Linux Audio

Check our new training course

Loading...
v3.5.6
 
  1/*
  2 * Memory subsystem support
  3 *
  4 * Written by Matt Tolentino <matthew.e.tolentino@intel.com>
  5 *            Dave Hansen <haveblue@us.ibm.com>
  6 *
  7 * This file provides the necessary infrastructure to represent
  8 * a SPARSEMEM-memory-model system's physical memory in /sysfs.
  9 * All arch-independent code that assumes MEMORY_HOTPLUG requires
 10 * SPARSEMEM should be contained here, or in mm/memory_hotplug.c.
 11 */
 12
 13#include <linux/module.h>
 14#include <linux/init.h>
 15#include <linux/topology.h>
 16#include <linux/capability.h>
 17#include <linux/device.h>
 18#include <linux/memory.h>
 19#include <linux/kobject.h>
 20#include <linux/memory_hotplug.h>
 21#include <linux/mm.h>
 22#include <linux/mutex.h>
 23#include <linux/stat.h>
 24#include <linux/slab.h>
 25
 26#include <linux/atomic.h>
 27#include <asm/uaccess.h>
 28
 29static DEFINE_MUTEX(mem_sysfs_mutex);
 30
 31#define MEMORY_CLASS_NAME	"memory"
 32
 
 
 33static int sections_per_block;
 34
 35static inline int base_memory_block_id(int section_nr)
 36{
 37	return section_nr / sections_per_block;
 38}
 39
 
 
 
 
 
 
 
 
 
 
 
 
 
 40static struct bus_type memory_subsys = {
 41	.name = MEMORY_CLASS_NAME,
 42	.dev_name = MEMORY_CLASS_NAME,
 
 
 43};
 44
 45static BLOCKING_NOTIFIER_HEAD(memory_chain);
 46
 47int register_memory_notifier(struct notifier_block *nb)
 48{
 49        return blocking_notifier_chain_register(&memory_chain, nb);
 50}
 51EXPORT_SYMBOL(register_memory_notifier);
 52
 53void unregister_memory_notifier(struct notifier_block *nb)
 54{
 55        blocking_notifier_chain_unregister(&memory_chain, nb);
 56}
 57EXPORT_SYMBOL(unregister_memory_notifier);
 58
 59static ATOMIC_NOTIFIER_HEAD(memory_isolate_chain);
 60
 61int register_memory_isolate_notifier(struct notifier_block *nb)
 62{
 63	return atomic_notifier_chain_register(&memory_isolate_chain, nb);
 64}
 65EXPORT_SYMBOL(register_memory_isolate_notifier);
 66
 67void unregister_memory_isolate_notifier(struct notifier_block *nb)
 68{
 69	atomic_notifier_chain_unregister(&memory_isolate_chain, nb);
 70}
 71EXPORT_SYMBOL(unregister_memory_isolate_notifier);
 72
 73/*
 74 * register_memory - Setup a sysfs device for a memory block
 75 */
 76static
 77int register_memory(struct memory_block *memory)
 78{
 79	int error;
 80
 81	memory->dev.bus = &memory_subsys;
 82	memory->dev.id = memory->start_section_nr / sections_per_block;
 83
 84	error = device_register(&memory->dev);
 85	return error;
 86}
 87
 88static void
 89unregister_memory(struct memory_block *memory)
 90{
 91	BUG_ON(memory->dev.bus != &memory_subsys);
 92
 93	/* drop the ref. we got in remove_memory_block() */
 94	kobject_put(&memory->dev.kobj);
 95	device_unregister(&memory->dev);
 96}
 97
 98unsigned long __weak memory_block_size_bytes(void)
 99{
100	return MIN_MEMORY_BLOCK_SIZE;
101}
102
103static unsigned long get_memory_block_size(void)
104{
105	unsigned long block_sz;
106
107	block_sz = memory_block_size_bytes();
108
109	/* Validate blk_sz is a power of 2 and not less than section size */
110	if ((block_sz & (block_sz - 1)) || (block_sz < MIN_MEMORY_BLOCK_SIZE)) {
111		WARN_ON(1);
112		block_sz = MIN_MEMORY_BLOCK_SIZE;
113	}
114
115	return block_sz;
116}
117
118/*
119 * use this as the physical section index that this memsection
120 * uses.
121 */
122
123static ssize_t show_mem_start_phys_index(struct device *dev,
124			struct device_attribute *attr, char *buf)
125{
126	struct memory_block *mem =
127		container_of(dev, struct memory_block, dev);
128	unsigned long phys_index;
129
130	phys_index = mem->start_section_nr / sections_per_block;
131	return sprintf(buf, "%08lx\n", phys_index);
132}
133
134static ssize_t show_mem_end_phys_index(struct device *dev,
135			struct device_attribute *attr, char *buf)
136{
137	struct memory_block *mem =
138		container_of(dev, struct memory_block, dev);
139	unsigned long phys_index;
140
141	phys_index = mem->end_section_nr / sections_per_block;
142	return sprintf(buf, "%08lx\n", phys_index);
143}
144
145/*
146 * Show whether the section of memory is likely to be hot-removable
147 */
148static ssize_t show_mem_removable(struct device *dev,
149			struct device_attribute *attr, char *buf)
150{
151	unsigned long i, pfn;
152	int ret = 1;
153	struct memory_block *mem =
154		container_of(dev, struct memory_block, dev);
 
 
 
 
 
155
156	for (i = 0; i < sections_per_block; i++) {
 
 
157		pfn = section_nr_to_pfn(mem->start_section_nr + i);
158		ret &= is_mem_section_removable(pfn, PAGES_PER_SECTION);
159	}
160
 
161	return sprintf(buf, "%d\n", ret);
162}
163
164/*
165 * online, offline, going offline, etc.
166 */
167static ssize_t show_mem_state(struct device *dev,
168			struct device_attribute *attr, char *buf)
169{
170	struct memory_block *mem =
171		container_of(dev, struct memory_block, dev);
172	ssize_t len = 0;
173
174	/*
175	 * We can probably put these states in a nice little array
176	 * so that they're not open-coded
177	 */
178	switch (mem->state) {
179		case MEM_ONLINE:
180			len = sprintf(buf, "online\n");
181			break;
182		case MEM_OFFLINE:
183			len = sprintf(buf, "offline\n");
184			break;
185		case MEM_GOING_OFFLINE:
186			len = sprintf(buf, "going-offline\n");
187			break;
188		default:
189			len = sprintf(buf, "ERROR-UNKNOWN-%ld\n",
190					mem->state);
191			WARN_ON(1);
192			break;
193	}
194
195	return len;
196}
197
198int memory_notify(unsigned long val, void *v)
199{
200	return blocking_notifier_call_chain(&memory_chain, val, v);
201}
202
203int memory_isolate_notify(unsigned long val, void *v)
204{
205	return atomic_notifier_call_chain(&memory_isolate_chain, val, v);
206}
207
208/*
209 * The probe routines leave the pages reserved, just as the bootmem code does.
210 * Make sure they're still that way.
 
211 */
212static bool pages_correctly_reserved(unsigned long start_pfn,
213					unsigned long nr_pages)
214{
215	int i, j;
216	struct page *page;
217	unsigned long pfn = start_pfn;
218
219	/*
220	 * memmap between sections is not contiguous except with
221	 * SPARSEMEM_VMEMMAP. We lookup the page once per section
222	 * and assume memmap is contiguous within each section
223	 */
224	for (i = 0; i < sections_per_block; i++, pfn += PAGES_PER_SECTION) {
225		if (WARN_ON_ONCE(!pfn_valid(pfn)))
226			return false;
227		page = pfn_to_page(pfn);
228
229		for (j = 0; j < PAGES_PER_SECTION; j++) {
230			if (PageReserved(page + j))
231				continue;
232
233			printk(KERN_WARNING "section number %ld page number %d "
234				"not reserved, was it already online?\n",
235				pfn_to_section_nr(pfn), j);
236
 
 
 
 
 
 
 
 
 
 
 
237			return false;
238		}
 
239	}
240
241	return true;
242}
243
244/*
245 * MEMORY_HOTPLUG depends on SPARSEMEM in mm/Kconfig, so it is
246 * OK to have direct references to sparsemem variables in here.
247 */
248static int
249memory_block_action(unsigned long phys_index, unsigned long action)
 
250{
251	unsigned long start_pfn, start_paddr;
252	unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
253	struct page *first_page;
254	int ret;
255
256	first_page = pfn_to_page(phys_index << PFN_SECTION_SHIFT);
257
258	switch (action) {
259		case MEM_ONLINE:
260			start_pfn = page_to_pfn(first_page);
261
262			if (!pages_correctly_reserved(start_pfn, nr_pages))
263				return -EBUSY;
264
265			ret = online_pages(start_pfn, nr_pages);
266			break;
267		case MEM_OFFLINE:
268			start_paddr = page_to_pfn(first_page) << PAGE_SHIFT;
269			ret = remove_memory(start_paddr,
270					    nr_pages << PAGE_SHIFT);
271			break;
272		default:
273			WARN(1, KERN_WARNING "%s(%ld, %ld) unknown action: "
274			     "%ld\n", __func__, phys_index, action, action);
275			ret = -EINVAL;
276	}
277
278	return ret;
279}
280
281static int memory_block_change_state(struct memory_block *mem,
282		unsigned long to_state, unsigned long from_state_req)
283{
284	int ret = 0;
285
286	mutex_lock(&mem->state_mutex);
287
288	if (mem->state != from_state_req) {
289		ret = -EINVAL;
290		goto out;
291	}
292
293	if (to_state == MEM_OFFLINE)
294		mem->state = MEM_GOING_OFFLINE;
295
296	ret = memory_block_action(mem->start_section_nr, to_state);
 
297
298	if (ret) {
299		mem->state = from_state_req;
300		goto out;
301	}
302
303	mem->state = to_state;
304	switch (mem->state) {
305	case MEM_OFFLINE:
306		kobject_uevent(&mem->dev.kobj, KOBJ_OFFLINE);
307		break;
308	case MEM_ONLINE:
309		kobject_uevent(&mem->dev.kobj, KOBJ_ONLINE);
310		break;
311	default:
312		break;
313	}
314out:
315	mutex_unlock(&mem->state_mutex);
316	return ret;
317}
318
319static ssize_t
320store_mem_state(struct device *dev,
321		struct device_attribute *attr, const char *buf, size_t count)
322{
323	struct memory_block *mem;
324	int ret = -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
325
326	mem = container_of(dev, struct memory_block, dev);
 
 
327
328	if (!strncmp(buf, "online", min((int)count, 6)))
329		ret = memory_block_change_state(mem, MEM_ONLINE, MEM_OFFLINE);
330	else if(!strncmp(buf, "offline", min((int)count, 7)))
331		ret = memory_block_change_state(mem, MEM_OFFLINE, MEM_ONLINE);
332
 
 
 
 
 
 
 
333	if (ret)
334		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
335	return count;
336}
337
338/*
339 * phys_device is a bad name for this.  What I really want
340 * is a way to differentiate between memory ranges that
341 * are part of physical devices that constitute
342 * a complete removable unit or fru.
343 * i.e. do these ranges belong to the same physical device,
344 * s.t. if I offline all of these sections I can then
345 * remove the physical device?
346 */
347static ssize_t show_phys_device(struct device *dev,
348				struct device_attribute *attr, char *buf)
349{
350	struct memory_block *mem =
351		container_of(dev, struct memory_block, dev);
352	return sprintf(buf, "%d\n", mem->phys_device);
353}
354
355static DEVICE_ATTR(phys_index, 0444, show_mem_start_phys_index, NULL);
356static DEVICE_ATTR(end_phys_index, 0444, show_mem_end_phys_index, NULL);
357static DEVICE_ATTR(state, 0644, show_mem_state, store_mem_state);
358static DEVICE_ATTR(phys_device, 0444, show_phys_device, NULL);
359static DEVICE_ATTR(removable, 0444, show_mem_removable, NULL);
 
360
361#define mem_create_simple_file(mem, attr_name)	\
362	device_create_file(&mem->dev, &dev_attr_##attr_name)
363#define mem_remove_simple_file(mem, attr_name)	\
364	device_remove_file(&mem->dev, &dev_attr_##attr_name)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
365
366/*
367 * Block size attribute stuff
368 */
369static ssize_t
370print_block_size(struct device *dev, struct device_attribute *attr,
371		 char *buf)
372{
373	return sprintf(buf, "%lx\n", get_memory_block_size());
374}
375
376static DEVICE_ATTR(block_size_bytes, 0444, print_block_size, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
377
378static int block_size_init(void)
 
 
379{
380	return device_create_file(memory_subsys.dev_root,
381				  &dev_attr_block_size_bytes);
 
 
 
 
 
 
382}
383
 
 
384/*
385 * Some architectures will have custom drivers to do this, and
386 * will not need to do it from userspace.  The fake hot-add code
387 * as well as ppc64 will do all of their discovery in userspace
388 * and will require this interface.
389 */
390#ifdef CONFIG_ARCH_MEMORY_PROBE
391static ssize_t
392memory_probe_store(struct device *dev, struct device_attribute *attr,
393		   const char *buf, size_t count)
394{
395	u64 phys_addr;
396	int nid;
397	int i, ret;
398	unsigned long pages_per_block = PAGES_PER_SECTION * sections_per_block;
399
400	phys_addr = simple_strtoull(buf, NULL, 0);
 
 
401
402	if (phys_addr & ((pages_per_block << PAGE_SHIFT) - 1))
403		return -EINVAL;
404
405	for (i = 0; i < sections_per_block; i++) {
406		nid = memory_add_physaddr_to_nid(phys_addr);
407		ret = add_memory(nid, phys_addr,
408				 PAGES_PER_SECTION << PAGE_SHIFT);
409		if (ret)
410			goto out;
411
412		phys_addr += MIN_MEMORY_BLOCK_SIZE;
413	}
 
 
 
 
414
415	ret = count;
416out:
 
417	return ret;
418}
419static DEVICE_ATTR(probe, S_IWUSR, NULL, memory_probe_store);
420
421static int memory_probe_init(void)
422{
423	return device_create_file(memory_subsys.dev_root, &dev_attr_probe);
424}
425#else
426static inline int memory_probe_init(void)
427{
428	return 0;
429}
430#endif
431
432#ifdef CONFIG_MEMORY_FAILURE
433/*
434 * Support for offlining pages of memory
435 */
436
437/* Soft offline a page */
438static ssize_t
439store_soft_offline_page(struct device *dev,
440			struct device_attribute *attr,
441			const char *buf, size_t count)
442{
443	int ret;
444	u64 pfn;
445	if (!capable(CAP_SYS_ADMIN))
446		return -EPERM;
447	if (strict_strtoull(buf, 0, &pfn) < 0)
448		return -EINVAL;
449	pfn >>= PAGE_SHIFT;
450	if (!pfn_valid(pfn))
451		return -ENXIO;
 
 
 
452	ret = soft_offline_page(pfn_to_page(pfn), 0);
453	return ret == 0 ? count : ret;
454}
455
456/* Forcibly offline a page, including killing processes. */
457static ssize_t
458store_hard_offline_page(struct device *dev,
459			struct device_attribute *attr,
460			const char *buf, size_t count)
461{
462	int ret;
463	u64 pfn;
464	if (!capable(CAP_SYS_ADMIN))
465		return -EPERM;
466	if (strict_strtoull(buf, 0, &pfn) < 0)
467		return -EINVAL;
468	pfn >>= PAGE_SHIFT;
469	ret = memory_failure(pfn, 0, 0);
470	return ret ? ret : count;
471}
472
473static DEVICE_ATTR(soft_offline_page, 0644, NULL, store_soft_offline_page);
474static DEVICE_ATTR(hard_offline_page, 0644, NULL, store_hard_offline_page);
475
476static __init int memory_fail_init(void)
477{
478	int err;
479
480	err = device_create_file(memory_subsys.dev_root,
481				&dev_attr_soft_offline_page);
482	if (!err)
483		err = device_create_file(memory_subsys.dev_root,
484				&dev_attr_hard_offline_page);
485	return err;
486}
487#else
488static inline int memory_fail_init(void)
489{
490	return 0;
491}
492#endif
493
494/*
495 * Note that phys_device is optional.  It is here to allow for
496 * differentiation between which *physical* devices each
497 * section belongs to...
498 */
499int __weak arch_get_memory_phys_device(unsigned long start_pfn)
500{
501	return 0;
502}
503
504/*
505 * A reference for the returned object is held and the reference for the
506 * hinted object is released.
507 */
508struct memory_block *find_memory_block_hinted(struct mem_section *section,
509					      struct memory_block *hint)
510{
511	int block_id = base_memory_block_id(__section_nr(section));
512	struct device *hintdev = hint ? &hint->dev : NULL;
513	struct device *dev;
514
515	dev = subsys_find_device_by_id(&memory_subsys, block_id, hintdev);
516	if (hint)
517		put_device(&hint->dev);
518	if (!dev)
519		return NULL;
520	return container_of(dev, struct memory_block, dev);
521}
522
523/*
524 * For now, we have a linear search to go find the appropriate
525 * memory_block corresponding to a particular phys_index. If
526 * this gets to be a real problem, we can always use a radix
527 * tree or something here.
528 *
529 * This could be made generic for all device subsystems.
530 */
531struct memory_block *find_memory_block(struct mem_section *section)
532{
533	return find_memory_block_hinted(section, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
534}
535
536static int init_memory_block(struct memory_block **memory,
537			     struct mem_section *section, unsigned long state)
538{
539	struct memory_block *mem;
540	unsigned long start_pfn;
541	int scn_nr;
542	int ret = 0;
543
 
 
 
 
 
544	mem = kzalloc(sizeof(*mem), GFP_KERNEL);
545	if (!mem)
546		return -ENOMEM;
547
548	scn_nr = __section_nr(section);
549	mem->start_section_nr =
550			base_memory_block_id(scn_nr) * sections_per_block;
551	mem->end_section_nr = mem->start_section_nr + sections_per_block - 1;
552	mem->state = state;
553	mem->section_count++;
554	mutex_init(&mem->state_mutex);
555	start_pfn = section_nr_to_pfn(mem->start_section_nr);
556	mem->phys_device = arch_get_memory_phys_device(start_pfn);
 
557
558	ret = register_memory(mem);
559	if (!ret)
560		ret = mem_create_simple_file(mem, phys_index);
561	if (!ret)
562		ret = mem_create_simple_file(mem, end_phys_index);
563	if (!ret)
564		ret = mem_create_simple_file(mem, state);
565	if (!ret)
566		ret = mem_create_simple_file(mem, phys_device);
567	if (!ret)
568		ret = mem_create_simple_file(mem, removable);
569
570	*memory = mem;
571	return ret;
572}
573
574static int add_memory_section(int nid, struct mem_section *section,
575			struct memory_block **mem_p,
576			unsigned long state, enum mem_add_context context)
577{
578	struct memory_block *mem = NULL;
579	int scn_nr = __section_nr(section);
580	int ret = 0;
581
582	mutex_lock(&mem_sysfs_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
583
584	if (context == BOOT) {
585		/* same memory block ? */
586		if (mem_p && *mem_p)
587			if (scn_nr >= (*mem_p)->start_section_nr &&
588			    scn_nr <= (*mem_p)->end_section_nr) {
589				mem = *mem_p;
590				kobject_get(&mem->dev.kobj);
591			}
592	} else
593		mem = find_memory_block(section);
594
595	if (mem) {
596		mem->section_count++;
597		kobject_put(&mem->dev.kobj);
598	} else {
599		ret = init_memory_block(&mem, section, state);
600		/* store memory_block pointer for next loop */
601		if (!ret && context == BOOT)
602			if (mem_p)
603				*mem_p = mem;
604	}
605
606	if (!ret) {
607		if (context == HOTPLUG &&
608		    mem->section_count == sections_per_block)
609			ret = register_mem_sect_under_node(mem, nid);
610	}
 
 
 
 
 
 
 
 
 
 
 
611
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
612	mutex_unlock(&mem_sysfs_mutex);
613	return ret;
614}
615
616int remove_memory_block(unsigned long node_id, struct mem_section *section,
617		int phys_device)
 
 
 
 
618{
 
 
619	struct memory_block *mem;
 
620
621	mutex_lock(&mem_sysfs_mutex);
622	mem = find_memory_block(section);
623	unregister_mem_sect_under_nodes(mem, __section_nr(section));
624
625	mem->section_count--;
626	if (mem->section_count == 0) {
627		mem_remove_simple_file(mem, phys_index);
628		mem_remove_simple_file(mem, end_phys_index);
629		mem_remove_simple_file(mem, state);
630		mem_remove_simple_file(mem, phys_device);
631		mem_remove_simple_file(mem, removable);
632		unregister_memory(mem);
633		kfree(mem);
634	} else
635		kobject_put(&mem->dev.kobj);
636
637	mutex_unlock(&mem_sysfs_mutex);
638	return 0;
639}
640
641/*
642 * need an interface for the VM to add new memory regions,
643 * but without onlining it.
644 */
645int register_new_memory(int nid, struct mem_section *section)
646{
647	return add_memory_section(nid, section, NULL, MEM_OFFLINE, HOTPLUG);
648}
649
650int unregister_memory_section(struct mem_section *section)
651{
652	if (!present_section(section))
653		return -EINVAL;
654
655	return remove_memory_block(0, section, 0);
656}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
657
658/*
659 * Initialize the sysfs support for memory devices...
660 */
661int __init memory_dev_init(void)
662{
663	unsigned int i;
664	int ret;
665	int err;
666	unsigned long block_sz;
667	struct memory_block *mem = NULL;
 
 
 
 
 
668
669	ret = subsys_system_register(&memory_subsys, NULL);
670	if (ret)
671		goto out;
672
673	block_sz = get_memory_block_size();
674	sections_per_block = block_sz / MIN_MEMORY_BLOCK_SIZE;
675
676	/*
677	 * Create entries for memory sections that were found
678	 * during boot and have been initialized
679	 */
680	for (i = 0; i < NR_MEM_SECTIONS; i++) {
681		if (!present_section_nr(i))
682			continue;
683		/* don't need to reuse memory_block if only one per block */
684		err = add_memory_section(0, __nr_to_section(i),
685				 (sections_per_block == 1) ? NULL : &mem,
686					 MEM_ONLINE,
687					 BOOT);
688		if (!ret)
689			ret = err;
690	}
 
691
692	err = memory_probe_init();
693	if (!ret)
694		ret = err;
695	err = memory_fail_init();
696	if (!ret)
697		ret = err;
698	err = block_size_init();
699	if (!ret)
700		ret = err;
701out:
702	if (ret)
703		printk(KERN_ERR "%s() failed: %d\n", __func__, ret);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
704	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
705}
v5.4
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Memory subsystem support
  4 *
  5 * Written by Matt Tolentino <matthew.e.tolentino@intel.com>
  6 *            Dave Hansen <haveblue@us.ibm.com>
  7 *
  8 * This file provides the necessary infrastructure to represent
  9 * a SPARSEMEM-memory-model system's physical memory in /sysfs.
 10 * All arch-independent code that assumes MEMORY_HOTPLUG requires
 11 * SPARSEMEM should be contained here, or in mm/memory_hotplug.c.
 12 */
 13
 14#include <linux/module.h>
 15#include <linux/init.h>
 16#include <linux/topology.h>
 17#include <linux/capability.h>
 18#include <linux/device.h>
 19#include <linux/memory.h>
 
 20#include <linux/memory_hotplug.h>
 21#include <linux/mm.h>
 22#include <linux/mutex.h>
 23#include <linux/stat.h>
 24#include <linux/slab.h>
 25
 26#include <linux/atomic.h>
 27#include <linux/uaccess.h>
 28
 29static DEFINE_MUTEX(mem_sysfs_mutex);
 30
 31#define MEMORY_CLASS_NAME	"memory"
 32
 33#define to_memory_block(dev) container_of(dev, struct memory_block, dev)
 34
 35static int sections_per_block;
 36
 37static inline unsigned long base_memory_block_id(unsigned long section_nr)
 38{
 39	return section_nr / sections_per_block;
 40}
 41
 42static inline unsigned long pfn_to_block_id(unsigned long pfn)
 43{
 44	return base_memory_block_id(pfn_to_section_nr(pfn));
 45}
 46
 47static inline unsigned long phys_to_block_id(unsigned long phys)
 48{
 49	return pfn_to_block_id(PFN_DOWN(phys));
 50}
 51
 52static int memory_subsys_online(struct device *dev);
 53static int memory_subsys_offline(struct device *dev);
 54
 55static struct bus_type memory_subsys = {
 56	.name = MEMORY_CLASS_NAME,
 57	.dev_name = MEMORY_CLASS_NAME,
 58	.online = memory_subsys_online,
 59	.offline = memory_subsys_offline,
 60};
 61
 62static BLOCKING_NOTIFIER_HEAD(memory_chain);
 63
 64int register_memory_notifier(struct notifier_block *nb)
 65{
 66	return blocking_notifier_chain_register(&memory_chain, nb);
 67}
 68EXPORT_SYMBOL(register_memory_notifier);
 69
 70void unregister_memory_notifier(struct notifier_block *nb)
 71{
 72	blocking_notifier_chain_unregister(&memory_chain, nb);
 73}
 74EXPORT_SYMBOL(unregister_memory_notifier);
 75
 76static ATOMIC_NOTIFIER_HEAD(memory_isolate_chain);
 77
 78int register_memory_isolate_notifier(struct notifier_block *nb)
 79{
 80	return atomic_notifier_chain_register(&memory_isolate_chain, nb);
 81}
 82EXPORT_SYMBOL(register_memory_isolate_notifier);
 83
 84void unregister_memory_isolate_notifier(struct notifier_block *nb)
 85{
 86	atomic_notifier_chain_unregister(&memory_isolate_chain, nb);
 87}
 88EXPORT_SYMBOL(unregister_memory_isolate_notifier);
 89
 90static void memory_block_release(struct device *dev)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 91{
 92	struct memory_block *mem = to_memory_block(dev);
 93
 94	kfree(mem);
 
 
 95}
 96
 97unsigned long __weak memory_block_size_bytes(void)
 98{
 99	return MIN_MEMORY_BLOCK_SIZE;
100}
101EXPORT_SYMBOL_GPL(memory_block_size_bytes);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
102
103/*
104 * Show the first physical section index (number) of this memory block.
 
105 */
106static ssize_t phys_index_show(struct device *dev,
107			       struct device_attribute *attr, char *buf)
 
108{
109	struct memory_block *mem = to_memory_block(dev);
 
110	unsigned long phys_index;
111
112	phys_index = mem->start_section_nr / sections_per_block;
113	return sprintf(buf, "%08lx\n", phys_index);
114}
115
 
 
 
 
 
 
 
 
 
 
 
116/*
117 * Show whether the memory block is likely to be offlineable (or is already
118 * offline). Once offline, the memory block could be removed. The return
119 * value does, however, not indicate that there is a way to remove the
120 * memory block.
121 */
122static ssize_t removable_show(struct device *dev, struct device_attribute *attr,
123			      char *buf)
124{
125	struct memory_block *mem = to_memory_block(dev);
126	unsigned long pfn;
127	int ret = 1, i;
128
129	if (mem->state != MEM_ONLINE)
130		goto out;
131
132	for (i = 0; i < sections_per_block; i++) {
133		if (!present_section_nr(mem->start_section_nr + i))
134			continue;
135		pfn = section_nr_to_pfn(mem->start_section_nr + i);
136		ret &= is_mem_section_removable(pfn, PAGES_PER_SECTION);
137	}
138
139out:
140	return sprintf(buf, "%d\n", ret);
141}
142
143/*
144 * online, offline, going offline, etc.
145 */
146static ssize_t state_show(struct device *dev, struct device_attribute *attr,
147			  char *buf)
148{
149	struct memory_block *mem = to_memory_block(dev);
 
150	ssize_t len = 0;
151
152	/*
153	 * We can probably put these states in a nice little array
154	 * so that they're not open-coded
155	 */
156	switch (mem->state) {
157	case MEM_ONLINE:
158		len = sprintf(buf, "online\n");
159		break;
160	case MEM_OFFLINE:
161		len = sprintf(buf, "offline\n");
162		break;
163	case MEM_GOING_OFFLINE:
164		len = sprintf(buf, "going-offline\n");
165		break;
166	default:
167		len = sprintf(buf, "ERROR-UNKNOWN-%ld\n",
168				mem->state);
169		WARN_ON(1);
170		break;
171	}
172
173	return len;
174}
175
176int memory_notify(unsigned long val, void *v)
177{
178	return blocking_notifier_call_chain(&memory_chain, val, v);
179}
180
181int memory_isolate_notify(unsigned long val, void *v)
182{
183	return atomic_notifier_call_chain(&memory_isolate_chain, val, v);
184}
185
186/*
187 * The probe routines leave the pages uninitialized, just as the bootmem code
188 * does. Make sure we do not access them, but instead use only information from
189 * within sections.
190 */
191static bool pages_correctly_probed(unsigned long start_pfn)
 
192{
193	unsigned long section_nr = pfn_to_section_nr(start_pfn);
194	unsigned long section_nr_end = section_nr + sections_per_block;
195	unsigned long pfn = start_pfn;
196
197	/*
198	 * memmap between sections is not contiguous except with
199	 * SPARSEMEM_VMEMMAP. We lookup the page once per section
200	 * and assume memmap is contiguous within each section
201	 */
202	for (; section_nr < section_nr_end; section_nr++) {
203		if (WARN_ON_ONCE(!pfn_valid(pfn)))
204			return false;
 
 
 
 
 
 
 
 
 
205
206		if (!present_section_nr(section_nr)) {
207			pr_warn("section %ld pfn[%lx, %lx) not present\n",
208				section_nr, pfn, pfn + PAGES_PER_SECTION);
209			return false;
210		} else if (!valid_section_nr(section_nr)) {
211			pr_warn("section %ld pfn[%lx, %lx) no valid memmap\n",
212				section_nr, pfn, pfn + PAGES_PER_SECTION);
213			return false;
214		} else if (online_section_nr(section_nr)) {
215			pr_warn("section %ld pfn[%lx, %lx) is already online\n",
216				section_nr, pfn, pfn + PAGES_PER_SECTION);
217			return false;
218		}
219		pfn += PAGES_PER_SECTION;
220	}
221
222	return true;
223}
224
225/*
226 * MEMORY_HOTPLUG depends on SPARSEMEM in mm/Kconfig, so it is
227 * OK to have direct references to sparsemem variables in here.
228 */
229static int
230memory_block_action(unsigned long start_section_nr, unsigned long action,
231		    int online_type)
232{
233	unsigned long start_pfn;
234	unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
 
235	int ret;
236
237	start_pfn = section_nr_to_pfn(start_section_nr);
238
239	switch (action) {
240	case MEM_ONLINE:
241		if (!pages_correctly_probed(start_pfn))
242			return -EBUSY;
 
 
243
244		ret = online_pages(start_pfn, nr_pages, online_type);
245		break;
246	case MEM_OFFLINE:
247		ret = offline_pages(start_pfn, nr_pages);
248		break;
249	default:
250		WARN(1, KERN_WARNING "%s(%ld, %ld) unknown action: "
251		     "%ld\n", __func__, start_section_nr, action, action);
252		ret = -EINVAL;
 
 
253	}
254
255	return ret;
256}
257
258static int memory_block_change_state(struct memory_block *mem,
259		unsigned long to_state, unsigned long from_state_req)
260{
261	int ret = 0;
262
263	if (mem->state != from_state_req)
264		return -EINVAL;
 
 
 
 
265
266	if (to_state == MEM_OFFLINE)
267		mem->state = MEM_GOING_OFFLINE;
268
269	ret = memory_block_action(mem->start_section_nr, to_state,
270				mem->online_type);
271
272	mem->state = ret ? from_state_req : to_state;
 
 
 
273
 
 
 
 
 
 
 
 
 
 
 
 
 
274	return ret;
275}
276
277/* The device lock serializes operations on memory_subsys_[online|offline] */
278static int memory_subsys_online(struct device *dev)
 
279{
280	struct memory_block *mem = to_memory_block(dev);
281	int ret;
282
283	if (mem->state == MEM_ONLINE)
284		return 0;
285
286	/*
287	 * If we are called from state_store(), online_type will be
288	 * set >= 0 Otherwise we were called from the device online
289	 * attribute and need to set the online_type.
290	 */
291	if (mem->online_type < 0)
292		mem->online_type = MMOP_ONLINE_KEEP;
293
294	ret = memory_block_change_state(mem, MEM_ONLINE, MEM_OFFLINE);
295
296	/* clear online_type */
297	mem->online_type = -1;
298
299	return ret;
300}
301
302static int memory_subsys_offline(struct device *dev)
303{
304	struct memory_block *mem = to_memory_block(dev);
305
306	if (mem->state == MEM_OFFLINE)
307		return 0;
308
309	/* Can't offline block with non-present sections */
310	if (mem->section_count != sections_per_block)
311		return -EINVAL;
312
313	return memory_block_change_state(mem, MEM_OFFLINE, MEM_ONLINE);
314}
 
 
315
316static ssize_t state_store(struct device *dev, struct device_attribute *attr,
317			   const char *buf, size_t count)
318{
319	struct memory_block *mem = to_memory_block(dev);
320	int ret, online_type;
321
322	ret = lock_device_hotplug_sysfs();
323	if (ret)
324		return ret;
325
326	if (sysfs_streq(buf, "online_kernel"))
327		online_type = MMOP_ONLINE_KERNEL;
328	else if (sysfs_streq(buf, "online_movable"))
329		online_type = MMOP_ONLINE_MOVABLE;
330	else if (sysfs_streq(buf, "online"))
331		online_type = MMOP_ONLINE_KEEP;
332	else if (sysfs_streq(buf, "offline"))
333		online_type = MMOP_OFFLINE;
334	else {
335		ret = -EINVAL;
336		goto err;
337	}
338
339	switch (online_type) {
340	case MMOP_ONLINE_KERNEL:
341	case MMOP_ONLINE_MOVABLE:
342	case MMOP_ONLINE_KEEP:
343		/* mem->online_type is protected by device_hotplug_lock */
344		mem->online_type = online_type;
345		ret = device_online(&mem->dev);
346		break;
347	case MMOP_OFFLINE:
348		ret = device_offline(&mem->dev);
349		break;
350	default:
351		ret = -EINVAL; /* should never happen */
352	}
353
354err:
355	unlock_device_hotplug();
356
357	if (ret < 0)
358		return ret;
359	if (ret)
360		return -EINVAL;
361
362	return count;
363}
364
365/*
366 * phys_device is a bad name for this.  What I really want
367 * is a way to differentiate between memory ranges that
368 * are part of physical devices that constitute
369 * a complete removable unit or fru.
370 * i.e. do these ranges belong to the same physical device,
371 * s.t. if I offline all of these sections I can then
372 * remove the physical device?
373 */
374static ssize_t phys_device_show(struct device *dev,
375				struct device_attribute *attr, char *buf)
376{
377	struct memory_block *mem = to_memory_block(dev);
 
378	return sprintf(buf, "%d\n", mem->phys_device);
379}
380
381#ifdef CONFIG_MEMORY_HOTREMOVE
382static void print_allowed_zone(char *buf, int nid, unsigned long start_pfn,
383		unsigned long nr_pages, int online_type,
384		struct zone *default_zone)
385{
386	struct zone *zone;
387
388	zone = zone_for_pfn_range(online_type, nid, start_pfn, nr_pages);
389	if (zone != default_zone) {
390		strcat(buf, " ");
391		strcat(buf, zone->name);
392	}
393}
394
395static ssize_t valid_zones_show(struct device *dev,
396				struct device_attribute *attr, char *buf)
397{
398	struct memory_block *mem = to_memory_block(dev);
399	unsigned long start_pfn = section_nr_to_pfn(mem->start_section_nr);
400	unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
401	unsigned long valid_start_pfn, valid_end_pfn;
402	struct zone *default_zone;
403	int nid;
404
405	/*
406	 * Check the existing zone. Make sure that we do that only on the
407	 * online nodes otherwise the page_zone is not reliable
408	 */
409	if (mem->state == MEM_ONLINE) {
410		/*
411		 * The block contains more than one zone can not be offlined.
412		 * This can happen e.g. for ZONE_DMA and ZONE_DMA32
413		 */
414		if (!test_pages_in_a_zone(start_pfn, start_pfn + nr_pages,
415					  &valid_start_pfn, &valid_end_pfn))
416			return sprintf(buf, "none\n");
417		start_pfn = valid_start_pfn;
418		strcat(buf, page_zone(pfn_to_page(start_pfn))->name);
419		goto out;
420	}
421
422	nid = mem->nid;
423	default_zone = zone_for_pfn_range(MMOP_ONLINE_KEEP, nid, start_pfn, nr_pages);
424	strcat(buf, default_zone->name);
425
426	print_allowed_zone(buf, nid, start_pfn, nr_pages, MMOP_ONLINE_KERNEL,
427			default_zone);
428	print_allowed_zone(buf, nid, start_pfn, nr_pages, MMOP_ONLINE_MOVABLE,
429			default_zone);
430out:
431	strcat(buf, "\n");
432
433	return strlen(buf);
434}
435static DEVICE_ATTR_RO(valid_zones);
436#endif
437
438static DEVICE_ATTR_RO(phys_index);
439static DEVICE_ATTR_RW(state);
440static DEVICE_ATTR_RO(phys_device);
441static DEVICE_ATTR_RO(removable);
442
443/*
444 * Show the memory block size (shared by all memory blocks).
445 */
446static ssize_t block_size_bytes_show(struct device *dev,
447				     struct device_attribute *attr, char *buf)
 
448{
449	return sprintf(buf, "%lx\n", memory_block_size_bytes());
450}
451
452static DEVICE_ATTR_RO(block_size_bytes);
453
454/*
455 * Memory auto online policy.
456 */
457
458static ssize_t auto_online_blocks_show(struct device *dev,
459				       struct device_attribute *attr, char *buf)
460{
461	if (memhp_auto_online)
462		return sprintf(buf, "online\n");
463	else
464		return sprintf(buf, "offline\n");
465}
466
467static ssize_t auto_online_blocks_store(struct device *dev,
468					struct device_attribute *attr,
469					const char *buf, size_t count)
470{
471	if (sysfs_streq(buf, "online"))
472		memhp_auto_online = true;
473	else if (sysfs_streq(buf, "offline"))
474		memhp_auto_online = false;
475	else
476		return -EINVAL;
477
478	return count;
479}
480
481static DEVICE_ATTR_RW(auto_online_blocks);
482
483/*
484 * Some architectures will have custom drivers to do this, and
485 * will not need to do it from userspace.  The fake hot-add code
486 * as well as ppc64 will do all of their discovery in userspace
487 * and will require this interface.
488 */
489#ifdef CONFIG_ARCH_MEMORY_PROBE
490static ssize_t probe_store(struct device *dev, struct device_attribute *attr,
491			   const char *buf, size_t count)
 
492{
493	u64 phys_addr;
494	int nid, ret;
 
495	unsigned long pages_per_block = PAGES_PER_SECTION * sections_per_block;
496
497	ret = kstrtoull(buf, 0, &phys_addr);
498	if (ret)
499		return ret;
500
501	if (phys_addr & ((pages_per_block << PAGE_SHIFT) - 1))
502		return -EINVAL;
503
504	ret = lock_device_hotplug_sysfs();
505	if (ret)
506		return ret;
 
 
 
507
508	nid = memory_add_physaddr_to_nid(phys_addr);
509	ret = __add_memory(nid, phys_addr,
510			   MIN_MEMORY_BLOCK_SIZE * sections_per_block);
511
512	if (ret)
513		goto out;
514
515	ret = count;
516out:
517	unlock_device_hotplug();
518	return ret;
519}
 
520
521static DEVICE_ATTR_WO(probe);
 
 
 
 
 
 
 
 
522#endif
523
524#ifdef CONFIG_MEMORY_FAILURE
525/*
526 * Support for offlining pages of memory
527 */
528
529/* Soft offline a page */
530static ssize_t soft_offline_page_store(struct device *dev,
531				       struct device_attribute *attr,
532				       const char *buf, size_t count)
 
533{
534	int ret;
535	u64 pfn;
536	if (!capable(CAP_SYS_ADMIN))
537		return -EPERM;
538	if (kstrtoull(buf, 0, &pfn) < 0)
539		return -EINVAL;
540	pfn >>= PAGE_SHIFT;
541	if (!pfn_valid(pfn))
542		return -ENXIO;
543	/* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
544	if (!pfn_to_online_page(pfn))
545		return -EIO;
546	ret = soft_offline_page(pfn_to_page(pfn), 0);
547	return ret == 0 ? count : ret;
548}
549
550/* Forcibly offline a page, including killing processes. */
551static ssize_t hard_offline_page_store(struct device *dev,
552				       struct device_attribute *attr,
553				       const char *buf, size_t count)
 
554{
555	int ret;
556	u64 pfn;
557	if (!capable(CAP_SYS_ADMIN))
558		return -EPERM;
559	if (kstrtoull(buf, 0, &pfn) < 0)
560		return -EINVAL;
561	pfn >>= PAGE_SHIFT;
562	ret = memory_failure(pfn, 0);
563	return ret ? ret : count;
564}
565
566static DEVICE_ATTR_WO(soft_offline_page);
567static DEVICE_ATTR_WO(hard_offline_page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
568#endif
569
570/*
571 * Note that phys_device is optional.  It is here to allow for
572 * differentiation between which *physical* devices each
573 * section belongs to...
574 */
575int __weak arch_get_memory_phys_device(unsigned long start_pfn)
576{
577	return 0;
578}
579
580/* A reference for the returned memory block device is acquired. */
581static struct memory_block *find_memory_block_by_id(unsigned long block_id)
 
 
 
 
582{
 
 
583	struct device *dev;
584
585	dev = subsys_find_device_by_id(&memory_subsys, block_id, NULL);
586	return dev ? to_memory_block(dev) : NULL;
 
 
 
 
587}
588
589/*
590 * For now, we have a linear search to go find the appropriate
591 * memory_block corresponding to a particular phys_index. If
592 * this gets to be a real problem, we can always use a radix
593 * tree or something here.
594 *
595 * This could be made generic for all device subsystems.
596 */
597struct memory_block *find_memory_block(struct mem_section *section)
598{
599	unsigned long block_id = base_memory_block_id(__section_nr(section));
600
601	return find_memory_block_by_id(block_id);
602}
603
604static struct attribute *memory_memblk_attrs[] = {
605	&dev_attr_phys_index.attr,
606	&dev_attr_state.attr,
607	&dev_attr_phys_device.attr,
608	&dev_attr_removable.attr,
609#ifdef CONFIG_MEMORY_HOTREMOVE
610	&dev_attr_valid_zones.attr,
611#endif
612	NULL
613};
614
615static struct attribute_group memory_memblk_attr_group = {
616	.attrs = memory_memblk_attrs,
617};
618
619static const struct attribute_group *memory_memblk_attr_groups[] = {
620	&memory_memblk_attr_group,
621	NULL,
622};
623
624/*
625 * register_memory - Setup a sysfs device for a memory block
626 */
627static
628int register_memory(struct memory_block *memory)
629{
630	int ret;
631
632	memory->dev.bus = &memory_subsys;
633	memory->dev.id = memory->start_section_nr / sections_per_block;
634	memory->dev.release = memory_block_release;
635	memory->dev.groups = memory_memblk_attr_groups;
636	memory->dev.offline = memory->state == MEM_OFFLINE;
637
638	ret = device_register(&memory->dev);
639	if (ret)
640		put_device(&memory->dev);
641
642	return ret;
643}
644
645static int init_memory_block(struct memory_block **memory,
646			     unsigned long block_id, unsigned long state)
647{
648	struct memory_block *mem;
649	unsigned long start_pfn;
 
650	int ret = 0;
651
652	mem = find_memory_block_by_id(block_id);
653	if (mem) {
654		put_device(&mem->dev);
655		return -EEXIST;
656	}
657	mem = kzalloc(sizeof(*mem), GFP_KERNEL);
658	if (!mem)
659		return -ENOMEM;
660
661	mem->start_section_nr = block_id * sections_per_block;
 
 
 
662	mem->state = state;
 
 
663	start_pfn = section_nr_to_pfn(mem->start_section_nr);
664	mem->phys_device = arch_get_memory_phys_device(start_pfn);
665	mem->nid = NUMA_NO_NODE;
666
667	ret = register_memory(mem);
 
 
 
 
 
 
 
 
 
 
668
669	*memory = mem;
670	return ret;
671}
672
673static int add_memory_block(unsigned long base_section_nr)
 
 
674{
675	int ret, section_count = 0;
676	struct memory_block *mem;
677	unsigned long nr;
678
679	for (nr = base_section_nr; nr < base_section_nr + sections_per_block;
680	     nr++)
681		if (present_section_nr(nr))
682			section_count++;
683
684	if (section_count == 0)
685		return 0;
686	ret = init_memory_block(&mem, base_memory_block_id(base_section_nr),
687				MEM_ONLINE);
688	if (ret)
689		return ret;
690	mem->section_count = section_count;
691	return 0;
692}
693
694static void unregister_memory(struct memory_block *memory)
695{
696	if (WARN_ON_ONCE(memory->dev.bus != &memory_subsys))
697		return;
 
 
 
 
 
 
698
699	/* drop the ref. we got via find_memory_block() */
700	put_device(&memory->dev);
701	device_unregister(&memory->dev);
702}
 
 
 
 
 
 
703
704/*
705 * Create memory block devices for the given memory area. Start and size
706 * have to be aligned to memory block granularity. Memory block devices
707 * will be initialized as offline.
708 */
709int create_memory_block_devices(unsigned long start, unsigned long size)
710{
711	const unsigned long start_block_id = pfn_to_block_id(PFN_DOWN(start));
712	unsigned long end_block_id = pfn_to_block_id(PFN_DOWN(start + size));
713	struct memory_block *mem;
714	unsigned long block_id;
715	int ret = 0;
716
717	if (WARN_ON_ONCE(!IS_ALIGNED(start, memory_block_size_bytes()) ||
718			 !IS_ALIGNED(size, memory_block_size_bytes())))
719		return -EINVAL;
720
721	mutex_lock(&mem_sysfs_mutex);
722	for (block_id = start_block_id; block_id != end_block_id; block_id++) {
723		ret = init_memory_block(&mem, block_id, MEM_OFFLINE);
724		if (ret)
725			break;
726		mem->section_count = sections_per_block;
727	}
728	if (ret) {
729		end_block_id = block_id;
730		for (block_id = start_block_id; block_id != end_block_id;
731		     block_id++) {
732			mem = find_memory_block_by_id(block_id);
733			mem->section_count = 0;
734			unregister_memory(mem);
735		}
736	}
737	mutex_unlock(&mem_sysfs_mutex);
738	return ret;
739}
740
741/*
742 * Remove memory block devices for the given memory area. Start and size
743 * have to be aligned to memory block granularity. Memory block devices
744 * have to be offline.
745 */
746void remove_memory_block_devices(unsigned long start, unsigned long size)
747{
748	const unsigned long start_block_id = pfn_to_block_id(PFN_DOWN(start));
749	const unsigned long end_block_id = pfn_to_block_id(PFN_DOWN(start + size));
750	struct memory_block *mem;
751	unsigned long block_id;
752
753	if (WARN_ON_ONCE(!IS_ALIGNED(start, memory_block_size_bytes()) ||
754			 !IS_ALIGNED(size, memory_block_size_bytes())))
755		return;
756
757	mutex_lock(&mem_sysfs_mutex);
758	for (block_id = start_block_id; block_id != end_block_id; block_id++) {
759		mem = find_memory_block_by_id(block_id);
760		if (WARN_ON_ONCE(!mem))
761			continue;
762		mem->section_count = 0;
763		unregister_memory_block_under_nodes(mem);
764		unregister_memory(mem);
765	}
 
 
 
766	mutex_unlock(&mem_sysfs_mutex);
 
767}
768
769/* return true if the memory block is offlined, otherwise, return false */
770bool is_memblock_offlined(struct memory_block *mem)
 
 
 
771{
772	return mem->state == MEM_OFFLINE;
773}
774
775static struct attribute *memory_root_attrs[] = {
776#ifdef CONFIG_ARCH_MEMORY_PROBE
777	&dev_attr_probe.attr,
778#endif
779
780#ifdef CONFIG_MEMORY_FAILURE
781	&dev_attr_soft_offline_page.attr,
782	&dev_attr_hard_offline_page.attr,
783#endif
784
785	&dev_attr_block_size_bytes.attr,
786	&dev_attr_auto_online_blocks.attr,
787	NULL
788};
789
790static struct attribute_group memory_root_attr_group = {
791	.attrs = memory_root_attrs,
792};
793
794static const struct attribute_group *memory_root_attr_groups[] = {
795	&memory_root_attr_group,
796	NULL,
797};
798
799/*
800 * Initialize the sysfs support for memory devices...
801 */
802void __init memory_dev_init(void)
803{
 
804	int ret;
805	int err;
806	unsigned long block_sz, nr;
807
808	/* Validate the configured memory block size */
809	block_sz = memory_block_size_bytes();
810	if (!is_power_of_2(block_sz) || block_sz < MIN_MEMORY_BLOCK_SIZE)
811		panic("Memory block size not suitable: 0x%lx\n", block_sz);
812	sections_per_block = block_sz / MIN_MEMORY_BLOCK_SIZE;
813
814	ret = subsys_system_register(&memory_subsys, memory_root_attr_groups);
815	if (ret)
816		goto out;
817
 
 
 
818	/*
819	 * Create entries for memory sections that were found
820	 * during boot and have been initialized
821	 */
822	mutex_lock(&mem_sysfs_mutex);
823	for (nr = 0; nr <= __highest_present_section_nr;
824	     nr += sections_per_block) {
825		err = add_memory_block(nr);
 
 
 
 
826		if (!ret)
827			ret = err;
828	}
829	mutex_unlock(&mem_sysfs_mutex);
830
 
 
 
 
 
 
 
 
 
831out:
832	if (ret)
833		panic("%s() failed: %d\n", __func__, ret);
834}
835
836/**
837 * walk_memory_blocks - walk through all present memory blocks overlapped
838 *			by the range [start, start + size)
839 *
840 * @start: start address of the memory range
841 * @size: size of the memory range
842 * @arg: argument passed to func
843 * @func: callback for each memory section walked
844 *
845 * This function walks through all present memory blocks overlapped by the
846 * range [start, start + size), calling func on each memory block.
847 *
848 * In case func() returns an error, walking is aborted and the error is
849 * returned.
850 */
851int walk_memory_blocks(unsigned long start, unsigned long size,
852		       void *arg, walk_memory_blocks_func_t func)
853{
854	const unsigned long start_block_id = phys_to_block_id(start);
855	const unsigned long end_block_id = phys_to_block_id(start + size - 1);
856	struct memory_block *mem;
857	unsigned long block_id;
858	int ret = 0;
859
860	if (!size)
861		return 0;
862
863	for (block_id = start_block_id; block_id <= end_block_id; block_id++) {
864		mem = find_memory_block_by_id(block_id);
865		if (!mem)
866			continue;
867
868		ret = func(mem, arg);
869		put_device(&mem->dev);
870		if (ret)
871			break;
872	}
873	return ret;
874}
875
876struct for_each_memory_block_cb_data {
877	walk_memory_blocks_func_t func;
878	void *arg;
879};
880
881static int for_each_memory_block_cb(struct device *dev, void *data)
882{
883	struct memory_block *mem = to_memory_block(dev);
884	struct for_each_memory_block_cb_data *cb_data = data;
885
886	return cb_data->func(mem, cb_data->arg);
887}
888
889/**
890 * for_each_memory_block - walk through all present memory blocks
891 *
892 * @arg: argument passed to func
893 * @func: callback for each memory block walked
894 *
895 * This function walks through all present memory blocks, calling func on
896 * each memory block.
897 *
898 * In case func() returns an error, walking is aborted and the error is
899 * returned.
900 */
901int for_each_memory_block(void *arg, walk_memory_blocks_func_t func)
902{
903	struct for_each_memory_block_cb_data cb_data = {
904		.func = func,
905		.arg = arg,
906	};
907
908	return bus_for_each_dev(&memory_subsys, NULL, &cb_data,
909				for_each_memory_block_cb);
910}