Linux Audio

Check our new training course

Loading...
v3.5.6
 
   1/*
   2 * Driver for OHCI 1394 controllers
   3 *
   4 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License as published by
   8 * the Free Software Foundation; either version 2 of the License, or
   9 * (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * along with this program; if not, write to the Free Software Foundation,
  18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  19 */
  20
  21#include <linux/bitops.h>
  22#include <linux/bug.h>
  23#include <linux/compiler.h>
  24#include <linux/delay.h>
  25#include <linux/device.h>
  26#include <linux/dma-mapping.h>
  27#include <linux/firewire.h>
  28#include <linux/firewire-constants.h>
  29#include <linux/init.h>
  30#include <linux/interrupt.h>
  31#include <linux/io.h>
  32#include <linux/kernel.h>
  33#include <linux/list.h>
  34#include <linux/mm.h>
  35#include <linux/module.h>
  36#include <linux/moduleparam.h>
  37#include <linux/mutex.h>
  38#include <linux/pci.h>
  39#include <linux/pci_ids.h>
  40#include <linux/slab.h>
  41#include <linux/spinlock.h>
  42#include <linux/string.h>
  43#include <linux/time.h>
  44#include <linux/vmalloc.h>
  45#include <linux/workqueue.h>
  46
  47#include <asm/byteorder.h>
  48#include <asm/page.h>
  49
  50#ifdef CONFIG_PPC_PMAC
  51#include <asm/pmac_feature.h>
  52#endif
  53
  54#include "core.h"
  55#include "ohci.h"
  56
 
 
 
 
  57#define DESCRIPTOR_OUTPUT_MORE		0
  58#define DESCRIPTOR_OUTPUT_LAST		(1 << 12)
  59#define DESCRIPTOR_INPUT_MORE		(2 << 12)
  60#define DESCRIPTOR_INPUT_LAST		(3 << 12)
  61#define DESCRIPTOR_STATUS		(1 << 11)
  62#define DESCRIPTOR_KEY_IMMEDIATE	(2 << 8)
  63#define DESCRIPTOR_PING			(1 << 7)
  64#define DESCRIPTOR_YY			(1 << 6)
  65#define DESCRIPTOR_NO_IRQ		(0 << 4)
  66#define DESCRIPTOR_IRQ_ERROR		(1 << 4)
  67#define DESCRIPTOR_IRQ_ALWAYS		(3 << 4)
  68#define DESCRIPTOR_BRANCH_ALWAYS	(3 << 2)
  69#define DESCRIPTOR_WAIT			(3 << 0)
  70
 
 
  71struct descriptor {
  72	__le16 req_count;
  73	__le16 control;
  74	__le32 data_address;
  75	__le32 branch_address;
  76	__le16 res_count;
  77	__le16 transfer_status;
  78} __attribute__((aligned(16)));
  79
  80#define CONTROL_SET(regs)	(regs)
  81#define CONTROL_CLEAR(regs)	((regs) + 4)
  82#define COMMAND_PTR(regs)	((regs) + 12)
  83#define CONTEXT_MATCH(regs)	((regs) + 16)
  84
  85#define AR_BUFFER_SIZE	(32*1024)
  86#define AR_BUFFERS_MIN	DIV_ROUND_UP(AR_BUFFER_SIZE, PAGE_SIZE)
  87/* we need at least two pages for proper list management */
  88#define AR_BUFFERS	(AR_BUFFERS_MIN >= 2 ? AR_BUFFERS_MIN : 2)
  89
  90#define MAX_ASYNC_PAYLOAD	4096
  91#define MAX_AR_PACKET_SIZE	(16 + MAX_ASYNC_PAYLOAD + 4)
  92#define AR_WRAPAROUND_PAGES	DIV_ROUND_UP(MAX_AR_PACKET_SIZE, PAGE_SIZE)
  93
  94struct ar_context {
  95	struct fw_ohci *ohci;
  96	struct page *pages[AR_BUFFERS];
  97	void *buffer;
  98	struct descriptor *descriptors;
  99	dma_addr_t descriptors_bus;
 100	void *pointer;
 101	unsigned int last_buffer_index;
 102	u32 regs;
 103	struct tasklet_struct tasklet;
 104};
 105
 106struct context;
 107
 108typedef int (*descriptor_callback_t)(struct context *ctx,
 109				     struct descriptor *d,
 110				     struct descriptor *last);
 111
 112/*
 113 * A buffer that contains a block of DMA-able coherent memory used for
 114 * storing a portion of a DMA descriptor program.
 115 */
 116struct descriptor_buffer {
 117	struct list_head list;
 118	dma_addr_t buffer_bus;
 119	size_t buffer_size;
 120	size_t used;
 121	struct descriptor buffer[0];
 122};
 123
 124struct context {
 125	struct fw_ohci *ohci;
 126	u32 regs;
 127	int total_allocation;
 128	u32 current_bus;
 129	bool running;
 130	bool flushing;
 131
 132	/*
 133	 * List of page-sized buffers for storing DMA descriptors.
 134	 * Head of list contains buffers in use and tail of list contains
 135	 * free buffers.
 136	 */
 137	struct list_head buffer_list;
 138
 139	/*
 140	 * Pointer to a buffer inside buffer_list that contains the tail
 141	 * end of the current DMA program.
 142	 */
 143	struct descriptor_buffer *buffer_tail;
 144
 145	/*
 146	 * The descriptor containing the branch address of the first
 147	 * descriptor that has not yet been filled by the device.
 148	 */
 149	struct descriptor *last;
 150
 151	/*
 152	 * The last descriptor in the DMA program.  It contains the branch
 153	 * address that must be updated upon appending a new descriptor.
 154	 */
 155	struct descriptor *prev;
 
 156
 157	descriptor_callback_t callback;
 158
 159	struct tasklet_struct tasklet;
 160};
 161
 162#define IT_HEADER_SY(v)          ((v) <<  0)
 163#define IT_HEADER_TCODE(v)       ((v) <<  4)
 164#define IT_HEADER_CHANNEL(v)     ((v) <<  8)
 165#define IT_HEADER_TAG(v)         ((v) << 14)
 166#define IT_HEADER_SPEED(v)       ((v) << 16)
 167#define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
 168
 169struct iso_context {
 170	struct fw_iso_context base;
 171	struct context context;
 172	void *header;
 173	size_t header_length;
 174	unsigned long flushing_completions;
 175	u32 mc_buffer_bus;
 176	u16 mc_completed;
 177	u16 last_timestamp;
 178	u8 sync;
 179	u8 tags;
 180};
 181
 182#define CONFIG_ROM_SIZE 1024
 183
 184struct fw_ohci {
 185	struct fw_card card;
 186
 187	__iomem char *registers;
 188	int node_id;
 189	int generation;
 190	int request_generation;	/* for timestamping incoming requests */
 191	unsigned quirks;
 192	unsigned int pri_req_max;
 193	u32 bus_time;
 
 194	bool is_root;
 195	bool csr_state_setclear_abdicate;
 196	int n_ir;
 197	int n_it;
 198	/*
 199	 * Spinlock for accessing fw_ohci data.  Never call out of
 200	 * this driver with this lock held.
 201	 */
 202	spinlock_t lock;
 203
 204	struct mutex phy_reg_mutex;
 205
 206	void *misc_buffer;
 207	dma_addr_t misc_buffer_bus;
 208
 209	struct ar_context ar_request_ctx;
 210	struct ar_context ar_response_ctx;
 211	struct context at_request_ctx;
 212	struct context at_response_ctx;
 213
 214	u32 it_context_support;
 215	u32 it_context_mask;     /* unoccupied IT contexts */
 216	struct iso_context *it_context_list;
 217	u64 ir_context_channels; /* unoccupied channels */
 218	u32 ir_context_support;
 219	u32 ir_context_mask;     /* unoccupied IR contexts */
 220	struct iso_context *ir_context_list;
 221	u64 mc_channels; /* channels in use by the multichannel IR context */
 222	bool mc_allocated;
 223
 224	__be32    *config_rom;
 225	dma_addr_t config_rom_bus;
 226	__be32    *next_config_rom;
 227	dma_addr_t next_config_rom_bus;
 228	__be32     next_header;
 229
 230	__le32    *self_id_cpu;
 231	dma_addr_t self_id_bus;
 232	struct work_struct bus_reset_work;
 233
 234	u32 self_id_buffer[512];
 235};
 236
 
 
 237static inline struct fw_ohci *fw_ohci(struct fw_card *card)
 238{
 239	return container_of(card, struct fw_ohci, card);
 240}
 241
 242#define IT_CONTEXT_CYCLE_MATCH_ENABLE	0x80000000
 243#define IR_CONTEXT_BUFFER_FILL		0x80000000
 244#define IR_CONTEXT_ISOCH_HEADER		0x40000000
 245#define IR_CONTEXT_CYCLE_MATCH_ENABLE	0x20000000
 246#define IR_CONTEXT_MULTI_CHANNEL_MODE	0x10000000
 247#define IR_CONTEXT_DUAL_BUFFER_MODE	0x08000000
 248
 249#define CONTEXT_RUN	0x8000
 250#define CONTEXT_WAKE	0x1000
 251#define CONTEXT_DEAD	0x0800
 252#define CONTEXT_ACTIVE	0x0400
 253
 254#define OHCI1394_MAX_AT_REQ_RETRIES	0xf
 255#define OHCI1394_MAX_AT_RESP_RETRIES	0x2
 256#define OHCI1394_MAX_PHYS_RESP_RETRIES	0x8
 257
 258#define OHCI1394_REGISTER_SIZE		0x800
 259#define OHCI1394_PCI_HCI_Control	0x40
 260#define SELF_ID_BUF_SIZE		0x800
 261#define OHCI_TCODE_PHY_PACKET		0x0e
 262#define OHCI_VERSION_1_1		0x010010
 263
 264static char ohci_driver_name[] = KBUILD_MODNAME;
 265
 
 266#define PCI_DEVICE_ID_AGERE_FW643	0x5901
 267#define PCI_DEVICE_ID_CREATIVE_SB1394	0x4001
 268#define PCI_DEVICE_ID_JMICRON_JMB38X_FW	0x2380
 269#define PCI_DEVICE_ID_TI_TSB12LV22	0x8009
 270#define PCI_DEVICE_ID_TI_TSB12LV26	0x8020
 271#define PCI_DEVICE_ID_TI_TSB82AA2	0x8025
 272#define PCI_VENDOR_ID_PINNACLE_SYSTEMS	0x11bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 273
 274#define QUIRK_CYCLE_TIMER		1
 275#define QUIRK_RESET_PACKET		2
 276#define QUIRK_BE_HEADERS		4
 277#define QUIRK_NO_1394A			8
 278#define QUIRK_NO_MSI			16
 279#define QUIRK_TI_SLLZ059		32
 280
 281/* In case of multiple matches in ohci_quirks[], only the first one is used. */
 282static const struct {
 283	unsigned short vendor, device, revision, flags;
 284} ohci_quirks[] = {
 285	{PCI_VENDOR_ID_AL, PCI_ANY_ID, PCI_ANY_ID,
 286		QUIRK_CYCLE_TIMER},
 287
 288	{PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_FW, PCI_ANY_ID,
 289		QUIRK_BE_HEADERS},
 290
 291	{PCI_VENDOR_ID_ATT, PCI_DEVICE_ID_AGERE_FW643, 6,
 292		QUIRK_NO_MSI},
 293
 294	{PCI_VENDOR_ID_CREATIVE, PCI_DEVICE_ID_CREATIVE_SB1394, PCI_ANY_ID,
 295		QUIRK_RESET_PACKET},
 296
 297	{PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB38X_FW, PCI_ANY_ID,
 298		QUIRK_NO_MSI},
 299
 300	{PCI_VENDOR_ID_NEC, PCI_ANY_ID, PCI_ANY_ID,
 301		QUIRK_CYCLE_TIMER},
 302
 303	{PCI_VENDOR_ID_O2, PCI_ANY_ID, PCI_ANY_ID,
 304		QUIRK_NO_MSI},
 305
 306	{PCI_VENDOR_ID_RICOH, PCI_ANY_ID, PCI_ANY_ID,
 307		QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
 308
 309	{PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV22, PCI_ANY_ID,
 310		QUIRK_CYCLE_TIMER | QUIRK_RESET_PACKET | QUIRK_NO_1394A},
 311
 312	{PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV26, PCI_ANY_ID,
 313		QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
 314
 315	{PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB82AA2, PCI_ANY_ID,
 316		QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
 317
 318	{PCI_VENDOR_ID_TI, PCI_ANY_ID, PCI_ANY_ID,
 319		QUIRK_RESET_PACKET},
 320
 
 
 
 
 
 
 
 
 
 321	{PCI_VENDOR_ID_VIA, PCI_ANY_ID, PCI_ANY_ID,
 322		QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
 323};
 324
 325/* This overrides anything that was found in ohci_quirks[]. */
 326static int param_quirks;
 327module_param_named(quirks, param_quirks, int, 0644);
 328MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
 329	", nonatomic cycle timer = "	__stringify(QUIRK_CYCLE_TIMER)
 330	", reset packet generation = "	__stringify(QUIRK_RESET_PACKET)
 331	", AR/selfID endianess = "	__stringify(QUIRK_BE_HEADERS)
 332	", no 1394a enhancements = "	__stringify(QUIRK_NO_1394A)
 333	", disable MSI = "		__stringify(QUIRK_NO_MSI)
 334	", TI SLLZ059 erratum = "	__stringify(QUIRK_TI_SLLZ059)
 
 335	")");
 336
 337#define OHCI_PARAM_DEBUG_AT_AR		1
 338#define OHCI_PARAM_DEBUG_SELFIDS	2
 339#define OHCI_PARAM_DEBUG_IRQS		4
 340#define OHCI_PARAM_DEBUG_BUSRESETS	8 /* only effective before chip init */
 341
 342static int param_debug;
 343module_param_named(debug, param_debug, int, 0644);
 344MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
 345	", AT/AR events = "	__stringify(OHCI_PARAM_DEBUG_AT_AR)
 346	", self-IDs = "		__stringify(OHCI_PARAM_DEBUG_SELFIDS)
 347	", IRQs = "		__stringify(OHCI_PARAM_DEBUG_IRQS)
 348	", busReset events = "	__stringify(OHCI_PARAM_DEBUG_BUSRESETS)
 349	", or a combination, or all = -1)");
 350
 
 
 
 
 351static void log_irqs(struct fw_ohci *ohci, u32 evt)
 352{
 353	if (likely(!(param_debug &
 354			(OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
 355		return;
 356
 357	if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
 358	    !(evt & OHCI1394_busReset))
 359		return;
 360
 361	dev_notice(ohci->card.device,
 362	    "IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
 363	    evt & OHCI1394_selfIDComplete	? " selfID"		: "",
 364	    evt & OHCI1394_RQPkt		? " AR_req"		: "",
 365	    evt & OHCI1394_RSPkt		? " AR_resp"		: "",
 366	    evt & OHCI1394_reqTxComplete	? " AT_req"		: "",
 367	    evt & OHCI1394_respTxComplete	? " AT_resp"		: "",
 368	    evt & OHCI1394_isochRx		? " IR"			: "",
 369	    evt & OHCI1394_isochTx		? " IT"			: "",
 370	    evt & OHCI1394_postedWriteErr	? " postedWriteErr"	: "",
 371	    evt & OHCI1394_cycleTooLong		? " cycleTooLong"	: "",
 372	    evt & OHCI1394_cycle64Seconds	? " cycle64Seconds"	: "",
 373	    evt & OHCI1394_cycleInconsistent	? " cycleInconsistent"	: "",
 374	    evt & OHCI1394_regAccessFail	? " regAccessFail"	: "",
 375	    evt & OHCI1394_unrecoverableError	? " unrecoverableError"	: "",
 376	    evt & OHCI1394_busReset		? " busReset"		: "",
 377	    evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
 378		    OHCI1394_RSPkt | OHCI1394_reqTxComplete |
 379		    OHCI1394_respTxComplete | OHCI1394_isochRx |
 380		    OHCI1394_isochTx | OHCI1394_postedWriteErr |
 381		    OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
 382		    OHCI1394_cycleInconsistent |
 383		    OHCI1394_regAccessFail | OHCI1394_busReset)
 384						? " ?"			: "");
 385}
 386
 387static const char *speed[] = {
 388	[0] = "S100", [1] = "S200", [2] = "S400",    [3] = "beta",
 389};
 390static const char *power[] = {
 391	[0] = "+0W",  [1] = "+15W", [2] = "+30W",    [3] = "+45W",
 392	[4] = "-3W",  [5] = " ?W",  [6] = "-3..-6W", [7] = "-3..-10W",
 393};
 394static const char port[] = { '.', '-', 'p', 'c', };
 395
 396static char _p(u32 *s, int shift)
 397{
 398	return port[*s >> shift & 3];
 399}
 400
 401static void log_selfids(struct fw_ohci *ohci, int generation, int self_id_count)
 402{
 403	u32 *s;
 404
 405	if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
 406		return;
 407
 408	dev_notice(ohci->card.device,
 409		   "%d selfIDs, generation %d, local node ID %04x\n",
 410		   self_id_count, generation, ohci->node_id);
 411
 412	for (s = ohci->self_id_buffer; self_id_count--; ++s)
 413		if ((*s & 1 << 23) == 0)
 414			dev_notice(ohci->card.device,
 415			    "selfID 0: %08x, phy %d [%c%c%c] "
 416			    "%s gc=%d %s %s%s%s\n",
 417			    *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
 418			    speed[*s >> 14 & 3], *s >> 16 & 63,
 419			    power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
 420			    *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
 421		else
 422			dev_notice(ohci->card.device,
 423			    "selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
 424			    *s, *s >> 24 & 63,
 425			    _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
 426			    _p(s,  8), _p(s,  6), _p(s,  4), _p(s,  2));
 427}
 428
 429static const char *evts[] = {
 430	[0x00] = "evt_no_status",	[0x01] = "-reserved-",
 431	[0x02] = "evt_long_packet",	[0x03] = "evt_missing_ack",
 432	[0x04] = "evt_underrun",	[0x05] = "evt_overrun",
 433	[0x06] = "evt_descriptor_read",	[0x07] = "evt_data_read",
 434	[0x08] = "evt_data_write",	[0x09] = "evt_bus_reset",
 435	[0x0a] = "evt_timeout",		[0x0b] = "evt_tcode_err",
 436	[0x0c] = "-reserved-",		[0x0d] = "-reserved-",
 437	[0x0e] = "evt_unknown",		[0x0f] = "evt_flushed",
 438	[0x10] = "-reserved-",		[0x11] = "ack_complete",
 439	[0x12] = "ack_pending ",	[0x13] = "-reserved-",
 440	[0x14] = "ack_busy_X",		[0x15] = "ack_busy_A",
 441	[0x16] = "ack_busy_B",		[0x17] = "-reserved-",
 442	[0x18] = "-reserved-",		[0x19] = "-reserved-",
 443	[0x1a] = "-reserved-",		[0x1b] = "ack_tardy",
 444	[0x1c] = "-reserved-",		[0x1d] = "ack_data_error",
 445	[0x1e] = "ack_type_error",	[0x1f] = "-reserved-",
 446	[0x20] = "pending/cancelled",
 447};
 448static const char *tcodes[] = {
 449	[0x0] = "QW req",		[0x1] = "BW req",
 450	[0x2] = "W resp",		[0x3] = "-reserved-",
 451	[0x4] = "QR req",		[0x5] = "BR req",
 452	[0x6] = "QR resp",		[0x7] = "BR resp",
 453	[0x8] = "cycle start",		[0x9] = "Lk req",
 454	[0xa] = "async stream packet",	[0xb] = "Lk resp",
 455	[0xc] = "-reserved-",		[0xd] = "-reserved-",
 456	[0xe] = "link internal",	[0xf] = "-reserved-",
 457};
 458
 459static void log_ar_at_event(struct fw_ohci *ohci,
 460			    char dir, int speed, u32 *header, int evt)
 461{
 462	int tcode = header[0] >> 4 & 0xf;
 463	char specific[12];
 464
 465	if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
 466		return;
 467
 468	if (unlikely(evt >= ARRAY_SIZE(evts)))
 469			evt = 0x1f;
 470
 471	if (evt == OHCI1394_evt_bus_reset) {
 472		dev_notice(ohci->card.device,
 473			   "A%c evt_bus_reset, generation %d\n",
 474			   dir, (header[2] >> 16) & 0xff);
 475		return;
 476	}
 477
 478	switch (tcode) {
 479	case 0x0: case 0x6: case 0x8:
 480		snprintf(specific, sizeof(specific), " = %08x",
 481			 be32_to_cpu((__force __be32)header[3]));
 482		break;
 483	case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
 484		snprintf(specific, sizeof(specific), " %x,%x",
 485			 header[3] >> 16, header[3] & 0xffff);
 486		break;
 487	default:
 488		specific[0] = '\0';
 489	}
 490
 491	switch (tcode) {
 492	case 0xa:
 493		dev_notice(ohci->card.device,
 494			   "A%c %s, %s\n",
 495			   dir, evts[evt], tcodes[tcode]);
 496		break;
 497	case 0xe:
 498		dev_notice(ohci->card.device,
 499			   "A%c %s, PHY %08x %08x\n",
 500			   dir, evts[evt], header[1], header[2]);
 501		break;
 502	case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
 503		dev_notice(ohci->card.device,
 504			   "A%c spd %x tl %02x, "
 505			   "%04x -> %04x, %s, "
 506			   "%s, %04x%08x%s\n",
 507			   dir, speed, header[0] >> 10 & 0x3f,
 508			   header[1] >> 16, header[0] >> 16, evts[evt],
 509			   tcodes[tcode], header[1] & 0xffff, header[2], specific);
 510		break;
 511	default:
 512		dev_notice(ohci->card.device,
 513			   "A%c spd %x tl %02x, "
 514			   "%04x -> %04x, %s, "
 515			   "%s%s\n",
 516			   dir, speed, header[0] >> 10 & 0x3f,
 517			   header[1] >> 16, header[0] >> 16, evts[evt],
 518			   tcodes[tcode], specific);
 519	}
 520}
 521
 522static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
 523{
 524	writel(data, ohci->registers + offset);
 525}
 526
 527static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
 528{
 529	return readl(ohci->registers + offset);
 530}
 531
 532static inline void flush_writes(const struct fw_ohci *ohci)
 533{
 534	/* Do a dummy read to flush writes. */
 535	reg_read(ohci, OHCI1394_Version);
 536}
 537
 538/*
 539 * Beware!  read_phy_reg(), write_phy_reg(), update_phy_reg(), and
 540 * read_paged_phy_reg() require the caller to hold ohci->phy_reg_mutex.
 541 * In other words, only use ohci_read_phy_reg() and ohci_update_phy_reg()
 542 * directly.  Exceptions are intrinsically serialized contexts like pci_probe.
 543 */
 544static int read_phy_reg(struct fw_ohci *ohci, int addr)
 545{
 546	u32 val;
 547	int i;
 548
 549	reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
 550	for (i = 0; i < 3 + 100; i++) {
 551		val = reg_read(ohci, OHCI1394_PhyControl);
 552		if (!~val)
 553			return -ENODEV; /* Card was ejected. */
 554
 555		if (val & OHCI1394_PhyControl_ReadDone)
 556			return OHCI1394_PhyControl_ReadData(val);
 557
 558		/*
 559		 * Try a few times without waiting.  Sleeping is necessary
 560		 * only when the link/PHY interface is busy.
 561		 */
 562		if (i >= 3)
 563			msleep(1);
 564	}
 565	dev_err(ohci->card.device, "failed to read phy reg\n");
 
 566
 567	return -EBUSY;
 568}
 569
 570static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val)
 571{
 572	int i;
 573
 574	reg_write(ohci, OHCI1394_PhyControl,
 575		  OHCI1394_PhyControl_Write(addr, val));
 576	for (i = 0; i < 3 + 100; i++) {
 577		val = reg_read(ohci, OHCI1394_PhyControl);
 578		if (!~val)
 579			return -ENODEV; /* Card was ejected. */
 580
 581		if (!(val & OHCI1394_PhyControl_WritePending))
 582			return 0;
 583
 584		if (i >= 3)
 585			msleep(1);
 586	}
 587	dev_err(ohci->card.device, "failed to write phy reg\n");
 
 588
 589	return -EBUSY;
 590}
 591
 592static int update_phy_reg(struct fw_ohci *ohci, int addr,
 593			  int clear_bits, int set_bits)
 594{
 595	int ret = read_phy_reg(ohci, addr);
 596	if (ret < 0)
 597		return ret;
 598
 599	/*
 600	 * The interrupt status bits are cleared by writing a one bit.
 601	 * Avoid clearing them unless explicitly requested in set_bits.
 602	 */
 603	if (addr == 5)
 604		clear_bits |= PHY_INT_STATUS_BITS;
 605
 606	return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits);
 607}
 608
 609static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr)
 610{
 611	int ret;
 612
 613	ret = update_phy_reg(ohci, 7, PHY_PAGE_SELECT, page << 5);
 614	if (ret < 0)
 615		return ret;
 616
 617	return read_phy_reg(ohci, addr);
 618}
 619
 620static int ohci_read_phy_reg(struct fw_card *card, int addr)
 621{
 622	struct fw_ohci *ohci = fw_ohci(card);
 623	int ret;
 624
 625	mutex_lock(&ohci->phy_reg_mutex);
 626	ret = read_phy_reg(ohci, addr);
 627	mutex_unlock(&ohci->phy_reg_mutex);
 628
 629	return ret;
 630}
 631
 632static int ohci_update_phy_reg(struct fw_card *card, int addr,
 633			       int clear_bits, int set_bits)
 634{
 635	struct fw_ohci *ohci = fw_ohci(card);
 636	int ret;
 637
 638	mutex_lock(&ohci->phy_reg_mutex);
 639	ret = update_phy_reg(ohci, addr, clear_bits, set_bits);
 640	mutex_unlock(&ohci->phy_reg_mutex);
 641
 642	return ret;
 643}
 644
 645static inline dma_addr_t ar_buffer_bus(struct ar_context *ctx, unsigned int i)
 646{
 647	return page_private(ctx->pages[i]);
 648}
 649
 650static void ar_context_link_page(struct ar_context *ctx, unsigned int index)
 651{
 652	struct descriptor *d;
 653
 654	d = &ctx->descriptors[index];
 655	d->branch_address  &= cpu_to_le32(~0xf);
 656	d->res_count       =  cpu_to_le16(PAGE_SIZE);
 657	d->transfer_status =  0;
 658
 659	wmb(); /* finish init of new descriptors before branch_address update */
 660	d = &ctx->descriptors[ctx->last_buffer_index];
 661	d->branch_address  |= cpu_to_le32(1);
 662
 663	ctx->last_buffer_index = index;
 664
 665	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
 666}
 667
 668static void ar_context_release(struct ar_context *ctx)
 669{
 
 670	unsigned int i;
 671
 672	if (ctx->buffer)
 673		vm_unmap_ram(ctx->buffer, AR_BUFFERS + AR_WRAPAROUND_PAGES);
 674
 675	for (i = 0; i < AR_BUFFERS; i++)
 676		if (ctx->pages[i]) {
 677			dma_unmap_page(ctx->ohci->card.device,
 678				       ar_buffer_bus(ctx, i),
 679				       PAGE_SIZE, DMA_FROM_DEVICE);
 680			__free_page(ctx->pages[i]);
 681		}
 682}
 683
 684static void ar_context_abort(struct ar_context *ctx, const char *error_msg)
 685{
 686	struct fw_ohci *ohci = ctx->ohci;
 687
 688	if (reg_read(ohci, CONTROL_CLEAR(ctx->regs)) & CONTEXT_RUN) {
 689		reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
 690		flush_writes(ohci);
 691
 692		dev_err(ohci->card.device, "AR error: %s; DMA stopped\n",
 693			error_msg);
 694	}
 695	/* FIXME: restart? */
 696}
 697
 698static inline unsigned int ar_next_buffer_index(unsigned int index)
 699{
 700	return (index + 1) % AR_BUFFERS;
 701}
 702
 703static inline unsigned int ar_prev_buffer_index(unsigned int index)
 704{
 705	return (index - 1 + AR_BUFFERS) % AR_BUFFERS;
 706}
 707
 708static inline unsigned int ar_first_buffer_index(struct ar_context *ctx)
 709{
 710	return ar_next_buffer_index(ctx->last_buffer_index);
 711}
 712
 713/*
 714 * We search for the buffer that contains the last AR packet DMA data written
 715 * by the controller.
 716 */
 717static unsigned int ar_search_last_active_buffer(struct ar_context *ctx,
 718						 unsigned int *buffer_offset)
 719{
 720	unsigned int i, next_i, last = ctx->last_buffer_index;
 721	__le16 res_count, next_res_count;
 722
 723	i = ar_first_buffer_index(ctx);
 724	res_count = ACCESS_ONCE(ctx->descriptors[i].res_count);
 725
 726	/* A buffer that is not yet completely filled must be the last one. */
 727	while (i != last && res_count == 0) {
 728
 729		/* Peek at the next descriptor. */
 730		next_i = ar_next_buffer_index(i);
 731		rmb(); /* read descriptors in order */
 732		next_res_count = ACCESS_ONCE(
 733				ctx->descriptors[next_i].res_count);
 734		/*
 735		 * If the next descriptor is still empty, we must stop at this
 736		 * descriptor.
 737		 */
 738		if (next_res_count == cpu_to_le16(PAGE_SIZE)) {
 739			/*
 740			 * The exception is when the DMA data for one packet is
 741			 * split over three buffers; in this case, the middle
 742			 * buffer's descriptor might be never updated by the
 743			 * controller and look still empty, and we have to peek
 744			 * at the third one.
 745			 */
 746			if (MAX_AR_PACKET_SIZE > PAGE_SIZE && i != last) {
 747				next_i = ar_next_buffer_index(next_i);
 748				rmb();
 749				next_res_count = ACCESS_ONCE(
 750					ctx->descriptors[next_i].res_count);
 751				if (next_res_count != cpu_to_le16(PAGE_SIZE))
 752					goto next_buffer_is_active;
 753			}
 754
 755			break;
 756		}
 757
 758next_buffer_is_active:
 759		i = next_i;
 760		res_count = next_res_count;
 761	}
 762
 763	rmb(); /* read res_count before the DMA data */
 764
 765	*buffer_offset = PAGE_SIZE - le16_to_cpu(res_count);
 766	if (*buffer_offset > PAGE_SIZE) {
 767		*buffer_offset = 0;
 768		ar_context_abort(ctx, "corrupted descriptor");
 769	}
 770
 771	return i;
 772}
 773
 774static void ar_sync_buffers_for_cpu(struct ar_context *ctx,
 775				    unsigned int end_buffer_index,
 776				    unsigned int end_buffer_offset)
 777{
 778	unsigned int i;
 779
 780	i = ar_first_buffer_index(ctx);
 781	while (i != end_buffer_index) {
 782		dma_sync_single_for_cpu(ctx->ohci->card.device,
 783					ar_buffer_bus(ctx, i),
 784					PAGE_SIZE, DMA_FROM_DEVICE);
 785		i = ar_next_buffer_index(i);
 786	}
 787	if (end_buffer_offset > 0)
 788		dma_sync_single_for_cpu(ctx->ohci->card.device,
 789					ar_buffer_bus(ctx, i),
 790					end_buffer_offset, DMA_FROM_DEVICE);
 791}
 792
 793#if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
 794#define cond_le32_to_cpu(v) \
 795	(ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
 796#else
 797#define cond_le32_to_cpu(v) le32_to_cpu(v)
 798#endif
 799
 800static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
 801{
 802	struct fw_ohci *ohci = ctx->ohci;
 803	struct fw_packet p;
 804	u32 status, length, tcode;
 805	int evt;
 806
 807	p.header[0] = cond_le32_to_cpu(buffer[0]);
 808	p.header[1] = cond_le32_to_cpu(buffer[1]);
 809	p.header[2] = cond_le32_to_cpu(buffer[2]);
 810
 811	tcode = (p.header[0] >> 4) & 0x0f;
 812	switch (tcode) {
 813	case TCODE_WRITE_QUADLET_REQUEST:
 814	case TCODE_READ_QUADLET_RESPONSE:
 815		p.header[3] = (__force __u32) buffer[3];
 816		p.header_length = 16;
 817		p.payload_length = 0;
 818		break;
 819
 820	case TCODE_READ_BLOCK_REQUEST :
 821		p.header[3] = cond_le32_to_cpu(buffer[3]);
 822		p.header_length = 16;
 823		p.payload_length = 0;
 824		break;
 825
 826	case TCODE_WRITE_BLOCK_REQUEST:
 827	case TCODE_READ_BLOCK_RESPONSE:
 828	case TCODE_LOCK_REQUEST:
 829	case TCODE_LOCK_RESPONSE:
 830		p.header[3] = cond_le32_to_cpu(buffer[3]);
 831		p.header_length = 16;
 832		p.payload_length = p.header[3] >> 16;
 833		if (p.payload_length > MAX_ASYNC_PAYLOAD) {
 834			ar_context_abort(ctx, "invalid packet length");
 835			return NULL;
 836		}
 837		break;
 838
 839	case TCODE_WRITE_RESPONSE:
 840	case TCODE_READ_QUADLET_REQUEST:
 841	case OHCI_TCODE_PHY_PACKET:
 842		p.header_length = 12;
 843		p.payload_length = 0;
 844		break;
 845
 846	default:
 847		ar_context_abort(ctx, "invalid tcode");
 848		return NULL;
 849	}
 850
 851	p.payload = (void *) buffer + p.header_length;
 852
 853	/* FIXME: What to do about evt_* errors? */
 854	length = (p.header_length + p.payload_length + 3) / 4;
 855	status = cond_le32_to_cpu(buffer[length]);
 856	evt    = (status >> 16) & 0x1f;
 857
 858	p.ack        = evt - 16;
 859	p.speed      = (status >> 21) & 0x7;
 860	p.timestamp  = status & 0xffff;
 861	p.generation = ohci->request_generation;
 862
 863	log_ar_at_event(ohci, 'R', p.speed, p.header, evt);
 864
 865	/*
 866	 * Several controllers, notably from NEC and VIA, forget to
 867	 * write ack_complete status at PHY packet reception.
 868	 */
 869	if (evt == OHCI1394_evt_no_status &&
 870	    (p.header[0] & 0xff) == (OHCI1394_phy_tcode << 4))
 871		p.ack = ACK_COMPLETE;
 872
 873	/*
 874	 * The OHCI bus reset handler synthesizes a PHY packet with
 875	 * the new generation number when a bus reset happens (see
 876	 * section 8.4.2.3).  This helps us determine when a request
 877	 * was received and make sure we send the response in the same
 878	 * generation.  We only need this for requests; for responses
 879	 * we use the unique tlabel for finding the matching
 880	 * request.
 881	 *
 882	 * Alas some chips sometimes emit bus reset packets with a
 883	 * wrong generation.  We set the correct generation for these
 884	 * at a slightly incorrect time (in bus_reset_work).
 885	 */
 886	if (evt == OHCI1394_evt_bus_reset) {
 887		if (!(ohci->quirks & QUIRK_RESET_PACKET))
 888			ohci->request_generation = (p.header[2] >> 16) & 0xff;
 889	} else if (ctx == &ohci->ar_request_ctx) {
 890		fw_core_handle_request(&ohci->card, &p);
 891	} else {
 892		fw_core_handle_response(&ohci->card, &p);
 893	}
 894
 895	return buffer + length + 1;
 896}
 897
 898static void *handle_ar_packets(struct ar_context *ctx, void *p, void *end)
 899{
 900	void *next;
 901
 902	while (p < end) {
 903		next = handle_ar_packet(ctx, p);
 904		if (!next)
 905			return p;
 906		p = next;
 907	}
 908
 909	return p;
 910}
 911
 912static void ar_recycle_buffers(struct ar_context *ctx, unsigned int end_buffer)
 913{
 914	unsigned int i;
 915
 916	i = ar_first_buffer_index(ctx);
 917	while (i != end_buffer) {
 918		dma_sync_single_for_device(ctx->ohci->card.device,
 919					   ar_buffer_bus(ctx, i),
 920					   PAGE_SIZE, DMA_FROM_DEVICE);
 921		ar_context_link_page(ctx, i);
 922		i = ar_next_buffer_index(i);
 923	}
 924}
 925
 926static void ar_context_tasklet(unsigned long data)
 927{
 928	struct ar_context *ctx = (struct ar_context *)data;
 929	unsigned int end_buffer_index, end_buffer_offset;
 930	void *p, *end;
 931
 932	p = ctx->pointer;
 933	if (!p)
 934		return;
 935
 936	end_buffer_index = ar_search_last_active_buffer(ctx,
 937							&end_buffer_offset);
 938	ar_sync_buffers_for_cpu(ctx, end_buffer_index, end_buffer_offset);
 939	end = ctx->buffer + end_buffer_index * PAGE_SIZE + end_buffer_offset;
 940
 941	if (end_buffer_index < ar_first_buffer_index(ctx)) {
 942		/*
 943		 * The filled part of the overall buffer wraps around; handle
 944		 * all packets up to the buffer end here.  If the last packet
 945		 * wraps around, its tail will be visible after the buffer end
 946		 * because the buffer start pages are mapped there again.
 947		 */
 948		void *buffer_end = ctx->buffer + AR_BUFFERS * PAGE_SIZE;
 949		p = handle_ar_packets(ctx, p, buffer_end);
 950		if (p < buffer_end)
 951			goto error;
 952		/* adjust p to point back into the actual buffer */
 953		p -= AR_BUFFERS * PAGE_SIZE;
 954	}
 955
 956	p = handle_ar_packets(ctx, p, end);
 957	if (p != end) {
 958		if (p > end)
 959			ar_context_abort(ctx, "inconsistent descriptor");
 960		goto error;
 961	}
 962
 963	ctx->pointer = p;
 964	ar_recycle_buffers(ctx, end_buffer_index);
 965
 966	return;
 967
 968error:
 969	ctx->pointer = NULL;
 970}
 971
 972static int ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci,
 973			   unsigned int descriptors_offset, u32 regs)
 974{
 
 975	unsigned int i;
 976	dma_addr_t dma_addr;
 977	struct page *pages[AR_BUFFERS + AR_WRAPAROUND_PAGES];
 978	struct descriptor *d;
 979
 980	ctx->regs        = regs;
 981	ctx->ohci        = ohci;
 982	tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
 983
 984	for (i = 0; i < AR_BUFFERS; i++) {
 985		ctx->pages[i] = alloc_page(GFP_KERNEL | GFP_DMA32);
 
 986		if (!ctx->pages[i])
 987			goto out_of_memory;
 988		dma_addr = dma_map_page(ohci->card.device, ctx->pages[i],
 989					0, PAGE_SIZE, DMA_FROM_DEVICE);
 990		if (dma_mapping_error(ohci->card.device, dma_addr)) {
 991			__free_page(ctx->pages[i]);
 992			ctx->pages[i] = NULL;
 993			goto out_of_memory;
 994		}
 995		set_page_private(ctx->pages[i], dma_addr);
 
 
 996	}
 997
 998	for (i = 0; i < AR_BUFFERS; i++)
 999		pages[i]              = ctx->pages[i];
1000	for (i = 0; i < AR_WRAPAROUND_PAGES; i++)
1001		pages[AR_BUFFERS + i] = ctx->pages[i];
1002	ctx->buffer = vm_map_ram(pages, AR_BUFFERS + AR_WRAPAROUND_PAGES,
1003				 -1, PAGE_KERNEL);
1004	if (!ctx->buffer)
1005		goto out_of_memory;
1006
1007	ctx->descriptors     = ohci->misc_buffer     + descriptors_offset;
1008	ctx->descriptors_bus = ohci->misc_buffer_bus + descriptors_offset;
1009
1010	for (i = 0; i < AR_BUFFERS; i++) {
1011		d = &ctx->descriptors[i];
1012		d->req_count      = cpu_to_le16(PAGE_SIZE);
1013		d->control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
1014						DESCRIPTOR_STATUS |
1015						DESCRIPTOR_BRANCH_ALWAYS);
1016		d->data_address   = cpu_to_le32(ar_buffer_bus(ctx, i));
1017		d->branch_address = cpu_to_le32(ctx->descriptors_bus +
1018			ar_next_buffer_index(i) * sizeof(struct descriptor));
1019	}
1020
1021	return 0;
1022
1023out_of_memory:
1024	ar_context_release(ctx);
1025
1026	return -ENOMEM;
1027}
1028
1029static void ar_context_run(struct ar_context *ctx)
1030{
1031	unsigned int i;
1032
1033	for (i = 0; i < AR_BUFFERS; i++)
1034		ar_context_link_page(ctx, i);
1035
1036	ctx->pointer = ctx->buffer;
1037
1038	reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ctx->descriptors_bus | 1);
1039	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
1040}
1041
1042static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
1043{
1044	__le16 branch;
1045
1046	branch = d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS);
1047
1048	/* figure out which descriptor the branch address goes in */
1049	if (z == 2 && branch == cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
1050		return d;
1051	else
1052		return d + z - 1;
1053}
1054
1055static void context_tasklet(unsigned long data)
1056{
1057	struct context *ctx = (struct context *) data;
1058	struct descriptor *d, *last;
1059	u32 address;
1060	int z;
1061	struct descriptor_buffer *desc;
1062
1063	desc = list_entry(ctx->buffer_list.next,
1064			struct descriptor_buffer, list);
1065	last = ctx->last;
1066	while (last->branch_address != 0) {
1067		struct descriptor_buffer *old_desc = desc;
1068		address = le32_to_cpu(last->branch_address);
1069		z = address & 0xf;
1070		address &= ~0xf;
1071		ctx->current_bus = address;
1072
1073		/* If the branch address points to a buffer outside of the
1074		 * current buffer, advance to the next buffer. */
1075		if (address < desc->buffer_bus ||
1076				address >= desc->buffer_bus + desc->used)
1077			desc = list_entry(desc->list.next,
1078					struct descriptor_buffer, list);
1079		d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
1080		last = find_branch_descriptor(d, z);
1081
1082		if (!ctx->callback(ctx, d, last))
1083			break;
1084
1085		if (old_desc != desc) {
1086			/* If we've advanced to the next buffer, move the
1087			 * previous buffer to the free list. */
1088			unsigned long flags;
1089			old_desc->used = 0;
1090			spin_lock_irqsave(&ctx->ohci->lock, flags);
1091			list_move_tail(&old_desc->list, &ctx->buffer_list);
1092			spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1093		}
1094		ctx->last = last;
1095	}
1096}
1097
1098/*
1099 * Allocate a new buffer and add it to the list of free buffers for this
1100 * context.  Must be called with ohci->lock held.
1101 */
1102static int context_add_buffer(struct context *ctx)
1103{
1104	struct descriptor_buffer *desc;
1105	dma_addr_t uninitialized_var(bus_addr);
1106	int offset;
1107
1108	/*
1109	 * 16MB of descriptors should be far more than enough for any DMA
1110	 * program.  This will catch run-away userspace or DoS attacks.
1111	 */
1112	if (ctx->total_allocation >= 16*1024*1024)
1113		return -ENOMEM;
1114
1115	desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
1116			&bus_addr, GFP_ATOMIC);
1117	if (!desc)
1118		return -ENOMEM;
1119
1120	offset = (void *)&desc->buffer - (void *)desc;
1121	desc->buffer_size = PAGE_SIZE - offset;
 
 
 
 
 
 
1122	desc->buffer_bus = bus_addr + offset;
1123	desc->used = 0;
1124
1125	list_add_tail(&desc->list, &ctx->buffer_list);
1126	ctx->total_allocation += PAGE_SIZE;
1127
1128	return 0;
1129}
1130
1131static int context_init(struct context *ctx, struct fw_ohci *ohci,
1132			u32 regs, descriptor_callback_t callback)
1133{
1134	ctx->ohci = ohci;
1135	ctx->regs = regs;
1136	ctx->total_allocation = 0;
1137
1138	INIT_LIST_HEAD(&ctx->buffer_list);
1139	if (context_add_buffer(ctx) < 0)
1140		return -ENOMEM;
1141
1142	ctx->buffer_tail = list_entry(ctx->buffer_list.next,
1143			struct descriptor_buffer, list);
1144
1145	tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
1146	ctx->callback = callback;
1147
1148	/*
1149	 * We put a dummy descriptor in the buffer that has a NULL
1150	 * branch address and looks like it's been sent.  That way we
1151	 * have a descriptor to append DMA programs to.
1152	 */
1153	memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
1154	ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
1155	ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
1156	ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
1157	ctx->last = ctx->buffer_tail->buffer;
1158	ctx->prev = ctx->buffer_tail->buffer;
 
1159
1160	return 0;
1161}
1162
1163static void context_release(struct context *ctx)
1164{
1165	struct fw_card *card = &ctx->ohci->card;
1166	struct descriptor_buffer *desc, *tmp;
1167
1168	list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
1169		dma_free_coherent(card->device, PAGE_SIZE, desc,
1170			desc->buffer_bus -
1171			((void *)&desc->buffer - (void *)desc));
1172}
1173
1174/* Must be called with ohci->lock held */
1175static struct descriptor *context_get_descriptors(struct context *ctx,
1176						  int z, dma_addr_t *d_bus)
1177{
1178	struct descriptor *d = NULL;
1179	struct descriptor_buffer *desc = ctx->buffer_tail;
1180
1181	if (z * sizeof(*d) > desc->buffer_size)
1182		return NULL;
1183
1184	if (z * sizeof(*d) > desc->buffer_size - desc->used) {
1185		/* No room for the descriptor in this buffer, so advance to the
1186		 * next one. */
1187
1188		if (desc->list.next == &ctx->buffer_list) {
1189			/* If there is no free buffer next in the list,
1190			 * allocate one. */
1191			if (context_add_buffer(ctx) < 0)
1192				return NULL;
1193		}
1194		desc = list_entry(desc->list.next,
1195				struct descriptor_buffer, list);
1196		ctx->buffer_tail = desc;
1197	}
1198
1199	d = desc->buffer + desc->used / sizeof(*d);
1200	memset(d, 0, z * sizeof(*d));
1201	*d_bus = desc->buffer_bus + desc->used;
1202
1203	return d;
1204}
1205
1206static void context_run(struct context *ctx, u32 extra)
1207{
1208	struct fw_ohci *ohci = ctx->ohci;
1209
1210	reg_write(ohci, COMMAND_PTR(ctx->regs),
1211		  le32_to_cpu(ctx->last->branch_address));
1212	reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
1213	reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
1214	ctx->running = true;
1215	flush_writes(ohci);
1216}
1217
1218static void context_append(struct context *ctx,
1219			   struct descriptor *d, int z, int extra)
1220{
1221	dma_addr_t d_bus;
1222	struct descriptor_buffer *desc = ctx->buffer_tail;
 
1223
1224	d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
1225
1226	desc->used += (z + extra) * sizeof(*d);
1227
1228	wmb(); /* finish init of new descriptors before branch_address update */
1229	ctx->prev->branch_address = cpu_to_le32(d_bus | z);
1230	ctx->prev = find_branch_descriptor(d, z);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1231}
1232
1233static void context_stop(struct context *ctx)
1234{
1235	struct fw_ohci *ohci = ctx->ohci;
1236	u32 reg;
1237	int i;
1238
1239	reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
1240	ctx->running = false;
1241
1242	for (i = 0; i < 1000; i++) {
1243		reg = reg_read(ohci, CONTROL_SET(ctx->regs));
1244		if ((reg & CONTEXT_ACTIVE) == 0)
1245			return;
1246
1247		if (i)
1248			udelay(10);
1249	}
1250	dev_err(ohci->card.device, "DMA context still active (0x%08x)\n", reg);
1251}
1252
1253struct driver_data {
1254	u8 inline_data[8];
1255	struct fw_packet *packet;
1256};
1257
1258/*
1259 * This function apppends a packet to the DMA queue for transmission.
1260 * Must always be called with the ochi->lock held to ensure proper
1261 * generation handling and locking around packet queue manipulation.
1262 */
1263static int at_context_queue_packet(struct context *ctx,
1264				   struct fw_packet *packet)
1265{
1266	struct fw_ohci *ohci = ctx->ohci;
1267	dma_addr_t d_bus, uninitialized_var(payload_bus);
1268	struct driver_data *driver_data;
1269	struct descriptor *d, *last;
1270	__le32 *header;
1271	int z, tcode;
1272
1273	d = context_get_descriptors(ctx, 4, &d_bus);
1274	if (d == NULL) {
1275		packet->ack = RCODE_SEND_ERROR;
1276		return -1;
1277	}
1278
1279	d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1280	d[0].res_count = cpu_to_le16(packet->timestamp);
1281
1282	/*
1283	 * The DMA format for asyncronous link packets is different
1284	 * from the IEEE1394 layout, so shift the fields around
1285	 * accordingly.
1286	 */
1287
1288	tcode = (packet->header[0] >> 4) & 0x0f;
1289	header = (__le32 *) &d[1];
1290	switch (tcode) {
1291	case TCODE_WRITE_QUADLET_REQUEST:
1292	case TCODE_WRITE_BLOCK_REQUEST:
1293	case TCODE_WRITE_RESPONSE:
1294	case TCODE_READ_QUADLET_REQUEST:
1295	case TCODE_READ_BLOCK_REQUEST:
1296	case TCODE_READ_QUADLET_RESPONSE:
1297	case TCODE_READ_BLOCK_RESPONSE:
1298	case TCODE_LOCK_REQUEST:
1299	case TCODE_LOCK_RESPONSE:
1300		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1301					(packet->speed << 16));
1302		header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
1303					(packet->header[0] & 0xffff0000));
1304		header[2] = cpu_to_le32(packet->header[2]);
1305
1306		if (TCODE_IS_BLOCK_PACKET(tcode))
1307			header[3] = cpu_to_le32(packet->header[3]);
1308		else
1309			header[3] = (__force __le32) packet->header[3];
1310
1311		d[0].req_count = cpu_to_le16(packet->header_length);
1312		break;
1313
1314	case TCODE_LINK_INTERNAL:
1315		header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
1316					(packet->speed << 16));
1317		header[1] = cpu_to_le32(packet->header[1]);
1318		header[2] = cpu_to_le32(packet->header[2]);
1319		d[0].req_count = cpu_to_le16(12);
1320
1321		if (is_ping_packet(&packet->header[1]))
1322			d[0].control |= cpu_to_le16(DESCRIPTOR_PING);
1323		break;
1324
1325	case TCODE_STREAM_DATA:
1326		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1327					(packet->speed << 16));
1328		header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
1329		d[0].req_count = cpu_to_le16(8);
1330		break;
1331
1332	default:
1333		/* BUG(); */
1334		packet->ack = RCODE_SEND_ERROR;
1335		return -1;
1336	}
1337
1338	BUILD_BUG_ON(sizeof(struct driver_data) > sizeof(struct descriptor));
1339	driver_data = (struct driver_data *) &d[3];
1340	driver_data->packet = packet;
1341	packet->driver_data = driver_data;
1342
1343	if (packet->payload_length > 0) {
1344		if (packet->payload_length > sizeof(driver_data->inline_data)) {
1345			payload_bus = dma_map_single(ohci->card.device,
1346						     packet->payload,
1347						     packet->payload_length,
1348						     DMA_TO_DEVICE);
1349			if (dma_mapping_error(ohci->card.device, payload_bus)) {
1350				packet->ack = RCODE_SEND_ERROR;
1351				return -1;
1352			}
1353			packet->payload_bus	= payload_bus;
1354			packet->payload_mapped	= true;
1355		} else {
1356			memcpy(driver_data->inline_data, packet->payload,
1357			       packet->payload_length);
1358			payload_bus = d_bus + 3 * sizeof(*d);
1359		}
1360
1361		d[2].req_count    = cpu_to_le16(packet->payload_length);
1362		d[2].data_address = cpu_to_le32(payload_bus);
1363		last = &d[2];
1364		z = 3;
1365	} else {
1366		last = &d[0];
1367		z = 2;
1368	}
1369
1370	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1371				     DESCRIPTOR_IRQ_ALWAYS |
1372				     DESCRIPTOR_BRANCH_ALWAYS);
1373
1374	/* FIXME: Document how the locking works. */
1375	if (ohci->generation != packet->generation) {
1376		if (packet->payload_mapped)
1377			dma_unmap_single(ohci->card.device, payload_bus,
1378					 packet->payload_length, DMA_TO_DEVICE);
1379		packet->ack = RCODE_GENERATION;
1380		return -1;
1381	}
1382
1383	context_append(ctx, d, z, 4 - z);
1384
1385	if (ctx->running)
1386		reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
1387	else
1388		context_run(ctx, 0);
1389
1390	return 0;
1391}
1392
1393static void at_context_flush(struct context *ctx)
1394{
1395	tasklet_disable(&ctx->tasklet);
1396
1397	ctx->flushing = true;
1398	context_tasklet((unsigned long)ctx);
1399	ctx->flushing = false;
1400
1401	tasklet_enable(&ctx->tasklet);
1402}
1403
1404static int handle_at_packet(struct context *context,
1405			    struct descriptor *d,
1406			    struct descriptor *last)
1407{
1408	struct driver_data *driver_data;
1409	struct fw_packet *packet;
1410	struct fw_ohci *ohci = context->ohci;
1411	int evt;
1412
1413	if (last->transfer_status == 0 && !context->flushing)
1414		/* This descriptor isn't done yet, stop iteration. */
1415		return 0;
1416
1417	driver_data = (struct driver_data *) &d[3];
1418	packet = driver_data->packet;
1419	if (packet == NULL)
1420		/* This packet was cancelled, just continue. */
1421		return 1;
1422
1423	if (packet->payload_mapped)
1424		dma_unmap_single(ohci->card.device, packet->payload_bus,
1425				 packet->payload_length, DMA_TO_DEVICE);
1426
1427	evt = le16_to_cpu(last->transfer_status) & 0x1f;
1428	packet->timestamp = le16_to_cpu(last->res_count);
1429
1430	log_ar_at_event(ohci, 'T', packet->speed, packet->header, evt);
1431
1432	switch (evt) {
1433	case OHCI1394_evt_timeout:
1434		/* Async response transmit timed out. */
1435		packet->ack = RCODE_CANCELLED;
1436		break;
1437
1438	case OHCI1394_evt_flushed:
1439		/*
1440		 * The packet was flushed should give same error as
1441		 * when we try to use a stale generation count.
1442		 */
1443		packet->ack = RCODE_GENERATION;
1444		break;
1445
1446	case OHCI1394_evt_missing_ack:
1447		if (context->flushing)
1448			packet->ack = RCODE_GENERATION;
1449		else {
1450			/*
1451			 * Using a valid (current) generation count, but the
1452			 * node is not on the bus or not sending acks.
1453			 */
1454			packet->ack = RCODE_NO_ACK;
1455		}
1456		break;
1457
1458	case ACK_COMPLETE + 0x10:
1459	case ACK_PENDING + 0x10:
1460	case ACK_BUSY_X + 0x10:
1461	case ACK_BUSY_A + 0x10:
1462	case ACK_BUSY_B + 0x10:
1463	case ACK_DATA_ERROR + 0x10:
1464	case ACK_TYPE_ERROR + 0x10:
1465		packet->ack = evt - 0x10;
1466		break;
1467
1468	case OHCI1394_evt_no_status:
1469		if (context->flushing) {
1470			packet->ack = RCODE_GENERATION;
1471			break;
1472		}
1473		/* fall through */
1474
1475	default:
1476		packet->ack = RCODE_SEND_ERROR;
1477		break;
1478	}
1479
1480	packet->callback(packet, &ohci->card, packet->ack);
1481
1482	return 1;
1483}
1484
1485#define HEADER_GET_DESTINATION(q)	(((q) >> 16) & 0xffff)
1486#define HEADER_GET_TCODE(q)		(((q) >> 4) & 0x0f)
1487#define HEADER_GET_OFFSET_HIGH(q)	(((q) >> 0) & 0xffff)
1488#define HEADER_GET_DATA_LENGTH(q)	(((q) >> 16) & 0xffff)
1489#define HEADER_GET_EXTENDED_TCODE(q)	(((q) >> 0) & 0xffff)
1490
 
 
1491static void handle_local_rom(struct fw_ohci *ohci,
1492			     struct fw_packet *packet, u32 csr)
1493{
1494	struct fw_packet response;
1495	int tcode, length, i;
1496
1497	tcode = HEADER_GET_TCODE(packet->header[0]);
1498	if (TCODE_IS_BLOCK_PACKET(tcode))
1499		length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1500	else
1501		length = 4;
1502
1503	i = csr - CSR_CONFIG_ROM;
1504	if (i + length > CONFIG_ROM_SIZE) {
1505		fw_fill_response(&response, packet->header,
1506				 RCODE_ADDRESS_ERROR, NULL, 0);
1507	} else if (!TCODE_IS_READ_REQUEST(tcode)) {
1508		fw_fill_response(&response, packet->header,
1509				 RCODE_TYPE_ERROR, NULL, 0);
1510	} else {
1511		fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1512				 (void *) ohci->config_rom + i, length);
1513	}
1514
 
 
1515	fw_core_handle_response(&ohci->card, &response);
1516}
1517
1518static void handle_local_lock(struct fw_ohci *ohci,
1519			      struct fw_packet *packet, u32 csr)
1520{
1521	struct fw_packet response;
1522	int tcode, length, ext_tcode, sel, try;
1523	__be32 *payload, lock_old;
1524	u32 lock_arg, lock_data;
1525
1526	tcode = HEADER_GET_TCODE(packet->header[0]);
1527	length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1528	payload = packet->payload;
1529	ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1530
1531	if (tcode == TCODE_LOCK_REQUEST &&
1532	    ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1533		lock_arg = be32_to_cpu(payload[0]);
1534		lock_data = be32_to_cpu(payload[1]);
1535	} else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1536		lock_arg = 0;
1537		lock_data = 0;
1538	} else {
1539		fw_fill_response(&response, packet->header,
1540				 RCODE_TYPE_ERROR, NULL, 0);
1541		goto out;
1542	}
1543
1544	sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1545	reg_write(ohci, OHCI1394_CSRData, lock_data);
1546	reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1547	reg_write(ohci, OHCI1394_CSRControl, sel);
1548
1549	for (try = 0; try < 20; try++)
1550		if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000) {
1551			lock_old = cpu_to_be32(reg_read(ohci,
1552							OHCI1394_CSRData));
1553			fw_fill_response(&response, packet->header,
1554					 RCODE_COMPLETE,
1555					 &lock_old, sizeof(lock_old));
1556			goto out;
1557		}
1558
1559	dev_err(ohci->card.device, "swap not done (CSR lock timeout)\n");
1560	fw_fill_response(&response, packet->header, RCODE_BUSY, NULL, 0);
1561
1562 out:
 
 
1563	fw_core_handle_response(&ohci->card, &response);
1564}
1565
1566static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1567{
1568	u64 offset, csr;
1569
1570	if (ctx == &ctx->ohci->at_request_ctx) {
1571		packet->ack = ACK_PENDING;
1572		packet->callback(packet, &ctx->ohci->card, packet->ack);
1573	}
1574
1575	offset =
1576		((unsigned long long)
1577		 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1578		packet->header[2];
1579	csr = offset - CSR_REGISTER_BASE;
1580
1581	/* Handle config rom reads. */
1582	if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1583		handle_local_rom(ctx->ohci, packet, csr);
1584	else switch (csr) {
1585	case CSR_BUS_MANAGER_ID:
1586	case CSR_BANDWIDTH_AVAILABLE:
1587	case CSR_CHANNELS_AVAILABLE_HI:
1588	case CSR_CHANNELS_AVAILABLE_LO:
1589		handle_local_lock(ctx->ohci, packet, csr);
1590		break;
1591	default:
1592		if (ctx == &ctx->ohci->at_request_ctx)
1593			fw_core_handle_request(&ctx->ohci->card, packet);
1594		else
1595			fw_core_handle_response(&ctx->ohci->card, packet);
1596		break;
1597	}
1598
1599	if (ctx == &ctx->ohci->at_response_ctx) {
1600		packet->ack = ACK_COMPLETE;
1601		packet->callback(packet, &ctx->ohci->card, packet->ack);
1602	}
1603}
1604
1605static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1606{
1607	unsigned long flags;
1608	int ret;
1609
1610	spin_lock_irqsave(&ctx->ohci->lock, flags);
1611
1612	if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1613	    ctx->ohci->generation == packet->generation) {
1614		spin_unlock_irqrestore(&ctx->ohci->lock, flags);
 
 
 
 
1615		handle_local_request(ctx, packet);
1616		return;
1617	}
1618
1619	ret = at_context_queue_packet(ctx, packet);
1620	spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1621
1622	if (ret < 0)
1623		packet->callback(packet, &ctx->ohci->card, packet->ack);
 
1624
 
 
1625}
1626
1627static void detect_dead_context(struct fw_ohci *ohci,
1628				const char *name, unsigned int regs)
1629{
1630	u32 ctl;
1631
1632	ctl = reg_read(ohci, CONTROL_SET(regs));
1633	if (ctl & CONTEXT_DEAD)
1634		dev_err(ohci->card.device,
1635			"DMA context %s has stopped, error code: %s\n",
1636			name, evts[ctl & 0x1f]);
1637}
1638
1639static void handle_dead_contexts(struct fw_ohci *ohci)
1640{
1641	unsigned int i;
1642	char name[8];
1643
1644	detect_dead_context(ohci, "ATReq", OHCI1394_AsReqTrContextBase);
1645	detect_dead_context(ohci, "ATRsp", OHCI1394_AsRspTrContextBase);
1646	detect_dead_context(ohci, "ARReq", OHCI1394_AsReqRcvContextBase);
1647	detect_dead_context(ohci, "ARRsp", OHCI1394_AsRspRcvContextBase);
1648	for (i = 0; i < 32; ++i) {
1649		if (!(ohci->it_context_support & (1 << i)))
1650			continue;
1651		sprintf(name, "IT%u", i);
1652		detect_dead_context(ohci, name, OHCI1394_IsoXmitContextBase(i));
1653	}
1654	for (i = 0; i < 32; ++i) {
1655		if (!(ohci->ir_context_support & (1 << i)))
1656			continue;
1657		sprintf(name, "IR%u", i);
1658		detect_dead_context(ohci, name, OHCI1394_IsoRcvContextBase(i));
1659	}
1660	/* TODO: maybe try to flush and restart the dead contexts */
1661}
1662
1663static u32 cycle_timer_ticks(u32 cycle_timer)
1664{
1665	u32 ticks;
1666
1667	ticks = cycle_timer & 0xfff;
1668	ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
1669	ticks += (3072 * 8000) * (cycle_timer >> 25);
1670
1671	return ticks;
1672}
1673
1674/*
1675 * Some controllers exhibit one or more of the following bugs when updating the
1676 * iso cycle timer register:
1677 *  - When the lowest six bits are wrapping around to zero, a read that happens
1678 *    at the same time will return garbage in the lowest ten bits.
1679 *  - When the cycleOffset field wraps around to zero, the cycleCount field is
1680 *    not incremented for about 60 ns.
1681 *  - Occasionally, the entire register reads zero.
1682 *
1683 * To catch these, we read the register three times and ensure that the
1684 * difference between each two consecutive reads is approximately the same, i.e.
1685 * less than twice the other.  Furthermore, any negative difference indicates an
1686 * error.  (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
1687 * execute, so we have enough precision to compute the ratio of the differences.)
1688 */
1689static u32 get_cycle_time(struct fw_ohci *ohci)
1690{
1691	u32 c0, c1, c2;
1692	u32 t0, t1, t2;
1693	s32 diff01, diff12;
1694	int i;
1695
 
 
 
1696	c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1697
1698	if (ohci->quirks & QUIRK_CYCLE_TIMER) {
1699		i = 0;
1700		c1 = c2;
1701		c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1702		do {
1703			c0 = c1;
1704			c1 = c2;
1705			c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1706			t0 = cycle_timer_ticks(c0);
1707			t1 = cycle_timer_ticks(c1);
1708			t2 = cycle_timer_ticks(c2);
1709			diff01 = t1 - t0;
1710			diff12 = t2 - t1;
1711		} while ((diff01 <= 0 || diff12 <= 0 ||
1712			  diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
1713			 && i++ < 20);
1714	}
1715
1716	return c2;
1717}
1718
1719/*
1720 * This function has to be called at least every 64 seconds.  The bus_time
1721 * field stores not only the upper 25 bits of the BUS_TIME register but also
1722 * the most significant bit of the cycle timer in bit 6 so that we can detect
1723 * changes in this bit.
1724 */
1725static u32 update_bus_time(struct fw_ohci *ohci)
1726{
1727	u32 cycle_time_seconds = get_cycle_time(ohci) >> 25;
1728
 
 
 
 
 
 
 
1729	if ((ohci->bus_time & 0x40) != (cycle_time_seconds & 0x40))
1730		ohci->bus_time += 0x40;
1731
1732	return ohci->bus_time | cycle_time_seconds;
1733}
1734
1735static int get_status_for_port(struct fw_ohci *ohci, int port_index)
1736{
1737	int reg;
1738
1739	mutex_lock(&ohci->phy_reg_mutex);
1740	reg = write_phy_reg(ohci, 7, port_index);
1741	if (reg >= 0)
1742		reg = read_phy_reg(ohci, 8);
1743	mutex_unlock(&ohci->phy_reg_mutex);
1744	if (reg < 0)
1745		return reg;
1746
1747	switch (reg & 0x0f) {
1748	case 0x06:
1749		return 2;	/* is child node (connected to parent node) */
1750	case 0x0e:
1751		return 3;	/* is parent node (connected to child node) */
1752	}
1753	return 1;		/* not connected */
1754}
1755
1756static int get_self_id_pos(struct fw_ohci *ohci, u32 self_id,
1757	int self_id_count)
1758{
1759	int i;
1760	u32 entry;
1761
1762	for (i = 0; i < self_id_count; i++) {
1763		entry = ohci->self_id_buffer[i];
1764		if ((self_id & 0xff000000) == (entry & 0xff000000))
1765			return -1;
1766		if ((self_id & 0xff000000) < (entry & 0xff000000))
1767			return i;
1768	}
1769	return i;
1770}
1771
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1772/*
1773 * TI TSB82AA2B and TSB12LV26 do not receive the selfID of a locally
1774 * attached TSB41BA3D phy; see http://www.ti.com/litv/pdf/sllz059.
1775 * Construct the selfID from phy register contents.
1776 * FIXME:  How to determine the selfID.i flag?
1777 */
1778static int find_and_insert_self_id(struct fw_ohci *ohci, int self_id_count)
1779{
1780	int reg, i, pos, status;
1781	/* link active 1, speed 3, bridge 0, contender 1, more packets 0 */
1782	u32 self_id = 0x8040c800;
1783
1784	reg = reg_read(ohci, OHCI1394_NodeID);
1785	if (!(reg & OHCI1394_NodeID_idValid)) {
1786		dev_notice(ohci->card.device,
1787			   "node ID not valid, new bus reset in progress\n");
1788		return -EBUSY;
1789	}
1790	self_id |= ((reg & 0x3f) << 24); /* phy ID */
1791
1792	reg = ohci_read_phy_reg(&ohci->card, 4);
1793	if (reg < 0)
1794		return reg;
1795	self_id |= ((reg & 0x07) << 8); /* power class */
1796
1797	reg = ohci_read_phy_reg(&ohci->card, 1);
1798	if (reg < 0)
1799		return reg;
1800	self_id |= ((reg & 0x3f) << 16); /* gap count */
1801
1802	for (i = 0; i < 3; i++) {
1803		status = get_status_for_port(ohci, i);
1804		if (status < 0)
1805			return status;
1806		self_id |= ((status & 0x3) << (6 - (i * 2)));
1807	}
1808
 
 
1809	pos = get_self_id_pos(ohci, self_id, self_id_count);
1810	if (pos >= 0) {
1811		memmove(&(ohci->self_id_buffer[pos+1]),
1812			&(ohci->self_id_buffer[pos]),
1813			(self_id_count - pos) * sizeof(*ohci->self_id_buffer));
1814		ohci->self_id_buffer[pos] = self_id;
1815		self_id_count++;
1816	}
1817	return self_id_count;
1818}
1819
1820static void bus_reset_work(struct work_struct *work)
1821{
1822	struct fw_ohci *ohci =
1823		container_of(work, struct fw_ohci, bus_reset_work);
1824	int self_id_count, generation, new_generation, i, j;
1825	u32 reg;
1826	void *free_rom = NULL;
1827	dma_addr_t free_rom_bus = 0;
1828	bool is_new_root;
1829
1830	reg = reg_read(ohci, OHCI1394_NodeID);
1831	if (!(reg & OHCI1394_NodeID_idValid)) {
1832		dev_notice(ohci->card.device,
1833			   "node ID not valid, new bus reset in progress\n");
1834		return;
1835	}
1836	if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1837		dev_notice(ohci->card.device, "malconfigured bus\n");
1838		return;
1839	}
1840	ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1841			       OHCI1394_NodeID_nodeNumber);
1842
1843	is_new_root = (reg & OHCI1394_NodeID_root) != 0;
1844	if (!(ohci->is_root && is_new_root))
1845		reg_write(ohci, OHCI1394_LinkControlSet,
1846			  OHCI1394_LinkControl_cycleMaster);
1847	ohci->is_root = is_new_root;
1848
1849	reg = reg_read(ohci, OHCI1394_SelfIDCount);
1850	if (reg & OHCI1394_SelfIDCount_selfIDError) {
1851		dev_notice(ohci->card.device, "inconsistent self IDs\n");
1852		return;
1853	}
1854	/*
1855	 * The count in the SelfIDCount register is the number of
1856	 * bytes in the self ID receive buffer.  Since we also receive
1857	 * the inverted quadlets and a header quadlet, we shift one
1858	 * bit extra to get the actual number of self IDs.
1859	 */
1860	self_id_count = (reg >> 3) & 0xff;
1861
1862	if (self_id_count > 252) {
1863		dev_notice(ohci->card.device, "inconsistent self IDs\n");
1864		return;
1865	}
1866
1867	generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
1868	rmb();
1869
1870	for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1871		if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1]) {
 
 
 
1872			/*
1873			 * If the invalid data looks like a cycle start packet,
1874			 * it's likely to be the result of the cycle master
1875			 * having a wrong gap count.  In this case, the self IDs
1876			 * so far are valid and should be processed so that the
1877			 * bus manager can then correct the gap count.
1878			 */
1879			if (cond_le32_to_cpu(ohci->self_id_cpu[i])
1880							== 0xffff008f) {
1881				dev_notice(ohci->card.device,
1882					   "ignoring spurious self IDs\n");
1883				self_id_count = j;
1884				break;
1885			} else {
1886				dev_notice(ohci->card.device,
1887					   "inconsistent self IDs\n");
1888				return;
1889			}
 
 
 
 
1890		}
1891		ohci->self_id_buffer[j] =
1892				cond_le32_to_cpu(ohci->self_id_cpu[i]);
1893	}
1894
1895	if (ohci->quirks & QUIRK_TI_SLLZ059) {
1896		self_id_count = find_and_insert_self_id(ohci, self_id_count);
1897		if (self_id_count < 0) {
1898			dev_notice(ohci->card.device,
1899				   "could not construct local self ID\n");
1900			return;
1901		}
1902	}
1903
1904	if (self_id_count == 0) {
1905		dev_notice(ohci->card.device, "inconsistent self IDs\n");
1906		return;
1907	}
1908	rmb();
1909
1910	/*
1911	 * Check the consistency of the self IDs we just read.  The
1912	 * problem we face is that a new bus reset can start while we
1913	 * read out the self IDs from the DMA buffer. If this happens,
1914	 * the DMA buffer will be overwritten with new self IDs and we
1915	 * will read out inconsistent data.  The OHCI specification
1916	 * (section 11.2) recommends a technique similar to
1917	 * linux/seqlock.h, where we remember the generation of the
1918	 * self IDs in the buffer before reading them out and compare
1919	 * it to the current generation after reading them out.  If
1920	 * the two generations match we know we have a consistent set
1921	 * of self IDs.
1922	 */
1923
1924	new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
1925	if (new_generation != generation) {
1926		dev_notice(ohci->card.device,
1927			   "new bus reset, discarding self ids\n");
1928		return;
1929	}
1930
1931	/* FIXME: Document how the locking works. */
1932	spin_lock_irq(&ohci->lock);
1933
1934	ohci->generation = -1; /* prevent AT packet queueing */
1935	context_stop(&ohci->at_request_ctx);
1936	context_stop(&ohci->at_response_ctx);
1937
1938	spin_unlock_irq(&ohci->lock);
1939
1940	/*
1941	 * Per OHCI 1.2 draft, clause 7.2.3.3, hardware may leave unsent
1942	 * packets in the AT queues and software needs to drain them.
1943	 * Some OHCI 1.1 controllers (JMicron) apparently require this too.
1944	 */
1945	at_context_flush(&ohci->at_request_ctx);
1946	at_context_flush(&ohci->at_response_ctx);
1947
1948	spin_lock_irq(&ohci->lock);
1949
1950	ohci->generation = generation;
1951	reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
 
 
1952
1953	if (ohci->quirks & QUIRK_RESET_PACKET)
1954		ohci->request_generation = generation;
1955
1956	/*
1957	 * This next bit is unrelated to the AT context stuff but we
1958	 * have to do it under the spinlock also.  If a new config rom
1959	 * was set up before this reset, the old one is now no longer
1960	 * in use and we can free it. Update the config rom pointers
1961	 * to point to the current config rom and clear the
1962	 * next_config_rom pointer so a new update can take place.
1963	 */
1964
1965	if (ohci->next_config_rom != NULL) {
1966		if (ohci->next_config_rom != ohci->config_rom) {
1967			free_rom      = ohci->config_rom;
1968			free_rom_bus  = ohci->config_rom_bus;
1969		}
1970		ohci->config_rom      = ohci->next_config_rom;
1971		ohci->config_rom_bus  = ohci->next_config_rom_bus;
1972		ohci->next_config_rom = NULL;
1973
1974		/*
1975		 * Restore config_rom image and manually update
1976		 * config_rom registers.  Writing the header quadlet
1977		 * will indicate that the config rom is ready, so we
1978		 * do that last.
1979		 */
1980		reg_write(ohci, OHCI1394_BusOptions,
1981			  be32_to_cpu(ohci->config_rom[2]));
1982		ohci->config_rom[0] = ohci->next_header;
1983		reg_write(ohci, OHCI1394_ConfigROMhdr,
1984			  be32_to_cpu(ohci->next_header));
1985	}
1986
1987#ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1988	reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
1989	reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
1990#endif
1991
1992	spin_unlock_irq(&ohci->lock);
1993
1994	if (free_rom)
1995		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1996				  free_rom, free_rom_bus);
1997
1998	log_selfids(ohci, generation, self_id_count);
1999
2000	fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
2001				 self_id_count, ohci->self_id_buffer,
2002				 ohci->csr_state_setclear_abdicate);
2003	ohci->csr_state_setclear_abdicate = false;
2004}
2005
2006static irqreturn_t irq_handler(int irq, void *data)
2007{
2008	struct fw_ohci *ohci = data;
2009	u32 event, iso_event;
2010	int i;
2011
2012	event = reg_read(ohci, OHCI1394_IntEventClear);
2013
2014	if (!event || !~event)
2015		return IRQ_NONE;
2016
2017	/*
2018	 * busReset and postedWriteErr must not be cleared yet
2019	 * (OHCI 1.1 clauses 7.2.3.2 and 13.2.8.1)
2020	 */
2021	reg_write(ohci, OHCI1394_IntEventClear,
2022		  event & ~(OHCI1394_busReset | OHCI1394_postedWriteErr));
2023	log_irqs(ohci, event);
 
 
2024
2025	if (event & OHCI1394_selfIDComplete)
2026		queue_work(fw_workqueue, &ohci->bus_reset_work);
2027
2028	if (event & OHCI1394_RQPkt)
2029		tasklet_schedule(&ohci->ar_request_ctx.tasklet);
2030
2031	if (event & OHCI1394_RSPkt)
2032		tasklet_schedule(&ohci->ar_response_ctx.tasklet);
2033
2034	if (event & OHCI1394_reqTxComplete)
2035		tasklet_schedule(&ohci->at_request_ctx.tasklet);
2036
2037	if (event & OHCI1394_respTxComplete)
2038		tasklet_schedule(&ohci->at_response_ctx.tasklet);
2039
2040	if (event & OHCI1394_isochRx) {
2041		iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
2042		reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
2043
2044		while (iso_event) {
2045			i = ffs(iso_event) - 1;
2046			tasklet_schedule(
2047				&ohci->ir_context_list[i].context.tasklet);
2048			iso_event &= ~(1 << i);
2049		}
2050	}
2051
2052	if (event & OHCI1394_isochTx) {
2053		iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
2054		reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
2055
2056		while (iso_event) {
2057			i = ffs(iso_event) - 1;
2058			tasklet_schedule(
2059				&ohci->it_context_list[i].context.tasklet);
2060			iso_event &= ~(1 << i);
2061		}
2062	}
2063
2064	if (unlikely(event & OHCI1394_regAccessFail))
2065		dev_err(ohci->card.device, "register access failure\n");
2066
2067	if (unlikely(event & OHCI1394_postedWriteErr)) {
2068		reg_read(ohci, OHCI1394_PostedWriteAddressHi);
2069		reg_read(ohci, OHCI1394_PostedWriteAddressLo);
2070		reg_write(ohci, OHCI1394_IntEventClear,
2071			  OHCI1394_postedWriteErr);
2072		if (printk_ratelimit())
2073			dev_err(ohci->card.device, "PCI posted write error\n");
2074	}
2075
2076	if (unlikely(event & OHCI1394_cycleTooLong)) {
2077		if (printk_ratelimit())
2078			dev_notice(ohci->card.device,
2079				   "isochronous cycle too long\n");
2080		reg_write(ohci, OHCI1394_LinkControlSet,
2081			  OHCI1394_LinkControl_cycleMaster);
2082	}
2083
2084	if (unlikely(event & OHCI1394_cycleInconsistent)) {
2085		/*
2086		 * We need to clear this event bit in order to make
2087		 * cycleMatch isochronous I/O work.  In theory we should
2088		 * stop active cycleMatch iso contexts now and restart
2089		 * them at least two cycles later.  (FIXME?)
2090		 */
2091		if (printk_ratelimit())
2092			dev_notice(ohci->card.device,
2093				   "isochronous cycle inconsistent\n");
2094	}
2095
2096	if (unlikely(event & OHCI1394_unrecoverableError))
2097		handle_dead_contexts(ohci);
2098
2099	if (event & OHCI1394_cycle64Seconds) {
2100		spin_lock(&ohci->lock);
2101		update_bus_time(ohci);
2102		spin_unlock(&ohci->lock);
2103	} else
2104		flush_writes(ohci);
2105
2106	return IRQ_HANDLED;
2107}
2108
2109static int software_reset(struct fw_ohci *ohci)
2110{
2111	u32 val;
2112	int i;
2113
2114	reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
2115	for (i = 0; i < 500; i++) {
2116		val = reg_read(ohci, OHCI1394_HCControlSet);
2117		if (!~val)
2118			return -ENODEV; /* Card was ejected. */
2119
2120		if (!(val & OHCI1394_HCControl_softReset))
2121			return 0;
2122
2123		msleep(1);
2124	}
2125
2126	return -EBUSY;
2127}
2128
2129static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
2130{
2131	size_t size = length * 4;
2132
2133	memcpy(dest, src, size);
2134	if (size < CONFIG_ROM_SIZE)
2135		memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
2136}
2137
2138static int configure_1394a_enhancements(struct fw_ohci *ohci)
2139{
2140	bool enable_1394a;
2141	int ret, clear, set, offset;
2142
2143	/* Check if the driver should configure link and PHY. */
2144	if (!(reg_read(ohci, OHCI1394_HCControlSet) &
2145	      OHCI1394_HCControl_programPhyEnable))
2146		return 0;
2147
2148	/* Paranoia: check whether the PHY supports 1394a, too. */
2149	enable_1394a = false;
2150	ret = read_phy_reg(ohci, 2);
2151	if (ret < 0)
2152		return ret;
2153	if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
2154		ret = read_paged_phy_reg(ohci, 1, 8);
2155		if (ret < 0)
2156			return ret;
2157		if (ret >= 1)
2158			enable_1394a = true;
2159	}
2160
2161	if (ohci->quirks & QUIRK_NO_1394A)
2162		enable_1394a = false;
2163
2164	/* Configure PHY and link consistently. */
2165	if (enable_1394a) {
2166		clear = 0;
2167		set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2168	} else {
2169		clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2170		set = 0;
2171	}
2172	ret = update_phy_reg(ohci, 5, clear, set);
2173	if (ret < 0)
2174		return ret;
2175
2176	if (enable_1394a)
2177		offset = OHCI1394_HCControlSet;
2178	else
2179		offset = OHCI1394_HCControlClear;
2180	reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);
2181
2182	/* Clean up: configuration has been taken care of. */
2183	reg_write(ohci, OHCI1394_HCControlClear,
2184		  OHCI1394_HCControl_programPhyEnable);
2185
2186	return 0;
2187}
2188
2189static int probe_tsb41ba3d(struct fw_ohci *ohci)
2190{
2191	/* TI vendor ID = 0x080028, TSB41BA3D product ID = 0x833005 (sic) */
2192	static const u8 id[] = { 0x08, 0x00, 0x28, 0x83, 0x30, 0x05, };
2193	int reg, i;
2194
2195	reg = read_phy_reg(ohci, 2);
2196	if (reg < 0)
2197		return reg;
2198	if ((reg & PHY_EXTENDED_REGISTERS) != PHY_EXTENDED_REGISTERS)
2199		return 0;
2200
2201	for (i = ARRAY_SIZE(id) - 1; i >= 0; i--) {
2202		reg = read_paged_phy_reg(ohci, 1, i + 10);
2203		if (reg < 0)
2204			return reg;
2205		if (reg != id[i])
2206			return 0;
2207	}
2208	return 1;
2209}
2210
2211static int ohci_enable(struct fw_card *card,
2212		       const __be32 *config_rom, size_t length)
2213{
2214	struct fw_ohci *ohci = fw_ohci(card);
2215	struct pci_dev *dev = to_pci_dev(card->device);
2216	u32 lps, seconds, version, irqs;
2217	int i, ret;
2218
2219	if (software_reset(ohci)) {
2220		dev_err(card->device, "failed to reset ohci card\n");
2221		return -EBUSY;
 
2222	}
2223
2224	/*
2225	 * Now enable LPS, which we need in order to start accessing
2226	 * most of the registers.  In fact, on some cards (ALI M5251),
2227	 * accessing registers in the SClk domain without LPS enabled
2228	 * will lock up the machine.  Wait 50msec to make sure we have
2229	 * full link enabled.  However, with some cards (well, at least
2230	 * a JMicron PCIe card), we have to try again sometimes.
 
 
 
 
2231	 */
 
2232	reg_write(ohci, OHCI1394_HCControlSet,
2233		  OHCI1394_HCControl_LPS |
2234		  OHCI1394_HCControl_postedWriteEnable);
2235	flush_writes(ohci);
2236
2237	for (lps = 0, i = 0; !lps && i < 3; i++) {
2238		msleep(50);
2239		lps = reg_read(ohci, OHCI1394_HCControlSet) &
2240		      OHCI1394_HCControl_LPS;
2241	}
2242
2243	if (!lps) {
2244		dev_err(card->device, "failed to set Link Power Status\n");
2245		return -EIO;
2246	}
2247
2248	if (ohci->quirks & QUIRK_TI_SLLZ059) {
2249		ret = probe_tsb41ba3d(ohci);
2250		if (ret < 0)
2251			return ret;
2252		if (ret)
2253			dev_notice(card->device, "local TSB41BA3D phy\n");
2254		else
2255			ohci->quirks &= ~QUIRK_TI_SLLZ059;
2256	}
2257
2258	reg_write(ohci, OHCI1394_HCControlClear,
2259		  OHCI1394_HCControl_noByteSwapData);
2260
2261	reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
2262	reg_write(ohci, OHCI1394_LinkControlSet,
2263		  OHCI1394_LinkControl_cycleTimerEnable |
2264		  OHCI1394_LinkControl_cycleMaster);
2265
2266	reg_write(ohci, OHCI1394_ATRetries,
2267		  OHCI1394_MAX_AT_REQ_RETRIES |
2268		  (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
2269		  (OHCI1394_MAX_PHYS_RESP_RETRIES << 8) |
2270		  (200 << 16));
2271
2272	seconds = lower_32_bits(get_seconds());
2273	reg_write(ohci, OHCI1394_IsochronousCycleTimer, seconds << 25);
2274	ohci->bus_time = seconds & ~0x3f;
 
 
 
2275
2276	version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2277	if (version >= OHCI_VERSION_1_1) {
2278		reg_write(ohci, OHCI1394_InitialChannelsAvailableHi,
2279			  0xfffffffe);
2280		card->broadcast_channel_auto_allocated = true;
2281	}
2282
2283	/* Get implemented bits of the priority arbitration request counter. */
2284	reg_write(ohci, OHCI1394_FairnessControl, 0x3f);
2285	ohci->pri_req_max = reg_read(ohci, OHCI1394_FairnessControl) & 0x3f;
2286	reg_write(ohci, OHCI1394_FairnessControl, 0);
2287	card->priority_budget_implemented = ohci->pri_req_max != 0;
2288
2289	reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
2290	reg_write(ohci, OHCI1394_IntEventClear, ~0);
2291	reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2292
2293	ret = configure_1394a_enhancements(ohci);
2294	if (ret < 0)
2295		return ret;
2296
2297	/* Activate link_on bit and contender bit in our self ID packets.*/
2298	ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER);
2299	if (ret < 0)
2300		return ret;
2301
2302	/*
2303	 * When the link is not yet enabled, the atomic config rom
2304	 * update mechanism described below in ohci_set_config_rom()
2305	 * is not active.  We have to update ConfigRomHeader and
2306	 * BusOptions manually, and the write to ConfigROMmap takes
2307	 * effect immediately.  We tie this to the enabling of the
2308	 * link, so we have a valid config rom before enabling - the
2309	 * OHCI requires that ConfigROMhdr and BusOptions have valid
2310	 * values before enabling.
2311	 *
2312	 * However, when the ConfigROMmap is written, some controllers
2313	 * always read back quadlets 0 and 2 from the config rom to
2314	 * the ConfigRomHeader and BusOptions registers on bus reset.
2315	 * They shouldn't do that in this initial case where the link
2316	 * isn't enabled.  This means we have to use the same
2317	 * workaround here, setting the bus header to 0 and then write
2318	 * the right values in the bus reset tasklet.
2319	 */
2320
2321	if (config_rom) {
2322		ohci->next_config_rom =
2323			dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2324					   &ohci->next_config_rom_bus,
2325					   GFP_KERNEL);
2326		if (ohci->next_config_rom == NULL)
2327			return -ENOMEM;
2328
2329		copy_config_rom(ohci->next_config_rom, config_rom, length);
2330	} else {
2331		/*
2332		 * In the suspend case, config_rom is NULL, which
2333		 * means that we just reuse the old config rom.
2334		 */
2335		ohci->next_config_rom = ohci->config_rom;
2336		ohci->next_config_rom_bus = ohci->config_rom_bus;
2337	}
2338
2339	ohci->next_header = ohci->next_config_rom[0];
2340	ohci->next_config_rom[0] = 0;
2341	reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
2342	reg_write(ohci, OHCI1394_BusOptions,
2343		  be32_to_cpu(ohci->next_config_rom[2]));
2344	reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2345
2346	reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
2347
2348	if (!(ohci->quirks & QUIRK_NO_MSI))
2349		pci_enable_msi(dev);
2350	if (request_irq(dev->irq, irq_handler,
2351			pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED,
2352			ohci_driver_name, ohci)) {
2353		dev_err(card->device, "failed to allocate interrupt %d\n",
2354			dev->irq);
2355		pci_disable_msi(dev);
2356
2357		if (config_rom) {
2358			dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2359					  ohci->next_config_rom,
2360					  ohci->next_config_rom_bus);
2361			ohci->next_config_rom = NULL;
2362		}
2363		return -EIO;
2364	}
2365
2366	irqs =	OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
2367		OHCI1394_RQPkt | OHCI1394_RSPkt |
2368		OHCI1394_isochTx | OHCI1394_isochRx |
2369		OHCI1394_postedWriteErr |
2370		OHCI1394_selfIDComplete |
2371		OHCI1394_regAccessFail |
2372		OHCI1394_cycle64Seconds |
2373		OHCI1394_cycleInconsistent |
2374		OHCI1394_unrecoverableError |
2375		OHCI1394_cycleTooLong |
2376		OHCI1394_masterIntEnable;
2377	if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
2378		irqs |= OHCI1394_busReset;
2379	reg_write(ohci, OHCI1394_IntMaskSet, irqs);
2380
2381	reg_write(ohci, OHCI1394_HCControlSet,
2382		  OHCI1394_HCControl_linkEnable |
2383		  OHCI1394_HCControl_BIBimageValid);
2384
2385	reg_write(ohci, OHCI1394_LinkControlSet,
2386		  OHCI1394_LinkControl_rcvSelfID |
2387		  OHCI1394_LinkControl_rcvPhyPkt);
2388
2389	ar_context_run(&ohci->ar_request_ctx);
2390	ar_context_run(&ohci->ar_response_ctx);
2391
2392	flush_writes(ohci);
2393
2394	/* We are ready to go, reset bus to finish initialization. */
2395	fw_schedule_bus_reset(&ohci->card, false, true);
2396
2397	return 0;
2398}
2399
2400static int ohci_set_config_rom(struct fw_card *card,
2401			       const __be32 *config_rom, size_t length)
2402{
2403	struct fw_ohci *ohci;
2404	__be32 *next_config_rom;
2405	dma_addr_t uninitialized_var(next_config_rom_bus);
2406
2407	ohci = fw_ohci(card);
2408
2409	/*
2410	 * When the OHCI controller is enabled, the config rom update
2411	 * mechanism is a bit tricky, but easy enough to use.  See
2412	 * section 5.5.6 in the OHCI specification.
2413	 *
2414	 * The OHCI controller caches the new config rom address in a
2415	 * shadow register (ConfigROMmapNext) and needs a bus reset
2416	 * for the changes to take place.  When the bus reset is
2417	 * detected, the controller loads the new values for the
2418	 * ConfigRomHeader and BusOptions registers from the specified
2419	 * config rom and loads ConfigROMmap from the ConfigROMmapNext
2420	 * shadow register. All automatically and atomically.
2421	 *
2422	 * Now, there's a twist to this story.  The automatic load of
2423	 * ConfigRomHeader and BusOptions doesn't honor the
2424	 * noByteSwapData bit, so with a be32 config rom, the
2425	 * controller will load be32 values in to these registers
2426	 * during the atomic update, even on litte endian
2427	 * architectures.  The workaround we use is to put a 0 in the
2428	 * header quadlet; 0 is endian agnostic and means that the
2429	 * config rom isn't ready yet.  In the bus reset tasklet we
2430	 * then set up the real values for the two registers.
2431	 *
2432	 * We use ohci->lock to avoid racing with the code that sets
2433	 * ohci->next_config_rom to NULL (see bus_reset_work).
2434	 */
2435
2436	next_config_rom =
2437		dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2438				   &next_config_rom_bus, GFP_KERNEL);
2439	if (next_config_rom == NULL)
2440		return -ENOMEM;
2441
2442	spin_lock_irq(&ohci->lock);
2443
2444	/*
2445	 * If there is not an already pending config_rom update,
2446	 * push our new allocation into the ohci->next_config_rom
2447	 * and then mark the local variable as null so that we
2448	 * won't deallocate the new buffer.
2449	 *
2450	 * OTOH, if there is a pending config_rom update, just
2451	 * use that buffer with the new config_rom data, and
2452	 * let this routine free the unused DMA allocation.
2453	 */
2454
2455	if (ohci->next_config_rom == NULL) {
2456		ohci->next_config_rom = next_config_rom;
2457		ohci->next_config_rom_bus = next_config_rom_bus;
2458		next_config_rom = NULL;
2459	}
2460
2461	copy_config_rom(ohci->next_config_rom, config_rom, length);
2462
2463	ohci->next_header = config_rom[0];
2464	ohci->next_config_rom[0] = 0;
2465
2466	reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2467
2468	spin_unlock_irq(&ohci->lock);
2469
2470	/* If we didn't use the DMA allocation, delete it. */
2471	if (next_config_rom != NULL)
2472		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2473				  next_config_rom, next_config_rom_bus);
 
2474
2475	/*
2476	 * Now initiate a bus reset to have the changes take
2477	 * effect. We clean up the old config rom memory and DMA
2478	 * mappings in the bus reset tasklet, since the OHCI
2479	 * controller could need to access it before the bus reset
2480	 * takes effect.
2481	 */
2482
2483	fw_schedule_bus_reset(&ohci->card, true, true);
2484
2485	return 0;
2486}
2487
2488static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
2489{
2490	struct fw_ohci *ohci = fw_ohci(card);
2491
2492	at_context_transmit(&ohci->at_request_ctx, packet);
2493}
2494
2495static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
2496{
2497	struct fw_ohci *ohci = fw_ohci(card);
2498
2499	at_context_transmit(&ohci->at_response_ctx, packet);
2500}
2501
2502static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
2503{
2504	struct fw_ohci *ohci = fw_ohci(card);
2505	struct context *ctx = &ohci->at_request_ctx;
2506	struct driver_data *driver_data = packet->driver_data;
2507	int ret = -ENOENT;
2508
2509	tasklet_disable(&ctx->tasklet);
2510
2511	if (packet->ack != 0)
2512		goto out;
2513
2514	if (packet->payload_mapped)
2515		dma_unmap_single(ohci->card.device, packet->payload_bus,
2516				 packet->payload_length, DMA_TO_DEVICE);
2517
2518	log_ar_at_event(ohci, 'T', packet->speed, packet->header, 0x20);
2519	driver_data->packet = NULL;
2520	packet->ack = RCODE_CANCELLED;
 
 
 
 
2521	packet->callback(packet, &ohci->card, packet->ack);
2522	ret = 0;
2523 out:
2524	tasklet_enable(&ctx->tasklet);
2525
2526	return ret;
2527}
2528
2529static int ohci_enable_phys_dma(struct fw_card *card,
2530				int node_id, int generation)
2531{
2532#ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
2533	return 0;
2534#else
2535	struct fw_ohci *ohci = fw_ohci(card);
2536	unsigned long flags;
2537	int n, ret = 0;
2538
 
 
 
2539	/*
2540	 * FIXME:  Make sure this bitmask is cleared when we clear the busReset
2541	 * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
2542	 */
2543
2544	spin_lock_irqsave(&ohci->lock, flags);
2545
2546	if (ohci->generation != generation) {
2547		ret = -ESTALE;
2548		goto out;
2549	}
2550
2551	/*
2552	 * Note, if the node ID contains a non-local bus ID, physical DMA is
2553	 * enabled for _all_ nodes on remote buses.
2554	 */
2555
2556	n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
2557	if (n < 32)
2558		reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
2559	else
2560		reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
2561
2562	flush_writes(ohci);
2563 out:
2564	spin_unlock_irqrestore(&ohci->lock, flags);
2565
2566	return ret;
2567#endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
2568}
2569
2570static u32 ohci_read_csr(struct fw_card *card, int csr_offset)
2571{
2572	struct fw_ohci *ohci = fw_ohci(card);
2573	unsigned long flags;
2574	u32 value;
2575
2576	switch (csr_offset) {
2577	case CSR_STATE_CLEAR:
2578	case CSR_STATE_SET:
2579		if (ohci->is_root &&
2580		    (reg_read(ohci, OHCI1394_LinkControlSet) &
2581		     OHCI1394_LinkControl_cycleMaster))
2582			value = CSR_STATE_BIT_CMSTR;
2583		else
2584			value = 0;
2585		if (ohci->csr_state_setclear_abdicate)
2586			value |= CSR_STATE_BIT_ABDICATE;
2587
2588		return value;
2589
2590	case CSR_NODE_IDS:
2591		return reg_read(ohci, OHCI1394_NodeID) << 16;
2592
2593	case CSR_CYCLE_TIME:
2594		return get_cycle_time(ohci);
2595
2596	case CSR_BUS_TIME:
2597		/*
2598		 * We might be called just after the cycle timer has wrapped
2599		 * around but just before the cycle64Seconds handler, so we
2600		 * better check here, too, if the bus time needs to be updated.
2601		 */
2602		spin_lock_irqsave(&ohci->lock, flags);
2603		value = update_bus_time(ohci);
2604		spin_unlock_irqrestore(&ohci->lock, flags);
2605		return value;
2606
2607	case CSR_BUSY_TIMEOUT:
2608		value = reg_read(ohci, OHCI1394_ATRetries);
2609		return (value >> 4) & 0x0ffff00f;
2610
2611	case CSR_PRIORITY_BUDGET:
2612		return (reg_read(ohci, OHCI1394_FairnessControl) & 0x3f) |
2613			(ohci->pri_req_max << 8);
2614
2615	default:
2616		WARN_ON(1);
2617		return 0;
2618	}
2619}
2620
2621static void ohci_write_csr(struct fw_card *card, int csr_offset, u32 value)
2622{
2623	struct fw_ohci *ohci = fw_ohci(card);
2624	unsigned long flags;
2625
2626	switch (csr_offset) {
2627	case CSR_STATE_CLEAR:
2628		if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2629			reg_write(ohci, OHCI1394_LinkControlClear,
2630				  OHCI1394_LinkControl_cycleMaster);
2631			flush_writes(ohci);
2632		}
2633		if (value & CSR_STATE_BIT_ABDICATE)
2634			ohci->csr_state_setclear_abdicate = false;
2635		break;
2636
2637	case CSR_STATE_SET:
2638		if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2639			reg_write(ohci, OHCI1394_LinkControlSet,
2640				  OHCI1394_LinkControl_cycleMaster);
2641			flush_writes(ohci);
2642		}
2643		if (value & CSR_STATE_BIT_ABDICATE)
2644			ohci->csr_state_setclear_abdicate = true;
2645		break;
2646
2647	case CSR_NODE_IDS:
2648		reg_write(ohci, OHCI1394_NodeID, value >> 16);
2649		flush_writes(ohci);
2650		break;
2651
2652	case CSR_CYCLE_TIME:
2653		reg_write(ohci, OHCI1394_IsochronousCycleTimer, value);
2654		reg_write(ohci, OHCI1394_IntEventSet,
2655			  OHCI1394_cycleInconsistent);
2656		flush_writes(ohci);
2657		break;
2658
2659	case CSR_BUS_TIME:
2660		spin_lock_irqsave(&ohci->lock, flags);
2661		ohci->bus_time = (ohci->bus_time & 0x7f) | (value & ~0x7f);
 
2662		spin_unlock_irqrestore(&ohci->lock, flags);
2663		break;
2664
2665	case CSR_BUSY_TIMEOUT:
2666		value = (value & 0xf) | ((value & 0xf) << 4) |
2667			((value & 0xf) << 8) | ((value & 0x0ffff000) << 4);
2668		reg_write(ohci, OHCI1394_ATRetries, value);
2669		flush_writes(ohci);
2670		break;
2671
2672	case CSR_PRIORITY_BUDGET:
2673		reg_write(ohci, OHCI1394_FairnessControl, value & 0x3f);
2674		flush_writes(ohci);
2675		break;
2676
2677	default:
2678		WARN_ON(1);
2679		break;
2680	}
2681}
2682
2683static void flush_iso_completions(struct iso_context *ctx)
2684{
2685	ctx->base.callback.sc(&ctx->base, ctx->last_timestamp,
2686			      ctx->header_length, ctx->header,
2687			      ctx->base.callback_data);
2688	ctx->header_length = 0;
2689}
2690
2691static void copy_iso_headers(struct iso_context *ctx, const u32 *dma_hdr)
2692{
2693	u32 *ctx_hdr;
2694
2695	if (ctx->header_length + ctx->base.header_size > PAGE_SIZE)
 
 
2696		flush_iso_completions(ctx);
 
2697
2698	ctx_hdr = ctx->header + ctx->header_length;
2699	ctx->last_timestamp = (u16)le32_to_cpu((__force __le32)dma_hdr[0]);
2700
2701	/*
2702	 * The two iso header quadlets are byteswapped to little
2703	 * endian by the controller, but we want to present them
2704	 * as big endian for consistency with the bus endianness.
2705	 */
2706	if (ctx->base.header_size > 0)
2707		ctx_hdr[0] = swab32(dma_hdr[1]); /* iso packet header */
2708	if (ctx->base.header_size > 4)
2709		ctx_hdr[1] = swab32(dma_hdr[0]); /* timestamp */
2710	if (ctx->base.header_size > 8)
2711		memcpy(&ctx_hdr[2], &dma_hdr[2], ctx->base.header_size - 8);
2712	ctx->header_length += ctx->base.header_size;
2713}
2714
2715static int handle_ir_packet_per_buffer(struct context *context,
2716				       struct descriptor *d,
2717				       struct descriptor *last)
2718{
2719	struct iso_context *ctx =
2720		container_of(context, struct iso_context, context);
2721	struct descriptor *pd;
2722	u32 buffer_dma;
2723
2724	for (pd = d; pd <= last; pd++)
2725		if (pd->transfer_status)
2726			break;
2727	if (pd > last)
2728		/* Descriptor(s) not done yet, stop iteration */
2729		return 0;
2730
2731	while (!(d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))) {
2732		d++;
2733		buffer_dma = le32_to_cpu(d->data_address);
2734		dma_sync_single_range_for_cpu(context->ohci->card.device,
2735					      buffer_dma & PAGE_MASK,
2736					      buffer_dma & ~PAGE_MASK,
2737					      le16_to_cpu(d->req_count),
2738					      DMA_FROM_DEVICE);
2739	}
2740
2741	copy_iso_headers(ctx, (u32 *) (last + 1));
2742
2743	if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS))
2744		flush_iso_completions(ctx);
2745
2746	return 1;
2747}
2748
2749/* d == last because each descriptor block is only a single descriptor. */
2750static int handle_ir_buffer_fill(struct context *context,
2751				 struct descriptor *d,
2752				 struct descriptor *last)
2753{
2754	struct iso_context *ctx =
2755		container_of(context, struct iso_context, context);
2756	unsigned int req_count, res_count, completed;
2757	u32 buffer_dma;
2758
2759	req_count = le16_to_cpu(last->req_count);
2760	res_count = le16_to_cpu(ACCESS_ONCE(last->res_count));
2761	completed = req_count - res_count;
2762	buffer_dma = le32_to_cpu(last->data_address);
2763
2764	if (completed > 0) {
2765		ctx->mc_buffer_bus = buffer_dma;
2766		ctx->mc_completed = completed;
2767	}
2768
2769	if (res_count != 0)
2770		/* Descriptor(s) not done yet, stop iteration */
2771		return 0;
2772
2773	dma_sync_single_range_for_cpu(context->ohci->card.device,
2774				      buffer_dma & PAGE_MASK,
2775				      buffer_dma & ~PAGE_MASK,
2776				      completed, DMA_FROM_DEVICE);
2777
2778	if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS)) {
2779		ctx->base.callback.mc(&ctx->base,
2780				      buffer_dma + completed,
2781				      ctx->base.callback_data);
2782		ctx->mc_completed = 0;
2783	}
2784
2785	return 1;
2786}
2787
2788static void flush_ir_buffer_fill(struct iso_context *ctx)
2789{
2790	dma_sync_single_range_for_cpu(ctx->context.ohci->card.device,
2791				      ctx->mc_buffer_bus & PAGE_MASK,
2792				      ctx->mc_buffer_bus & ~PAGE_MASK,
2793				      ctx->mc_completed, DMA_FROM_DEVICE);
2794
2795	ctx->base.callback.mc(&ctx->base,
2796			      ctx->mc_buffer_bus + ctx->mc_completed,
2797			      ctx->base.callback_data);
2798	ctx->mc_completed = 0;
2799}
2800
2801static inline void sync_it_packet_for_cpu(struct context *context,
2802					  struct descriptor *pd)
2803{
2804	__le16 control;
2805	u32 buffer_dma;
2806
2807	/* only packets beginning with OUTPUT_MORE* have data buffers */
2808	if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
2809		return;
2810
2811	/* skip over the OUTPUT_MORE_IMMEDIATE descriptor */
2812	pd += 2;
2813
2814	/*
2815	 * If the packet has a header, the first OUTPUT_MORE/LAST descriptor's
2816	 * data buffer is in the context program's coherent page and must not
2817	 * be synced.
2818	 */
2819	if ((le32_to_cpu(pd->data_address) & PAGE_MASK) ==
2820	    (context->current_bus          & PAGE_MASK)) {
2821		if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
2822			return;
2823		pd++;
2824	}
2825
2826	do {
2827		buffer_dma = le32_to_cpu(pd->data_address);
2828		dma_sync_single_range_for_cpu(context->ohci->card.device,
2829					      buffer_dma & PAGE_MASK,
2830					      buffer_dma & ~PAGE_MASK,
2831					      le16_to_cpu(pd->req_count),
2832					      DMA_TO_DEVICE);
2833		control = pd->control;
2834		pd++;
2835	} while (!(control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS)));
2836}
2837
2838static int handle_it_packet(struct context *context,
2839			    struct descriptor *d,
2840			    struct descriptor *last)
2841{
2842	struct iso_context *ctx =
2843		container_of(context, struct iso_context, context);
2844	struct descriptor *pd;
2845	__be32 *ctx_hdr;
2846
2847	for (pd = d; pd <= last; pd++)
2848		if (pd->transfer_status)
2849			break;
2850	if (pd > last)
2851		/* Descriptor(s) not done yet, stop iteration */
2852		return 0;
2853
2854	sync_it_packet_for_cpu(context, d);
2855
2856	if (ctx->header_length + 4 > PAGE_SIZE)
 
 
2857		flush_iso_completions(ctx);
 
2858
2859	ctx_hdr = ctx->header + ctx->header_length;
2860	ctx->last_timestamp = le16_to_cpu(last->res_count);
2861	/* Present this value as big-endian to match the receive code */
2862	*ctx_hdr = cpu_to_be32((le16_to_cpu(pd->transfer_status) << 16) |
2863			       le16_to_cpu(pd->res_count));
2864	ctx->header_length += 4;
2865
2866	if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS))
2867		flush_iso_completions(ctx);
2868
2869	return 1;
2870}
2871
2872static void set_multichannel_mask(struct fw_ohci *ohci, u64 channels)
2873{
2874	u32 hi = channels >> 32, lo = channels;
2875
2876	reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear, ~hi);
2877	reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear, ~lo);
2878	reg_write(ohci, OHCI1394_IRMultiChanMaskHiSet, hi);
2879	reg_write(ohci, OHCI1394_IRMultiChanMaskLoSet, lo);
2880	mmiowb();
2881	ohci->mc_channels = channels;
2882}
2883
2884static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
2885				int type, int channel, size_t header_size)
2886{
2887	struct fw_ohci *ohci = fw_ohci(card);
2888	struct iso_context *uninitialized_var(ctx);
2889	descriptor_callback_t uninitialized_var(callback);
2890	u64 *uninitialized_var(channels);
2891	u32 *uninitialized_var(mask), uninitialized_var(regs);
2892	int index, ret = -EBUSY;
2893
2894	spin_lock_irq(&ohci->lock);
2895
2896	switch (type) {
2897	case FW_ISO_CONTEXT_TRANSMIT:
2898		mask     = &ohci->it_context_mask;
2899		callback = handle_it_packet;
2900		index    = ffs(*mask) - 1;
2901		if (index >= 0) {
2902			*mask &= ~(1 << index);
2903			regs = OHCI1394_IsoXmitContextBase(index);
2904			ctx  = &ohci->it_context_list[index];
2905		}
2906		break;
2907
2908	case FW_ISO_CONTEXT_RECEIVE:
2909		channels = &ohci->ir_context_channels;
2910		mask     = &ohci->ir_context_mask;
2911		callback = handle_ir_packet_per_buffer;
2912		index    = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
2913		if (index >= 0) {
2914			*channels &= ~(1ULL << channel);
2915			*mask     &= ~(1 << index);
2916			regs = OHCI1394_IsoRcvContextBase(index);
2917			ctx  = &ohci->ir_context_list[index];
2918		}
2919		break;
2920
2921	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2922		mask     = &ohci->ir_context_mask;
2923		callback = handle_ir_buffer_fill;
2924		index    = !ohci->mc_allocated ? ffs(*mask) - 1 : -1;
2925		if (index >= 0) {
2926			ohci->mc_allocated = true;
2927			*mask &= ~(1 << index);
2928			regs = OHCI1394_IsoRcvContextBase(index);
2929			ctx  = &ohci->ir_context_list[index];
2930		}
2931		break;
2932
2933	default:
2934		index = -1;
2935		ret = -ENOSYS;
2936	}
2937
2938	spin_unlock_irq(&ohci->lock);
2939
2940	if (index < 0)
2941		return ERR_PTR(ret);
2942
2943	memset(ctx, 0, sizeof(*ctx));
2944	ctx->header_length = 0;
2945	ctx->header = (void *) __get_free_page(GFP_KERNEL);
2946	if (ctx->header == NULL) {
2947		ret = -ENOMEM;
2948		goto out;
2949	}
2950	ret = context_init(&ctx->context, ohci, regs, callback);
2951	if (ret < 0)
2952		goto out_with_header;
2953
2954	if (type == FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL) {
2955		set_multichannel_mask(ohci, 0);
2956		ctx->mc_completed = 0;
2957	}
2958
2959	return &ctx->base;
2960
2961 out_with_header:
2962	free_page((unsigned long)ctx->header);
2963 out:
2964	spin_lock_irq(&ohci->lock);
2965
2966	switch (type) {
2967	case FW_ISO_CONTEXT_RECEIVE:
2968		*channels |= 1ULL << channel;
2969		break;
2970
2971	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2972		ohci->mc_allocated = false;
2973		break;
2974	}
2975	*mask |= 1 << index;
2976
2977	spin_unlock_irq(&ohci->lock);
2978
2979	return ERR_PTR(ret);
2980}
2981
2982static int ohci_start_iso(struct fw_iso_context *base,
2983			  s32 cycle, u32 sync, u32 tags)
2984{
2985	struct iso_context *ctx = container_of(base, struct iso_context, base);
2986	struct fw_ohci *ohci = ctx->context.ohci;
2987	u32 control = IR_CONTEXT_ISOCH_HEADER, match;
2988	int index;
2989
2990	/* the controller cannot start without any queued packets */
2991	if (ctx->context.last->branch_address == 0)
2992		return -ENODATA;
2993
2994	switch (ctx->base.type) {
2995	case FW_ISO_CONTEXT_TRANSMIT:
2996		index = ctx - ohci->it_context_list;
2997		match = 0;
2998		if (cycle >= 0)
2999			match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
3000				(cycle & 0x7fff) << 16;
3001
3002		reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
3003		reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
3004		context_run(&ctx->context, match);
3005		break;
3006
3007	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3008		control |= IR_CONTEXT_BUFFER_FILL|IR_CONTEXT_MULTI_CHANNEL_MODE;
3009		/* fall through */
3010	case FW_ISO_CONTEXT_RECEIVE:
3011		index = ctx - ohci->ir_context_list;
3012		match = (tags << 28) | (sync << 8) | ctx->base.channel;
3013		if (cycle >= 0) {
3014			match |= (cycle & 0x07fff) << 12;
3015			control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
3016		}
3017
3018		reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
3019		reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
3020		reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
3021		context_run(&ctx->context, control);
3022
3023		ctx->sync = sync;
3024		ctx->tags = tags;
3025
3026		break;
3027	}
3028
3029	return 0;
3030}
3031
3032static int ohci_stop_iso(struct fw_iso_context *base)
3033{
3034	struct fw_ohci *ohci = fw_ohci(base->card);
3035	struct iso_context *ctx = container_of(base, struct iso_context, base);
3036	int index;
3037
3038	switch (ctx->base.type) {
3039	case FW_ISO_CONTEXT_TRANSMIT:
3040		index = ctx - ohci->it_context_list;
3041		reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
3042		break;
3043
3044	case FW_ISO_CONTEXT_RECEIVE:
3045	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3046		index = ctx - ohci->ir_context_list;
3047		reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
3048		break;
3049	}
3050	flush_writes(ohci);
3051	context_stop(&ctx->context);
3052	tasklet_kill(&ctx->context.tasklet);
3053
3054	return 0;
3055}
3056
3057static void ohci_free_iso_context(struct fw_iso_context *base)
3058{
3059	struct fw_ohci *ohci = fw_ohci(base->card);
3060	struct iso_context *ctx = container_of(base, struct iso_context, base);
3061	unsigned long flags;
3062	int index;
3063
3064	ohci_stop_iso(base);
3065	context_release(&ctx->context);
3066	free_page((unsigned long)ctx->header);
3067
3068	spin_lock_irqsave(&ohci->lock, flags);
3069
3070	switch (base->type) {
3071	case FW_ISO_CONTEXT_TRANSMIT:
3072		index = ctx - ohci->it_context_list;
3073		ohci->it_context_mask |= 1 << index;
3074		break;
3075
3076	case FW_ISO_CONTEXT_RECEIVE:
3077		index = ctx - ohci->ir_context_list;
3078		ohci->ir_context_mask |= 1 << index;
3079		ohci->ir_context_channels |= 1ULL << base->channel;
3080		break;
3081
3082	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3083		index = ctx - ohci->ir_context_list;
3084		ohci->ir_context_mask |= 1 << index;
3085		ohci->ir_context_channels |= ohci->mc_channels;
3086		ohci->mc_channels = 0;
3087		ohci->mc_allocated = false;
3088		break;
3089	}
3090
3091	spin_unlock_irqrestore(&ohci->lock, flags);
3092}
3093
3094static int ohci_set_iso_channels(struct fw_iso_context *base, u64 *channels)
3095{
3096	struct fw_ohci *ohci = fw_ohci(base->card);
3097	unsigned long flags;
3098	int ret;
3099
3100	switch (base->type) {
3101	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3102
3103		spin_lock_irqsave(&ohci->lock, flags);
3104
3105		/* Don't allow multichannel to grab other contexts' channels. */
3106		if (~ohci->ir_context_channels & ~ohci->mc_channels & *channels) {
3107			*channels = ohci->ir_context_channels;
3108			ret = -EBUSY;
3109		} else {
3110			set_multichannel_mask(ohci, *channels);
3111			ret = 0;
3112		}
3113
3114		spin_unlock_irqrestore(&ohci->lock, flags);
3115
3116		break;
3117	default:
3118		ret = -EINVAL;
3119	}
3120
3121	return ret;
3122}
3123
3124#ifdef CONFIG_PM
3125static void ohci_resume_iso_dma(struct fw_ohci *ohci)
3126{
3127	int i;
3128	struct iso_context *ctx;
3129
3130	for (i = 0 ; i < ohci->n_ir ; i++) {
3131		ctx = &ohci->ir_context_list[i];
3132		if (ctx->context.running)
3133			ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3134	}
3135
3136	for (i = 0 ; i < ohci->n_it ; i++) {
3137		ctx = &ohci->it_context_list[i];
3138		if (ctx->context.running)
3139			ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3140	}
3141}
3142#endif
3143
3144static int queue_iso_transmit(struct iso_context *ctx,
3145			      struct fw_iso_packet *packet,
3146			      struct fw_iso_buffer *buffer,
3147			      unsigned long payload)
3148{
3149	struct descriptor *d, *last, *pd;
3150	struct fw_iso_packet *p;
3151	__le32 *header;
3152	dma_addr_t d_bus, page_bus;
3153	u32 z, header_z, payload_z, irq;
3154	u32 payload_index, payload_end_index, next_page_index;
3155	int page, end_page, i, length, offset;
3156
3157	p = packet;
3158	payload_index = payload;
3159
3160	if (p->skip)
3161		z = 1;
3162	else
3163		z = 2;
3164	if (p->header_length > 0)
3165		z++;
3166
3167	/* Determine the first page the payload isn't contained in. */
3168	end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
3169	if (p->payload_length > 0)
3170		payload_z = end_page - (payload_index >> PAGE_SHIFT);
3171	else
3172		payload_z = 0;
3173
3174	z += payload_z;
3175
3176	/* Get header size in number of descriptors. */
3177	header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
3178
3179	d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
3180	if (d == NULL)
3181		return -ENOMEM;
3182
3183	if (!p->skip) {
3184		d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
3185		d[0].req_count = cpu_to_le16(8);
3186		/*
3187		 * Link the skip address to this descriptor itself.  This causes
3188		 * a context to skip a cycle whenever lost cycles or FIFO
3189		 * overruns occur, without dropping the data.  The application
3190		 * should then decide whether this is an error condition or not.
3191		 * FIXME:  Make the context's cycle-lost behaviour configurable?
3192		 */
3193		d[0].branch_address = cpu_to_le32(d_bus | z);
3194
3195		header = (__le32 *) &d[1];
3196		header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
3197					IT_HEADER_TAG(p->tag) |
3198					IT_HEADER_TCODE(TCODE_STREAM_DATA) |
3199					IT_HEADER_CHANNEL(ctx->base.channel) |
3200					IT_HEADER_SPEED(ctx->base.speed));
3201		header[1] =
3202			cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
3203							  p->payload_length));
3204	}
3205
3206	if (p->header_length > 0) {
3207		d[2].req_count    = cpu_to_le16(p->header_length);
3208		d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
3209		memcpy(&d[z], p->header, p->header_length);
3210	}
3211
3212	pd = d + z - payload_z;
3213	payload_end_index = payload_index + p->payload_length;
3214	for (i = 0; i < payload_z; i++) {
3215		page               = payload_index >> PAGE_SHIFT;
3216		offset             = payload_index & ~PAGE_MASK;
3217		next_page_index    = (page + 1) << PAGE_SHIFT;
3218		length             =
3219			min(next_page_index, payload_end_index) - payload_index;
3220		pd[i].req_count    = cpu_to_le16(length);
3221
3222		page_bus = page_private(buffer->pages[page]);
3223		pd[i].data_address = cpu_to_le32(page_bus + offset);
3224
3225		dma_sync_single_range_for_device(ctx->context.ohci->card.device,
3226						 page_bus, offset, length,
3227						 DMA_TO_DEVICE);
3228
3229		payload_index += length;
3230	}
3231
3232	if (p->interrupt)
3233		irq = DESCRIPTOR_IRQ_ALWAYS;
3234	else
3235		irq = DESCRIPTOR_NO_IRQ;
3236
3237	last = z == 2 ? d : d + z - 1;
3238	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
3239				     DESCRIPTOR_STATUS |
3240				     DESCRIPTOR_BRANCH_ALWAYS |
3241				     irq);
3242
3243	context_append(&ctx->context, d, z, header_z);
3244
3245	return 0;
3246}
3247
3248static int queue_iso_packet_per_buffer(struct iso_context *ctx,
3249				       struct fw_iso_packet *packet,
3250				       struct fw_iso_buffer *buffer,
3251				       unsigned long payload)
3252{
3253	struct device *device = ctx->context.ohci->card.device;
3254	struct descriptor *d, *pd;
3255	dma_addr_t d_bus, page_bus;
3256	u32 z, header_z, rest;
3257	int i, j, length;
3258	int page, offset, packet_count, header_size, payload_per_buffer;
3259
3260	/*
3261	 * The OHCI controller puts the isochronous header and trailer in the
3262	 * buffer, so we need at least 8 bytes.
3263	 */
3264	packet_count = packet->header_length / ctx->base.header_size;
3265	header_size  = max(ctx->base.header_size, (size_t)8);
3266
3267	/* Get header size in number of descriptors. */
3268	header_z = DIV_ROUND_UP(header_size, sizeof(*d));
3269	page     = payload >> PAGE_SHIFT;
3270	offset   = payload & ~PAGE_MASK;
3271	payload_per_buffer = packet->payload_length / packet_count;
3272
3273	for (i = 0; i < packet_count; i++) {
3274		/* d points to the header descriptor */
3275		z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
3276		d = context_get_descriptors(&ctx->context,
3277				z + header_z, &d_bus);
3278		if (d == NULL)
3279			return -ENOMEM;
3280
3281		d->control      = cpu_to_le16(DESCRIPTOR_STATUS |
3282					      DESCRIPTOR_INPUT_MORE);
3283		if (packet->skip && i == 0)
3284			d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3285		d->req_count    = cpu_to_le16(header_size);
3286		d->res_count    = d->req_count;
3287		d->transfer_status = 0;
3288		d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
3289
3290		rest = payload_per_buffer;
3291		pd = d;
3292		for (j = 1; j < z; j++) {
3293			pd++;
3294			pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3295						  DESCRIPTOR_INPUT_MORE);
3296
3297			if (offset + rest < PAGE_SIZE)
3298				length = rest;
3299			else
3300				length = PAGE_SIZE - offset;
3301			pd->req_count = cpu_to_le16(length);
3302			pd->res_count = pd->req_count;
3303			pd->transfer_status = 0;
3304
3305			page_bus = page_private(buffer->pages[page]);
3306			pd->data_address = cpu_to_le32(page_bus + offset);
3307
3308			dma_sync_single_range_for_device(device, page_bus,
3309							 offset, length,
3310							 DMA_FROM_DEVICE);
3311
3312			offset = (offset + length) & ~PAGE_MASK;
3313			rest -= length;
3314			if (offset == 0)
3315				page++;
3316		}
3317		pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3318					  DESCRIPTOR_INPUT_LAST |
3319					  DESCRIPTOR_BRANCH_ALWAYS);
3320		if (packet->interrupt && i == packet_count - 1)
3321			pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3322
3323		context_append(&ctx->context, d, z, header_z);
3324	}
3325
3326	return 0;
3327}
3328
3329static int queue_iso_buffer_fill(struct iso_context *ctx,
3330				 struct fw_iso_packet *packet,
3331				 struct fw_iso_buffer *buffer,
3332				 unsigned long payload)
3333{
3334	struct descriptor *d;
3335	dma_addr_t d_bus, page_bus;
3336	int page, offset, rest, z, i, length;
3337
3338	page   = payload >> PAGE_SHIFT;
3339	offset = payload & ~PAGE_MASK;
3340	rest   = packet->payload_length;
3341
3342	/* We need one descriptor for each page in the buffer. */
3343	z = DIV_ROUND_UP(offset + rest, PAGE_SIZE);
3344
3345	if (WARN_ON(offset & 3 || rest & 3 || page + z > buffer->page_count))
3346		return -EFAULT;
3347
3348	for (i = 0; i < z; i++) {
3349		d = context_get_descriptors(&ctx->context, 1, &d_bus);
3350		if (d == NULL)
3351			return -ENOMEM;
3352
3353		d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
3354					 DESCRIPTOR_BRANCH_ALWAYS);
3355		if (packet->skip && i == 0)
3356			d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3357		if (packet->interrupt && i == z - 1)
3358			d->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3359
3360		if (offset + rest < PAGE_SIZE)
3361			length = rest;
3362		else
3363			length = PAGE_SIZE - offset;
3364		d->req_count = cpu_to_le16(length);
3365		d->res_count = d->req_count;
3366		d->transfer_status = 0;
3367
3368		page_bus = page_private(buffer->pages[page]);
3369		d->data_address = cpu_to_le32(page_bus + offset);
3370
3371		dma_sync_single_range_for_device(ctx->context.ohci->card.device,
3372						 page_bus, offset, length,
3373						 DMA_FROM_DEVICE);
3374
3375		rest -= length;
3376		offset = 0;
3377		page++;
3378
3379		context_append(&ctx->context, d, 1, 0);
3380	}
3381
3382	return 0;
3383}
3384
3385static int ohci_queue_iso(struct fw_iso_context *base,
3386			  struct fw_iso_packet *packet,
3387			  struct fw_iso_buffer *buffer,
3388			  unsigned long payload)
3389{
3390	struct iso_context *ctx = container_of(base, struct iso_context, base);
3391	unsigned long flags;
3392	int ret = -ENOSYS;
3393
3394	spin_lock_irqsave(&ctx->context.ohci->lock, flags);
3395	switch (base->type) {
3396	case FW_ISO_CONTEXT_TRANSMIT:
3397		ret = queue_iso_transmit(ctx, packet, buffer, payload);
3398		break;
3399	case FW_ISO_CONTEXT_RECEIVE:
3400		ret = queue_iso_packet_per_buffer(ctx, packet, buffer, payload);
3401		break;
3402	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3403		ret = queue_iso_buffer_fill(ctx, packet, buffer, payload);
3404		break;
3405	}
3406	spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
3407
3408	return ret;
3409}
3410
3411static void ohci_flush_queue_iso(struct fw_iso_context *base)
3412{
3413	struct context *ctx =
3414			&container_of(base, struct iso_context, base)->context;
3415
3416	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
3417}
3418
3419static int ohci_flush_iso_completions(struct fw_iso_context *base)
3420{
3421	struct iso_context *ctx = container_of(base, struct iso_context, base);
3422	int ret = 0;
3423
3424	tasklet_disable(&ctx->context.tasklet);
3425
3426	if (!test_and_set_bit_lock(0, &ctx->flushing_completions)) {
3427		context_tasklet((unsigned long)&ctx->context);
3428
3429		switch (base->type) {
3430		case FW_ISO_CONTEXT_TRANSMIT:
3431		case FW_ISO_CONTEXT_RECEIVE:
3432			if (ctx->header_length != 0)
3433				flush_iso_completions(ctx);
3434			break;
3435		case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3436			if (ctx->mc_completed != 0)
3437				flush_ir_buffer_fill(ctx);
3438			break;
3439		default:
3440			ret = -ENOSYS;
3441		}
3442
3443		clear_bit_unlock(0, &ctx->flushing_completions);
3444		smp_mb__after_clear_bit();
3445	}
3446
3447	tasklet_enable(&ctx->context.tasklet);
3448
3449	return ret;
3450}
3451
3452static const struct fw_card_driver ohci_driver = {
3453	.enable			= ohci_enable,
3454	.read_phy_reg		= ohci_read_phy_reg,
3455	.update_phy_reg		= ohci_update_phy_reg,
3456	.set_config_rom		= ohci_set_config_rom,
3457	.send_request		= ohci_send_request,
3458	.send_response		= ohci_send_response,
3459	.cancel_packet		= ohci_cancel_packet,
3460	.enable_phys_dma	= ohci_enable_phys_dma,
3461	.read_csr		= ohci_read_csr,
3462	.write_csr		= ohci_write_csr,
3463
3464	.allocate_iso_context	= ohci_allocate_iso_context,
3465	.free_iso_context	= ohci_free_iso_context,
3466	.set_iso_channels	= ohci_set_iso_channels,
3467	.queue_iso		= ohci_queue_iso,
3468	.flush_queue_iso	= ohci_flush_queue_iso,
3469	.flush_iso_completions	= ohci_flush_iso_completions,
3470	.start_iso		= ohci_start_iso,
3471	.stop_iso		= ohci_stop_iso,
3472};
3473
3474#ifdef CONFIG_PPC_PMAC
3475static void pmac_ohci_on(struct pci_dev *dev)
3476{
3477	if (machine_is(powermac)) {
3478		struct device_node *ofn = pci_device_to_OF_node(dev);
3479
3480		if (ofn) {
3481			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
3482			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
3483		}
3484	}
3485}
3486
3487static void pmac_ohci_off(struct pci_dev *dev)
3488{
3489	if (machine_is(powermac)) {
3490		struct device_node *ofn = pci_device_to_OF_node(dev);
3491
3492		if (ofn) {
3493			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
3494			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
3495		}
3496	}
3497}
3498#else
3499static inline void pmac_ohci_on(struct pci_dev *dev) {}
3500static inline void pmac_ohci_off(struct pci_dev *dev) {}
3501#endif /* CONFIG_PPC_PMAC */
3502
3503static int __devinit pci_probe(struct pci_dev *dev,
 
 
 
 
 
 
 
 
 
 
 
 
 
3504			       const struct pci_device_id *ent)
3505{
3506	struct fw_ohci *ohci;
3507	u32 bus_options, max_receive, link_speed, version;
3508	u64 guid;
3509	int i, err;
3510	size_t size;
3511
3512	if (dev->vendor == PCI_VENDOR_ID_PINNACLE_SYSTEMS) {
3513		dev_err(&dev->dev, "Pinnacle MovieBoard is not yet supported\n");
3514		return -ENOSYS;
3515	}
3516
3517	ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
3518	if (ohci == NULL) {
3519		err = -ENOMEM;
3520		goto fail;
3521	}
3522
3523	fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
3524
3525	pmac_ohci_on(dev);
 
3526
3527	err = pci_enable_device(dev);
3528	if (err) {
3529		dev_err(&dev->dev, "failed to enable OHCI hardware\n");
3530		goto fail_free;
3531	}
3532
3533	pci_set_master(dev);
3534	pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
3535	pci_set_drvdata(dev, ohci);
3536
3537	spin_lock_init(&ohci->lock);
3538	mutex_init(&ohci->phy_reg_mutex);
3539
3540	INIT_WORK(&ohci->bus_reset_work, bus_reset_work);
3541
3542	err = pci_request_region(dev, 0, ohci_driver_name);
3543	if (err) {
3544		dev_err(&dev->dev, "MMIO resource unavailable\n");
3545		goto fail_disable;
3546	}
3547
3548	ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
3549	if (ohci->registers == NULL) {
3550		dev_err(&dev->dev, "failed to remap registers\n");
3551		err = -ENXIO;
3552		goto fail_iomem;
3553	}
 
3554
3555	for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
3556		if ((ohci_quirks[i].vendor == dev->vendor) &&
3557		    (ohci_quirks[i].device == (unsigned short)PCI_ANY_ID ||
3558		     ohci_quirks[i].device == dev->device) &&
3559		    (ohci_quirks[i].revision == (unsigned short)PCI_ANY_ID ||
3560		     ohci_quirks[i].revision >= dev->revision)) {
3561			ohci->quirks = ohci_quirks[i].flags;
3562			break;
3563		}
3564	if (param_quirks)
3565		ohci->quirks = param_quirks;
3566
 
 
 
3567	/*
3568	 * Because dma_alloc_coherent() allocates at least one page,
3569	 * we save space by using a common buffer for the AR request/
3570	 * response descriptors and the self IDs buffer.
3571	 */
3572	BUILD_BUG_ON(AR_BUFFERS * sizeof(struct descriptor) > PAGE_SIZE/4);
3573	BUILD_BUG_ON(SELF_ID_BUF_SIZE > PAGE_SIZE/2);
3574	ohci->misc_buffer = dma_alloc_coherent(ohci->card.device,
3575					       PAGE_SIZE,
3576					       &ohci->misc_buffer_bus,
3577					       GFP_KERNEL);
3578	if (!ohci->misc_buffer) {
3579		err = -ENOMEM;
3580		goto fail_iounmap;
3581	}
3582
3583	err = ar_context_init(&ohci->ar_request_ctx, ohci, 0,
3584			      OHCI1394_AsReqRcvContextControlSet);
3585	if (err < 0)
3586		goto fail_misc_buf;
3587
3588	err = ar_context_init(&ohci->ar_response_ctx, ohci, PAGE_SIZE/4,
3589			      OHCI1394_AsRspRcvContextControlSet);
3590	if (err < 0)
3591		goto fail_arreq_ctx;
3592
3593	err = context_init(&ohci->at_request_ctx, ohci,
3594			   OHCI1394_AsReqTrContextControlSet, handle_at_packet);
3595	if (err < 0)
3596		goto fail_arrsp_ctx;
3597
3598	err = context_init(&ohci->at_response_ctx, ohci,
3599			   OHCI1394_AsRspTrContextControlSet, handle_at_packet);
3600	if (err < 0)
3601		goto fail_atreq_ctx;
3602
3603	reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
3604	ohci->ir_context_channels = ~0ULL;
3605	ohci->ir_context_support = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
3606	reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
3607	ohci->ir_context_mask = ohci->ir_context_support;
3608	ohci->n_ir = hweight32(ohci->ir_context_mask);
3609	size = sizeof(struct iso_context) * ohci->n_ir;
3610	ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
 
 
3611
3612	reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
3613	ohci->it_context_support = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
 
 
 
 
 
3614	reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
3615	ohci->it_context_mask = ohci->it_context_support;
3616	ohci->n_it = hweight32(ohci->it_context_mask);
3617	size = sizeof(struct iso_context) * ohci->n_it;
3618	ohci->it_context_list = kzalloc(size, GFP_KERNEL);
3619
3620	if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
3621		err = -ENOMEM;
3622		goto fail_contexts;
3623	}
3624
3625	ohci->self_id_cpu = ohci->misc_buffer     + PAGE_SIZE/2;
3626	ohci->self_id_bus = ohci->misc_buffer_bus + PAGE_SIZE/2;
3627
3628	bus_options = reg_read(ohci, OHCI1394_BusOptions);
3629	max_receive = (bus_options >> 12) & 0xf;
3630	link_speed = bus_options & 0x7;
3631	guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
3632		reg_read(ohci, OHCI1394_GUIDLo);
3633
 
 
 
 
 
 
 
 
 
3634	err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
3635	if (err)
3636		goto fail_contexts;
3637
3638	version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
3639	dev_notice(&dev->dev,
3640		  "added OHCI v%x.%x device as card %d, "
3641		  "%d IR + %d IT contexts, quirks 0x%x\n",
3642		  version >> 16, version & 0xff, ohci->card.index,
3643		  ohci->n_ir, ohci->n_it, ohci->quirks);
 
 
3644
3645	return 0;
3646
3647 fail_contexts:
3648	kfree(ohci->ir_context_list);
3649	kfree(ohci->it_context_list);
3650	context_release(&ohci->at_response_ctx);
3651 fail_atreq_ctx:
3652	context_release(&ohci->at_request_ctx);
3653 fail_arrsp_ctx:
3654	ar_context_release(&ohci->ar_response_ctx);
3655 fail_arreq_ctx:
3656	ar_context_release(&ohci->ar_request_ctx);
3657 fail_misc_buf:
3658	dma_free_coherent(ohci->card.device, PAGE_SIZE,
3659			  ohci->misc_buffer, ohci->misc_buffer_bus);
3660 fail_iounmap:
3661	pci_iounmap(dev, ohci->registers);
3662 fail_iomem:
3663	pci_release_region(dev, 0);
3664 fail_disable:
3665	pci_disable_device(dev);
3666 fail_free:
3667	kfree(ohci);
3668	pmac_ohci_off(dev);
3669 fail:
3670	if (err == -ENOMEM)
3671		dev_err(&dev->dev, "out of memory\n");
3672
3673	return err;
3674}
3675
3676static void pci_remove(struct pci_dev *dev)
3677{
3678	struct fw_ohci *ohci;
3679
3680	ohci = pci_get_drvdata(dev);
3681	reg_write(ohci, OHCI1394_IntMaskClear, ~0);
3682	flush_writes(ohci);
 
 
 
 
 
3683	cancel_work_sync(&ohci->bus_reset_work);
3684	fw_core_remove_card(&ohci->card);
3685
3686	/*
3687	 * FIXME: Fail all pending packets here, now that the upper
3688	 * layers can't queue any more.
3689	 */
3690
3691	software_reset(ohci);
3692	free_irq(dev->irq, ohci);
3693
3694	if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
3695		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
3696				  ohci->next_config_rom, ohci->next_config_rom_bus);
3697	if (ohci->config_rom)
3698		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
3699				  ohci->config_rom, ohci->config_rom_bus);
3700	ar_context_release(&ohci->ar_request_ctx);
3701	ar_context_release(&ohci->ar_response_ctx);
3702	dma_free_coherent(ohci->card.device, PAGE_SIZE,
3703			  ohci->misc_buffer, ohci->misc_buffer_bus);
3704	context_release(&ohci->at_request_ctx);
3705	context_release(&ohci->at_response_ctx);
3706	kfree(ohci->it_context_list);
3707	kfree(ohci->ir_context_list);
3708	pci_disable_msi(dev);
3709	pci_iounmap(dev, ohci->registers);
3710	pci_release_region(dev, 0);
3711	pci_disable_device(dev);
3712	kfree(ohci);
3713	pmac_ohci_off(dev);
3714
3715	dev_notice(&dev->dev, "removed fw-ohci device\n");
3716}
3717
3718#ifdef CONFIG_PM
3719static int pci_suspend(struct pci_dev *dev, pm_message_t state)
3720{
3721	struct fw_ohci *ohci = pci_get_drvdata(dev);
3722	int err;
3723
3724	software_reset(ohci);
3725	free_irq(dev->irq, ohci);
3726	pci_disable_msi(dev);
3727	err = pci_save_state(dev);
3728	if (err) {
3729		dev_err(&dev->dev, "pci_save_state failed\n");
3730		return err;
3731	}
3732	err = pci_set_power_state(dev, pci_choose_state(dev, state));
3733	if (err)
3734		dev_err(&dev->dev, "pci_set_power_state failed with %d\n", err);
3735	pmac_ohci_off(dev);
3736
3737	return 0;
3738}
3739
3740static int pci_resume(struct pci_dev *dev)
3741{
3742	struct fw_ohci *ohci = pci_get_drvdata(dev);
3743	int err;
3744
3745	pmac_ohci_on(dev);
3746	pci_set_power_state(dev, PCI_D0);
3747	pci_restore_state(dev);
3748	err = pci_enable_device(dev);
3749	if (err) {
3750		dev_err(&dev->dev, "pci_enable_device failed\n");
3751		return err;
3752	}
3753
3754	/* Some systems don't setup GUID register on resume from ram  */
3755	if (!reg_read(ohci, OHCI1394_GUIDLo) &&
3756					!reg_read(ohci, OHCI1394_GUIDHi)) {
3757		reg_write(ohci, OHCI1394_GUIDLo, (u32)ohci->card.guid);
3758		reg_write(ohci, OHCI1394_GUIDHi, (u32)(ohci->card.guid >> 32));
3759	}
3760
3761	err = ohci_enable(&ohci->card, NULL, 0);
3762	if (err)
3763		return err;
3764
3765	ohci_resume_iso_dma(ohci);
3766
3767	return 0;
3768}
3769#endif
3770
3771static const struct pci_device_id pci_table[] = {
3772	{ PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
3773	{ }
3774};
3775
3776MODULE_DEVICE_TABLE(pci, pci_table);
3777
3778static struct pci_driver fw_ohci_pci_driver = {
3779	.name		= ohci_driver_name,
3780	.id_table	= pci_table,
3781	.probe		= pci_probe,
3782	.remove		= pci_remove,
3783#ifdef CONFIG_PM
3784	.resume		= pci_resume,
3785	.suspend	= pci_suspend,
3786#endif
3787};
3788
3789module_pci_driver(fw_ohci_pci_driver);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3790
3791MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
3792MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
3793MODULE_LICENSE("GPL");
3794
3795/* Provide a module alias so root-on-sbp2 initrds don't break. */
3796#ifndef CONFIG_IEEE1394_OHCI1394_MODULE
3797MODULE_ALIAS("ohci1394");
3798#endif
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Driver for OHCI 1394 controllers
   4 *
   5 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   6 */
   7
   8#include <linux/bitops.h>
   9#include <linux/bug.h>
  10#include <linux/compiler.h>
  11#include <linux/delay.h>
  12#include <linux/device.h>
  13#include <linux/dma-mapping.h>
  14#include <linux/firewire.h>
  15#include <linux/firewire-constants.h>
  16#include <linux/init.h>
  17#include <linux/interrupt.h>
  18#include <linux/io.h>
  19#include <linux/kernel.h>
  20#include <linux/list.h>
  21#include <linux/mm.h>
  22#include <linux/module.h>
  23#include <linux/moduleparam.h>
  24#include <linux/mutex.h>
  25#include <linux/pci.h>
  26#include <linux/pci_ids.h>
  27#include <linux/slab.h>
  28#include <linux/spinlock.h>
  29#include <linux/string.h>
  30#include <linux/time.h>
  31#include <linux/vmalloc.h>
  32#include <linux/workqueue.h>
  33
  34#include <asm/byteorder.h>
  35#include <asm/page.h>
  36
  37#ifdef CONFIG_PPC_PMAC
  38#include <asm/pmac_feature.h>
  39#endif
  40
  41#include "core.h"
  42#include "ohci.h"
  43
  44#define ohci_info(ohci, f, args...)	dev_info(ohci->card.device, f, ##args)
  45#define ohci_notice(ohci, f, args...)	dev_notice(ohci->card.device, f, ##args)
  46#define ohci_err(ohci, f, args...)	dev_err(ohci->card.device, f, ##args)
  47
  48#define DESCRIPTOR_OUTPUT_MORE		0
  49#define DESCRIPTOR_OUTPUT_LAST		(1 << 12)
  50#define DESCRIPTOR_INPUT_MORE		(2 << 12)
  51#define DESCRIPTOR_INPUT_LAST		(3 << 12)
  52#define DESCRIPTOR_STATUS		(1 << 11)
  53#define DESCRIPTOR_KEY_IMMEDIATE	(2 << 8)
  54#define DESCRIPTOR_PING			(1 << 7)
  55#define DESCRIPTOR_YY			(1 << 6)
  56#define DESCRIPTOR_NO_IRQ		(0 << 4)
  57#define DESCRIPTOR_IRQ_ERROR		(1 << 4)
  58#define DESCRIPTOR_IRQ_ALWAYS		(3 << 4)
  59#define DESCRIPTOR_BRANCH_ALWAYS	(3 << 2)
  60#define DESCRIPTOR_WAIT			(3 << 0)
  61
  62#define DESCRIPTOR_CMD			(0xf << 12)
  63
  64struct descriptor {
  65	__le16 req_count;
  66	__le16 control;
  67	__le32 data_address;
  68	__le32 branch_address;
  69	__le16 res_count;
  70	__le16 transfer_status;
  71} __attribute__((aligned(16)));
  72
  73#define CONTROL_SET(regs)	(regs)
  74#define CONTROL_CLEAR(regs)	((regs) + 4)
  75#define COMMAND_PTR(regs)	((regs) + 12)
  76#define CONTEXT_MATCH(regs)	((regs) + 16)
  77
  78#define AR_BUFFER_SIZE	(32*1024)
  79#define AR_BUFFERS_MIN	DIV_ROUND_UP(AR_BUFFER_SIZE, PAGE_SIZE)
  80/* we need at least two pages for proper list management */
  81#define AR_BUFFERS	(AR_BUFFERS_MIN >= 2 ? AR_BUFFERS_MIN : 2)
  82
  83#define MAX_ASYNC_PAYLOAD	4096
  84#define MAX_AR_PACKET_SIZE	(16 + MAX_ASYNC_PAYLOAD + 4)
  85#define AR_WRAPAROUND_PAGES	DIV_ROUND_UP(MAX_AR_PACKET_SIZE, PAGE_SIZE)
  86
  87struct ar_context {
  88	struct fw_ohci *ohci;
  89	struct page *pages[AR_BUFFERS];
  90	void *buffer;
  91	struct descriptor *descriptors;
  92	dma_addr_t descriptors_bus;
  93	void *pointer;
  94	unsigned int last_buffer_index;
  95	u32 regs;
  96	struct tasklet_struct tasklet;
  97};
  98
  99struct context;
 100
 101typedef int (*descriptor_callback_t)(struct context *ctx,
 102				     struct descriptor *d,
 103				     struct descriptor *last);
 104
 105/*
 106 * A buffer that contains a block of DMA-able coherent memory used for
 107 * storing a portion of a DMA descriptor program.
 108 */
 109struct descriptor_buffer {
 110	struct list_head list;
 111	dma_addr_t buffer_bus;
 112	size_t buffer_size;
 113	size_t used;
 114	struct descriptor buffer[];
 115};
 116
 117struct context {
 118	struct fw_ohci *ohci;
 119	u32 regs;
 120	int total_allocation;
 121	u32 current_bus;
 122	bool running;
 123	bool flushing;
 124
 125	/*
 126	 * List of page-sized buffers for storing DMA descriptors.
 127	 * Head of list contains buffers in use and tail of list contains
 128	 * free buffers.
 129	 */
 130	struct list_head buffer_list;
 131
 132	/*
 133	 * Pointer to a buffer inside buffer_list that contains the tail
 134	 * end of the current DMA program.
 135	 */
 136	struct descriptor_buffer *buffer_tail;
 137
 138	/*
 139	 * The descriptor containing the branch address of the first
 140	 * descriptor that has not yet been filled by the device.
 141	 */
 142	struct descriptor *last;
 143
 144	/*
 145	 * The last descriptor block in the DMA program. It contains the branch
 146	 * address that must be updated upon appending a new descriptor.
 147	 */
 148	struct descriptor *prev;
 149	int prev_z;
 150
 151	descriptor_callback_t callback;
 152
 153	struct tasklet_struct tasklet;
 154};
 155
 156#define IT_HEADER_SY(v)          ((v) <<  0)
 157#define IT_HEADER_TCODE(v)       ((v) <<  4)
 158#define IT_HEADER_CHANNEL(v)     ((v) <<  8)
 159#define IT_HEADER_TAG(v)         ((v) << 14)
 160#define IT_HEADER_SPEED(v)       ((v) << 16)
 161#define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
 162
 163struct iso_context {
 164	struct fw_iso_context base;
 165	struct context context;
 166	void *header;
 167	size_t header_length;
 168	unsigned long flushing_completions;
 169	u32 mc_buffer_bus;
 170	u16 mc_completed;
 171	u16 last_timestamp;
 172	u8 sync;
 173	u8 tags;
 174};
 175
 176#define CONFIG_ROM_SIZE 1024
 177
 178struct fw_ohci {
 179	struct fw_card card;
 180
 181	__iomem char *registers;
 182	int node_id;
 183	int generation;
 184	int request_generation;	/* for timestamping incoming requests */
 185	unsigned quirks;
 186	unsigned int pri_req_max;
 187	u32 bus_time;
 188	bool bus_time_running;
 189	bool is_root;
 190	bool csr_state_setclear_abdicate;
 191	int n_ir;
 192	int n_it;
 193	/*
 194	 * Spinlock for accessing fw_ohci data.  Never call out of
 195	 * this driver with this lock held.
 196	 */
 197	spinlock_t lock;
 198
 199	struct mutex phy_reg_mutex;
 200
 201	void *misc_buffer;
 202	dma_addr_t misc_buffer_bus;
 203
 204	struct ar_context ar_request_ctx;
 205	struct ar_context ar_response_ctx;
 206	struct context at_request_ctx;
 207	struct context at_response_ctx;
 208
 209	u32 it_context_support;
 210	u32 it_context_mask;     /* unoccupied IT contexts */
 211	struct iso_context *it_context_list;
 212	u64 ir_context_channels; /* unoccupied channels */
 213	u32 ir_context_support;
 214	u32 ir_context_mask;     /* unoccupied IR contexts */
 215	struct iso_context *ir_context_list;
 216	u64 mc_channels; /* channels in use by the multichannel IR context */
 217	bool mc_allocated;
 218
 219	__be32    *config_rom;
 220	dma_addr_t config_rom_bus;
 221	__be32    *next_config_rom;
 222	dma_addr_t next_config_rom_bus;
 223	__be32     next_header;
 224
 225	__le32    *self_id;
 226	dma_addr_t self_id_bus;
 227	struct work_struct bus_reset_work;
 228
 229	u32 self_id_buffer[512];
 230};
 231
 232static struct workqueue_struct *selfid_workqueue;
 233
 234static inline struct fw_ohci *fw_ohci(struct fw_card *card)
 235{
 236	return container_of(card, struct fw_ohci, card);
 237}
 238
 239#define IT_CONTEXT_CYCLE_MATCH_ENABLE	0x80000000
 240#define IR_CONTEXT_BUFFER_FILL		0x80000000
 241#define IR_CONTEXT_ISOCH_HEADER		0x40000000
 242#define IR_CONTEXT_CYCLE_MATCH_ENABLE	0x20000000
 243#define IR_CONTEXT_MULTI_CHANNEL_MODE	0x10000000
 244#define IR_CONTEXT_DUAL_BUFFER_MODE	0x08000000
 245
 246#define CONTEXT_RUN	0x8000
 247#define CONTEXT_WAKE	0x1000
 248#define CONTEXT_DEAD	0x0800
 249#define CONTEXT_ACTIVE	0x0400
 250
 251#define OHCI1394_MAX_AT_REQ_RETRIES	0xf
 252#define OHCI1394_MAX_AT_RESP_RETRIES	0x2
 253#define OHCI1394_MAX_PHYS_RESP_RETRIES	0x8
 254
 255#define OHCI1394_REGISTER_SIZE		0x800
 256#define OHCI1394_PCI_HCI_Control	0x40
 257#define SELF_ID_BUF_SIZE		0x800
 258#define OHCI_TCODE_PHY_PACKET		0x0e
 259#define OHCI_VERSION_1_1		0x010010
 260
 261static char ohci_driver_name[] = KBUILD_MODNAME;
 262
 263#define PCI_VENDOR_ID_PINNACLE_SYSTEMS	0x11bd
 264#define PCI_DEVICE_ID_AGERE_FW643	0x5901
 265#define PCI_DEVICE_ID_CREATIVE_SB1394	0x4001
 266#define PCI_DEVICE_ID_JMICRON_JMB38X_FW	0x2380
 267#define PCI_DEVICE_ID_TI_TSB12LV22	0x8009
 268#define PCI_DEVICE_ID_TI_TSB12LV26	0x8020
 269#define PCI_DEVICE_ID_TI_TSB82AA2	0x8025
 270#define PCI_DEVICE_ID_VIA_VT630X	0x3044
 271#define PCI_REV_ID_VIA_VT6306		0x46
 272#define PCI_DEVICE_ID_VIA_VT6315	0x3403
 273
 274#define QUIRK_CYCLE_TIMER		0x1
 275#define QUIRK_RESET_PACKET		0x2
 276#define QUIRK_BE_HEADERS		0x4
 277#define QUIRK_NO_1394A			0x8
 278#define QUIRK_NO_MSI			0x10
 279#define QUIRK_TI_SLLZ059		0x20
 280#define QUIRK_IR_WAKE			0x40
 281
 282// On PCI Express Root Complex in any type of AMD Ryzen machine, VIA VT6306/6307/6308 with Asmedia
 283// ASM1083/1085 brings an inconvenience that the read accesses to 'Isochronous Cycle Timer' register
 284// (at offset 0xf0 in PCI I/O space) often causes unexpected system reboot. The mechanism is not
 285// clear, since the read access to the other registers is enough safe; e.g. 'Node ID' register,
 286// while it is probable due to detection of any type of PCIe error.
 287#define QUIRK_REBOOT_BY_CYCLE_TIMER_READ	0x80000000
 288
 289#if IS_ENABLED(CONFIG_X86)
 290
 291static bool has_reboot_by_cycle_timer_read_quirk(const struct fw_ohci *ohci)
 292{
 293	return !!(ohci->quirks & QUIRK_REBOOT_BY_CYCLE_TIMER_READ);
 294}
 295
 296#define PCI_DEVICE_ID_ASMEDIA_ASM108X	0x1080
 297
 298static bool detect_vt630x_with_asm1083_on_amd_ryzen_machine(const struct pci_dev *pdev)
 299{
 300	const struct pci_dev *pcie_to_pci_bridge;
 301
 302	// Detect any type of AMD Ryzen machine.
 303	if (!static_cpu_has(X86_FEATURE_ZEN))
 304		return false;
 305
 306	// Detect VIA VT6306/6307/6308.
 307	if (pdev->vendor != PCI_VENDOR_ID_VIA)
 308		return false;
 309	if (pdev->device != PCI_DEVICE_ID_VIA_VT630X)
 310		return false;
 311
 312	// Detect Asmedia ASM1083/1085.
 313	pcie_to_pci_bridge = pdev->bus->self;
 314	if (pcie_to_pci_bridge->vendor != PCI_VENDOR_ID_ASMEDIA)
 315		return false;
 316	if (pcie_to_pci_bridge->device != PCI_DEVICE_ID_ASMEDIA_ASM108X)
 317		return false;
 318
 319	return true;
 320}
 321
 322#else
 323#define has_reboot_by_cycle_timer_read_quirk(ohci) false
 324#define detect_vt630x_with_asm1083_on_amd_ryzen_machine(pdev)	false
 325#endif
 
 
 326
 327/* In case of multiple matches in ohci_quirks[], only the first one is used. */
 328static const struct {
 329	unsigned short vendor, device, revision, flags;
 330} ohci_quirks[] = {
 331	{PCI_VENDOR_ID_AL, PCI_ANY_ID, PCI_ANY_ID,
 332		QUIRK_CYCLE_TIMER},
 333
 334	{PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_FW, PCI_ANY_ID,
 335		QUIRK_BE_HEADERS},
 336
 337	{PCI_VENDOR_ID_ATT, PCI_DEVICE_ID_AGERE_FW643, 6,
 338		QUIRK_NO_MSI},
 339
 340	{PCI_VENDOR_ID_CREATIVE, PCI_DEVICE_ID_CREATIVE_SB1394, PCI_ANY_ID,
 341		QUIRK_RESET_PACKET},
 342
 343	{PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB38X_FW, PCI_ANY_ID,
 344		QUIRK_NO_MSI},
 345
 346	{PCI_VENDOR_ID_NEC, PCI_ANY_ID, PCI_ANY_ID,
 347		QUIRK_CYCLE_TIMER},
 348
 349	{PCI_VENDOR_ID_O2, PCI_ANY_ID, PCI_ANY_ID,
 350		QUIRK_NO_MSI},
 351
 352	{PCI_VENDOR_ID_RICOH, PCI_ANY_ID, PCI_ANY_ID,
 353		QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
 354
 355	{PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV22, PCI_ANY_ID,
 356		QUIRK_CYCLE_TIMER | QUIRK_RESET_PACKET | QUIRK_NO_1394A},
 357
 358	{PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV26, PCI_ANY_ID,
 359		QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
 360
 361	{PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB82AA2, PCI_ANY_ID,
 362		QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
 363
 364	{PCI_VENDOR_ID_TI, PCI_ANY_ID, PCI_ANY_ID,
 365		QUIRK_RESET_PACKET},
 366
 367	{PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT630X, PCI_REV_ID_VIA_VT6306,
 368		QUIRK_CYCLE_TIMER | QUIRK_IR_WAKE},
 369
 370	{PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT6315, 0,
 371		QUIRK_CYCLE_TIMER /* FIXME: necessary? */ | QUIRK_NO_MSI},
 372
 373	{PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT6315, PCI_ANY_ID,
 374		QUIRK_NO_MSI},
 375
 376	{PCI_VENDOR_ID_VIA, PCI_ANY_ID, PCI_ANY_ID,
 377		QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
 378};
 379
 380/* This overrides anything that was found in ohci_quirks[]. */
 381static int param_quirks;
 382module_param_named(quirks, param_quirks, int, 0644);
 383MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
 384	", nonatomic cycle timer = "	__stringify(QUIRK_CYCLE_TIMER)
 385	", reset packet generation = "	__stringify(QUIRK_RESET_PACKET)
 386	", AR/selfID endianness = "	__stringify(QUIRK_BE_HEADERS)
 387	", no 1394a enhancements = "	__stringify(QUIRK_NO_1394A)
 388	", disable MSI = "		__stringify(QUIRK_NO_MSI)
 389	", TI SLLZ059 erratum = "	__stringify(QUIRK_TI_SLLZ059)
 390	", IR wake unreliable = "	__stringify(QUIRK_IR_WAKE)
 391	")");
 392
 393#define OHCI_PARAM_DEBUG_AT_AR		1
 394#define OHCI_PARAM_DEBUG_SELFIDS	2
 395#define OHCI_PARAM_DEBUG_IRQS		4
 396#define OHCI_PARAM_DEBUG_BUSRESETS	8 /* only effective before chip init */
 397
 398static int param_debug;
 399module_param_named(debug, param_debug, int, 0644);
 400MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
 401	", AT/AR events = "	__stringify(OHCI_PARAM_DEBUG_AT_AR)
 402	", self-IDs = "		__stringify(OHCI_PARAM_DEBUG_SELFIDS)
 403	", IRQs = "		__stringify(OHCI_PARAM_DEBUG_IRQS)
 404	", busReset events = "	__stringify(OHCI_PARAM_DEBUG_BUSRESETS)
 405	", or a combination, or all = -1)");
 406
 407static bool param_remote_dma;
 408module_param_named(remote_dma, param_remote_dma, bool, 0444);
 409MODULE_PARM_DESC(remote_dma, "Enable unfiltered remote DMA (default = N)");
 410
 411static void log_irqs(struct fw_ohci *ohci, u32 evt)
 412{
 413	if (likely(!(param_debug &
 414			(OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
 415		return;
 416
 417	if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
 418	    !(evt & OHCI1394_busReset))
 419		return;
 420
 421	ohci_notice(ohci, "IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
 
 422	    evt & OHCI1394_selfIDComplete	? " selfID"		: "",
 423	    evt & OHCI1394_RQPkt		? " AR_req"		: "",
 424	    evt & OHCI1394_RSPkt		? " AR_resp"		: "",
 425	    evt & OHCI1394_reqTxComplete	? " AT_req"		: "",
 426	    evt & OHCI1394_respTxComplete	? " AT_resp"		: "",
 427	    evt & OHCI1394_isochRx		? " IR"			: "",
 428	    evt & OHCI1394_isochTx		? " IT"			: "",
 429	    evt & OHCI1394_postedWriteErr	? " postedWriteErr"	: "",
 430	    evt & OHCI1394_cycleTooLong		? " cycleTooLong"	: "",
 431	    evt & OHCI1394_cycle64Seconds	? " cycle64Seconds"	: "",
 432	    evt & OHCI1394_cycleInconsistent	? " cycleInconsistent"	: "",
 433	    evt & OHCI1394_regAccessFail	? " regAccessFail"	: "",
 434	    evt & OHCI1394_unrecoverableError	? " unrecoverableError"	: "",
 435	    evt & OHCI1394_busReset		? " busReset"		: "",
 436	    evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
 437		    OHCI1394_RSPkt | OHCI1394_reqTxComplete |
 438		    OHCI1394_respTxComplete | OHCI1394_isochRx |
 439		    OHCI1394_isochTx | OHCI1394_postedWriteErr |
 440		    OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
 441		    OHCI1394_cycleInconsistent |
 442		    OHCI1394_regAccessFail | OHCI1394_busReset)
 443						? " ?"			: "");
 444}
 445
 446static const char *speed[] = {
 447	[0] = "S100", [1] = "S200", [2] = "S400",    [3] = "beta",
 448};
 449static const char *power[] = {
 450	[0] = "+0W",  [1] = "+15W", [2] = "+30W",    [3] = "+45W",
 451	[4] = "-3W",  [5] = " ?W",  [6] = "-3..-6W", [7] = "-3..-10W",
 452};
 453static const char port[] = { '.', '-', 'p', 'c', };
 454
 455static char _p(u32 *s, int shift)
 456{
 457	return port[*s >> shift & 3];
 458}
 459
 460static void log_selfids(struct fw_ohci *ohci, int generation, int self_id_count)
 461{
 462	u32 *s;
 463
 464	if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
 465		return;
 466
 467	ohci_notice(ohci, "%d selfIDs, generation %d, local node ID %04x\n",
 468		    self_id_count, generation, ohci->node_id);
 
 469
 470	for (s = ohci->self_id_buffer; self_id_count--; ++s)
 471		if ((*s & 1 << 23) == 0)
 472			ohci_notice(ohci,
 473			    "selfID 0: %08x, phy %d [%c%c%c] %s gc=%d %s %s%s%s\n",
 
 474			    *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
 475			    speed[*s >> 14 & 3], *s >> 16 & 63,
 476			    power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
 477			    *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
 478		else
 479			ohci_notice(ohci,
 480			    "selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
 481			    *s, *s >> 24 & 63,
 482			    _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
 483			    _p(s,  8), _p(s,  6), _p(s,  4), _p(s,  2));
 484}
 485
 486static const char *evts[] = {
 487	[0x00] = "evt_no_status",	[0x01] = "-reserved-",
 488	[0x02] = "evt_long_packet",	[0x03] = "evt_missing_ack",
 489	[0x04] = "evt_underrun",	[0x05] = "evt_overrun",
 490	[0x06] = "evt_descriptor_read",	[0x07] = "evt_data_read",
 491	[0x08] = "evt_data_write",	[0x09] = "evt_bus_reset",
 492	[0x0a] = "evt_timeout",		[0x0b] = "evt_tcode_err",
 493	[0x0c] = "-reserved-",		[0x0d] = "-reserved-",
 494	[0x0e] = "evt_unknown",		[0x0f] = "evt_flushed",
 495	[0x10] = "-reserved-",		[0x11] = "ack_complete",
 496	[0x12] = "ack_pending ",	[0x13] = "-reserved-",
 497	[0x14] = "ack_busy_X",		[0x15] = "ack_busy_A",
 498	[0x16] = "ack_busy_B",		[0x17] = "-reserved-",
 499	[0x18] = "-reserved-",		[0x19] = "-reserved-",
 500	[0x1a] = "-reserved-",		[0x1b] = "ack_tardy",
 501	[0x1c] = "-reserved-",		[0x1d] = "ack_data_error",
 502	[0x1e] = "ack_type_error",	[0x1f] = "-reserved-",
 503	[0x20] = "pending/cancelled",
 504};
 505static const char *tcodes[] = {
 506	[0x0] = "QW req",		[0x1] = "BW req",
 507	[0x2] = "W resp",		[0x3] = "-reserved-",
 508	[0x4] = "QR req",		[0x5] = "BR req",
 509	[0x6] = "QR resp",		[0x7] = "BR resp",
 510	[0x8] = "cycle start",		[0x9] = "Lk req",
 511	[0xa] = "async stream packet",	[0xb] = "Lk resp",
 512	[0xc] = "-reserved-",		[0xd] = "-reserved-",
 513	[0xe] = "link internal",	[0xf] = "-reserved-",
 514};
 515
 516static void log_ar_at_event(struct fw_ohci *ohci,
 517			    char dir, int speed, u32 *header, int evt)
 518{
 519	int tcode = header[0] >> 4 & 0xf;
 520	char specific[12];
 521
 522	if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
 523		return;
 524
 525	if (unlikely(evt >= ARRAY_SIZE(evts)))
 526			evt = 0x1f;
 527
 528	if (evt == OHCI1394_evt_bus_reset) {
 529		ohci_notice(ohci, "A%c evt_bus_reset, generation %d\n",
 530			    dir, (header[2] >> 16) & 0xff);
 
 531		return;
 532	}
 533
 534	switch (tcode) {
 535	case 0x0: case 0x6: case 0x8:
 536		snprintf(specific, sizeof(specific), " = %08x",
 537			 be32_to_cpu((__force __be32)header[3]));
 538		break;
 539	case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
 540		snprintf(specific, sizeof(specific), " %x,%x",
 541			 header[3] >> 16, header[3] & 0xffff);
 542		break;
 543	default:
 544		specific[0] = '\0';
 545	}
 546
 547	switch (tcode) {
 548	case 0xa:
 549		ohci_notice(ohci, "A%c %s, %s\n",
 550			    dir, evts[evt], tcodes[tcode]);
 
 551		break;
 552	case 0xe:
 553		ohci_notice(ohci, "A%c %s, PHY %08x %08x\n",
 554			    dir, evts[evt], header[1], header[2]);
 
 555		break;
 556	case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
 557		ohci_notice(ohci,
 558			    "A%c spd %x tl %02x, %04x -> %04x, %s, %s, %04x%08x%s\n",
 559			    dir, speed, header[0] >> 10 & 0x3f,
 560			    header[1] >> 16, header[0] >> 16, evts[evt],
 561			    tcodes[tcode], header[1] & 0xffff, header[2], specific);
 
 
 562		break;
 563	default:
 564		ohci_notice(ohci,
 565			    "A%c spd %x tl %02x, %04x -> %04x, %s, %s%s\n",
 566			    dir, speed, header[0] >> 10 & 0x3f,
 567			    header[1] >> 16, header[0] >> 16, evts[evt],
 568			    tcodes[tcode], specific);
 
 
 569	}
 570}
 571
 572static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
 573{
 574	writel(data, ohci->registers + offset);
 575}
 576
 577static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
 578{
 579	return readl(ohci->registers + offset);
 580}
 581
 582static inline void flush_writes(const struct fw_ohci *ohci)
 583{
 584	/* Do a dummy read to flush writes. */
 585	reg_read(ohci, OHCI1394_Version);
 586}
 587
 588/*
 589 * Beware!  read_phy_reg(), write_phy_reg(), update_phy_reg(), and
 590 * read_paged_phy_reg() require the caller to hold ohci->phy_reg_mutex.
 591 * In other words, only use ohci_read_phy_reg() and ohci_update_phy_reg()
 592 * directly.  Exceptions are intrinsically serialized contexts like pci_probe.
 593 */
 594static int read_phy_reg(struct fw_ohci *ohci, int addr)
 595{
 596	u32 val;
 597	int i;
 598
 599	reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
 600	for (i = 0; i < 3 + 100; i++) {
 601		val = reg_read(ohci, OHCI1394_PhyControl);
 602		if (!~val)
 603			return -ENODEV; /* Card was ejected. */
 604
 605		if (val & OHCI1394_PhyControl_ReadDone)
 606			return OHCI1394_PhyControl_ReadData(val);
 607
 608		/*
 609		 * Try a few times without waiting.  Sleeping is necessary
 610		 * only when the link/PHY interface is busy.
 611		 */
 612		if (i >= 3)
 613			msleep(1);
 614	}
 615	ohci_err(ohci, "failed to read phy reg %d\n", addr);
 616	dump_stack();
 617
 618	return -EBUSY;
 619}
 620
 621static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val)
 622{
 623	int i;
 624
 625	reg_write(ohci, OHCI1394_PhyControl,
 626		  OHCI1394_PhyControl_Write(addr, val));
 627	for (i = 0; i < 3 + 100; i++) {
 628		val = reg_read(ohci, OHCI1394_PhyControl);
 629		if (!~val)
 630			return -ENODEV; /* Card was ejected. */
 631
 632		if (!(val & OHCI1394_PhyControl_WritePending))
 633			return 0;
 634
 635		if (i >= 3)
 636			msleep(1);
 637	}
 638	ohci_err(ohci, "failed to write phy reg %d, val %u\n", addr, val);
 639	dump_stack();
 640
 641	return -EBUSY;
 642}
 643
 644static int update_phy_reg(struct fw_ohci *ohci, int addr,
 645			  int clear_bits, int set_bits)
 646{
 647	int ret = read_phy_reg(ohci, addr);
 648	if (ret < 0)
 649		return ret;
 650
 651	/*
 652	 * The interrupt status bits are cleared by writing a one bit.
 653	 * Avoid clearing them unless explicitly requested in set_bits.
 654	 */
 655	if (addr == 5)
 656		clear_bits |= PHY_INT_STATUS_BITS;
 657
 658	return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits);
 659}
 660
 661static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr)
 662{
 663	int ret;
 664
 665	ret = update_phy_reg(ohci, 7, PHY_PAGE_SELECT, page << 5);
 666	if (ret < 0)
 667		return ret;
 668
 669	return read_phy_reg(ohci, addr);
 670}
 671
 672static int ohci_read_phy_reg(struct fw_card *card, int addr)
 673{
 674	struct fw_ohci *ohci = fw_ohci(card);
 675	int ret;
 676
 677	mutex_lock(&ohci->phy_reg_mutex);
 678	ret = read_phy_reg(ohci, addr);
 679	mutex_unlock(&ohci->phy_reg_mutex);
 680
 681	return ret;
 682}
 683
 684static int ohci_update_phy_reg(struct fw_card *card, int addr,
 685			       int clear_bits, int set_bits)
 686{
 687	struct fw_ohci *ohci = fw_ohci(card);
 688	int ret;
 689
 690	mutex_lock(&ohci->phy_reg_mutex);
 691	ret = update_phy_reg(ohci, addr, clear_bits, set_bits);
 692	mutex_unlock(&ohci->phy_reg_mutex);
 693
 694	return ret;
 695}
 696
 697static inline dma_addr_t ar_buffer_bus(struct ar_context *ctx, unsigned int i)
 698{
 699	return page_private(ctx->pages[i]);
 700}
 701
 702static void ar_context_link_page(struct ar_context *ctx, unsigned int index)
 703{
 704	struct descriptor *d;
 705
 706	d = &ctx->descriptors[index];
 707	d->branch_address  &= cpu_to_le32(~0xf);
 708	d->res_count       =  cpu_to_le16(PAGE_SIZE);
 709	d->transfer_status =  0;
 710
 711	wmb(); /* finish init of new descriptors before branch_address update */
 712	d = &ctx->descriptors[ctx->last_buffer_index];
 713	d->branch_address  |= cpu_to_le32(1);
 714
 715	ctx->last_buffer_index = index;
 716
 717	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
 718}
 719
 720static void ar_context_release(struct ar_context *ctx)
 721{
 722	struct device *dev = ctx->ohci->card.device;
 723	unsigned int i;
 724
 725	if (!ctx->buffer)
 726		return;
 727
 728	vunmap(ctx->buffer);
 729
 730	for (i = 0; i < AR_BUFFERS; i++) {
 731		if (ctx->pages[i])
 732			dma_free_pages(dev, PAGE_SIZE, ctx->pages[i],
 733				       ar_buffer_bus(ctx, i), DMA_FROM_DEVICE);
 734	}
 735}
 736
 737static void ar_context_abort(struct ar_context *ctx, const char *error_msg)
 738{
 739	struct fw_ohci *ohci = ctx->ohci;
 740
 741	if (reg_read(ohci, CONTROL_CLEAR(ctx->regs)) & CONTEXT_RUN) {
 742		reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
 743		flush_writes(ohci);
 744
 745		ohci_err(ohci, "AR error: %s; DMA stopped\n", error_msg);
 
 746	}
 747	/* FIXME: restart? */
 748}
 749
 750static inline unsigned int ar_next_buffer_index(unsigned int index)
 751{
 752	return (index + 1) % AR_BUFFERS;
 753}
 754
 
 
 
 
 
 755static inline unsigned int ar_first_buffer_index(struct ar_context *ctx)
 756{
 757	return ar_next_buffer_index(ctx->last_buffer_index);
 758}
 759
 760/*
 761 * We search for the buffer that contains the last AR packet DMA data written
 762 * by the controller.
 763 */
 764static unsigned int ar_search_last_active_buffer(struct ar_context *ctx,
 765						 unsigned int *buffer_offset)
 766{
 767	unsigned int i, next_i, last = ctx->last_buffer_index;
 768	__le16 res_count, next_res_count;
 769
 770	i = ar_first_buffer_index(ctx);
 771	res_count = READ_ONCE(ctx->descriptors[i].res_count);
 772
 773	/* A buffer that is not yet completely filled must be the last one. */
 774	while (i != last && res_count == 0) {
 775
 776		/* Peek at the next descriptor. */
 777		next_i = ar_next_buffer_index(i);
 778		rmb(); /* read descriptors in order */
 779		next_res_count = READ_ONCE(ctx->descriptors[next_i].res_count);
 
 780		/*
 781		 * If the next descriptor is still empty, we must stop at this
 782		 * descriptor.
 783		 */
 784		if (next_res_count == cpu_to_le16(PAGE_SIZE)) {
 785			/*
 786			 * The exception is when the DMA data for one packet is
 787			 * split over three buffers; in this case, the middle
 788			 * buffer's descriptor might be never updated by the
 789			 * controller and look still empty, and we have to peek
 790			 * at the third one.
 791			 */
 792			if (MAX_AR_PACKET_SIZE > PAGE_SIZE && i != last) {
 793				next_i = ar_next_buffer_index(next_i);
 794				rmb();
 795				next_res_count = READ_ONCE(ctx->descriptors[next_i].res_count);
 
 796				if (next_res_count != cpu_to_le16(PAGE_SIZE))
 797					goto next_buffer_is_active;
 798			}
 799
 800			break;
 801		}
 802
 803next_buffer_is_active:
 804		i = next_i;
 805		res_count = next_res_count;
 806	}
 807
 808	rmb(); /* read res_count before the DMA data */
 809
 810	*buffer_offset = PAGE_SIZE - le16_to_cpu(res_count);
 811	if (*buffer_offset > PAGE_SIZE) {
 812		*buffer_offset = 0;
 813		ar_context_abort(ctx, "corrupted descriptor");
 814	}
 815
 816	return i;
 817}
 818
 819static void ar_sync_buffers_for_cpu(struct ar_context *ctx,
 820				    unsigned int end_buffer_index,
 821				    unsigned int end_buffer_offset)
 822{
 823	unsigned int i;
 824
 825	i = ar_first_buffer_index(ctx);
 826	while (i != end_buffer_index) {
 827		dma_sync_single_for_cpu(ctx->ohci->card.device,
 828					ar_buffer_bus(ctx, i),
 829					PAGE_SIZE, DMA_FROM_DEVICE);
 830		i = ar_next_buffer_index(i);
 831	}
 832	if (end_buffer_offset > 0)
 833		dma_sync_single_for_cpu(ctx->ohci->card.device,
 834					ar_buffer_bus(ctx, i),
 835					end_buffer_offset, DMA_FROM_DEVICE);
 836}
 837
 838#if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
 839#define cond_le32_to_cpu(v) \
 840	(ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
 841#else
 842#define cond_le32_to_cpu(v) le32_to_cpu(v)
 843#endif
 844
 845static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
 846{
 847	struct fw_ohci *ohci = ctx->ohci;
 848	struct fw_packet p;
 849	u32 status, length, tcode;
 850	int evt;
 851
 852	p.header[0] = cond_le32_to_cpu(buffer[0]);
 853	p.header[1] = cond_le32_to_cpu(buffer[1]);
 854	p.header[2] = cond_le32_to_cpu(buffer[2]);
 855
 856	tcode = (p.header[0] >> 4) & 0x0f;
 857	switch (tcode) {
 858	case TCODE_WRITE_QUADLET_REQUEST:
 859	case TCODE_READ_QUADLET_RESPONSE:
 860		p.header[3] = (__force __u32) buffer[3];
 861		p.header_length = 16;
 862		p.payload_length = 0;
 863		break;
 864
 865	case TCODE_READ_BLOCK_REQUEST :
 866		p.header[3] = cond_le32_to_cpu(buffer[3]);
 867		p.header_length = 16;
 868		p.payload_length = 0;
 869		break;
 870
 871	case TCODE_WRITE_BLOCK_REQUEST:
 872	case TCODE_READ_BLOCK_RESPONSE:
 873	case TCODE_LOCK_REQUEST:
 874	case TCODE_LOCK_RESPONSE:
 875		p.header[3] = cond_le32_to_cpu(buffer[3]);
 876		p.header_length = 16;
 877		p.payload_length = p.header[3] >> 16;
 878		if (p.payload_length > MAX_ASYNC_PAYLOAD) {
 879			ar_context_abort(ctx, "invalid packet length");
 880			return NULL;
 881		}
 882		break;
 883
 884	case TCODE_WRITE_RESPONSE:
 885	case TCODE_READ_QUADLET_REQUEST:
 886	case OHCI_TCODE_PHY_PACKET:
 887		p.header_length = 12;
 888		p.payload_length = 0;
 889		break;
 890
 891	default:
 892		ar_context_abort(ctx, "invalid tcode");
 893		return NULL;
 894	}
 895
 896	p.payload = (void *) buffer + p.header_length;
 897
 898	/* FIXME: What to do about evt_* errors? */
 899	length = (p.header_length + p.payload_length + 3) / 4;
 900	status = cond_le32_to_cpu(buffer[length]);
 901	evt    = (status >> 16) & 0x1f;
 902
 903	p.ack        = evt - 16;
 904	p.speed      = (status >> 21) & 0x7;
 905	p.timestamp  = status & 0xffff;
 906	p.generation = ohci->request_generation;
 907
 908	log_ar_at_event(ohci, 'R', p.speed, p.header, evt);
 909
 910	/*
 911	 * Several controllers, notably from NEC and VIA, forget to
 912	 * write ack_complete status at PHY packet reception.
 913	 */
 914	if (evt == OHCI1394_evt_no_status &&
 915	    (p.header[0] & 0xff) == (OHCI1394_phy_tcode << 4))
 916		p.ack = ACK_COMPLETE;
 917
 918	/*
 919	 * The OHCI bus reset handler synthesizes a PHY packet with
 920	 * the new generation number when a bus reset happens (see
 921	 * section 8.4.2.3).  This helps us determine when a request
 922	 * was received and make sure we send the response in the same
 923	 * generation.  We only need this for requests; for responses
 924	 * we use the unique tlabel for finding the matching
 925	 * request.
 926	 *
 927	 * Alas some chips sometimes emit bus reset packets with a
 928	 * wrong generation.  We set the correct generation for these
 929	 * at a slightly incorrect time (in bus_reset_work).
 930	 */
 931	if (evt == OHCI1394_evt_bus_reset) {
 932		if (!(ohci->quirks & QUIRK_RESET_PACKET))
 933			ohci->request_generation = (p.header[2] >> 16) & 0xff;
 934	} else if (ctx == &ohci->ar_request_ctx) {
 935		fw_core_handle_request(&ohci->card, &p);
 936	} else {
 937		fw_core_handle_response(&ohci->card, &p);
 938	}
 939
 940	return buffer + length + 1;
 941}
 942
 943static void *handle_ar_packets(struct ar_context *ctx, void *p, void *end)
 944{
 945	void *next;
 946
 947	while (p < end) {
 948		next = handle_ar_packet(ctx, p);
 949		if (!next)
 950			return p;
 951		p = next;
 952	}
 953
 954	return p;
 955}
 956
 957static void ar_recycle_buffers(struct ar_context *ctx, unsigned int end_buffer)
 958{
 959	unsigned int i;
 960
 961	i = ar_first_buffer_index(ctx);
 962	while (i != end_buffer) {
 963		dma_sync_single_for_device(ctx->ohci->card.device,
 964					   ar_buffer_bus(ctx, i),
 965					   PAGE_SIZE, DMA_FROM_DEVICE);
 966		ar_context_link_page(ctx, i);
 967		i = ar_next_buffer_index(i);
 968	}
 969}
 970
 971static void ar_context_tasklet(unsigned long data)
 972{
 973	struct ar_context *ctx = (struct ar_context *)data;
 974	unsigned int end_buffer_index, end_buffer_offset;
 975	void *p, *end;
 976
 977	p = ctx->pointer;
 978	if (!p)
 979		return;
 980
 981	end_buffer_index = ar_search_last_active_buffer(ctx,
 982							&end_buffer_offset);
 983	ar_sync_buffers_for_cpu(ctx, end_buffer_index, end_buffer_offset);
 984	end = ctx->buffer + end_buffer_index * PAGE_SIZE + end_buffer_offset;
 985
 986	if (end_buffer_index < ar_first_buffer_index(ctx)) {
 987		/*
 988		 * The filled part of the overall buffer wraps around; handle
 989		 * all packets up to the buffer end here.  If the last packet
 990		 * wraps around, its tail will be visible after the buffer end
 991		 * because the buffer start pages are mapped there again.
 992		 */
 993		void *buffer_end = ctx->buffer + AR_BUFFERS * PAGE_SIZE;
 994		p = handle_ar_packets(ctx, p, buffer_end);
 995		if (p < buffer_end)
 996			goto error;
 997		/* adjust p to point back into the actual buffer */
 998		p -= AR_BUFFERS * PAGE_SIZE;
 999	}
1000
1001	p = handle_ar_packets(ctx, p, end);
1002	if (p != end) {
1003		if (p > end)
1004			ar_context_abort(ctx, "inconsistent descriptor");
1005		goto error;
1006	}
1007
1008	ctx->pointer = p;
1009	ar_recycle_buffers(ctx, end_buffer_index);
1010
1011	return;
1012
1013error:
1014	ctx->pointer = NULL;
1015}
1016
1017static int ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci,
1018			   unsigned int descriptors_offset, u32 regs)
1019{
1020	struct device *dev = ohci->card.device;
1021	unsigned int i;
1022	dma_addr_t dma_addr;
1023	struct page *pages[AR_BUFFERS + AR_WRAPAROUND_PAGES];
1024	struct descriptor *d;
1025
1026	ctx->regs        = regs;
1027	ctx->ohci        = ohci;
1028	tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
1029
1030	for (i = 0; i < AR_BUFFERS; i++) {
1031		ctx->pages[i] = dma_alloc_pages(dev, PAGE_SIZE, &dma_addr,
1032						DMA_FROM_DEVICE, GFP_KERNEL);
1033		if (!ctx->pages[i])
1034			goto out_of_memory;
 
 
 
 
 
 
 
1035		set_page_private(ctx->pages[i], dma_addr);
1036		dma_sync_single_for_device(dev, dma_addr, PAGE_SIZE,
1037					   DMA_FROM_DEVICE);
1038	}
1039
1040	for (i = 0; i < AR_BUFFERS; i++)
1041		pages[i]              = ctx->pages[i];
1042	for (i = 0; i < AR_WRAPAROUND_PAGES; i++)
1043		pages[AR_BUFFERS + i] = ctx->pages[i];
1044	ctx->buffer = vmap(pages, ARRAY_SIZE(pages), VM_MAP, PAGE_KERNEL);
 
1045	if (!ctx->buffer)
1046		goto out_of_memory;
1047
1048	ctx->descriptors     = ohci->misc_buffer     + descriptors_offset;
1049	ctx->descriptors_bus = ohci->misc_buffer_bus + descriptors_offset;
1050
1051	for (i = 0; i < AR_BUFFERS; i++) {
1052		d = &ctx->descriptors[i];
1053		d->req_count      = cpu_to_le16(PAGE_SIZE);
1054		d->control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
1055						DESCRIPTOR_STATUS |
1056						DESCRIPTOR_BRANCH_ALWAYS);
1057		d->data_address   = cpu_to_le32(ar_buffer_bus(ctx, i));
1058		d->branch_address = cpu_to_le32(ctx->descriptors_bus +
1059			ar_next_buffer_index(i) * sizeof(struct descriptor));
1060	}
1061
1062	return 0;
1063
1064out_of_memory:
1065	ar_context_release(ctx);
1066
1067	return -ENOMEM;
1068}
1069
1070static void ar_context_run(struct ar_context *ctx)
1071{
1072	unsigned int i;
1073
1074	for (i = 0; i < AR_BUFFERS; i++)
1075		ar_context_link_page(ctx, i);
1076
1077	ctx->pointer = ctx->buffer;
1078
1079	reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ctx->descriptors_bus | 1);
1080	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
1081}
1082
1083static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
1084{
1085	__le16 branch;
1086
1087	branch = d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS);
1088
1089	/* figure out which descriptor the branch address goes in */
1090	if (z == 2 && branch == cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
1091		return d;
1092	else
1093		return d + z - 1;
1094}
1095
1096static void context_tasklet(unsigned long data)
1097{
1098	struct context *ctx = (struct context *) data;
1099	struct descriptor *d, *last;
1100	u32 address;
1101	int z;
1102	struct descriptor_buffer *desc;
1103
1104	desc = list_entry(ctx->buffer_list.next,
1105			struct descriptor_buffer, list);
1106	last = ctx->last;
1107	while (last->branch_address != 0) {
1108		struct descriptor_buffer *old_desc = desc;
1109		address = le32_to_cpu(last->branch_address);
1110		z = address & 0xf;
1111		address &= ~0xf;
1112		ctx->current_bus = address;
1113
1114		/* If the branch address points to a buffer outside of the
1115		 * current buffer, advance to the next buffer. */
1116		if (address < desc->buffer_bus ||
1117				address >= desc->buffer_bus + desc->used)
1118			desc = list_entry(desc->list.next,
1119					struct descriptor_buffer, list);
1120		d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
1121		last = find_branch_descriptor(d, z);
1122
1123		if (!ctx->callback(ctx, d, last))
1124			break;
1125
1126		if (old_desc != desc) {
1127			/* If we've advanced to the next buffer, move the
1128			 * previous buffer to the free list. */
1129			unsigned long flags;
1130			old_desc->used = 0;
1131			spin_lock_irqsave(&ctx->ohci->lock, flags);
1132			list_move_tail(&old_desc->list, &ctx->buffer_list);
1133			spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1134		}
1135		ctx->last = last;
1136	}
1137}
1138
1139/*
1140 * Allocate a new buffer and add it to the list of free buffers for this
1141 * context.  Must be called with ohci->lock held.
1142 */
1143static int context_add_buffer(struct context *ctx)
1144{
1145	struct descriptor_buffer *desc;
1146	dma_addr_t bus_addr;
1147	int offset;
1148
1149	/*
1150	 * 16MB of descriptors should be far more than enough for any DMA
1151	 * program.  This will catch run-away userspace or DoS attacks.
1152	 */
1153	if (ctx->total_allocation >= 16*1024*1024)
1154		return -ENOMEM;
1155
1156	desc = dmam_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE, &bus_addr, GFP_ATOMIC);
 
1157	if (!desc)
1158		return -ENOMEM;
1159
1160	offset = (void *)&desc->buffer - (void *)desc;
1161	/*
1162	 * Some controllers, like JMicron ones, always issue 0x20-byte DMA reads
1163	 * for descriptors, even 0x10-byte ones. This can cause page faults when
1164	 * an IOMMU is in use and the oversized read crosses a page boundary.
1165	 * Work around this by always leaving at least 0x10 bytes of padding.
1166	 */
1167	desc->buffer_size = PAGE_SIZE - offset - 0x10;
1168	desc->buffer_bus = bus_addr + offset;
1169	desc->used = 0;
1170
1171	list_add_tail(&desc->list, &ctx->buffer_list);
1172	ctx->total_allocation += PAGE_SIZE;
1173
1174	return 0;
1175}
1176
1177static int context_init(struct context *ctx, struct fw_ohci *ohci,
1178			u32 regs, descriptor_callback_t callback)
1179{
1180	ctx->ohci = ohci;
1181	ctx->regs = regs;
1182	ctx->total_allocation = 0;
1183
1184	INIT_LIST_HEAD(&ctx->buffer_list);
1185	if (context_add_buffer(ctx) < 0)
1186		return -ENOMEM;
1187
1188	ctx->buffer_tail = list_entry(ctx->buffer_list.next,
1189			struct descriptor_buffer, list);
1190
1191	tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
1192	ctx->callback = callback;
1193
1194	/*
1195	 * We put a dummy descriptor in the buffer that has a NULL
1196	 * branch address and looks like it's been sent.  That way we
1197	 * have a descriptor to append DMA programs to.
1198	 */
1199	memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
1200	ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
1201	ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
1202	ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
1203	ctx->last = ctx->buffer_tail->buffer;
1204	ctx->prev = ctx->buffer_tail->buffer;
1205	ctx->prev_z = 1;
1206
1207	return 0;
1208}
1209
1210static void context_release(struct context *ctx)
1211{
1212	struct fw_card *card = &ctx->ohci->card;
1213	struct descriptor_buffer *desc, *tmp;
1214
1215	list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list) {
1216		dmam_free_coherent(card->device, PAGE_SIZE, desc,
1217				   desc->buffer_bus - ((void *)&desc->buffer - (void *)desc));
1218	}
1219}
1220
1221/* Must be called with ohci->lock held */
1222static struct descriptor *context_get_descriptors(struct context *ctx,
1223						  int z, dma_addr_t *d_bus)
1224{
1225	struct descriptor *d = NULL;
1226	struct descriptor_buffer *desc = ctx->buffer_tail;
1227
1228	if (z * sizeof(*d) > desc->buffer_size)
1229		return NULL;
1230
1231	if (z * sizeof(*d) > desc->buffer_size - desc->used) {
1232		/* No room for the descriptor in this buffer, so advance to the
1233		 * next one. */
1234
1235		if (desc->list.next == &ctx->buffer_list) {
1236			/* If there is no free buffer next in the list,
1237			 * allocate one. */
1238			if (context_add_buffer(ctx) < 0)
1239				return NULL;
1240		}
1241		desc = list_entry(desc->list.next,
1242				struct descriptor_buffer, list);
1243		ctx->buffer_tail = desc;
1244	}
1245
1246	d = desc->buffer + desc->used / sizeof(*d);
1247	memset(d, 0, z * sizeof(*d));
1248	*d_bus = desc->buffer_bus + desc->used;
1249
1250	return d;
1251}
1252
1253static void context_run(struct context *ctx, u32 extra)
1254{
1255	struct fw_ohci *ohci = ctx->ohci;
1256
1257	reg_write(ohci, COMMAND_PTR(ctx->regs),
1258		  le32_to_cpu(ctx->last->branch_address));
1259	reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
1260	reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
1261	ctx->running = true;
1262	flush_writes(ohci);
1263}
1264
1265static void context_append(struct context *ctx,
1266			   struct descriptor *d, int z, int extra)
1267{
1268	dma_addr_t d_bus;
1269	struct descriptor_buffer *desc = ctx->buffer_tail;
1270	struct descriptor *d_branch;
1271
1272	d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
1273
1274	desc->used += (z + extra) * sizeof(*d);
1275
1276	wmb(); /* finish init of new descriptors before branch_address update */
1277
1278	d_branch = find_branch_descriptor(ctx->prev, ctx->prev_z);
1279	d_branch->branch_address = cpu_to_le32(d_bus | z);
1280
1281	/*
1282	 * VT6306 incorrectly checks only the single descriptor at the
1283	 * CommandPtr when the wake bit is written, so if it's a
1284	 * multi-descriptor block starting with an INPUT_MORE, put a copy of
1285	 * the branch address in the first descriptor.
1286	 *
1287	 * Not doing this for transmit contexts since not sure how it interacts
1288	 * with skip addresses.
1289	 */
1290	if (unlikely(ctx->ohci->quirks & QUIRK_IR_WAKE) &&
1291	    d_branch != ctx->prev &&
1292	    (ctx->prev->control & cpu_to_le16(DESCRIPTOR_CMD)) ==
1293	     cpu_to_le16(DESCRIPTOR_INPUT_MORE)) {
1294		ctx->prev->branch_address = cpu_to_le32(d_bus | z);
1295	}
1296
1297	ctx->prev = d;
1298	ctx->prev_z = z;
1299}
1300
1301static void context_stop(struct context *ctx)
1302{
1303	struct fw_ohci *ohci = ctx->ohci;
1304	u32 reg;
1305	int i;
1306
1307	reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
1308	ctx->running = false;
1309
1310	for (i = 0; i < 1000; i++) {
1311		reg = reg_read(ohci, CONTROL_SET(ctx->regs));
1312		if ((reg & CONTEXT_ACTIVE) == 0)
1313			return;
1314
1315		if (i)
1316			udelay(10);
1317	}
1318	ohci_err(ohci, "DMA context still active (0x%08x)\n", reg);
1319}
1320
1321struct driver_data {
1322	u8 inline_data[8];
1323	struct fw_packet *packet;
1324};
1325
1326/*
1327 * This function apppends a packet to the DMA queue for transmission.
1328 * Must always be called with the ochi->lock held to ensure proper
1329 * generation handling and locking around packet queue manipulation.
1330 */
1331static int at_context_queue_packet(struct context *ctx,
1332				   struct fw_packet *packet)
1333{
1334	struct fw_ohci *ohci = ctx->ohci;
1335	dma_addr_t d_bus, payload_bus;
1336	struct driver_data *driver_data;
1337	struct descriptor *d, *last;
1338	__le32 *header;
1339	int z, tcode;
1340
1341	d = context_get_descriptors(ctx, 4, &d_bus);
1342	if (d == NULL) {
1343		packet->ack = RCODE_SEND_ERROR;
1344		return -1;
1345	}
1346
1347	d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1348	d[0].res_count = cpu_to_le16(packet->timestamp);
1349
1350	/*
1351	 * The DMA format for asynchronous link packets is different
1352	 * from the IEEE1394 layout, so shift the fields around
1353	 * accordingly.
1354	 */
1355
1356	tcode = (packet->header[0] >> 4) & 0x0f;
1357	header = (__le32 *) &d[1];
1358	switch (tcode) {
1359	case TCODE_WRITE_QUADLET_REQUEST:
1360	case TCODE_WRITE_BLOCK_REQUEST:
1361	case TCODE_WRITE_RESPONSE:
1362	case TCODE_READ_QUADLET_REQUEST:
1363	case TCODE_READ_BLOCK_REQUEST:
1364	case TCODE_READ_QUADLET_RESPONSE:
1365	case TCODE_READ_BLOCK_RESPONSE:
1366	case TCODE_LOCK_REQUEST:
1367	case TCODE_LOCK_RESPONSE:
1368		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1369					(packet->speed << 16));
1370		header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
1371					(packet->header[0] & 0xffff0000));
1372		header[2] = cpu_to_le32(packet->header[2]);
1373
1374		if (TCODE_IS_BLOCK_PACKET(tcode))
1375			header[3] = cpu_to_le32(packet->header[3]);
1376		else
1377			header[3] = (__force __le32) packet->header[3];
1378
1379		d[0].req_count = cpu_to_le16(packet->header_length);
1380		break;
1381
1382	case TCODE_LINK_INTERNAL:
1383		header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
1384					(packet->speed << 16));
1385		header[1] = cpu_to_le32(packet->header[1]);
1386		header[2] = cpu_to_le32(packet->header[2]);
1387		d[0].req_count = cpu_to_le16(12);
1388
1389		if (is_ping_packet(&packet->header[1]))
1390			d[0].control |= cpu_to_le16(DESCRIPTOR_PING);
1391		break;
1392
1393	case TCODE_STREAM_DATA:
1394		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1395					(packet->speed << 16));
1396		header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
1397		d[0].req_count = cpu_to_le16(8);
1398		break;
1399
1400	default:
1401		/* BUG(); */
1402		packet->ack = RCODE_SEND_ERROR;
1403		return -1;
1404	}
1405
1406	BUILD_BUG_ON(sizeof(struct driver_data) > sizeof(struct descriptor));
1407	driver_data = (struct driver_data *) &d[3];
1408	driver_data->packet = packet;
1409	packet->driver_data = driver_data;
1410
1411	if (packet->payload_length > 0) {
1412		if (packet->payload_length > sizeof(driver_data->inline_data)) {
1413			payload_bus = dma_map_single(ohci->card.device,
1414						     packet->payload,
1415						     packet->payload_length,
1416						     DMA_TO_DEVICE);
1417			if (dma_mapping_error(ohci->card.device, payload_bus)) {
1418				packet->ack = RCODE_SEND_ERROR;
1419				return -1;
1420			}
1421			packet->payload_bus	= payload_bus;
1422			packet->payload_mapped	= true;
1423		} else {
1424			memcpy(driver_data->inline_data, packet->payload,
1425			       packet->payload_length);
1426			payload_bus = d_bus + 3 * sizeof(*d);
1427		}
1428
1429		d[2].req_count    = cpu_to_le16(packet->payload_length);
1430		d[2].data_address = cpu_to_le32(payload_bus);
1431		last = &d[2];
1432		z = 3;
1433	} else {
1434		last = &d[0];
1435		z = 2;
1436	}
1437
1438	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1439				     DESCRIPTOR_IRQ_ALWAYS |
1440				     DESCRIPTOR_BRANCH_ALWAYS);
1441
1442	/* FIXME: Document how the locking works. */
1443	if (ohci->generation != packet->generation) {
1444		if (packet->payload_mapped)
1445			dma_unmap_single(ohci->card.device, payload_bus,
1446					 packet->payload_length, DMA_TO_DEVICE);
1447		packet->ack = RCODE_GENERATION;
1448		return -1;
1449	}
1450
1451	context_append(ctx, d, z, 4 - z);
1452
1453	if (ctx->running)
1454		reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
1455	else
1456		context_run(ctx, 0);
1457
1458	return 0;
1459}
1460
1461static void at_context_flush(struct context *ctx)
1462{
1463	tasklet_disable(&ctx->tasklet);
1464
1465	ctx->flushing = true;
1466	context_tasklet((unsigned long)ctx);
1467	ctx->flushing = false;
1468
1469	tasklet_enable(&ctx->tasklet);
1470}
1471
1472static int handle_at_packet(struct context *context,
1473			    struct descriptor *d,
1474			    struct descriptor *last)
1475{
1476	struct driver_data *driver_data;
1477	struct fw_packet *packet;
1478	struct fw_ohci *ohci = context->ohci;
1479	int evt;
1480
1481	if (last->transfer_status == 0 && !context->flushing)
1482		/* This descriptor isn't done yet, stop iteration. */
1483		return 0;
1484
1485	driver_data = (struct driver_data *) &d[3];
1486	packet = driver_data->packet;
1487	if (packet == NULL)
1488		/* This packet was cancelled, just continue. */
1489		return 1;
1490
1491	if (packet->payload_mapped)
1492		dma_unmap_single(ohci->card.device, packet->payload_bus,
1493				 packet->payload_length, DMA_TO_DEVICE);
1494
1495	evt = le16_to_cpu(last->transfer_status) & 0x1f;
1496	packet->timestamp = le16_to_cpu(last->res_count);
1497
1498	log_ar_at_event(ohci, 'T', packet->speed, packet->header, evt);
1499
1500	switch (evt) {
1501	case OHCI1394_evt_timeout:
1502		/* Async response transmit timed out. */
1503		packet->ack = RCODE_CANCELLED;
1504		break;
1505
1506	case OHCI1394_evt_flushed:
1507		/*
1508		 * The packet was flushed should give same error as
1509		 * when we try to use a stale generation count.
1510		 */
1511		packet->ack = RCODE_GENERATION;
1512		break;
1513
1514	case OHCI1394_evt_missing_ack:
1515		if (context->flushing)
1516			packet->ack = RCODE_GENERATION;
1517		else {
1518			/*
1519			 * Using a valid (current) generation count, but the
1520			 * node is not on the bus or not sending acks.
1521			 */
1522			packet->ack = RCODE_NO_ACK;
1523		}
1524		break;
1525
1526	case ACK_COMPLETE + 0x10:
1527	case ACK_PENDING + 0x10:
1528	case ACK_BUSY_X + 0x10:
1529	case ACK_BUSY_A + 0x10:
1530	case ACK_BUSY_B + 0x10:
1531	case ACK_DATA_ERROR + 0x10:
1532	case ACK_TYPE_ERROR + 0x10:
1533		packet->ack = evt - 0x10;
1534		break;
1535
1536	case OHCI1394_evt_no_status:
1537		if (context->flushing) {
1538			packet->ack = RCODE_GENERATION;
1539			break;
1540		}
1541		fallthrough;
1542
1543	default:
1544		packet->ack = RCODE_SEND_ERROR;
1545		break;
1546	}
1547
1548	packet->callback(packet, &ohci->card, packet->ack);
1549
1550	return 1;
1551}
1552
1553#define HEADER_GET_DESTINATION(q)	(((q) >> 16) & 0xffff)
1554#define HEADER_GET_TCODE(q)		(((q) >> 4) & 0x0f)
1555#define HEADER_GET_OFFSET_HIGH(q)	(((q) >> 0) & 0xffff)
1556#define HEADER_GET_DATA_LENGTH(q)	(((q) >> 16) & 0xffff)
1557#define HEADER_GET_EXTENDED_TCODE(q)	(((q) >> 0) & 0xffff)
1558
1559static u32 get_cycle_time(struct fw_ohci *ohci);
1560
1561static void handle_local_rom(struct fw_ohci *ohci,
1562			     struct fw_packet *packet, u32 csr)
1563{
1564	struct fw_packet response;
1565	int tcode, length, i;
1566
1567	tcode = HEADER_GET_TCODE(packet->header[0]);
1568	if (TCODE_IS_BLOCK_PACKET(tcode))
1569		length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1570	else
1571		length = 4;
1572
1573	i = csr - CSR_CONFIG_ROM;
1574	if (i + length > CONFIG_ROM_SIZE) {
1575		fw_fill_response(&response, packet->header,
1576				 RCODE_ADDRESS_ERROR, NULL, 0);
1577	} else if (!TCODE_IS_READ_REQUEST(tcode)) {
1578		fw_fill_response(&response, packet->header,
1579				 RCODE_TYPE_ERROR, NULL, 0);
1580	} else {
1581		fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1582				 (void *) ohci->config_rom + i, length);
1583	}
1584
1585	// Timestamping on behalf of the hardware.
1586	response.timestamp = cycle_time_to_ohci_tstamp(get_cycle_time(ohci));
1587	fw_core_handle_response(&ohci->card, &response);
1588}
1589
1590static void handle_local_lock(struct fw_ohci *ohci,
1591			      struct fw_packet *packet, u32 csr)
1592{
1593	struct fw_packet response;
1594	int tcode, length, ext_tcode, sel, try;
1595	__be32 *payload, lock_old;
1596	u32 lock_arg, lock_data;
1597
1598	tcode = HEADER_GET_TCODE(packet->header[0]);
1599	length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1600	payload = packet->payload;
1601	ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1602
1603	if (tcode == TCODE_LOCK_REQUEST &&
1604	    ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1605		lock_arg = be32_to_cpu(payload[0]);
1606		lock_data = be32_to_cpu(payload[1]);
1607	} else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1608		lock_arg = 0;
1609		lock_data = 0;
1610	} else {
1611		fw_fill_response(&response, packet->header,
1612				 RCODE_TYPE_ERROR, NULL, 0);
1613		goto out;
1614	}
1615
1616	sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1617	reg_write(ohci, OHCI1394_CSRData, lock_data);
1618	reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1619	reg_write(ohci, OHCI1394_CSRControl, sel);
1620
1621	for (try = 0; try < 20; try++)
1622		if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000) {
1623			lock_old = cpu_to_be32(reg_read(ohci,
1624							OHCI1394_CSRData));
1625			fw_fill_response(&response, packet->header,
1626					 RCODE_COMPLETE,
1627					 &lock_old, sizeof(lock_old));
1628			goto out;
1629		}
1630
1631	ohci_err(ohci, "swap not done (CSR lock timeout)\n");
1632	fw_fill_response(&response, packet->header, RCODE_BUSY, NULL, 0);
1633
1634 out:
1635	// Timestamping on behalf of the hardware.
1636	response.timestamp = cycle_time_to_ohci_tstamp(get_cycle_time(ohci));
1637	fw_core_handle_response(&ohci->card, &response);
1638}
1639
1640static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1641{
1642	u64 offset, csr;
1643
1644	if (ctx == &ctx->ohci->at_request_ctx) {
1645		packet->ack = ACK_PENDING;
1646		packet->callback(packet, &ctx->ohci->card, packet->ack);
1647	}
1648
1649	offset =
1650		((unsigned long long)
1651		 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1652		packet->header[2];
1653	csr = offset - CSR_REGISTER_BASE;
1654
1655	/* Handle config rom reads. */
1656	if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1657		handle_local_rom(ctx->ohci, packet, csr);
1658	else switch (csr) {
1659	case CSR_BUS_MANAGER_ID:
1660	case CSR_BANDWIDTH_AVAILABLE:
1661	case CSR_CHANNELS_AVAILABLE_HI:
1662	case CSR_CHANNELS_AVAILABLE_LO:
1663		handle_local_lock(ctx->ohci, packet, csr);
1664		break;
1665	default:
1666		if (ctx == &ctx->ohci->at_request_ctx)
1667			fw_core_handle_request(&ctx->ohci->card, packet);
1668		else
1669			fw_core_handle_response(&ctx->ohci->card, packet);
1670		break;
1671	}
1672
1673	if (ctx == &ctx->ohci->at_response_ctx) {
1674		packet->ack = ACK_COMPLETE;
1675		packet->callback(packet, &ctx->ohci->card, packet->ack);
1676	}
1677}
1678
1679static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1680{
1681	unsigned long flags;
1682	int ret;
1683
1684	spin_lock_irqsave(&ctx->ohci->lock, flags);
1685
1686	if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1687	    ctx->ohci->generation == packet->generation) {
1688		spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1689
1690		// Timestamping on behalf of the hardware.
1691		packet->timestamp = cycle_time_to_ohci_tstamp(get_cycle_time(ctx->ohci));
1692
1693		handle_local_request(ctx, packet);
1694		return;
1695	}
1696
1697	ret = at_context_queue_packet(ctx, packet);
1698	spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1699
1700	if (ret < 0) {
1701		// Timestamping on behalf of the hardware.
1702		packet->timestamp = cycle_time_to_ohci_tstamp(get_cycle_time(ctx->ohci));
1703
1704		packet->callback(packet, &ctx->ohci->card, packet->ack);
1705	}
1706}
1707
1708static void detect_dead_context(struct fw_ohci *ohci,
1709				const char *name, unsigned int regs)
1710{
1711	u32 ctl;
1712
1713	ctl = reg_read(ohci, CONTROL_SET(regs));
1714	if (ctl & CONTEXT_DEAD)
1715		ohci_err(ohci, "DMA context %s has stopped, error code: %s\n",
 
1716			name, evts[ctl & 0x1f]);
1717}
1718
1719static void handle_dead_contexts(struct fw_ohci *ohci)
1720{
1721	unsigned int i;
1722	char name[8];
1723
1724	detect_dead_context(ohci, "ATReq", OHCI1394_AsReqTrContextBase);
1725	detect_dead_context(ohci, "ATRsp", OHCI1394_AsRspTrContextBase);
1726	detect_dead_context(ohci, "ARReq", OHCI1394_AsReqRcvContextBase);
1727	detect_dead_context(ohci, "ARRsp", OHCI1394_AsRspRcvContextBase);
1728	for (i = 0; i < 32; ++i) {
1729		if (!(ohci->it_context_support & (1 << i)))
1730			continue;
1731		sprintf(name, "IT%u", i);
1732		detect_dead_context(ohci, name, OHCI1394_IsoXmitContextBase(i));
1733	}
1734	for (i = 0; i < 32; ++i) {
1735		if (!(ohci->ir_context_support & (1 << i)))
1736			continue;
1737		sprintf(name, "IR%u", i);
1738		detect_dead_context(ohci, name, OHCI1394_IsoRcvContextBase(i));
1739	}
1740	/* TODO: maybe try to flush and restart the dead contexts */
1741}
1742
1743static u32 cycle_timer_ticks(u32 cycle_timer)
1744{
1745	u32 ticks;
1746
1747	ticks = cycle_timer & 0xfff;
1748	ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
1749	ticks += (3072 * 8000) * (cycle_timer >> 25);
1750
1751	return ticks;
1752}
1753
1754/*
1755 * Some controllers exhibit one or more of the following bugs when updating the
1756 * iso cycle timer register:
1757 *  - When the lowest six bits are wrapping around to zero, a read that happens
1758 *    at the same time will return garbage in the lowest ten bits.
1759 *  - When the cycleOffset field wraps around to zero, the cycleCount field is
1760 *    not incremented for about 60 ns.
1761 *  - Occasionally, the entire register reads zero.
1762 *
1763 * To catch these, we read the register three times and ensure that the
1764 * difference between each two consecutive reads is approximately the same, i.e.
1765 * less than twice the other.  Furthermore, any negative difference indicates an
1766 * error.  (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
1767 * execute, so we have enough precision to compute the ratio of the differences.)
1768 */
1769static u32 get_cycle_time(struct fw_ohci *ohci)
1770{
1771	u32 c0, c1, c2;
1772	u32 t0, t1, t2;
1773	s32 diff01, diff12;
1774	int i;
1775
1776	if (has_reboot_by_cycle_timer_read_quirk(ohci))
1777		return 0;
1778
1779	c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1780
1781	if (ohci->quirks & QUIRK_CYCLE_TIMER) {
1782		i = 0;
1783		c1 = c2;
1784		c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1785		do {
1786			c0 = c1;
1787			c1 = c2;
1788			c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1789			t0 = cycle_timer_ticks(c0);
1790			t1 = cycle_timer_ticks(c1);
1791			t2 = cycle_timer_ticks(c2);
1792			diff01 = t1 - t0;
1793			diff12 = t2 - t1;
1794		} while ((diff01 <= 0 || diff12 <= 0 ||
1795			  diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
1796			 && i++ < 20);
1797	}
1798
1799	return c2;
1800}
1801
1802/*
1803 * This function has to be called at least every 64 seconds.  The bus_time
1804 * field stores not only the upper 25 bits of the BUS_TIME register but also
1805 * the most significant bit of the cycle timer in bit 6 so that we can detect
1806 * changes in this bit.
1807 */
1808static u32 update_bus_time(struct fw_ohci *ohci)
1809{
1810	u32 cycle_time_seconds = get_cycle_time(ohci) >> 25;
1811
1812	if (unlikely(!ohci->bus_time_running)) {
1813		reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_cycle64Seconds);
1814		ohci->bus_time = (lower_32_bits(ktime_get_seconds()) & ~0x7f) |
1815		                 (cycle_time_seconds & 0x40);
1816		ohci->bus_time_running = true;
1817	}
1818
1819	if ((ohci->bus_time & 0x40) != (cycle_time_seconds & 0x40))
1820		ohci->bus_time += 0x40;
1821
1822	return ohci->bus_time | cycle_time_seconds;
1823}
1824
1825static int get_status_for_port(struct fw_ohci *ohci, int port_index)
1826{
1827	int reg;
1828
1829	mutex_lock(&ohci->phy_reg_mutex);
1830	reg = write_phy_reg(ohci, 7, port_index);
1831	if (reg >= 0)
1832		reg = read_phy_reg(ohci, 8);
1833	mutex_unlock(&ohci->phy_reg_mutex);
1834	if (reg < 0)
1835		return reg;
1836
1837	switch (reg & 0x0f) {
1838	case 0x06:
1839		return 2;	/* is child node (connected to parent node) */
1840	case 0x0e:
1841		return 3;	/* is parent node (connected to child node) */
1842	}
1843	return 1;		/* not connected */
1844}
1845
1846static int get_self_id_pos(struct fw_ohci *ohci, u32 self_id,
1847	int self_id_count)
1848{
1849	int i;
1850	u32 entry;
1851
1852	for (i = 0; i < self_id_count; i++) {
1853		entry = ohci->self_id_buffer[i];
1854		if ((self_id & 0xff000000) == (entry & 0xff000000))
1855			return -1;
1856		if ((self_id & 0xff000000) < (entry & 0xff000000))
1857			return i;
1858	}
1859	return i;
1860}
1861
1862static int initiated_reset(struct fw_ohci *ohci)
1863{
1864	int reg;
1865	int ret = 0;
1866
1867	mutex_lock(&ohci->phy_reg_mutex);
1868	reg = write_phy_reg(ohci, 7, 0xe0); /* Select page 7 */
1869	if (reg >= 0) {
1870		reg = read_phy_reg(ohci, 8);
1871		reg |= 0x40;
1872		reg = write_phy_reg(ohci, 8, reg); /* set PMODE bit */
1873		if (reg >= 0) {
1874			reg = read_phy_reg(ohci, 12); /* read register 12 */
1875			if (reg >= 0) {
1876				if ((reg & 0x08) == 0x08) {
1877					/* bit 3 indicates "initiated reset" */
1878					ret = 0x2;
1879				}
1880			}
1881		}
1882	}
1883	mutex_unlock(&ohci->phy_reg_mutex);
1884	return ret;
1885}
1886
1887/*
1888 * TI TSB82AA2B and TSB12LV26 do not receive the selfID of a locally
1889 * attached TSB41BA3D phy; see http://www.ti.com/litv/pdf/sllz059.
1890 * Construct the selfID from phy register contents.
 
1891 */
1892static int find_and_insert_self_id(struct fw_ohci *ohci, int self_id_count)
1893{
1894	int reg, i, pos, status;
1895	/* link active 1, speed 3, bridge 0, contender 1, more packets 0 */
1896	u32 self_id = 0x8040c800;
1897
1898	reg = reg_read(ohci, OHCI1394_NodeID);
1899	if (!(reg & OHCI1394_NodeID_idValid)) {
1900		ohci_notice(ohci,
1901			    "node ID not valid, new bus reset in progress\n");
1902		return -EBUSY;
1903	}
1904	self_id |= ((reg & 0x3f) << 24); /* phy ID */
1905
1906	reg = ohci_read_phy_reg(&ohci->card, 4);
1907	if (reg < 0)
1908		return reg;
1909	self_id |= ((reg & 0x07) << 8); /* power class */
1910
1911	reg = ohci_read_phy_reg(&ohci->card, 1);
1912	if (reg < 0)
1913		return reg;
1914	self_id |= ((reg & 0x3f) << 16); /* gap count */
1915
1916	for (i = 0; i < 3; i++) {
1917		status = get_status_for_port(ohci, i);
1918		if (status < 0)
1919			return status;
1920		self_id |= ((status & 0x3) << (6 - (i * 2)));
1921	}
1922
1923	self_id |= initiated_reset(ohci);
1924
1925	pos = get_self_id_pos(ohci, self_id, self_id_count);
1926	if (pos >= 0) {
1927		memmove(&(ohci->self_id_buffer[pos+1]),
1928			&(ohci->self_id_buffer[pos]),
1929			(self_id_count - pos) * sizeof(*ohci->self_id_buffer));
1930		ohci->self_id_buffer[pos] = self_id;
1931		self_id_count++;
1932	}
1933	return self_id_count;
1934}
1935
1936static void bus_reset_work(struct work_struct *work)
1937{
1938	struct fw_ohci *ohci =
1939		container_of(work, struct fw_ohci, bus_reset_work);
1940	int self_id_count, generation, new_generation, i, j;
1941	u32 reg;
1942	void *free_rom = NULL;
1943	dma_addr_t free_rom_bus = 0;
1944	bool is_new_root;
1945
1946	reg = reg_read(ohci, OHCI1394_NodeID);
1947	if (!(reg & OHCI1394_NodeID_idValid)) {
1948		ohci_notice(ohci,
1949			    "node ID not valid, new bus reset in progress\n");
1950		return;
1951	}
1952	if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1953		ohci_notice(ohci, "malconfigured bus\n");
1954		return;
1955	}
1956	ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1957			       OHCI1394_NodeID_nodeNumber);
1958
1959	is_new_root = (reg & OHCI1394_NodeID_root) != 0;
1960	if (!(ohci->is_root && is_new_root))
1961		reg_write(ohci, OHCI1394_LinkControlSet,
1962			  OHCI1394_LinkControl_cycleMaster);
1963	ohci->is_root = is_new_root;
1964
1965	reg = reg_read(ohci, OHCI1394_SelfIDCount);
1966	if (reg & OHCI1394_SelfIDCount_selfIDError) {
1967		ohci_notice(ohci, "self ID receive error\n");
1968		return;
1969	}
1970	/*
1971	 * The count in the SelfIDCount register is the number of
1972	 * bytes in the self ID receive buffer.  Since we also receive
1973	 * the inverted quadlets and a header quadlet, we shift one
1974	 * bit extra to get the actual number of self IDs.
1975	 */
1976	self_id_count = (reg >> 3) & 0xff;
1977
1978	if (self_id_count > 252) {
1979		ohci_notice(ohci, "bad selfIDSize (%08x)\n", reg);
1980		return;
1981	}
1982
1983	generation = (cond_le32_to_cpu(ohci->self_id[0]) >> 16) & 0xff;
1984	rmb();
1985
1986	for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1987		u32 id  = cond_le32_to_cpu(ohci->self_id[i]);
1988		u32 id2 = cond_le32_to_cpu(ohci->self_id[i + 1]);
1989
1990		if (id != ~id2) {
1991			/*
1992			 * If the invalid data looks like a cycle start packet,
1993			 * it's likely to be the result of the cycle master
1994			 * having a wrong gap count.  In this case, the self IDs
1995			 * so far are valid and should be processed so that the
1996			 * bus manager can then correct the gap count.
1997			 */
1998			if (id == 0xffff008f) {
1999				ohci_notice(ohci, "ignoring spurious self IDs\n");
 
 
2000				self_id_count = j;
2001				break;
 
 
 
 
2002			}
2003
2004			ohci_notice(ohci, "bad self ID %d/%d (%08x != ~%08x)\n",
2005				    j, self_id_count, id, id2);
2006			return;
2007		}
2008		ohci->self_id_buffer[j] = id;
 
2009	}
2010
2011	if (ohci->quirks & QUIRK_TI_SLLZ059) {
2012		self_id_count = find_and_insert_self_id(ohci, self_id_count);
2013		if (self_id_count < 0) {
2014			ohci_notice(ohci,
2015				    "could not construct local self ID\n");
2016			return;
2017		}
2018	}
2019
2020	if (self_id_count == 0) {
2021		ohci_notice(ohci, "no self IDs\n");
2022		return;
2023	}
2024	rmb();
2025
2026	/*
2027	 * Check the consistency of the self IDs we just read.  The
2028	 * problem we face is that a new bus reset can start while we
2029	 * read out the self IDs from the DMA buffer. If this happens,
2030	 * the DMA buffer will be overwritten with new self IDs and we
2031	 * will read out inconsistent data.  The OHCI specification
2032	 * (section 11.2) recommends a technique similar to
2033	 * linux/seqlock.h, where we remember the generation of the
2034	 * self IDs in the buffer before reading them out and compare
2035	 * it to the current generation after reading them out.  If
2036	 * the two generations match we know we have a consistent set
2037	 * of self IDs.
2038	 */
2039
2040	new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
2041	if (new_generation != generation) {
2042		ohci_notice(ohci, "new bus reset, discarding self ids\n");
 
2043		return;
2044	}
2045
2046	/* FIXME: Document how the locking works. */
2047	spin_lock_irq(&ohci->lock);
2048
2049	ohci->generation = -1; /* prevent AT packet queueing */
2050	context_stop(&ohci->at_request_ctx);
2051	context_stop(&ohci->at_response_ctx);
2052
2053	spin_unlock_irq(&ohci->lock);
2054
2055	/*
2056	 * Per OHCI 1.2 draft, clause 7.2.3.3, hardware may leave unsent
2057	 * packets in the AT queues and software needs to drain them.
2058	 * Some OHCI 1.1 controllers (JMicron) apparently require this too.
2059	 */
2060	at_context_flush(&ohci->at_request_ctx);
2061	at_context_flush(&ohci->at_response_ctx);
2062
2063	spin_lock_irq(&ohci->lock);
2064
2065	ohci->generation = generation;
2066	reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
2067	if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
2068		reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_busReset);
2069
2070	if (ohci->quirks & QUIRK_RESET_PACKET)
2071		ohci->request_generation = generation;
2072
2073	/*
2074	 * This next bit is unrelated to the AT context stuff but we
2075	 * have to do it under the spinlock also.  If a new config rom
2076	 * was set up before this reset, the old one is now no longer
2077	 * in use and we can free it. Update the config rom pointers
2078	 * to point to the current config rom and clear the
2079	 * next_config_rom pointer so a new update can take place.
2080	 */
2081
2082	if (ohci->next_config_rom != NULL) {
2083		if (ohci->next_config_rom != ohci->config_rom) {
2084			free_rom      = ohci->config_rom;
2085			free_rom_bus  = ohci->config_rom_bus;
2086		}
2087		ohci->config_rom      = ohci->next_config_rom;
2088		ohci->config_rom_bus  = ohci->next_config_rom_bus;
2089		ohci->next_config_rom = NULL;
2090
2091		/*
2092		 * Restore config_rom image and manually update
2093		 * config_rom registers.  Writing the header quadlet
2094		 * will indicate that the config rom is ready, so we
2095		 * do that last.
2096		 */
2097		reg_write(ohci, OHCI1394_BusOptions,
2098			  be32_to_cpu(ohci->config_rom[2]));
2099		ohci->config_rom[0] = ohci->next_header;
2100		reg_write(ohci, OHCI1394_ConfigROMhdr,
2101			  be32_to_cpu(ohci->next_header));
2102	}
2103
2104	if (param_remote_dma) {
2105		reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
2106		reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
2107	}
2108
2109	spin_unlock_irq(&ohci->lock);
2110
2111	if (free_rom)
2112		dmam_free_coherent(ohci->card.device, CONFIG_ROM_SIZE, free_rom, free_rom_bus);
 
2113
2114	log_selfids(ohci, generation, self_id_count);
2115
2116	fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
2117				 self_id_count, ohci->self_id_buffer,
2118				 ohci->csr_state_setclear_abdicate);
2119	ohci->csr_state_setclear_abdicate = false;
2120}
2121
2122static irqreturn_t irq_handler(int irq, void *data)
2123{
2124	struct fw_ohci *ohci = data;
2125	u32 event, iso_event;
2126	int i;
2127
2128	event = reg_read(ohci, OHCI1394_IntEventClear);
2129
2130	if (!event || !~event)
2131		return IRQ_NONE;
2132
2133	/*
2134	 * busReset and postedWriteErr events must not be cleared yet
2135	 * (OHCI 1.1 clauses 7.2.3.2 and 13.2.8.1)
2136	 */
2137	reg_write(ohci, OHCI1394_IntEventClear,
2138		  event & ~(OHCI1394_busReset | OHCI1394_postedWriteErr));
2139	log_irqs(ohci, event);
2140	if (event & OHCI1394_busReset)
2141		reg_write(ohci, OHCI1394_IntMaskClear, OHCI1394_busReset);
2142
2143	if (event & OHCI1394_selfIDComplete)
2144		queue_work(selfid_workqueue, &ohci->bus_reset_work);
2145
2146	if (event & OHCI1394_RQPkt)
2147		tasklet_schedule(&ohci->ar_request_ctx.tasklet);
2148
2149	if (event & OHCI1394_RSPkt)
2150		tasklet_schedule(&ohci->ar_response_ctx.tasklet);
2151
2152	if (event & OHCI1394_reqTxComplete)
2153		tasklet_schedule(&ohci->at_request_ctx.tasklet);
2154
2155	if (event & OHCI1394_respTxComplete)
2156		tasklet_schedule(&ohci->at_response_ctx.tasklet);
2157
2158	if (event & OHCI1394_isochRx) {
2159		iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
2160		reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
2161
2162		while (iso_event) {
2163			i = ffs(iso_event) - 1;
2164			tasklet_schedule(
2165				&ohci->ir_context_list[i].context.tasklet);
2166			iso_event &= ~(1 << i);
2167		}
2168	}
2169
2170	if (event & OHCI1394_isochTx) {
2171		iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
2172		reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
2173
2174		while (iso_event) {
2175			i = ffs(iso_event) - 1;
2176			tasklet_schedule(
2177				&ohci->it_context_list[i].context.tasklet);
2178			iso_event &= ~(1 << i);
2179		}
2180	}
2181
2182	if (unlikely(event & OHCI1394_regAccessFail))
2183		ohci_err(ohci, "register access failure\n");
2184
2185	if (unlikely(event & OHCI1394_postedWriteErr)) {
2186		reg_read(ohci, OHCI1394_PostedWriteAddressHi);
2187		reg_read(ohci, OHCI1394_PostedWriteAddressLo);
2188		reg_write(ohci, OHCI1394_IntEventClear,
2189			  OHCI1394_postedWriteErr);
2190		if (printk_ratelimit())
2191			ohci_err(ohci, "PCI posted write error\n");
2192	}
2193
2194	if (unlikely(event & OHCI1394_cycleTooLong)) {
2195		if (printk_ratelimit())
2196			ohci_notice(ohci, "isochronous cycle too long\n");
 
2197		reg_write(ohci, OHCI1394_LinkControlSet,
2198			  OHCI1394_LinkControl_cycleMaster);
2199	}
2200
2201	if (unlikely(event & OHCI1394_cycleInconsistent)) {
2202		/*
2203		 * We need to clear this event bit in order to make
2204		 * cycleMatch isochronous I/O work.  In theory we should
2205		 * stop active cycleMatch iso contexts now and restart
2206		 * them at least two cycles later.  (FIXME?)
2207		 */
2208		if (printk_ratelimit())
2209			ohci_notice(ohci, "isochronous cycle inconsistent\n");
 
2210	}
2211
2212	if (unlikely(event & OHCI1394_unrecoverableError))
2213		handle_dead_contexts(ohci);
2214
2215	if (event & OHCI1394_cycle64Seconds) {
2216		spin_lock(&ohci->lock);
2217		update_bus_time(ohci);
2218		spin_unlock(&ohci->lock);
2219	} else
2220		flush_writes(ohci);
2221
2222	return IRQ_HANDLED;
2223}
2224
2225static int software_reset(struct fw_ohci *ohci)
2226{
2227	u32 val;
2228	int i;
2229
2230	reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
2231	for (i = 0; i < 500; i++) {
2232		val = reg_read(ohci, OHCI1394_HCControlSet);
2233		if (!~val)
2234			return -ENODEV; /* Card was ejected. */
2235
2236		if (!(val & OHCI1394_HCControl_softReset))
2237			return 0;
2238
2239		msleep(1);
2240	}
2241
2242	return -EBUSY;
2243}
2244
2245static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
2246{
2247	size_t size = length * 4;
2248
2249	memcpy(dest, src, size);
2250	if (size < CONFIG_ROM_SIZE)
2251		memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
2252}
2253
2254static int configure_1394a_enhancements(struct fw_ohci *ohci)
2255{
2256	bool enable_1394a;
2257	int ret, clear, set, offset;
2258
2259	/* Check if the driver should configure link and PHY. */
2260	if (!(reg_read(ohci, OHCI1394_HCControlSet) &
2261	      OHCI1394_HCControl_programPhyEnable))
2262		return 0;
2263
2264	/* Paranoia: check whether the PHY supports 1394a, too. */
2265	enable_1394a = false;
2266	ret = read_phy_reg(ohci, 2);
2267	if (ret < 0)
2268		return ret;
2269	if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
2270		ret = read_paged_phy_reg(ohci, 1, 8);
2271		if (ret < 0)
2272			return ret;
2273		if (ret >= 1)
2274			enable_1394a = true;
2275	}
2276
2277	if (ohci->quirks & QUIRK_NO_1394A)
2278		enable_1394a = false;
2279
2280	/* Configure PHY and link consistently. */
2281	if (enable_1394a) {
2282		clear = 0;
2283		set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2284	} else {
2285		clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2286		set = 0;
2287	}
2288	ret = update_phy_reg(ohci, 5, clear, set);
2289	if (ret < 0)
2290		return ret;
2291
2292	if (enable_1394a)
2293		offset = OHCI1394_HCControlSet;
2294	else
2295		offset = OHCI1394_HCControlClear;
2296	reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);
2297
2298	/* Clean up: configuration has been taken care of. */
2299	reg_write(ohci, OHCI1394_HCControlClear,
2300		  OHCI1394_HCControl_programPhyEnable);
2301
2302	return 0;
2303}
2304
2305static int probe_tsb41ba3d(struct fw_ohci *ohci)
2306{
2307	/* TI vendor ID = 0x080028, TSB41BA3D product ID = 0x833005 (sic) */
2308	static const u8 id[] = { 0x08, 0x00, 0x28, 0x83, 0x30, 0x05, };
2309	int reg, i;
2310
2311	reg = read_phy_reg(ohci, 2);
2312	if (reg < 0)
2313		return reg;
2314	if ((reg & PHY_EXTENDED_REGISTERS) != PHY_EXTENDED_REGISTERS)
2315		return 0;
2316
2317	for (i = ARRAY_SIZE(id) - 1; i >= 0; i--) {
2318		reg = read_paged_phy_reg(ohci, 1, i + 10);
2319		if (reg < 0)
2320			return reg;
2321		if (reg != id[i])
2322			return 0;
2323	}
2324	return 1;
2325}
2326
2327static int ohci_enable(struct fw_card *card,
2328		       const __be32 *config_rom, size_t length)
2329{
2330	struct fw_ohci *ohci = fw_ohci(card);
2331	u32 lps, version, irqs;
 
2332	int i, ret;
2333
2334	ret = software_reset(ohci);
2335	if (ret < 0) {
2336		ohci_err(ohci, "failed to reset ohci card\n");
2337		return ret;
2338	}
2339
2340	/*
2341	 * Now enable LPS, which we need in order to start accessing
2342	 * most of the registers.  In fact, on some cards (ALI M5251),
2343	 * accessing registers in the SClk domain without LPS enabled
2344	 * will lock up the machine.  Wait 50msec to make sure we have
2345	 * full link enabled.  However, with some cards (well, at least
2346	 * a JMicron PCIe card), we have to try again sometimes.
2347	 *
2348	 * TI TSB82AA2 + TSB81BA3(A) cards signal LPS enabled early but
2349	 * cannot actually use the phy at that time.  These need tens of
2350	 * millisecods pause between LPS write and first phy access too.
2351	 */
2352
2353	reg_write(ohci, OHCI1394_HCControlSet,
2354		  OHCI1394_HCControl_LPS |
2355		  OHCI1394_HCControl_postedWriteEnable);
2356	flush_writes(ohci);
2357
2358	for (lps = 0, i = 0; !lps && i < 3; i++) {
2359		msleep(50);
2360		lps = reg_read(ohci, OHCI1394_HCControlSet) &
2361		      OHCI1394_HCControl_LPS;
2362	}
2363
2364	if (!lps) {
2365		ohci_err(ohci, "failed to set Link Power Status\n");
2366		return -EIO;
2367	}
2368
2369	if (ohci->quirks & QUIRK_TI_SLLZ059) {
2370		ret = probe_tsb41ba3d(ohci);
2371		if (ret < 0)
2372			return ret;
2373		if (ret)
2374			ohci_notice(ohci, "local TSB41BA3D phy\n");
2375		else
2376			ohci->quirks &= ~QUIRK_TI_SLLZ059;
2377	}
2378
2379	reg_write(ohci, OHCI1394_HCControlClear,
2380		  OHCI1394_HCControl_noByteSwapData);
2381
2382	reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
2383	reg_write(ohci, OHCI1394_LinkControlSet,
2384		  OHCI1394_LinkControl_cycleTimerEnable |
2385		  OHCI1394_LinkControl_cycleMaster);
2386
2387	reg_write(ohci, OHCI1394_ATRetries,
2388		  OHCI1394_MAX_AT_REQ_RETRIES |
2389		  (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
2390		  (OHCI1394_MAX_PHYS_RESP_RETRIES << 8) |
2391		  (200 << 16));
2392
2393	ohci->bus_time_running = false;
2394
2395	for (i = 0; i < 32; i++)
2396		if (ohci->ir_context_support & (1 << i))
2397			reg_write(ohci, OHCI1394_IsoRcvContextControlClear(i),
2398				  IR_CONTEXT_MULTI_CHANNEL_MODE);
2399
2400	version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2401	if (version >= OHCI_VERSION_1_1) {
2402		reg_write(ohci, OHCI1394_InitialChannelsAvailableHi,
2403			  0xfffffffe);
2404		card->broadcast_channel_auto_allocated = true;
2405	}
2406
2407	/* Get implemented bits of the priority arbitration request counter. */
2408	reg_write(ohci, OHCI1394_FairnessControl, 0x3f);
2409	ohci->pri_req_max = reg_read(ohci, OHCI1394_FairnessControl) & 0x3f;
2410	reg_write(ohci, OHCI1394_FairnessControl, 0);
2411	card->priority_budget_implemented = ohci->pri_req_max != 0;
2412
2413	reg_write(ohci, OHCI1394_PhyUpperBound, FW_MAX_PHYSICAL_RANGE >> 16);
2414	reg_write(ohci, OHCI1394_IntEventClear, ~0);
2415	reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2416
2417	ret = configure_1394a_enhancements(ohci);
2418	if (ret < 0)
2419		return ret;
2420
2421	/* Activate link_on bit and contender bit in our self ID packets.*/
2422	ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER);
2423	if (ret < 0)
2424		return ret;
2425
2426	/*
2427	 * When the link is not yet enabled, the atomic config rom
2428	 * update mechanism described below in ohci_set_config_rom()
2429	 * is not active.  We have to update ConfigRomHeader and
2430	 * BusOptions manually, and the write to ConfigROMmap takes
2431	 * effect immediately.  We tie this to the enabling of the
2432	 * link, so we have a valid config rom before enabling - the
2433	 * OHCI requires that ConfigROMhdr and BusOptions have valid
2434	 * values before enabling.
2435	 *
2436	 * However, when the ConfigROMmap is written, some controllers
2437	 * always read back quadlets 0 and 2 from the config rom to
2438	 * the ConfigRomHeader and BusOptions registers on bus reset.
2439	 * They shouldn't do that in this initial case where the link
2440	 * isn't enabled.  This means we have to use the same
2441	 * workaround here, setting the bus header to 0 and then write
2442	 * the right values in the bus reset tasklet.
2443	 */
2444
2445	if (config_rom) {
2446		ohci->next_config_rom = dmam_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2447							    &ohci->next_config_rom_bus, GFP_KERNEL);
 
 
2448		if (ohci->next_config_rom == NULL)
2449			return -ENOMEM;
2450
2451		copy_config_rom(ohci->next_config_rom, config_rom, length);
2452	} else {
2453		/*
2454		 * In the suspend case, config_rom is NULL, which
2455		 * means that we just reuse the old config rom.
2456		 */
2457		ohci->next_config_rom = ohci->config_rom;
2458		ohci->next_config_rom_bus = ohci->config_rom_bus;
2459	}
2460
2461	ohci->next_header = ohci->next_config_rom[0];
2462	ohci->next_config_rom[0] = 0;
2463	reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
2464	reg_write(ohci, OHCI1394_BusOptions,
2465		  be32_to_cpu(ohci->next_config_rom[2]));
2466	reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2467
2468	reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
2469
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2470	irqs =	OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
2471		OHCI1394_RQPkt | OHCI1394_RSPkt |
2472		OHCI1394_isochTx | OHCI1394_isochRx |
2473		OHCI1394_postedWriteErr |
2474		OHCI1394_selfIDComplete |
2475		OHCI1394_regAccessFail |
 
2476		OHCI1394_cycleInconsistent |
2477		OHCI1394_unrecoverableError |
2478		OHCI1394_cycleTooLong |
2479		OHCI1394_masterIntEnable;
2480	if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
2481		irqs |= OHCI1394_busReset;
2482	reg_write(ohci, OHCI1394_IntMaskSet, irqs);
2483
2484	reg_write(ohci, OHCI1394_HCControlSet,
2485		  OHCI1394_HCControl_linkEnable |
2486		  OHCI1394_HCControl_BIBimageValid);
2487
2488	reg_write(ohci, OHCI1394_LinkControlSet,
2489		  OHCI1394_LinkControl_rcvSelfID |
2490		  OHCI1394_LinkControl_rcvPhyPkt);
2491
2492	ar_context_run(&ohci->ar_request_ctx);
2493	ar_context_run(&ohci->ar_response_ctx);
2494
2495	flush_writes(ohci);
2496
2497	/* We are ready to go, reset bus to finish initialization. */
2498	fw_schedule_bus_reset(&ohci->card, false, true);
2499
2500	return 0;
2501}
2502
2503static int ohci_set_config_rom(struct fw_card *card,
2504			       const __be32 *config_rom, size_t length)
2505{
2506	struct fw_ohci *ohci;
2507	__be32 *next_config_rom;
2508	dma_addr_t next_config_rom_bus;
2509
2510	ohci = fw_ohci(card);
2511
2512	/*
2513	 * When the OHCI controller is enabled, the config rom update
2514	 * mechanism is a bit tricky, but easy enough to use.  See
2515	 * section 5.5.6 in the OHCI specification.
2516	 *
2517	 * The OHCI controller caches the new config rom address in a
2518	 * shadow register (ConfigROMmapNext) and needs a bus reset
2519	 * for the changes to take place.  When the bus reset is
2520	 * detected, the controller loads the new values for the
2521	 * ConfigRomHeader and BusOptions registers from the specified
2522	 * config rom and loads ConfigROMmap from the ConfigROMmapNext
2523	 * shadow register. All automatically and atomically.
2524	 *
2525	 * Now, there's a twist to this story.  The automatic load of
2526	 * ConfigRomHeader and BusOptions doesn't honor the
2527	 * noByteSwapData bit, so with a be32 config rom, the
2528	 * controller will load be32 values in to these registers
2529	 * during the atomic update, even on litte endian
2530	 * architectures.  The workaround we use is to put a 0 in the
2531	 * header quadlet; 0 is endian agnostic and means that the
2532	 * config rom isn't ready yet.  In the bus reset tasklet we
2533	 * then set up the real values for the two registers.
2534	 *
2535	 * We use ohci->lock to avoid racing with the code that sets
2536	 * ohci->next_config_rom to NULL (see bus_reset_work).
2537	 */
2538
2539	next_config_rom = dmam_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2540					      &next_config_rom_bus, GFP_KERNEL);
 
2541	if (next_config_rom == NULL)
2542		return -ENOMEM;
2543
2544	spin_lock_irq(&ohci->lock);
2545
2546	/*
2547	 * If there is not an already pending config_rom update,
2548	 * push our new allocation into the ohci->next_config_rom
2549	 * and then mark the local variable as null so that we
2550	 * won't deallocate the new buffer.
2551	 *
2552	 * OTOH, if there is a pending config_rom update, just
2553	 * use that buffer with the new config_rom data, and
2554	 * let this routine free the unused DMA allocation.
2555	 */
2556
2557	if (ohci->next_config_rom == NULL) {
2558		ohci->next_config_rom = next_config_rom;
2559		ohci->next_config_rom_bus = next_config_rom_bus;
2560		next_config_rom = NULL;
2561	}
2562
2563	copy_config_rom(ohci->next_config_rom, config_rom, length);
2564
2565	ohci->next_header = config_rom[0];
2566	ohci->next_config_rom[0] = 0;
2567
2568	reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2569
2570	spin_unlock_irq(&ohci->lock);
2571
2572	/* If we didn't use the DMA allocation, delete it. */
2573	if (next_config_rom != NULL) {
2574		dmam_free_coherent(ohci->card.device, CONFIG_ROM_SIZE, next_config_rom,
2575				   next_config_rom_bus);
2576	}
2577
2578	/*
2579	 * Now initiate a bus reset to have the changes take
2580	 * effect. We clean up the old config rom memory and DMA
2581	 * mappings in the bus reset tasklet, since the OHCI
2582	 * controller could need to access it before the bus reset
2583	 * takes effect.
2584	 */
2585
2586	fw_schedule_bus_reset(&ohci->card, true, true);
2587
2588	return 0;
2589}
2590
2591static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
2592{
2593	struct fw_ohci *ohci = fw_ohci(card);
2594
2595	at_context_transmit(&ohci->at_request_ctx, packet);
2596}
2597
2598static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
2599{
2600	struct fw_ohci *ohci = fw_ohci(card);
2601
2602	at_context_transmit(&ohci->at_response_ctx, packet);
2603}
2604
2605static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
2606{
2607	struct fw_ohci *ohci = fw_ohci(card);
2608	struct context *ctx = &ohci->at_request_ctx;
2609	struct driver_data *driver_data = packet->driver_data;
2610	int ret = -ENOENT;
2611
2612	tasklet_disable_in_atomic(&ctx->tasklet);
2613
2614	if (packet->ack != 0)
2615		goto out;
2616
2617	if (packet->payload_mapped)
2618		dma_unmap_single(ohci->card.device, packet->payload_bus,
2619				 packet->payload_length, DMA_TO_DEVICE);
2620
2621	log_ar_at_event(ohci, 'T', packet->speed, packet->header, 0x20);
2622	driver_data->packet = NULL;
2623	packet->ack = RCODE_CANCELLED;
2624
2625	// Timestamping on behalf of the hardware.
2626	packet->timestamp = cycle_time_to_ohci_tstamp(get_cycle_time(ohci));
2627
2628	packet->callback(packet, &ohci->card, packet->ack);
2629	ret = 0;
2630 out:
2631	tasklet_enable(&ctx->tasklet);
2632
2633	return ret;
2634}
2635
2636static int ohci_enable_phys_dma(struct fw_card *card,
2637				int node_id, int generation)
2638{
 
 
 
2639	struct fw_ohci *ohci = fw_ohci(card);
2640	unsigned long flags;
2641	int n, ret = 0;
2642
2643	if (param_remote_dma)
2644		return 0;
2645
2646	/*
2647	 * FIXME:  Make sure this bitmask is cleared when we clear the busReset
2648	 * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
2649	 */
2650
2651	spin_lock_irqsave(&ohci->lock, flags);
2652
2653	if (ohci->generation != generation) {
2654		ret = -ESTALE;
2655		goto out;
2656	}
2657
2658	/*
2659	 * Note, if the node ID contains a non-local bus ID, physical DMA is
2660	 * enabled for _all_ nodes on remote buses.
2661	 */
2662
2663	n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
2664	if (n < 32)
2665		reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
2666	else
2667		reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
2668
2669	flush_writes(ohci);
2670 out:
2671	spin_unlock_irqrestore(&ohci->lock, flags);
2672
2673	return ret;
 
2674}
2675
2676static u32 ohci_read_csr(struct fw_card *card, int csr_offset)
2677{
2678	struct fw_ohci *ohci = fw_ohci(card);
2679	unsigned long flags;
2680	u32 value;
2681
2682	switch (csr_offset) {
2683	case CSR_STATE_CLEAR:
2684	case CSR_STATE_SET:
2685		if (ohci->is_root &&
2686		    (reg_read(ohci, OHCI1394_LinkControlSet) &
2687		     OHCI1394_LinkControl_cycleMaster))
2688			value = CSR_STATE_BIT_CMSTR;
2689		else
2690			value = 0;
2691		if (ohci->csr_state_setclear_abdicate)
2692			value |= CSR_STATE_BIT_ABDICATE;
2693
2694		return value;
2695
2696	case CSR_NODE_IDS:
2697		return reg_read(ohci, OHCI1394_NodeID) << 16;
2698
2699	case CSR_CYCLE_TIME:
2700		return get_cycle_time(ohci);
2701
2702	case CSR_BUS_TIME:
2703		/*
2704		 * We might be called just after the cycle timer has wrapped
2705		 * around but just before the cycle64Seconds handler, so we
2706		 * better check here, too, if the bus time needs to be updated.
2707		 */
2708		spin_lock_irqsave(&ohci->lock, flags);
2709		value = update_bus_time(ohci);
2710		spin_unlock_irqrestore(&ohci->lock, flags);
2711		return value;
2712
2713	case CSR_BUSY_TIMEOUT:
2714		value = reg_read(ohci, OHCI1394_ATRetries);
2715		return (value >> 4) & 0x0ffff00f;
2716
2717	case CSR_PRIORITY_BUDGET:
2718		return (reg_read(ohci, OHCI1394_FairnessControl) & 0x3f) |
2719			(ohci->pri_req_max << 8);
2720
2721	default:
2722		WARN_ON(1);
2723		return 0;
2724	}
2725}
2726
2727static void ohci_write_csr(struct fw_card *card, int csr_offset, u32 value)
2728{
2729	struct fw_ohci *ohci = fw_ohci(card);
2730	unsigned long flags;
2731
2732	switch (csr_offset) {
2733	case CSR_STATE_CLEAR:
2734		if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2735			reg_write(ohci, OHCI1394_LinkControlClear,
2736				  OHCI1394_LinkControl_cycleMaster);
2737			flush_writes(ohci);
2738		}
2739		if (value & CSR_STATE_BIT_ABDICATE)
2740			ohci->csr_state_setclear_abdicate = false;
2741		break;
2742
2743	case CSR_STATE_SET:
2744		if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2745			reg_write(ohci, OHCI1394_LinkControlSet,
2746				  OHCI1394_LinkControl_cycleMaster);
2747			flush_writes(ohci);
2748		}
2749		if (value & CSR_STATE_BIT_ABDICATE)
2750			ohci->csr_state_setclear_abdicate = true;
2751		break;
2752
2753	case CSR_NODE_IDS:
2754		reg_write(ohci, OHCI1394_NodeID, value >> 16);
2755		flush_writes(ohci);
2756		break;
2757
2758	case CSR_CYCLE_TIME:
2759		reg_write(ohci, OHCI1394_IsochronousCycleTimer, value);
2760		reg_write(ohci, OHCI1394_IntEventSet,
2761			  OHCI1394_cycleInconsistent);
2762		flush_writes(ohci);
2763		break;
2764
2765	case CSR_BUS_TIME:
2766		spin_lock_irqsave(&ohci->lock, flags);
2767		ohci->bus_time = (update_bus_time(ohci) & 0x40) |
2768		                 (value & ~0x7f);
2769		spin_unlock_irqrestore(&ohci->lock, flags);
2770		break;
2771
2772	case CSR_BUSY_TIMEOUT:
2773		value = (value & 0xf) | ((value & 0xf) << 4) |
2774			((value & 0xf) << 8) | ((value & 0x0ffff000) << 4);
2775		reg_write(ohci, OHCI1394_ATRetries, value);
2776		flush_writes(ohci);
2777		break;
2778
2779	case CSR_PRIORITY_BUDGET:
2780		reg_write(ohci, OHCI1394_FairnessControl, value & 0x3f);
2781		flush_writes(ohci);
2782		break;
2783
2784	default:
2785		WARN_ON(1);
2786		break;
2787	}
2788}
2789
2790static void flush_iso_completions(struct iso_context *ctx)
2791{
2792	ctx->base.callback.sc(&ctx->base, ctx->last_timestamp,
2793			      ctx->header_length, ctx->header,
2794			      ctx->base.callback_data);
2795	ctx->header_length = 0;
2796}
2797
2798static void copy_iso_headers(struct iso_context *ctx, const u32 *dma_hdr)
2799{
2800	u32 *ctx_hdr;
2801
2802	if (ctx->header_length + ctx->base.header_size > PAGE_SIZE) {
2803		if (ctx->base.drop_overflow_headers)
2804			return;
2805		flush_iso_completions(ctx);
2806	}
2807
2808	ctx_hdr = ctx->header + ctx->header_length;
2809	ctx->last_timestamp = (u16)le32_to_cpu((__force __le32)dma_hdr[0]);
2810
2811	/*
2812	 * The two iso header quadlets are byteswapped to little
2813	 * endian by the controller, but we want to present them
2814	 * as big endian for consistency with the bus endianness.
2815	 */
2816	if (ctx->base.header_size > 0)
2817		ctx_hdr[0] = swab32(dma_hdr[1]); /* iso packet header */
2818	if (ctx->base.header_size > 4)
2819		ctx_hdr[1] = swab32(dma_hdr[0]); /* timestamp */
2820	if (ctx->base.header_size > 8)
2821		memcpy(&ctx_hdr[2], &dma_hdr[2], ctx->base.header_size - 8);
2822	ctx->header_length += ctx->base.header_size;
2823}
2824
2825static int handle_ir_packet_per_buffer(struct context *context,
2826				       struct descriptor *d,
2827				       struct descriptor *last)
2828{
2829	struct iso_context *ctx =
2830		container_of(context, struct iso_context, context);
2831	struct descriptor *pd;
2832	u32 buffer_dma;
2833
2834	for (pd = d; pd <= last; pd++)
2835		if (pd->transfer_status)
2836			break;
2837	if (pd > last)
2838		/* Descriptor(s) not done yet, stop iteration */
2839		return 0;
2840
2841	while (!(d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))) {
2842		d++;
2843		buffer_dma = le32_to_cpu(d->data_address);
2844		dma_sync_single_range_for_cpu(context->ohci->card.device,
2845					      buffer_dma & PAGE_MASK,
2846					      buffer_dma & ~PAGE_MASK,
2847					      le16_to_cpu(d->req_count),
2848					      DMA_FROM_DEVICE);
2849	}
2850
2851	copy_iso_headers(ctx, (u32 *) (last + 1));
2852
2853	if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS))
2854		flush_iso_completions(ctx);
2855
2856	return 1;
2857}
2858
2859/* d == last because each descriptor block is only a single descriptor. */
2860static int handle_ir_buffer_fill(struct context *context,
2861				 struct descriptor *d,
2862				 struct descriptor *last)
2863{
2864	struct iso_context *ctx =
2865		container_of(context, struct iso_context, context);
2866	unsigned int req_count, res_count, completed;
2867	u32 buffer_dma;
2868
2869	req_count = le16_to_cpu(last->req_count);
2870	res_count = le16_to_cpu(READ_ONCE(last->res_count));
2871	completed = req_count - res_count;
2872	buffer_dma = le32_to_cpu(last->data_address);
2873
2874	if (completed > 0) {
2875		ctx->mc_buffer_bus = buffer_dma;
2876		ctx->mc_completed = completed;
2877	}
2878
2879	if (res_count != 0)
2880		/* Descriptor(s) not done yet, stop iteration */
2881		return 0;
2882
2883	dma_sync_single_range_for_cpu(context->ohci->card.device,
2884				      buffer_dma & PAGE_MASK,
2885				      buffer_dma & ~PAGE_MASK,
2886				      completed, DMA_FROM_DEVICE);
2887
2888	if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS)) {
2889		ctx->base.callback.mc(&ctx->base,
2890				      buffer_dma + completed,
2891				      ctx->base.callback_data);
2892		ctx->mc_completed = 0;
2893	}
2894
2895	return 1;
2896}
2897
2898static void flush_ir_buffer_fill(struct iso_context *ctx)
2899{
2900	dma_sync_single_range_for_cpu(ctx->context.ohci->card.device,
2901				      ctx->mc_buffer_bus & PAGE_MASK,
2902				      ctx->mc_buffer_bus & ~PAGE_MASK,
2903				      ctx->mc_completed, DMA_FROM_DEVICE);
2904
2905	ctx->base.callback.mc(&ctx->base,
2906			      ctx->mc_buffer_bus + ctx->mc_completed,
2907			      ctx->base.callback_data);
2908	ctx->mc_completed = 0;
2909}
2910
2911static inline void sync_it_packet_for_cpu(struct context *context,
2912					  struct descriptor *pd)
2913{
2914	__le16 control;
2915	u32 buffer_dma;
2916
2917	/* only packets beginning with OUTPUT_MORE* have data buffers */
2918	if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
2919		return;
2920
2921	/* skip over the OUTPUT_MORE_IMMEDIATE descriptor */
2922	pd += 2;
2923
2924	/*
2925	 * If the packet has a header, the first OUTPUT_MORE/LAST descriptor's
2926	 * data buffer is in the context program's coherent page and must not
2927	 * be synced.
2928	 */
2929	if ((le32_to_cpu(pd->data_address) & PAGE_MASK) ==
2930	    (context->current_bus          & PAGE_MASK)) {
2931		if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
2932			return;
2933		pd++;
2934	}
2935
2936	do {
2937		buffer_dma = le32_to_cpu(pd->data_address);
2938		dma_sync_single_range_for_cpu(context->ohci->card.device,
2939					      buffer_dma & PAGE_MASK,
2940					      buffer_dma & ~PAGE_MASK,
2941					      le16_to_cpu(pd->req_count),
2942					      DMA_TO_DEVICE);
2943		control = pd->control;
2944		pd++;
2945	} while (!(control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS)));
2946}
2947
2948static int handle_it_packet(struct context *context,
2949			    struct descriptor *d,
2950			    struct descriptor *last)
2951{
2952	struct iso_context *ctx =
2953		container_of(context, struct iso_context, context);
2954	struct descriptor *pd;
2955	__be32 *ctx_hdr;
2956
2957	for (pd = d; pd <= last; pd++)
2958		if (pd->transfer_status)
2959			break;
2960	if (pd > last)
2961		/* Descriptor(s) not done yet, stop iteration */
2962		return 0;
2963
2964	sync_it_packet_for_cpu(context, d);
2965
2966	if (ctx->header_length + 4 > PAGE_SIZE) {
2967		if (ctx->base.drop_overflow_headers)
2968			return 1;
2969		flush_iso_completions(ctx);
2970	}
2971
2972	ctx_hdr = ctx->header + ctx->header_length;
2973	ctx->last_timestamp = le16_to_cpu(last->res_count);
2974	/* Present this value as big-endian to match the receive code */
2975	*ctx_hdr = cpu_to_be32((le16_to_cpu(pd->transfer_status) << 16) |
2976			       le16_to_cpu(pd->res_count));
2977	ctx->header_length += 4;
2978
2979	if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS))
2980		flush_iso_completions(ctx);
2981
2982	return 1;
2983}
2984
2985static void set_multichannel_mask(struct fw_ohci *ohci, u64 channels)
2986{
2987	u32 hi = channels >> 32, lo = channels;
2988
2989	reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear, ~hi);
2990	reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear, ~lo);
2991	reg_write(ohci, OHCI1394_IRMultiChanMaskHiSet, hi);
2992	reg_write(ohci, OHCI1394_IRMultiChanMaskLoSet, lo);
 
2993	ohci->mc_channels = channels;
2994}
2995
2996static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
2997				int type, int channel, size_t header_size)
2998{
2999	struct fw_ohci *ohci = fw_ohci(card);
3000	struct iso_context *ctx;
3001	descriptor_callback_t callback;
3002	u64 *channels;
3003	u32 *mask, regs;
3004	int index, ret = -EBUSY;
3005
3006	spin_lock_irq(&ohci->lock);
3007
3008	switch (type) {
3009	case FW_ISO_CONTEXT_TRANSMIT:
3010		mask     = &ohci->it_context_mask;
3011		callback = handle_it_packet;
3012		index    = ffs(*mask) - 1;
3013		if (index >= 0) {
3014			*mask &= ~(1 << index);
3015			regs = OHCI1394_IsoXmitContextBase(index);
3016			ctx  = &ohci->it_context_list[index];
3017		}
3018		break;
3019
3020	case FW_ISO_CONTEXT_RECEIVE:
3021		channels = &ohci->ir_context_channels;
3022		mask     = &ohci->ir_context_mask;
3023		callback = handle_ir_packet_per_buffer;
3024		index    = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
3025		if (index >= 0) {
3026			*channels &= ~(1ULL << channel);
3027			*mask     &= ~(1 << index);
3028			regs = OHCI1394_IsoRcvContextBase(index);
3029			ctx  = &ohci->ir_context_list[index];
3030		}
3031		break;
3032
3033	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3034		mask     = &ohci->ir_context_mask;
3035		callback = handle_ir_buffer_fill;
3036		index    = !ohci->mc_allocated ? ffs(*mask) - 1 : -1;
3037		if (index >= 0) {
3038			ohci->mc_allocated = true;
3039			*mask &= ~(1 << index);
3040			regs = OHCI1394_IsoRcvContextBase(index);
3041			ctx  = &ohci->ir_context_list[index];
3042		}
3043		break;
3044
3045	default:
3046		index = -1;
3047		ret = -ENOSYS;
3048	}
3049
3050	spin_unlock_irq(&ohci->lock);
3051
3052	if (index < 0)
3053		return ERR_PTR(ret);
3054
3055	memset(ctx, 0, sizeof(*ctx));
3056	ctx->header_length = 0;
3057	ctx->header = (void *) __get_free_page(GFP_KERNEL);
3058	if (ctx->header == NULL) {
3059		ret = -ENOMEM;
3060		goto out;
3061	}
3062	ret = context_init(&ctx->context, ohci, regs, callback);
3063	if (ret < 0)
3064		goto out_with_header;
3065
3066	if (type == FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL) {
3067		set_multichannel_mask(ohci, 0);
3068		ctx->mc_completed = 0;
3069	}
3070
3071	return &ctx->base;
3072
3073 out_with_header:
3074	free_page((unsigned long)ctx->header);
3075 out:
3076	spin_lock_irq(&ohci->lock);
3077
3078	switch (type) {
3079	case FW_ISO_CONTEXT_RECEIVE:
3080		*channels |= 1ULL << channel;
3081		break;
3082
3083	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3084		ohci->mc_allocated = false;
3085		break;
3086	}
3087	*mask |= 1 << index;
3088
3089	spin_unlock_irq(&ohci->lock);
3090
3091	return ERR_PTR(ret);
3092}
3093
3094static int ohci_start_iso(struct fw_iso_context *base,
3095			  s32 cycle, u32 sync, u32 tags)
3096{
3097	struct iso_context *ctx = container_of(base, struct iso_context, base);
3098	struct fw_ohci *ohci = ctx->context.ohci;
3099	u32 control = IR_CONTEXT_ISOCH_HEADER, match;
3100	int index;
3101
3102	/* the controller cannot start without any queued packets */
3103	if (ctx->context.last->branch_address == 0)
3104		return -ENODATA;
3105
3106	switch (ctx->base.type) {
3107	case FW_ISO_CONTEXT_TRANSMIT:
3108		index = ctx - ohci->it_context_list;
3109		match = 0;
3110		if (cycle >= 0)
3111			match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
3112				(cycle & 0x7fff) << 16;
3113
3114		reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
3115		reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
3116		context_run(&ctx->context, match);
3117		break;
3118
3119	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3120		control |= IR_CONTEXT_BUFFER_FILL|IR_CONTEXT_MULTI_CHANNEL_MODE;
3121		fallthrough;
3122	case FW_ISO_CONTEXT_RECEIVE:
3123		index = ctx - ohci->ir_context_list;
3124		match = (tags << 28) | (sync << 8) | ctx->base.channel;
3125		if (cycle >= 0) {
3126			match |= (cycle & 0x07fff) << 12;
3127			control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
3128		}
3129
3130		reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
3131		reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
3132		reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
3133		context_run(&ctx->context, control);
3134
3135		ctx->sync = sync;
3136		ctx->tags = tags;
3137
3138		break;
3139	}
3140
3141	return 0;
3142}
3143
3144static int ohci_stop_iso(struct fw_iso_context *base)
3145{
3146	struct fw_ohci *ohci = fw_ohci(base->card);
3147	struct iso_context *ctx = container_of(base, struct iso_context, base);
3148	int index;
3149
3150	switch (ctx->base.type) {
3151	case FW_ISO_CONTEXT_TRANSMIT:
3152		index = ctx - ohci->it_context_list;
3153		reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
3154		break;
3155
3156	case FW_ISO_CONTEXT_RECEIVE:
3157	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3158		index = ctx - ohci->ir_context_list;
3159		reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
3160		break;
3161	}
3162	flush_writes(ohci);
3163	context_stop(&ctx->context);
3164	tasklet_kill(&ctx->context.tasklet);
3165
3166	return 0;
3167}
3168
3169static void ohci_free_iso_context(struct fw_iso_context *base)
3170{
3171	struct fw_ohci *ohci = fw_ohci(base->card);
3172	struct iso_context *ctx = container_of(base, struct iso_context, base);
3173	unsigned long flags;
3174	int index;
3175
3176	ohci_stop_iso(base);
3177	context_release(&ctx->context);
3178	free_page((unsigned long)ctx->header);
3179
3180	spin_lock_irqsave(&ohci->lock, flags);
3181
3182	switch (base->type) {
3183	case FW_ISO_CONTEXT_TRANSMIT:
3184		index = ctx - ohci->it_context_list;
3185		ohci->it_context_mask |= 1 << index;
3186		break;
3187
3188	case FW_ISO_CONTEXT_RECEIVE:
3189		index = ctx - ohci->ir_context_list;
3190		ohci->ir_context_mask |= 1 << index;
3191		ohci->ir_context_channels |= 1ULL << base->channel;
3192		break;
3193
3194	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3195		index = ctx - ohci->ir_context_list;
3196		ohci->ir_context_mask |= 1 << index;
3197		ohci->ir_context_channels |= ohci->mc_channels;
3198		ohci->mc_channels = 0;
3199		ohci->mc_allocated = false;
3200		break;
3201	}
3202
3203	spin_unlock_irqrestore(&ohci->lock, flags);
3204}
3205
3206static int ohci_set_iso_channels(struct fw_iso_context *base, u64 *channels)
3207{
3208	struct fw_ohci *ohci = fw_ohci(base->card);
3209	unsigned long flags;
3210	int ret;
3211
3212	switch (base->type) {
3213	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3214
3215		spin_lock_irqsave(&ohci->lock, flags);
3216
3217		/* Don't allow multichannel to grab other contexts' channels. */
3218		if (~ohci->ir_context_channels & ~ohci->mc_channels & *channels) {
3219			*channels = ohci->ir_context_channels;
3220			ret = -EBUSY;
3221		} else {
3222			set_multichannel_mask(ohci, *channels);
3223			ret = 0;
3224		}
3225
3226		spin_unlock_irqrestore(&ohci->lock, flags);
3227
3228		break;
3229	default:
3230		ret = -EINVAL;
3231	}
3232
3233	return ret;
3234}
3235
3236#ifdef CONFIG_PM
3237static void ohci_resume_iso_dma(struct fw_ohci *ohci)
3238{
3239	int i;
3240	struct iso_context *ctx;
3241
3242	for (i = 0 ; i < ohci->n_ir ; i++) {
3243		ctx = &ohci->ir_context_list[i];
3244		if (ctx->context.running)
3245			ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3246	}
3247
3248	for (i = 0 ; i < ohci->n_it ; i++) {
3249		ctx = &ohci->it_context_list[i];
3250		if (ctx->context.running)
3251			ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3252	}
3253}
3254#endif
3255
3256static int queue_iso_transmit(struct iso_context *ctx,
3257			      struct fw_iso_packet *packet,
3258			      struct fw_iso_buffer *buffer,
3259			      unsigned long payload)
3260{
3261	struct descriptor *d, *last, *pd;
3262	struct fw_iso_packet *p;
3263	__le32 *header;
3264	dma_addr_t d_bus, page_bus;
3265	u32 z, header_z, payload_z, irq;
3266	u32 payload_index, payload_end_index, next_page_index;
3267	int page, end_page, i, length, offset;
3268
3269	p = packet;
3270	payload_index = payload;
3271
3272	if (p->skip)
3273		z = 1;
3274	else
3275		z = 2;
3276	if (p->header_length > 0)
3277		z++;
3278
3279	/* Determine the first page the payload isn't contained in. */
3280	end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
3281	if (p->payload_length > 0)
3282		payload_z = end_page - (payload_index >> PAGE_SHIFT);
3283	else
3284		payload_z = 0;
3285
3286	z += payload_z;
3287
3288	/* Get header size in number of descriptors. */
3289	header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
3290
3291	d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
3292	if (d == NULL)
3293		return -ENOMEM;
3294
3295	if (!p->skip) {
3296		d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
3297		d[0].req_count = cpu_to_le16(8);
3298		/*
3299		 * Link the skip address to this descriptor itself.  This causes
3300		 * a context to skip a cycle whenever lost cycles or FIFO
3301		 * overruns occur, without dropping the data.  The application
3302		 * should then decide whether this is an error condition or not.
3303		 * FIXME:  Make the context's cycle-lost behaviour configurable?
3304		 */
3305		d[0].branch_address = cpu_to_le32(d_bus | z);
3306
3307		header = (__le32 *) &d[1];
3308		header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
3309					IT_HEADER_TAG(p->tag) |
3310					IT_HEADER_TCODE(TCODE_STREAM_DATA) |
3311					IT_HEADER_CHANNEL(ctx->base.channel) |
3312					IT_HEADER_SPEED(ctx->base.speed));
3313		header[1] =
3314			cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
3315							  p->payload_length));
3316	}
3317
3318	if (p->header_length > 0) {
3319		d[2].req_count    = cpu_to_le16(p->header_length);
3320		d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
3321		memcpy(&d[z], p->header, p->header_length);
3322	}
3323
3324	pd = d + z - payload_z;
3325	payload_end_index = payload_index + p->payload_length;
3326	for (i = 0; i < payload_z; i++) {
3327		page               = payload_index >> PAGE_SHIFT;
3328		offset             = payload_index & ~PAGE_MASK;
3329		next_page_index    = (page + 1) << PAGE_SHIFT;
3330		length             =
3331			min(next_page_index, payload_end_index) - payload_index;
3332		pd[i].req_count    = cpu_to_le16(length);
3333
3334		page_bus = page_private(buffer->pages[page]);
3335		pd[i].data_address = cpu_to_le32(page_bus + offset);
3336
3337		dma_sync_single_range_for_device(ctx->context.ohci->card.device,
3338						 page_bus, offset, length,
3339						 DMA_TO_DEVICE);
3340
3341		payload_index += length;
3342	}
3343
3344	if (p->interrupt)
3345		irq = DESCRIPTOR_IRQ_ALWAYS;
3346	else
3347		irq = DESCRIPTOR_NO_IRQ;
3348
3349	last = z == 2 ? d : d + z - 1;
3350	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
3351				     DESCRIPTOR_STATUS |
3352				     DESCRIPTOR_BRANCH_ALWAYS |
3353				     irq);
3354
3355	context_append(&ctx->context, d, z, header_z);
3356
3357	return 0;
3358}
3359
3360static int queue_iso_packet_per_buffer(struct iso_context *ctx,
3361				       struct fw_iso_packet *packet,
3362				       struct fw_iso_buffer *buffer,
3363				       unsigned long payload)
3364{
3365	struct device *device = ctx->context.ohci->card.device;
3366	struct descriptor *d, *pd;
3367	dma_addr_t d_bus, page_bus;
3368	u32 z, header_z, rest;
3369	int i, j, length;
3370	int page, offset, packet_count, header_size, payload_per_buffer;
3371
3372	/*
3373	 * The OHCI controller puts the isochronous header and trailer in the
3374	 * buffer, so we need at least 8 bytes.
3375	 */
3376	packet_count = packet->header_length / ctx->base.header_size;
3377	header_size  = max(ctx->base.header_size, (size_t)8);
3378
3379	/* Get header size in number of descriptors. */
3380	header_z = DIV_ROUND_UP(header_size, sizeof(*d));
3381	page     = payload >> PAGE_SHIFT;
3382	offset   = payload & ~PAGE_MASK;
3383	payload_per_buffer = packet->payload_length / packet_count;
3384
3385	for (i = 0; i < packet_count; i++) {
3386		/* d points to the header descriptor */
3387		z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
3388		d = context_get_descriptors(&ctx->context,
3389				z + header_z, &d_bus);
3390		if (d == NULL)
3391			return -ENOMEM;
3392
3393		d->control      = cpu_to_le16(DESCRIPTOR_STATUS |
3394					      DESCRIPTOR_INPUT_MORE);
3395		if (packet->skip && i == 0)
3396			d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3397		d->req_count    = cpu_to_le16(header_size);
3398		d->res_count    = d->req_count;
3399		d->transfer_status = 0;
3400		d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
3401
3402		rest = payload_per_buffer;
3403		pd = d;
3404		for (j = 1; j < z; j++) {
3405			pd++;
3406			pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3407						  DESCRIPTOR_INPUT_MORE);
3408
3409			if (offset + rest < PAGE_SIZE)
3410				length = rest;
3411			else
3412				length = PAGE_SIZE - offset;
3413			pd->req_count = cpu_to_le16(length);
3414			pd->res_count = pd->req_count;
3415			pd->transfer_status = 0;
3416
3417			page_bus = page_private(buffer->pages[page]);
3418			pd->data_address = cpu_to_le32(page_bus + offset);
3419
3420			dma_sync_single_range_for_device(device, page_bus,
3421							 offset, length,
3422							 DMA_FROM_DEVICE);
3423
3424			offset = (offset + length) & ~PAGE_MASK;
3425			rest -= length;
3426			if (offset == 0)
3427				page++;
3428		}
3429		pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3430					  DESCRIPTOR_INPUT_LAST |
3431					  DESCRIPTOR_BRANCH_ALWAYS);
3432		if (packet->interrupt && i == packet_count - 1)
3433			pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3434
3435		context_append(&ctx->context, d, z, header_z);
3436	}
3437
3438	return 0;
3439}
3440
3441static int queue_iso_buffer_fill(struct iso_context *ctx,
3442				 struct fw_iso_packet *packet,
3443				 struct fw_iso_buffer *buffer,
3444				 unsigned long payload)
3445{
3446	struct descriptor *d;
3447	dma_addr_t d_bus, page_bus;
3448	int page, offset, rest, z, i, length;
3449
3450	page   = payload >> PAGE_SHIFT;
3451	offset = payload & ~PAGE_MASK;
3452	rest   = packet->payload_length;
3453
3454	/* We need one descriptor for each page in the buffer. */
3455	z = DIV_ROUND_UP(offset + rest, PAGE_SIZE);
3456
3457	if (WARN_ON(offset & 3 || rest & 3 || page + z > buffer->page_count))
3458		return -EFAULT;
3459
3460	for (i = 0; i < z; i++) {
3461		d = context_get_descriptors(&ctx->context, 1, &d_bus);
3462		if (d == NULL)
3463			return -ENOMEM;
3464
3465		d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
3466					 DESCRIPTOR_BRANCH_ALWAYS);
3467		if (packet->skip && i == 0)
3468			d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3469		if (packet->interrupt && i == z - 1)
3470			d->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3471
3472		if (offset + rest < PAGE_SIZE)
3473			length = rest;
3474		else
3475			length = PAGE_SIZE - offset;
3476		d->req_count = cpu_to_le16(length);
3477		d->res_count = d->req_count;
3478		d->transfer_status = 0;
3479
3480		page_bus = page_private(buffer->pages[page]);
3481		d->data_address = cpu_to_le32(page_bus + offset);
3482
3483		dma_sync_single_range_for_device(ctx->context.ohci->card.device,
3484						 page_bus, offset, length,
3485						 DMA_FROM_DEVICE);
3486
3487		rest -= length;
3488		offset = 0;
3489		page++;
3490
3491		context_append(&ctx->context, d, 1, 0);
3492	}
3493
3494	return 0;
3495}
3496
3497static int ohci_queue_iso(struct fw_iso_context *base,
3498			  struct fw_iso_packet *packet,
3499			  struct fw_iso_buffer *buffer,
3500			  unsigned long payload)
3501{
3502	struct iso_context *ctx = container_of(base, struct iso_context, base);
3503	unsigned long flags;
3504	int ret = -ENOSYS;
3505
3506	spin_lock_irqsave(&ctx->context.ohci->lock, flags);
3507	switch (base->type) {
3508	case FW_ISO_CONTEXT_TRANSMIT:
3509		ret = queue_iso_transmit(ctx, packet, buffer, payload);
3510		break;
3511	case FW_ISO_CONTEXT_RECEIVE:
3512		ret = queue_iso_packet_per_buffer(ctx, packet, buffer, payload);
3513		break;
3514	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3515		ret = queue_iso_buffer_fill(ctx, packet, buffer, payload);
3516		break;
3517	}
3518	spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
3519
3520	return ret;
3521}
3522
3523static void ohci_flush_queue_iso(struct fw_iso_context *base)
3524{
3525	struct context *ctx =
3526			&container_of(base, struct iso_context, base)->context;
3527
3528	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
3529}
3530
3531static int ohci_flush_iso_completions(struct fw_iso_context *base)
3532{
3533	struct iso_context *ctx = container_of(base, struct iso_context, base);
3534	int ret = 0;
3535
3536	tasklet_disable_in_atomic(&ctx->context.tasklet);
3537
3538	if (!test_and_set_bit_lock(0, &ctx->flushing_completions)) {
3539		context_tasklet((unsigned long)&ctx->context);
3540
3541		switch (base->type) {
3542		case FW_ISO_CONTEXT_TRANSMIT:
3543		case FW_ISO_CONTEXT_RECEIVE:
3544			if (ctx->header_length != 0)
3545				flush_iso_completions(ctx);
3546			break;
3547		case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3548			if (ctx->mc_completed != 0)
3549				flush_ir_buffer_fill(ctx);
3550			break;
3551		default:
3552			ret = -ENOSYS;
3553		}
3554
3555		clear_bit_unlock(0, &ctx->flushing_completions);
3556		smp_mb__after_atomic();
3557	}
3558
3559	tasklet_enable(&ctx->context.tasklet);
3560
3561	return ret;
3562}
3563
3564static const struct fw_card_driver ohci_driver = {
3565	.enable			= ohci_enable,
3566	.read_phy_reg		= ohci_read_phy_reg,
3567	.update_phy_reg		= ohci_update_phy_reg,
3568	.set_config_rom		= ohci_set_config_rom,
3569	.send_request		= ohci_send_request,
3570	.send_response		= ohci_send_response,
3571	.cancel_packet		= ohci_cancel_packet,
3572	.enable_phys_dma	= ohci_enable_phys_dma,
3573	.read_csr		= ohci_read_csr,
3574	.write_csr		= ohci_write_csr,
3575
3576	.allocate_iso_context	= ohci_allocate_iso_context,
3577	.free_iso_context	= ohci_free_iso_context,
3578	.set_iso_channels	= ohci_set_iso_channels,
3579	.queue_iso		= ohci_queue_iso,
3580	.flush_queue_iso	= ohci_flush_queue_iso,
3581	.flush_iso_completions	= ohci_flush_iso_completions,
3582	.start_iso		= ohci_start_iso,
3583	.stop_iso		= ohci_stop_iso,
3584};
3585
3586#ifdef CONFIG_PPC_PMAC
3587static void pmac_ohci_on(struct pci_dev *dev)
3588{
3589	if (machine_is(powermac)) {
3590		struct device_node *ofn = pci_device_to_OF_node(dev);
3591
3592		if (ofn) {
3593			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
3594			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
3595		}
3596	}
3597}
3598
3599static void pmac_ohci_off(struct pci_dev *dev)
3600{
3601	if (machine_is(powermac)) {
3602		struct device_node *ofn = pci_device_to_OF_node(dev);
3603
3604		if (ofn) {
3605			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
3606			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
3607		}
3608	}
3609}
3610#else
3611static inline void pmac_ohci_on(struct pci_dev *dev) {}
3612static inline void pmac_ohci_off(struct pci_dev *dev) {}
3613#endif /* CONFIG_PPC_PMAC */
3614
3615static void release_ohci(struct device *dev, void *data)
3616{
3617	struct pci_dev *pdev = to_pci_dev(dev);
3618	struct fw_ohci *ohci = pci_get_drvdata(pdev);
3619
3620	pmac_ohci_off(pdev);
3621
3622	ar_context_release(&ohci->ar_response_ctx);
3623	ar_context_release(&ohci->ar_request_ctx);
3624
3625	dev_notice(dev, "removed fw-ohci device\n");
3626}
3627
3628static int pci_probe(struct pci_dev *dev,
3629			       const struct pci_device_id *ent)
3630{
3631	struct fw_ohci *ohci;
3632	u32 bus_options, max_receive, link_speed, version;
3633	u64 guid;
3634	int i, err;
3635	size_t size;
3636
3637	if (dev->vendor == PCI_VENDOR_ID_PINNACLE_SYSTEMS) {
3638		dev_err(&dev->dev, "Pinnacle MovieBoard is not yet supported\n");
3639		return -ENOSYS;
3640	}
3641
3642	ohci = devres_alloc(release_ohci, sizeof(*ohci), GFP_KERNEL);
3643	if (ohci == NULL)
3644		return -ENOMEM;
 
 
 
3645	fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
3646	pci_set_drvdata(dev, ohci);
3647	pmac_ohci_on(dev);
3648	devres_add(&dev->dev, ohci);
3649
3650	err = pcim_enable_device(dev);
3651	if (err) {
3652		dev_err(&dev->dev, "failed to enable OHCI hardware\n");
3653		return err;
3654	}
3655
3656	pci_set_master(dev);
3657	pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
 
3658
3659	spin_lock_init(&ohci->lock);
3660	mutex_init(&ohci->phy_reg_mutex);
3661
3662	INIT_WORK(&ohci->bus_reset_work, bus_reset_work);
3663
3664	if (!(pci_resource_flags(dev, 0) & IORESOURCE_MEM) ||
3665	    pci_resource_len(dev, 0) < OHCI1394_REGISTER_SIZE) {
3666		ohci_err(ohci, "invalid MMIO resource\n");
3667		return -ENXIO;
3668	}
3669
3670	err = pcim_iomap_regions(dev, 1 << 0, ohci_driver_name);
3671	if (err) {
3672		ohci_err(ohci, "request and map MMIO resource unavailable\n");
3673		return -ENXIO;
 
3674	}
3675	ohci->registers = pcim_iomap_table(dev)[0];
3676
3677	for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
3678		if ((ohci_quirks[i].vendor == dev->vendor) &&
3679		    (ohci_quirks[i].device == (unsigned short)PCI_ANY_ID ||
3680		     ohci_quirks[i].device == dev->device) &&
3681		    (ohci_quirks[i].revision == (unsigned short)PCI_ANY_ID ||
3682		     ohci_quirks[i].revision >= dev->revision)) {
3683			ohci->quirks = ohci_quirks[i].flags;
3684			break;
3685		}
3686	if (param_quirks)
3687		ohci->quirks = param_quirks;
3688
3689	if (detect_vt630x_with_asm1083_on_amd_ryzen_machine(dev))
3690		ohci->quirks |= QUIRK_REBOOT_BY_CYCLE_TIMER_READ;
3691
3692	/*
3693	 * Because dma_alloc_coherent() allocates at least one page,
3694	 * we save space by using a common buffer for the AR request/
3695	 * response descriptors and the self IDs buffer.
3696	 */
3697	BUILD_BUG_ON(AR_BUFFERS * sizeof(struct descriptor) > PAGE_SIZE/4);
3698	BUILD_BUG_ON(SELF_ID_BUF_SIZE > PAGE_SIZE/2);
3699	ohci->misc_buffer = dmam_alloc_coherent(&dev->dev, PAGE_SIZE, &ohci->misc_buffer_bus,
3700						GFP_KERNEL);
3701	if (!ohci->misc_buffer)
3702		return -ENOMEM;
 
 
 
 
3703
3704	err = ar_context_init(&ohci->ar_request_ctx, ohci, 0,
3705			      OHCI1394_AsReqRcvContextControlSet);
3706	if (err < 0)
3707		return err;
3708
3709	err = ar_context_init(&ohci->ar_response_ctx, ohci, PAGE_SIZE/4,
3710			      OHCI1394_AsRspRcvContextControlSet);
3711	if (err < 0)
3712		return err;
3713
3714	err = context_init(&ohci->at_request_ctx, ohci,
3715			   OHCI1394_AsReqTrContextControlSet, handle_at_packet);
3716	if (err < 0)
3717		return err;
3718
3719	err = context_init(&ohci->at_response_ctx, ohci,
3720			   OHCI1394_AsRspTrContextControlSet, handle_at_packet);
3721	if (err < 0)
3722		return err;
3723
3724	reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
3725	ohci->ir_context_channels = ~0ULL;
3726	ohci->ir_context_support = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
3727	reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
3728	ohci->ir_context_mask = ohci->ir_context_support;
3729	ohci->n_ir = hweight32(ohci->ir_context_mask);
3730	size = sizeof(struct iso_context) * ohci->n_ir;
3731	ohci->ir_context_list = devm_kzalloc(&dev->dev, size, GFP_KERNEL);
3732	if (!ohci->ir_context_list)
3733		return -ENOMEM;
3734
3735	reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
3736	ohci->it_context_support = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
3737	/* JMicron JMB38x often shows 0 at first read, just ignore it */
3738	if (!ohci->it_context_support) {
3739		ohci_notice(ohci, "overriding IsoXmitIntMask\n");
3740		ohci->it_context_support = 0xf;
3741	}
3742	reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
3743	ohci->it_context_mask = ohci->it_context_support;
3744	ohci->n_it = hweight32(ohci->it_context_mask);
3745	size = sizeof(struct iso_context) * ohci->n_it;
3746	ohci->it_context_list = devm_kzalloc(&dev->dev, size, GFP_KERNEL);
3747	if (!ohci->it_context_list)
3748		return -ENOMEM;
 
 
 
3749
3750	ohci->self_id     = ohci->misc_buffer     + PAGE_SIZE/2;
3751	ohci->self_id_bus = ohci->misc_buffer_bus + PAGE_SIZE/2;
3752
3753	bus_options = reg_read(ohci, OHCI1394_BusOptions);
3754	max_receive = (bus_options >> 12) & 0xf;
3755	link_speed = bus_options & 0x7;
3756	guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
3757		reg_read(ohci, OHCI1394_GUIDLo);
3758
3759	if (!(ohci->quirks & QUIRK_NO_MSI))
3760		pci_enable_msi(dev);
3761	err = devm_request_irq(&dev->dev, dev->irq, irq_handler,
3762			       pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED, ohci_driver_name, ohci);
3763	if (err < 0) {
3764		ohci_err(ohci, "failed to allocate interrupt %d\n", dev->irq);
3765		goto fail_msi;
3766	}
3767
3768	err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
3769	if (err)
3770		goto fail_msi;
3771
3772	version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
3773	ohci_notice(ohci,
3774		    "added OHCI v%x.%x device as card %d, "
3775		    "%d IR + %d IT contexts, quirks 0x%x%s\n",
3776		    version >> 16, version & 0xff, ohci->card.index,
3777		    ohci->n_ir, ohci->n_it, ohci->quirks,
3778		    reg_read(ohci, OHCI1394_PhyUpperBound) ?
3779			", physUB" : "");
3780
3781	return 0;
3782
3783 fail_msi:
3784	devm_free_irq(&dev->dev, dev->irq, ohci);
3785	pci_disable_msi(dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3786
3787	return err;
3788}
3789
3790static void pci_remove(struct pci_dev *dev)
3791{
3792	struct fw_ohci *ohci = pci_get_drvdata(dev);
3793
3794	/*
3795	 * If the removal is happening from the suspend state, LPS won't be
3796	 * enabled and host registers (eg., IntMaskClear) won't be accessible.
3797	 */
3798	if (reg_read(ohci, OHCI1394_HCControlSet) & OHCI1394_HCControl_LPS) {
3799		reg_write(ohci, OHCI1394_IntMaskClear, ~0);
3800		flush_writes(ohci);
3801	}
3802	cancel_work_sync(&ohci->bus_reset_work);
3803	fw_core_remove_card(&ohci->card);
3804
3805	/*
3806	 * FIXME: Fail all pending packets here, now that the upper
3807	 * layers can't queue any more.
3808	 */
3809
3810	software_reset(ohci);
 
3811
3812	devm_free_irq(&dev->dev, dev->irq, ohci);
 
 
 
 
 
 
 
 
 
 
 
 
 
3813	pci_disable_msi(dev);
 
 
 
 
 
3814
3815	dev_notice(&dev->dev, "removing fw-ohci device\n");
3816}
3817
3818#ifdef CONFIG_PM
3819static int pci_suspend(struct pci_dev *dev, pm_message_t state)
3820{
3821	struct fw_ohci *ohci = pci_get_drvdata(dev);
3822	int err;
3823
3824	software_reset(ohci);
 
 
3825	err = pci_save_state(dev);
3826	if (err) {
3827		ohci_err(ohci, "pci_save_state failed\n");
3828		return err;
3829	}
3830	err = pci_set_power_state(dev, pci_choose_state(dev, state));
3831	if (err)
3832		ohci_err(ohci, "pci_set_power_state failed with %d\n", err);
3833	pmac_ohci_off(dev);
3834
3835	return 0;
3836}
3837
3838static int pci_resume(struct pci_dev *dev)
3839{
3840	struct fw_ohci *ohci = pci_get_drvdata(dev);
3841	int err;
3842
3843	pmac_ohci_on(dev);
3844	pci_set_power_state(dev, PCI_D0);
3845	pci_restore_state(dev);
3846	err = pci_enable_device(dev);
3847	if (err) {
3848		ohci_err(ohci, "pci_enable_device failed\n");
3849		return err;
3850	}
3851
3852	/* Some systems don't setup GUID register on resume from ram  */
3853	if (!reg_read(ohci, OHCI1394_GUIDLo) &&
3854					!reg_read(ohci, OHCI1394_GUIDHi)) {
3855		reg_write(ohci, OHCI1394_GUIDLo, (u32)ohci->card.guid);
3856		reg_write(ohci, OHCI1394_GUIDHi, (u32)(ohci->card.guid >> 32));
3857	}
3858
3859	err = ohci_enable(&ohci->card, NULL, 0);
3860	if (err)
3861		return err;
3862
3863	ohci_resume_iso_dma(ohci);
3864
3865	return 0;
3866}
3867#endif
3868
3869static const struct pci_device_id pci_table[] = {
3870	{ PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
3871	{ }
3872};
3873
3874MODULE_DEVICE_TABLE(pci, pci_table);
3875
3876static struct pci_driver fw_ohci_pci_driver = {
3877	.name		= ohci_driver_name,
3878	.id_table	= pci_table,
3879	.probe		= pci_probe,
3880	.remove		= pci_remove,
3881#ifdef CONFIG_PM
3882	.resume		= pci_resume,
3883	.suspend	= pci_suspend,
3884#endif
3885};
3886
3887static int __init fw_ohci_init(void)
3888{
3889	selfid_workqueue = alloc_workqueue(KBUILD_MODNAME, WQ_MEM_RECLAIM, 0);
3890	if (!selfid_workqueue)
3891		return -ENOMEM;
3892
3893	return pci_register_driver(&fw_ohci_pci_driver);
3894}
3895
3896static void __exit fw_ohci_cleanup(void)
3897{
3898	pci_unregister_driver(&fw_ohci_pci_driver);
3899	destroy_workqueue(selfid_workqueue);
3900}
3901
3902module_init(fw_ohci_init);
3903module_exit(fw_ohci_cleanup);
3904
3905MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
3906MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
3907MODULE_LICENSE("GPL");
3908
3909/* Provide a module alias so root-on-sbp2 initrds don't break. */
 
3910MODULE_ALIAS("ohci1394");