy_B", [0x17] = "-reserved-",
442 [0x18] = "-reserved-", [0x19] = "-reserved-",
443 [0x1a] = "-reserved-", [0x1b] = "ack_tardy",
444 [0x1c] = "-reserved-", [0x1d] = "ack_data_error",
445 [0x1e] = "ack_type_error", [0x1f] = "-reserved-",
446 [0x20] = "pending/cancelled",
447};
448static const char *tcodes[] = {
449 [0x0] = "QW req", [0x1] = "BW req",
450 [0x2] = "W resp", [0x3] = "-reserved-",
451 [0x4] = "QR req", [0x5] = "BR req",
452 [0x6] = "QR resp", [0x7] = "BR resp",
453 [0x8] = "cycle start", [0x9] = "Lk req",
454 [0xa] = "async stream packet", [0xb] = "Lk resp",
455 [0xc] = "-reserved-", [0xd] = "-reserved-",
456 [0xe] = "link internal", [0xf] = "-reserved-",
457};
458
459static void log_ar_at_event(struct fw_ohci *ohci,
460 char dir, int speed, u32 *header, int evt)
461{
462 int tcode = header[0] >> 4 & 0xf;
463 char specific[12];
464
465 if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
466 return;
467
468 if (unlikely(evt >= ARRAY_SIZE(evts)))
469 evt = 0x1f;
470
471 if (evt == OHCI1394_evt_bus_reset) {
472 dev_notice(ohci->card.device,
473 "A%c evt_bus_reset, generation %d\n",
474 dir, (header[2] >> 16) & 0xff);
475 return;
476 }
477
478 switch (tcode) {
479 case 0x0: case 0x6: case 0x8:
480 snprintf(specific, sizeof(specific), " = %08x",
481 be32_to_cpu((__force __be32)header[3]));
482 break;
483 case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
484 snprintf(specific, sizeof(specific), " %x,%x",
485 header[3] >> 16, header[3] & 0xffff);
486 break;
487 default:
488 specific[0] = '\0';
489 }
490
491 switch (tcode) {
492 case 0xa:
493 dev_notice(ohci->card.device,
494 "A%c %s, %s\n",
495 dir, evts[evt], tcodes[tcode]);
496 break;
497 case 0xe:
498 dev_notice(ohci->card.device,
499 "A%c %s, PHY %08x %08x\n",
500 dir, evts[evt], header[1], header[2]);
501 break;
502 case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
503 dev_notice(ohci->card.device,
504 "A%c spd %x tl %02x, "
505 "%04x -> %04x, %s, "
506 "%s, %04x%08x%s\n",
507 dir, speed, header[0] >> 10 & 0x3f,
508 header[1] >> 16, header[0] >> 16, evts[evt],
509 tcodes[tcode], header[1] & 0xffff, header[2], specific);
510 break;
511 default:
512 dev_notice(ohci->card.device,
513 "A%c spd %x tl %02x, "
514 "%04x -> %04x, %s, "
515 "%s%s\n",
516 dir, speed, header[0] >> 10 & 0x3f,
517 header[1] >> 16, header[0] >> 16, evts[evt],
518 tcodes[tcode], specific);
519 }
520}
521
522static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
523{
524 writel(data, ohci->registers + offset);
525}
526
527static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
528{
529 return readl(ohci->registers + offset);
530}
531
532static inline void flush_writes(const struct fw_ohci *ohci)
533{
534 /* Do a dummy read to flush writes. */
535 reg_read(ohci, OHCI1394_Version);
536}
537
538/*
539 * Beware! read_phy_reg(), write_phy_reg(), update_phy_reg(), and
540 * read_paged_phy_reg() require the caller to hold ohci->phy_reg_mutex.
541 * In other words, only use ohci_read_phy_reg() and ohci_update_phy_reg()
542 * directly. Exceptions are intrinsically serialized contexts like pci_probe.
543 */
544static int read_phy_reg(struct fw_ohci *ohci, int addr)
545{
546 u32 val;
547 int i;
548
549 reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
550 for (i = 0; i < 3 + 100; i++) {
551 val = reg_read(ohci, OHCI1394_PhyControl);
552 if (!~val)
553 return -ENODEV; /* Card was ejected. */
554
555 if (val & OHCI1394_PhyControl_ReadDone)
556 return OHCI1394_PhyControl_ReadData(val);
557
558 /*
559 * Try a few times without waiting. Sleeping is necessary
560 * only when the link/PHY interface is busy.
561 */
562 if (i >= 3)
563 msleep(1);
564 }
565 dev_err(ohci->card.device, "failed to read phy reg\n");
566
567 return -EBUSY;
568}
569
570static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val)
571{
572 int i;
573
574 reg_write(ohci, OHCI1394_PhyControl,
575 OHCI1394_PhyControl_Write(addr, val));
576 for (i = 0; i < 3 + 100; i++) {
577 val = reg_read(ohci, OHCI1394_PhyControl);
578 if (!~val)
579 return -ENODEV; /* Card was ejected. */
580
581 if (!(val & OHCI1394_PhyControl_WritePending))
582 return 0;
583
584 if (i >= 3)
585 msleep(1);
586 }
587 dev_err(ohci->card.device, "failed to write phy reg\n");
588
589 return -EBUSY;
590}
591
592static int update_phy_reg(struct fw_ohci *ohci, int addr,
593 int clear_bits, int set_bits)
594{
595 int ret = read_phy_reg(ohci, addr);
596 if (ret < 0)
597 return ret;
598
599 /*
600 * The interrupt status bits are cleared by writing a one bit.
601 * Avoid clearing them unless explicitly requested in set_bits.
602 */
603 if (addr == 5)
604 clear_bits |= PHY_INT_STATUS_BITS;
605
606 return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits);
607}
608
609static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr)
610{
611 int ret;
612
613 ret = update_phy_reg(ohci, 7, PHY_PAGE_SELECT, page << 5);
614 if (ret < 0)
615 return ret;
616
617 return read_phy_reg(ohci, addr);
618}
619
620static int ohci_read_phy_reg(struct fw_card *card, int addr)
621{
622 struct fw_ohci *ohci = fw_ohci(card);
623 int ret;
624
625 mutex_lock(&ohci->phy_reg_mutex);
626 ret = read_phy_reg(ohci, addr);
627 mutex_unlock(&ohci->phy_reg_mutex);
628
629 return ret;
630}
631
632static int ohci_update_phy_reg(struct fw_card *card, int addr,
633 int clear_bits, int set_bits)
634{
635 struct fw_ohci *ohci = fw_ohci(card);
636 int ret;
637
638 mutex_lock(&ohci->phy_reg_mutex);
639 ret = update_phy_reg(ohci, addr, clear_bits, set_bits);
640 mutex_unlock(&ohci->phy_reg_mutex);
641
642 return ret;
643}
644
645static inline dma_addr_t ar_buffer_bus(struct ar_context *ctx, unsigned int i)
646{
647 return page_private(ctx->pages[i]);
648}
649
650static void ar_context_link_page(struct ar_context *ctx, unsigned int index)
651{
652 struct descriptor *d;
653
654 d = &ctx->descriptors[index];
655 d->branch_address &= cpu_to_le32(~0xf);
656 d->res_count = cpu_to_le16(PAGE_SIZE);
657 d->transfer_status = 0;
658
659 wmb(); /* finish init of new descriptors before branch_address update */
660 d = &ctx->descriptors[ctx->last_buffer_index];
661 d->branch_address |= cpu_to_le32(1);
662
663 ctx->last_buffer_index = index;
664
665 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
666}
667
668static void ar_context_release(struct ar_context *ctx)
669{
670 unsigned int i;
671
672 if (ctx->buffer)
673 vm_unmap_ram(ctx->buffer, AR_BUFFERS + AR_WRAPAROUND_PAGES);
674
675 for (i = 0; i < AR_BUFFERS; i++)
676 if (ctx->pages[i]) {
677 dma_unmap_page(ctx->ohci->card.device,
678 ar_buffer_bus(ctx, i),
679 PAGE_SIZE, DMA_FROM_DEVICE);
680 __free_page(ctx->pages[i]);
681 }
682}
683
684static void ar_context_abort(struct ar_context *ctx, const char *error_msg)
685{
686 struct fw_ohci *ohci = ctx->ohci;
687
688 if (reg_read(ohci, CONTROL_CLEAR(ctx->regs)) & CONTEXT_RUN) {
689 reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
690 flush_writes(ohci);
691
692 dev_err(ohci->card.device, "AR error: %s; DMA stopped\n",
693 error_msg);
694 }
695 /* FIXME: restart? */
696}
697
698static inline unsigned int ar_next_buffer_index(unsigned int index)
699{
700 return (index + 1) % AR_BUFFERS;
701}
702
703static inline unsigned int ar_prev_buffer_index(unsigned int index)
704{
705 return (index - 1 + AR_BUFFERS) % AR_BUFFERS;
706}
707
708static inline unsigned int ar_first_buffer_index(struct ar_context *ctx)
709{
710 return ar_next_buffer_index(ctx->last_buffer_index);
711}
712
713/*
714 * We search for the buffer that contains the last AR packet DMA data written
715 * by the controller.
716 */
717static unsigned int ar_search_last_active_buffer(struct ar_context *ctx,
718 unsigned int *buffer_offset)
719{
720 unsigned int i, next_i, last = ctx->last_buffer_index;
721 __le16 res_count, next_res_count;
722
723 i = ar_first_buffer_index(ctx);
724 res_count = ACCESS_ONCE(ctx->descriptors[i].res_count);
725
726 /* A buffer that is not yet completely filled must be the last one. */
727 while (i != last && res_count == 0) {
728
729 /* Peek at the next descriptor. */
730 next_i = ar_next_buffer_index(i);
731 rmb(); /* read descriptors in order */
732 next_res_count = ACCESS_ONCE(
733 ctx->descriptors[next_i].res_count);
734 /*
735 * If the next descriptor is still empty, we must stop at this
736 * descriptor.
737 */
738 if (next_res_count == cpu_to_le16(PAGE_SIZE)) {
739 /*
740 * The exception is when the DMA data for one packet is
741 * split over three buffers; in this case, the middle
742 * buffer's descriptor might be never updated by the
743 * controller and look still empty, and we have to peek
744 * at the third one.
745 */
746 if (MAX_AR_PACKET_SIZE > PAGE_SIZE && i != last) {
747 next_i = ar_next_buffer_index(next_i);
748 rmb();
749 next_res_count = ACCESS_ONCE(
750 ctx->descriptors[next_i].res_count);
751 if (next_res_count != cpu_to_le16(PAGE_SIZE))
752 goto next_buffer_is_active;
753 }
754
755 break;
756 }
757
758next_buffer_is_active:
759 i = next_i;
760 res_count = next_res_count;
761 }
762
763 rmb(); /* read res_count before the DMA data */
764
765 *buffer_offset = PAGE_SIZE - le16_to_cpu(res_count);
766 if (*buffer_offset > PAGE_SIZE) {
767 *buffer_offset = 0;
768 ar_context_abort(ctx, "corrupted descriptor");
769 }
770
771 return i;
772}
773
774static void ar_sync_buffers_for_cpu(struct ar_context *ctx,
775 unsigned int end_buffer_index,
776 unsigned int end_buffer_offset)
777{
778 unsigned int i;
779
780 i = ar_first_buffer_index(ctx);
781 while (i != end_buffer_index) {
782 dma_sync_single_for_cpu(ctx->ohci->card.device,
783 ar_buffer_bus(ctx, i),
784 PAGE_SIZE, DMA_FROM_DEVICE);
785 i = ar_next_buffer_index(i);
786 }
787 if (end_buffer_offset > 0)
788 dma_sync_single_for_cpu(ctx->ohci->card.device,
789 ar_buffer_bus(ctx, i),
790 end_buffer_offset, DMA_FROM_DEVICE);
791}
792
793#if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
794#define cond_le32_to_cpu(v) \
795 (ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
796#else
797#define cond_le32_to_cpu(v) le32_to_cpu(v)
798#endif
799
800static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
801{
802 struct fw_ohci *ohci = ctx->ohci;
803 struct fw_packet p;
804 u32 status, length, tcode;
805 int evt;
806
807 p.header[0] = cond_le32_to_cpu(buffer[0]);
808 p.header[1] = cond_le32_to_cpu(buffer[1]);
809 p.header[2] = cond_le32_to_cpu(buffer[2]);
810
811 tcode = (p.header[0] >> 4) & 0x0f;
812 switch (tcode) {
813 case TCODE_WRITE_QUADLET_REQUEST:
814 case TCODE_READ_QUADLET_RESPONSE:
815 p.header[3] = (__force __u32) buffer[3];
816 p.header_length = 16;
817 p.payload_length = 0;
818 break;
819
820 case TCODE_READ_BLOCK_REQUEST :
821 p.header[3] = cond_le32_to_cpu(buffer[3]);
822 p.header_length = 16;
823 p.payload_length = 0;
824 break;
825
826 case TCODE_WRITE_BLOCK_REQUEST:
827 case TCODE_READ_BLOCK_RESPONSE:
828 case TCODE_LOCK_REQUEST:
829 case TCODE_LOCK_RESPONSE:
830 p.header[3] = cond_le32_to_cpu(buffer[3]);
831 p.header_length = 16;
832 p.payload_length = p.header[3] >> 16;
833 if (p.payload_length > MAX_ASYNC_PAYLOAD) {
834 ar_context_abort(ctx, "invalid packet length");
835 return NULL;
836 }
837 break;
838
839 case TCODE_WRITE_RESPONSE:
840 case TCODE_READ_QUADLET_REQUEST:
841 case OHCI_TCODE_PHY_PACKET:
842 p.header_length = 12;
843 p.payload_length = 0;
844 break;
845
846 default:
847 ar_context_abort(ctx, "invalid tcode");
848 return NULL;
849 }
850
851 p.payload = (void *) buffer + p.header_length;
852
853 /* FIXME: What to do about evt_* errors? */
854 length = (p.header_length + p.payload_length + 3) / 4;
855 status = cond_le32_to_cpu(buffer[length]);
856 evt = (status >> 16) & 0x1f;
857
858 p.ack = evt - 16;
859 p.speed = (status >> 21) & 0x7;
860 p.timestamp = status & 0xffff;
861 p.generation = ohci->request_generation;
862
863 log_ar_at_event(ohci, 'R', p.speed, p.header, evt);
864
865 /*
866 * Several controllers, notably from NEC and VIA, forget to
867 * write ack_complete status at PHY packet reception.
868 */
869 if (evt == OHCI1394_evt_no_status &&
870 (p.header[0] & 0xff) == (OHCI1394_phy_tcode << 4))
871 p.ack = ACK_COMPLETE;
872
873 /*
874 * The OHCI bus reset handler synthesizes a PHY packet with
875 * the new generation number when a bus reset happens (see
876 * section 8.4.2.3). This helps us determine when a request
877 * was received and make sure we send the response in the same
878 * generation. We only need this for requests; for responses
879 * we use the unique tlabel for finding the matching
880 * request.
881 *
882 * Alas some chips sometimes emit bus reset packets with a
883 * wrong generation. We set the correct generation for these
884 * at a slightly incorrect time (in bus_reset_work).
885 */
886 if (evt == OHCI1394_evt_bus_reset) {
887 if (!(ohci->quirks & QUIRK_RESET_PACKET))
888 ohci->request_generation = (p.header[2] >> 16) & 0xff;
889 } else if (ctx == &ohci->ar_request_ctx) {
890 fw_core_handle_request(&ohci->card, &p);
891 } else {
892 fw_core_handle_response(&ohci->card, &p);
893 }
894
895 return buffer + length + 1;
896}
897
898static void *handle_ar_packets(struct ar_context *ctx, void *p, void *end)
899{
900 void *next;
901
902 while (p < end) {
903 next = handle_ar_packet(ctx, p);
904 if (!next)
905 return p;
906 p = next;
907 }
908
909 return p;
910}
911
912static void ar_recycle_buffers(struct ar_context *ctx, unsigned int end_buffer)
913{
914 unsigned int i;
915
916 i = ar_first_buffer_index(ctx);
917 while (i != end_buffer) {
918 dma_sync_single_for_device(ctx->ohci->card.device,
919 ar_buffer_bus(ctx, i),
920 PAGE_SIZE, DMA_FROM_DEVICE);
921 ar_context_link_page(ctx, i);
922 i = ar_next_buffer_index(i);
923 }
924}
925
926static void ar_context_tasklet(unsigned long data)
927{
928 struct ar_context *ctx = (struct ar_context *)data;
929 unsigned int end_buffer_index, end_buffer_offset;
930 void *p, *end;
931
932 p = ctx->pointer;
933 if (!p)
934 return;
935
936 end_buffer_index = ar_search_last_active_buffer(ctx,
937 &end_buffer_offset);
938 ar_sync_buffers_for_cpu(ctx, end_buffer_index, end_buffer_offset);
939 end = ctx->buffer + end_buffer_index * PAGE_SIZE + end_buffer_offset;
940
941 if (end_buffer_index < ar_first_buffer_index(ctx)) {
942 /*
943 * The filled part of the overall buffer wraps around; handle
944 * all packets up to the buffer end here. If the last packet
945 * wraps around, its tail will be visible after the buffer end
946 * because the buffer start pages are mapped there again.
947 */
948 void *buffer_end = ctx->buffer + AR_BUFFERS * PAGE_SIZE;
949 p = handle_ar_packets(ctx, p, buffer_end);
950 if (p < buffer_end)
951 goto error;
952 /* adjust p to point back into the actual buffer */
953 p -= AR_BUFFERS * PAGE_SIZE;
954 }
955
956 p = handle_ar_packets(ctx, p, end);
957 if (p != end) {
958 if (p > end)
959 ar_context_abort(ctx, "inconsistent descriptor");
960 goto error;
961 }
962
963 ctx->pointer = p;
964 ar_recycle_buffers(ctx, end_buffer_index);
965
966 return;
967
968error:
969 ctx->pointer = NULL;
970}
971
972static int ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci,
973 unsigned int descriptors_offset, u32 regs)
974{
975 unsigned int i;
976 dma_addr_t dma_addr;
977 struct page *pages[AR_BUFFERS + AR_WRAPAROUND_PAGES];
978 struct descriptor *d;
979
980 ctx->regs = regs;
981 ctx->ohci = ohci;
982 tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
983
984 for (i = 0; i < AR_BUFFERS; i++) {
985 ctx->pages[i] = alloc_page(GFP_KERNEL | GFP_DMA32);
986 if (!ctx->pages[i])
987 goto out_of_memory;
988 dma_addr = dma_map_page(ohci->card.device, ctx->pages[i],
989 0, PAGE_SIZE, DMA_FROM_DEVICE);
990 if (dma_mapping_error(ohci->card.device, dma_addr)) {
991 __free_page(ctx->pages[i]);
992 ctx->pages[i] = NULL;
993 goto out_of_memory;
994 }
995 set_page_private(ctx->pages[i], dma_addr);
996 }
997
998 for (i = 0; i < AR_BUFFERS; i++)
999 pages[i] = ctx->pages[i];
1000 for (i = 0; i < AR_WRAPAROUND_PAGES; i++)
1001 pages[AR_BUFFERS + i] = ctx->pages[i];
1002 ctx->buffer = vm_map_ram(pages, AR_BUFFERS + AR_WRAPAROUND_PAGES,
1003 -1, PAGE_KERNEL);
1004 if (!ctx->buffer)
1005 goto out_of_memory;
1006
1007 ctx->descriptors = ohci->misc_buffer + descriptors_offset;
1008 ctx->descriptors_bus = ohci->misc_buffer_bus + descriptors_offset;
1009
1010 for (i = 0; i < AR_BUFFERS; i++) {
1011 d = &ctx->descriptors[i];
1012 d->req_count = cpu_to_le16(PAGE_SIZE);
1013 d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
1014 DESCRIPTOR_STATUS |
1015 DESCRIPTOR_BRANCH_ALWAYS);
1016 d->data_address = cpu_to_le32(ar_buffer_bus(ctx, i));
1017 d->branch_address = cpu_to_le32(ctx->descriptors_bus +
1018 ar_next_buffer_index(i) * sizeof(struct descriptor));
1019 }
1020
1021 return 0;
1022
1023out_of_memory:
1024 ar_context_release(ctx);
1025
1026 return -ENOMEM;
1027}
1028
1029static void ar_context_run(struct ar_context *ctx)
1030{
1031 unsigned int i;
1032
1033 for (i = 0; i < AR_BUFFERS; i++)
1034 ar_context_link_page(ctx, i);
1035
1036 ctx->pointer = ctx->buffer;
1037
1038 reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ctx->descriptors_bus | 1);
1039 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
1040}
1041
1042static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
1043{
1044 __le16 branch;
1045
1046 branch = d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS);
1047
1048 /* figure out which descriptor the branch address goes in */
1049 if (z == 2 && branch == cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
1050 return d;
1051 else
1052 return d + z - 1;
1053}
1054
1055static void context_tasklet(unsigned long data)
1056{
1057 struct context *ctx = (struct context *) data;
1058 struct descriptor *d, *last;
1059 u32 address;
1060 int z;
1061 struct descriptor_buffer *desc;
1062
1063 desc = list_entry(ctx->buffer_list.next,
1064 struct descriptor_buffer, list);
1065 last = ctx->last;
1066 while (last->branch_address != 0) {
1067 struct descriptor_buffer *old_desc = desc;
1068 address = le32_to_cpu(last->branch_address);
1069 z = address & 0xf;
1070 address &= ~0xf;
1071 ctx->current_bus = address;
1072
1073 /* If the branch address points to a buffer outside of the
1074 * current buffer, advance to the next buffer. */
1075 if (address < desc->buffer_bus ||
1076 address >= desc->buffer_bus + desc->used)
1077 desc = list_entry(desc->list.next,
1078 struct descriptor_buffer, list);
1079 d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
1080 last = find_branch_descriptor(d, z);
1081
1082 if (!ctx->callback(ctx, d, last))
1083 break;
1084
1085 if (old_desc != desc) {
1086 /* If we've advanced to the next buffer, move the
1087 * previous buffer to the free list. */
1088 unsigned long flags;
1089 old_desc->used = 0;
1090 spin_lock_irqsave(&ctx->ohci->lock, flags);
1091 list_move_tail(&old_desc->list, &ctx->buffer_list);
1092 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1093 }
1094 ctx->last = last;
1095 }
1096}
1097
1098/*
1099 * Allocate a new buffer and add it to the list of free buffers for this
1100 * context. Must be called with ohci->lock held.
1101 */
1102static int context_add_buffer(struct context *ctx)
1103{
1104 struct descriptor_buffer *desc;
1105 dma_addr_t uninitialized_var(bus_addr);
1106 int offset;
1107
1108 /*
1109 * 16MB of descriptors should be far more than enough for any DMA
1110 * program. This will catch run-away userspace or DoS attacks.
1111 */
1112 if (ctx->total_allocation >= 16*1024*1024)
1113 return -ENOMEM;
1114
1115 desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
1116 &bus_addr, GFP_ATOMIC);
1117 if (!desc)
1118 return -ENOMEM;
1119
1120 offset = (void *)&desc->buffer - (void *)desc;
1121 desc->buffer_size = PAGE_SIZE - offset;
1122 desc->buffer_bus = bus_addr + offset;
1123 desc->used = 0;
1124
1125 list_add_tail(&desc->list, &ctx->buffer_list);
1126 ctx->total_allocation += PAGE_SIZE;
1127
1128 return 0;
1129}
1130
1131static int context_init(struct context *ctx, struct fw_ohci *ohci,
1132 u32 regs, descriptor_callback_t callback)
1133{
1134 ctx->ohci = ohci;
1135 ctx->regs = regs;
1136 ctx->total_allocation = 0;
1137
1138 INIT_LIST_HEAD(&ctx->buffer_list);
1139 if (context_add_buffer(ctx) < 0)
1140 return -ENOMEM;
1141
1142 ctx->buffer_tail = list_entry(ctx->buffer_list.next,
1143 struct descriptor_buffer, list);
1144
1145 tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
1146 ctx->callback = callback;
1147
1148 /*
1149 * We put a dummy descriptor in the buffer that has a NULL
1150 * branch address and looks like it's been sent. That way we
1151 * have a descriptor to append DMA programs to.
1152 */
1153 memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
1154 ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
1155 ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
1156 ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
1157 ctx->last = ctx->buffer_tail->buffer;
1158 ctx->prev = ctx->buffer_tail->buffer;
1159
1160 return 0;
1161}
1162
1163static void context_release(struct context *ctx)
1164{
1165 struct fw_card *card = &ctx->ohci->card;
1166 struct descriptor_buffer *desc, *tmp;
1167
1168 list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
1169 dma_free_coherent(card->device, PAGE_SIZE, desc,
1170 desc->buffer_bus -
1171 ((void *)&desc->buffer - (void *)desc));
1172}
1173
1174/* Must be called with ohci->lock held */
1175static struct descriptor *context_get_descriptors(struct context *ctx,
1176 int z, dma_addr_t *d_bus)
1177{
1178 struct descriptor *d = NULL;
1179 struct descriptor_buffer *desc = ctx->buffer_tail;
1180
1181 if (z * sizeof(*d) > desc->buffer_size)
1182 return NULL;
1183
1184 if (z * sizeof(*d) > desc->buffer_size - desc->used) {
1185 /* No room for the descriptor in this buffer, so advance to the
1186 * next one. */
1187
1188 if (desc->list.next == &ctx->buffer_list) {
1189 /* If there is no free buffer next in the list,
1190 * allocate one. */
1191 if (context_add_buffer(ctx) < 0)
1192 return NULL;
1193 }
1194 desc = list_entry(desc->list.next,
1195 struct descriptor_buffer, list);
1196 ctx->buffer_tail = desc;
1197 }
1198
1199 d = desc->buffer + desc->used / sizeof(*d);
1200 memset(d, 0, z * sizeof(*d));
1201 *d_bus = desc->buffer_bus + desc->used;
1202
1203 return d;
1204}
1205
1206static void context_run(struct context *ctx, u32 extra)
1207{
1208 struct fw_ohci *ohci = ctx->ohci;
1209
1210 reg_write(ohci, COMMAND_PTR(ctx->regs),
1211 le32_to_cpu(ctx->last->branch_address));
1212 reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
1213 reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
1214 ctx->running = true;
1215 flush_writes(ohci);
1216}
1217
1218static void context_append(struct context *ctx,
1219 struct descriptor *d, int z, int extra)
1220{
1221 dma_addr_t d_bus;
1222 struct descriptor_buffer *desc = ctx->buffer_tail;
1223
1224 d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
1225
1226 desc->used += (z + extra) * sizeof(*d);
1227
1228 wmb(); /* finish init of new descriptors before branch_address update */
1229 ctx->prev->branch_address = cpu_to_le32(d_bus | z);
1230 ctx->prev = find_branch_descriptor(d, z);
1231}
1232
1233static void context_stop(struct context *ctx)
1234{
1235 struct fw_ohci *ohci = ctx->ohci;
1236 u32 reg;
1237 int i;
1238
1239 reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
1240 ctx->running = false;
1241
1242 for (i = 0; i < 1000; i++) {
1243 reg = reg_read(ohci, CONTROL_SET(ctx->regs));
1244 if ((reg & CONTEXT_ACTIVE) == 0)
1245 return;
1246
1247 if (i)
1248 udelay(10);
1249 }
1250 dev_err(ohci->card.device, "DMA context still active (0x%08x)\n", reg);
1251}
1252
1253struct driver_data {
1254 u8 inline_data[8];
1255 struct fw_packet *packet;
1256};
1257
1258/*
1259 * This function apppends a packet to the DMA queue for transmission.
1260 * Must always be called with the ochi->lock held to ensure proper
1261 * generation handling and locking around packet queue manipulation.
1262 */
1263static int at_context_queue_packet(struct context *ctx,
1264 struct fw_packet *packet)
1265{
1266 struct fw_ohci *ohci = ctx->ohci;
1267 dma_addr_t d_bus, uninitialized_var(payload_bus);
1268 struct driver_data *driver_data;
1269 struct descriptor *d, *last;
1270 __le32 *header;
1271 int z, tcode;
1272
1273 d = context_get_descriptors(ctx, 4, &d_bus);
1274 if (d == NULL) {
1275 packet->ack = RCODE_SEND_ERROR;
1276 return -1;
1277 }
1278
1279 d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1280 d[0].res_count = cpu_to_le16(packet->timestamp);
1281
1282 /*
1283 * The DMA format for asyncronous link packets is different
1284 * from the IEEE1394 layout, so shift the fields around
1285 * accordingly.
1286 */
1287
1288 tcode = (packet->header[0] >> 4) & 0x0f;
1289 header = (__le32 *) &d[1];
1290 switch (tcode) {
1291 case TCODE_WRITE_QUADLET_REQUEST:
1292 case TCODE_WRITE_BLOCK_REQUEST:
1293 case TCODE_WRITE_RESPONSE:
1294 case TCODE_READ_QUADLET_REQUEST:
1295 case TCODE_READ_BLOCK_REQUEST:
1296 case TCODE_READ_QUADLET_RESPONSE:
1297 case TCODE_READ_BLOCK_RESPONSE:
1298 case TCODE_LOCK_REQUEST:
1299 case TCODE_LOCK_RESPONSE:
1300 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1301 (packet->speed << 16));
1302 header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
1303 (packet->header[0] & 0xffff0000));
1304 header[2] = cpu_to_le32(packet->header[2]);
1305
1306 if (TCODE_IS_BLOCK_PACKET(tcode))
1307 header[3] = cpu_to_le32(packet->header[3]);
1308 else
1309 header[3] = (__force __le32) packet->header[3];
1310
1311 d[0].req_count = cpu_to_le16(packet->header_length);
1312 break;
1313
1314 case TCODE_LINK_INTERNAL:
1315 header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
1316 (packet->speed << 16));
1317 header[1] = cpu_to_le32(packet->header[1]);
1318 header[2] = cpu_to_le32(packet->header[2]);
1319 d[0].req_count = cpu_to_le16(12);
1320
1321 if (is_ping_packet(&packet->header[1]))
1322 d[0].control |= cpu_to_le16(DESCRIPTOR_PING);
1323 break;
1324
1325 case TCODE_STREAM_DATA:
1326 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1327 (packet->speed << 16));
1328 header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
1329 d[0].req_count = cpu_to_le16(8);
1330 break;
1331
1332 default:
1333 /* BUG(); */
1334 packet->ack = RCODE_SEND_ERROR;
1335 return -1;
1336 }
1337
1338 BUILD_BUG_ON(sizeof(struct driver_data) > sizeof(struct descriptor));
1339 driver_data = (struct driver_data *) &d[3];
1340 driver_data->packet = packet;
1341 packet->driver_data = driver_data;
1342
1343 if (packet->payload_length > 0) {
1344 if (packet->payload_length > sizeof(driver_data->inline_data)) {
1345 payload_bus = dma_map_single(ohci->card.device,
1346 packet->payload,
1347 packet->payload_length,
1348 DMA_TO_DEVICE);
1349 if (dma_mapping_error(ohci->card.device, payload_bus)) {
1350 packet->ack = RCODE_SEND_ERROR;
1351 return -1;
1352 }
1353 packet->payload_bus = payload_bus;
1354 packet->payload_mapped = true;
1355 } else {
1356 memcpy(driver_data->inline_data, packet->payload,
1357 packet->payload_length);
1358 payload_bus = d_bus + 3 * sizeof(*d);
1359 }
1360
1361 d[2].req_count = cpu_to_le16(packet->payload_length);
1362 d[2].data_address = cpu_to_le32(payload_bus);
1363 last = &d[2];
1364 z = 3;
1365 } else {
1366 last = &d[0];
1367 z = 2;
1368 }
1369
1370 last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1371 DESCRIPTOR_IRQ_ALWAYS |
1372 DESCRIPTOR_BRANCH_ALWAYS);
1373
1374 /* FIXME: Document how the locking works. */
1375 if (ohci->generation != packet->generation) {
1376 if (packet->payload_mapped)
1377 dma_unmap_single(ohci->card.device, payload_bus,
1378 packet->payload_length, DMA_TO_DEVICE);
1379 packet->ack = RCODE_GENERATION;
1380 return -1;
1381 }
1382
1383 context_append(ctx, d, z, 4 - z);
1384
1385 if (ctx->running)
1386 reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
1387 else
1388 context_run(ctx, 0);
1389
1390 return 0;
1391}
1392
1393static void at_context_flush(struct context *ctx)
1394{
1395 tasklet_disable(&ctx->tasklet);
1396
1397 ctx->flushing = true;
1398 context_tasklet((unsigned long)ctx);
1399 ctx->flushing = false;
1400
1401 tasklet_enable(&ctx->tasklet);
1402}
1403
1404static int handle_at_packet(struct context *context,
1405 struct descriptor *d,
1406 struct descriptor *last)
1407{
1408 struct driver_data *driver_data;
1409 struct fw_packet *packet;
1410 struct fw_ohci *ohci = context->ohci;
1411 int evt;
1412
1413 if (last->transfer_status == 0 && !context->flushing)
1414 /* This descriptor isn't done yet, stop iteration. */
1415 return 0;
1416
1417 driver_data = (struct driver_data *) &d[3];
1418 packet = driver_data->packet;
1419 if (packet == NULL)
1420 /* This packet was cancelled, just continue. */
1421 return 1;
1422
1423 if (packet->payload_mapped)
1424 dma_unmap_single(ohci->card.device, packet->payload_bus,
1425 packet->payload_length, DMA_TO_DEVICE);
1426
1427 evt = le16_to_cpu(last->transfer_status) & 0x1f;
1428 packet->timestamp = le16_to_cpu(last->res_count);
1429
1430 log_ar_at_event(ohci, 'T', packet->speed, packet->header, evt);
1431
1432 switch (evt) {
1433 case OHCI1394_evt_timeout:
1434 /* Async response transmit timed out. */
1435 packet->ack = RCODE_CANCELLED;
1436 break;
1437
1438 case OHCI1394_evt_flushed:
1439 /*
1440 * The packet was flushed should give same error as
1441 * when we try to use a stale generation count.
1442 */
1443 packet->ack = RCODE_GENERATION;
1444 break;
1445
1446 case OHCI1394_evt_missing_ack:
1447 if (context->flushing)
1448 packet->ack = RCODE_GENERATION;
1449 else {
1450 /*
1451 * Using a valid (current) generation count, but the
1452 * node is not on the bus or not sending acks.
1453 */
1454 packet->ack = RCODE_NO_ACK;
1455 }
1456 break;
1457
1458 case ACK_COMPLETE + 0x10:
1459 case ACK_PENDING + 0x10:
1460 case ACK_BUSY_X + 0x10:
1461 case ACK_BUSY_A + 0x10:
1462 case ACK_BUSY_B + 0x10:
1463 case ACK_DATA_ERROR + 0x10:
1464 case ACK_TYPE_ERROR + 0x10:
1465 packet->ack = evt - 0x10;
1466 break;
1467
1468 case OHCI1394_evt_no_status:
1469 if (context->flushing) {
1470 packet->ack = RCODE_GENERATION;
1471 break;
1472 }
1473 /* fall through */
1474
1475 default:
1476 packet->ack = RCODE_SEND_ERROR;
1477 break;
1478 }
1479
1480 packet->callback(packet, &ohci->card, packet->ack);
1481
1482 return 1;
1483}
1484
1485#define HEADER_GET_DESTINATION(q) (((q) >> 16) & 0xffff)
1486#define HEADER_GET_TCODE(q) (((q) >> 4) & 0x0f)
1487#define HEADER_GET_OFFSET_HIGH(q) (((q) >> 0) & 0xffff)
1488#define HEADER_GET_DATA_LENGTH(q) (((q) >> 16) & 0xffff)
1489#define HEADER_GET_EXTENDED_TCODE(q) (((q) >> 0) & 0xffff)
1490
1491static void handle_local_rom(struct fw_ohci *ohci,
1492 struct fw_packet *packet, u32 csr)
1493{
1494 struct fw_packet response;
1495 int tcode, length, i;
1496
1497 tcode = HEADER_GET_TCODE(packet->header[0]);
1498 if (TCODE_IS_BLOCK_PACKET(tcode))
1499 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1500 else
1501 length = 4;
1502
1503 i = csr - CSR_CONFIG_ROM;
1504 if (i + length > CONFIG_ROM_SIZE) {
1505 fw_fill_response(&response, packet->header,
1506 RCODE_ADDRESS_ERROR, NULL, 0);
1507 } else if (!TCODE_IS_READ_REQUEST(tcode)) {
1508 fw_fill_response(&response, packet->header,
1509 RCODE_TYPE_ERROR, NULL, 0);
1510 } else {
1511 fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1512 (void *) ohci->config_rom + i, length);
1513 }
1514
1515 fw_core_handle_response(&ohci->card, &response);
1516}
1517
1518static void handle_local_lock(struct fw_ohci *ohci,
1519 struct fw_packet *packet, u32 csr)
1520{
1521 struct fw_packet response;
1522 int tcode, length, ext_tcode, sel, try;
1523 __be32 *payload, lock_old;
1524 u32 lock_arg, lock_data;
1525
1526 tcode = HEADER_GET_TCODE(packet->header[0]);
1527 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1528 payload = packet->payload;
1529 ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1530
1531 if (tcode == TCODE_LOCK_REQUEST &&
1532 ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1533 lock_arg = be32_to_cpu(payload[0]);
1534 lock_data = be32_to_cpu(payload[1]);
1535 } else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1536 lock_arg = 0;
1537 lock_data = 0;
1538 } else {
1539 fw_fill_response(&response, packet->header,
1540 RCODE_TYPE_ERROR, NULL, 0);
1541 goto out;
1542 }
1543
1544 sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1545 reg_write(ohci, OHCI1394_CSRData, lock_data);
1546 reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1547 reg_write(ohci, OHCI1394_CSRControl, sel);
1548
1549 for (try = 0; try < 20; try++)
1550 if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000) {
1551 lock_old = cpu_to_be32(reg_read(ohci,
1552 OHCI1394_CSRData));
1553 fw_fill_response(&response, packet->header,
1554 RCODE_COMPLETE,
1555 &lock_old, sizeof(lock_old));
1556 goto out;
1557 }
1558
1559 dev_err(ohci->card.device, "swap not done (CSR lock timeout)\n");
1560 fw_fill_response(&response, packet->header, RCODE_BUSY, NULL, 0);
1561
1562 out:
1563 fw_core_handle_response(&ohci->card, &response);
1564}
1565
1566static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1567{
1568 u64 offset, csr;
1569
1570 if (ctx == &ctx->ohci->at_request_ctx) {
1571 packet->ack = ACK_PENDING;
1572 packet->callback(packet, &ctx->ohci->card, packet->ack);
1573 }
1574
1575 offset =
1576 ((unsigned long long)
1577 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1578 packet->header[2];
1579 csr = offset - CSR_REGISTER_BASE;
1580
1581 /* Handle config rom reads. */
1582 if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1583 handle_local_rom(ctx->ohci, packet, csr);
1584 else switch (csr) {
1585 case CSR_BUS_MANAGER_ID:
1586 case CSR_BANDWIDTH_AVAILABLE:
1587 case CSR_CHANNELS_AVAILABLE_HI:
1588 case CSR_CHANNELS_AVAILABLE_LO:
1589 handle_local_lock(ctx->ohci, packet, csr);
1590 break;
1591 default:
1592 if (ctx == &ctx->ohci->at_request_ctx)
1593 fw_core_handle_request(&ctx->ohci->card, packet);
1594 else
1595 fw_core_handle_response(&ctx->ohci->card, packet);
1596 break;
1597 }
1598
1599 if (ctx == &ctx->ohci->at_response_ctx) {
1600 packet->ack = ACK_COMPLETE;
1601 packet->callback(packet, &ctx->ohci->card, packet->ack);
1602 }
1603}
1604
1605static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1606{
1607 unsigned long flags;
1608 int ret;
1609
1610 spin_lock_irqsave(&ctx->ohci->lock, flags);
1611
1612 if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1613 ctx->ohci->generation == packet->generation) {
1614 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1615 handle_local_request(ctx, packet);
1616 return;
1617 }
1618
1619 ret = at_context_queue_packet(ctx, packet);
1620 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1621
1622 if (ret < 0)
1623 packet->callback(packet, &ctx->ohci->card, packet->ack);
1624
1625}
1626
1627static void detect_dead_context(struct fw_ohci *ohci,
1628 const char *name, unsigned int regs)
1629{
1630 u32 ctl;
1631
1632 ctl = reg_read(ohci, CONTROL_SET(regs));
1633 if (ctl & CONTEXT_DEAD)
1634 dev_err(ohci->card.device,
1635 "DMA context %s has stopped, error code: %s\n",
1636 name, evts[ctl & 0x1f]);
1637}
1638
1639static void handle_dead_contexts(struct fw_ohci *ohci)
1640{
1641 unsigned int i;
1642 char name[8];
1643
1644 detect_dead_context(ohci, "ATReq", OHCI1394_AsReqTrContextBase);
1645 detect_dead_context(ohci, "ATRsp", OHCI1394_AsRspTrContextBase);
1646 detect_dead_context(ohci, "ARReq", OHCI1394_AsReqRcvContextBase);
1647 detect_dead_context(ohci, "ARRsp", OHCI1394_AsRspRcvContextBase);
1648 for (i = 0; i < 32; ++i) {
1649 if (!(ohci->it_context_support & (1 << i)))
1650 continue;
1651 sprintf(name, "IT%u", i);
1652 detect_dead_context(ohci, name, OHCI1394_IsoXmitContextBase(i));
1653 }
1654 for (i = 0; i < 32; ++i) {
1655 if (!(ohci->ir_context_support & (1 << i)))
1656 continue;
1657 sprintf(name, "IR%u", i);
1658 detect_dead_context(ohci, name, OHCI1394_IsoRcvContextBase(i));
1659 }
1660 /* TODO: maybe try to flush and restart the dead contexts */
1661}
1662
1663static u32 cycle_timer_ticks(u32 cycle_timer)
1664{
1665 u32 ticks;
1666
1667 ticks = cycle_timer & 0xfff;
1668 ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
1669 ticks += (3072 * 8000) * (cycle_timer >> 25);
1670
1671 return ticks;
1672}
1673
1674/*
1675 * Some controllers exhibit one or more of the following bugs when updating the
1676 * iso cycle timer register:
1677 * - When the lowest six bits are wrapping around to zero, a read that happens
1678 * at the same time will return garbage in the lowest ten bits.
1679 * - When the cycleOffset field wraps around to zero, the cycleCount field is
1680 * not incremented for about 60 ns.
1681 * - Occasionally, the entire register reads zero.
1682 *
1683 * To catch these, we read the register three times and ensure that the
1684 * difference between each two consecutive reads is approximately the same, i.e.
1685 * less than twice the other. Furthermore, any negative difference indicates an
1686 * error. (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
1687 * execute, so we have enough precision to compute the ratio of the differences.)
1688 */
1689static u32 get_cycle_time(struct fw_ohci *ohci)
1690{
1691 u32 c0, c1, c2;
1692 u32 t0, t1, t2;
1693 s32 diff01, diff12;
1694 int i;
1695
1696 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1697
1698 if (ohci->quirks & QUIRK_CYCLE_TIMER) {
1699 i = 0;
1700 c1 = c2;
1701 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1702 do {
1703 c0 = c1;
1704 c1 = c2;
1705 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1706 t0 = cycle_timer_ticks(c0);
1707 t1 = cycle_timer_ticks(c1);
1708 t2 = cycle_timer_ticks(c2);
1709 diff01 = t1 - t0;
1710 diff12 = t2 - t1;
1711 } while ((diff01 <= 0 || diff12 <= 0 ||
1712 diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
1713 && i++ < 20);
1714 }
1715
1716 return c2;
1717}
1718
1719/*
1720 * This function has to be called at least every 64 seconds. The bus_time
1721 * field stores not only the upper 25 bits of the BUS_TIME register but also
1722 * the most significant bit of the cycle timer in bit 6 so that we can detect
1723 * changes in this bit.
1724 */
1725static u32 update_bus_time(struct fw_ohci *ohci)
1726{
1727 u32 cycle_time_seconds = get_cycle_time(ohci) >> 25;
1728
1729 if ((ohci->bus_time & 0x40) != (cycle_time_seconds & 0x40))
1730 ohci->bus_time += 0x40;
1731
1732 return ohci->bus_time | cycle_time_seconds;
1733}
1734
1735static int get_status_for_port(struct fw_ohci *ohci, int port_index)
1736{
1737 int reg;
1738
1739 mutex_lock(&ohci->phy_reg_mutex);
1740 reg = write_phy_reg(ohci, 7, port_index);
1741 if (reg >= 0)
1742 reg = read_phy_reg(ohci, 8);
1743 mutex_unlock(&ohci->phy_reg_mutex);
1744 if (reg < 0)
1745 return reg;
1746
1747 switch (reg & 0x0f) {
1748 case 0x06:
1749 return 2; /* is child node (connected to parent node) */
1750 case 0x0e:
1751 return 3; /* is parent node (connected to child node) */
1752 }
1753 return 1; /* not connected */
1754}
1755
1756static int get_self_id_pos(struct fw_ohci *ohci, u32 self_id,
1757 int self_id_count)
1758{
1759 int i;
1760 u32 entry;
1761
1762 for (i = 0; i < self_id_count; i++) {
1763 entry = ohci->self_id_buffer[i];
1764 if ((self_id & 0xff000000) == (entry & 0xff000000))
1765 return -1;
1766 if ((self_id & 0xff000000) < (entry & 0xff000000))
1767 return i;
1768 }
1769 return i;
1770}
1771
1772/*
1773 * TI TSB82AA2B and TSB12LV26 do not receive the selfID of a locally
1774 * attached TSB41BA3D phy; see http://www.ti.com/litv/pdf/sllz059.
1775 * Construct the selfID from phy register contents.
1776 * FIXME: How to determine the selfID.i flag?
1777 */
1778static int find_and_insert_self_id(struct fw_ohci *ohci, int self_id_count)
1779{
1780 int reg, i, pos, status;
1781 /* link active 1, speed 3, bridge 0, contender 1, more packets 0 */
1782 u32 self_id = 0x8040c800;
1783
1784 reg = reg_read(ohci, OHCI1394_NodeID);
1785 if (!(reg & OHCI1394_NodeID_idValid)) {
1786 dev_notice(ohci->card.device,
1787 "node ID not valid, new bus reset in progress\n");
1788 return -EBUSY;
1789 }
1790 self_id |= ((reg & 0x3f) << 24); /* phy ID */
1791
1792 reg = ohci_read_phy_reg(&ohci->card, 4);
1793 if (reg < 0)
1794 return reg;
1795 self_id |= ((reg & 0x07) << 8); /* power class */
1796
1797 reg = ohci_read_phy_reg(&ohci->card, 1);
1798 if (reg < 0)
1799 return reg;
1800 self_id |= ((reg & 0x3f) << 16); /* gap count */
1801
1802 for (i = 0; i < 3; i++) {
1803 status = get_status_for_port(ohci, i);
1804 if (status < 0)
1805 return status;
1806 self_id |= ((status & 0x3) << (6 - (i * 2)));
1807 }
1808
1809 pos = get_self_id_pos(ohci, self_id, self_id_count);
1810 if (pos >= 0) {
1811 memmove(&(ohci->self_id_buffer[pos+1]),
1812 &(ohci->self_id_buffer[pos]),
1813 (self_id_count - pos) * sizeof(*ohci->self_id_buffer));
1814 ohci->self_id_buffer[pos] = self_id;
1815 self_id_count++;
1816 }
1817 return self_id_count;
1818}
1819
1820static void bus_reset_work(struct work_struct *work)
1821{
1822 struct fw_ohci *ohci =
1823 container_of(work, struct fw_ohci, bus_reset_work);
1824 int self_id_count, generation, new_generation, i, j;
1825 u32 reg;
1826 void *free_rom = NULL;
1827 dma_addr_t free_rom_bus = 0;
1828 bool is_new_root;
1829
1830 reg = reg_read(ohci, OHCI1394_NodeID);
1831 if (!(reg & OHCI1394_NodeID_idValid)) {
1832 dev_notice(ohci->card.device,
1833 "node ID not valid, new bus reset in progress\n");
1834 return;
1835 }
1836 if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1837 dev_notice(ohci->card.device, "malconfigured bus\n");
1838 return;
1839 }
1840 ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1841 OHCI1394_NodeID_nodeNumber);
1842
1843 is_new_root = (reg & OHCI1394_NodeID_root) != 0;
1844 if (!(ohci->is_root && is_new_root))
1845 reg_write(ohci, OHCI1394_LinkControlSet,
1846 OHCI1394_LinkControl_cycleMaster);
1847 ohci->is_root = is_new_root;
1848
1849 reg = reg_read(ohci, OHCI1394_SelfIDCount);
1850 if (reg & OHCI1394_SelfIDCount_selfIDError) {
1851 dev_notice(ohci->card.device, "inconsistent self IDs\n");
1852 return;
1853 }
1854 /*
1855 * The count in the SelfIDCount register is the number of
1856 * bytes in the self ID receive buffer. Since we also receive
1857 * the inverted quadlets and a header quadlet, we shift one
1858 * bit extra to get the actual number of self IDs.
1859 */
1860 self_id_count = (reg >> 3) & 0xff;
1861
1862 if (self_id_count > 252) {
1863 dev_notice(ohci->card.device, "inconsistent self IDs\n");
1864 return;
1865 }
1866
1867 generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
1868 rmb();
1869
1870 for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1871 if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1]) {
1872 /*
1873 * If the invalid data looks like a cycle start packet,
1874 * it's likely to be the result of the cycle master
1875 * having a wrong gap count. In this case, the self IDs
1876 * so far are valid and should be processed so that the
1877 * bus manager can then correct the gap count.
1878 */
1879 if (cond_le32_to_cpu(ohci->self_id_cpu[i])
1880 == 0xffff008f) {
1881 dev_notice(ohci->card.device,
1882 "ignoring spurious self IDs\n");
1883 self_id_count = j;
1884 break;
1885 } else {
1886 dev_notice(ohci->card.device,
1887 "inconsistent self IDs\n");
1888 return;
1889 }
1890 }
1891 ohci->self_id_buffer[j] =
1892 cond_le32_to_cpu(ohci->self_id_cpu[i]);
1893 }
1894
1895 if (ohci->quirks & QUIRK_TI_SLLZ059) {
1896 self_id_count = find_and_insert_self_id(ohci, self_id_count);
1897 if (self_id_count < 0) {
1898 dev_notice(ohci->card.device,
1899 "could not construct local self ID\n");
1900 return;
1901 }
1902 }
1903
1904 if (self_id_count == 0) {
1905 dev_notice(ohci->card.device, "inconsistent self IDs\n");
1906 return;
1907 }
1908 rmb();
1909
1910 /*
1911 * Check the consistency of the self IDs we just read. The
1912 * problem we face is that a new bus reset can start while we
1913 * read out the self IDs from the DMA buffer. If this happens,
1914 * the DMA buffer will be overwritten with new self IDs and we
1915 * will read out inconsistent data. The OHCI specification
1916 * (section 11.2) recommends a technique similar to
1917 * linux/seqlock.h, where we remember the generation of the
1918 * self IDs in the buffer before reading them out and compare
1919 * it to the current generation after reading them out. If
1920 * the two generations match we know we have a consistent set
1921 * of self IDs.
1922 */
1923
1924 new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
1925 if (new_generation != generation) {
1926 dev_notice(ohci->card.device,
1927 "new bus reset, discarding self ids\n");
1928 return;
1929 }
1930
1931 /* FIXME: Document how the locking works. */
1932 spin_lock_irq(&ohci->lock);
1933
1934 ohci->generation = -1; /* prevent AT packet queueing */
1935 context_stop(&ohci->at_request_ctx);
1936 context_stop(&ohci->at_response_ctx);
1937
1938 spin_unlock_irq(&ohci->lock);
1939
1940 /*
1941 * Per OHCI 1.2 draft, clause 7.2.3.3, hardware may leave unsent
1942 * packets in the AT queues and software needs to drain them.
1943 * Some OHCI 1.1 controllers (JMicron) apparently require this too.
1944 */
1945 at_context_flush(&ohci->at_request_ctx);
1946 at_context_flush(&ohci->at_response_ctx);
1947
1948 spin_lock_irq(&ohci->lock);
1949
1950 ohci->generation = generation;
1951 reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
1952
1953 if (ohci->quirks & QUIRK_RESET_PACKET)
1954 ohci->request_generation = generation;
1955
1956 /*
1957 * This next bit is unrelated to the AT context stuff but we
1958 * have to do it under the spinlock also. If a new config rom
1959 * was set up before this reset, the old one is now no longer
1960 * in use and we can free it. Update the config rom pointers
1961 * to point to the current config rom and clear the
1962 * next_config_rom pointer so a new update can take place.
1963 */
1964
1965 if (ohci->next_config_rom != NULL) {
1966 if (ohci->next_config_rom != ohci->config_rom) {
1967 free_rom = ohci->config_rom;
1968 free_rom_bus = ohci->config_rom_bus;
1969 }
1970 ohci->config_rom = ohci->next_config_rom;
1971 ohci->config_rom_bus = ohci->next_config_rom_bus;
1972 ohci->next_config_rom = NULL;
1973
1974 /*
1975 * Restore config_rom image and manually update
1976 * config_rom registers. Writing the header quadlet
1977 * will indicate that the config rom is ready, so we
1978 * do that last.
1979 */
1980 reg_write(ohci, OHCI1394_BusOptions,
1981 be32_to_cpu(ohci->config_rom[2]));
1982 ohci->config_rom[0] = ohci->next_header;
1983 reg_write(ohci, OHCI1394_ConfigROMhdr,
1984 be32_to_cpu(ohci->next_header));
1985 }
1986
1987#ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1988 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
1989 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
1990#endif
1991
1992 spin_unlock_irq(&ohci->lock);
1993
1994 if (free_rom)
1995 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1996 free_rom, free_rom_bus);
1997
1998 log_selfids(ohci, generation, self_id_count);
1999
2000 fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
2001 self_id_count, ohci->self_id_buffer,
2002 ohci->csr_state_setclear_abdicate);
2003 ohci->csr_state_setclear_abdicate = false;
2004}
2005
2006static irqreturn_t irq_handler(int irq, void *data)
2007{
2008 struct fw_ohci *ohci = data;
2009 u32 event, iso_event;
2010 int i;
2011
2012 event = reg_read(ohci, OHCI1394_IntEventClear);
2013
2014 if (!event || !~event)
2015 return IRQ_NONE;
2016
2017 /*
2018 * busReset and postedWriteErr must not be cleared yet
2019 * (OHCI 1.1 clauses 7.2.3.2 and 13.2.8.1)
2020 */
2021 reg_write(ohci, OHCI1394_IntEventClear,
2022 event & ~(OHCI1394_busReset | OHCI1394_postedWriteErr));
2023 log_irqs(ohci, event);
2024
2025 if (event & OHCI1394_selfIDComplete)
2026 queue_work(fw_workqueue, &ohci->bus_reset_work);
2027
2028 if (event & OHCI1394_RQPkt)
2029 tasklet_schedule(&ohci->ar_request_ctx.tasklet);
2030
2031 if (event & OHCI1394_RSPkt)
2032 tasklet_schedule(&ohci->ar_response_ctx.tasklet);
2033
2034 if (event & OHCI1394_reqTxComplete)
2035 tasklet_schedule(&ohci->at_request_ctx.tasklet);
2036
2037 if (event & OHCI1394_respTxComplete)
2038 tasklet_schedule(&ohci->at_response_ctx.tasklet);
2039
2040 if (event & OHCI1394_isochRx) {
2041 iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
2042 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
2043
2044 while (iso_event) {
2045 i = ffs(iso_event) - 1;
2046 tasklet_schedule(
2047 &ohci->ir_context_list[i].context.tasklet);
2048 iso_event &= ~(1 << i);
2049 }
2050 }
2051
2052 if (event & OHCI1394_isochTx) {
2053 iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
2054 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
2055
2056 while (iso_event) {
2057 i = ffs(iso_event) - 1;
2058 tasklet_schedule(
2059 &ohci->it_context_list[i].context.tasklet);
2060 iso_event &= ~(1 << i);
2061 }
2062 }
2063
2064 if (unlikely(event & OHCI1394_regAccessFail))
2065 dev_err(ohci->card.device, "register access failure\n");
2066
2067 if (unlikely(event & OHCI1394_postedWriteErr)) {
2068 reg_read(ohci, OHCI1394_PostedWriteAddressHi);
2069 reg_read(ohci, OHCI1394_PostedWriteAddressLo);
2070 reg_write(ohci, OHCI1394_IntEventClear,
2071 OHCI1394_postedWriteErr);
2072 if (printk_ratelimit())
2073 dev_err(ohci->card.device, "PCI posted write error\n");
2074 }
2075
2076 if (unlikely(event & OHCI1394_cycleTooLong)) {
2077 if (printk_ratelimit())
2078 dev_notice(ohci->card.device,
2079 "isochronous cycle too long\n");
2080 reg_write(ohci, OHCI1394_LinkControlSet,
2081 OHCI1394_LinkControl_cycleMaster);
2082 }
2083
2084 if (unlikely(event & OHCI1394_cycleInconsistent)) {
2085 /*
2086 * We need to clear this event bit in order to make
2087 * cycleMatch isochronous I/O work. In theory we should
2088 * stop active cycleMatch iso contexts now and restart
2089 * them at least two cycles later. (FIXME?)
2090 */
2091 if (printk_ratelimit())
2092 dev_notice(ohci->card.device,
2093 "isochronous cycle inconsistent\n");
2094 }
2095
2096 if (unlikely(event & OHCI1394_unrecoverableError))
2097 handle_dead_contexts(ohci);
2098
2099 if (event & OHCI1394_cycle64Seconds) {
2100 spin_lock(&ohci->lock);
2101 update_bus_time(ohci);
2102 spin_unlock(&ohci->lock);
2103 } else
2104 flush_writes(ohci);
2105
2106 return IRQ_HANDLED;
2107}
2108
2109static int software_reset(struct fw_ohci *ohci)
2110{
2111 u32 val;
2112 int i;
2113
2114 reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
2115 for (i = 0; i < 500; i++) {
2116 val = reg_read(ohci, OHCI1394_HCControlSet);
2117 if (!~val)
2118 return -ENODEV; /* Card was ejected. */
2119
2120 if (!(val & OHCI1394_HCControl_softReset))
2121 return 0;
2122
2123 msleep(1);
2124 }
2125
2126 return -EBUSY;
2127}
2128
2129static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
2130{
2131 size_t size = length * 4;
2132
2133 memcpy(dest, src, size);
2134 if (size < CONFIG_ROM_SIZE)
2135 memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
2136}
2137
2138static int configure_1394a_enhancements(struct fw_ohci *ohci)
2139{
2140 bool enable_1394a;
2141 int ret, clear, set, offset;
2142
2143 /* Check if the driver should configure link and PHY. */
2144 if (!(reg_read(ohci, OHCI1394_HCControlSet) &
2145 OHCI1394_HCControl_programPhyEnable))
2146 return 0;
2147
2148 /* Paranoia: check whether the PHY supports 1394a, too. */
2149 enable_1394a = false;
2150 ret = read_phy_reg(ohci, 2);
2151 if (ret < 0)
2152 return ret;
2153 if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
2154 ret = read_paged_phy_reg(ohci, 1, 8);
2155 if (ret < 0)
2156 return ret;
2157 if (ret >= 1)
2158 enable_1394a = true;
2159 }
2160
2161 if (ohci->quirks & QUIRK_NO_1394A)
2162 enable_1394a = false;
2163
2164 /* Configure PHY and link consistently. */
2165 if (enable_1394a) {
2166 clear = 0;
2167 set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2168 } else {
2169 clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2170 set = 0;
2171 }
2172 ret = update_phy_reg(ohci, 5, clear, set);
2173 if (ret < 0)
2174 return ret;
2175
2176 if (enable_1394a)
2177 offset = OHCI1394_HCControlSet;
2178 else
2179 offset = OHCI1394_HCControlClear;
2180 reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);
2181
2182 /* Clean up: configuration has been taken care of. */
2183 reg_write(ohci, OHCI1394_HCControlClear,
2184 OHCI1394_HCControl_programPhyEnable);
2185
2186 return 0;
2187}
2188
2189static int probe_tsb41ba3d(struct fw_ohci *ohci)
2190{
2191 /* TI vendor ID = 0x080028, TSB41BA3D product ID = 0x833005 (sic) */
2192 static const u8 id[] = { 0x08, 0x00, 0x28, 0x83, 0x30, 0x05, };
2193 int reg, i;
2194
2195 reg = read_phy_reg(ohci, 2);
2196 if (reg < 0)
2197 return reg;
2198 if ((reg & PHY_EXTENDED_REGISTERS) != PHY_EXTENDED_REGISTERS)
2199 return 0;
2200
2201 for (i = ARRAY_SIZE(id) - 1; i >= 0; i--) {
2202 reg = read_paged_phy_reg(ohci, 1, i + 10);
2203 if (reg < 0)
2204 return reg;
2205 if (reg != id[i])
2206 return 0;
2207 }
2208 return 1;
2209}
2210
2211static int ohci_enable(struct fw_card *card,
2212 const __be32 *config_rom, size_t length)
2213{
2214 struct fw_ohci *ohci = fw_ohci(card);
2215 struct pci_dev *dev = to_pci_dev(card->device);
2216 u32 lps, seconds, version, irqs;
2217 int i, ret;
2218
2219 if (software_reset(ohci)) {
2220 dev_err(card->device, "failed to reset ohci card\n");
2221 return -EBUSY;
2222 }
2223
2224 /*
2225 * Now enable LPS, which we need in order to start accessing
2226 * most of the registers. In fact, on some cards (ALI M5251),
2227 * accessing registers in the SClk domain without LPS enabled
2228 * will lock up the machine. Wait 50msec to make sure we have
2229 * full link enabled. However, with some cards (well, at least
2230 * a JMicron PCIe card), we have to try again sometimes.
2231 */
2232 reg_write(ohci, OHCI1394_HCControlSet,
2233 OHCI1394_HCControl_LPS |
2234 OHCI1394_HCControl_postedWriteEnable);
2235 flush_writes(ohci);
2236
2237 for (lps = 0, i = 0; !lps && i < 3; i++) {
2238 msleep(50);
2239 lps = reg_read(ohci, OHCI1394_HCControlSet) &
2240 OHCI1394_HCControl_LPS;
2241 }
2242
2243 if (!lps) {
2244 dev_err(card->device, "failed to set Link Power Status\n");
2245 return -EIO;
2246 }
2247
2248 if (ohci->quirks & QUIRK_TI_SLLZ059) {
2249 ret = probe_tsb41ba3d(ohci);
2250 if (ret < 0)
2251 return ret;
2252 if (ret)
2253 dev_notice(card->device, "local TSB41BA3D phy\n");
2254 else
2255 ohci->quirks &= ~QUIRK_TI_SLLZ059;
2256 }
2257
2258 reg_write(ohci, OHCI1394_HCControlClear,
2259 OHCI1394_HCControl_noByteSwapData);
2260
2261 reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
2262 reg_write(ohci, OHCI1394_LinkControlSet,
2263 OHCI1394_LinkControl_cycleTimerEnable |
2264 OHCI1394_LinkControl_cycleMaster);
2265
2266 reg_write(ohci, OHCI1394_ATRetries,
2267 OHCI1394_MAX_AT_REQ_RETRIES |
2268 (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
2269 (OHCI1394_MAX_PHYS_RESP_RETRIES << 8) |
2270 (200 << 16));
2271
2272 seconds = lower_32_bits(get_seconds());
2273 reg_write(ohci, OHCI1394_IsochronousCycleTimer, seconds << 25);
2274 ohci->bus_time = seconds & ~0x3f;
2275
2276 version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2277 if (version >= OHCI_VERSION_1_1) {
2278 reg_write(ohci, OHCI1394_InitialChannelsAvailableHi,
2279 0xfffffffe);
2280 card->broadcast_channel_auto_allocated = true;
2281 }
2282
2283 /* Get implemented bits of the priority arbitration request counter. */
2284 reg_write(ohci, OHCI1394_FairnessControl, 0x3f);
2285 ohci->pri_req_max = reg_read(ohci, OHCI1394_FairnessControl) & 0x3f;
2286 reg_write(ohci, OHCI1394_FairnessControl, 0);
2287 card->priority_budget_implemented = ohci->pri_req_max != 0;
2288
2289 reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
2290 reg_write(ohci, OHCI1394_IntEventClear, ~0);
2291 reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2292
2293 ret = configure_1394a_enhancements(ohci);
2294 if (ret < 0)
2295 return ret;
2296
2297 /* Activate link_on bit and contender bit in our self ID packets.*/
2298 ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER);
2299 if (ret < 0)
2300 return ret;
2301
2302 /*
2303 * When the link is not yet enabled, the atomic config rom
2304 * update mechanism described below in ohci_set_config_rom()
2305 * is not active. We have to update ConfigRomHeader and
2306 * BusOptions manually, and the write to ConfigROMmap takes
2307 * effect immediately. We tie this to the enabling of the
2308 * link, so we have a valid config rom before enabling - the
2309 * OHCI requires that ConfigROMhdr and BusOptions have valid
2310 * values before enabling.
2311 *
2312 * However, when the ConfigROMmap is written, some controllers
2313 * always read back quadlets 0 and 2 from the config rom to
2314 * the ConfigRomHeader and BusOptions registers on bus reset.
2315 * They shouldn't do that in this initial case where the link
2316 * isn't enabled. This means we have to use the same
2317 * workaround here, setting the bus header to 0 and then write
2318 * the right values in the bus reset tasklet.
2319 */
2320
2321 if (config_rom) {
2322 ohci->next_config_rom =
2323 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2324 &ohci->next_config_rom_bus,
2325 GFP_KERNEL);
2326 if (ohci->next_config_rom == NULL)
2327 return -ENOMEM;
2328
2329 copy_config_rom(ohci->next_config_rom, config_rom, length);
2330 } else {
2331 /*
2332 * In the suspend case, config_rom is NULL, which
2333 * means that we just reuse the old config rom.
2334 */
2335 ohci->next_config_rom = ohci->config_rom;
2336 ohci->next_config_rom_bus = ohci->config_rom_bus;
2337 }
2338
2339 ohci->next_header = ohci->next_config_rom[0];
2340 ohci->next_config_rom[0] = 0;
2341 reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
2342 reg_write(ohci, OHCI1394_BusOptions,
2343 be32_to_cpu(ohci->next_config_rom[2]));
2344 reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2345
2346 reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
2347
2348 if (!(ohci->quirks & QUIRK_NO_MSI))
2349 pci_enable_msi(dev);
2350 if (request_irq(dev->irq, irq_handler,
2351 pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED,
2352 ohci_driver_name, ohci)) {
2353 dev_err(card->device, "failed to allocate interrupt %d\n",
2354 dev->irq);
2355 pci_disable_msi(dev);
2356
2357 if (config_rom) {
2358 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2359 ohci->next_config_rom,
2360 ohci->next_config_rom_bus);
2361 ohci->next_config_rom = NULL;
2362 }
2363 return -EIO;
2364 }
2365
2366 irqs = OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
2367 OHCI1394_RQPkt | OHCI1394_RSPkt |
2368 OHCI1394_isochTx | OHCI1394_isochRx |
2369 OHCI1394_postedWriteErr |
2370 OHCI1394_selfIDComplete |
2371 OHCI1394_regAccessFail |
2372 OHCI1394_cycle64Seconds |
2373 OHCI1394_cycleInconsistent |
2374 OHCI1394_unrecoverableError |
2375 OHCI1394_cycleTooLong |
2376 OHCI1394_masterIntEnable;
2377 if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
2378 irqs |= OHCI1394_busReset;
2379 reg_write(ohci, OHCI1394_IntMaskSet, irqs);
2380
2381 reg_write(ohci, OHCI1394_HCControlSet,
2382 OHCI1394_HCControl_linkEnable |
2383 OHCI1394_HCControl_BIBimageValid);
2384
2385 reg_write(ohci, OHCI1394_LinkControlSet,
2386 OHCI1394_LinkControl_rcvSelfID |
2387 OHCI1394_LinkControl_rcvPhyPkt);
2388
2389 ar_context_run(&ohci->ar_request_ctx);
2390 ar_context_run(&ohci->ar_response_ctx);
2391
2392 flush_writes(ohci);
2393
2394 /* We are ready to go, reset bus to finish initialization. */
2395 fw_schedule_bus_reset(&ohci->card, false, true);
2396
2397 return 0;
2398}
2399
2400static int ohci_set_config_rom(struct fw_card *card,
2401 const __be32 *config_rom, size_t length)
2402{
2403 struct fw_ohci *ohci;
2404 __be32 *next_config_rom;
2405 dma_addr_t uninitialized_var(next_config_rom_bus);
2406
2407 ohci = fw_ohci(card);
2408
2409 /*
2410 * When the OHCI controller is enabled, the config rom update
2411 * mechanism is a bit tricky, but easy enough to use. See
2412 * section 5.5.6 in the OHCI specification.
2413 *
2414 * The OHCI controller caches the new config rom address in a
2415 * shadow register (ConfigROMmapNext) and needs a bus reset
2416 * for the changes to take place. When the bus reset is
2417 * detected, the controller loads the new values for the
2418 * ConfigRomHeader and BusOptions registers from the specified
2419 * config rom and loads ConfigROMmap from the ConfigROMmapNext
2420 * shadow register. All automatically and atomically.
2421 *
2422 * Now, there's a twist to this story. The automatic load of
2423 * ConfigRomHeader and BusOptions doesn't honor the
2424 * noByteSwapData bit, so with a be32 config rom, the
2425 * controller will load be32 values in to these registers
2426 * during the atomic update, even on litte endian
2427 * architectures. The workaround we use is to put a 0 in the
2428 * header quadlet; 0 is endian agnostic and means that the
2429 * config rom isn't ready yet. In the bus reset tasklet we
2430 * then set up the real values for the two registers.
2431 *
2432 * We use ohci->lock to avoid racing with the code that sets
2433 * ohci->next_config_rom to NULL (see bus_reset_work).
2434 */
2435
2436 next_config_rom =
2437 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2438 &next_config_rom_bus, GFP_KERNEL);
2439 if (next_config_rom == NULL)
2440 return -ENOMEM;
2441
2442 spin_lock_irq(&ohci->lock);
2443
2444 /*
2445 * If there is not an already pending config_rom update,
2446 * push our new allocation into the ohci->next_config_rom
2447 * and then mark the local variable as null so that we
2448 * won't deallocate the new buffer.
2449 *
2450 * OTOH, if there is a pending config_rom update, just
2451 * use that buffer with the new config_rom data, and
2452 * let this routine free the unused DMA allocation.
2453 */
2454
2455 if (ohci->next_config_rom == NULL) {
2456 ohci->next_config_rom = next_config_rom;
2457 ohci->next_config_rom_bus = next_config_rom_bus;
2458 next_config_rom = NULL;
2459 }
2460
2461 copy_config_rom(ohci->next_config_rom, config_rom, length);
2462
2463 ohci->next_header = config_rom[0];
2464 ohci->next_config_rom[0] = 0;
2465
2466 reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2467
2468 spin_unlock_irq(&ohci->lock);
2469
2470 /* If we didn't use the DMA allocation, delete it. */
2471 if (next_config_rom != NULL)
2472 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2473 next_config_rom, next_config_rom_bus);
2474
2475 /*
2476 * Now initiate a bus reset to have the changes take
2477 * effect. We clean up the old config rom memory and DMA
2478 * mappings in the bus reset tasklet, since the OHCI
2479 * controller could need to access it before the bus reset
2480 * takes effect.
2481 */
2482
2483 fw_schedule_bus_reset(&ohci->card, true, true);
2484
2485 return 0;
2486}
2487
2488static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
2489{
2490 struct fw_ohci *ohci = fw_ohci(card);
2491
2492 at_context_transmit(&ohci->at_request_ctx, packet);
2493}
2494
2495static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
2496{
2497 struct fw_ohci *ohci = fw_ohci(card);
2498
2499 at_context_transmit(&ohci->at_response_ctx, packet);
2500}
2501
2502static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
2503{
2504 struct fw_ohci *ohci = fw_ohci(card);
2505 struct context *ctx = &ohci->at_request_ctx;
2506 struct driver_data *driver_data = packet->driver_data;
2507 int ret = -ENOENT;
2508
2509 tasklet_disable(&ctx->tasklet);
2510
2511 if (packet->ack != 0)
2512 goto out;
2513
2514 if (packet->payload_mapped)
2515 dma_unmap_single(ohci->card.device, packet->payload_bus,
2516 packet->payload_length, DMA_TO_DEVICE);
2517
2518 log_ar_at_event(ohci, 'T', packet->speed, packet->header, 0x20);
2519 driver_data->packet = NULL;
2520 packet->ack = RCODE_CANCELLED;
2521 packet->callback(packet, &ohci->card, packet->ack);
2522 ret = 0;
2523 out:
2524 tasklet_enable(&ctx->tasklet);
2525
2526 return ret;
2527}
2528
2529static int ohci_enable_phys_dma(struct fw_card *card,
2530 int node_id, int generation)
2531{
2532#ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
2533 return 0;
2534#else
2535 struct fw_ohci *ohci = fw_ohci(card);
2536 unsigned long flags;
2537 int n, ret = 0;
2538
2539 /*
2540 * FIXME: Make sure this bitmask is cleared when we clear the busReset
2541 * interrupt bit. Clear physReqResourceAllBuses on bus reset.
2542 */
2543
2544 spin_lock_irqsave(&ohci->lock, flags);
2545
2546 if (ohci->generation != generation) {
2547 ret = -ESTALE;
2548 goto out;
2549 }
2550
2551 /*
2552 * Note, if the node ID contains a non-local bus ID, physical DMA is
2553 * enabled for _all_ nodes on remote buses.
2554 */
2555
2556 n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
2557 if (n < 32)
2558 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
2559 else
2560 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
2561
2562 flush_writes(ohci);
2563 out:
2564 spin_unlock_irqrestore(&ohci->lock, flags);
2565
2566 return ret;
2567#endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
2568}
2569
2570static u32 ohci_read_csr(struct fw_card *card, int csr_offset)
2571{
2572 struct fw_ohci *ohci = fw_ohci(card);
2573 unsigned long flags;
2574 u32 value;
2575
2576 switch (csr_offset) {
2577 case CSR_STATE_CLEAR:
2578 case CSR_STATE_SET:
2579 if (ohci->is_root &&
2580 (reg_read(ohci, OHCI1394_LinkControlSet) &
2581 OHCI1394_LinkControl_cycleMaster))
2582 value = CSR_STATE_BIT_CMSTR;
2583 else
2584 value = 0;
2585 if (ohci->csr_state_setclear_abdicate)
2586 value |= CSR_STATE_BIT_ABDICATE;
2587
2588 return value;
2589
2590 case CSR_NODE_IDS:
2591 return reg_read(ohci, OHCI1394_NodeID) << 16;
2592
2593 case CSR_CYCLE_TIME:
2594 return get_cycle_time(ohci);
2595
2596 case CSR_BUS_TIME:
2597 /*
2598 * We might be called just after the cycle timer has wrapped
2599 * around but just before the cycle64Seconds handler, so we
2600 * better check here, too, if the bus time needs to be updated.
2601 */
2602 spin_lock_irqsave(&ohci->lock, flags);
2603 value = update_bus_time(ohci);
2604 spin_unlock_irqrestore(&ohci->lock, flags);
2605 return value;
2606
2607 case CSR_BUSY_TIMEOUT:
2608 value = reg_read(ohci, OHCI1394_ATRetries);
2609 return (value >> 4) & 0x0ffff00f;
2610
2611 case CSR_PRIORITY_BUDGET:
2612 return (reg_read(ohci, OHCI1394_FairnessControl) & 0x3f) |
2613 (ohci->pri_req_max << 8);
2614
2615 default:
2616 WARN_ON(1);
2617 return 0;
2618 }
2619}
2620
2621static void ohci_write_csr(struct fw_card *card, int csr_offset, u32 value)
2622{
2623 struct fw_ohci *ohci = fw_ohci(card);
2624 unsigned long flags;
2625
2626 switch (csr_offset) {
2627 case CSR_STATE_CLEAR:
2628 if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2629 reg_write(ohci, OHCI1394_LinkControlClear,
2630 OHCI1394_LinkControl_cycleMaster);
2631 flush_writes(ohci);
2632 }
2633 if (value & CSR_STATE_BIT_ABDICATE)
2634 ohci->csr_state_setclear_abdicate = false;
2635 break;
2636
2637 case CSR_STATE_SET:
2638 if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2639 reg_write(ohci, OHCI1394_LinkControlSet,
2640 OHCI1394_LinkControl_cycleMaster);
2641 flush_writes(ohci);
2642 }
2643 if (value & CSR_STATE_BIT_ABDICATE)
2644 ohci->csr_state_setclear_abdicate = true;
2645 break;
2646
2647 case CSR_NODE_IDS:
2648 reg_write(ohci, OHCI1394_NodeID, value >> 16);
2649 flush_writes(ohci);
2650 break;
2651
2652 case CSR_CYCLE_TIME:
2653 reg_write(ohci, OHCI1394_IsochronousCycleTimer, value);
2654 reg_write(ohci, OHCI1394_IntEventSet,
2655 OHCI1394_cycleInconsistent);
2656 flush_writes(ohci);
2657 break;
2658
2659 case CSR_BUS_TIME:
2660 spin_lock_irqsave(&ohci->lock, flags);
2661 ohci->bus_time = (ohci->bus_time & 0x7f) | (value & ~0x7f);
2662 spin_unlock_irqrestore(&ohci->lock, flags);
2663 break;
2664
2665 case CSR_BUSY_TIMEOUT:
2666 value = (value & 0xf) | ((value & 0xf) << 4) |
2667 ((value & 0xf) << 8) | ((value & 0x0ffff000) << 4);
2668 reg_write(ohci, OHCI1394_ATRetries, value);
2669 flush_writes(ohci);
2670 break;
2671
2672 case CSR_PRIORITY_BUDGET:
2673 reg_write(ohci, OHCI1394_FairnessControl, value & 0x3f);
2674 flush_writes(ohci);
2675 break;
2676
2677 default:
2678 WARN_ON(1);
2679 break;
2680 }
2681}
2682
2683static void flush_iso_completions(struct iso_context *ctx)
2684{
2685 ctx->base.callback.sc(&ctx->base, ctx->last_timestamp,
2686 ctx->header_length, ctx->header,
2687 ctx->base.callback_data);
2688 ctx->header_length = 0;
2689}
2690
2691static void copy_iso_headers(struct iso_context *ctx, const u32 *dma_hdr)
2692{
2693 u32 *ctx_hdr;
2694
2695 if (ctx->header_length + ctx->base.header_size > PAGE_SIZE)
2696 flush_iso_completions(ctx);
2697
2698 ctx_hdr = ctx->header + ctx->header_length;
2699 ctx->last_timestamp = (u16)le32_to_cpu((__force __le32)dma_hdr[0]);
2700
2701 /*
2702 * The two iso header quadlets are byteswapped to little
2703 * endian by the controller, but we want to present them
2704 * as big endian for consistency with the bus endianness.
2705 */
2706 if (ctx->base.header_size > 0)
2707 ctx_hdr[0] = swab32(dma_hdr[1]); /* iso packet header */
2708 if (ctx->base.header_size > 4)
2709 ctx_hdr[1] = swab32(dma_hdr[0]); /* timestamp */
2710 if (ctx->base.header_size > 8)
2711 memcpy(&ctx_hdr[2], &dma_hdr[2], ctx->base.header_size - 8);
2712 ctx->header_length += ctx->base.header_size;
2713}
2714
2715static int handle_ir_packet_per_buffer(struct context *context,
2716 struct descriptor *d,
2717 struct descriptor *last)
2718{
2719 struct iso_context *ctx =
2720 container_of(context, struct iso_context, context);
2721 struct descriptor *pd;
2722 u32 buffer_dma;
2723
2724 for (pd = d; pd <= last; pd++)
2725 if (pd->transfer_status)
2726 break;
2727 if (pd > last)
2728 /* Descriptor(s) not done yet, stop iteration */
2729 return 0;
2730
2731 while (!(d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))) {
2732 d++;
2733 buffer_dma = le32_to_cpu(d->data_address);
2734 dma_sync_single_range_for_cpu(context->ohci->card.device,
2735 buffer_dma & PAGE_MASK,
2736 buffer_dma & ~PAGE_MASK,
2737 le16_to_cpu(d->req_count),
2738 DMA_FROM_DEVICE);
2739 }
2740
2741 copy_iso_headers(ctx, (u32 *) (last + 1));
2742
2743 if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS))
2744 flush_iso_completions(ctx);
2745
2746 return 1;
2747}
2748
2749/* d == last because each descriptor block is only a single descriptor. */
2750static int handle_ir_buffer_fill(struct context *context,
2751 struct descriptor *d,
2752 struct descriptor *last)
2753{
2754 struct iso_context *ctx =
2755 container_of(context, struct iso_context, context);
2756 unsigned int req_count, res_count, completed;
2757 u32 buffer_dma;
2758
2759 req_count = le16_to_cpu(last->req_count);
2760 res_count = le16_to_cpu(ACCESS_ONCE(last->res_count));
2761 completed = req_count - res_count;
2762 buffer_dma = le32_to_cpu(last->data_address);
2763
2764 if (completed > 0) {
2765 ctx->mc_buffer_bus = buffer_dma;
2766 ctx->mc_completed = completed;
2767 }
2768
2769 if (res_count != 0)
2770 /* Descriptor(s) not done yet, stop iteration */
2771 return 0;
2772
2773 dma_sync_single_range_for_cpu(context->ohci->card.device,
2774 buffer_dma & PAGE_MASK,
2775 buffer_dma & ~PAGE_MASK,
2776 completed, DMA_FROM_DEVICE);
2777
2778 if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS)) {
2779 ctx->base.callback.mc(&ctx->base,
2780 buffer_dma + completed,
2781 ctx->base.callback_data);
2782 ctx->mc_completed = 0;
2783 }
2784
2785 return 1;
2786}
2787
2788static void flush_ir_buffer_fill(struct iso_context *ctx)
2789{
2790 dma_sync_single_range_for_cpu(ctx->context.ohci->card.device,
2791 ctx->mc_buffer_bus & PAGE_MASK,
2792 ctx->mc_buffer_bus & ~PAGE_MASK,
2793 ctx->mc_completed, DMA_FROM_DEVICE);
2794
2795 ctx->base.callback.mc(&ctx->base,
2796 ctx->mc_buffer_bus + ctx->mc_completed,
2797 ctx->base.callback_data);
2798 ctx->mc_completed = 0;
2799}
2800
2801static inline void sync_it_packet_for_cpu(struct context *context,
2802 struct descriptor *pd)
2803{
2804 __le16 control;
2805 u32 buffer_dma;
2806
2807 /* only packets beginning with OUTPUT_MORE* have data buffers */
2808 if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
2809 return;
2810
2811 /* skip over the OUTPUT_MORE_IMMEDIATE descriptor */
2812 pd += 2;
2813
2814 /*
2815 * If the packet has a header, the first OUTPUT_MORE/LAST descriptor's
2816 * data buffer is in the context program's coherent page and must not
2817 * be synced.
2818 */
2819 if ((le32_to_cpu(pd->data_address) & PAGE_MASK) ==
2820 (context->current_bus & PAGE_MASK)) {
2821 if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
2822 return;
2823 pd++;
2824 }
2825
2826 do {
2827 buffer_dma = le32_to_cpu(pd->data_address);
2828 dma_sync_single_range_for_cpu(context->ohci->card.device,
2829 buffer_dma & PAGE_MASK,
2830 buffer_dma & ~PAGE_MASK,
2831 le16_to_cpu(pd->req_count),
2832 DMA_TO_DEVICE);
2833 control = pd->control;
2834 pd++;
2835 } while (!(control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS)));
2836}
2837
2838static int handle_it_packet(struct context *context,
2839 struct descriptor *d,
2840 struct descriptor *last)
2841{
2842 struct iso_context *ctx =
2843 container_of(context, struct iso_context, context);
2844 struct descriptor *pd;
2845 __be32 *ctx_hdr;
2846
2847 for (pd = d; pd <= last; pd++)
2848 if (pd->transfer_status)
2849 break;
2850 if (pd > last)
2851 /* Descriptor(s) not done yet, stop iteration */
2852 return 0;
2853
2854 sync_it_packet_for_cpu(context, d);
2855
2856 if (ctx->header_length + 4 > PAGE_SIZE)
2857 flush_iso_completions(ctx);
2858
2859 ctx_hdr = ctx->header + ctx->header_length;
2860 ctx->last_timestamp = le16_to_cpu(last->res_count);
2861 /* Present this value as big-endian to match the receive code */
2862 *ctx_hdr = cpu_to_be32((le16_to_cpu(pd->transfer_status) << 16) |
2863 le16_to_cpu(pd->res_count));
2864 ctx->header_length += 4;
2865
2866 if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS))
2867 flush_iso_completions(ctx);
2868
2869 return 1;
2870}
2871
2872static void set_multichannel_mask(struct fw_ohci *ohci, u64 channels)
2873{
2874 u32 hi = channels >> 32, lo = channels;
2875
2876 reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear, ~hi);
2877 reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear, ~lo);
2878 reg_write(ohci, OHCI1394_IRMultiChanMaskHiSet, hi);
2879 reg_write(ohci, OHCI1394_IRMultiChanMaskLoSet, lo);
2880 mmiowb();
2881 ohci->mc_channels = channels;
2882}
2883
2884static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
2885 int type, int channel, size_t header_size)
2886{
2887 struct fw_ohci *ohci = fw_ohci(card);
2888 struct iso_context *uninitialized_var(ctx);
2889 descriptor_callback_t uninitialized_var(callback);
2890 u64 *uninitialized_var(channels);
2891 u32 *uninitialized_var(mask), uninitialized_var(regs);
2892 int index, ret = -EBUSY;
2893
2894 spin_lock_irq(&ohci->lock);
2895
2896 switch (type) {
2897 case FW_ISO_CONTEXT_TRANSMIT:
2898 mask = &ohci->it_context_mask;
2899 callback = handle_it_packet;
2900 index = ffs(*mask) - 1;
2901 if (index >= 0) {
2902 *mask &= ~(1 << index);
2903 regs = OHCI1394_IsoXmitContextBase(index);
2904 ctx = &ohci->it_context_list[index];
2905 }
2906 break;
2907
2908 case FW_ISO_CONTEXT_RECEIVE:
2909 channels = &ohci->ir_context_channels;
2910 mask = &ohci->ir_context_mask;
2911 callback = handle_ir_packet_per_buffer;
2912 index = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
2913 if (index >= 0) {
2914 *channels &= ~(1ULL << channel);
2915 *mask &= ~(1 << index);
2916 regs = OHCI1394_IsoRcvContextBase(index);
2917 ctx = &ohci->ir_context_list[index];
2918 }
2919 break;
2920
2921 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2922 mask = &ohci->ir_context_mask;
2923 callback = handle_ir_buffer_fill;
2924 index = !ohci->mc_allocated ? ffs(*mask) - 1 : -1;
2925 if (index >= 0) {
2926 ohci->mc_allocated = true;
2927 *mask &= ~(1 << index);
2928 regs = OHCI1394_IsoRcvContextBase(index);
2929 ctx = &ohci->ir_context_list[index];
2930 }
2931 break;
2932
2933 default:
2934 index = -1;
2935 ret = -ENOSYS;
2936 }
2937
2938 spin_unlock_irq(&ohci->lock);
2939
2940 if (index < 0)
2941 return ERR_PTR(ret);
2942
2943 memset(ctx, 0, sizeof(*ctx));
2944 ctx->header_length = 0;
2945 ctx->header = (void *) __get_free_page(GFP_KERNEL);
2946 if (ctx->header == NULL) {
2947 ret = -ENOMEM;
2948 goto out;
2949 }
2950 ret = context_init(&ctx->context, ohci, regs, callback);
2951 if (ret < 0)
2952 goto out_with_header;
2953
2954 if (type == FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL) {
2955 set_multichannel_mask(ohci, 0);
2956 ctx->mc_completed = 0;
2957 }
2958
2959 return &ctx->base;
2960
2961 out_with_header:
2962 free_page((unsigned long)ctx->header);
2963 out:
2964 spin_lock_irq(&ohci->lock);
2965
2966 switch (type) {
2967 case FW_ISO_CONTEXT_RECEIVE:
2968 *channels |= 1ULL << channel;
2969 break;
2970
2971 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2972 ohci->mc_allocated = false;
2973 break;
2974 }
2975 *mask |= 1 << index;
2976
2977 spin_unlock_irq(&ohci->lock);
2978
2979 return ERR_PTR(ret);
2980}
2981
2982static int ohci_start_iso(struct fw_iso_context *base,
2983 s32 cycle, u32 sync, u32 tags)
2984{
2985 struct iso_context *ctx = container_of(base, struct iso_context, base);
2986 struct fw_ohci *ohci = ctx->context.ohci;
2987 u32 control = IR_CONTEXT_ISOCH_HEADER, match;
2988 int index;
2989
2990 /* the controller cannot start without any queued packets */
2991 if (ctx->context.last->branch_address == 0)
2992 return -ENODATA;
2993
2994 switch (ctx->base.type) {
2995 case FW_ISO_CONTEXT_TRANSMIT:
2996 index = ctx - ohci->it_context_list;
2997 match = 0;
2998 if (cycle >= 0)
2999 match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
3000 (cycle & 0x7fff) << 16;
3001
3002 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
3003 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
3004 context_run(&ctx->context, match);
3005 break;
3006
3007 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3008 control |= IR_CONTEXT_BUFFER_FILL|IR_CONTEXT_MULTI_CHANNEL_MODE;
3009 /* fall through */
3010 case FW_ISO_CONTEXT_RECEIVE:
3011 index = ctx - ohci->ir_context_list;
3012 match = (tags << 28) | (sync << 8) | ctx->base.channel;
3013 if (cycle >= 0) {
3014 match |= (cycle & 0x07fff) << 12;
3015 control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
3016 }
3017
3018 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
3019 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
3020 reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
3021 context_run(&ctx->context, control);
3022
3023 ctx->sync = sync;
3024 ctx->tags = tags;
3025
3026 break;
3027 }
3028
3029 return 0;
3030}
3031
3032static int ohci_stop_iso(struct fw_iso_context *base)
3033{
3034 struct fw_ohci *ohci = fw_ohci(base->card);
3035 struct iso_context *ctx = container_of(base, struct iso_context, base);
3036 int index;
3037
3038 switch (ctx->base.type) {
3039 case FW_ISO_CONTEXT_TRANSMIT:
3040 index = ctx - ohci->it_context_list;
3041 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
3042 break;
3043
3044 case FW_ISO_CONTEXT_RECEIVE:
3045 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3046 index = ctx - ohci->ir_context_list;
3047 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
3048 break;
3049 }
3050 flush_writes(ohci);
3051 context_stop(&ctx->context);
3052 tasklet_kill(&ctx->context.tasklet);
3053
3054 return 0;
3055}
3056
3057static void ohci_free_iso_context(struct fw_iso_context *base)
3058{
3059 struct fw_ohci *ohci = fw_ohci(base->card);
3060 struct iso_context *ctx = container_of(base, struct iso_context, base);
3061 unsigned long flags;
3062 int index;
3063
3064 ohci_stop_iso(base);
3065 context_release(&ctx->context);
3066 free_page((unsigned long)ctx->header);
3067
3068 spin_lock_irqsave(&ohci->lock, flags);
3069
3070 switch (base->type) {
3071 case FW_ISO_CONTEXT_TRANSMIT:
3072 index = ctx - ohci->it_context_list;
3073 ohci->it_context_mask |= 1 << index;
3074 break;
3075
3076 case FW_ISO_CONTEXT_RECEIVE:
3077 index = ctx - ohci->ir_context_list;
3078 ohci->ir_context_mask |= 1 << index;
3079 ohci->ir_context_channels |= 1ULL << base->channel;
3080 break;
3081
3082 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3083 index = ctx - ohci->ir_context_list;
3084 ohci->ir_context_mask |= 1 << index;
3085 ohci->ir_context_channels |= ohci->mc_channels;
3086 ohci->mc_channels = 0;
3087 ohci->mc_allocated = false;
3088 break;
3089 }
3090
3091 spin_unlock_irqrestore(&ohci->lock, flags);
3092}
3093
3094static int ohci_set_iso_channels(struct fw_iso_context *base, u64 *channels)
3095{
3096 struct fw_ohci *ohci = fw_ohci(base->card);
3097 unsigned long flags;
3098 int ret;
3099
3100 switch (base->type) {
3101 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3102
3103 spin_lock_irqsave(&ohci->lock, flags);
3104
3105 /* Don't allow multichannel to grab other contexts' channels. */
3106 if (~ohci->ir_context_channels & ~ohci->mc_channels & *channels) {
3107 *channels = ohci->ir_context_channels;
3108 ret = -EBUSY;
3109 } else {
3110 set_multichannel_mask(ohci, *channels);
3111 ret = 0;
3112 }
3113
3114 spin_unlock_irqrestore(&ohci->lock, flags);
3115
3116 break;
3117 default:
3118 ret = -EINVAL;
3119 }
3120
3121 return ret;
3122}
3123
3124#ifdef CONFIG_PM
3125static void ohci_resume_iso_dma(struct fw_ohci *ohci)
3126{
3127 int i;
3128 struct iso_context *ctx;
3129
3130 for (i = 0 ; i < ohci->n_ir ; i++) {
3131 ctx = &ohci->ir_context_list[i];
3132 if (ctx->context.running)
3133 ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3134 }
3135
3136 for (i = 0 ; i < ohci->n_it ; i++) {
3137 ctx = &ohci->it_context_list[i];
3138 if (ctx->context.running)
3139 ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3140 }
3141}
3142#endif
3143
3144static int queue_iso_transmit(struct iso_context *ctx,
3145 struct fw_iso_packet *packet,
3146 struct fw_iso_buffer *buffer,
3147 unsigned long payload)
3148{
3149 struct descriptor *d, *last, *pd;
3150 struct fw_iso_packet *p;
3151 __le32 *header;
3152 dma_addr_t d_bus, page_bus;
3153 u32 z, header_z, payload_z, irq;
3154 u32 payload_index, payload_end_index, next_page_index;
3155 int page, end_page, i, length, offset;
3156
3157 p = packet;
3158 payload_index = payload;
3159
3160 if (p->skip)
3161 z = 1;
3162 else
3163 z = 2;
3164 if (p->header_length > 0)
3165 z++;
3166
3167 /* Determine the first page the payload isn't contained in. */
3168 end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
3169 if (p->payload_length > 0)
3170 payload_z = end_page - (payload_index >> PAGE_SHIFT);
3171 else
3172 payload_z = 0;
3173
3174 z += payload_z;
3175
3176 /* Get header size in number of descriptors. */
3177 header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
3178
3179 d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
3180 if (d == NULL)
3181 return -ENOMEM;
3182
3183 if (!p->skip) {
3184 d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
3185 d[0].req_count = cpu_to_le16(8);
3186 /*
3187 * Link the skip address to this descriptor itself. This causes
3188 * a context to skip a cycle whenever lost cycles or FIFO
3189 * overruns occur, without dropping the data. The application
3190 * should then decide whether this is an error condition or not.
3191 * FIXME: Make the context's cycle-lost behaviour configurable?
3192 */
3193 d[0].branch_address = cpu_to_le32(d_bus | z);
3194
3195 header = (__le32 *) &d[1];
3196 header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
3197 IT_HEADER_TAG(p->tag) |
3198 IT_HEADER_TCODE(TCODE_STREAM_DATA) |
3199 IT_HEADER_CHANNEL(ctx->base.channel) |
3200 IT_HEADER_SPEED(ctx->base.speed));
3201 header[1] =
3202 cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
3203 p->payload_length));
3204 }
3205
3206 if (p->header_length > 0) {
3207 d[2].req_count = cpu_to_le16(p->header_length);
3208 d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
3209 memcpy(&d[z], p->header, p->header_length);
3210 }
3211
3212 pd = d + z - payload_z;
3213 payload_end_index = payload_index + p->payload_length;
3214 for (i = 0; i < payload_z; i++) {
3215 page = payload_index >> PAGE_SHIFT;
3216 offset = payload_index & ~PAGE_MASK;
3217 next_page_index = (page + 1) << PAGE_SHIFT;
3218 length =
3219 min(next_page_index, payload_end_index) - payload_index;
3220 pd[i].req_count = cpu_to_le16(length);
3221
3222 page_bus = page_private(buffer->pages[page]);
3223 pd[i].data_address = cpu_to_le32(page_bus + offset);
3224
3225 dma_sync_single_range_for_device(ctx->context.ohci->card.device,
3226 page_bus, offset, length,
3227 DMA_TO_DEVICE);
3228
3229 payload_index += length;
3230 }
3231
3232 if (p->interrupt)
3233 irq = DESCRIPTOR_IRQ_ALWAYS;
3234 else
3235 irq = DESCRIPTOR_NO_IRQ;
3236
3237 last = z == 2 ? d : d + z - 1;
3238 last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
3239 DESCRIPTOR_STATUS |
3240 DESCRIPTOR_BRANCH_ALWAYS |
3241 irq);
3242
3243 context_append(&ctx->context, d, z, header_z);
3244
3245 return 0;
3246}
3247
3248static int queue_iso_packet_per_buffer(struct iso_context *ctx,
3249 struct fw_iso_packet *packet,
3250 struct fw_iso_buffer *buffer,
3251 unsigned long payload)
3252{
3253 struct device *device = ctx->context.ohci->card.device;
3254 struct descriptor *d, *pd;
3255 dma_addr_t d_bus, page_bus;
3256 u32 z, header_z, rest;
3257 int i, j, length;
3258 int page, offset, packet_count, header_size, payload_per_buffer;
3259
3260 /*
3261 * The OHCI controller puts the isochronous header and trailer in the
3262 * buffer, so we need at least 8 bytes.
3263 */
3264 packet_count = packet->header_length / ctx->base.header_size;
3265 header_size = max(ctx->base.header_size, (size_t)8);
3266
3267 /* Get header size in number of descriptors. */
3268 header_z = DIV_ROUND_UP(header_size, sizeof(*d));
3269 page = payload >> PAGE_SHIFT;
3270 offset = payload & ~PAGE_MASK;
3271 payload_per_buffer = packet->payload_length / packet_count;
3272
3273 for (i = 0; i < packet_count; i++) {
3274 /* d points to the header descriptor */
3275 z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
3276 d = context_get_descriptors(&ctx->context,
3277 z + header_z, &d_bus);
3278 if (d == NULL)
3279 return -ENOMEM;
3280
3281 d->control = cpu_to_le16(DESCRIPTOR_STATUS |
3282 DESCRIPTOR_INPUT_MORE);
3283 if (packet->skip && i == 0)
3284 d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3285 d->req_count = cpu_to_le16(header_size);
3286 d->res_count = d->req_count;
3287 d->transfer_status = 0;
3288 d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
3289
3290 rest = payload_per_buffer;
3291 pd = d;
3292 for (j = 1; j < z; j++) {
3293 pd++;
3294 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3295 DESCRIPTOR_INPUT_MORE);
3296
3297 if (offset + rest < PAGE_SIZE)
3298 length = rest;
3299 else
3300 length = PAGE_SIZE - offset;
3301 pd->req_count = cpu_to_le16(length);
3302 pd->res_count = pd->req_count;
3303 pd->transfer_status = 0;
3304
3305 page_bus = page_private(buffer->pages[page]);
3306 pd->data_address = cpu_to_le32(page_bus + offset);
3307
3308 dma_sync_single_range_for_device(device, page_bus,
3309 offset, length,
3310 DMA_FROM_DEVICE);
3311
3312 offset = (offset + length) & ~PAGE_MASK;
3313 rest -= length;
3314 if (offset == 0)
3315 page++;
3316 }
3317 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3318 DESCRIPTOR_INPUT_LAST |
3319 DESCRIPTOR_BRANCH_ALWAYS);
3320 if (packet->interrupt && i == packet_count - 1)
3321 pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3322
3323 context_append(&ctx->context, d, z, header_z);
3324 }
3325
3326 return 0;
3327}
3328
3329static int queue_iso_buffer_fill(struct iso_context *ctx,
3330 struct fw_iso_packet *packet,
3331 struct fw_iso_buffer *buffer,
3332 unsigned long payload)
3333{
3334 struct descriptor *d;
3335 dma_addr_t d_bus, page_bus;
3336 int page, offset, rest, z, i, length;
3337
3338 page = payload >> PAGE_SHIFT;
3339 offset = payload & ~PAGE_MASK;
3340 rest = packet->payload_length;
3341
3342 /* We need one descriptor for each page in the buffer. */
3343 z = DIV_ROUND_UP(offset + rest, PAGE_SIZE);
3344
3345 if (WARN_ON(offset & 3 || rest & 3 || page + z > buffer->page_count))
3346 return -EFAULT;
3347
3348 for (i = 0; i < z; i++) {
3349 d = context_get_descriptors(&ctx->context, 1, &d_bus);
3350 if (d == NULL)
3351 return -ENOMEM;
3352
3353 d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
3354 DESCRIPTOR_BRANCH_ALWAYS);
3355 if (packet->skip && i == 0)
3356 d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3357 if (packet->interrupt && i == z - 1)
3358 d->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3359
3360 if (offset + rest < PAGE_SIZE)
3361 length = rest;
3362 else
3363 length = PAGE_SIZE - offset;
3364 d->req_count = cpu_to_le16(length);
3365 d->res_count = d->req_count;
3366 d->transfer_status = 0;
3367
3368 page_bus = page_private(buffer->pages[page]);
3369 d->data_address = cpu_to_le32(page_bus + offset);
3370
3371 dma_sync_single_range_for_device(ctx->context.ohci->card.device,
3372 page_bus, offset, length,
3373 DMA_FROM_DEVICE);
3374
3375 rest -= length;
3376 offset = 0;
3377 page++;
3378
3379 context_append(&ctx->context, d, 1, 0);
3380 }
3381
3382 return 0;
3383}
3384
3385static int ohci_queue_iso(struct fw_iso_context *base,
3386 struct fw_iso_packet *packet,
3387 struct fw_iso_buffer *buffer,
3388 unsigned long payload)
3389{
3390 struct iso_context *ctx = container_of(base, struct iso_context, base);
3391 unsigned long flags;
3392 int ret = -ENOSYS;
3393
3394 spin_lock_irqsave(&ctx->context.ohci->lock, flags);
3395 switch (base->type) {
3396 case FW_ISO_CONTEXT_TRANSMIT:
3397 ret = queue_iso_transmit(ctx, packet, buffer, payload);
3398 break;
3399 case FW_ISO_CONTEXT_RECEIVE:
3400 ret = queue_iso_packet_per_buffer(ctx, packet, buffer, payload);
3401 break;
3402 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3403 ret = queue_iso_buffer_fill(ctx, packet, buffer, payload);
3404 break;
3405 }
3406 spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
3407
3408 return ret;
3409}
3410
3411static void ohci_flush_queue_iso(struct fw_iso_context *base)
3412{
3413 struct context *ctx =
3414 &container_of(base, struct iso_context, base)->context;
3415
3416 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
3417}
3418
3419static int ohci_flush_iso_completions(struct fw_iso_context *base)
3420{
3421 struct iso_context *ctx = container_of(base, struct iso_context, base);
3422 int ret = 0;
3423
3424 tasklet_disable(&ctx->context.tasklet);
3425
3426 if (!test_and_set_bit_lock(0, &ctx->flushing_completions)) {
3427 context_tasklet((unsigned long)&ctx->context);
3428
3429 switch (base->type) {
3430 case FW_ISO_CONTEXT_TRANSMIT:
3431 case FW_ISO_CONTEXT_RECEIVE:
3432 if (ctx->header_length != 0)
3433 flush_iso_completions(ctx);
3434 break;
3435 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3436 if (ctx->mc_completed != 0)
3437 flush_ir_buffer_fill(ctx);
3438 break;
3439 default:
3440 ret = -ENOSYS;
3441 }
3442
3443 clear_bit_unlock(0, &ctx->flushing_completions);
3444 smp_mb__after_clear_bit();
3445 }
3446
3447 tasklet_enable(&ctx->context.tasklet);
3448
3449 return ret;
3450}
3451
3452static const struct fw_card_driver ohci_driver = {
3453 .enable = ohci_enable,
3454 .read_phy_reg = ohci_read_phy_reg,
3455 .update_phy_reg = ohci_update_phy_reg,
3456 .set_config_rom = ohci_set_config_rom,
3457 .send_request = ohci_send_request,
3458 .send_response = ohci_send_response,
3459 .cancel_packet = ohci_cancel_packet,
3460 .enable_phys_dma = ohci_enable_phys_dma,
3461 .read_csr = ohci_read_csr,
3462 .write_csr = ohci_write_csr,
3463
3464 .allocate_iso_context = ohci_allocate_iso_context,
3465 .free_iso_context = ohci_free_iso_context,
3466 .set_iso_channels = ohci_set_iso_channels,
3467 .queue_iso = ohci_queue_iso,
3468 .flush_queue_iso = ohci_flush_queue_iso,
3469 .flush_iso_completions = ohci_flush_iso_completions,
3470 .start_iso = ohci_start_iso,
3471 .stop_iso = ohci_stop_iso,
3472};
3473
3474#ifdef CONFIG_PPC_PMAC
3475static void pmac_ohci_on(struct pci_dev *dev)
3476{
3477 if (machine_is(powermac)) {
3478 struct device_node *ofn = pci_device_to_OF_node(dev);
3479
3480 if (ofn) {
3481 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
3482 pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
3483 }
3484 }
3485}
3486
3487static void pmac_ohci_off(struct pci_dev *dev)
3488{
3489 if (machine_is(powermac)) {
3490 struct device_node *ofn = pci_device_to_OF_node(dev);
3491
3492 if (ofn) {
3493 pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
3494 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
3495 }
3496 }
3497}
3498#else
3499static inline void pmac_ohci_on(struct pci_dev *dev) {}
3500static inline void pmac_ohci_off(struct pci_dev *dev) {}
3501#endif /* CONFIG_PPC_PMAC */
3502
3503static int __devinit pci_probe(struct pci_dev *dev,
3504 const struct pci_device_id *ent)
3505{
3506 struct fw_ohci *ohci;
3507 u32 bus_options, max_receive, link_speed, version;
3508 u64 guid;
3509 int i, err;
3510 size_t size;
3511
3512 if (dev->vendor == PCI_VENDOR_ID_PINNACLE_SYSTEMS) {
3513 dev_err(&dev->dev, "Pinnacle MovieBoard is not yet supported\n");
3514 return -ENOSYS;
3515 }
3516
3517 ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
3518 if (ohci == NULL) {
3519 err = -ENOMEM;
3520 goto fail;
3521 }
3522
3523 fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
3524
3525 pmac_ohci_on(dev);
3526
3527 err = pci_enable_device(dev);
3528 if (err) {
3529 dev_err(&dev->dev, "failed to enable OHCI hardware\n");
3530 goto fail_free;
3531 }
3532
3533 pci_set_master(dev);
3534 pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
3535 pci_set_drvdata(dev, ohci);
3536
3537 spin_lock_init(&ohci->lock);
3538 mutex_init(&ohci->phy_reg_mutex);
3539
3540 INIT_WORK(&ohci->bus_reset_work, bus_reset_work);
3541
3542 err = pci_request_region(dev, 0, ohci_driver_name);
3543 if (err) {
3544 dev_err(&dev->dev, "MMIO resource unavailable\n");
3545 goto fail_disable;
3546 }
3547
3548 ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
3549 if (ohci->registers == NULL) {
3550 dev_err(&dev->dev, "failed to remap registers\n");
3551 err = -ENXIO;
3552 goto fail_iomem;
3553 }
3554
3555 for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
3556 if ((ohci_quirks[i].vendor == dev->vendor) &&
3557 (ohci_quirks[i].device == (unsigned short)PCI_ANY_ID ||
3558 ohci_quirks[i].device == dev->device) &&
3559 (ohci_quirks[i].revision == (unsigned short)PCI_ANY_ID ||
3560 ohci_quirks[i].revision >= dev->revision)) {
3561 ohci->quirks = ohci_quirks[i].flags;
3562 break;
3563 }
3564 if (param_quirks)
3565 ohci->quirks = param_quirks;
3566
3567 /*
3568 * Because dma_alloc_coherent() allocates at least one page,
3569 * we save space by using a common buffer for the AR request/
3570 * response descriptors and the self IDs buffer.
3571 */
3572 BUILD_BUG_ON(AR_BUFFERS * sizeof(struct descriptor) > PAGE_SIZE/4);
3573 BUILD_BUG_ON(SELF_ID_BUF_SIZE > PAGE_SIZE/2);
3574 ohci->misc_buffer = dma_alloc_coherent(ohci->card.device,
3575 PAGE_SIZE,
3576 &ohci->misc_buffer_bus,
3577 GFP_KERNEL);
3578 if (!ohci->misc_buffer) {
3579 err = -ENOMEM;
3580 goto fail_iounmap;
3581 }
3582
3583 err = ar_context_init(&ohci->ar_request_ctx, ohci, 0,
3584 OHCI1394_AsReqRcvContextControlSet);
3585 if (err < 0)
3586 goto fail_misc_buf;
3587
3588 err = ar_context_init(&ohci->ar_response_ctx, ohci, PAGE_SIZE/4,
3589 OHCI1394_AsRspRcvContextControlSet);
3590 if (err < 0)
3591 goto fail_arreq_ctx;
3592
3593 err = context_init(&ohci->at_request_ctx, ohci,
3594 OHCI1394_AsReqTrContextControlSet, handle_at_packet);
3595 if (err < 0)
3596 goto fail_arrsp_ctx;
3597
3598 err = context_init(&ohci->at_response_ctx, ohci,
3599 OHCI1394_AsRspTrContextControlSet, handle_at_packet);
3600 if (err < 0)
3601 goto fail_atreq_ctx;
3602
3603 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
3604 ohci->ir_context_channels = ~0ULL;
3605 ohci->ir_context_support = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
3606 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
3607 ohci->ir_context_mask = ohci->ir_context_support;
3608 ohci->n_ir = hweight32(ohci->ir_context_mask);
3609 size = sizeof(struct iso_context) * ohci->n_ir;
3610 ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
3611
3612 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
3613 ohci->it_context_support = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
3614 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
3615 ohci->it_context_mask = ohci->it_context_support;
3616 ohci->n_it = hweight32(ohci->it_context_mask);
3617 size = sizeof(struct iso_context) * ohci->n_it;
3618 ohci->it_context_list = kzalloc(size, GFP_KERNEL);
3619
3620 if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
3621 err = -ENOMEM;
3622 goto fail_contexts;
3623 }
3624
3625 ohci->self_id_cpu = ohci->misc_buffer + PAGE_SIZE/2;
3626 ohci->self_id_bus = ohci->misc_buffer_bus + PAGE_SIZE/2;
3627
3628 bus_options = reg_read(ohci, OHCI1394_BusOptions);
3629 max_receive = (bus_options >> 12) & 0xf;
3630 link_speed = bus_options & 0x7;
3631 guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
3632 reg_read(ohci, OHCI1394_GUIDLo);
3633
3634 err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
3635 if (err)
3636 goto fail_contexts;
3637
3638 version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
3639 dev_notice(&dev->dev,
3640 "added OHCI v%x.%x device as card %d, "
3641 "%d IR + %d IT contexts, quirks 0x%x\n",
3642 version >> 16, version & 0xff, ohci->card.index,
3643 ohci->n_ir, ohci->n_it, ohci->quirks);
3644
3645 return 0;
3646
3647 fail_contexts:
3648 kfree(ohci->ir_context_list);
3649 kfree(ohci->it_context_list);
3650 context_release(&ohci->at_response_ctx);
3651 fail_atreq_ctx:
3652 context_release(&ohci->at_request_ctx);
3653 fail_arrsp_ctx:
3654 ar_context_release(&ohci->ar_response_ctx);
3655 fail_arreq_ctx:
3656 ar_context_release(&ohci->ar_request_ctx);
3657 fail_misc_buf:
3658 dma_free_coherent(ohci->card.device, PAGE_SIZE,
3659 ohci->misc_buffer, ohci->misc_buffer_bus);
3660 fail_iounmap:
3661 pci_iounmap(dev, ohci->registers);
3662 fail_iomem:
3663 pci_release_region(dev, 0);
3664 fail_disable:
3665 pci_disable_device(dev);
3666 fail_free:
3667 kfree(ohci);
3668 pmac_ohci_off(dev);
3669 fail:
3670 if (err == -ENOMEM)
3671 dev_err(&dev->dev, "out of memory\n");
3672
3673 return err;
3674}
3675
3676static void pci_remove(struct pci_dev *dev)
3677{
3678 struct fw_ohci *ohci;
3679
3680 ohci = pci_get_drvdata(dev);
3681 reg_write(ohci, OHCI1394_IntMaskClear, ~0);
3682 flush_writes(ohci);
3683 cancel_work_sync(&ohci->bus_reset_work);
3684 fw_core_remove_card(&ohci->card);
3685
3686 /*
3687 * FIXME: Fail all pending packets here, now that the upper
3688 * layers can't queue any more.
3689 */
3690
3691 software_reset(ohci);
3692 free_irq(dev->irq, ohci);
3693
3694 if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
3695 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
3696 ohci->next_config_rom, ohci->next_config_rom_bus);
3697 if (ohci->config_rom)
3698 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
3699 ohci->config_rom, ohci->config_rom_bus);
3700 ar_context_release(&ohci->ar_request_ctx);
3701 ar_context_release(&ohci->ar_response_ctx);
3702 dma_free_coherent(ohci->card.device, PAGE_SIZE,
3703 ohci->misc_buffer, ohci->misc_buffer_bus);
3704 context_release(&ohci->at_request_ctx);
3705 context_release(&ohci->at_response_ctx);
3706 kfree(ohci->it_context_list);
3707 kfree(ohci->ir_context_list);
3708 pci_disable_msi(dev);
3709 pci_iounmap(dev, ohci->registers);
3710 pci_release_region(dev, 0);
3711 pci_disable_device(dev);
3712 kfree(ohci);
3713 pmac_ohci_off(dev);
3714
3715 dev_notice(&dev->dev, "removed fw-ohci device\n");
3716}
3717
3718#ifdef CONFIG_PM
3719static int pci_suspend(struct pci_dev *dev, pm_message_t state)
3720{
3721 struct fw_ohci *ohci = pci_get_drvdata(dev);
3722 int err;
3723
3724 software_reset(ohci);
3725 free_irq(dev->irq, ohci);
3726 pci_disable_msi(dev);
3727 err = pci_save_state(dev);
3728 if (err) {
3729 dev_err(&dev->dev, "pci_save_state failed\n");
3730 return err;
3731 }
3732 err = pci_set_power_state(dev, pci_choose_state(dev, state));
3733 if (err)
3734 dev_err(&dev->dev, "pci_set_power_state failed with %d\n", err);
3735 pmac_ohci_off(dev);
3736
3737 return 0;
3738}
3739
3740static int pci_resume(struct pci_dev *dev)
3741{
3742 struct fw_ohci *ohci = pci_get_drvdata(dev);
3743 int err;
3744
3745 pmac_ohci_on(dev);
3746 pci_set_power_state(dev, PCI_D0);
3747 pci_restore_state(dev);
3748 err = pci_enable_device(dev);
3749 if (err) {
3750 dev_err(&dev->dev, "pci_enable_device failed\n");
3751 return err;
3752 }
3753
3754 /* Some systems don't setup GUID register on resume from ram */
3755 if (!reg_read(ohci, OHCI1394_GUIDLo) &&
3756 !reg_read(ohci, OHCI1394_GUIDHi)) {
3757 reg_write(ohci, OHCI1394_GUIDLo, (u32)ohci->card.guid);
3758 reg_write(ohci, OHCI1394_GUIDHi, (u32)(ohci->card.guid >> 32));
3759 }
3760
3761 err = ohci_enable(&ohci->card, NULL, 0);
3762 if (err)
3763 return err;
3764
3765 ohci_resume_iso_dma(ohci);
3766
3767 return 0;
3768}
3769#endif
3770
3771static const struct pci_device_id pci_table[] = {
3772 { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
3773 { }
3774};
3775
3776MODULE_DEVICE_TABLE(pci, pci_table);
3777
3778static struct pci_driver fw_ohci_pci_driver = {
3779 .name = ohci_driver_name,
3780 .id_table = pci_table,
3781 .probe = pci_probe,
3782 .remove = pci_remove,
3783#ifdef CONFIG_PM
3784 .resume = pci_resume,
3785 .suspend = pci_suspend,
3786#endif
3787};
3788
3789module_pci_driver(fw_ohci_pci_driver);
3790
3791MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
3792MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
3793MODULE_LICENSE("GPL");
3794
3795/* Provide a module alias so root-on-sbp2 initrds don't break. */
3796#ifndef CONFIG_IEEE1394_OHCI1394_MODULE
3797MODULE_ALIAS("ohci1394");
3798#endif
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Driver for OHCI 1394 controllers
4 *
5 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
6 */
7
8#include <linux/bitops.h>
9#include <linux/bug.h>
10#include <linux/compiler.h>
11#include <linux/delay.h>
12#include <linux/device.h>
13#include <linux/dma-mapping.h>
14#include <linux/firewire.h>
15#include <linux/firewire-constants.h>
16#include <linux/init.h>
17#include <linux/interrupt.h>
18#include <linux/io.h>
19#include <linux/kernel.h>
20#include <linux/list.h>
21#include <linux/mm.h>
22#include <linux/module.h>
23#include <linux/moduleparam.h>
24#include <linux/mutex.h>
25#include <linux/pci.h>
26#include <linux/pci_ids.h>
27#include <linux/slab.h>
28#include <linux/spinlock.h>
29#include <linux/string.h>
30#include <linux/time.h>
31#include <linux/vmalloc.h>
32#include <linux/workqueue.h>
33
34#include <asm/byteorder.h>
35#include <asm/page.h>
36
37#ifdef CONFIG_PPC_PMAC
38#include <asm/pmac_feature.h>
39#endif
40
41#include "core.h"
42#include "ohci.h"
43
44#define ohci_info(ohci, f, args...) dev_info(ohci->card.device, f, ##args)
45#define ohci_notice(ohci, f, args...) dev_notice(ohci->card.device, f, ##args)
46#define ohci_err(ohci, f, args...) dev_err(ohci->card.device, f, ##args)
47
48#define DESCRIPTOR_OUTPUT_MORE 0
49#define DESCRIPTOR_OUTPUT_LAST (1 << 12)
50#define DESCRIPTOR_INPUT_MORE (2 << 12)
51#define DESCRIPTOR_INPUT_LAST (3 << 12)
52#define DESCRIPTOR_STATUS (1 << 11)
53#define DESCRIPTOR_KEY_IMMEDIATE (2 << 8)
54#define DESCRIPTOR_PING (1 << 7)
55#define DESCRIPTOR_YY (1 << 6)
56#define DESCRIPTOR_NO_IRQ (0 << 4)
57#define DESCRIPTOR_IRQ_ERROR (1 << 4)
58#define DESCRIPTOR_IRQ_ALWAYS (3 << 4)
59#define DESCRIPTOR_BRANCH_ALWAYS (3 << 2)
60#define DESCRIPTOR_WAIT (3 << 0)
61
62#define DESCRIPTOR_CMD (0xf << 12)
63
64struct descriptor {
65 __le16 req_count;
66 __le16 control;
67 __le32 data_address;
68 __le32 branch_address;
69 __le16 res_count;
70 __le16 transfer_status;
71} __attribute__((aligned(16)));
72
73#define CONTROL_SET(regs) (regs)
74#define CONTROL_CLEAR(regs) ((regs) + 4)
75#define COMMAND_PTR(regs) ((regs) + 12)
76#define CONTEXT_MATCH(regs) ((regs) + 16)
77
78#define AR_BUFFER_SIZE (32*1024)
79#define AR_BUFFERS_MIN DIV_ROUND_UP(AR_BUFFER_SIZE, PAGE_SIZE)
80/* we need at least two pages for proper list management */
81#define AR_BUFFERS (AR_BUFFERS_MIN >= 2 ? AR_BUFFERS_MIN : 2)
82
83#define MAX_ASYNC_PAYLOAD 4096
84#define MAX_AR_PACKET_SIZE (16 + MAX_ASYNC_PAYLOAD + 4)
85#define AR_WRAPAROUND_PAGES DIV_ROUND_UP(MAX_AR_PACKET_SIZE, PAGE_SIZE)
86
87struct ar_context {
88 struct fw_ohci *ohci;
89 struct page *pages[AR_BUFFERS];
90 void *buffer;
91 struct descriptor *descriptors;
92 dma_addr_t descriptors_bus;
93 void *pointer;
94 unsigned int last_buffer_index;
95 u32 regs;
96 struct tasklet_struct tasklet;
97};
98
99struct context;
100
101typedef int (*descriptor_callback_t)(struct context *ctx,
102 struct descriptor *d,
103 struct descriptor *last);
104
105/*
106 * A buffer that contains a block of DMA-able coherent memory used for
107 * storing a portion of a DMA descriptor program.
108 */
109struct descriptor_buffer {
110 struct list_head list;
111 dma_addr_t buffer_bus;
112 size_t buffer_size;
113 size_t used;
114 struct descriptor buffer[0];
115};
116
117struct context {
118 struct fw_ohci *ohci;
119 u32 regs;
120 int total_allocation;
121 u32 current_bus;
122 bool running;
123 bool flushing;
124
125 /*
126 * List of page-sized buffers for storing DMA descriptors.
127 * Head of list contains buffers in use and tail of list contains
128 * free buffers.
129 */
130 struct list_head buffer_list;
131
132 /*
133 * Pointer to a buffer inside buffer_list that contains the tail
134 * end of the current DMA program.
135 */
136 struct descriptor_buffer *buffer_tail;
137
138 /*
139 * The descriptor containing the branch address of the first
140 * descriptor that has not yet been filled by the device.
141 */
142 struct descriptor *last;
143
144 /*
145 * The last descriptor block in the DMA program. It contains the branch
146 * address that must be updated upon appending a new descriptor.
147 */
148 struct descriptor *prev;
149 int prev_z;
150
151 descriptor_callback_t callback;
152
153 struct tasklet_struct tasklet;
154};
155
156#define IT_HEADER_SY(v) ((v) << 0)
157#define IT_HEADER_TCODE(v) ((v) << 4)
158#define IT_HEADER_CHANNEL(v) ((v) << 8)
159#define IT_HEADER_TAG(v) ((v) << 14)
160#define IT_HEADER_SPEED(v) ((v) << 16)
161#define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
162
163struct iso_context {
164 struct fw_iso_context base;
165 struct context context;
166 void *header;
167 size_t header_length;
168 unsigned long flushing_completions;
169 u32 mc_buffer_bus;
170 u16 mc_completed;
171 u16 last_timestamp;
172 u8 sync;
173 u8 tags;
174};
175
176#define CONFIG_ROM_SIZE 1024
177
178struct fw_ohci {
179 struct fw_card card;
180
181 __iomem char *registers;
182 int node_id;
183 int generation;
184 int request_generation; /* for timestamping incoming requests */
185 unsigned quirks;
186 unsigned int pri_req_max;
187 u32 bus_time;
188 bool bus_time_running;
189 bool is_root;
190 bool csr_state_setclear_abdicate;
191 int n_ir;
192 int n_it;
193 /*
194 * Spinlock for accessing fw_ohci data. Never call out of
195 * this driver with this lock held.
196 */
197 spinlock_t lock;
198
199 struct mutex phy_reg_mutex;
200
201 void *misc_buffer;
202 dma_addr_t misc_buffer_bus;
203
204 struct ar_context ar_request_ctx;
205 struct ar_context ar_response_ctx;
206 struct context at_request_ctx;
207 struct context at_response_ctx;
208
209 u32 it_context_support;
210 u32 it_context_mask; /* unoccupied IT contexts */
211 struct iso_context *it_context_list;
212 u64 ir_context_channels; /* unoccupied channels */
213 u32 ir_context_support;
214 u32 ir_context_mask; /* unoccupied IR contexts */
215 struct iso_context *ir_context_list;
216 u64 mc_channels; /* channels in use by the multichannel IR context */
217 bool mc_allocated;
218
219 __be32 *config_rom;
220 dma_addr_t config_rom_bus;
221 __be32 *next_config_rom;
222 dma_addr_t next_config_rom_bus;
223 __be32 next_header;
224
225 __le32 *self_id;
226 dma_addr_t self_id_bus;
227 struct work_struct bus_reset_work;
228
229 u32 self_id_buffer[512];
230};
231
232static struct workqueue_struct *selfid_workqueue;
233
234static inline struct fw_ohci *fw_ohci(struct fw_card *card)
235{
236 return container_of(card, struct fw_ohci, card);
237}
238
239#define IT_CONTEXT_CYCLE_MATCH_ENABLE 0x80000000
240#define IR_CONTEXT_BUFFER_FILL 0x80000000
241#define IR_CONTEXT_ISOCH_HEADER 0x40000000
242#define IR_CONTEXT_CYCLE_MATCH_ENABLE 0x20000000
243#define IR_CONTEXT_MULTI_CHANNEL_MODE 0x10000000
244#define IR_CONTEXT_DUAL_BUFFER_MODE 0x08000000
245
246#define CONTEXT_RUN 0x8000
247#define CONTEXT_WAKE 0x1000
248#define CONTEXT_DEAD 0x0800
249#define CONTEXT_ACTIVE 0x0400
250
251#define OHCI1394_MAX_AT_REQ_RETRIES 0xf
252#define OHCI1394_MAX_AT_RESP_RETRIES 0x2
253#define OHCI1394_MAX_PHYS_RESP_RETRIES 0x8
254
255#define OHCI1394_REGISTER_SIZE 0x800
256#define OHCI1394_PCI_HCI_Control 0x40
257#define SELF_ID_BUF_SIZE 0x800
258#define OHCI_TCODE_PHY_PACKET 0x0e
259#define OHCI_VERSION_1_1 0x010010
260
261static char ohci_driver_name[] = KBUILD_MODNAME;
262
263#define PCI_VENDOR_ID_PINNACLE_SYSTEMS 0x11bd
264#define PCI_DEVICE_ID_AGERE_FW643 0x5901
265#define PCI_DEVICE_ID_CREATIVE_SB1394 0x4001
266#define PCI_DEVICE_ID_JMICRON_JMB38X_FW 0x2380
267#define PCI_DEVICE_ID_TI_TSB12LV22 0x8009
268#define PCI_DEVICE_ID_TI_TSB12LV26 0x8020
269#define PCI_DEVICE_ID_TI_TSB82AA2 0x8025
270#define PCI_DEVICE_ID_VIA_VT630X 0x3044
271#define PCI_REV_ID_VIA_VT6306 0x46
272#define PCI_DEVICE_ID_VIA_VT6315 0x3403
273
274#define QUIRK_CYCLE_TIMER 0x1
275#define QUIRK_RESET_PACKET 0x2
276#define QUIRK_BE_HEADERS 0x4
277#define QUIRK_NO_1394A 0x8
278#define QUIRK_NO_MSI 0x10
279#define QUIRK_TI_SLLZ059 0x20
280#define QUIRK_IR_WAKE 0x40
281
282/* In case of multiple matches in ohci_quirks[], only the first one is used. */
283static const struct {
284 unsigned short vendor, device, revision, flags;
285} ohci_quirks[] = {
286 {PCI_VENDOR_ID_AL, PCI_ANY_ID, PCI_ANY_ID,
287 QUIRK_CYCLE_TIMER},
288
289 {PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_FW, PCI_ANY_ID,
290 QUIRK_BE_HEADERS},
291
292 {PCI_VENDOR_ID_ATT, PCI_DEVICE_ID_AGERE_FW643, 6,
293 QUIRK_NO_MSI},
294
295 {PCI_VENDOR_ID_CREATIVE, PCI_DEVICE_ID_CREATIVE_SB1394, PCI_ANY_ID,
296 QUIRK_RESET_PACKET},
297
298 {PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB38X_FW, PCI_ANY_ID,
299 QUIRK_NO_MSI},
300
301 {PCI_VENDOR_ID_NEC, PCI_ANY_ID, PCI_ANY_ID,
302 QUIRK_CYCLE_TIMER},
303
304 {PCI_VENDOR_ID_O2, PCI_ANY_ID, PCI_ANY_ID,
305 QUIRK_NO_MSI},
306
307 {PCI_VENDOR_ID_RICOH, PCI_ANY_ID, PCI_ANY_ID,
308 QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
309
310 {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV22, PCI_ANY_ID,
311 QUIRK_CYCLE_TIMER | QUIRK_RESET_PACKET | QUIRK_NO_1394A},
312
313 {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV26, PCI_ANY_ID,
314 QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
315
316 {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB82AA2, PCI_ANY_ID,
317 QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
318
319 {PCI_VENDOR_ID_TI, PCI_ANY_ID, PCI_ANY_ID,
320 QUIRK_RESET_PACKET},
321
322 {PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT630X, PCI_REV_ID_VIA_VT6306,
323 QUIRK_CYCLE_TIMER | QUIRK_IR_WAKE},
324
325 {PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT6315, 0,
326 QUIRK_CYCLE_TIMER /* FIXME: necessary? */ | QUIRK_NO_MSI},
327
328 {PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT6315, PCI_ANY_ID,
329 QUIRK_NO_MSI},
330
331 {PCI_VENDOR_ID_VIA, PCI_ANY_ID, PCI_ANY_ID,
332 QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
333};
334
335/* This overrides anything that was found in ohci_quirks[]. */
336static int param_quirks;
337module_param_named(quirks, param_quirks, int, 0644);
338MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
339 ", nonatomic cycle timer = " __stringify(QUIRK_CYCLE_TIMER)
340 ", reset packet generation = " __stringify(QUIRK_RESET_PACKET)
341 ", AR/selfID endianness = " __stringify(QUIRK_BE_HEADERS)
342 ", no 1394a enhancements = " __stringify(QUIRK_NO_1394A)
343 ", disable MSI = " __stringify(QUIRK_NO_MSI)
344 ", TI SLLZ059 erratum = " __stringify(QUIRK_TI_SLLZ059)
345 ", IR wake unreliable = " __stringify(QUIRK_IR_WAKE)
346 ")");
347
348#define OHCI_PARAM_DEBUG_AT_AR 1
349#define OHCI_PARAM_DEBUG_SELFIDS 2
350#define OHCI_PARAM_DEBUG_IRQS 4
351#define OHCI_PARAM_DEBUG_BUSRESETS 8 /* only effective before chip init */
352
353static int param_debug;
354module_param_named(debug, param_debug, int, 0644);
355MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
356 ", AT/AR events = " __stringify(OHCI_PARAM_DEBUG_AT_AR)
357 ", self-IDs = " __stringify(OHCI_PARAM_DEBUG_SELFIDS)
358 ", IRQs = " __stringify(OHCI_PARAM_DEBUG_IRQS)
359 ", busReset events = " __stringify(OHCI_PARAM_DEBUG_BUSRESETS)
360 ", or a combination, or all = -1)");
361
362static bool param_remote_dma;
363module_param_named(remote_dma, param_remote_dma, bool, 0444);
364MODULE_PARM_DESC(remote_dma, "Enable unfiltered remote DMA (default = N)");
365
366static void log_irqs(struct fw_ohci *ohci, u32 evt)
367{
368 if (likely(!(param_debug &
369 (OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
370 return;
371
372 if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
373 !(evt & OHCI1394_busReset))
374 return;
375
376 ohci_notice(ohci, "IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
377 evt & OHCI1394_selfIDComplete ? " selfID" : "",
378 evt & OHCI1394_RQPkt ? " AR_req" : "",
379 evt & OHCI1394_RSPkt ? " AR_resp" : "",
380 evt & OHCI1394_reqTxComplete ? " AT_req" : "",
381 evt & OHCI1394_respTxComplete ? " AT_resp" : "",
382 evt & OHCI1394_isochRx ? " IR" : "",
383 evt & OHCI1394_isochTx ? " IT" : "",
384 evt & OHCI1394_postedWriteErr ? " postedWriteErr" : "",
385 evt & OHCI1394_cycleTooLong ? " cycleTooLong" : "",
386 evt & OHCI1394_cycle64Seconds ? " cycle64Seconds" : "",
387 evt & OHCI1394_cycleInconsistent ? " cycleInconsistent" : "",
388 evt & OHCI1394_regAccessFail ? " regAccessFail" : "",
389 evt & OHCI1394_unrecoverableError ? " unrecoverableError" : "",
390 evt & OHCI1394_busReset ? " busReset" : "",
391 evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
392 OHCI1394_RSPkt | OHCI1394_reqTxComplete |
393 OHCI1394_respTxComplete | OHCI1394_isochRx |
394 OHCI1394_isochTx | OHCI1394_postedWriteErr |
395 OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
396 OHCI1394_cycleInconsistent |
397 OHCI1394_regAccessFail | OHCI1394_busReset)
398 ? " ?" : "");
399}
400
401static const char *speed[] = {
402 [0] = "S100", [1] = "S200", [2] = "S400", [3] = "beta",
403};
404static const char *power[] = {
405 [0] = "+0W", [1] = "+15W", [2] = "+30W", [3] = "+45W",
406 [4] = "-3W", [5] = " ?W", [6] = "-3..-6W", [7] = "-3..-10W",
407};
408static const char port[] = { '.', '-', 'p', 'c', };
409
410static char _p(u32 *s, int shift)
411{
412 return port[*s >> shift & 3];
413}
414
415static void log_selfids(struct fw_ohci *ohci, int generation, int self_id_count)
416{
417 u32 *s;
418
419 if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
420 return;
421
422 ohci_notice(ohci, "%d selfIDs, generation %d, local node ID %04x\n",
423 self_id_count, generation, ohci->node_id);
424
425 for (s = ohci->self_id_buffer; self_id_count--; ++s)
426 if ((*s & 1 << 23) == 0)
427 ohci_notice(ohci,
428 "selfID 0: %08x, phy %d [%c%c%c] %s gc=%d %s %s%s%s\n",
429 *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
430 speed[*s >> 14 & 3], *s >> 16 & 63,
431 power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
432 *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
433 else
434 ohci_notice(ohci,
435 "selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
436 *s, *s >> 24 & 63,
437 _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
438 _p(s, 8), _p(s, 6), _p(s, 4), _p(s, 2));
439}
440
441static const char *evts[] = {
442 [0x00] = "evt_no_status", [0x01] = "-reserved-",
443 [0x02] = "evt_long_packet", [0x03] = "evt_missing_ack",
444 [0x04] = "evt_underrun", [0x05] = "evt_overrun",
445 [0x06] = "evt_descriptor_read", [0x07] = "evt_data_read",
446 [0x08] = "evt_data_write", [0x09] = "evt_bus_reset",
447 [0x0a] = "evt_timeout", [0x0b] = "evt_tcode_err",
448 [0x0c] = "-reserved-", [0x0d] = "-reserved-",
449 [0x0e] = "evt_unknown", [0x0f] = "evt_flushed",
450 [0x10] = "-reserved-", [0x11] = "ack_complete",
451 [0x12] = "ack_pending ", [0x13] = "-reserved-",
452 [0x14] = "ack_busy_X", [0x15] = "ack_busy_A",
453 [0x16] = "ack_busy_B", [0x17] = "-reserved-",
454 [0x18] = "-reserved-", [0x19] = "-reserved-",
455 [0x1a] = "-reserved-", [0x1b] = "ack_tardy",
456 [0x1c] = "-reserved-", [0x1d] = "ack_data_error",
457 [0x1e] = "ack_type_error", [0x1f] = "-reserved-",
458 [0x20] = "pending/cancelled",
459};
460static const char *tcodes[] = {
461 [0x0] = "QW req", [0x1] = "BW req",
462 [0x2] = "W resp", [0x3] = "-reserved-",
463 [0x4] = "QR req", [0x5] = "BR req",
464 [0x6] = "QR resp", [0x7] = "BR resp",
465 [0x8] = "cycle start", [0x9] = "Lk req",
466 [0xa] = "async stream packet", [0xb] = "Lk resp",
467 [0xc] = "-reserved-", [0xd] = "-reserved-",
468 [0xe] = "link internal", [0xf] = "-reserved-",
469};
470
471static void log_ar_at_event(struct fw_ohci *ohci,
472 char dir, int speed, u32 *header, int evt)
473{
474 int tcode = header[0] >> 4 & 0xf;
475 char specific[12];
476
477 if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
478 return;
479
480 if (unlikely(evt >= ARRAY_SIZE(evts)))
481 evt = 0x1f;
482
483 if (evt == OHCI1394_evt_bus_reset) {
484 ohci_notice(ohci, "A%c evt_bus_reset, generation %d\n",
485 dir, (header[2] >> 16) & 0xff);
486 return;
487 }
488
489 switch (tcode) {
490 case 0x0: case 0x6: case 0x8:
491 snprintf(specific, sizeof(specific), " = %08x",
492 be32_to_cpu((__force __be32)header[3]));
493 break;
494 case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
495 snprintf(specific, sizeof(specific), " %x,%x",
496 header[3] >> 16, header[3] & 0xffff);
497 break;
498 default:
499 specific[0] = '\0';
500 }
501
502 switch (tcode) {
503 case 0xa:
504 ohci_notice(ohci, "A%c %s, %s\n",
505 dir, evts[evt], tcodes[tcode]);
506 break;
507 case 0xe:
508 ohci_notice(ohci, "A%c %s, PHY %08x %08x\n",
509 dir, evts[evt], header[1], header[2]);
510 break;
511 case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
512 ohci_notice(ohci,
513 "A%c spd %x tl %02x, %04x -> %04x, %s, %s, %04x%08x%s\n",
514 dir, speed, header[0] >> 10 & 0x3f,
515 header[1] >> 16, header[0] >> 16, evts[evt],
516 tcodes[tcode], header[1] & 0xffff, header[2], specific);
517 break;
518 default:
519 ohci_notice(ohci,
520 "A%c spd %x tl %02x, %04x -> %04x, %s, %s%s\n",
521 dir, speed, header[0] >> 10 & 0x3f,
522 header[1] >> 16, header[0] >> 16, evts[evt],
523 tcodes[tcode], specific);
524 }
525}
526
527static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
528{
529 writel(data, ohci->registers + offset);
530}
531
532static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
533{
534 return readl(ohci->registers + offset);
535}
536
537static inline void flush_writes(const struct fw_ohci *ohci)
538{
539 /* Do a dummy read to flush writes. */
540 reg_read(ohci, OHCI1394_Version);
541}
542
543/*
544 * Beware! read_phy_reg(), write_phy_reg(), update_phy_reg(), and
545 * read_paged_phy_reg() require the caller to hold ohci->phy_reg_mutex.
546 * In other words, only use ohci_read_phy_reg() and ohci_update_phy_reg()
547 * directly. Exceptions are intrinsically serialized contexts like pci_probe.
548 */
549static int read_phy_reg(struct fw_ohci *ohci, int addr)
550{
551 u32 val;
552 int i;
553
554 reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
555 for (i = 0; i < 3 + 100; i++) {
556 val = reg_read(ohci, OHCI1394_PhyControl);
557 if (!~val)
558 return -ENODEV; /* Card was ejected. */
559
560 if (val & OHCI1394_PhyControl_ReadDone)
561 return OHCI1394_PhyControl_ReadData(val);
562
563 /*
564 * Try a few times without waiting. Sleeping is necessary
565 * only when the link/PHY interface is busy.
566 */
567 if (i >= 3)
568 msleep(1);
569 }
570 ohci_err(ohci, "failed to read phy reg %d\n", addr);
571 dump_stack();
572
573 return -EBUSY;
574}
575
576static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val)
577{
578 int i;
579
580 reg_write(ohci, OHCI1394_PhyControl,
581 OHCI1394_PhyControl_Write(addr, val));
582 for (i = 0; i < 3 + 100; i++) {
583 val = reg_read(ohci, OHCI1394_PhyControl);
584 if (!~val)
585 return -ENODEV; /* Card was ejected. */
586
587 if (!(val & OHCI1394_PhyControl_WritePending))
588 return 0;
589
590 if (i >= 3)
591 msleep(1);
592 }
593 ohci_err(ohci, "failed to write phy reg %d, val %u\n", addr, val);
594 dump_stack();
595
596 return -EBUSY;
597}
598
599static int update_phy_reg(struct fw_ohci *ohci, int addr,
600 int clear_bits, int set_bits)
601{
602 int ret = read_phy_reg(ohci, addr);
603 if (ret < 0)
604 return ret;
605
606 /*
607 * The interrupt status bits are cleared by writing a one bit.
608 * Avoid clearing them unless explicitly requested in set_bits.
609 */
610 if (addr == 5)
611 clear_bits |= PHY_INT_STATUS_BITS;
612
613 return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits);
614}
615
616static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr)
617{
618 int ret;
619
620 ret = update_phy_reg(ohci, 7, PHY_PAGE_SELECT, page << 5);
621 if (ret < 0)
622 return ret;
623
624 return read_phy_reg(ohci, addr);
625}
626
627static int ohci_read_phy_reg(struct fw_card *card, int addr)
628{
629 struct fw_ohci *ohci = fw_ohci(card);
630 int ret;
631
632 mutex_lock(&ohci->phy_reg_mutex);
633 ret = read_phy_reg(ohci, addr);
634 mutex_unlock(&ohci->phy_reg_mutex);
635
636 return ret;
637}
638
639static int ohci_update_phy_reg(struct fw_card *card, int addr,
640 int clear_bits, int set_bits)
641{
642 struct fw_ohci *ohci = fw_ohci(card);
643 int ret;
644
645 mutex_lock(&ohci->phy_reg_mutex);
646 ret = update_phy_reg(ohci, addr, clear_bits, set_bits);
647 mutex_unlock(&ohci->phy_reg_mutex);
648
649 return ret;
650}
651
652static inline dma_addr_t ar_buffer_bus(struct ar_context *ctx, unsigned int i)
653{
654 return page_private(ctx->pages[i]);
655}
656
657static void ar_context_link_page(struct ar_context *ctx, unsigned int index)
658{
659 struct descriptor *d;
660
661 d = &ctx->descriptors[index];
662 d->branch_address &= cpu_to_le32(~0xf);
663 d->res_count = cpu_to_le16(PAGE_SIZE);
664 d->transfer_status = 0;
665
666 wmb(); /* finish init of new descriptors before branch_address update */
667 d = &ctx->descriptors[ctx->last_buffer_index];
668 d->branch_address |= cpu_to_le32(1);
669
670 ctx->last_buffer_index = index;
671
672 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
673}
674
675static void ar_context_release(struct ar_context *ctx)
676{
677 unsigned int i;
678
679 vunmap(ctx->buffer);
680
681 for (i = 0; i < AR_BUFFERS; i++)
682 if (ctx->pages[i]) {
683 dma_unmap_page(ctx->ohci->card.device,
684 ar_buffer_bus(ctx, i),
685 PAGE_SIZE, DMA_FROM_DEVICE);
686 __free_page(ctx->pages[i]);
687 }
688}
689
690static void ar_context_abort(struct ar_context *ctx, const char *error_msg)
691{
692 struct fw_ohci *ohci = ctx->ohci;
693
694 if (reg_read(ohci, CONTROL_CLEAR(ctx->regs)) & CONTEXT_RUN) {
695 reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
696 flush_writes(ohci);
697
698 ohci_err(ohci, "AR error: %s; DMA stopped\n", error_msg);
699 }
700 /* FIXME: restart? */
701}
702
703static inline unsigned int ar_next_buffer_index(unsigned int index)
704{
705 return (index + 1) % AR_BUFFERS;
706}
707
708static inline unsigned int ar_first_buffer_index(struct ar_context *ctx)
709{
710 return ar_next_buffer_index(ctx->last_buffer_index);
711}
712
713/*
714 * We search for the buffer that contains the last AR packet DMA data written
715 * by the controller.
716 */
717static unsigned int ar_search_last_active_buffer(struct ar_context *ctx,
718 unsigned int *buffer_offset)
719{
720 unsigned int i, next_i, last = ctx->last_buffer_index;
721 __le16 res_count, next_res_count;
722
723 i = ar_first_buffer_index(ctx);
724 res_count = READ_ONCE(ctx->descriptors[i].res_count);
725
726 /* A buffer that is not yet completely filled must be the last one. */
727 while (i != last && res_count == 0) {
728
729 /* Peek at the next descriptor. */
730 next_i = ar_next_buffer_index(i);
731 rmb(); /* read descriptors in order */
732 next_res_count = READ_ONCE(ctx->descriptors[next_i].res_count);
733 /*
734 * If the next descriptor is still empty, we must stop at this
735 * descriptor.
736 */
737 if (next_res_count == cpu_to_le16(PAGE_SIZE)) {
738 /*
739 * The exception is when the DMA data for one packet is
740 * split over three buffers; in this case, the middle
741 * buffer's descriptor might be never updated by the
742 * controller and look still empty, and we have to peek
743 * at the third one.
744 */
745 if (MAX_AR_PACKET_SIZE > PAGE_SIZE && i != last) {
746 next_i = ar_next_buffer_index(next_i);
747 rmb();
748 next_res_count = READ_ONCE(ctx->descriptors[next_i].res_count);
749 if (next_res_count != cpu_to_le16(PAGE_SIZE))
750 goto next_buffer_is_active;
751 }
752
753 break;
754 }
755
756next_buffer_is_active:
757 i = next_i;
758 res_count = next_res_count;
759 }
760
761 rmb(); /* read res_count before the DMA data */
762
763 *buffer_offset = PAGE_SIZE - le16_to_cpu(res_count);
764 if (*buffer_offset > PAGE_SIZE) {
765 *buffer_offset = 0;
766 ar_context_abort(ctx, "corrupted descriptor");
767 }
768
769 return i;
770}
771
772static void ar_sync_buffers_for_cpu(struct ar_context *ctx,
773 unsigned int end_buffer_index,
774 unsigned int end_buffer_offset)
775{
776 unsigned int i;
777
778 i = ar_first_buffer_index(ctx);
779 while (i != end_buffer_index) {
780 dma_sync_single_for_cpu(ctx->ohci->card.device,
781 ar_buffer_bus(ctx, i),
782 PAGE_SIZE, DMA_FROM_DEVICE);
783 i = ar_next_buffer_index(i);
784 }
785 if (end_buffer_offset > 0)
786 dma_sync_single_for_cpu(ctx->ohci->card.device,
787 ar_buffer_bus(ctx, i),
788 end_buffer_offset, DMA_FROM_DEVICE);
789}
790
791#if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
792#define cond_le32_to_cpu(v) \
793 (ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
794#else
795#define cond_le32_to_cpu(v) le32_to_cpu(v)
796#endif
797
798static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
799{
800 struct fw_ohci *ohci = ctx->ohci;
801 struct fw_packet p;
802 u32 status, length, tcode;
803 int evt;
804
805 p.header[0] = cond_le32_to_cpu(buffer[0]);
806 p.header[1] = cond_le32_to_cpu(buffer[1]);
807 p.header[2] = cond_le32_to_cpu(buffer[2]);
808
809 tcode = (p.header[0] >> 4) & 0x0f;
810 switch (tcode) {
811 case TCODE_WRITE_QUADLET_REQUEST:
812 case TCODE_READ_QUADLET_RESPONSE:
813 p.header[3] = (__force __u32) buffer[3];
814 p.header_length = 16;
815 p.payload_length = 0;
816 break;
817
818 case TCODE_READ_BLOCK_REQUEST :
819 p.header[3] = cond_le32_to_cpu(buffer[3]);
820 p.header_length = 16;
821 p.payload_length = 0;
822 break;
823
824 case TCODE_WRITE_BLOCK_REQUEST:
825 case TCODE_READ_BLOCK_RESPONSE:
826 case TCODE_LOCK_REQUEST:
827 case TCODE_LOCK_RESPONSE:
828 p.header[3] = cond_le32_to_cpu(buffer[3]);
829 p.header_length = 16;
830 p.payload_length = p.header[3] >> 16;
831 if (p.payload_length > MAX_ASYNC_PAYLOAD) {
832 ar_context_abort(ctx, "invalid packet length");
833 return NULL;
834 }
835 break;
836
837 case TCODE_WRITE_RESPONSE:
838 case TCODE_READ_QUADLET_REQUEST:
839 case OHCI_TCODE_PHY_PACKET:
840 p.header_length = 12;
841 p.payload_length = 0;
842 break;
843
844 default:
845 ar_context_abort(ctx, "invalid tcode");
846 return NULL;
847 }
848
849 p.payload = (void *) buffer + p.header_length;
850
851 /* FIXME: What to do about evt_* errors? */
852 length = (p.header_length + p.payload_length + 3) / 4;
853 status = cond_le32_to_cpu(buffer[length]);
854 evt = (status >> 16) & 0x1f;
855
856 p.ack = evt - 16;
857 p.speed = (status >> 21) & 0x7;
858 p.timestamp = status & 0xffff;
859 p.generation = ohci->request_generation;
860
861 log_ar_at_event(ohci, 'R', p.speed, p.header, evt);
862
863 /*
864 * Several controllers, notably from NEC and VIA, forget to
865 * write ack_complete status at PHY packet reception.
866 */
867 if (evt == OHCI1394_evt_no_status &&
868 (p.header[0] & 0xff) == (OHCI1394_phy_tcode << 4))
869 p.ack = ACK_COMPLETE;
870
871 /*
872 * The OHCI bus reset handler synthesizes a PHY packet with
873 * the new generation number when a bus reset happens (see
874 * section 8.4.2.3). This helps us determine when a request
875 * was received and make sure we send the response in the same
876 * generation. We only need this for requests; for responses
877 * we use the unique tlabel for finding the matching
878 * request.
879 *
880 * Alas some chips sometimes emit bus reset packets with a
881 * wrong generation. We set the correct generation for these
882 * at a slightly incorrect time (in bus_reset_work).
883 */
884 if (evt == OHCI1394_evt_bus_reset) {
885 if (!(ohci->quirks & QUIRK_RESET_PACKET))
886 ohci->request_generation = (p.header[2] >> 16) & 0xff;
887 } else if (ctx == &ohci->ar_request_ctx) {
888 fw_core_handle_request(&ohci->card, &p);
889 } else {
890 fw_core_handle_response(&ohci->card, &p);
891 }
892
893 return buffer + length + 1;
894}
895
896static void *handle_ar_packets(struct ar_context *ctx, void *p, void *end)
897{
898 void *next;
899
900 while (p < end) {
901 next = handle_ar_packet(ctx, p);
902 if (!next)
903 return p;
904 p = next;
905 }
906
907 return p;
908}
909
910static void ar_recycle_buffers(struct ar_context *ctx, unsigned int end_buffer)
911{
912 unsigned int i;
913
914 i = ar_first_buffer_index(ctx);
915 while (i != end_buffer) {
916 dma_sync_single_for_device(ctx->ohci->card.device,
917 ar_buffer_bus(ctx, i),
918 PAGE_SIZE, DMA_FROM_DEVICE);
919 ar_context_link_page(ctx, i);
920 i = ar_next_buffer_index(i);
921 }
922}
923
924static void ar_context_tasklet(unsigned long data)
925{
926 struct ar_context *ctx = (struct ar_context *)data;
927 unsigned int end_buffer_index, end_buffer_offset;
928 void *p, *end;
929
930 p = ctx->pointer;
931 if (!p)
932 return;
933
934 end_buffer_index = ar_search_last_active_buffer(ctx,
935 &end_buffer_offset);
936 ar_sync_buffers_for_cpu(ctx, end_buffer_index, end_buffer_offset);
937 end = ctx->buffer + end_buffer_index * PAGE_SIZE + end_buffer_offset;
938
939 if (end_buffer_index < ar_first_buffer_index(ctx)) {
940 /*
941 * The filled part of the overall buffer wraps around; handle
942 * all packets up to the buffer end here. If the last packet
943 * wraps around, its tail will be visible after the buffer end
944 * because the buffer start pages are mapped there again.
945 */
946 void *buffer_end = ctx->buffer + AR_BUFFERS * PAGE_SIZE;
947 p = handle_ar_packets(ctx, p, buffer_end);
948 if (p < buffer_end)
949 goto error;
950 /* adjust p to point back into the actual buffer */
951 p -= AR_BUFFERS * PAGE_SIZE;
952 }
953
954 p = handle_ar_packets(ctx, p, end);
955 if (p != end) {
956 if (p > end)
957 ar_context_abort(ctx, "inconsistent descriptor");
958 goto error;
959 }
960
961 ctx->pointer = p;
962 ar_recycle_buffers(ctx, end_buffer_index);
963
964 return;
965
966error:
967 ctx->pointer = NULL;
968}
969
970static int ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci,
971 unsigned int descriptors_offset, u32 regs)
972{
973 unsigned int i;
974 dma_addr_t dma_addr;
975 struct page *pages[AR_BUFFERS + AR_WRAPAROUND_PAGES];
976 struct descriptor *d;
977
978 ctx->regs = regs;
979 ctx->ohci = ohci;
980 tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
981
982 for (i = 0; i < AR_BUFFERS; i++) {
983 ctx->pages[i] = alloc_page(GFP_KERNEL | GFP_DMA32);
984 if (!ctx->pages[i])
985 goto out_of_memory;
986 dma_addr = dma_map_page(ohci->card.device, ctx->pages[i],
987 0, PAGE_SIZE, DMA_FROM_DEVICE);
988 if (dma_mapping_error(ohci->card.device, dma_addr)) {
989 __free_page(ctx->pages[i]);
990 ctx->pages[i] = NULL;
991 goto out_of_memory;
992 }
993 set_page_private(ctx->pages[i], dma_addr);
994 }
995
996 for (i = 0; i < AR_BUFFERS; i++)
997 pages[i] = ctx->pages[i];
998 for (i = 0; i < AR_WRAPAROUND_PAGES; i++)
999 pages[AR_BUFFERS + i] = ctx->pages[i];
1000 ctx->buffer = vmap(pages, ARRAY_SIZE(pages), VM_MAP, PAGE_KERNEL);
1001 if (!ctx->buffer)
1002 goto out_of_memory;
1003
1004 ctx->descriptors = ohci->misc_buffer + descriptors_offset;
1005 ctx->descriptors_bus = ohci->misc_buffer_bus + descriptors_offset;
1006
1007 for (i = 0; i < AR_BUFFERS; i++) {
1008 d = &ctx->descriptors[i];
1009 d->req_count = cpu_to_le16(PAGE_SIZE);
1010 d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
1011 DESCRIPTOR_STATUS |
1012 DESCRIPTOR_BRANCH_ALWAYS);
1013 d->data_address = cpu_to_le32(ar_buffer_bus(ctx, i));
1014 d->branch_address = cpu_to_le32(ctx->descriptors_bus +
1015 ar_next_buffer_index(i) * sizeof(struct descriptor));
1016 }
1017
1018 return 0;
1019
1020out_of_memory:
1021 ar_context_release(ctx);
1022
1023 return -ENOMEM;
1024}
1025
1026static void ar_context_run(struct ar_context *ctx)
1027{
1028 unsigned int i;
1029
1030 for (i = 0; i < AR_BUFFERS; i++)
1031 ar_context_link_page(ctx, i);
1032
1033 ctx->pointer = ctx->buffer;
1034
1035 reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ctx->descriptors_bus | 1);
1036 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
1037}
1038
1039static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
1040{
1041 __le16 branch;
1042
1043 branch = d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS);
1044
1045 /* figure out which descriptor the branch address goes in */
1046 if (z == 2 && branch == cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
1047 return d;
1048 else
1049 return d + z - 1;
1050}
1051
1052static void context_tasklet(unsigned long data)
1053{
1054 struct context *ctx = (struct context *) data;
1055 struct descriptor *d, *last;
1056 u32 address;
1057 int z;
1058 struct descriptor_buffer *desc;
1059
1060 desc = list_entry(ctx->buffer_list.next,
1061 struct descriptor_buffer, list);
1062 last = ctx->last;
1063 while (last->branch_address != 0) {
1064 struct descriptor_buffer *old_desc = desc;
1065 address = le32_to_cpu(last->branch_address);
1066 z = address & 0xf;
1067 address &= ~0xf;
1068 ctx->current_bus = address;
1069
1070 /* If the branch address points to a buffer outside of the
1071 * current buffer, advance to the next buffer. */
1072 if (address < desc->buffer_bus ||
1073 address >= desc->buffer_bus + desc->used)
1074 desc = list_entry(desc->list.next,
1075 struct descriptor_buffer, list);
1076 d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
1077 last = find_branch_descriptor(d, z);
1078
1079 if (!ctx->callback(ctx, d, last))
1080 break;
1081
1082 if (old_desc != desc) {
1083 /* If we've advanced to the next buffer, move the
1084 * previous buffer to the free list. */
1085 unsigned long flags;
1086 old_desc->used = 0;
1087 spin_lock_irqsave(&ctx->ohci->lock, flags);
1088 list_move_tail(&old_desc->list, &ctx->buffer_list);
1089 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1090 }
1091 ctx->last = last;
1092 }
1093}
1094
1095/*
1096 * Allocate a new buffer and add it to the list of free buffers for this
1097 * context. Must be called with ohci->lock held.
1098 */
1099static int context_add_buffer(struct context *ctx)
1100{
1101 struct descriptor_buffer *desc;
1102 dma_addr_t uninitialized_var(bus_addr);
1103 int offset;
1104
1105 /*
1106 * 16MB of descriptors should be far more than enough for any DMA
1107 * program. This will catch run-away userspace or DoS attacks.
1108 */
1109 if (ctx->total_allocation >= 16*1024*1024)
1110 return -ENOMEM;
1111
1112 desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
1113 &bus_addr, GFP_ATOMIC);
1114 if (!desc)
1115 return -ENOMEM;
1116
1117 offset = (void *)&desc->buffer - (void *)desc;
1118 /*
1119 * Some controllers, like JMicron ones, always issue 0x20-byte DMA reads
1120 * for descriptors, even 0x10-byte ones. This can cause page faults when
1121 * an IOMMU is in use and the oversized read crosses a page boundary.
1122 * Work around this by always leaving at least 0x10 bytes of padding.
1123 */
1124 desc->buffer_size = PAGE_SIZE - offset - 0x10;
1125 desc->buffer_bus = bus_addr + offset;
1126 desc->used = 0;
1127
1128 list_add_tail(&desc->list, &ctx->buffer_list);
1129 ctx->total_allocation += PAGE_SIZE;
1130
1131 return 0;
1132}
1133
1134static int context_init(struct context *ctx, struct fw_ohci *ohci,
1135 u32 regs, descriptor_callback_t callback)
1136{
1137 ctx->ohci = ohci;
1138 ctx->regs = regs;
1139 ctx->total_allocation = 0;
1140
1141 INIT_LIST_HEAD(&ctx->buffer_list);
1142 if (context_add_buffer(ctx) < 0)
1143 return -ENOMEM;
1144
1145 ctx->buffer_tail = list_entry(ctx->buffer_list.next,
1146 struct descriptor_buffer, list);
1147
1148 tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
1149 ctx->callback = callback;
1150
1151 /*
1152 * We put a dummy descriptor in the buffer that has a NULL
1153 * branch address and looks like it's been sent. That way we
1154 * have a descriptor to append DMA programs to.
1155 */
1156 memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
1157 ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
1158 ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
1159 ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
1160 ctx->last = ctx->buffer_tail->buffer;
1161 ctx->prev = ctx->buffer_tail->buffer;
1162 ctx->prev_z = 1;
1163
1164 return 0;
1165}
1166
1167static void context_release(struct context *ctx)
1168{
1169 struct fw_card *card = &ctx->ohci->card;
1170 struct descriptor_buffer *desc, *tmp;
1171
1172 list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
1173 dma_free_coherent(card->device, PAGE_SIZE, desc,
1174 desc->buffer_bus -
1175 ((void *)&desc->buffer - (void *)desc));
1176}
1177
1178/* Must be called with ohci->lock held */
1179static struct descriptor *context_get_descriptors(struct context *ctx,
1180 int z, dma_addr_t *d_bus)
1181{
1182 struct descriptor *d = NULL;
1183 struct descriptor_buffer *desc = ctx->buffer_tail;
1184
1185 if (z * sizeof(*d) > desc->buffer_size)
1186 return NULL;
1187
1188 if (z * sizeof(*d) > desc->buffer_size - desc->used) {
1189 /* No room for the descriptor in this buffer, so advance to the
1190 * next one. */
1191
1192 if (desc->list.next == &ctx->buffer_list) {
1193 /* If there is no free buffer next in the list,
1194 * allocate one. */
1195 if (context_add_buffer(ctx) < 0)
1196 return NULL;
1197 }
1198 desc = list_entry(desc->list.next,
1199 struct descriptor_buffer, list);
1200 ctx->buffer_tail = desc;
1201 }
1202
1203 d = desc->buffer + desc->used / sizeof(*d);
1204 memset(d, 0, z * sizeof(*d));
1205 *d_bus = desc->buffer_bus + desc->used;
1206
1207 return d;
1208}
1209
1210static void context_run(struct context *ctx, u32 extra)
1211{
1212 struct fw_ohci *ohci = ctx->ohci;
1213
1214 reg_write(ohci, COMMAND_PTR(ctx->regs),
1215 le32_to_cpu(ctx->last->branch_address));
1216 reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
1217 reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
1218 ctx->running = true;
1219 flush_writes(ohci);
1220}
1221
1222static void context_append(struct context *ctx,
1223 struct descriptor *d, int z, int extra)
1224{
1225 dma_addr_t d_bus;
1226 struct descriptor_buffer *desc = ctx->buffer_tail;
1227 struct descriptor *d_branch;
1228
1229 d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
1230
1231 desc->used += (z + extra) * sizeof(*d);
1232
1233 wmb(); /* finish init of new descriptors before branch_address update */
1234
1235 d_branch = find_branch_descriptor(ctx->prev, ctx->prev_z);
1236 d_branch->branch_address = cpu_to_le32(d_bus | z);
1237
1238 /*
1239 * VT6306 incorrectly checks only the single descriptor at the
1240 * CommandPtr when the wake bit is written, so if it's a
1241 * multi-descriptor block starting with an INPUT_MORE, put a copy of
1242 * the branch address in the first descriptor.
1243 *
1244 * Not doing this for transmit contexts since not sure how it interacts
1245 * with skip addresses.
1246 */
1247 if (unlikely(ctx->ohci->quirks & QUIRK_IR_WAKE) &&
1248 d_branch != ctx->prev &&
1249 (ctx->prev->control & cpu_to_le16(DESCRIPTOR_CMD)) ==
1250 cpu_to_le16(DESCRIPTOR_INPUT_MORE)) {
1251 ctx->prev->branch_address = cpu_to_le32(d_bus | z);
1252 }
1253
1254 ctx->prev = d;
1255 ctx->prev_z = z;
1256}
1257
1258static void context_stop(struct context *ctx)
1259{
1260 struct fw_ohci *ohci = ctx->ohci;
1261 u32 reg;
1262 int i;
1263
1264 reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
1265 ctx->running = false;
1266
1267 for (i = 0; i < 1000; i++) {
1268 reg = reg_read(ohci, CONTROL_SET(ctx->regs));
1269 if ((reg & CONTEXT_ACTIVE) == 0)
1270 return;
1271
1272 if (i)
1273 udelay(10);
1274 }
1275 ohci_err(ohci, "DMA context still active (0x%08x)\n", reg);
1276}
1277
1278struct driver_data {
1279 u8 inline_data[8];
1280 struct fw_packet *packet;
1281};
1282
1283/*
1284 * This function apppends a packet to the DMA queue for transmission.
1285 * Must always be called with the ochi->lock held to ensure proper
1286 * generation handling and locking around packet queue manipulation.
1287 */
1288static int at_context_queue_packet(struct context *ctx,
1289 struct fw_packet *packet)
1290{
1291 struct fw_ohci *ohci = ctx->ohci;
1292 dma_addr_t d_bus, uninitialized_var(payload_bus);
1293 struct driver_data *driver_data;
1294 struct descriptor *d, *last;
1295 __le32 *header;
1296 int z, tcode;
1297
1298 d = context_get_descriptors(ctx, 4, &d_bus);
1299 if (d == NULL) {
1300 packet->ack = RCODE_SEND_ERROR;
1301 return -1;
1302 }
1303
1304 d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1305 d[0].res_count = cpu_to_le16(packet->timestamp);
1306
1307 /*
1308 * The DMA format for asynchronous link packets is different
1309 * from the IEEE1394 layout, so shift the fields around
1310 * accordingly.
1311 */
1312
1313 tcode = (packet->header[0] >> 4) & 0x0f;
1314 header = (__le32 *) &d[1];
1315 switch (tcode) {
1316 case TCODE_WRITE_QUADLET_REQUEST:
1317 case TCODE_WRITE_BLOCK_REQUEST:
1318 case TCODE_WRITE_RESPONSE:
1319 case TCODE_READ_QUADLET_REQUEST:
1320 case TCODE_READ_BLOCK_REQUEST:
1321 case TCODE_READ_QUADLET_RESPONSE:
1322 case TCODE_READ_BLOCK_RESPONSE:
1323 case TCODE_LOCK_REQUEST:
1324 case TCODE_LOCK_RESPONSE:
1325 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1326 (packet->speed << 16));
1327 header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
1328 (packet->header[0] & 0xffff0000));
1329 header[2] = cpu_to_le32(packet->header[2]);
1330
1331 if (TCODE_IS_BLOCK_PACKET(tcode))
1332 header[3] = cpu_to_le32(packet->header[3]);
1333 else
1334 header[3] = (__force __le32) packet->header[3];
1335
1336 d[0].req_count = cpu_to_le16(packet->header_length);
1337 break;
1338
1339 case TCODE_LINK_INTERNAL:
1340 header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
1341 (packet->speed << 16));
1342 header[1] = cpu_to_le32(packet->header[1]);
1343 header[2] = cpu_to_le32(packet->header[2]);
1344 d[0].req_count = cpu_to_le16(12);
1345
1346 if (is_ping_packet(&packet->header[1]))
1347 d[0].control |= cpu_to_le16(DESCRIPTOR_PING);
1348 break;
1349
1350 case TCODE_STREAM_DATA:
1351 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1352 (packet->speed << 16));
1353 header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
1354 d[0].req_count = cpu_to_le16(8);
1355 break;
1356
1357 default:
1358 /* BUG(); */
1359 packet->ack = RCODE_SEND_ERROR;
1360 return -1;
1361 }
1362
1363 BUILD_BUG_ON(sizeof(struct driver_data) > sizeof(struct descriptor));
1364 driver_data = (struct driver_data *) &d[3];
1365 driver_data->packet = packet;
1366 packet->driver_data = driver_data;
1367
1368 if (packet->payload_length > 0) {
1369 if (packet->payload_length > sizeof(driver_data->inline_data)) {
1370 payload_bus = dma_map_single(ohci->card.device,
1371 packet->payload,
1372 packet->payload_length,
1373 DMA_TO_DEVICE);
1374 if (dma_mapping_error(ohci->card.device, payload_bus)) {
1375 packet->ack = RCODE_SEND_ERROR;
1376 return -1;
1377 }
1378 packet->payload_bus = payload_bus;
1379 packet->payload_mapped = true;
1380 } else {
1381 memcpy(driver_data->inline_data, packet->payload,
1382 packet->payload_length);
1383 payload_bus = d_bus + 3 * sizeof(*d);
1384 }
1385
1386 d[2].req_count = cpu_to_le16(packet->payload_length);
1387 d[2].data_address = cpu_to_le32(payload_bus);
1388 last = &d[2];
1389 z = 3;
1390 } else {
1391 last = &d[0];
1392 z = 2;
1393 }
1394
1395 last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1396 DESCRIPTOR_IRQ_ALWAYS |
1397 DESCRIPTOR_BRANCH_ALWAYS);
1398
1399 /* FIXME: Document how the locking works. */
1400 if (ohci->generation != packet->generation) {
1401 if (packet->payload_mapped)
1402 dma_unmap_single(ohci->card.device, payload_bus,
1403 packet->payload_length, DMA_TO_DEVICE);
1404 packet->ack = RCODE_GENERATION;
1405 return -1;
1406 }
1407
1408 context_append(ctx, d, z, 4 - z);
1409
1410 if (ctx->running)
1411 reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
1412 else
1413 context_run(ctx, 0);
1414
1415 return 0;
1416}
1417
1418static void at_context_flush(struct context *ctx)
1419{
1420 tasklet_disable(&ctx->tasklet);
1421
1422 ctx->flushing = true;
1423 context_tasklet((unsigned long)ctx);
1424 ctx->flushing = false;
1425
1426 tasklet_enable(&ctx->tasklet);
1427}
1428
1429static int handle_at_packet(struct context *context,
1430 struct descriptor *d,
1431 struct descriptor *last)
1432{
1433 struct driver_data *driver_data;
1434 struct fw_packet *packet;
1435 struct fw_ohci *ohci = context->ohci;
1436 int evt;
1437
1438 if (last->transfer_status == 0 && !context->flushing)
1439 /* This descriptor isn't done yet, stop iteration. */
1440 return 0;
1441
1442 driver_data = (struct driver_data *) &d[3];
1443 packet = driver_data->packet;
1444 if (packet == NULL)
1445 /* This packet was cancelled, just continue. */
1446 return 1;
1447
1448 if (packet->payload_mapped)
1449 dma_unmap_single(ohci->card.device, packet->payload_bus,
1450 packet->payload_length, DMA_TO_DEVICE);
1451
1452 evt = le16_to_cpu(last->transfer_status) & 0x1f;
1453 packet->timestamp = le16_to_cpu(last->res_count);
1454
1455 log_ar_at_event(ohci, 'T', packet->speed, packet->header, evt);
1456
1457 switch (evt) {
1458 case OHCI1394_evt_timeout:
1459 /* Async response transmit timed out. */
1460 packet->ack = RCODE_CANCELLED;
1461 break;
1462
1463 case OHCI1394_evt_flushed:
1464 /*
1465 * The packet was flushed should give same error as
1466 * when we try to use a stale generation count.
1467 */
1468 packet->ack = RCODE_GENERATION;
1469 break;
1470
1471 case OHCI1394_evt_missing_ack:
1472 if (context->flushing)
1473 packet->ack = RCODE_GENERATION;
1474 else {
1475 /*
1476 * Using a valid (current) generation count, but the
1477 * node is not on the bus or not sending acks.
1478 */
1479 packet->ack = RCODE_NO_ACK;
1480 }
1481 break;
1482
1483 case ACK_COMPLETE + 0x10:
1484 case ACK_PENDING + 0x10:
1485 case ACK_BUSY_X + 0x10:
1486 case ACK_BUSY_A + 0x10:
1487 case ACK_BUSY_B + 0x10:
1488 case ACK_DATA_ERROR + 0x10:
1489 case ACK_TYPE_ERROR + 0x10:
1490 packet->ack = evt - 0x10;
1491 break;
1492
1493 case OHCI1394_evt_no_status:
1494 if (context->flushing) {
1495 packet->ack = RCODE_GENERATION;
1496 break;
1497 }
1498 /* fall through */
1499
1500 default:
1501 packet->ack = RCODE_SEND_ERROR;
1502 break;
1503 }
1504
1505 packet->callback(packet, &ohci->card, packet->ack);
1506
1507 return 1;
1508}
1509
1510#define HEADER_GET_DESTINATION(q) (((q) >> 16) & 0xffff)
1511#define HEADER_GET_TCODE(q) (((q) >> 4) & 0x0f)
1512#define HEADER_GET_OFFSET_HIGH(q) (((q) >> 0) & 0xffff)
1513#define HEADER_GET_DATA_LENGTH(q) (((q) >> 16) & 0xffff)
1514#define HEADER_GET_EXTENDED_TCODE(q) (((q) >> 0) & 0xffff)
1515
1516static void handle_local_rom(struct fw_ohci *ohci,
1517 struct fw_packet *packet, u32 csr)
1518{
1519 struct fw_packet response;
1520 int tcode, length, i;
1521
1522 tcode = HEADER_GET_TCODE(packet->header[0]);
1523 if (TCODE_IS_BLOCK_PACKET(tcode))
1524 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1525 else
1526 length = 4;
1527
1528 i = csr - CSR_CONFIG_ROM;
1529 if (i + length > CONFIG_ROM_SIZE) {
1530 fw_fill_response(&response, packet->header,
1531 RCODE_ADDRESS_ERROR, NULL, 0);
1532 } else if (!TCODE_IS_READ_REQUEST(tcode)) {
1533 fw_fill_response(&response, packet->header,
1534 RCODE_TYPE_ERROR, NULL, 0);
1535 } else {
1536 fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1537 (void *) ohci->config_rom + i, length);
1538 }
1539
1540 fw_core_handle_response(&ohci->card, &response);
1541}
1542
1543static void handle_local_lock(struct fw_ohci *ohci,
1544 struct fw_packet *packet, u32 csr)
1545{
1546 struct fw_packet response;
1547 int tcode, length, ext_tcode, sel, try;
1548 __be32 *payload, lock_old;
1549 u32 lock_arg, lock_data;
1550
1551 tcode = HEADER_GET_TCODE(packet->header[0]);
1552 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1553 payload = packet->payload;
1554 ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1555
1556 if (tcode == TCODE_LOCK_REQUEST &&
1557 ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1558 lock_arg = be32_to_cpu(payload[0]);
1559 lock_data = be32_to_cpu(payload[1]);
1560 } else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1561 lock_arg = 0;
1562 lock_data = 0;
1563 } else {
1564 fw_fill_response(&response, packet->header,
1565 RCODE_TYPE_ERROR, NULL, 0);
1566 goto out;
1567 }
1568
1569 sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1570 reg_write(ohci, OHCI1394_CSRData, lock_data);
1571 reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1572 reg_write(ohci, OHCI1394_CSRControl, sel);
1573
1574 for (try = 0; try < 20; try++)
1575 if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000) {
1576 lock_old = cpu_to_be32(reg_read(ohci,
1577 OHCI1394_CSRData));
1578 fw_fill_response(&response, packet->header,
1579 RCODE_COMPLETE,
1580 &lock_old, sizeof(lock_old));
1581 goto out;
1582 }
1583
1584 ohci_err(ohci, "swap not done (CSR lock timeout)\n");
1585 fw_fill_response(&response, packet->header, RCODE_BUSY, NULL, 0);
1586
1587 out:
1588 fw_core_handle_response(&ohci->card, &response);
1589}
1590
1591static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1592{
1593 u64 offset, csr;
1594
1595 if (ctx == &ctx->ohci->at_request_ctx) {
1596 packet->ack = ACK_PENDING;
1597 packet->callback(packet, &ctx->ohci->card, packet->ack);
1598 }
1599
1600 offset =
1601 ((unsigned long long)
1602 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1603 packet->header[2];
1604 csr = offset - CSR_REGISTER_BASE;
1605
1606 /* Handle config rom reads. */
1607 if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1608 handle_local_rom(ctx->ohci, packet, csr);
1609 else switch (csr) {
1610 case CSR_BUS_MANAGER_ID:
1611 case CSR_BANDWIDTH_AVAILABLE:
1612 case CSR_CHANNELS_AVAILABLE_HI:
1613 case CSR_CHANNELS_AVAILABLE_LO:
1614 handle_local_lock(ctx->ohci, packet, csr);
1615 break;
1616 default:
1617 if (ctx == &ctx->ohci->at_request_ctx)
1618 fw_core_handle_request(&ctx->ohci->card, packet);
1619 else
1620 fw_core_handle_response(&ctx->ohci->card, packet);
1621 break;
1622 }
1623
1624 if (ctx == &ctx->ohci->at_response_ctx) {
1625 packet->ack = ACK_COMPLETE;
1626 packet->callback(packet, &ctx->ohci->card, packet->ack);
1627 }
1628}
1629
1630static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1631{
1632 unsigned long flags;
1633 int ret;
1634
1635 spin_lock_irqsave(&ctx->ohci->lock, flags);
1636
1637 if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1638 ctx->ohci->generation == packet->generation) {
1639 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1640 handle_local_request(ctx, packet);
1641 return;
1642 }
1643
1644 ret = at_context_queue_packet(ctx, packet);
1645 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1646
1647 if (ret < 0)
1648 packet->callback(packet, &ctx->ohci->card, packet->ack);
1649
1650}
1651
1652static void detect_dead_context(struct fw_ohci *ohci,
1653 const char *name, unsigned int regs)
1654{
1655 u32 ctl;
1656
1657 ctl = reg_read(ohci, CONTROL_SET(regs));
1658 if (ctl & CONTEXT_DEAD)
1659 ohci_err(ohci, "DMA context %s has stopped, error code: %s\n",
1660 name, evts[ctl & 0x1f]);
1661}
1662
1663static void handle_dead_contexts(struct fw_ohci *ohci)
1664{
1665 unsigned int i;
1666 char name[8];
1667
1668 detect_dead_context(ohci, "ATReq", OHCI1394_AsReqTrContextBase);
1669 detect_dead_context(ohci, "ATRsp", OHCI1394_AsRspTrContextBase);
1670 detect_dead_context(ohci, "ARReq", OHCI1394_AsReqRcvContextBase);
1671 detect_dead_context(ohci, "ARRsp", OHCI1394_AsRspRcvContextBase);
1672 for (i = 0; i < 32; ++i) {
1673 if (!(ohci->it_context_support & (1 << i)))
1674 continue;
1675 sprintf(name, "IT%u", i);
1676 detect_dead_context(ohci, name, OHCI1394_IsoXmitContextBase(i));
1677 }
1678 for (i = 0; i < 32; ++i) {
1679 if (!(ohci->ir_context_support & (1 << i)))
1680 continue;
1681 sprintf(name, "IR%u", i);
1682 detect_dead_context(ohci, name, OHCI1394_IsoRcvContextBase(i));
1683 }
1684 /* TODO: maybe try to flush and restart the dead contexts */
1685}
1686
1687static u32 cycle_timer_ticks(u32 cycle_timer)
1688{
1689 u32 ticks;
1690
1691 ticks = cycle_timer & 0xfff;
1692 ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
1693 ticks += (3072 * 8000) * (cycle_timer >> 25);
1694
1695 return ticks;
1696}
1697
1698/*
1699 * Some controllers exhibit one or more of the following bugs when updating the
1700 * iso cycle timer register:
1701 * - When the lowest six bits are wrapping around to zero, a read that happens
1702 * at the same time will return garbage in the lowest ten bits.
1703 * - When the cycleOffset field wraps around to zero, the cycleCount field is
1704 * not incremented for about 60 ns.
1705 * - Occasionally, the entire register reads zero.
1706 *
1707 * To catch these, we read the register three times and ensure that the
1708 * difference between each two consecutive reads is approximately the same, i.e.
1709 * less than twice the other. Furthermore, any negative difference indicates an
1710 * error. (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
1711 * execute, so we have enough precision to compute the ratio of the differences.)
1712 */
1713static u32 get_cycle_time(struct fw_ohci *ohci)
1714{
1715 u32 c0, c1, c2;
1716 u32 t0, t1, t2;
1717 s32 diff01, diff12;
1718 int i;
1719
1720 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1721
1722 if (ohci->quirks & QUIRK_CYCLE_TIMER) {
1723 i = 0;
1724 c1 = c2;
1725 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1726 do {
1727 c0 = c1;
1728 c1 = c2;
1729 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1730 t0 = cycle_timer_ticks(c0);
1731 t1 = cycle_timer_ticks(c1);
1732 t2 = cycle_timer_ticks(c2);
1733 diff01 = t1 - t0;
1734 diff12 = t2 - t1;
1735 } while ((diff01 <= 0 || diff12 <= 0 ||
1736 diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
1737 && i++ < 20);
1738 }
1739
1740 return c2;
1741}
1742
1743/*
1744 * This function has to be called at least every 64 seconds. The bus_time
1745 * field stores not only the upper 25 bits of the BUS_TIME register but also
1746 * the most significant bit of the cycle timer in bit 6 so that we can detect
1747 * changes in this bit.
1748 */
1749static u32 update_bus_time(struct fw_ohci *ohci)
1750{
1751 u32 cycle_time_seconds = get_cycle_time(ohci) >> 25;
1752
1753 if (unlikely(!ohci->bus_time_running)) {
1754 reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_cycle64Seconds);
1755 ohci->bus_time = (lower_32_bits(get_seconds()) & ~0x7f) |
1756 (cycle_time_seconds & 0x40);
1757 ohci->bus_time_running = true;
1758 }
1759
1760 if ((ohci->bus_time & 0x40) != (cycle_time_seconds & 0x40))
1761 ohci->bus_time += 0x40;
1762
1763 return ohci->bus_time | cycle_time_seconds;
1764}
1765
1766static int get_status_for_port(struct fw_ohci *ohci, int port_index)
1767{
1768 int reg;
1769
1770 mutex_lock(&ohci->phy_reg_mutex);
1771 reg = write_phy_reg(ohci, 7, port_index);
1772 if (reg >= 0)
1773 reg = read_phy_reg(ohci, 8);
1774 mutex_unlock(&ohci->phy_reg_mutex);
1775 if (reg < 0)
1776 return reg;
1777
1778 switch (reg & 0x0f) {
1779 case 0x06:
1780 return 2; /* is child node (connected to parent node) */
1781 case 0x0e:
1782 return 3; /* is parent node (connected to child node) */
1783 }
1784 return 1; /* not connected */
1785}
1786
1787static int get_self_id_pos(struct fw_ohci *ohci, u32 self_id,
1788 int self_id_count)
1789{
1790 int i;
1791 u32 entry;
1792
1793 for (i = 0; i < self_id_count; i++) {
1794 entry = ohci->self_id_buffer[i];
1795 if ((self_id & 0xff000000) == (entry & 0xff000000))
1796 return -1;
1797 if ((self_id & 0xff000000) < (entry & 0xff000000))
1798 return i;
1799 }
1800 return i;
1801}
1802
1803static int initiated_reset(struct fw_ohci *ohci)
1804{
1805 int reg;
1806 int ret = 0;
1807
1808 mutex_lock(&ohci->phy_reg_mutex);
1809 reg = write_phy_reg(ohci, 7, 0xe0); /* Select page 7 */
1810 if (reg >= 0) {
1811 reg = read_phy_reg(ohci, 8);
1812 reg |= 0x40;
1813 reg = write_phy_reg(ohci, 8, reg); /* set PMODE bit */
1814 if (reg >= 0) {
1815 reg = read_phy_reg(ohci, 12); /* read register 12 */
1816 if (reg >= 0) {
1817 if ((reg & 0x08) == 0x08) {
1818 /* bit 3 indicates "initiated reset" */
1819 ret = 0x2;
1820 }
1821 }
1822 }
1823 }
1824 mutex_unlock(&ohci->phy_reg_mutex);
1825 return ret;
1826}
1827
1828/*
1829 * TI TSB82AA2B and TSB12LV26 do not receive the selfID of a locally
1830 * attached TSB41BA3D phy; see http://www.ti.com/litv/pdf/sllz059.
1831 * Construct the selfID from phy register contents.
1832 */
1833static int find_and_insert_self_id(struct fw_ohci *ohci, int self_id_count)
1834{
1835 int reg, i, pos, status;
1836 /* link active 1, speed 3, bridge 0, contender 1, more packets 0 */
1837 u32 self_id = 0x8040c800;
1838
1839 reg = reg_read(ohci, OHCI1394_NodeID);
1840 if (!(reg & OHCI1394_NodeID_idValid)) {
1841 ohci_notice(ohci,
1842 "node ID not valid, new bus reset in progress\n");
1843 return -EBUSY;
1844 }
1845 self_id |= ((reg & 0x3f) << 24); /* phy ID */
1846
1847 reg = ohci_read_phy_reg(&ohci->card, 4);
1848 if (reg < 0)
1849 return reg;
1850 self_id |= ((reg & 0x07) << 8); /* power class */
1851
1852 reg = ohci_read_phy_reg(&ohci->card, 1);
1853 if (reg < 0)
1854 return reg;
1855 self_id |= ((reg & 0x3f) << 16); /* gap count */
1856
1857 for (i = 0; i < 3; i++) {
1858 status = get_status_for_port(ohci, i);
1859 if (status < 0)
1860 return status;
1861 self_id |= ((status & 0x3) << (6 - (i * 2)));
1862 }
1863
1864 self_id |= initiated_reset(ohci);
1865
1866 pos = get_self_id_pos(ohci, self_id, self_id_count);
1867 if (pos >= 0) {
1868 memmove(&(ohci->self_id_buffer[pos+1]),
1869 &(ohci->self_id_buffer[pos]),
1870 (self_id_count - pos) * sizeof(*ohci->self_id_buffer));
1871 ohci->self_id_buffer[pos] = self_id;
1872 self_id_count++;
1873 }
1874 return self_id_count;
1875}
1876
1877static void bus_reset_work(struct work_struct *work)
1878{
1879 struct fw_ohci *ohci =
1880 container_of(work, struct fw_ohci, bus_reset_work);
1881 int self_id_count, generation, new_generation, i, j;
1882 u32 reg;
1883 void *free_rom = NULL;
1884 dma_addr_t free_rom_bus = 0;
1885 bool is_new_root;
1886
1887 reg = reg_read(ohci, OHCI1394_NodeID);
1888 if (!(reg & OHCI1394_NodeID_idValid)) {
1889 ohci_notice(ohci,
1890 "node ID not valid, new bus reset in progress\n");
1891 return;
1892 }
1893 if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1894 ohci_notice(ohci, "malconfigured bus\n");
1895 return;
1896 }
1897 ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1898 OHCI1394_NodeID_nodeNumber);
1899
1900 is_new_root = (reg & OHCI1394_NodeID_root) != 0;
1901 if (!(ohci->is_root && is_new_root))
1902 reg_write(ohci, OHCI1394_LinkControlSet,
1903 OHCI1394_LinkControl_cycleMaster);
1904 ohci->is_root = is_new_root;
1905
1906 reg = reg_read(ohci, OHCI1394_SelfIDCount);
1907 if (reg & OHCI1394_SelfIDCount_selfIDError) {
1908 ohci_notice(ohci, "self ID receive error\n");
1909 return;
1910 }
1911 /*
1912 * The count in the SelfIDCount register is the number of
1913 * bytes in the self ID receive buffer. Since we also receive
1914 * the inverted quadlets and a header quadlet, we shift one
1915 * bit extra to get the actual number of self IDs.
1916 */
1917 self_id_count = (reg >> 3) & 0xff;
1918
1919 if (self_id_count > 252) {
1920 ohci_notice(ohci, "bad selfIDSize (%08x)\n", reg);
1921 return;
1922 }
1923
1924 generation = (cond_le32_to_cpu(ohci->self_id[0]) >> 16) & 0xff;
1925 rmb();
1926
1927 for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1928 u32 id = cond_le32_to_cpu(ohci->self_id[i]);
1929 u32 id2 = cond_le32_to_cpu(ohci->self_id[i + 1]);
1930
1931 if (id != ~id2) {
1932 /*
1933 * If the invalid data looks like a cycle start packet,
1934 * it's likely to be the result of the cycle master
1935 * having a wrong gap count. In this case, the self IDs
1936 * so far are valid and should be processed so that the
1937 * bus manager can then correct the gap count.
1938 */
1939 if (id == 0xffff008f) {
1940 ohci_notice(ohci, "ignoring spurious self IDs\n");
1941 self_id_count = j;
1942 break;
1943 }
1944
1945 ohci_notice(ohci, "bad self ID %d/%d (%08x != ~%08x)\n",
1946 j, self_id_count, id, id2);
1947 return;
1948 }
1949 ohci->self_id_buffer[j] = id;
1950 }
1951
1952 if (ohci->quirks & QUIRK_TI_SLLZ059) {
1953 self_id_count = find_and_insert_self_id(ohci, self_id_count);
1954 if (self_id_count < 0) {
1955 ohci_notice(ohci,
1956 "could not construct local self ID\n");
1957 return;
1958 }
1959 }
1960
1961 if (self_id_count == 0) {
1962 ohci_notice(ohci, "no self IDs\n");
1963 return;
1964 }
1965 rmb();
1966
1967 /*
1968 * Check the consistency of the self IDs we just read. The
1969 * problem we face is that a new bus reset can start while we
1970 * read out the self IDs from the DMA buffer. If this happens,
1971 * the DMA buffer will be overwritten with new self IDs and we
1972 * will read out inconsistent data. The OHCI specification
1973 * (section 11.2) recommends a technique similar to
1974 * linux/seqlock.h, where we remember the generation of the
1975 * self IDs in the buffer before reading them out and compare
1976 * it to the current generation after reading them out. If
1977 * the two generations match we know we have a consistent set
1978 * of self IDs.
1979 */
1980
1981 new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
1982 if (new_generation != generation) {
1983 ohci_notice(ohci, "new bus reset, discarding self ids\n");
1984 return;
1985 }
1986
1987 /* FIXME: Document how the locking works. */
1988 spin_lock_irq(&ohci->lock);
1989
1990 ohci->generation = -1; /* prevent AT packet queueing */
1991 context_stop(&ohci->at_request_ctx);
1992 context_stop(&ohci->at_response_ctx);
1993
1994 spin_unlock_irq(&ohci->lock);
1995
1996 /*
1997 * Per OHCI 1.2 draft, clause 7.2.3.3, hardware may leave unsent
1998 * packets in the AT queues and software needs to drain them.
1999 * Some OHCI 1.1 controllers (JMicron) apparently require this too.
2000 */
2001 at_context_flush(&ohci->at_request_ctx);
2002 at_context_flush(&ohci->at_response_ctx);
2003
2004 spin_lock_irq(&ohci->lock);
2005
2006 ohci->generation = generation;
2007 reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
2008
2009 if (ohci->quirks & QUIRK_RESET_PACKET)
2010 ohci->request_generation = generation;
2011
2012 /*
2013 * This next bit is unrelated to the AT context stuff but we
2014 * have to do it under the spinlock also. If a new config rom
2015 * was set up before this reset, the old one is now no longer
2016 * in use and we can free it. Update the config rom pointers
2017 * to point to the current config rom and clear the
2018 * next_config_rom pointer so a new update can take place.
2019 */
2020
2021 if (ohci->next_config_rom != NULL) {
2022 if (ohci->next_config_rom != ohci->config_rom) {
2023 free_rom = ohci->config_rom;
2024 free_rom_bus = ohci->config_rom_bus;
2025 }
2026 ohci->config_rom = ohci->next_config_rom;
2027 ohci->config_rom_bus = ohci->next_config_rom_bus;
2028 ohci->next_config_rom = NULL;
2029
2030 /*
2031 * Restore config_rom image and manually update
2032 * config_rom registers. Writing the header quadlet
2033 * will indicate that the config rom is ready, so we
2034 * do that last.
2035 */
2036 reg_write(ohci, OHCI1394_BusOptions,
2037 be32_to_cpu(ohci->config_rom[2]));
2038 ohci->config_rom[0] = ohci->next_header;
2039 reg_write(ohci, OHCI1394_ConfigROMhdr,
2040 be32_to_cpu(ohci->next_header));
2041 }
2042
2043 if (param_remote_dma) {
2044 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
2045 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
2046 }
2047
2048 spin_unlock_irq(&ohci->lock);
2049
2050 if (free_rom)
2051 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2052 free_rom, free_rom_bus);
2053
2054 log_selfids(ohci, generation, self_id_count);
2055
2056 fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
2057 self_id_count, ohci->self_id_buffer,
2058 ohci->csr_state_setclear_abdicate);
2059 ohci->csr_state_setclear_abdicate = false;
2060}
2061
2062static irqreturn_t irq_handler(int irq, void *data)
2063{
2064 struct fw_ohci *ohci = data;
2065 u32 event, iso_event;
2066 int i;
2067
2068 event = reg_read(ohci, OHCI1394_IntEventClear);
2069
2070 if (!event || !~event)
2071 return IRQ_NONE;
2072
2073 /*
2074 * busReset and postedWriteErr must not be cleared yet
2075 * (OHCI 1.1 clauses 7.2.3.2 and 13.2.8.1)
2076 */
2077 reg_write(ohci, OHCI1394_IntEventClear,
2078 event & ~(OHCI1394_busReset | OHCI1394_postedWriteErr));
2079 log_irqs(ohci, event);
2080
2081 if (event & OHCI1394_selfIDComplete)
2082 queue_work(selfid_workqueue, &ohci->bus_reset_work);
2083
2084 if (event & OHCI1394_RQPkt)
2085 tasklet_schedule(&ohci->ar_request_ctx.tasklet);
2086
2087 if (event & OHCI1394_RSPkt)
2088 tasklet_schedule(&ohci->ar_response_ctx.tasklet);
2089
2090 if (event & OHCI1394_reqTxComplete)
2091 tasklet_schedule(&ohci->at_request_ctx.tasklet);
2092
2093 if (event & OHCI1394_respTxComplete)
2094 tasklet_schedule(&ohci->at_response_ctx.tasklet);
2095
2096 if (event & OHCI1394_isochRx) {
2097 iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
2098 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
2099
2100 while (iso_event) {
2101 i = ffs(iso_event) - 1;
2102 tasklet_schedule(
2103 &ohci->ir_context_list[i].context.tasklet);
2104 iso_event &= ~(1 << i);
2105 }
2106 }
2107
2108 if (event & OHCI1394_isochTx) {
2109 iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
2110 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
2111
2112 while (iso_event) {
2113 i = ffs(iso_event) - 1;
2114 tasklet_schedule(
2115 &ohci->it_context_list[i].context.tasklet);
2116 iso_event &= ~(1 << i);
2117 }
2118 }
2119
2120 if (unlikely(event & OHCI1394_regAccessFail))
2121 ohci_err(ohci, "register access failure\n");
2122
2123 if (unlikely(event & OHCI1394_postedWriteErr)) {
2124 reg_read(ohci, OHCI1394_PostedWriteAddressHi);
2125 reg_read(ohci, OHCI1394_PostedWriteAddressLo);
2126 reg_write(ohci, OHCI1394_IntEventClear,
2127 OHCI1394_postedWriteErr);
2128 if (printk_ratelimit())
2129 ohci_err(ohci, "PCI posted write error\n");
2130 }
2131
2132 if (unlikely(event & OHCI1394_cycleTooLong)) {
2133 if (printk_ratelimit())
2134 ohci_notice(ohci, "isochronous cycle too long\n");
2135 reg_write(ohci, OHCI1394_LinkControlSet,
2136 OHCI1394_LinkControl_cycleMaster);
2137 }
2138
2139 if (unlikely(event & OHCI1394_cycleInconsistent)) {
2140 /*
2141 * We need to clear this event bit in order to make
2142 * cycleMatch isochronous I/O work. In theory we should
2143 * stop active cycleMatch iso contexts now and restart
2144 * them at least two cycles later. (FIXME?)
2145 */
2146 if (printk_ratelimit())
2147 ohci_notice(ohci, "isochronous cycle inconsistent\n");
2148 }
2149
2150 if (unlikely(event & OHCI1394_unrecoverableError))
2151 handle_dead_contexts(ohci);
2152
2153 if (event & OHCI1394_cycle64Seconds) {
2154 spin_lock(&ohci->lock);
2155 update_bus_time(ohci);
2156 spin_unlock(&ohci->lock);
2157 } else
2158 flush_writes(ohci);
2159
2160 return IRQ_HANDLED;
2161}
2162
2163static int software_reset(struct fw_ohci *ohci)
2164{
2165 u32 val;
2166 int i;
2167
2168 reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
2169 for (i = 0; i < 500; i++) {
2170 val = reg_read(ohci, OHCI1394_HCControlSet);
2171 if (!~val)
2172 return -ENODEV; /* Card was ejected. */
2173
2174 if (!(val & OHCI1394_HCControl_softReset))
2175 return 0;
2176
2177 msleep(1);
2178 }
2179
2180 return -EBUSY;
2181}
2182
2183static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
2184{
2185 size_t size = length * 4;
2186
2187 memcpy(dest, src, size);
2188 if (size < CONFIG_ROM_SIZE)
2189 memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
2190}
2191
2192static int configure_1394a_enhancements(struct fw_ohci *ohci)
2193{
2194 bool enable_1394a;
2195 int ret, clear, set, offset;
2196
2197 /* Check if the driver should configure link and PHY. */
2198 if (!(reg_read(ohci, OHCI1394_HCControlSet) &
2199 OHCI1394_HCControl_programPhyEnable))
2200 return 0;
2201
2202 /* Paranoia: check whether the PHY supports 1394a, too. */
2203 enable_1394a = false;
2204 ret = read_phy_reg(ohci, 2);
2205 if (ret < 0)
2206 return ret;
2207 if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
2208 ret = read_paged_phy_reg(ohci, 1, 8);
2209 if (ret < 0)
2210 return ret;
2211 if (ret >= 1)
2212 enable_1394a = true;
2213 }
2214
2215 if (ohci->quirks & QUIRK_NO_1394A)
2216 enable_1394a = false;
2217
2218 /* Configure PHY and link consistently. */
2219 if (enable_1394a) {
2220 clear = 0;
2221 set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2222 } else {
2223 clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2224 set = 0;
2225 }
2226 ret = update_phy_reg(ohci, 5, clear, set);
2227 if (ret < 0)
2228 return ret;
2229
2230 if (enable_1394a)
2231 offset = OHCI1394_HCControlSet;
2232 else
2233 offset = OHCI1394_HCControlClear;
2234 reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);
2235
2236 /* Clean up: configuration has been taken care of. */
2237 reg_write(ohci, OHCI1394_HCControlClear,
2238 OHCI1394_HCControl_programPhyEnable);
2239
2240 return 0;
2241}
2242
2243static int probe_tsb41ba3d(struct fw_ohci *ohci)
2244{
2245 /* TI vendor ID = 0x080028, TSB41BA3D product ID = 0x833005 (sic) */
2246 static const u8 id[] = { 0x08, 0x00, 0x28, 0x83, 0x30, 0x05, };
2247 int reg, i;
2248
2249 reg = read_phy_reg(ohci, 2);
2250 if (reg < 0)
2251 return reg;
2252 if ((reg & PHY_EXTENDED_REGISTERS) != PHY_EXTENDED_REGISTERS)
2253 return 0;
2254
2255 for (i = ARRAY_SIZE(id) - 1; i >= 0; i--) {
2256 reg = read_paged_phy_reg(ohci, 1, i + 10);
2257 if (reg < 0)
2258 return reg;
2259 if (reg != id[i])
2260 return 0;
2261 }
2262 return 1;
2263}
2264
2265static int ohci_enable(struct fw_card *card,
2266 const __be32 *config_rom, size_t length)
2267{
2268 struct fw_ohci *ohci = fw_ohci(card);
2269 u32 lps, version, irqs;
2270 int i, ret;
2271
2272 ret = software_reset(ohci);
2273 if (ret < 0) {
2274 ohci_err(ohci, "failed to reset ohci card\n");
2275 return ret;
2276 }
2277
2278 /*
2279 * Now enable LPS, which we need in order to start accessing
2280 * most of the registers. In fact, on some cards (ALI M5251),
2281 * accessing registers in the SClk domain without LPS enabled
2282 * will lock up the machine. Wait 50msec to make sure we have
2283 * full link enabled. However, with some cards (well, at least
2284 * a JMicron PCIe card), we have to try again sometimes.
2285 *
2286 * TI TSB82AA2 + TSB81BA3(A) cards signal LPS enabled early but
2287 * cannot actually use the phy at that time. These need tens of
2288 * millisecods pause between LPS write and first phy access too.
2289 */
2290
2291 reg_write(ohci, OHCI1394_HCControlSet,
2292 OHCI1394_HCControl_LPS |
2293 OHCI1394_HCControl_postedWriteEnable);
2294 flush_writes(ohci);
2295
2296 for (lps = 0, i = 0; !lps && i < 3; i++) {
2297 msleep(50);
2298 lps = reg_read(ohci, OHCI1394_HCControlSet) &
2299 OHCI1394_HCControl_LPS;
2300 }
2301
2302 if (!lps) {
2303 ohci_err(ohci, "failed to set Link Power Status\n");
2304 return -EIO;
2305 }
2306
2307 if (ohci->quirks & QUIRK_TI_SLLZ059) {
2308 ret = probe_tsb41ba3d(ohci);
2309 if (ret < 0)
2310 return ret;
2311 if (ret)
2312 ohci_notice(ohci, "local TSB41BA3D phy\n");
2313 else
2314 ohci->quirks &= ~QUIRK_TI_SLLZ059;
2315 }
2316
2317 reg_write(ohci, OHCI1394_HCControlClear,
2318 OHCI1394_HCControl_noByteSwapData);
2319
2320 reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
2321 reg_write(ohci, OHCI1394_LinkControlSet,
2322 OHCI1394_LinkControl_cycleTimerEnable |
2323 OHCI1394_LinkControl_cycleMaster);
2324
2325 reg_write(ohci, OHCI1394_ATRetries,
2326 OHCI1394_MAX_AT_REQ_RETRIES |
2327 (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
2328 (OHCI1394_MAX_PHYS_RESP_RETRIES << 8) |
2329 (200 << 16));
2330
2331 ohci->bus_time_running = false;
2332
2333 for (i = 0; i < 32; i++)
2334 if (ohci->ir_context_support & (1 << i))
2335 reg_write(ohci, OHCI1394_IsoRcvContextControlClear(i),
2336 IR_CONTEXT_MULTI_CHANNEL_MODE);
2337
2338 version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2339 if (version >= OHCI_VERSION_1_1) {
2340 reg_write(ohci, OHCI1394_InitialChannelsAvailableHi,
2341 0xfffffffe);
2342 card->broadcast_channel_auto_allocated = true;
2343 }
2344
2345 /* Get implemented bits of the priority arbitration request counter. */
2346 reg_write(ohci, OHCI1394_FairnessControl, 0x3f);
2347 ohci->pri_req_max = reg_read(ohci, OHCI1394_FairnessControl) & 0x3f;
2348 reg_write(ohci, OHCI1394_FairnessControl, 0);
2349 card->priority_budget_implemented = ohci->pri_req_max != 0;
2350
2351 reg_write(ohci, OHCI1394_PhyUpperBound, FW_MAX_PHYSICAL_RANGE >> 16);
2352 reg_write(ohci, OHCI1394_IntEventClear, ~0);
2353 reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2354
2355 ret = configure_1394a_enhancements(ohci);
2356 if (ret < 0)
2357 return ret;
2358
2359 /* Activate link_on bit and contender bit in our self ID packets.*/
2360 ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER);
2361 if (ret < 0)
2362 return ret;
2363
2364 /*
2365 * When the link is not yet enabled, the atomic config rom
2366 * update mechanism described below in ohci_set_config_rom()
2367 * is not active. We have to update ConfigRomHeader and
2368 * BusOptions manually, and the write to ConfigROMmap takes
2369 * effect immediately. We tie this to the enabling of the
2370 * link, so we have a valid config rom before enabling - the
2371 * OHCI requires that ConfigROMhdr and BusOptions have valid
2372 * values before enabling.
2373 *
2374 * However, when the ConfigROMmap is written, some controllers
2375 * always read back quadlets 0 and 2 from the config rom to
2376 * the ConfigRomHeader and BusOptions registers on bus reset.
2377 * They shouldn't do that in this initial case where the link
2378 * isn't enabled. This means we have to use the same
2379 * workaround here, setting the bus header to 0 and then write
2380 * the right values in the bus reset tasklet.
2381 */
2382
2383 if (config_rom) {
2384 ohci->next_config_rom =
2385 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2386 &ohci->next_config_rom_bus,
2387 GFP_KERNEL);
2388 if (ohci->next_config_rom == NULL)
2389 return -ENOMEM;
2390
2391 copy_config_rom(ohci->next_config_rom, config_rom, length);
2392 } else {
2393 /*
2394 * In the suspend case, config_rom is NULL, which
2395 * means that we just reuse the old config rom.
2396 */
2397 ohci->next_config_rom = ohci->config_rom;
2398 ohci->next_config_rom_bus = ohci->config_rom_bus;
2399 }
2400
2401 ohci->next_header = ohci->next_config_rom[0];
2402 ohci->next_config_rom[0] = 0;
2403 reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
2404 reg_write(ohci, OHCI1394_BusOptions,
2405 be32_to_cpu(ohci->next_config_rom[2]));
2406 reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2407
2408 reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
2409
2410 irqs = OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
2411 OHCI1394_RQPkt | OHCI1394_RSPkt |
2412 OHCI1394_isochTx | OHCI1394_isochRx |
2413 OHCI1394_postedWriteErr |
2414 OHCI1394_selfIDComplete |
2415 OHCI1394_regAccessFail |
2416 OHCI1394_cycleInconsistent |
2417 OHCI1394_unrecoverableError |
2418 OHCI1394_cycleTooLong |
2419 OHCI1394_masterIntEnable;
2420 if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
2421 irqs |= OHCI1394_busReset;
2422 reg_write(ohci, OHCI1394_IntMaskSet, irqs);
2423
2424 reg_write(ohci, OHCI1394_HCControlSet,
2425 OHCI1394_HCControl_linkEnable |
2426 OHCI1394_HCControl_BIBimageValid);
2427
2428 reg_write(ohci, OHCI1394_LinkControlSet,
2429 OHCI1394_LinkControl_rcvSelfID |
2430 OHCI1394_LinkControl_rcvPhyPkt);
2431
2432 ar_context_run(&ohci->ar_request_ctx);
2433 ar_context_run(&ohci->ar_response_ctx);
2434
2435 flush_writes(ohci);
2436
2437 /* We are ready to go, reset bus to finish initialization. */
2438 fw_schedule_bus_reset(&ohci->card, false, true);
2439
2440 return 0;
2441}
2442
2443static int ohci_set_config_rom(struct fw_card *card,
2444 const __be32 *config_rom, size_t length)
2445{
2446 struct fw_ohci *ohci;
2447 __be32 *next_config_rom;
2448 dma_addr_t uninitialized_var(next_config_rom_bus);
2449
2450 ohci = fw_ohci(card);
2451
2452 /*
2453 * When the OHCI controller is enabled, the config rom update
2454 * mechanism is a bit tricky, but easy enough to use. See
2455 * section 5.5.6 in the OHCI specification.
2456 *
2457 * The OHCI controller caches the new config rom address in a
2458 * shadow register (ConfigROMmapNext) and needs a bus reset
2459 * for the changes to take place. When the bus reset is
2460 * detected, the controller loads the new values for the
2461 * ConfigRomHeader and BusOptions registers from the specified
2462 * config rom and loads ConfigROMmap from the ConfigROMmapNext
2463 * shadow register. All automatically and atomically.
2464 *
2465 * Now, there's a twist to this story. The automatic load of
2466 * ConfigRomHeader and BusOptions doesn't honor the
2467 * noByteSwapData bit, so with a be32 config rom, the
2468 * controller will load be32 values in to these registers
2469 * during the atomic update, even on litte endian
2470 * architectures. The workaround we use is to put a 0 in the
2471 * header quadlet; 0 is endian agnostic and means that the
2472 * config rom isn't ready yet. In the bus reset tasklet we
2473 * then set up the real values for the two registers.
2474 *
2475 * We use ohci->lock to avoid racing with the code that sets
2476 * ohci->next_config_rom to NULL (see bus_reset_work).
2477 */
2478
2479 next_config_rom =
2480 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2481 &next_config_rom_bus, GFP_KERNEL);
2482 if (next_config_rom == NULL)
2483 return -ENOMEM;
2484
2485 spin_lock_irq(&ohci->lock);
2486
2487 /*
2488 * If there is not an already pending config_rom update,
2489 * push our new allocation into the ohci->next_config_rom
2490 * and then mark the local variable as null so that we
2491 * won't deallocate the new buffer.
2492 *
2493 * OTOH, if there is a pending config_rom update, just
2494 * use that buffer with the new config_rom data, and
2495 * let this routine free the unused DMA allocation.
2496 */
2497
2498 if (ohci->next_config_rom == NULL) {
2499 ohci->next_config_rom = next_config_rom;
2500 ohci->next_config_rom_bus = next_config_rom_bus;
2501 next_config_rom = NULL;
2502 }
2503
2504 copy_config_rom(ohci->next_config_rom, config_rom, length);
2505
2506 ohci->next_header = config_rom[0];
2507 ohci->next_config_rom[0] = 0;
2508
2509 reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2510
2511 spin_unlock_irq(&ohci->lock);
2512
2513 /* If we didn't use the DMA allocation, delete it. */
2514 if (next_config_rom != NULL)
2515 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2516 next_config_rom, next_config_rom_bus);
2517
2518 /*
2519 * Now initiate a bus reset to have the changes take
2520 * effect. We clean up the old config rom memory and DMA
2521 * mappings in the bus reset tasklet, since the OHCI
2522 * controller could need to access it before the bus reset
2523 * takes effect.
2524 */
2525
2526 fw_schedule_bus_reset(&ohci->card, true, true);
2527
2528 return 0;
2529}
2530
2531static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
2532{
2533 struct fw_ohci *ohci = fw_ohci(card);
2534
2535 at_context_transmit(&ohci->at_request_ctx, packet);
2536}
2537
2538static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
2539{
2540 struct fw_ohci *ohci = fw_ohci(card);
2541
2542 at_context_transmit(&ohci->at_response_ctx, packet);
2543}
2544
2545static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
2546{
2547 struct fw_ohci *ohci = fw_ohci(card);
2548 struct context *ctx = &ohci->at_request_ctx;
2549 struct driver_data *driver_data = packet->driver_data;
2550 int ret = -ENOENT;
2551
2552 tasklet_disable(&ctx->tasklet);
2553
2554 if (packet->ack != 0)
2555 goto out;
2556
2557 if (packet->payload_mapped)
2558 dma_unmap_single(ohci->card.device, packet->payload_bus,
2559 packet->payload_length, DMA_TO_DEVICE);
2560
2561 log_ar_at_event(ohci, 'T', packet->speed, packet->header, 0x20);
2562 driver_data->packet = NULL;
2563 packet->ack = RCODE_CANCELLED;
2564 packet->callback(packet, &ohci->card, packet->ack);
2565 ret = 0;
2566 out:
2567 tasklet_enable(&ctx->tasklet);
2568
2569 return ret;
2570}
2571
2572static int ohci_enable_phys_dma(struct fw_card *card,
2573 int node_id, int generation)
2574{
2575 struct fw_ohci *ohci = fw_ohci(card);
2576 unsigned long flags;
2577 int n, ret = 0;
2578
2579 if (param_remote_dma)
2580 return 0;
2581
2582 /*
2583 * FIXME: Make sure this bitmask is cleared when we clear the busReset
2584 * interrupt bit. Clear physReqResourceAllBuses on bus reset.
2585 */
2586
2587 spin_lock_irqsave(&ohci->lock, flags);
2588
2589 if (ohci->generation != generation) {
2590 ret = -ESTALE;
2591 goto out;
2592 }
2593
2594 /*
2595 * Note, if the node ID contains a non-local bus ID, physical DMA is
2596 * enabled for _all_ nodes on remote buses.
2597 */
2598
2599 n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
2600 if (n < 32)
2601 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
2602 else
2603 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
2604
2605 flush_writes(ohci);
2606 out:
2607 spin_unlock_irqrestore(&ohci->lock, flags);
2608
2609 return ret;
2610}
2611
2612static u32 ohci_read_csr(struct fw_card *card, int csr_offset)
2613{
2614 struct fw_ohci *ohci = fw_ohci(card);
2615 unsigned long flags;
2616 u32 value;
2617
2618 switch (csr_offset) {
2619 case CSR_STATE_CLEAR:
2620 case CSR_STATE_SET:
2621 if (ohci->is_root &&
2622 (reg_read(ohci, OHCI1394_LinkControlSet) &
2623 OHCI1394_LinkControl_cycleMaster))
2624 value = CSR_STATE_BIT_CMSTR;
2625 else
2626 value = 0;
2627 if (ohci->csr_state_setclear_abdicate)
2628 value |= CSR_STATE_BIT_ABDICATE;
2629
2630 return value;
2631
2632 case CSR_NODE_IDS:
2633 return reg_read(ohci, OHCI1394_NodeID) << 16;
2634
2635 case CSR_CYCLE_TIME:
2636 return get_cycle_time(ohci);
2637
2638 case CSR_BUS_TIME:
2639 /*
2640 * We might be called just after the cycle timer has wrapped
2641 * around but just before the cycle64Seconds handler, so we
2642 * better check here, too, if the bus time needs to be updated.
2643 */
2644 spin_lock_irqsave(&ohci->lock, flags);
2645 value = update_bus_time(ohci);
2646 spin_unlock_irqrestore(&ohci->lock, flags);
2647 return value;
2648
2649 case CSR_BUSY_TIMEOUT:
2650 value = reg_read(ohci, OHCI1394_ATRetries);
2651 return (value >> 4) & 0x0ffff00f;
2652
2653 case CSR_PRIORITY_BUDGET:
2654 return (reg_read(ohci, OHCI1394_FairnessControl) & 0x3f) |
2655 (ohci->pri_req_max << 8);
2656
2657 default:
2658 WARN_ON(1);
2659 return 0;
2660 }
2661}
2662
2663static void ohci_write_csr(struct fw_card *card, int csr_offset, u32 value)
2664{
2665 struct fw_ohci *ohci = fw_ohci(card);
2666 unsigned long flags;
2667
2668 switch (csr_offset) {
2669 case CSR_STATE_CLEAR:
2670 if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2671 reg_write(ohci, OHCI1394_LinkControlClear,
2672 OHCI1394_LinkControl_cycleMaster);
2673 flush_writes(ohci);
2674 }
2675 if (value & CSR_STATE_BIT_ABDICATE)
2676 ohci->csr_state_setclear_abdicate = false;
2677 break;
2678
2679 case CSR_STATE_SET:
2680 if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2681 reg_write(ohci, OHCI1394_LinkControlSet,
2682 OHCI1394_LinkControl_cycleMaster);
2683 flush_writes(ohci);
2684 }
2685 if (value & CSR_STATE_BIT_ABDICATE)
2686 ohci->csr_state_setclear_abdicate = true;
2687 break;
2688
2689 case CSR_NODE_IDS:
2690 reg_write(ohci, OHCI1394_NodeID, value >> 16);
2691 flush_writes(ohci);
2692 break;
2693
2694 case CSR_CYCLE_TIME:
2695 reg_write(ohci, OHCI1394_IsochronousCycleTimer, value);
2696 reg_write(ohci, OHCI1394_IntEventSet,
2697 OHCI1394_cycleInconsistent);
2698 flush_writes(ohci);
2699 break;
2700
2701 case CSR_BUS_TIME:
2702 spin_lock_irqsave(&ohci->lock, flags);
2703 ohci->bus_time = (update_bus_time(ohci) & 0x40) |
2704 (value & ~0x7f);
2705 spin_unlock_irqrestore(&ohci->lock, flags);
2706 break;
2707
2708 case CSR_BUSY_TIMEOUT:
2709 value = (value & 0xf) | ((value & 0xf) << 4) |
2710 ((value & 0xf) << 8) | ((value & 0x0ffff000) << 4);
2711 reg_write(ohci, OHCI1394_ATRetries, value);
2712 flush_writes(ohci);
2713 break;
2714
2715 case CSR_PRIORITY_BUDGET:
2716 reg_write(ohci, OHCI1394_FairnessControl, value & 0x3f);
2717 flush_writes(ohci);
2718 break;
2719
2720 default:
2721 WARN_ON(1);
2722 break;
2723 }
2724}
2725
2726static void flush_iso_completions(struct iso_context *ctx)
2727{
2728 ctx->base.callback.sc(&ctx->base, ctx->last_timestamp,
2729 ctx->header_length, ctx->header,
2730 ctx->base.callback_data);
2731 ctx->header_length = 0;
2732}
2733
2734static void copy_iso_headers(struct iso_context *ctx, const u32 *dma_hdr)
2735{
2736 u32 *ctx_hdr;
2737
2738 if (ctx->header_length + ctx->base.header_size > PAGE_SIZE) {
2739 if (ctx->base.drop_overflow_headers)
2740 return;
2741 flush_iso_completions(ctx);
2742 }
2743
2744 ctx_hdr = ctx->header + ctx->header_length;
2745 ctx->last_timestamp = (u16)le32_to_cpu((__force __le32)dma_hdr[0]);
2746
2747 /*
2748 * The two iso header quadlets are byteswapped to little
2749 * endian by the controller, but we want to present them
2750 * as big endian for consistency with the bus endianness.
2751 */
2752 if (ctx->base.header_size > 0)
2753 ctx_hdr[0] = swab32(dma_hdr[1]); /* iso packet header */
2754 if (ctx->base.header_size > 4)
2755 ctx_hdr[1] = swab32(dma_hdr[0]); /* timestamp */
2756 if (ctx->base.header_size > 8)
2757 memcpy(&ctx_hdr[2], &dma_hdr[2], ctx->base.header_size - 8);
2758 ctx->header_length += ctx->base.header_size;
2759}
2760
2761static int handle_ir_packet_per_buffer(struct context *context,
2762 struct descriptor *d,
2763 struct descriptor *last)
2764{
2765 struct iso_context *ctx =
2766 container_of(context, struct iso_context, context);
2767 struct descriptor *pd;
2768 u32 buffer_dma;
2769
2770 for (pd = d; pd <= last; pd++)
2771 if (pd->transfer_status)
2772 break;
2773 if (pd > last)
2774 /* Descriptor(s) not done yet, stop iteration */
2775 return 0;
2776
2777 while (!(d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))) {
2778 d++;
2779 buffer_dma = le32_to_cpu(d->data_address);
2780 dma_sync_single_range_for_cpu(context->ohci->card.device,
2781 buffer_dma & PAGE_MASK,
2782 buffer_dma & ~PAGE_MASK,
2783 le16_to_cpu(d->req_count),
2784 DMA_FROM_DEVICE);
2785 }
2786
2787 copy_iso_headers(ctx, (u32 *) (last + 1));
2788
2789 if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS))
2790 flush_iso_completions(ctx);
2791
2792 return 1;
2793}
2794
2795/* d == last because each descriptor block is only a single descriptor. */
2796static int handle_ir_buffer_fill(struct context *context,
2797 struct descriptor *d,
2798 struct descriptor *last)
2799{
2800 struct iso_context *ctx =
2801 container_of(context, struct iso_context, context);
2802 unsigned int req_count, res_count, completed;
2803 u32 buffer_dma;
2804
2805 req_count = le16_to_cpu(last->req_count);
2806 res_count = le16_to_cpu(READ_ONCE(last->res_count));
2807 completed = req_count - res_count;
2808 buffer_dma = le32_to_cpu(last->data_address);
2809
2810 if (completed > 0) {
2811 ctx->mc_buffer_bus = buffer_dma;
2812 ctx->mc_completed = completed;
2813 }
2814
2815 if (res_count != 0)
2816 /* Descriptor(s) not done yet, stop iteration */
2817 return 0;
2818
2819 dma_sync_single_range_for_cpu(context->ohci->card.device,
2820 buffer_dma & PAGE_MASK,
2821 buffer_dma & ~PAGE_MASK,
2822 completed, DMA_FROM_DEVICE);
2823
2824 if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS)) {
2825 ctx->base.callback.mc(&ctx->base,
2826 buffer_dma + completed,
2827 ctx->base.callback_data);
2828 ctx->mc_completed = 0;
2829 }
2830
2831 return 1;
2832}
2833
2834static void flush_ir_buffer_fill(struct iso_context *ctx)
2835{
2836 dma_sync_single_range_for_cpu(ctx->context.ohci->card.device,
2837 ctx->mc_buffer_bus & PAGE_MASK,
2838 ctx->mc_buffer_bus & ~PAGE_MASK,
2839 ctx->mc_completed, DMA_FROM_DEVICE);
2840
2841 ctx->base.callback.mc(&ctx->base,
2842 ctx->mc_buffer_bus + ctx->mc_completed,
2843 ctx->base.callback_data);
2844 ctx->mc_completed = 0;
2845}
2846
2847static inline void sync_it_packet_for_cpu(struct context *context,
2848 struct descriptor *pd)
2849{
2850 __le16 control;
2851 u32 buffer_dma;
2852
2853 /* only packets beginning with OUTPUT_MORE* have data buffers */
2854 if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
2855 return;
2856
2857 /* skip over the OUTPUT_MORE_IMMEDIATE descriptor */
2858 pd += 2;
2859
2860 /*
2861 * If the packet has a header, the first OUTPUT_MORE/LAST descriptor's
2862 * data buffer is in the context program's coherent page and must not
2863 * be synced.
2864 */
2865 if ((le32_to_cpu(pd->data_address) & PAGE_MASK) ==
2866 (context->current_bus & PAGE_MASK)) {
2867 if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
2868 return;
2869 pd++;
2870 }
2871
2872 do {
2873 buffer_dma = le32_to_cpu(pd->data_address);
2874 dma_sync_single_range_for_cpu(context->ohci->card.device,
2875 buffer_dma & PAGE_MASK,
2876 buffer_dma & ~PAGE_MASK,
2877 le16_to_cpu(pd->req_count),
2878 DMA_TO_DEVICE);
2879 control = pd->control;
2880 pd++;
2881 } while (!(control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS)));
2882}
2883
2884static int handle_it_packet(struct context *context,
2885 struct descriptor *d,
2886 struct descriptor *last)
2887{
2888 struct iso_context *ctx =
2889 container_of(context, struct iso_context, context);
2890 struct descriptor *pd;
2891 __be32 *ctx_hdr;
2892
2893 for (pd = d; pd <= last; pd++)
2894 if (pd->transfer_status)
2895 break;
2896 if (pd > last)
2897 /* Descriptor(s) not done yet, stop iteration */
2898 return 0;
2899
2900 sync_it_packet_for_cpu(context, d);
2901
2902 if (ctx->header_length + 4 > PAGE_SIZE) {
2903 if (ctx->base.drop_overflow_headers)
2904 return 1;
2905 flush_iso_completions(ctx);
2906 }
2907
2908 ctx_hdr = ctx->header + ctx->header_length;
2909 ctx->last_timestamp = le16_to_cpu(last->res_count);
2910 /* Present this value as big-endian to match the receive code */
2911 *ctx_hdr = cpu_to_be32((le16_to_cpu(pd->transfer_status) << 16) |
2912 le16_to_cpu(pd->res_count));
2913 ctx->header_length += 4;
2914
2915 if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS))
2916 flush_iso_completions(ctx);
2917
2918 return 1;
2919}
2920
2921static void set_multichannel_mask(struct fw_ohci *ohci, u64 channels)
2922{
2923 u32 hi = channels >> 32, lo = channels;
2924
2925 reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear, ~hi);
2926 reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear, ~lo);
2927 reg_write(ohci, OHCI1394_IRMultiChanMaskHiSet, hi);
2928 reg_write(ohci, OHCI1394_IRMultiChanMaskLoSet, lo);
2929 ohci->mc_channels = channels;
2930}
2931
2932static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
2933 int type, int channel, size_t header_size)
2934{
2935 struct fw_ohci *ohci = fw_ohci(card);
2936 struct iso_context *uninitialized_var(ctx);
2937 descriptor_callback_t uninitialized_var(callback);
2938 u64 *uninitialized_var(channels);
2939 u32 *uninitialized_var(mask), uninitialized_var(regs);
2940 int index, ret = -EBUSY;
2941
2942 spin_lock_irq(&ohci->lock);
2943
2944 switch (type) {
2945 case FW_ISO_CONTEXT_TRANSMIT:
2946 mask = &ohci->it_context_mask;
2947 callback = handle_it_packet;
2948 index = ffs(*mask) - 1;
2949 if (index >= 0) {
2950 *mask &= ~(1 << index);
2951 regs = OHCI1394_IsoXmitContextBase(index);
2952 ctx = &ohci->it_context_list[index];
2953 }
2954 break;
2955
2956 case FW_ISO_CONTEXT_RECEIVE:
2957 channels = &ohci->ir_context_channels;
2958 mask = &ohci->ir_context_mask;
2959 callback = handle_ir_packet_per_buffer;
2960 index = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
2961 if (index >= 0) {
2962 *channels &= ~(1ULL << channel);
2963 *mask &= ~(1 << index);
2964 regs = OHCI1394_IsoRcvContextBase(index);
2965 ctx = &ohci->ir_context_list[index];
2966 }
2967 break;
2968
2969 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2970 mask = &ohci->ir_context_mask;
2971 callback = handle_ir_buffer_fill;
2972 index = !ohci->mc_allocated ? ffs(*mask) - 1 : -1;
2973 if (index >= 0) {
2974 ohci->mc_allocated = true;
2975 *mask &= ~(1 << index);
2976 regs = OHCI1394_IsoRcvContextBase(index);
2977 ctx = &ohci->ir_context_list[index];
2978 }
2979 break;
2980
2981 default:
2982 index = -1;
2983 ret = -ENOSYS;
2984 }
2985
2986 spin_unlock_irq(&ohci->lock);
2987
2988 if (index < 0)
2989 return ERR_PTR(ret);
2990
2991 memset(ctx, 0, sizeof(*ctx));
2992 ctx->header_length = 0;
2993 ctx->header = (void *) __get_free_page(GFP_KERNEL);
2994 if (ctx->header == NULL) {
2995 ret = -ENOMEM;
2996 goto out;
2997 }
2998 ret = context_init(&ctx->context, ohci, regs, callback);
2999 if (ret < 0)
3000 goto out_with_header;
3001
3002 if (type == FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL) {
3003 set_multichannel_mask(ohci, 0);
3004 ctx->mc_completed = 0;
3005 }
3006
3007 return &ctx->base;
3008
3009 out_with_header:
3010 free_page((unsigned long)ctx->header);
3011 out:
3012 spin_lock_irq(&ohci->lock);
3013
3014 switch (type) {
3015 case FW_ISO_CONTEXT_RECEIVE:
3016 *channels |= 1ULL << channel;
3017 break;
3018
3019 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3020 ohci->mc_allocated = false;
3021 break;
3022 }
3023 *mask |= 1 << index;
3024
3025 spin_unlock_irq(&ohci->lock);
3026
3027 return ERR_PTR(ret);
3028}
3029
3030static int ohci_start_iso(struct fw_iso_context *base,
3031 s32 cycle, u32 sync, u32 tags)
3032{
3033 struct iso_context *ctx = container_of(base, struct iso_context, base);
3034 struct fw_ohci *ohci = ctx->context.ohci;
3035 u32 control = IR_CONTEXT_ISOCH_HEADER, match;
3036 int index;
3037
3038 /* the controller cannot start without any queued packets */
3039 if (ctx->context.last->branch_address == 0)
3040 return -ENODATA;
3041
3042 switch (ctx->base.type) {
3043 case FW_ISO_CONTEXT_TRANSMIT:
3044 index = ctx - ohci->it_context_list;
3045 match = 0;
3046 if (cycle >= 0)
3047 match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
3048 (cycle & 0x7fff) << 16;
3049
3050 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
3051 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
3052 context_run(&ctx->context, match);
3053 break;
3054
3055 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3056 control |= IR_CONTEXT_BUFFER_FILL|IR_CONTEXT_MULTI_CHANNEL_MODE;
3057 /* fall through */
3058 case FW_ISO_CONTEXT_RECEIVE:
3059 index = ctx - ohci->ir_context_list;
3060 match = (tags << 28) | (sync << 8) | ctx->base.channel;
3061 if (cycle >= 0) {
3062 match |= (cycle & 0x07fff) << 12;
3063 control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
3064 }
3065
3066 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
3067 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
3068 reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
3069 context_run(&ctx->context, control);
3070
3071 ctx->sync = sync;
3072 ctx->tags = tags;
3073
3074 break;
3075 }
3076
3077 return 0;
3078}
3079
3080static int ohci_stop_iso(struct fw_iso_context *base)
3081{
3082 struct fw_ohci *ohci = fw_ohci(base->card);
3083 struct iso_context *ctx = container_of(base, struct iso_context, base);
3084 int index;
3085
3086 switch (ctx->base.type) {
3087 case FW_ISO_CONTEXT_TRANSMIT:
3088 index = ctx - ohci->it_context_list;
3089 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
3090 break;
3091
3092 case FW_ISO_CONTEXT_RECEIVE:
3093 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3094 index = ctx - ohci->ir_context_list;
3095 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
3096 break;
3097 }
3098 flush_writes(ohci);
3099 context_stop(&ctx->context);
3100 tasklet_kill(&ctx->context.tasklet);
3101
3102 return 0;
3103}
3104
3105static void ohci_free_iso_context(struct fw_iso_context *base)
3106{
3107 struct fw_ohci *ohci = fw_ohci(base->card);
3108 struct iso_context *ctx = container_of(base, struct iso_context, base);
3109 unsigned long flags;
3110 int index;
3111
3112 ohci_stop_iso(base);
3113 context_release(&ctx->context);
3114 free_page((unsigned long)ctx->header);
3115
3116 spin_lock_irqsave(&ohci->lock, flags);
3117
3118 switch (base->type) {
3119 case FW_ISO_CONTEXT_TRANSMIT:
3120 index = ctx - ohci->it_context_list;
3121 ohci->it_context_mask |= 1 << index;
3122 break;
3123
3124 case FW_ISO_CONTEXT_RECEIVE:
3125 index = ctx - ohci->ir_context_list;
3126 ohci->ir_context_mask |= 1 << index;
3127 ohci->ir_context_channels |= 1ULL << base->channel;
3128 break;
3129
3130 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3131 index = ctx - ohci->ir_context_list;
3132 ohci->ir_context_mask |= 1 << index;
3133 ohci->ir_context_channels |= ohci->mc_channels;
3134 ohci->mc_channels = 0;
3135 ohci->mc_allocated = false;
3136 break;
3137 }
3138
3139 spin_unlock_irqrestore(&ohci->lock, flags);
3140}
3141
3142static int ohci_set_iso_channels(struct fw_iso_context *base, u64 *channels)
3143{
3144 struct fw_ohci *ohci = fw_ohci(base->card);
3145 unsigned long flags;
3146 int ret;
3147
3148 switch (base->type) {
3149 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3150
3151 spin_lock_irqsave(&ohci->lock, flags);
3152
3153 /* Don't allow multichannel to grab other contexts' channels. */
3154 if (~ohci->ir_context_channels & ~ohci->mc_channels & *channels) {
3155 *channels = ohci->ir_context_channels;
3156 ret = -EBUSY;
3157 } else {
3158 set_multichannel_mask(ohci, *channels);
3159 ret = 0;
3160 }
3161
3162 spin_unlock_irqrestore(&ohci->lock, flags);
3163
3164 break;
3165 default:
3166 ret = -EINVAL;
3167 }
3168
3169 return ret;
3170}
3171
3172#ifdef CONFIG_PM
3173static void ohci_resume_iso_dma(struct fw_ohci *ohci)
3174{
3175 int i;
3176 struct iso_context *ctx;
3177
3178 for (i = 0 ; i < ohci->n_ir ; i++) {
3179 ctx = &ohci->ir_context_list[i];
3180 if (ctx->context.running)
3181 ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3182 }
3183
3184 for (i = 0 ; i < ohci->n_it ; i++) {
3185 ctx = &ohci->it_context_list[i];
3186 if (ctx->context.running)
3187 ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3188 }
3189}
3190#endif
3191
3192static int queue_iso_transmit(struct iso_context *ctx,
3193 struct fw_iso_packet *packet,
3194 struct fw_iso_buffer *buffer,
3195 unsigned long payload)
3196{
3197 struct descriptor *d, *last, *pd;
3198 struct fw_iso_packet *p;
3199 __le32 *header;
3200 dma_addr_t d_bus, page_bus;
3201 u32 z, header_z, payload_z, irq;
3202 u32 payload_index, payload_end_index, next_page_index;
3203 int page, end_page, i, length, offset;
3204
3205 p = packet;
3206 payload_index = payload;
3207
3208 if (p->skip)
3209 z = 1;
3210 else
3211 z = 2;
3212 if (p->header_length > 0)
3213 z++;
3214
3215 /* Determine the first page the payload isn't contained in. */
3216 end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
3217 if (p->payload_length > 0)
3218 payload_z = end_page - (payload_index >> PAGE_SHIFT);
3219 else
3220 payload_z = 0;
3221
3222 z += payload_z;
3223
3224 /* Get header size in number of descriptors. */
3225 header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
3226
3227 d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
3228 if (d == NULL)
3229 return -ENOMEM;
3230
3231 if (!p->skip) {
3232 d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
3233 d[0].req_count = cpu_to_le16(8);
3234 /*
3235 * Link the skip address to this descriptor itself. This causes
3236 * a context to skip a cycle whenever lost cycles or FIFO
3237 * overruns occur, without dropping the data. The application
3238 * should then decide whether this is an error condition or not.
3239 * FIXME: Make the context's cycle-lost behaviour configurable?
3240 */
3241 d[0].branch_address = cpu_to_le32(d_bus | z);
3242
3243 header = (__le32 *) &d[1];
3244 header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
3245 IT_HEADER_TAG(p->tag) |
3246 IT_HEADER_TCODE(TCODE_STREAM_DATA) |
3247 IT_HEADER_CHANNEL(ctx->base.channel) |
3248 IT_HEADER_SPEED(ctx->base.speed));
3249 header[1] =
3250 cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
3251 p->payload_length));
3252 }
3253
3254 if (p->header_length > 0) {
3255 d[2].req_count = cpu_to_le16(p->header_length);
3256 d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
3257 memcpy(&d[z], p->header, p->header_length);
3258 }
3259
3260 pd = d + z - payload_z;
3261 payload_end_index = payload_index + p->payload_length;
3262 for (i = 0; i < payload_z; i++) {
3263 page = payload_index >> PAGE_SHIFT;
3264 offset = payload_index & ~PAGE_MASK;
3265 next_page_index = (page + 1) << PAGE_SHIFT;
3266 length =
3267 min(next_page_index, payload_end_index) - payload_index;
3268 pd[i].req_count = cpu_to_le16(length);
3269
3270 page_bus = page_private(buffer->pages[page]);
3271 pd[i].data_address = cpu_to_le32(page_bus + offset);
3272
3273 dma_sync_single_range_for_device(ctx->context.ohci->card.device,
3274 page_bus, offset, length,
3275 DMA_TO_DEVICE);
3276
3277 payload_index += length;
3278 }
3279
3280 if (p->interrupt)
3281 irq = DESCRIPTOR_IRQ_ALWAYS;
3282 else
3283 irq = DESCRIPTOR_NO_IRQ;
3284
3285 last = z == 2 ? d : d + z - 1;
3286 last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
3287 DESCRIPTOR_STATUS |
3288 DESCRIPTOR_BRANCH_ALWAYS |
3289 irq);
3290
3291 context_append(&ctx->context, d, z, header_z);
3292
3293 return 0;
3294}
3295
3296static int queue_iso_packet_per_buffer(struct iso_context *ctx,
3297 struct fw_iso_packet *packet,
3298 struct fw_iso_buffer *buffer,
3299 unsigned long payload)
3300{
3301 struct device *device = ctx->context.ohci->card.device;
3302 struct descriptor *d, *pd;
3303 dma_addr_t d_bus, page_bus;
3304 u32 z, header_z, rest;
3305 int i, j, length;
3306 int page, offset, packet_count, header_size, payload_per_buffer;
3307
3308 /*
3309 * The OHCI controller puts the isochronous header and trailer in the
3310 * buffer, so we need at least 8 bytes.
3311 */
3312 packet_count = packet->header_length / ctx->base.header_size;
3313 header_size = max(ctx->base.header_size, (size_t)8);
3314
3315 /* Get header size in number of descriptors. */
3316 header_z = DIV_ROUND_UP(header_size, sizeof(*d));
3317 page = payload >> PAGE_SHIFT;
3318 offset = payload & ~PAGE_MASK;
3319 payload_per_buffer = packet->payload_length / packet_count;
3320
3321 for (i = 0; i < packet_count; i++) {
3322 /* d points to the header descriptor */
3323 z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
3324 d = context_get_descriptors(&ctx->context,
3325 z + header_z, &d_bus);
3326 if (d == NULL)
3327 return -ENOMEM;
3328
3329 d->control = cpu_to_le16(DESCRIPTOR_STATUS |
3330 DESCRIPTOR_INPUT_MORE);
3331 if (packet->skip && i == 0)
3332 d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3333 d->req_count = cpu_to_le16(header_size);
3334 d->res_count = d->req_count;
3335 d->transfer_status = 0;
3336 d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
3337
3338 rest = payload_per_buffer;
3339 pd = d;
3340 for (j = 1; j < z; j++) {
3341 pd++;
3342 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3343 DESCRIPTOR_INPUT_MORE);
3344
3345 if (offset + rest < PAGE_SIZE)
3346 length = rest;
3347 else
3348 length = PAGE_SIZE - offset;
3349 pd->req_count = cpu_to_le16(length);
3350 pd->res_count = pd->req_count;
3351 pd->transfer_status = 0;
3352
3353 page_bus = page_private(buffer->pages[page]);
3354 pd->data_address = cpu_to_le32(page_bus + offset);
3355
3356 dma_sync_single_range_for_device(device, page_bus,
3357 offset, length,
3358 DMA_FROM_DEVICE);
3359
3360 offset = (offset + length) & ~PAGE_MASK;
3361 rest -= length;
3362 if (offset == 0)
3363 page++;
3364 }
3365 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3366 DESCRIPTOR_INPUT_LAST |
3367 DESCRIPTOR_BRANCH_ALWAYS);
3368 if (packet->interrupt && i == packet_count - 1)
3369 pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3370
3371 context_append(&ctx->context, d, z, header_z);
3372 }
3373
3374 return 0;
3375}
3376
3377static int queue_iso_buffer_fill(struct iso_context *ctx,
3378 struct fw_iso_packet *packet,
3379 struct fw_iso_buffer *buffer,
3380 unsigned long payload)
3381{
3382 struct descriptor *d;
3383 dma_addr_t d_bus, page_bus;
3384 int page, offset, rest, z, i, length;
3385
3386 page = payload >> PAGE_SHIFT;
3387 offset = payload & ~PAGE_MASK;
3388 rest = packet->payload_length;
3389
3390 /* We need one descriptor for each page in the buffer. */
3391 z = DIV_ROUND_UP(offset + rest, PAGE_SIZE);
3392
3393 if (WARN_ON(offset & 3 || rest & 3 || page + z > buffer->page_count))
3394 return -EFAULT;
3395
3396 for (i = 0; i < z; i++) {
3397 d = context_get_descriptors(&ctx->context, 1, &d_bus);
3398 if (d == NULL)
3399 return -ENOMEM;
3400
3401 d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
3402 DESCRIPTOR_BRANCH_ALWAYS);
3403 if (packet->skip && i == 0)
3404 d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3405 if (packet->interrupt && i == z - 1)
3406 d->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3407
3408 if (offset + rest < PAGE_SIZE)
3409 length = rest;
3410 else
3411 length = PAGE_SIZE - offset;
3412 d->req_count = cpu_to_le16(length);
3413 d->res_count = d->req_count;
3414 d->transfer_status = 0;
3415
3416 page_bus = page_private(buffer->pages[page]);
3417 d->data_address = cpu_to_le32(page_bus + offset);
3418
3419 dma_sync_single_range_for_device(ctx->context.ohci->card.device,
3420 page_bus, offset, length,
3421 DMA_FROM_DEVICE);
3422
3423 rest -= length;
3424 offset = 0;
3425 page++;
3426
3427 context_append(&ctx->context, d, 1, 0);
3428 }
3429
3430 return 0;
3431}
3432
3433static int ohci_queue_iso(struct fw_iso_context *base,
3434 struct fw_iso_packet *packet,
3435 struct fw_iso_buffer *buffer,
3436 unsigned long payload)
3437{
3438 struct iso_context *ctx = container_of(base, struct iso_context, base);
3439 unsigned long flags;
3440 int ret = -ENOSYS;
3441
3442 spin_lock_irqsave(&ctx->context.ohci->lock, flags);
3443 switch (base->type) {
3444 case FW_ISO_CONTEXT_TRANSMIT:
3445 ret = queue_iso_transmit(ctx, packet, buffer, payload);
3446 break;
3447 case FW_ISO_CONTEXT_RECEIVE:
3448 ret = queue_iso_packet_per_buffer(ctx, packet, buffer, payload);
3449 break;
3450 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3451 ret = queue_iso_buffer_fill(ctx, packet, buffer, payload);
3452 break;
3453 }
3454 spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
3455
3456 return ret;
3457}
3458
3459static void ohci_flush_queue_iso(struct fw_iso_context *base)
3460{
3461 struct context *ctx =
3462 &container_of(base, struct iso_context, base)->context;
3463
3464 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
3465}
3466
3467static int ohci_flush_iso_completions(struct fw_iso_context *base)
3468{
3469 struct iso_context *ctx = container_of(base, struct iso_context, base);
3470 int ret = 0;
3471
3472 tasklet_disable(&ctx->context.tasklet);
3473
3474 if (!test_and_set_bit_lock(0, &ctx->flushing_completions)) {
3475 context_tasklet((unsigned long)&ctx->context);
3476
3477 switch (base->type) {
3478 case FW_ISO_CONTEXT_TRANSMIT:
3479 case FW_ISO_CONTEXT_RECEIVE:
3480 if (ctx->header_length != 0)
3481 flush_iso_completions(ctx);
3482 break;
3483 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3484 if (ctx->mc_completed != 0)
3485 flush_ir_buffer_fill(ctx);
3486 break;
3487 default:
3488 ret = -ENOSYS;
3489 }
3490
3491 clear_bit_unlock(0, &ctx->flushing_completions);
3492 smp_mb__after_atomic();
3493 }
3494
3495 tasklet_enable(&ctx->context.tasklet);
3496
3497 return ret;
3498}
3499
3500static const struct fw_card_driver ohci_driver = {
3501 .enable = ohci_enable,
3502 .read_phy_reg = ohci_read_phy_reg,
3503 .update_phy_reg = ohci_update_phy_reg,
3504 .set_config_rom = ohci_set_config_rom,
3505 .send_request = ohci_send_request,
3506 .send_response = ohci_send_response,
3507 .cancel_packet = ohci_cancel_packet,
3508 .enable_phys_dma = ohci_enable_phys_dma,
3509 .read_csr = ohci_read_csr,
3510 .write_csr = ohci_write_csr,
3511
3512 .allocate_iso_context = ohci_allocate_iso_context,
3513 .free_iso_context = ohci_free_iso_context,
3514 .set_iso_channels = ohci_set_iso_channels,
3515 .queue_iso = ohci_queue_iso,
3516 .flush_queue_iso = ohci_flush_queue_iso,
3517 .flush_iso_completions = ohci_flush_iso_completions,
3518 .start_iso = ohci_start_iso,
3519 .stop_iso = ohci_stop_iso,
3520};
3521
3522#ifdef CONFIG_PPC_PMAC
3523static void pmac_ohci_on(struct pci_dev *dev)
3524{
3525 if (machine_is(powermac)) {
3526 struct device_node *ofn = pci_device_to_OF_node(dev);
3527
3528 if (ofn) {
3529 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
3530 pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
3531 }
3532 }
3533}
3534
3535static void pmac_ohci_off(struct pci_dev *dev)
3536{
3537 if (machine_is(powermac)) {
3538 struct device_node *ofn = pci_device_to_OF_node(dev);
3539
3540 if (ofn) {
3541 pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
3542 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
3543 }
3544 }
3545}
3546#else
3547static inline void pmac_ohci_on(struct pci_dev *dev) {}
3548static inline void pmac_ohci_off(struct pci_dev *dev) {}
3549#endif /* CONFIG_PPC_PMAC */
3550
3551static int pci_probe(struct pci_dev *dev,
3552 const struct pci_device_id *ent)
3553{
3554 struct fw_ohci *ohci;
3555 u32 bus_options, max_receive, link_speed, version;
3556 u64 guid;
3557 int i, err;
3558 size_t size;
3559
3560 if (dev->vendor == PCI_VENDOR_ID_PINNACLE_SYSTEMS) {
3561 dev_err(&dev->dev, "Pinnacle MovieBoard is not yet supported\n");
3562 return -ENOSYS;
3563 }
3564
3565 ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
3566 if (ohci == NULL) {
3567 err = -ENOMEM;
3568 goto fail;
3569 }
3570
3571 fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
3572
3573 pmac_ohci_on(dev);
3574
3575 err = pci_enable_device(dev);
3576 if (err) {
3577 dev_err(&dev->dev, "failed to enable OHCI hardware\n");
3578 goto fail_free;
3579 }
3580
3581 pci_set_master(dev);
3582 pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
3583 pci_set_drvdata(dev, ohci);
3584
3585 spin_lock_init(&ohci->lock);
3586 mutex_init(&ohci->phy_reg_mutex);
3587
3588 INIT_WORK(&ohci->bus_reset_work, bus_reset_work);
3589
3590 if (!(pci_resource_flags(dev, 0) & IORESOURCE_MEM) ||
3591 pci_resource_len(dev, 0) < OHCI1394_REGISTER_SIZE) {
3592 ohci_err(ohci, "invalid MMIO resource\n");
3593 err = -ENXIO;
3594 goto fail_disable;
3595 }
3596
3597 err = pci_request_region(dev, 0, ohci_driver_name);
3598 if (err) {
3599 ohci_err(ohci, "MMIO resource unavailable\n");
3600 goto fail_disable;
3601 }
3602
3603 ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
3604 if (ohci->registers == NULL) {
3605 ohci_err(ohci, "failed to remap registers\n");
3606 err = -ENXIO;
3607 goto fail_iomem;
3608 }
3609
3610 for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
3611 if ((ohci_quirks[i].vendor == dev->vendor) &&
3612 (ohci_quirks[i].device == (unsigned short)PCI_ANY_ID ||
3613 ohci_quirks[i].device == dev->device) &&
3614 (ohci_quirks[i].revision == (unsigned short)PCI_ANY_ID ||
3615 ohci_quirks[i].revision >= dev->revision)) {
3616 ohci->quirks = ohci_quirks[i].flags;
3617 break;
3618 }
3619 if (param_quirks)
3620 ohci->quirks = param_quirks;
3621
3622 /*
3623 * Because dma_alloc_coherent() allocates at least one page,
3624 * we save space by using a common buffer for the AR request/
3625 * response descriptors and the self IDs buffer.
3626 */
3627 BUILD_BUG_ON(AR_BUFFERS * sizeof(struct descriptor) > PAGE_SIZE/4);
3628 BUILD_BUG_ON(SELF_ID_BUF_SIZE > PAGE_SIZE/2);
3629 ohci->misc_buffer = dma_alloc_coherent(ohci->card.device,
3630 PAGE_SIZE,
3631 &ohci->misc_buffer_bus,
3632 GFP_KERNEL);
3633 if (!ohci->misc_buffer) {
3634 err = -ENOMEM;
3635 goto fail_iounmap;
3636 }
3637
3638 err = ar_context_init(&ohci->ar_request_ctx, ohci, 0,
3639 OHCI1394_AsReqRcvContextControlSet);
3640 if (err < 0)
3641 goto fail_misc_buf;
3642
3643 err = ar_context_init(&ohci->ar_response_ctx, ohci, PAGE_SIZE/4,
3644 OHCI1394_AsRspRcvContextControlSet);
3645 if (err < 0)
3646 goto fail_arreq_ctx;
3647
3648 err = context_init(&ohci->at_request_ctx, ohci,
3649 OHCI1394_AsReqTrContextControlSet, handle_at_packet);
3650 if (err < 0)
3651 goto fail_arrsp_ctx;
3652
3653 err = context_init(&ohci->at_response_ctx, ohci,
3654 OHCI1394_AsRspTrContextControlSet, handle_at_packet);
3655 if (err < 0)
3656 goto fail_atreq_ctx;
3657
3658 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
3659 ohci->ir_context_channels = ~0ULL;
3660 ohci->ir_context_support = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
3661 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
3662 ohci->ir_context_mask = ohci->ir_context_support;
3663 ohci->n_ir = hweight32(ohci->ir_context_mask);
3664 size = sizeof(struct iso_context) * ohci->n_ir;
3665 ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
3666
3667 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
3668 ohci->it_context_support = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
3669 /* JMicron JMB38x often shows 0 at first read, just ignore it */
3670 if (!ohci->it_context_support) {
3671 ohci_notice(ohci, "overriding IsoXmitIntMask\n");
3672 ohci->it_context_support = 0xf;
3673 }
3674 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
3675 ohci->it_context_mask = ohci->it_context_support;
3676 ohci->n_it = hweight32(ohci->it_context_mask);
3677 size = sizeof(struct iso_context) * ohci->n_it;
3678 ohci->it_context_list = kzalloc(size, GFP_KERNEL);
3679
3680 if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
3681 err = -ENOMEM;
3682 goto fail_contexts;
3683 }
3684
3685 ohci->self_id = ohci->misc_buffer + PAGE_SIZE/2;
3686 ohci->self_id_bus = ohci->misc_buffer_bus + PAGE_SIZE/2;
3687
3688 bus_options = reg_read(ohci, OHCI1394_BusOptions);
3689 max_receive = (bus_options >> 12) & 0xf;
3690 link_speed = bus_options & 0x7;
3691 guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
3692 reg_read(ohci, OHCI1394_GUIDLo);
3693
3694 if (!(ohci->quirks & QUIRK_NO_MSI))
3695 pci_enable_msi(dev);
3696 if (request_irq(dev->irq, irq_handler,
3697 pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED,
3698 ohci_driver_name, ohci)) {
3699 ohci_err(ohci, "failed to allocate interrupt %d\n", dev->irq);
3700 err = -EIO;
3701 goto fail_msi;
3702 }
3703
3704 err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
3705 if (err)
3706 goto fail_irq;
3707
3708 version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
3709 ohci_notice(ohci,
3710 "added OHCI v%x.%x device as card %d, "
3711 "%d IR + %d IT contexts, quirks 0x%x%s\n",
3712 version >> 16, version & 0xff, ohci->card.index,
3713 ohci->n_ir, ohci->n_it, ohci->quirks,
3714 reg_read(ohci, OHCI1394_PhyUpperBound) ?
3715 ", physUB" : "");
3716
3717 return 0;
3718
3719 fail_irq:
3720 free_irq(dev->irq, ohci);
3721 fail_msi:
3722 pci_disable_msi(dev);
3723 fail_contexts:
3724 kfree(ohci->ir_context_list);
3725 kfree(ohci->it_context_list);
3726 context_release(&ohci->at_response_ctx);
3727 fail_atreq_ctx:
3728 context_release(&ohci->at_request_ctx);
3729 fail_arrsp_ctx:
3730 ar_context_release(&ohci->ar_response_ctx);
3731 fail_arreq_ctx:
3732 ar_context_release(&ohci->ar_request_ctx);
3733 fail_misc_buf:
3734 dma_free_coherent(ohci->card.device, PAGE_SIZE,
3735 ohci->misc_buffer, ohci->misc_buffer_bus);
3736 fail_iounmap:
3737 pci_iounmap(dev, ohci->registers);
3738 fail_iomem:
3739 pci_release_region(dev, 0);
3740 fail_disable:
3741 pci_disable_device(dev);
3742 fail_free:
3743 kfree(ohci);
3744 pmac_ohci_off(dev);
3745 fail:
3746 return err;
3747}
3748
3749static void pci_remove(struct pci_dev *dev)
3750{
3751 struct fw_ohci *ohci = pci_get_drvdata(dev);
3752
3753 /*
3754 * If the removal is happening from the suspend state, LPS won't be
3755 * enabled and host registers (eg., IntMaskClear) won't be accessible.
3756 */
3757 if (reg_read(ohci, OHCI1394_HCControlSet) & OHCI1394_HCControl_LPS) {
3758 reg_write(ohci, OHCI1394_IntMaskClear, ~0);
3759 flush_writes(ohci);
3760 }
3761 cancel_work_sync(&ohci->bus_reset_work);
3762 fw_core_remove_card(&ohci->card);
3763
3764 /*
3765 * FIXME: Fail all pending packets here, now that the upper
3766 * layers can't queue any more.
3767 */
3768
3769 software_reset(ohci);
3770 free_irq(dev->irq, ohci);
3771
3772 if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
3773 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
3774 ohci->next_config_rom, ohci->next_config_rom_bus);
3775 if (ohci->config_rom)
3776 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
3777 ohci->config_rom, ohci->config_rom_bus);
3778 ar_context_release(&ohci->ar_request_ctx);
3779 ar_context_release(&ohci->ar_response_ctx);
3780 dma_free_coherent(ohci->card.device, PAGE_SIZE,
3781 ohci->misc_buffer, ohci->misc_buffer_bus);
3782 context_release(&ohci->at_request_ctx);
3783 context_release(&ohci->at_response_ctx);
3784 kfree(ohci->it_context_list);
3785 kfree(ohci->ir_context_list);
3786 pci_disable_msi(dev);
3787 pci_iounmap(dev, ohci->registers);
3788 pci_release_region(dev, 0);
3789 pci_disable_device(dev);
3790 kfree(ohci);
3791 pmac_ohci_off(dev);
3792
3793 dev_notice(&dev->dev, "removed fw-ohci device\n");
3794}
3795
3796#ifdef CONFIG_PM
3797static int pci_suspend(struct pci_dev *dev, pm_message_t state)
3798{
3799 struct fw_ohci *ohci = pci_get_drvdata(dev);
3800 int err;
3801
3802 software_reset(ohci);
3803 err = pci_save_state(dev);
3804 if (err) {
3805 ohci_err(ohci, "pci_save_state failed\n");
3806 return err;
3807 }
3808 err = pci_set_power_state(dev, pci_choose_state(dev, state));
3809 if (err)
3810 ohci_err(ohci, "pci_set_power_state failed with %d\n", err);
3811 pmac_ohci_off(dev);
3812
3813 return 0;
3814}
3815
3816static int pci_resume(struct pci_dev *dev)
3817{
3818 struct fw_ohci *ohci = pci_get_drvdata(dev);
3819 int err;
3820
3821 pmac_ohci_on(dev);
3822 pci_set_power_state(dev, PCI_D0);
3823 pci_restore_state(dev);
3824 err = pci_enable_device(dev);
3825 if (err) {
3826 ohci_err(ohci, "pci_enable_device failed\n");
3827 return err;
3828 }
3829
3830 /* Some systems don't setup GUID register on resume from ram */
3831 if (!reg_read(ohci, OHCI1394_GUIDLo) &&
3832 !reg_read(ohci, OHCI1394_GUIDHi)) {
3833 reg_write(ohci, OHCI1394_GUIDLo, (u32)ohci->card.guid);
3834 reg_write(ohci, OHCI1394_GUIDHi, (u32)(ohci->card.guid >> 32));
3835 }
3836
3837 err = ohci_enable(&ohci->card, NULL, 0);
3838 if (err)
3839 return err;
3840
3841 ohci_resume_iso_dma(ohci);
3842
3843 return 0;
3844}
3845#endif
3846
3847static const struct pci_device_id pci_table[] = {
3848 { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
3849 { }
3850};
3851
3852MODULE_DEVICE_TABLE(pci, pci_table);
3853
3854static struct pci_driver fw_ohci_pci_driver = {
3855 .name = ohci_driver_name,
3856 .id_table = pci_table,
3857 .probe = pci_probe,
3858 .remove = pci_remove,
3859#ifdef CONFIG_PM
3860 .resume = pci_resume,
3861 .suspend = pci_suspend,
3862#endif
3863};
3864
3865static int __init fw_ohci_init(void)
3866{
3867 selfid_workqueue = alloc_workqueue(KBUILD_MODNAME, WQ_MEM_RECLAIM, 0);
3868 if (!selfid_workqueue)
3869 return -ENOMEM;
3870
3871 return pci_register_driver(&fw_ohci_pci_driver);
3872}
3873
3874static void __exit fw_ohci_cleanup(void)
3875{
3876 pci_unregister_driver(&fw_ohci_pci_driver);
3877 destroy_workqueue(selfid_workqueue);
3878}
3879
3880module_init(fw_ohci_init);
3881module_exit(fw_ohci_cleanup);
3882
3883MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
3884MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
3885MODULE_LICENSE("GPL");
3886
3887/* Provide a module alias so root-on-sbp2 initrds don't break. */
3888MODULE_ALIAS("ohci1394");