Linux Audio

Check our new training course

Loading...
v3.5.6
 
  1/*
  2 * Memory subsystem support
  3 *
  4 * Written by Matt Tolentino <matthew.e.tolentino@intel.com>
  5 *            Dave Hansen <haveblue@us.ibm.com>
  6 *
  7 * This file provides the necessary infrastructure to represent
  8 * a SPARSEMEM-memory-model system's physical memory in /sysfs.
  9 * All arch-independent code that assumes MEMORY_HOTPLUG requires
 10 * SPARSEMEM should be contained here, or in mm/memory_hotplug.c.
 11 */
 12
 13#include <linux/module.h>
 14#include <linux/init.h>
 15#include <linux/topology.h>
 16#include <linux/capability.h>
 17#include <linux/device.h>
 18#include <linux/memory.h>
 19#include <linux/kobject.h>
 20#include <linux/memory_hotplug.h>
 21#include <linux/mm.h>
 22#include <linux/mutex.h>
 23#include <linux/stat.h>
 24#include <linux/slab.h>
 25
 26#include <linux/atomic.h>
 27#include <asm/uaccess.h>
 28
 29static DEFINE_MUTEX(mem_sysfs_mutex);
 30
 31#define MEMORY_CLASS_NAME	"memory"
 32
 
 
 33static int sections_per_block;
 34
 35static inline int base_memory_block_id(int section_nr)
 36{
 37	return section_nr / sections_per_block;
 38}
 39
 
 
 
 40static struct bus_type memory_subsys = {
 41	.name = MEMORY_CLASS_NAME,
 42	.dev_name = MEMORY_CLASS_NAME,
 
 
 43};
 44
 45static BLOCKING_NOTIFIER_HEAD(memory_chain);
 46
 47int register_memory_notifier(struct notifier_block *nb)
 48{
 49        return blocking_notifier_chain_register(&memory_chain, nb);
 50}
 51EXPORT_SYMBOL(register_memory_notifier);
 52
 53void unregister_memory_notifier(struct notifier_block *nb)
 54{
 55        blocking_notifier_chain_unregister(&memory_chain, nb);
 56}
 57EXPORT_SYMBOL(unregister_memory_notifier);
 58
 59static ATOMIC_NOTIFIER_HEAD(memory_isolate_chain);
 60
 61int register_memory_isolate_notifier(struct notifier_block *nb)
 62{
 63	return atomic_notifier_chain_register(&memory_isolate_chain, nb);
 64}
 65EXPORT_SYMBOL(register_memory_isolate_notifier);
 66
 67void unregister_memory_isolate_notifier(struct notifier_block *nb)
 68{
 69	atomic_notifier_chain_unregister(&memory_isolate_chain, nb);
 70}
 71EXPORT_SYMBOL(unregister_memory_isolate_notifier);
 72
 73/*
 74 * register_memory - Setup a sysfs device for a memory block
 75 */
 76static
 77int register_memory(struct memory_block *memory)
 78{
 79	int error;
 80
 81	memory->dev.bus = &memory_subsys;
 82	memory->dev.id = memory->start_section_nr / sections_per_block;
 83
 84	error = device_register(&memory->dev);
 85	return error;
 86}
 87
 88static void
 89unregister_memory(struct memory_block *memory)
 90{
 91	BUG_ON(memory->dev.bus != &memory_subsys);
 92
 93	/* drop the ref. we got in remove_memory_block() */
 94	kobject_put(&memory->dev.kobj);
 95	device_unregister(&memory->dev);
 96}
 97
 98unsigned long __weak memory_block_size_bytes(void)
 99{
100	return MIN_MEMORY_BLOCK_SIZE;
101}
102
103static unsigned long get_memory_block_size(void)
104{
105	unsigned long block_sz;
106
107	block_sz = memory_block_size_bytes();
108
109	/* Validate blk_sz is a power of 2 and not less than section size */
110	if ((block_sz & (block_sz - 1)) || (block_sz < MIN_MEMORY_BLOCK_SIZE)) {
111		WARN_ON(1);
112		block_sz = MIN_MEMORY_BLOCK_SIZE;
113	}
114
115	return block_sz;
116}
117
118/*
119 * use this as the physical section index that this memsection
120 * uses.
121 */
122
123static ssize_t show_mem_start_phys_index(struct device *dev,
124			struct device_attribute *attr, char *buf)
125{
126	struct memory_block *mem =
127		container_of(dev, struct memory_block, dev);
128	unsigned long phys_index;
129
130	phys_index = mem->start_section_nr / sections_per_block;
131	return sprintf(buf, "%08lx\n", phys_index);
132}
133
134static ssize_t show_mem_end_phys_index(struct device *dev,
135			struct device_attribute *attr, char *buf)
136{
137	struct memory_block *mem =
138		container_of(dev, struct memory_block, dev);
139	unsigned long phys_index;
140
141	phys_index = mem->end_section_nr / sections_per_block;
142	return sprintf(buf, "%08lx\n", phys_index);
143}
144
145/*
146 * Show whether the section of memory is likely to be hot-removable
147 */
148static ssize_t show_mem_removable(struct device *dev,
149			struct device_attribute *attr, char *buf)
150{
151	unsigned long i, pfn;
152	int ret = 1;
153	struct memory_block *mem =
154		container_of(dev, struct memory_block, dev);
 
 
155
156	for (i = 0; i < sections_per_block; i++) {
 
 
157		pfn = section_nr_to_pfn(mem->start_section_nr + i);
158		ret &= is_mem_section_removable(pfn, PAGES_PER_SECTION);
159	}
160
 
161	return sprintf(buf, "%d\n", ret);
162}
163
164/*
165 * online, offline, going offline, etc.
166 */
167static ssize_t show_mem_state(struct device *dev,
168			struct device_attribute *attr, char *buf)
169{
170	struct memory_block *mem =
171		container_of(dev, struct memory_block, dev);
172	ssize_t len = 0;
173
174	/*
175	 * We can probably put these states in a nice little array
176	 * so that they're not open-coded
177	 */
178	switch (mem->state) {
179		case MEM_ONLINE:
180			len = sprintf(buf, "online\n");
181			break;
182		case MEM_OFFLINE:
183			len = sprintf(buf, "offline\n");
184			break;
185		case MEM_GOING_OFFLINE:
186			len = sprintf(buf, "going-offline\n");
187			break;
188		default:
189			len = sprintf(buf, "ERROR-UNKNOWN-%ld\n",
190					mem->state);
191			WARN_ON(1);
192			break;
193	}
194
195	return len;
196}
197
198int memory_notify(unsigned long val, void *v)
199{
200	return blocking_notifier_call_chain(&memory_chain, val, v);
201}
202
203int memory_isolate_notify(unsigned long val, void *v)
204{
205	return atomic_notifier_call_chain(&memory_isolate_chain, val, v);
206}
207
208/*
209 * The probe routines leave the pages reserved, just as the bootmem code does.
210 * Make sure they're still that way.
 
211 */
212static bool pages_correctly_reserved(unsigned long start_pfn,
213					unsigned long nr_pages)
214{
215	int i, j;
216	struct page *page;
217	unsigned long pfn = start_pfn;
218
219	/*
220	 * memmap between sections is not contiguous except with
221	 * SPARSEMEM_VMEMMAP. We lookup the page once per section
222	 * and assume memmap is contiguous within each section
223	 */
224	for (i = 0; i < sections_per_block; i++, pfn += PAGES_PER_SECTION) {
225		if (WARN_ON_ONCE(!pfn_valid(pfn)))
226			return false;
227		page = pfn_to_page(pfn);
228
229		for (j = 0; j < PAGES_PER_SECTION; j++) {
230			if (PageReserved(page + j))
231				continue;
232
233			printk(KERN_WARNING "section number %ld page number %d "
234				"not reserved, was it already online?\n",
235				pfn_to_section_nr(pfn), j);
236
 
 
 
 
 
 
 
 
 
 
 
237			return false;
238		}
 
239	}
240
241	return true;
242}
243
244/*
245 * MEMORY_HOTPLUG depends on SPARSEMEM in mm/Kconfig, so it is
246 * OK to have direct references to sparsemem variables in here.
 
247 */
248static int
249memory_block_action(unsigned long phys_index, unsigned long action)
250{
251	unsigned long start_pfn, start_paddr;
252	unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
253	struct page *first_page;
254	int ret;
255
256	first_page = pfn_to_page(phys_index << PFN_SECTION_SHIFT);
257
258	switch (action) {
259		case MEM_ONLINE:
260			start_pfn = page_to_pfn(first_page);
261
262			if (!pages_correctly_reserved(start_pfn, nr_pages))
263				return -EBUSY;
264
265			ret = online_pages(start_pfn, nr_pages);
266			break;
267		case MEM_OFFLINE:
268			start_paddr = page_to_pfn(first_page) << PAGE_SHIFT;
269			ret = remove_memory(start_paddr,
270					    nr_pages << PAGE_SHIFT);
271			break;
272		default:
273			WARN(1, KERN_WARNING "%s(%ld, %ld) unknown action: "
274			     "%ld\n", __func__, phys_index, action, action);
275			ret = -EINVAL;
276	}
277
278	return ret;
279}
280
281static int memory_block_change_state(struct memory_block *mem,
282		unsigned long to_state, unsigned long from_state_req)
283{
284	int ret = 0;
285
286	mutex_lock(&mem->state_mutex);
287
288	if (mem->state != from_state_req) {
289		ret = -EINVAL;
290		goto out;
291	}
292
293	if (to_state == MEM_OFFLINE)
294		mem->state = MEM_GOING_OFFLINE;
295
296	ret = memory_block_action(mem->start_section_nr, to_state);
 
297
298	if (ret) {
299		mem->state = from_state_req;
300		goto out;
301	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
302
303	mem->state = to_state;
304	switch (mem->state) {
305	case MEM_OFFLINE:
306		kobject_uevent(&mem->dev.kobj, KOBJ_OFFLINE);
307		break;
308	case MEM_ONLINE:
309		kobject_uevent(&mem->dev.kobj, KOBJ_ONLINE);
310		break;
311	default:
312		break;
313	}
314out:
315	mutex_unlock(&mem->state_mutex);
316	return ret;
317}
318
 
 
 
 
 
 
 
 
 
 
 
 
 
 
319static ssize_t
320store_mem_state(struct device *dev,
321		struct device_attribute *attr, const char *buf, size_t count)
322{
323	struct memory_block *mem;
324	int ret = -EINVAL;
325
326	mem = container_of(dev, struct memory_block, dev);
 
 
327
328	if (!strncmp(buf, "online", min((int)count, 6)))
329		ret = memory_block_change_state(mem, MEM_ONLINE, MEM_OFFLINE);
330	else if(!strncmp(buf, "offline", min((int)count, 7)))
331		ret = memory_block_change_state(mem, MEM_OFFLINE, MEM_ONLINE);
 
 
 
 
 
 
 
 
332
333	if (ret)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
334		return ret;
 
 
 
335	return count;
336}
337
338/*
339 * phys_device is a bad name for this.  What I really want
340 * is a way to differentiate between memory ranges that
341 * are part of physical devices that constitute
342 * a complete removable unit or fru.
343 * i.e. do these ranges belong to the same physical device,
344 * s.t. if I offline all of these sections I can then
345 * remove the physical device?
346 */
347static ssize_t show_phys_device(struct device *dev,
348				struct device_attribute *attr, char *buf)
349{
350	struct memory_block *mem =
351		container_of(dev, struct memory_block, dev);
352	return sprintf(buf, "%d\n", mem->phys_device);
353}
354
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
355static DEVICE_ATTR(phys_index, 0444, show_mem_start_phys_index, NULL);
356static DEVICE_ATTR(end_phys_index, 0444, show_mem_end_phys_index, NULL);
357static DEVICE_ATTR(state, 0644, show_mem_state, store_mem_state);
358static DEVICE_ATTR(phys_device, 0444, show_phys_device, NULL);
359static DEVICE_ATTR(removable, 0444, show_mem_removable, NULL);
360
361#define mem_create_simple_file(mem, attr_name)	\
362	device_create_file(&mem->dev, &dev_attr_##attr_name)
363#define mem_remove_simple_file(mem, attr_name)	\
364	device_remove_file(&mem->dev, &dev_attr_##attr_name)
365
366/*
367 * Block size attribute stuff
368 */
369static ssize_t
370print_block_size(struct device *dev, struct device_attribute *attr,
371		 char *buf)
372{
373	return sprintf(buf, "%lx\n", get_memory_block_size());
374}
375
376static DEVICE_ATTR(block_size_bytes, 0444, print_block_size, NULL);
377
378static int block_size_init(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
379{
380	return device_create_file(memory_subsys.dev_root,
381				  &dev_attr_block_size_bytes);
 
 
 
 
 
 
382}
383
 
 
 
384/*
385 * Some architectures will have custom drivers to do this, and
386 * will not need to do it from userspace.  The fake hot-add code
387 * as well as ppc64 will do all of their discovery in userspace
388 * and will require this interface.
389 */
390#ifdef CONFIG_ARCH_MEMORY_PROBE
391static ssize_t
392memory_probe_store(struct device *dev, struct device_attribute *attr,
393		   const char *buf, size_t count)
394{
395	u64 phys_addr;
396	int nid;
397	int i, ret;
398	unsigned long pages_per_block = PAGES_PER_SECTION * sections_per_block;
399
400	phys_addr = simple_strtoull(buf, NULL, 0);
 
 
401
402	if (phys_addr & ((pages_per_block << PAGE_SHIFT) - 1))
403		return -EINVAL;
404
405	for (i = 0; i < sections_per_block; i++) {
406		nid = memory_add_physaddr_to_nid(phys_addr);
407		ret = add_memory(nid, phys_addr,
408				 PAGES_PER_SECTION << PAGE_SHIFT);
409		if (ret)
410			goto out;
411
412		phys_addr += MIN_MEMORY_BLOCK_SIZE;
413	}
414
415	ret = count;
416out:
417	return ret;
418}
419static DEVICE_ATTR(probe, S_IWUSR, NULL, memory_probe_store);
420
421static int memory_probe_init(void)
422{
423	return device_create_file(memory_subsys.dev_root, &dev_attr_probe);
424}
425#else
426static inline int memory_probe_init(void)
427{
428	return 0;
429}
430#endif
431
432#ifdef CONFIG_MEMORY_FAILURE
433/*
434 * Support for offlining pages of memory
435 */
436
437/* Soft offline a page */
438static ssize_t
439store_soft_offline_page(struct device *dev,
440			struct device_attribute *attr,
441			const char *buf, size_t count)
442{
443	int ret;
444	u64 pfn;
445	if (!capable(CAP_SYS_ADMIN))
446		return -EPERM;
447	if (strict_strtoull(buf, 0, &pfn) < 0)
448		return -EINVAL;
449	pfn >>= PAGE_SHIFT;
450	if (!pfn_valid(pfn))
451		return -ENXIO;
452	ret = soft_offline_page(pfn_to_page(pfn), 0);
453	return ret == 0 ? count : ret;
454}
455
456/* Forcibly offline a page, including killing processes. */
457static ssize_t
458store_hard_offline_page(struct device *dev,
459			struct device_attribute *attr,
460			const char *buf, size_t count)
461{
462	int ret;
463	u64 pfn;
464	if (!capable(CAP_SYS_ADMIN))
465		return -EPERM;
466	if (strict_strtoull(buf, 0, &pfn) < 0)
467		return -EINVAL;
468	pfn >>= PAGE_SHIFT;
469	ret = memory_failure(pfn, 0, 0);
470	return ret ? ret : count;
471}
472
473static DEVICE_ATTR(soft_offline_page, 0644, NULL, store_soft_offline_page);
474static DEVICE_ATTR(hard_offline_page, 0644, NULL, store_hard_offline_page);
475
476static __init int memory_fail_init(void)
477{
478	int err;
479
480	err = device_create_file(memory_subsys.dev_root,
481				&dev_attr_soft_offline_page);
482	if (!err)
483		err = device_create_file(memory_subsys.dev_root,
484				&dev_attr_hard_offline_page);
485	return err;
486}
487#else
488static inline int memory_fail_init(void)
489{
490	return 0;
491}
492#endif
493
494/*
495 * Note that phys_device is optional.  It is here to allow for
496 * differentiation between which *physical* devices each
497 * section belongs to...
498 */
499int __weak arch_get_memory_phys_device(unsigned long start_pfn)
500{
501	return 0;
502}
503
504/*
505 * A reference for the returned object is held and the reference for the
506 * hinted object is released.
507 */
508struct memory_block *find_memory_block_hinted(struct mem_section *section,
509					      struct memory_block *hint)
510{
511	int block_id = base_memory_block_id(__section_nr(section));
512	struct device *hintdev = hint ? &hint->dev : NULL;
513	struct device *dev;
514
515	dev = subsys_find_device_by_id(&memory_subsys, block_id, hintdev);
516	if (hint)
517		put_device(&hint->dev);
518	if (!dev)
519		return NULL;
520	return container_of(dev, struct memory_block, dev);
521}
522
523/*
524 * For now, we have a linear search to go find the appropriate
525 * memory_block corresponding to a particular phys_index. If
526 * this gets to be a real problem, we can always use a radix
527 * tree or something here.
528 *
529 * This could be made generic for all device subsystems.
530 */
531struct memory_block *find_memory_block(struct mem_section *section)
532{
533	return find_memory_block_hinted(section, NULL);
534}
535
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
536static int init_memory_block(struct memory_block **memory,
537			     struct mem_section *section, unsigned long state)
538{
539	struct memory_block *mem;
540	unsigned long start_pfn;
541	int scn_nr;
542	int ret = 0;
543
544	mem = kzalloc(sizeof(*mem), GFP_KERNEL);
545	if (!mem)
546		return -ENOMEM;
547
548	scn_nr = __section_nr(section);
549	mem->start_section_nr =
550			base_memory_block_id(scn_nr) * sections_per_block;
551	mem->end_section_nr = mem->start_section_nr + sections_per_block - 1;
552	mem->state = state;
553	mem->section_count++;
554	mutex_init(&mem->state_mutex);
555	start_pfn = section_nr_to_pfn(mem->start_section_nr);
556	mem->phys_device = arch_get_memory_phys_device(start_pfn);
557
558	ret = register_memory(mem);
559	if (!ret)
560		ret = mem_create_simple_file(mem, phys_index);
561	if (!ret)
562		ret = mem_create_simple_file(mem, end_phys_index);
563	if (!ret)
564		ret = mem_create_simple_file(mem, state);
565	if (!ret)
566		ret = mem_create_simple_file(mem, phys_device);
567	if (!ret)
568		ret = mem_create_simple_file(mem, removable);
569
570	*memory = mem;
571	return ret;
572}
573
574static int add_memory_section(int nid, struct mem_section *section,
575			struct memory_block **mem_p,
576			unsigned long state, enum mem_add_context context)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
577{
578	struct memory_block *mem = NULL;
579	int scn_nr = __section_nr(section);
580	int ret = 0;
 
581
582	mutex_lock(&mem_sysfs_mutex);
583
584	if (context == BOOT) {
585		/* same memory block ? */
586		if (mem_p && *mem_p)
587			if (scn_nr >= (*mem_p)->start_section_nr &&
588			    scn_nr <= (*mem_p)->end_section_nr) {
589				mem = *mem_p;
590				kobject_get(&mem->dev.kobj);
591			}
592	} else
593		mem = find_memory_block(section);
594
595	if (mem) {
596		mem->section_count++;
597		kobject_put(&mem->dev.kobj);
598	} else {
599		ret = init_memory_block(&mem, section, state);
600		/* store memory_block pointer for next loop */
601		if (!ret && context == BOOT)
602			if (mem_p)
603				*mem_p = mem;
604	}
605
606	if (!ret) {
607		if (context == HOTPLUG &&
608		    mem->section_count == sections_per_block)
609			ret = register_mem_sect_under_node(mem, nid);
610	}
611
 
 
 
612	mutex_unlock(&mem_sysfs_mutex);
613	return ret;
614}
615
616int remove_memory_block(unsigned long node_id, struct mem_section *section,
617		int phys_device)
 
 
 
 
 
 
 
 
 
 
 
618{
619	struct memory_block *mem;
620
621	mutex_lock(&mem_sysfs_mutex);
 
 
 
 
 
622	mem = find_memory_block(section);
 
 
 
623	unregister_mem_sect_under_nodes(mem, __section_nr(section));
624
625	mem->section_count--;
626	if (mem->section_count == 0) {
627		mem_remove_simple_file(mem, phys_index);
628		mem_remove_simple_file(mem, end_phys_index);
629		mem_remove_simple_file(mem, state);
630		mem_remove_simple_file(mem, phys_device);
631		mem_remove_simple_file(mem, removable);
632		unregister_memory(mem);
633		kfree(mem);
634	} else
635		kobject_put(&mem->dev.kobj);
636
 
637	mutex_unlock(&mem_sysfs_mutex);
638	return 0;
639}
640
641/*
642 * need an interface for the VM to add new memory regions,
643 * but without onlining it.
644 */
645int register_new_memory(int nid, struct mem_section *section)
646{
647	return add_memory_section(nid, section, NULL, MEM_OFFLINE, HOTPLUG);
648}
649
650int unregister_memory_section(struct mem_section *section)
651{
652	if (!present_section(section))
653		return -EINVAL;
654
655	return remove_memory_block(0, section, 0);
656}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
657
658/*
659 * Initialize the sysfs support for memory devices...
660 */
661int __init memory_dev_init(void)
662{
663	unsigned int i;
664	int ret;
665	int err;
666	unsigned long block_sz;
667	struct memory_block *mem = NULL;
668
669	ret = subsys_system_register(&memory_subsys, NULL);
670	if (ret)
671		goto out;
672
673	block_sz = get_memory_block_size();
674	sections_per_block = block_sz / MIN_MEMORY_BLOCK_SIZE;
675
676	/*
677	 * Create entries for memory sections that were found
678	 * during boot and have been initialized
679	 */
680	for (i = 0; i < NR_MEM_SECTIONS; i++) {
681		if (!present_section_nr(i))
682			continue;
683		/* don't need to reuse memory_block if only one per block */
684		err = add_memory_section(0, __nr_to_section(i),
685				 (sections_per_block == 1) ? NULL : &mem,
686					 MEM_ONLINE,
687					 BOOT);
688		if (!ret)
689			ret = err;
690	}
 
691
692	err = memory_probe_init();
693	if (!ret)
694		ret = err;
695	err = memory_fail_init();
696	if (!ret)
697		ret = err;
698	err = block_size_init();
699	if (!ret)
700		ret = err;
701out:
702	if (ret)
703		printk(KERN_ERR "%s() failed: %d\n", __func__, ret);
704	return ret;
705}
v4.17
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Memory subsystem support
  4 *
  5 * Written by Matt Tolentino <matthew.e.tolentino@intel.com>
  6 *            Dave Hansen <haveblue@us.ibm.com>
  7 *
  8 * This file provides the necessary infrastructure to represent
  9 * a SPARSEMEM-memory-model system's physical memory in /sysfs.
 10 * All arch-independent code that assumes MEMORY_HOTPLUG requires
 11 * SPARSEMEM should be contained here, or in mm/memory_hotplug.c.
 12 */
 13
 14#include <linux/module.h>
 15#include <linux/init.h>
 16#include <linux/topology.h>
 17#include <linux/capability.h>
 18#include <linux/device.h>
 19#include <linux/memory.h>
 
 20#include <linux/memory_hotplug.h>
 21#include <linux/mm.h>
 22#include <linux/mutex.h>
 23#include <linux/stat.h>
 24#include <linux/slab.h>
 25
 26#include <linux/atomic.h>
 27#include <linux/uaccess.h>
 28
 29static DEFINE_MUTEX(mem_sysfs_mutex);
 30
 31#define MEMORY_CLASS_NAME	"memory"
 32
 33#define to_memory_block(dev) container_of(dev, struct memory_block, dev)
 34
 35static int sections_per_block;
 36
 37static inline int base_memory_block_id(int section_nr)
 38{
 39	return section_nr / sections_per_block;
 40}
 41
 42static int memory_subsys_online(struct device *dev);
 43static int memory_subsys_offline(struct device *dev);
 44
 45static struct bus_type memory_subsys = {
 46	.name = MEMORY_CLASS_NAME,
 47	.dev_name = MEMORY_CLASS_NAME,
 48	.online = memory_subsys_online,
 49	.offline = memory_subsys_offline,
 50};
 51
 52static BLOCKING_NOTIFIER_HEAD(memory_chain);
 53
 54int register_memory_notifier(struct notifier_block *nb)
 55{
 56	return blocking_notifier_chain_register(&memory_chain, nb);
 57}
 58EXPORT_SYMBOL(register_memory_notifier);
 59
 60void unregister_memory_notifier(struct notifier_block *nb)
 61{
 62	blocking_notifier_chain_unregister(&memory_chain, nb);
 63}
 64EXPORT_SYMBOL(unregister_memory_notifier);
 65
 66static ATOMIC_NOTIFIER_HEAD(memory_isolate_chain);
 67
 68int register_memory_isolate_notifier(struct notifier_block *nb)
 69{
 70	return atomic_notifier_chain_register(&memory_isolate_chain, nb);
 71}
 72EXPORT_SYMBOL(register_memory_isolate_notifier);
 73
 74void unregister_memory_isolate_notifier(struct notifier_block *nb)
 75{
 76	atomic_notifier_chain_unregister(&memory_isolate_chain, nb);
 77}
 78EXPORT_SYMBOL(unregister_memory_isolate_notifier);
 79
 80static void memory_block_release(struct device *dev)
 
 
 
 
 81{
 82	struct memory_block *mem = to_memory_block(dev);
 
 
 
 83
 84	kfree(mem);
 
 
 
 
 
 
 
 
 
 
 
 85}
 86
 87unsigned long __weak memory_block_size_bytes(void)
 88{
 89	return MIN_MEMORY_BLOCK_SIZE;
 90}
 91
 92static unsigned long get_memory_block_size(void)
 93{
 94	unsigned long block_sz;
 95
 96	block_sz = memory_block_size_bytes();
 97
 98	/* Validate blk_sz is a power of 2 and not less than section size */
 99	if ((block_sz & (block_sz - 1)) || (block_sz < MIN_MEMORY_BLOCK_SIZE)) {
100		WARN_ON(1);
101		block_sz = MIN_MEMORY_BLOCK_SIZE;
102	}
103
104	return block_sz;
105}
106
107/*
108 * use this as the physical section index that this memsection
109 * uses.
110 */
111
112static ssize_t show_mem_start_phys_index(struct device *dev,
113			struct device_attribute *attr, char *buf)
114{
115	struct memory_block *mem = to_memory_block(dev);
 
116	unsigned long phys_index;
117
118	phys_index = mem->start_section_nr / sections_per_block;
119	return sprintf(buf, "%08lx\n", phys_index);
120}
121
 
 
 
 
 
 
 
 
 
 
 
122/*
123 * Show whether the section of memory is likely to be hot-removable
124 */
125static ssize_t show_mem_removable(struct device *dev,
126			struct device_attribute *attr, char *buf)
127{
128	unsigned long i, pfn;
129	int ret = 1;
130	struct memory_block *mem = to_memory_block(dev);
131
132	if (mem->state != MEM_ONLINE)
133		goto out;
134
135	for (i = 0; i < sections_per_block; i++) {
136		if (!present_section_nr(mem->start_section_nr + i))
137			continue;
138		pfn = section_nr_to_pfn(mem->start_section_nr + i);
139		ret &= is_mem_section_removable(pfn, PAGES_PER_SECTION);
140	}
141
142out:
143	return sprintf(buf, "%d\n", ret);
144}
145
146/*
147 * online, offline, going offline, etc.
148 */
149static ssize_t show_mem_state(struct device *dev,
150			struct device_attribute *attr, char *buf)
151{
152	struct memory_block *mem = to_memory_block(dev);
 
153	ssize_t len = 0;
154
155	/*
156	 * We can probably put these states in a nice little array
157	 * so that they're not open-coded
158	 */
159	switch (mem->state) {
160	case MEM_ONLINE:
161		len = sprintf(buf, "online\n");
162		break;
163	case MEM_OFFLINE:
164		len = sprintf(buf, "offline\n");
165		break;
166	case MEM_GOING_OFFLINE:
167		len = sprintf(buf, "going-offline\n");
168		break;
169	default:
170		len = sprintf(buf, "ERROR-UNKNOWN-%ld\n",
171				mem->state);
172		WARN_ON(1);
173		break;
174	}
175
176	return len;
177}
178
179int memory_notify(unsigned long val, void *v)
180{
181	return blocking_notifier_call_chain(&memory_chain, val, v);
182}
183
184int memory_isolate_notify(unsigned long val, void *v)
185{
186	return atomic_notifier_call_chain(&memory_isolate_chain, val, v);
187}
188
189/*
190 * The probe routines leave the pages uninitialized, just as the bootmem code
191 * does. Make sure we do not access them, but instead use only information from
192 * within sections.
193 */
194static bool pages_correctly_probed(unsigned long start_pfn)
 
195{
196	unsigned long section_nr = pfn_to_section_nr(start_pfn);
197	unsigned long section_nr_end = section_nr + sections_per_block;
198	unsigned long pfn = start_pfn;
199
200	/*
201	 * memmap between sections is not contiguous except with
202	 * SPARSEMEM_VMEMMAP. We lookup the page once per section
203	 * and assume memmap is contiguous within each section
204	 */
205	for (; section_nr < section_nr_end; section_nr++) {
206		if (WARN_ON_ONCE(!pfn_valid(pfn)))
207			return false;
 
 
 
 
 
 
 
 
 
208
209		if (!present_section_nr(section_nr)) {
210			pr_warn("section %ld pfn[%lx, %lx) not present",
211				section_nr, pfn, pfn + PAGES_PER_SECTION);
212			return false;
213		} else if (!valid_section_nr(section_nr)) {
214			pr_warn("section %ld pfn[%lx, %lx) no valid memmap",
215				section_nr, pfn, pfn + PAGES_PER_SECTION);
216			return false;
217		} else if (online_section_nr(section_nr)) {
218			pr_warn("section %ld pfn[%lx, %lx) is already online",
219				section_nr, pfn, pfn + PAGES_PER_SECTION);
220			return false;
221		}
222		pfn += PAGES_PER_SECTION;
223	}
224
225	return true;
226}
227
228/*
229 * MEMORY_HOTPLUG depends on SPARSEMEM in mm/Kconfig, so it is
230 * OK to have direct references to sparsemem variables in here.
231 * Must already be protected by mem_hotplug_begin().
232 */
233static int
234memory_block_action(unsigned long phys_index, unsigned long action, int online_type)
235{
236	unsigned long start_pfn;
237	unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
 
238	int ret;
239
240	start_pfn = section_nr_to_pfn(phys_index);
241
242	switch (action) {
243	case MEM_ONLINE:
244		if (!pages_correctly_probed(start_pfn))
245			return -EBUSY;
 
 
246
247		ret = online_pages(start_pfn, nr_pages, online_type);
248		break;
249	case MEM_OFFLINE:
250		ret = offline_pages(start_pfn, nr_pages);
251		break;
252	default:
253		WARN(1, KERN_WARNING "%s(%ld, %ld) unknown action: "
254		     "%ld\n", __func__, phys_index, action, action);
255		ret = -EINVAL;
 
 
256	}
257
258	return ret;
259}
260
261static int memory_block_change_state(struct memory_block *mem,
262		unsigned long to_state, unsigned long from_state_req)
263{
264	int ret = 0;
265
266	if (mem->state != from_state_req)
267		return -EINVAL;
 
 
 
 
268
269	if (to_state == MEM_OFFLINE)
270		mem->state = MEM_GOING_OFFLINE;
271
272	ret = memory_block_action(mem->start_section_nr, to_state,
273				mem->online_type);
274
275	mem->state = ret ? from_state_req : to_state;
276
277	return ret;
278}
279
280/* The device lock serializes operations on memory_subsys_[online|offline] */
281static int memory_subsys_online(struct device *dev)
282{
283	struct memory_block *mem = to_memory_block(dev);
284	int ret;
285
286	if (mem->state == MEM_ONLINE)
287		return 0;
288
289	/*
290	 * If we are called from store_mem_state(), online_type will be
291	 * set >= 0 Otherwise we were called from the device online
292	 * attribute and need to set the online_type.
293	 */
294	if (mem->online_type < 0)
295		mem->online_type = MMOP_ONLINE_KEEP;
296
297	/* Already under protection of mem_hotplug_begin() */
298	ret = memory_block_change_state(mem, MEM_ONLINE, MEM_OFFLINE);
299
300	/* clear online_type */
301	mem->online_type = -1;
302
 
 
 
 
 
 
 
 
 
 
 
 
 
303	return ret;
304}
305
306static int memory_subsys_offline(struct device *dev)
307{
308	struct memory_block *mem = to_memory_block(dev);
309
310	if (mem->state == MEM_OFFLINE)
311		return 0;
312
313	/* Can't offline block with non-present sections */
314	if (mem->section_count != sections_per_block)
315		return -EINVAL;
316
317	return memory_block_change_state(mem, MEM_OFFLINE, MEM_ONLINE);
318}
319
320static ssize_t
321store_mem_state(struct device *dev,
322		struct device_attribute *attr, const char *buf, size_t count)
323{
324	struct memory_block *mem = to_memory_block(dev);
325	int ret, online_type;
326
327	ret = lock_device_hotplug_sysfs();
328	if (ret)
329		return ret;
330
331	if (sysfs_streq(buf, "online_kernel"))
332		online_type = MMOP_ONLINE_KERNEL;
333	else if (sysfs_streq(buf, "online_movable"))
334		online_type = MMOP_ONLINE_MOVABLE;
335	else if (sysfs_streq(buf, "online"))
336		online_type = MMOP_ONLINE_KEEP;
337	else if (sysfs_streq(buf, "offline"))
338		online_type = MMOP_OFFLINE;
339	else {
340		ret = -EINVAL;
341		goto err;
342	}
343
344	/*
345	 * Memory hotplug needs to hold mem_hotplug_begin() for probe to find
346	 * the correct memory block to online before doing device_online(dev),
347	 * which will take dev->mutex.  Take the lock early to prevent an
348	 * inversion, memory_subsys_online() callbacks will be implemented by
349	 * assuming it's already protected.
350	 */
351	mem_hotplug_begin();
352
353	switch (online_type) {
354	case MMOP_ONLINE_KERNEL:
355	case MMOP_ONLINE_MOVABLE:
356	case MMOP_ONLINE_KEEP:
357		mem->online_type = online_type;
358		ret = device_online(&mem->dev);
359		break;
360	case MMOP_OFFLINE:
361		ret = device_offline(&mem->dev);
362		break;
363	default:
364		ret = -EINVAL; /* should never happen */
365	}
366
367	mem_hotplug_done();
368err:
369	unlock_device_hotplug();
370
371	if (ret < 0)
372		return ret;
373	if (ret)
374		return -EINVAL;
375
376	return count;
377}
378
379/*
380 * phys_device is a bad name for this.  What I really want
381 * is a way to differentiate between memory ranges that
382 * are part of physical devices that constitute
383 * a complete removable unit or fru.
384 * i.e. do these ranges belong to the same physical device,
385 * s.t. if I offline all of these sections I can then
386 * remove the physical device?
387 */
388static ssize_t show_phys_device(struct device *dev,
389				struct device_attribute *attr, char *buf)
390{
391	struct memory_block *mem = to_memory_block(dev);
 
392	return sprintf(buf, "%d\n", mem->phys_device);
393}
394
395#ifdef CONFIG_MEMORY_HOTREMOVE
396static void print_allowed_zone(char *buf, int nid, unsigned long start_pfn,
397		unsigned long nr_pages, int online_type,
398		struct zone *default_zone)
399{
400	struct zone *zone;
401
402	zone = zone_for_pfn_range(online_type, nid, start_pfn, nr_pages);
403	if (zone != default_zone) {
404		strcat(buf, " ");
405		strcat(buf, zone->name);
406	}
407}
408
409static ssize_t show_valid_zones(struct device *dev,
410				struct device_attribute *attr, char *buf)
411{
412	struct memory_block *mem = to_memory_block(dev);
413	unsigned long start_pfn = section_nr_to_pfn(mem->start_section_nr);
414	unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
415	unsigned long valid_start_pfn, valid_end_pfn;
416	struct zone *default_zone;
417	int nid;
418
419	/*
420	 * The block contains more than one zone can not be offlined.
421	 * This can happen e.g. for ZONE_DMA and ZONE_DMA32
422	 */
423	if (!test_pages_in_a_zone(start_pfn, start_pfn + nr_pages, &valid_start_pfn, &valid_end_pfn))
424		return sprintf(buf, "none\n");
425
426	start_pfn = valid_start_pfn;
427	nr_pages = valid_end_pfn - start_pfn;
428
429	/*
430	 * Check the existing zone. Make sure that we do that only on the
431	 * online nodes otherwise the page_zone is not reliable
432	 */
433	if (mem->state == MEM_ONLINE) {
434		strcat(buf, page_zone(pfn_to_page(start_pfn))->name);
435		goto out;
436	}
437
438	nid = pfn_to_nid(start_pfn);
439	default_zone = zone_for_pfn_range(MMOP_ONLINE_KEEP, nid, start_pfn, nr_pages);
440	strcat(buf, default_zone->name);
441
442	print_allowed_zone(buf, nid, start_pfn, nr_pages, MMOP_ONLINE_KERNEL,
443			default_zone);
444	print_allowed_zone(buf, nid, start_pfn, nr_pages, MMOP_ONLINE_MOVABLE,
445			default_zone);
446out:
447	strcat(buf, "\n");
448
449	return strlen(buf);
450}
451static DEVICE_ATTR(valid_zones, 0444, show_valid_zones, NULL);
452#endif
453
454static DEVICE_ATTR(phys_index, 0444, show_mem_start_phys_index, NULL);
 
455static DEVICE_ATTR(state, 0644, show_mem_state, store_mem_state);
456static DEVICE_ATTR(phys_device, 0444, show_phys_device, NULL);
457static DEVICE_ATTR(removable, 0444, show_mem_removable, NULL);
458
 
 
 
 
 
459/*
460 * Block size attribute stuff
461 */
462static ssize_t
463print_block_size(struct device *dev, struct device_attribute *attr,
464		 char *buf)
465{
466	return sprintf(buf, "%lx\n", get_memory_block_size());
467}
468
469static DEVICE_ATTR(block_size_bytes, 0444, print_block_size, NULL);
470
471/*
472 * Memory auto online policy.
473 */
474
475static ssize_t
476show_auto_online_blocks(struct device *dev, struct device_attribute *attr,
477			char *buf)
478{
479	if (memhp_auto_online)
480		return sprintf(buf, "online\n");
481	else
482		return sprintf(buf, "offline\n");
483}
484
485static ssize_t
486store_auto_online_blocks(struct device *dev, struct device_attribute *attr,
487			 const char *buf, size_t count)
488{
489	if (sysfs_streq(buf, "online"))
490		memhp_auto_online = true;
491	else if (sysfs_streq(buf, "offline"))
492		memhp_auto_online = false;
493	else
494		return -EINVAL;
495
496	return count;
497}
498
499static DEVICE_ATTR(auto_online_blocks, 0644, show_auto_online_blocks,
500		   store_auto_online_blocks);
501
502/*
503 * Some architectures will have custom drivers to do this, and
504 * will not need to do it from userspace.  The fake hot-add code
505 * as well as ppc64 will do all of their discovery in userspace
506 * and will require this interface.
507 */
508#ifdef CONFIG_ARCH_MEMORY_PROBE
509static ssize_t
510memory_probe_store(struct device *dev, struct device_attribute *attr,
511		   const char *buf, size_t count)
512{
513	u64 phys_addr;
514	int nid, ret;
 
515	unsigned long pages_per_block = PAGES_PER_SECTION * sections_per_block;
516
517	ret = kstrtoull(buf, 0, &phys_addr);
518	if (ret)
519		return ret;
520
521	if (phys_addr & ((pages_per_block << PAGE_SHIFT) - 1))
522		return -EINVAL;
523
524	nid = memory_add_physaddr_to_nid(phys_addr);
525	ret = add_memory(nid, phys_addr,
526			 MIN_MEMORY_BLOCK_SIZE * sections_per_block);
 
 
 
527
528	if (ret)
529		goto out;
530
531	ret = count;
532out:
533	return ret;
534}
 
535
536static DEVICE_ATTR(probe, S_IWUSR, NULL, memory_probe_store);
 
 
 
 
 
 
 
 
537#endif
538
539#ifdef CONFIG_MEMORY_FAILURE
540/*
541 * Support for offlining pages of memory
542 */
543
544/* Soft offline a page */
545static ssize_t
546store_soft_offline_page(struct device *dev,
547			struct device_attribute *attr,
548			const char *buf, size_t count)
549{
550	int ret;
551	u64 pfn;
552	if (!capable(CAP_SYS_ADMIN))
553		return -EPERM;
554	if (kstrtoull(buf, 0, &pfn) < 0)
555		return -EINVAL;
556	pfn >>= PAGE_SHIFT;
557	if (!pfn_valid(pfn))
558		return -ENXIO;
559	ret = soft_offline_page(pfn_to_page(pfn), 0);
560	return ret == 0 ? count : ret;
561}
562
563/* Forcibly offline a page, including killing processes. */
564static ssize_t
565store_hard_offline_page(struct device *dev,
566			struct device_attribute *attr,
567			const char *buf, size_t count)
568{
569	int ret;
570	u64 pfn;
571	if (!capable(CAP_SYS_ADMIN))
572		return -EPERM;
573	if (kstrtoull(buf, 0, &pfn) < 0)
574		return -EINVAL;
575	pfn >>= PAGE_SHIFT;
576	ret = memory_failure(pfn, 0);
577	return ret ? ret : count;
578}
579
580static DEVICE_ATTR(soft_offline_page, S_IWUSR, NULL, store_soft_offline_page);
581static DEVICE_ATTR(hard_offline_page, S_IWUSR, NULL, store_hard_offline_page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
582#endif
583
584/*
585 * Note that phys_device is optional.  It is here to allow for
586 * differentiation between which *physical* devices each
587 * section belongs to...
588 */
589int __weak arch_get_memory_phys_device(unsigned long start_pfn)
590{
591	return 0;
592}
593
594/*
595 * A reference for the returned object is held and the reference for the
596 * hinted object is released.
597 */
598struct memory_block *find_memory_block_hinted(struct mem_section *section,
599					      struct memory_block *hint)
600{
601	int block_id = base_memory_block_id(__section_nr(section));
602	struct device *hintdev = hint ? &hint->dev : NULL;
603	struct device *dev;
604
605	dev = subsys_find_device_by_id(&memory_subsys, block_id, hintdev);
606	if (hint)
607		put_device(&hint->dev);
608	if (!dev)
609		return NULL;
610	return to_memory_block(dev);
611}
612
613/*
614 * For now, we have a linear search to go find the appropriate
615 * memory_block corresponding to a particular phys_index. If
616 * this gets to be a real problem, we can always use a radix
617 * tree or something here.
618 *
619 * This could be made generic for all device subsystems.
620 */
621struct memory_block *find_memory_block(struct mem_section *section)
622{
623	return find_memory_block_hinted(section, NULL);
624}
625
626static struct attribute *memory_memblk_attrs[] = {
627	&dev_attr_phys_index.attr,
628	&dev_attr_state.attr,
629	&dev_attr_phys_device.attr,
630	&dev_attr_removable.attr,
631#ifdef CONFIG_MEMORY_HOTREMOVE
632	&dev_attr_valid_zones.attr,
633#endif
634	NULL
635};
636
637static struct attribute_group memory_memblk_attr_group = {
638	.attrs = memory_memblk_attrs,
639};
640
641static const struct attribute_group *memory_memblk_attr_groups[] = {
642	&memory_memblk_attr_group,
643	NULL,
644};
645
646/*
647 * register_memory - Setup a sysfs device for a memory block
648 */
649static
650int register_memory(struct memory_block *memory)
651{
652	memory->dev.bus = &memory_subsys;
653	memory->dev.id = memory->start_section_nr / sections_per_block;
654	memory->dev.release = memory_block_release;
655	memory->dev.groups = memory_memblk_attr_groups;
656	memory->dev.offline = memory->state == MEM_OFFLINE;
657
658	return device_register(&memory->dev);
659}
660
661static int init_memory_block(struct memory_block **memory,
662			     struct mem_section *section, unsigned long state)
663{
664	struct memory_block *mem;
665	unsigned long start_pfn;
666	int scn_nr;
667	int ret = 0;
668
669	mem = kzalloc(sizeof(*mem), GFP_KERNEL);
670	if (!mem)
671		return -ENOMEM;
672
673	scn_nr = __section_nr(section);
674	mem->start_section_nr =
675			base_memory_block_id(scn_nr) * sections_per_block;
676	mem->end_section_nr = mem->start_section_nr + sections_per_block - 1;
677	mem->state = state;
 
 
678	start_pfn = section_nr_to_pfn(mem->start_section_nr);
679	mem->phys_device = arch_get_memory_phys_device(start_pfn);
680
681	ret = register_memory(mem);
 
 
 
 
 
 
 
 
 
 
682
683	*memory = mem;
684	return ret;
685}
686
687static int add_memory_block(int base_section_nr)
688{
689	struct memory_block *mem;
690	int i, ret, section_count = 0, section_nr;
691
692	for (i = base_section_nr;
693	     (i < base_section_nr + sections_per_block) && i < NR_MEM_SECTIONS;
694	     i++) {
695		if (!present_section_nr(i))
696			continue;
697		if (section_count == 0)
698			section_nr = i;
699		section_count++;
700	}
701
702	if (section_count == 0)
703		return 0;
704	ret = init_memory_block(&mem, __nr_to_section(section_nr), MEM_ONLINE);
705	if (ret)
706		return ret;
707	mem->section_count = section_count;
708	return 0;
709}
710
711/*
712 * need an interface for the VM to add new memory regions,
713 * but without onlining it.
714 */
715int hotplug_memory_register(int nid, struct mem_section *section)
716{
 
 
717	int ret = 0;
718	struct memory_block *mem;
719
720	mutex_lock(&mem_sysfs_mutex);
721
722	mem = find_memory_block(section);
 
 
 
 
 
 
 
 
 
 
723	if (mem) {
724		mem->section_count++;
725		put_device(&mem->dev);
726	} else {
727		ret = init_memory_block(&mem, section, MEM_OFFLINE);
728		if (ret)
729			goto out;
730		mem->section_count++;
 
 
 
 
 
 
 
731	}
732
733	if (mem->section_count == sections_per_block)
734		ret = register_mem_sect_under_node(mem, nid, false);
735out:
736	mutex_unlock(&mem_sysfs_mutex);
737	return ret;
738}
739
740#ifdef CONFIG_MEMORY_HOTREMOVE
741static void
742unregister_memory(struct memory_block *memory)
743{
744	BUG_ON(memory->dev.bus != &memory_subsys);
745
746	/* drop the ref. we got in remove_memory_block() */
747	put_device(&memory->dev);
748	device_unregister(&memory->dev);
749}
750
751static int remove_memory_section(unsigned long node_id,
752			       struct mem_section *section, int phys_device)
753{
754	struct memory_block *mem;
755
756	mutex_lock(&mem_sysfs_mutex);
757
758	/*
759	 * Some users of the memory hotplug do not want/need memblock to
760	 * track all sections. Skip over those.
761	 */
762	mem = find_memory_block(section);
763	if (!mem)
764		goto out_unlock;
765
766	unregister_mem_sect_under_nodes(mem, __section_nr(section));
767
768	mem->section_count--;
769	if (mem->section_count == 0)
 
 
 
 
 
770		unregister_memory(mem);
771	else
772		put_device(&mem->dev);
 
773
774out_unlock:
775	mutex_unlock(&mem_sysfs_mutex);
776	return 0;
777}
778
 
 
 
 
 
 
 
 
 
779int unregister_memory_section(struct mem_section *section)
780{
781	if (!present_section(section))
782		return -EINVAL;
783
784	return remove_memory_section(0, section, 0);
785}
786#endif /* CONFIG_MEMORY_HOTREMOVE */
787
788/* return true if the memory block is offlined, otherwise, return false */
789bool is_memblock_offlined(struct memory_block *mem)
790{
791	return mem->state == MEM_OFFLINE;
792}
793
794static struct attribute *memory_root_attrs[] = {
795#ifdef CONFIG_ARCH_MEMORY_PROBE
796	&dev_attr_probe.attr,
797#endif
798
799#ifdef CONFIG_MEMORY_FAILURE
800	&dev_attr_soft_offline_page.attr,
801	&dev_attr_hard_offline_page.attr,
802#endif
803
804	&dev_attr_block_size_bytes.attr,
805	&dev_attr_auto_online_blocks.attr,
806	NULL
807};
808
809static struct attribute_group memory_root_attr_group = {
810	.attrs = memory_root_attrs,
811};
812
813static const struct attribute_group *memory_root_attr_groups[] = {
814	&memory_root_attr_group,
815	NULL,
816};
817
818/*
819 * Initialize the sysfs support for memory devices...
820 */
821int __init memory_dev_init(void)
822{
823	unsigned int i;
824	int ret;
825	int err;
826	unsigned long block_sz;
 
827
828	ret = subsys_system_register(&memory_subsys, memory_root_attr_groups);
829	if (ret)
830		goto out;
831
832	block_sz = get_memory_block_size();
833	sections_per_block = block_sz / MIN_MEMORY_BLOCK_SIZE;
834
835	/*
836	 * Create entries for memory sections that were found
837	 * during boot and have been initialized
838	 */
839	mutex_lock(&mem_sysfs_mutex);
840	for (i = 0; i <= __highest_present_section_nr;
841		i += sections_per_block) {
842		err = add_memory_block(i);
 
 
 
 
843		if (!ret)
844			ret = err;
845	}
846	mutex_unlock(&mem_sysfs_mutex);
847
 
 
 
 
 
 
 
 
 
848out:
849	if (ret)
850		printk(KERN_ERR "%s() failed: %d\n", __func__, ret);
851	return ret;
852}